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A B S T R A C T   

Introduction: Individuals with Down syndrome (DS) are at an increased risk of developing Alzheimer’s Disease 
(AD). One of the early underlying mechanisms in AD pathology is the accumulation of amyloid protein plaques, 
which are deposited in extracellular gray matter and signify the first stage in the cascade of neurodegenerative 
events. AD-related neurodegeneration is also evidenced as microstructural changes in white matter. In this work, 
we explored the correlation of white matter microstructure with amyloid load to assess amyloid-related neu
rodegeneration in a cohort of adults with DS. 
Methods: In this study of 96 adults with DS, the relation of white matter microstructure using diffusion tensor 
imaging (DTI) and amyloid plaque burden using [11C]PiB PET were examined. The amyloid load (AβL) derived 
from [11C]PiB was used as a global measure of amyloid burden. AβL and DTI measures were compared using 
tract-based spatial statistics (TBSS) and corrected for imaging site and chronological age. 
Results: TBSS of the DTI maps showed widespread age-by-amyloid interaction with both fractional anisotropy 
(FA) and mean diffusivity (MD). Further, diffuse negative association of FA and positive association of MD with 
amyloid were observed. 
Discussion: These findings are consistent with the white matter microstructural changes associated with AD 
disease progression in late onset AD in non-DS populations.   

1. Background 

Down syndrome (DS) is a genetic disorder involving trisomy of 
chromosome 21 resulting in an overproduction of various proteins 
encoded from this chromosome, including amyloid precursor protein 
(APP) (Wiseman et al., 2015). As one of the neuropathological features 
of Alzheimer’s disease (AD), an overproduction of APP and accompa
nying amyloid-beta (Aβ) pathology are implicated as primary sources for 
the enhanced risk of AD in individuals with DS (Wiseman et al., 2015). 
As the life expectancy of people with DS nearly quadrupled in the last 
century, from 16 years of age in the early 20th century to 60 years in 
2019 (Zigman et al., 2008) the prevalence of AD in this population has 

increased in parallel, with a lifetime risk of approximately 90% 
(McCarron et al., 2014). 

Positron emission tomography (PET) imaging studies have been used 
to characterize amyloid burden in DS populations and have shown 
increased retention of [11C]PiB (Pittsburgh compound B), which pref
erentially binds to amyloid plaques, in some participants by their fourth 
decade (30–40 years) of life and the majority with amyloid positivity 
(amyloid(+)) by the middle of their fifth decade (Annus et al., 2016; Lao 
et al., 2016). These findings reveal the emergence of PET-measured 
amyloid(+) status in DS approximately 30 years earlier than seen in 
the general (non-DS) population. However, similar to the general pop
ulation, the early stages of amyloid accumulation in DS do not adversely 
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affect cognitive function. In a study of non-demented DS participants 
(age 30–53), there were no significant differences in neuropsychological 
measures across amyloid(+) and amyloid(− ) groups (Hartley et al., 
2014). 

There are relatively few structural magnetic resonance imaging 
(MRI) studies of aging-DS and these studies have revealed varying re
sults (Neale et al., 2018). Detectable changes of gray matter volume and 
glucose metabolism with increased amyloid were observed by Matthews 
et al. (2016) and Rafii et al. (2015) in non-demented individuals with 
DS. Recently, Lao et al. (2018) studied a group of non-demented in
dividuals with DS using structural MRI and PET and found no indication 
of pre-AD changes in MRI-measured gray matter morphology between 
amyloid(+) and amyloid(− ) participants. Similar to the temporal course 
of AD biomarkers in the general population, these studies confirm that 
amyloid accumulation precedes gray matter atrophy and clinical de
mentia onset in DS (Zammit et al., 2020b). This order of events is 
consistent with the AT(N) model (amyloid -> tau -> neurodegeneration) 
describing the progression of AD-related biomarkers (Jack et al., 2018). 
Neurodegeneration is typically characterized by MRI-measured atrophy 
in the hippocampus or FDG PET patterns of hypometabolism in the 
precuneus, temporal and parietal cortices. Research is also ongoing to 
employ other neuroimaging modalities such as diffusion tensor imaging 
(DTI) to characterize microstructural changes in subcortical white 
matter related to neurodegeneration. 

Diffusion tensor imaging (DTI) is a non-invasive MRI technique used 
to probe microstructural differences in water diffusion properties of 
biological tissues (Basser et al., 1994; Basser and Pierpaoli, 1996). DTI 
measurements include the mean diffusivity (MD), which is the direc
tionally averaged diffusivity and is sensitive to the density of micro
structural features; and the fractional anisotropy (FA), which is a 
summary measure of the directional variance of diffusivities and is often 
used as a sensitive marker of white matter microstructural changes 
(Alexander et al., 2007). Although AD is often considered a disease of 
gray matter, white matter degeneration is also observed. This finding 
has been confirmed in several studies (Mayo et al., 2017; Nowrangi 
et al., 2013; Nowrangi et al., 2015; O’Dwyer et al., 2011) that have used 
DTI to compare AD subjects to healthy controls. DTI investigations of 
white matter integrity in AD populations have reported increased MD 
and decreased FA in multiple white matter regions across the brain 
(Mayo et al., 2018; Mayo et al., 2017; Nowrangi et al., 2015). These 
outcomes have been associated with cognitive decline and impaired 
executive function resulting from the deterioration of cortico-limbic, 
entorhinal, and cortico-cortico connections, potentially resulting from 
the presence of Aβ and NFTs. 

Previous DTI studies of non-demented individuals with DS have re
ported reduced FA relative to typically developing controls in frontal 
white matter connections (Fenoll et al., 2017; Romano et al., 2018). 
Similarly, Powell et al. (2014) observed widespread FA decreases in the 
frontal lobe in demented individuals with DS compared with non- 
demented individuals with DS and age-matched controls. 

Several neuroimaging studies have also investigated the relation
ships between early white matter microstructural changes in AD and 
amyloid burden with PiB PET (Chao et al., 2013; Racine et al., 2014; 
Wolf et al., 2015). The goal of this study was to examine these re
lationships within an aging DS population, which is an important first 
step to evaluate whether DTI may be a sensitive marker to the micro
structural changes in the early stages of Aβ deposition before evidence of 
GM degradation and cognitive decline. Given the near certainty of AD 
development and wide range of disease trajectories in individuals with 
DS and the marked early onset of pathology, characterizing the re
lationships between early white matter changes and amyloid burden in 
DS is essential to better understand disease progression. In this work, we 
investigated the relationships between [11C]PiB-measured amyloid 
burden in the brain with DTI measurements to assess white matter 
microstructure changes, as well as the effects of age on these changes, in 
a cohort of individuals with Down syndrome. 

2. Methods 

2.1. Participant selection 

Ninety-six (n = 96) individuals with Down syndrome (average age 
38.45 ± 7.98 yrs.) received baseline scans as part of the Alzheimer’s 
Biomarker Consortium-Down Syndrome (ABC-DS) study at three imag
ing facilities (34 at the University of Wisconsin-Madison, 34 at the 
University of Pittsburgh Medical Center (UPMC), and 28 at the Uni
versity of Cambridge (UC)). All participants had genetically confirmed 
trisomy 21. Eleven participants were excluded due to excessive artifacts 
in the raw diffusion-weighed images. Artifacts were identified using 
automated signal outlier detection using the FSL eddy command with 
the – repol option (Andersson et al., 2016; Andersson and Sotiropoulos, 
2016). Diffusion-weighted volumes were rejected if more than 10% of 
the slices demonstrated outliers. Subjects were excluded if more than 
10% of the diffusion-weighted volumes were rejected. Of the remaining 
85 participants, 78 were classified as non-demented (i.e., cognitively 
and functionally stable); 4 were classified as having mild cognitive 
impairment (MCI), and 3 participants were classified as demented. 
These clinical status determinations were based on a case consensus 
process that included at least three staff with clinical expertise who were 
blind to MRI and PET imaging data. Informed consent was obtained 
prior to data collection. 

The following information was used in the case consensus process: a) 
medical/psychiatric history and neurological exam; b) caregiver-report 
of participant’s functioning and life events; c) participant’s adaptive 
skills on the Vineland Adaptive Behavior Scales (2012; Sparrow et al., 
1984); d) caregiver-report of participant’s dementia symptoms on De
mentia Questionnaire for People with Learning Disabilities (Evenhuis, 
2018) or Dementia Scale for Down syndrome (Jozsvai et al., 2018); e) 
participant’s profile on the Down Syndrome Mental Status Examination 
(Haxby, 1989b), Developmental Test of Visual-Motor Integration, 5th 
Edition (Beery, 2004), Wechsler Intelligence Scale for Children 
(Wechsler, 1945) Block Design and Haxby extension (Haxby, 1989a), 
and Developmental NEuroPSYchological Assessment (Korkman et al., 
2007) Word Generation Semantic Fluency. 

Analyses were performed both with and without the subjects clas
sified as either MCI or demented. Removal of these subjects did not 
result in a loss of significant effects, so subjects were included for 
increased statistical power. 

2.1.1. PET imaging of amyloid burden 
A target dose of 15 mCi of [11C]PiB was delivered intravenously 

while participants were resting outside the PET scanner. PET data were 
acquired following a 40-minute radiotracer uptake period using either a 
Siemens ECAT HR+ (UW and UPMC), a Siemens 4-ring Biograph mCT 
(UPMC), or GE Advance (UC) scanner. The time-series acquisition was 
performed from 40 to 70 min (post-injection) with data binned into 5- 
minute time frames. PET images were reconstructed with the ECAT 
system software (OSEM algorithm; 4 iterations, 16 subsets) to a voxel 
size of 2.57 mm × 2.57 mm × 2.43 mm and matrix dimension of 128 ×
128 × 63 with corrections for detector deadtime, scanner normalization, 
photon attenuation and scatter, and radioactive decay. PET scans were 
reoriented along the anterior commissure posterior commissure (AC-PC) 
line, and inter-frame motion was corrected (Woods et al., 1998). Stan
dard uptake value ratio (SUVR) images were calculated from PET data 
50–70 min post-injection (McNamee et al., 2009) with a cerebellar gray 
matter reference region. (Klunk et al., 2004; Lopresti et al., 2005; Price 
et al., 2005) Global Aβ burden was calculated using the amyloid load 
metric (AβL) following previously described methodology (Zammit 
et al., 2020a). 

2.1.2. Diffusion tensor imaging 
MRI data were collected on 3.0T MRI scanners - a GE SIGNA 750 with 

an 8-channel head coil (UW-Madison), a Siemens Magnetom Trio 
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scanner with a 64-channel head coil (UPMC), a GE Signa PET-MR 
scanner with a 32-channel head coil (UC). Diffusion-weighted imaging 
at both sites was performed using a single-shell, diffusion-weighted spin 
echo sequence (UW-Madison TR/TE = 7800/67 ms; UPMC TR/TE =
7200/56 ms; UC TR/TE = 15707/75 ms). The DWI protocol consisted of 
either 7 (UPMC) or 6 (UW-Madison and UC) non-diffusion weighted (b0) 
images and diffusion weighted images with a b-value of 1000 s/mm2 in 
48 non-collinear directions. Additional imaging parameters consisted of 
matrix size: 116 × 116, field of view: 23.2 × 23.2 × 16 cm3, and 80 2 
mm thick slices. Data were processed using an in-house processing 
pipeline utilizing tools from FSL (Jenkinson et al., 2012), MRTrix3 
(Tournier et al., 2019), and the DiPy toolbox (Garyfallidis et al., 2014). 
The diffusion-weighted data were corrected for Gibbs’ ringing artifacts 
(Kellner et al., 2016), Gaussian noise (Veraart et al., 2016), and eddy 

current distortions and head motion with outlier replacement (Ander
sson et al., 2016; Andersson and Sotiropoulos, 2016). A threshold of 
10% or more of slices replaced as outliers within a single diffusion 
weighted image was established as a criterion for removal of a volume; 
however, no volumes exceeded this threshold and no DWIs were 
removed. The diffusion tensors were estimated using a robust estimator 
method, RESTORE (Chang et al., 2005), and FA and MD maps subse
quently calculated. 

2.2. Statistical analyses 

2.2.1. Tract-based spatial statistics 
Statistical analyses of the DTI data were performed using the tract- 

based spatial statistics (TBSS) pipeline in FSL (Smith et al., 2006; 

Fig. 1. a) areas of significant negative correlation between FA and AβL. b) Regions of significant correlation between MD and AβL. Results reflect regions with p <
0.05 corrected for multiple comparisons, imaging site, and age. 
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Smith et al., 2004). 

2.2.2. Statistical testing 
A general linear model (GLM) was constructed in FSL to investigate 

voxel-wise correlations of FA and MD with amyloid load, AβL. These 
analyses were completed using the FSL tool PALM with threshold-free 
cluster enhancement (TFCE) to identify significant brain regions. 
Correction for multiple comparisons was performed by controlling for 
the Family-Wise Error rate (Smith and Nichols, 2009). For all TBSS re
sults, the FSL tool tbss_fillI was used for ease of visualization; all inflated 
regions were mapped from a corrected significance of p < 0.05. 

A general linear model (GLM) was constructed in FSL to investigate 
voxel-wise comparisons of continuous AβL-by-age (AβL*age) in
teractions of DTI measures projected onto the population derived FA. A 

mask of areas with significant AβL*age interaction was generated and 
used to extract average MD and FA values from within these areas. 

3. Results 

Significantly decreased and widespread FA with increased AβL is 
shown in Fig. 1a (blue regions), which includes the bilateral occipital 
and prefrontal white matter, as well as the genu of the corpus callosum, 
the right superior longitudinal fasciculus, the fornix, and left inferior 
longitudinal fasciculus. These regions in Fig. 1a were generated with a 
site covariate and age correction. Likewise, Fig. 1b shows regions of 
significant positive correlation of AβL and MD. Across the extent of the 
significant regions shown, FA and MD were correlated with AβL at r =
− 0.611 (p < 0.001 corrected) and r = 0.552 (p < 0.001 corrected), 

Fig. 2. a) Regions of significant negative AβL*age interaction with FA. b) Regions of significant AβL*age interaction with MD. Results reflect regions with p < 0.05 
corrected for multiple comparisons and imaging site. 
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respectively. 
Fig. 2a shows a negative AβL*age interaction with FA. Fig. 2b reveals 

regions of positive AβL*age interaction with MD. Results are mapped at a 
significance of p < 0.05 corrected for multiple comparisons and imaging 
site. Across the extent of the significant regions shown, FA and MD were 
correlated with AβL*age at r = − 0.606 (p < 0.001 corrected) and r =
0.623 (p < 0.001 corrected), respectively. No significant positive 
AβL*age interactions with FA, nor were any significant negative AβL*age 
interactions with MD observed. 

4. Discussion 

To our knowledge, this is the first study to investigate the white 
matter microstructural differences based upon amyloid burden in in
dividuals with DS. Our findings reveal a positive relation of MD with 
amyloid over most of the association white matter pathways. Further, 
our cohort exhibited diffuse negative associations of FA with AβL in the 
bilateral occipital parietal and prefrontal white matter, the genu of the 
corpus callosum, and right temporal white matter and right superior 
longitudinal fasciculus. Site was included as a co-variate, with signifi
cant site effects found in the cerebellum, brainstem, posterior-inferior 
WM tracts for FA and the corpus callosum and corona radiata for MD. 
Importantly, independent analyses for each site showed similar corre
lations of interactions of FA and MD with AβL. As the effects were pre
served in the individual site analyses, we conclude that a site covariate 
within the GLM was sufficient to mitigate scanner-specific effects and no 
further data harmonization was needed. Since the effects are so wide
spread across the white matter, particularly for MD, adding other 
diffusion-weighted measures was not necessary to demonstrate that 
widespread microstructural changes are related to aging and amyloid 
burden in Down syndrome, thus are not included here. Further, the 
single-shell diffusion-weighted imaging protocol prohibited more 
advanced diffusion models such as either diffusion kurtosis imaging 
(DKI) or neurite orientation dispersion and density imaging (NODDI). 

Caballero et al. (2020) observed a significant amyloid-age interac
tion of MD and white matter hyper intensity volume in a cohort of non- 
DS, non-AD individuals, which suggested an accelerated neuro
degeneration in subjects with greater amyloid and is in line with our 
findings in aging DS (Caballero et al., 2020). It is well documented in 
geriatric imaging studies that white matter FA decreases with age and 
MD increases (Abe et al., 2002; Bennett et al., 2010; Hsu et al., 2008). 
Given the trend of FA to decrease and MD to increase in prodromal and 
fully realized AD relative to healthy controls, our findings suggest that 
individuals with DS with significant amyloid show signs of neuro
degeneration, similar to the findings of Caballero et al. (2020). 

The association between white matter microstructure and amyloid 
burden using [11C]PiB PET in aging (non-DS) was investigated by Racine 
et al. (2014) and found paradoxical increased FA and decreased MD in 
the PiB(+) group. Subsequently, Wolf et al. (2015) found increased FA 
and decreased MD accompanying low amyloid plaque burden, but this 
relationship was reversed for individuals with high amyloid burden, 
showing decreased FA and increased MD. Increased CSF measured Aβ42 
was associated with increased MD in gray and white matter in the 
frontal, parietal, occipital, and temporal lobes in healthy aging adults at 
risk for AD (Bendlin et al., 2012). Many, but not all of these areas, show 
similar patterns of white matter microstructural changes emerging in 
our DS cohort. 

The observed pattern of diffuse DTI changes within the association 
white matter in the neocortex is consistent with the earliest expected 
amyloid-β accumulation spatial patterns described by (Thal et al., 2002). 
Ultimately, it would be interesting to better understand how these white 
matter changes are associated with specific areas of amyloid accumu
lation. The interaction of age with amyloid load here does create chal
lenges for being specific to amyloid load. Future studies using 
tractography (beyond the scope of this study) in a larger sample of age- 
matched amyloid(− ) and amyloid(+) cohorts will be needed to relate 

the spatial distribution of white matter microstructural changes to am
yloid accumulation in cortical gray matter regions. 

A potential contributing factor explaining our findings is the pres
ence of cerebrovascular disease, particularly microbleeds (MB). MBs 
have been observed to occur at a higher rate in individuals with DS and 
contribute to increased cerebral amyloid angiopathy (CAA) (Head et al., 
2017; Helman et al., 2019; Lao et al., 2020). MBs and CAA are linked 
with Aβ accumulation and AD onset (Noguchi-Shinohara et al., 2017). In 
non-DS populations, both CAA (Chen et al., 2007) and MBs (Akoudad 
et al., 2013) have been reported to influence diffusion metrics and 
indicate signs of decreased WM structural integrity. Since DTI is sensi
tive to both MBs and AD-related brain changes, our results may reflect 
the contributions of both cerebrovascular disease and the presence of Aβ 
plaques. 

We originally investigated a stratified amyloid(− ) versus amyloid(+) 
analysis, but due to significant differences in age distributions (mean age 
difference = 12.6 ± 8.0 years) and the small amyloid(+) sample size (n 
= 19), meaningful subgroup analyses were not possible in this cohort. 
This led us to investigate white matter changes in relationship to age and 
amyloid load. It would be of great scientific interest to disentangle the 
interactions between amyloid accumulation and changes in white mat
ter microstructure specific to the DS population to potentially infer 
causality between these neuropathological features. Future work will 
focus on examining the time course of these processes as additional 
longitudinal data are acquired. 

Our findings of significant diffuse AβL*age interactions highlight the 
complexity of uncoupling DTI, amyloid and age and warrant further 
study within DS and non-DS subjects alike. Since both DTI and amyloid 
measures are related to aging, larger, longitudinal cohort studies with 
more balanced age distributions will be required to disambiguate age 
and amyloid burden effects on DTI measures. These interaction effects, 
however, suggest that increased amyloid burden is associated with more 
rapid age-related changes in white matter microstructure. 
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