iScience, Volume 24

Supplemental information

Prolyl endopeptidase-like is a (thio)esterase

involved in mitochondrial respiratory chain function

Karen Rosier, Molly T. McDevitt, Joél Smet, Brendan J. Floyd, Maxime Verschoore, Maria J. Marcaida, Craig A. Bingman, Irma Lemmens, Matteo Dal Peraro, Jan Tavernier, Benjamin F. Cravatt, Natalia V. Gounko, Katlijn Vints, Yenthe Monnens, Kritika Bhalla, Laetitia Aerts, Edrees H. Rashan, Arnaud V. Vanlander, Rudy Van Coster, Luc Régal, David J. Pagliarini, and John W.M. Creemers

Figure S2. BN-PAGE reveals complex V subcomplexes in quadriceps of *Prepl* KO mice. **Related to Figure 3.** BN-PAGE followed by in-gel activity staining show decreased complex I, III and IV activity. The activity of these complexes in *Prepl KO* mice is similar to 70% of the activity of the complexes in WT controls, consistent with the 30% reduction observed in the spectrophotometric analysis. In addition, subcomplexes of complex V (arrow) are observed in KO samples, suggesting defective mitochondrial protein translation.

Figure S3. Inhibitor profile of PREPL and PREP. Related to Figure 4.

A. Competition experiment between serine hydrolase inhibitors and the activity-based probe FPbiotin. Interaction with FP-biotin is reduced when PREPL is incubated with Palmostatin M (A2) and WHP313 (D2). Streptavidin blots show the activity of PREPL with the activity-based probe. Blots labeled with GST antibody are the loading control of PREPL. Chemical structures of the inhibitors are collected in Table S4. B. Inhibitor profile of PREP. The serine hydrolase inhibitors from panel A were screened in an AMC substrate-based activity assay. Hydrolysis of the AMC substrate in the presence of DMSO was used as negative control. KYP-2047 (UAMC714) is a potent inhibitor of PREP. A-B. Data are presented as mean \pm SEM (n=3); differences to DMSO control were analyzed by one-way ANOVA with Dunnett's multiple comparison test; * p<0.05, ** p<0.01; *** p<0.001.

Figure S4. Structure-based sequence alignment of PREPL_s, PREP, OpdB and AAP. Related to Figure 5.

The inactive open structures of PREP, OpdB and AAP have been aligned against our PREPLs structure using the server TM-align (Dong et al., 2018). PREP from *Aeromonas punctata*, PDB ID: 3IUL; AAP from *Aeropyrum pernix*, PDB ID: 3O4G; OpdB from *Trypanosoma brucei*, PDB ID: 4BP8. Note: only residues observed in the structures have been aligned. TM-align outputs the superimposition of the four structures (Figure S4) and the sequence alignment. Totally conserved residues are boxed in red and equivalent residues (residues >70% similar, considering physicochemical properties) are shown in red and boxed in blue. The secondary structure elements of the PREPL and OpdB models are depicted on top and below, respectively. Active site residues (Ser, Asp and His) and PREPL G652, F585, W607 and OpdB E655 are highlighted with green boxes.

Figure S5. Human $PREPL_s$ structure is solved in inactive open conformation. Related to Figure 5.

A. Superposition of human PREPL_S and the open structures of PREP, OpdB and AAP, giving RMSD values of 4.2, 3.5 and 4.5Å, respectively (calculated by TM-align). The amino-terminus and blade-1 are highlighted in red (PREPL) and in orange (PREP, OpdB, AAP). In the overlay, PREPL_S is shown in blue, PREP in beige, OpdB in pink and AAP in yellow. B.-C. Comparison of human PREPLs (blue with amino-terminus and blade 1 in red) and human PREP (PBD ID 3DDU) (beige with amino-terminus and blade 1 in orange), highlighting the interdomain opening in PREPLs (B) and the ~20Å outward swing of H690 with respect to the active position of H680 (C).

Figure S6. The amino-terminus and the first blade of the β -propeller domain of PREPLs differ from the peptidase family members. Related to Figure 5.

A. PREPL_S is shown in blue cartoon, with the amino-terminus and blade 1 in red, as in Figure 5. The left panel shows the hydrogen bonds between the amino-terminus and the rest of the protein. The electron density for residues 101-107 is very weak and this region could not be modeled. The amino-terminal helix makes only two direct interactions with the rest of the protein (E94 main chain-I350 main chain and K95 side chain-L256 main chain). The only other contact of the amino-terminus to the rest of the protein is Y108 side chain-K487 side chain. The helix that the amino-terminus forms within the top of the funnel, resembles the helix that can be found in the structure of dipeptidyl peptidase IV (DPP4) (PDB ID 1R9N), shown in the right panel. DPP4 is shown in beige cartoon, with the amino-terminus and blades 1 and 2 in orange and the helix at the center of the funnel highlighted in red. B. The β -propeller domains of PREPL_S and PREP are shown in cartoon, as seen from the bottom of the structure, where the blades of the propeller can be appreciated. In PREPL_S, the blades 1 and 7 (in blue and red, respectively) are further apart than in the PREP structure.

Figure S7. Similar catalytic domain structure in the prolyl oligopeptidase family despite different substrate specificity. Related to Figure 5.

A. Superposition of the catalytic domain of PREPLs with the catalytic domain of PREP, OpdB and AAP, highlighting the α/β hydrolase fold conservation. B. The OpdB inhibitor Antipain (orange sticks) modeled inside the PREPLs cavity. The clash between the inhibitor and the amino-terminus (in red) can be observed. C. Detailed view of the peptide-binding pocket of *Trypanosoma brucei* OpdB, PDB ID: 4BP9 (residues in beige sticks) bound to Antipain (orange sticks) (Canning et al., 2013). The PREPLs structure is superimposed (blue sticks), showing how all residues are conserved, except E655 (G652 in PREPLs). Equivalent residues to those belonging to the β -propeller domain (E172, K208 and D214) cannot be predicted as we have the PREPLs open structure. D. Peptidase activity assay showing the 2-fold loss of activity of the *E. coli* OpdB E624G mutant while the PREPLs G652E mutant does not gain peptidase activity. z-Arg-Arg-AMC was used as substrate. Data shown as mean \pm SEM (n=3), one-way ANOVA with Dunnett's multiple comparison test.

Table S1. Protein interaction partners of PREPL identified by MAPPIT and listed in BIOGRID. Related to Figure 2.

The interactors of PREPL were determined by MAPPIT. Each specific bait-prey interaction was studied in parallel with two controls (irrelevant bait (IB) and irrelevant prey (IP)). The fold change of the specific bait-prey interaction (stimulated/nonstimulated) should be higher than the fold change of the control samples.

pSEL(+2L)-PREPL interactors						
Entrez ID	Min. of BP/PIB and	Entrez ID	Min. of BP/PIB		Entrez ID	Min. of BP/PIB
	<u>BP/BIP</u>		and BP/BIP			and BP/BIP
PLEKHO2	217,4	SSX5	23,7		PSMA1	10,3
BEX1	181,9	SCT	23,2		DLEU7	10
INGX	177,7	RASL12	23,1		CLASP1	9,9
DISC1	165	TRAPPC1	23		BET1L	9,6
C2orf48	139,4	C22orf32	22		GMFG	9,4
PIN4	136,1	FLJ46257	21,5		AKR1C1	9,2
ADM2	101,1	DCTN5	21,1		UPP1	9,2
CAMK2G	99.3	CN5H6.4	20.8		MTFMT	9.2
NRIP3	98.2	DYX1C1	20.7		CRYBB3	8.8
BPY2	90.6	MGC39545	20.6		C9orf46	8.8
BOLA3	80.5	FAM98A	20,5		EDII 3	8.6
BEX/	70.6	PSMG2	20,0		TTI1	8.6
BEX2	69.5	GPB7	20,0		PGAMA	8.5
	69.6		20,4		CDCD2	0,0
	00,0	DADCEE6	20,4		DCCEF	0,4
	00	RAFGERO	19,9			0,4
DNAJCIU	66,8	C50ff20	19,2		HRASLSZ	7,7
TCF15	65,8	EIF4E2	19		PHYH	7,5
SSX4	62,8	NUDT6	18,9		CCDC96	7,3
LOC284276	59,7	SH2D2A	18,3		VGLL1	7,2
LOC285033	57,3	SIRT6	18,3		C11orf40	7,1
MDM1	57,1	LDHAL6A	18,2		DTX3L	6,8
PNRC2	56,4	GRAP2	18,2		SNX4	6,7
PDK1	55	LACTB	18,2		SMOC1	6,6
UBL5	53,8	MAP4	17,2		CUL3	6,6
ARPC5L	52.2	NIPSNAP3B	17.1		C19orf54	6.2
ATG4C	48.9	IGI V2-14	17		FAM215A	6,1
SSH3	46.2	TCAP	16.7		CSNK1D	61
GRXCR1	46	SUOX	16.7		SNRK	6
SE3B1/	15 7		16.6		NDUES3	6
	45,7	SUSDES	16.0		C2orf65	57
MDDI 11	43,1		10,2			5,1
	42	POLL	10,1			5,0
	41,7	CLLUT	10,1		0000000	5,5
TCAP	41,6	PHKG2	16		CCDC130	5,5
SURD	37,8	KIF19	15,9		ANKRD55	5,2
MRPS12	36,9	SEID9	15,8		ASPSCR1	5
ECHDC1	34,5	TESPA1	15,6		MRPS23	4,8
ARL2	34,4	RAB15	15,5		AIFM2	4,7
COMMD4	34,3	CYLC2	14,5		LGALS13	4,6
NDUFV2	34,2	STK38	13,3		LARS	4,5
LOC401431	34,1	PSMB1	13,2		MTERFD3	4,4
C18orf54	32,9	SAMD12	13,2		AKR7A3	4,3
FMO5	30,9	VPS53	13		HELLS	4,2
FAM167B	29,9	CCNG2	12,7		IL17D	3,9
NFKBID	29,2	SPANXN3	12,4		DACT2	3,8
STX5	29.2	ERC1	12.3		PPP3CA	3.7
TRIM41	29.1	TAGAP	12.2		C10orf85	3.6
SSX6	29.1	NTAN1	12.1		STAU2	3.4
THAP11	28.6	RPS15A	12		FKBP9	3.4
SPAG11B	28,0	MPDI 46	12		THE T	0,1
MPDE	28		11.8			
NT5C2	20		11,0			
8000	21,3		11,0			
5002 NDU504	27,4	ICLIB	11,5			
NDUF54	26,6	51111	11,2			
NDFIP2	26,5	EIF2C3	10,9			
RAB40AL	25,9	HSD17B8	10,8			
MRPL53	25,9	CBR4	10,8			
LOC142937	25,1	RASL11A	10,7			
PRDM5	24,8	CCDC42	10,6			
CARD16	24,3	GAST	10,6			
PSD3	24,2	SSX7	10,6			

pCLG20-PREPL interactors

Entrez ID	Min. of BP/PIB and
	BP/BIP
ZBTB44	529,7
	380,5
SPICE1	340.5
FRMD1	260.9
MRPL28	255,1
METTL22	247,5
CCRN4L	221,4
CDK16	211,1
LOC149134 MPDI 12	209,6
POLR3D	200,4
MZT1	203.8
RGS4	201,7
MCEE	189,3
CEP41	184,6
RAD51AP1	177,5
MRP524	169,8
MRPS2	162,2
CKMT2	151,1
C4orf17	144,2
FNDC8	136,9
COL9A1	136,5
NDNL2	133,4
GRB10	127,7
C12orf74	120,7
DAPP1	111.8
C21orf88	110,8
C17orf102	108,6
POLR2E	103,9
HUNK	102,2
PUP7	96,4
GTSF1	94,9 94 1
ECH1	92.7
MTMR10	87,3
ENSA	86,9
MMAB	83,7
SOCS/	82,9
	81,5
ABT1	73.2
HDC	70,2
CLPP	70,1
CAMK1G	65,2
NAA11	64,3
	61
PDZDZ	60.2
FAM110B	58,8
COX5B	52,5
ACAP3	51,2
HSPA12B	47
SHC4	46,9
PLK1S1	44,4 43 6
ANGPTL4	41.3
GTPBP5	39,9
PIF1	38,5
CDK5R1	35,8
MICU3	35,5
	35,2 34 5
CCDC8	32 5
VAV3	32,2
C6orf141	26,2
TSKS	24,9

Entrez_ID	Min. of BP/PIB and BP/BIP
KRT79	24,9
PRR25	17,6
SRMS	17,2
KCTD13	16,9
STAC3	14,9
C1orf229	14,5
GNG8	13,9
SF3A2	13,4
ZADH2	10,6
FRAT2	9,9
TBC1D3B	9,5
PABPN1L	6,5
DMGDH	5,1
C20orf132	4,1
ECSIT	3,8

BIOGRID: PREPL interactors

* Interactors also identified in MAPPIT

Protein	Reference
COIL	Lim (2006)
ELAVL1	Abdelmohsen (2009)
USP22	Sowa (2009)
APEH	Havugimana (2012)
FTSJ2/MRM2	Huttlin (2014)
MRPS25	Huttlin (2014)
TEX30	Huttlin (2014)
SLIRP	Huttlin (2014)
CBR4 *	Huttlin (2014)
METTL2A	Huttlin (2014)
ADCK3/COQ8/	Huttlin (2014)
UQCRFS1	Huttlin (2014)
TUFM	Huttlin (2014)
CRYZ	Huttlin (2014)
LIG3	Huttlin (2015)
ACAA2	Huttlin (2015)
UNKL	Huttlin (2015)
RARS2	Huttlin (2015)
TTC39B	Huttlin (2015)
GOT2	Floyd (2016)
PREPL	Floyd (2016)
PMPCA	Floyd (2016)
C1QBP	Floyd (2016)
MRPL10	Huttlin (2017)
RGS4 *	Huttlin (2017)
PDHX	Huttlin (2017)
MRPS34	Huttlin (2017)
SDHB	Huttlin (2017)
MRPL41	Huttlin (2017)
ARHGAP36	Huttlin (2017)
PDDC1	Huttlin (2017)
C4ORF26	Huttlin (2017)
YBEY	Huttlin (2017)
MRM1	Liu (2018)
HSPD1	Liu (2018)
	Liu (2018)
IRMT61B	Liu (2018)

Table S2. Protein interaction partners of PREPL linked to mitochondrial function. Related to Figure 2.

MITOCHONDRIA	Entrez_ID	Protein
g:profiler: GO:CC - GO:ID 0005739	ACAA2	Acetyl-CoA Acyltransferase 2
	AIFM1	apoptosis inducing factor mitochondria associated 1
	AIFM2	apoptosis inducing factor, mitochondria associated 2
	ARL2	ADP ribosylation factor like GTPase 2
	ATP5I/ATP5ME	ATP synthase membrane subunit E
	BOLA3	bolA family member 3
	C1QBP	Complement C1q Binding Protein
	CBR4	carbonyl reductase 4
	CKMT1B	creatine kinase, mitochondrial 1B
	CKMT2	creatine kinase, mitochondrial 2
	CLPP	caseinolytic mitochondrial matrix peptidase proteolytic subunit
	ADCK3/COQ8A	Coenzyme Q8A
	COX5B	cytochrome c oxidase subunit 5B
	DISC1	disrupted in schizophrenia 1
	DMGDH	dimethylglycine dehydrogenase
	ECH1	enoyl-CoA hydratase 1
	ECSIT	ECSIT signalling integrator
	FAM110B	family with sequence similarity 110 member B
	GOT2	Glutamic-Oxaloacetic Transaminase 2
	HSD17B8	hydroxysteroid 17-beta dehydrogenase 8
	HSPD1	Heat Shock Protein Family D (Hsp60) Member 1
	IDE	insulin degrading enzyme
	LACTB	lactamase beta
	LIG3	DNA ligase 3
	MCEE	methylmalonyl-CoA epimerase
	MICU3	mitochondrial calcium uptake family member 3
	MMAB	methylmalonic aciduria (cobalamin deficiency) cblB type
	MRM1	Mitochondrial RRNA Methyltransferase 1
	FTSJ2/MRM2	Mitochondrial RRNA Methyltransferase 2
	MRPL10	Mitochondrial Ribosomal Protein L10
	MRPL11	mitochondrial ribosomal protein L11
	MRPL12	mitochondrial ribosomal protein L12
	MRPL28	mitochondrial ribosomal protein L28
	MRPL41	Mitochondrial Ribosomal Protein L41
	MRPL46	mitochondrial ribosomal protein L46
	MRPL53	mitochondrial ribosomal protein L53
	MRPS12	mitochondrial ribosomal protein S12
	MRPS2	mitochondrial ribosomal protein S2
	MRPS23	mitochondrial ribosomal protein S23
	MRPS24	mitochondrial ribosomal protein S24
	MRPS25	Mitochondrial Ribosomal Protein S25
	MRPS34	Mitochondrial Ribosomal Protein S34
	MRRF	mitochondrial ribosome recycling factor
	MSRA	methionine sulfoxide reductase A

MTERFD3	mitochondrial transcription termination factor 2
MTFMT	mitochondrial methionyl-tRNA formyltransferase
MTG2	mitochondrial ribosome associated GTPase2
MTHFD2	methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase
NDFIP2	Nedd4 family interacting protein 2
NDUFS3	NADH:ubiquinone oxidoreductase core subunit S3
NDUFS4	NADH:ubiquinone oxidoreductase subunit S4
NDUFV2	NADH:ubiquinone oxidoreductase core subunit V2
NIPSNAP3B	nipsnap homolog 3B
CCRN4L/NOCT	nocturnin
NUDT6	nudix hydrolase 6
PDHX	Pyruvate Dehydrogenase Complex Component X
PDK1	pyruvate dehydrogenase kinase 1
РНҮН	phytanoyl-CoA 2-hydroxylase
PIF1	PIF1 5'-to-3' DNA helicase
PIN4	peptidylprolyl cis/trans isomerase, NIMA-interacting 4
PMPCA	Peptidase, Mitochondrial Processing Alpha Subunit
PPP3CA	protein phosphatase 3 catalytic subunit alpha
RAB40AL	RAB40A, member RAS oncogene family-like
RARS2	Arginyl-TRNA Synthetase 2, Mitochondrial
RDH13	retinol dehydrogenase 13
SCO2	SCO2, cytochrome c oxidase assembly protein
SDHB	Succinate Dehydrogenase Complex Iron Sulfur Subunit B
SLIRP	SRA Stem-Loop Interacting RNA Binding Protein
C22orf32/SMDT1	Single-Pass membrane protein with aspartate rich tail 1
SORD	sorbitol dehydrogenase
SSBP1	single stranded DNA binding protein 1
SUOX	sulfite oxidase
TRMT61B	TRNA Methyltransferase 61B
TUFM	Tu Translation Elongation Factor, Mitochondrial
UQCRFS1	Ubiquinol-Cytochrome C Reductase, Rieske Iron-Sulfur Polypeptide 1

MITOCHONDRIAL TRANSLATION g:profiler: GO:BP -GO:ID 0032543

Entrez_ID

<u>Protein</u>

C1QBP	Complement C1q Binding Protein
MRPL10	Mitochondrial Ribosomal Protein L10
MRPL11	mitochondrial ribosomal protein L11
MRPL12	mitochondrial ribosomal protein L12
MRPL28	mitochondrial ribosomal protein L28
MRPL41	Mitochondrial Ribosomal Protein L41
MRPL46	mitochondrial ribosomal protein L46
MRPL53	mitochondrial ribosomal protein L53
MRPS12	mitochondrial ribosomal protein S12
MRPS2	mitochondrial ribosomal protein S2
MRPS23	mitochondrial ribosomal protein S23
MRPS24	mitochondrial ribosomal protein S24
MRPS25	Mitochondrial Ribosomal Protein S25

	MRPS34	Mitochondrial Ribosomal Protein S34
	MRRF	mitochondrial ribosome recycling factor
	MTG2	mitochondrial ribosome associated GTPase2
	RARS2	Arginyl-TRNA Synthetase 2, Mitochondrial
	TUFM	Tu Translation Elongation Factor, Mitochondrial
<u>OXPHOS</u>	Entrez_ID	Protein
	ATP5I/ATP5ME	ATP synthase, H+ transporting, mitochondrial Fo complex subunit E
	COX5B	cytochrome c oxidase subunit 5B
	ECSIT	ECSIT signalling integrator
	NDUFS3	NADH:ubiquinone oxidoreductase core subunit S3
	NDUFS4	NADH:ubiquinone oxidoreductase subunit S4
	NDUFV2	NADH:ubiquinone oxidoreductase core subunit V2
	SCO2	SCO2, cytochrome c oxidase assembly protein
	SDHB	Succinate Dehydrogenase Complex Iron Sulfur Subunit B
	UQCRFS1	Ubiquinol-Cytochrome C Reductase, Rieske Iron-Sulfur Polypeptide 1

Table S3. In silico prediction analysis of mitochondrial targeting signal in PREPL. Related to Figure 2.

	MitoFates	TargetP-2.0	iPSORT	MitoProtII
hPREPL∟	0.131	0.1288	No	No
hPREPL _S	0.000	0	No	No
mPREPL	0.845	0.8198	Yes	Yes
mPREPL _s	0.000	0.0001	No	No

	Compound name	Chemical structure
A1	Tetrahydrolipstatin	$c_6H_{13}^{\text{NH}}$
A2	Palmostatin M	Me ₂ N 0 ¹⁵ 0 c ₁₀ H ₂₁
A3	KC01	C ₁₃ H ₂₇
A4	WHP-III-44-DEG	C ₁₃ H ₂₇ NH NH Me
B1	AA-26-9	
B2	JMN203	NMe N N
В3	AA-32-1	

 Table S4. Serine hydrolase inhibitor library used in competitive ABPP. Related to Figure 4.

 Number (blot)
 Compound name

 Chemical structure

B4	KLH41	
C1	MJN-2013-9	
C2	JJH221	
C3	JJH250	
C4	JJH309	
D1	ABL113	Philling Co ₂ Me
D2	WHP313	

Inhibitor 8	1-isobutyl-3-oxo-3,5,6,7- tetrahydro-2H- cyclopenta[c]pyridine-4- carbonitrile	HN CN
PalmB	Palmostatin B	MeO MeO MeO

Table S5. Data collection and refinement statistics for PREPL. Related to Figure 5.

	PREPL
Data collection	
Wavelength (Å)	0.9794
Resolution range (Å)	44.53 - 3.1 (3.211 - 3.1)
Space group	1222
Unit cell dimensions	
a, b, c (Å)	64.92, 150.88, 220.66
α, β, γ (°)	90, 90, 90
Total reflections	148699 (14533)
Unique reflections	37881 (3777)
Multiplicity	3.9 (3.9)
Completeness (%)	99.87 (99.66)
Ι/σ(Ι)	11.72 (1.03)
Wilson B-factor (Ų)	104.69
R _{merge} (%)	0.09381 (1.22)
R _{meas} (%)	0.1088 (1.419)
R _{p.i.m} (%)	0.0548 (0.7159)
CC1/2	0.998 (0.488)
CC*	0.999 (0.81)
Refinement	
Reflections used in refinement	37970 (3768)
Reflections used for R-free	1925 (168)
R _{work} (%)	0.2450 (0.5063)
R _{free} (%)	0.2821 (0.5616)
CC _{work}	0.934 (0.583)
CC _{free}	0.942 (0.249)
Number of non-hydrogen atoms	5021
Macromolecules	5021
Ligands	0
Solvent	0
Protein residues	624
RMSD, bonds (Å)	0.002
RMSD, angles (°)	0.59
Ramachandran favored (%)	89.84
Ramachandran allowed (%)	10.16
Ramachandran outliers (%)	0.00
Rotamer outliers (%)	0.36
Clashscore	9.15
Average B-factor (Ų)	125.89
Macromolecules	125.89
Number of TLS groups	2

Statistics for the highest-resolution shell are shown in parentheses.

Table S6. Primers used for RT-qPCR, genotyping and MAPPIT cloning (listed in 5'-3' direction). Related to Methods. RT-qPCR

<u>Gene</u>	Forward primer	Reverse primer
mβactin	AGCCATGTACGTAGCCATCC	TCTCAGCTGTGGTGGTGAAG
mNdufs3	TGTCTCTGCGGTTCAACTCT	GGATGTCCCTCGAAGCCATA
mNd1	TGCACCTACCCTATCACTC	ATTGTTTGGGCTACGGCTC
mSdha	ATTTGGTGGACAGAGCCTCA	GGCACTCCCCATTTTCCATC
mUqcrc1	TTGCCCAGAAACACTTGAGC	GTCACGTTGTCTGGGTTAGC
mCytb	TACCTGCCCCATCCAACATT	TAAGCCTCGTCCGACATGAA
mCoxIV	CCATGTCACGATGCTGTCTG	CTCCCAAATCAGAACGAGCG
mCo1	ACCCAGATGCTTACACCACA	TGTGATATGGTGGAGGGCAG
mAtp5	GTACTCCGCTCTGATCATCG	CTCTTCTTTTCCTCCGCTGC
mAtp6	CCACACACCAAAAGGACGAA	GAAGGAAGTGGGCAAGTGAG

Mouse genotyping

Primer name	Forward primer	Reverse primer
Δ	TCTTGCTGTTCCTCCTAGCC	GTCCTGACAAACGGAAAAGG
LoxP	GGCAGCTGTAGGAAGTCAGC	ATGTCACAGGCTCGTGTTTG

MAPPIT

Primer name	Forward primer	Reverse primer
pSEL(+2L)	GCCAGCGTCGACCATGGATGCATTTG	CGAGTTGCGGC CGCTCAGAATTTCAG
pCLG20	GCCAGCGAGCTCCATGGATGCATTTG	CGAGCTTGGGCCCTCAGAATTTCAGG