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Type III interferons (IFNs) or the lambda IFNs (IFNLs or IFN-ls) are antimicrobial cytokines
that play key roles in immune host defense at endothelial and epithelial barriers. IFNLs
signal via their heterodimeric receptor, comprised of two subunits, IFNLR1 and interleukin
(IL)10Rb, which defines the cellular specificity of the responses to the cytokines. Recent
studies show that IFNL signaling regulates CD4+ T cell differentiation, favoring Th1 cells,
which has led to the identification of IFNL as a putative therapeutic target for autoimmune
diseases. Here, we summarize the IFNL signaling pathways during antimicrobial immunity,
IFNL-mediated immunomodulation of both innate and adaptive immune cells, and
induction of autoimmunity.
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INTRODUCTION

Type III interferons (IFNs) or the lambda IFNs (IFNLs or IFN-ls), generate and sustain antiviral
and immunomodulatory cellular responses. Specifically, they are known for their ability to control
viral replication and infection at barrier surfaces, such as the epithelium of the lung and gut, blood
brain barrier, and placenta (1), and at the liver (2). Type III interferons consist of three different
functional genes in humans, IFNL1, IFNL2, IFNL3, and one pseudogene IFNL4 (3–5). Mice have
two functional genes, Ifnl2 and Ifnl3, and pseudogene Ifnl1. Type III interferons are closely related to
type I IFN, signaling through common Janus Kinase and Signal Transducer and Activator of
Transcription (JAK-STAT) pathways that lead to transcription of IFN-stimulated genes (ISGs) (1, 6,
7). Specifically, type I IFN binds to the IFNab receptor (IFNAR) and type III IFN binds to the
heterodimeric receptor (IFNLR), which is comprised of two subunits, IFNLR1 and interleukin (IL)
10Rb (3, 4). Binding of these ligands to their receptors leads to downstream phosphorylation of
Signal Transducer and Activator of Transcription (STAT)1 and STAT2, subsequent recruitment of
interferon regulatory factor (IRF)9, and transcription of interferon-stimulated genes (ISGs) (3, 8).
Unlike type I IFN, however, type III IFN do not upregulate IRF1 that leads to downstream
production of pro-inflammatory cytokines (9).

Despite similarities in downstream signaling between type I and type III IFN, they differ in cellular
expression of their receptors. Since IFNAR is ubiquitously expressed, type I IFN-inhibition of viral
replication occurs in many cell types. In contrast, IFNLR-mediated antiviral responses exhibit specificity
for viruses that replicate at barrier surfaces due to its cell-specific expression (1, 10). In both mice and
humans, IFNLR is expressed by epithelial cells (10), endothelial cells of the blood-brain barrier (11),
macrophages (12–15), subsets of DCs (16–20), and neutrophils (21, 22). In humans, B cells have also
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been shown to respond to IFNL (23), while data regarding T cell
responsiveness is inconclusive. The limited range of expression of
IFNLR1 to mucosal surfaces and specific immune cells offers large
potential for type III IFN to be used as therapeutic targets, given
their higher tissue specificity and lower likelihood for off target
effects, when compared to type I IFN.

In addition to differences in receptor expression, type I and
type III IFN have different kinetics. Following hepatitis C
infection of cultured cells, the type I IFN response is rapidly
induced, while the type III IFN is slower and remains sustained
for a longer duration (24, 25); similar kinetic differences are
observed following aspergillus fumigatus infection in mice as
well (22). Furthermore, treatment of human hepatocytes with
type III IFN leads to a delayed and slow induction of ISGs, such
as ISG15, interferon-induced GTP-binding proteinMX1, and 2’-
5’-oligoadenylate synthetase (OAS1), compared to type I IFN
which leads to a faster and transient induction (9). These kinetic
differences suggest that type I IFN may play a significant role
early during acute infection, while type III IFN may promote
long term control. Overall, the differences in cellular targets,
kinetics of transcriptional effects, and immunomodulatory effects
distinguish the effects of type I and III IFNs, which have led to
studies examining type III IFN effects on immune cells in non-
infectious contexts, including cancers and autoimmune diseases.
Here we review the effects of type III IFN on leukocytes, certain
cancers, and autoimmune diseases.

IMMUNE MODULATION

T Cell-Dendritic Cells Axis for
IFNL Responses
Many studies have suggested an important role for type III IFN
in T cell polarization, with most providing evidence that IFNL
down-regulates Th2 polarization and sustains Th1 activation (17,
26–30) (Figure 1). Intranasal, therapeutic administration of
IFNL2/3 in a murine model of Th2-driven allergic asthma
mitigated lung pathology and diminished levels of epithelial
secreted Th2 cytokines, thymic stromal lymphopoietin (TSLP)
and IL-33 in the bronchoalveolar lavage fluid (26). Additionally,
adenovirus mediated expression of human IFNL1 in a murine
asthma model led to attenuated eosinophilia, diminished antigen
specific Th2 responses, and promotion of regulatory T (Treg)
responses (31). IFNLs may also influence Th17 polarization, as
treatment with IFNL2 reduced numbers of Th17 and gdIL-17+
cells in the inflamed joint compared to vehicle treatment in a
model of collagen induced arthritis (32) and suppressed T cell IL-
17 secretion in mediastinal lymph nodes of mice with allergic
airway disease compared with vehicle treatment (17).

Studies of IFNL-mediated modulation of human immune cells
have demonstrated similar Th1 promoting phenotypes. In vitro
treatment of human peripheral blood mononuclear cells (PBMCs)
with increasing concentration of IFNL1 increased production of the
Th1 cytokine IFNg and decreased production of Th2 cytokines
interleukin (IL)-13, IL-4, and IL-5, with IL-13 expression beingmost
consistently diminished following IFNL1 treatment (27, 28, 33).

Treatment of human breast tumor suspensions with IFNL1 also
induced expression of IL-12p40, a key driver of Th1 polarization
(34). Effects of IFNLs on T cells may also be temporally dependent.
In a model of murine lymphocytic choriomeningitis virus (LCMV)
infection, IFNL dampened acute T cell responses, but promoted
chronic T cell responses (35).

Given that IFNL has robust effects on T cell responses, it
raises the question of whether IFNL acts directly or indirectly on
T cells. Studies suggest that T cells do not respond to IFNL
stimulation. T cells express low levels of Ifnrl1 mRNA (21). In
vitro treatment of T cells with IFNL failed to induce downstream
phosphorylation of STAT1 or STAT3 (36) or expression of ISGs,
such as CXCL10, ISG15, and protein kinase R (EIF2AK2) (20).
Data instead suggest that IFNL may act on DCs to modulate and
augment downstream T cell polarization and effector function
(17, 18). IFNL2 treatment of lung and bone marrow derived
CD11c+ DCs increased expression of both Tbet and IL-12 (17).
Furthermore, co-culture of IFNL2 treated DCs and ovalbumin
(OVA) peptide-specific CD4+ T cells led to increased production
of IFNg and diminished production of IL-5, IL-13, and IL-17
(17). Transfer of these IFNL2 treated DCs to animals prior to
OVA challenge skewed peripheral lymph node immune
responses towards a Th1 phenotype and subsequently
suppressed allergic airway disease (17). In a murine model of
influenza A viral (IAV) infection Ifnlr1 mRNA expression on
DCs increased following infection, which correlated with
increased IFNg and tumor necrosis factor (TNF) production by
lung CD8+ T cells. Conditional deletion of Ifnlr1 on CD11c+ DCs
in this model decreased numbers of infiltrating CD8+ T cells in
the lungs (18). Comparison of wild-type (WT) and Ifnlr1-/- DCs
also showed functional differences, as Ifnlr1-/- DCs showed
diminished CD40 expression compared to WT DCs and ability
to uptake and process antigen (18). Type III interferon mediated
modulation of human DCs shows both similarities and
differences compared to murine DCs. In vitro treatment of
human peripheral DCs with IFNL increased MHC class I and
class II expression, but did not have strong effects on CD80 or
CD40 (19). Analysis of mixed lymphocyte reactions of human
monocyte derived DCs (mDCs) with naïve T cells under various
T cell polarizing conditions led to reduced IL-13 expression upon
addition of IFNL (28). Another study of IFNL treated DCs co-
cultured with CD4+ T cells showed increased proliferation of
CD4+CD25+FoxP3+ Treg cells (37). Together, these data suggest
that DCs are key mediators of IFNL driven T cell responses.

In addition to responding to IFNL, conventional DCs (cDC)
can also produce IFNL (34). Following administration of
polyinosinic:polycytidylic acid (polyI:C), murine CD8a+ cDCs
and human CD141+ (BDCA3+) DCs produce significant
quantities of IFNL1; in mice this depended on activation of
toll-like receptors (TLR)3, IRF3, IRF7, and IRF8 (38). In
corroboration, co-culture of a hepatitis C infected hepatoma
cell line with human PBMCs increased IFNL production by
CD141+ (BDCA3+) DCs (39). In a non-viral model, Hubert et al.
demonstrated that human breast tumor associated cDCs
upregulate IFNL1 gene and protein expression compared to
adjacent normal tissue (34). Similar to cDCs, human
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plasmacytoid DCs (pDCs) can both produce and respond to
IFNL. pDCs produce IFNL in response to herpes simplex virus,
influenza virus, sendai virus, and HIV-1. Treatment of PBMCs
with IFNL led specifically to upregulation of MHC class I and
CD83 on pDCs but not other immune cell types, suggesting
IFNL can act in an autocrine manner (16).

Aside from modifying DC mediated T cell activation and co-
stimulation, IFNL may modulate chemokine driven migration and
tissue specific infiltration of T cells. It has been established that type
II IFN (IFNg) induces downstream release of CXCL9, CXCL10, and
CXCL11 (40, 41), chemoattractants responsible for guiding
lymphocyte migration. Type III IFN treatment of human
peripheral blood mononuclear cells also elevated expression of
CXCL9, CXCL10, and CXCL11, independently of type II IFN
signaling (42). CXCL10, in particular, is a key chemokine that
recruits T cells to sites of inflammation and maintains their Th1 cell
effector function, as the CXCL10 receptor, CXCR3, is preferentially
expressed on Th1 cells compared to Th2 cells (40, 43, 44). These
data suggest one mechanism by which IFNL treatment of cells
promotes Th1 cell recruitment and maintenance. Recently, Goel
et al. confirmed that type III IFN can upregulate CXCL10, as
treatment of an immortalized human keratinocyte cell line with
IFNL1 for 24 hours increased CXCL10 production compared with
both vehicle and IFNa treatments. Additionally, in this model,

IFNL1 treatment did not significantly increase CXCL9 levels
compared to vehicle, and both IFNL1 and IFNa increased
CXCL11 levels to a similar extent (45). In human breast tumors,
Hubert et al. showed that cytokine analysis of the soluble tumor
milieu demonstrated correlations between IFNL1 expression and
CXCL10, CXLC11, and CXCL9, in addition to TNF and IL-12p40.
Treatment of human breast tumor suspensions with IFNL1 resulted
in increased expression of CXCL10 and CXCL11 (34). In contrast,
treatment of immortalized human hepatocytes with IFNL3 failed to
induce CXCL10 gene or protein expression (9). These data suggest
that IFNL does not induce the same chemokine response in all cells,
and instead promotes cell-specific chemokine responses. These
differences may arise from the activation of non-canonical
signaling pathways in certain cell types.

Macrophage – NK Cell Axis
IFNL also alters human macrophage phenotypes, as fully
differentiated macrophages derived from monocytes gain
expression and functional capacity of the IFNLR1 receptor (12,
15) (Figure 1). In vitro studies show that macrophage treatment
with all IFNLs inhibits replication of human immunodeficiency
virus type I (HIV-1) via induction of JAK-STAT signaling (13,
46). Following IFNL3 treatment, macrophages upregulate ISG15,
immune cell activation proteins, such as CD80 and CD86, and

FIGURE 1 | Schematic overview of the direct and indirect effects of type III interferons on leukocyte phenotypes and functions. helper T cell (Th), T-box transcription
factor (Tbet), interleukin (IL), tumor necrosis factor (TNF), natural killer (NK), reactive oxygen species (ROS). Created with BioRender.com.
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inflammatory cytokine production such as IL1b and TNF (12,
14). When treated with IFNL1 in the presence of a TLR7/8
agonist or lipopolysaccharide (LPS), human monocyte derived
macrophages also increase production of IL-12p40; these effects
are not observed upon treatment with IFNa and are thus specific
to IFNL (14, 15). This increased IL-12 drives IFNg production by
natural killer (NK) cells. Incubation of NK cells with
supernatants from macrophages treated with IFNL, LPS, and
IFNg increased NK cell IFNg production compared with IFNa,
LPS and IFNg treatment (15). Wang et al. showed further
evidence of IFNL-mediated macrophage NK cell crosstalk.
During murine influenza A (IAV) infection, IFNL exerted
antiviral activity by increasing NK cell numbers and promoting
NK maturation. However, depletion of macrophages in this
model reversed the effects of IFNL on NK cells (47). Beyond
these studies, the ability of IFNL to promote NK cell-
macrophages interaction is not well understood and requires
further investigation in autoimmune diseases and cancer.

B Lymphocyte Responses to IFNL
Human naïve and memory B cells express IFNLR1 (20, 48) and
induce STAT1 phosphorylation following treatment with IFNL,
suggesting that B cells are functionally responsive to IFNL (23)
(Figure 1). B cell signaling occurs through the JAK-STAT
pathway, as treatment with a JAK inhibitor prevented
phosphorylation of STAT1 (23). B cell stimulation with IFNL
and TLR7/8 agonist led to upregulation of only CD69, and no
change in other co-stimulatory molecules, such as CD40, CD80,
and CD86 (48). IFNL treatment of B cells also upregulated
production of chemokines such as CXCL9, CXCL10, and
CXCL11. Addition of IFNL following B cell receptor (BCR)
stimulation upregulated the mechanistic target of rapamycin
complex 1 (mTORC1) signaling pathway compared to BCR
stimulation alone and promoted transcription of genes
involved in differentiation of naïve B cells to plasmablasts (23).
IFNL3 pretreatment of B cells (derived from healthy individuals)
prior to stimulation with H1N1 reduced their proliferative
capacity and IgG production (29). Novak et al. showed that a
multiple myeloma cell line was responsive to IFNL, as IFNL1
treatment increased cell proliferation and promoted cell survival
(49). In contrast to human B cells, murine B cells express low
levels of Ifnlr1 mRNA as measured by quantitative PCR and do
not upregulate downstream ISGs in response to IFNL (21).

Functional Regulation of Neutrophils
by IFNL
IFNL binds to IFNLR on both murine and human neutrophils to
alter their function (Figure 1). In in vitro studies, IFNL treatment
of bone-marrow-derived neutrophils following stimulation with
LPS or TNF resulted in diminished release of reactive oxygen
species (ROS) and impaired degranulation (21). In vivo
administration of IFNL diminished neutrophil secretion of IL-
1b (32). IFNL also limits neutrophil migration, as IFNL2
treatment diminished neutrophil infiltration into the site of
inflammation in a model of collagen induced arthritis (32).
In a murine model of Aspergillus fumigatus infection,

neutrophils upregulate IFNLR1 expression and type III IFNs
promote their ROS generation (22).

AUTOIMMUNE DISEASES

Recent studies highlight that IFNL plays a significant role in
immune-driven diseases; these diseases will be discussed in detail
in the subsequent sections.

Systemic and Cutaneous
Lupus Erythematosus
Systemic lupus erythematosus (SLE) is an autoimmune and
inflammatory disease that affects a number of organ systems
including the skin, kidneys, and brain (50). In SLE there is
increased activation of B cells by B cell activating factor (BAFF),
TNFa, IL-6, and IL-21, in addition to increased production of
autoantibodies by plasma cells. For this reason, initial SLE
therapeutics, such as belimumab (anti BAFF), were targeted
towards B cells (51, 52). Recently, other therapeutic targets have
also been explored. For example, a recent phase 3 clinical trial
demonstrated efficacy of anifrolumab, which targets the type I IFN
receptor, in reducing SLE severity (53). The role of IFNL in SLE
has been recently discussed in detail (54), and will be reviewed
briefly here. Wu et al. showed that SLE patients had increased
serum levels of IFNL compared to healthy controls and those with
active disease had higher serum levels of IFNL compared to those
with inactive disease (55). On the other hand, a study by Lin et al.
did not observe a significant difference in IFNL levels between SLE
patients and healthy controls. This discrepancy could be due to
differences in limits of detection between the two studies. The
study by Lin et al. had a larger percentage of serum values that fell
below the limit of detection in healthy controls compared to SLE
patients (56). Further analysis showed that SLE patients with renal
or arthritis disease complications had increased serum IFNL levels
compared to those without involvement of those organs (55, 57).
In corroboration, single nucleotide polymorphisms (SNPs) at the
IFNL gene locus have been correlated with risk of lupus nephritis
(58, 59). Patients with active cutaneous lupus erythematosus
(CLE) also have increased IFNL levels in their serum and skin
lesions compared with healthy controls. Poly : IC exposure of
epidermal explants from patients stimulated skin keratinocytes to
further produce IFNL (60). Murine studies further highlight the
ability of IFNL to promote SLE pathogenesis and suggest potential
mechanisms. In a murine model of TLR7-induced lupus, IFNL
promoted immune dysregulation through expansion of myeloid
and T cell populations in the spleen and blood and induction of
chemokine production by keratinocytes. Levels of serum IFNL and
pDC derived IFNL were increased in mice following disease
induction. Loss of IFNLR alleviated lupus induced splenomegaly
and decreased numbers of splenic neutrophils, DCs, monocytes,
CD4+ T cells and CD8+ T cells compared toWT animals. Analysis
of murine skin revealed diminished inflammation, as Ifnlr1-/-

animals had fewer infiltrating T cells, B cells, macrophages and
neutrophils compared to WT animals. Lupus induced renal
pathology was also significantly alleviated in Ifnlr1-/- mice
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compared to WT animals (45). Together, these data suggest that
type III interferons may promote autoimmune disease and
pathology in the contexts of systemic and cutaneous
lupus erythematosus.

Arthritis
In rheumatoid arthritis (RA) overactivation of multiple
inflammatory pathways leads to subsequent inflammation of
the synovium and cellular damage within joints (61). IFNL
protein levels are upregulated in the sera of patients with
rheumatoid arthritis compared with healthy controls (62–65);
more specifically IFNL1 and IFNL2 levels are upregulated in
patients with active disease (64). Disease severity in RA patients
can be correlated with the presence of anti-cyclic citrullinated
peptide (anti-CCP) antibodies (66). Analysis of IFNL levels in
patients with and without anti-CCP antibodies showed increased
IFNL1 in RA patients with detectable anti-CCP antibodies
compared to RA patients negative for anti-CCP antibodies and
healthy controls (65). This suggests a correlation between IFNL
and disease activity in anti CCP antibody positive RA patients
(62). Real time PCR analysis revealed increased expression of the
receptor, IFNLR1, on PBMCs in RA patients compared with
healthy controls (62). Treatment of a RA fibroblast cell line with
IFNL1 upregulated cytokines IL-6, IL-8, and MMP-3 and
downregulated the cytokine IL-10 (62). IFNL may also
contribute to inflammation and cartilage degradation during
osteoarthritis (OA) (67). OA patients had significantly
increased serum IFNL1 levels and PBMC expression of
IFNLR1 compared to healthy controls (67). Similarly to RA,
treatment of OA fibroblasts with IFNL1 induced expression of
IL-1b, IL-6, IL-8, and MMP-3. In contrast, in a mouse model of
rheumatoid arthritis, treatment with IFNL2 prevented arthritis
progression, resolved inflammation, and improved pathology in
comparison to a vehicle treated group (32). These data suggest
isorform-specific IFNL may differentially impact inflammatory
processes that mediate the pathogenesis of both OA and RA.

Allergic Airway Disease
Allergic airway diseases are characterized by chronic Th2 driven
inflammation of the upper or lower airways, eosinophilic
accumulation, and IgE production (68). Studies of allergic
airway disease in mice reveal the ability of IFNL to inhibit Th2
polarization (26) and promote IFNg production (17), indicating
that IFNL may enhance Th1 function (69). As discussed
previously, therapeutic treatment of mice with IFNL following
induction of murine asthma resulted in improved lung pathology
and decreased production of Th2 cytokines such as TSLP and IL-
33 (26). Furthermore, Ifnlr1-/- animals had exacerbated allergic
airway disease, increased Th2 responses and IgE levels compared
to WT animals (17).

Studies in humans have shown variable correlations between
type III interferons and asthma. At baseline, both children and
adults with asthma have increased levels of IFNL2 in their sputum
compared with healthy controls; asthmatic children also had
increased levels of IFNL1 in their sputum (70). Another study
demonstrated that adults with asthma had increased levels of
IFNL1 compared with healthy controls and that these elevated

IFNL1 levels correlated with presence of neutrophilia in the
sputum (71). In contrast, primary bronchial epithelial cells and
bronchoalveolar lavage cells isolated from asthmatic patients
demonstrated diminished production of IFNL2/3 following
infection with rhinovirus in comparison with cells from healthy
control patients. The decreased production of IFNL2/3 correlated
with increased viral loads in the epithelial cells isolated from
asthmatic patients compared to healthy controls (72). Since
asthma exacerbations are frequently instigated by viral infections
(73), it is important to further clarify the role IFNs play in the
context of anti-viral immunity and airway inflammation.

Inflammation of the
Gastrointestinal System
Patients with inflammatory bowel disease (IBD) and mice with
colitis demonstrate increased levels of IFNL and IFNLR1
compared with controls (74). Specifically, lamina propria and
intestinal epithelial cells (IECs) in colon tissues of patients with
IBD, and mice with colitis, exhibit increased expression of IL28
and IL28R, respectively, compared with controls. In addition, in
vitro studies demonstrated that IL28 induces phosphorylation
(activation) of STAT1 in IECs, leading to their proliferation in
organoid culture. In a murine model of immune activation
induced colitis (dextran sulfate sodium-induced colitis), IFNL
appears to diminish intestinal inflammation, as Ifnrl1-/- animals
developed greater overall disease scores (21, 75), had decreased
colon length (76), and had increased expression of oxidative
stress genes within the colon (21) when compared with WT
animals. Together these data suggest IFNL controls IEC
proliferation and suppresses pro-inflammatory immune cells
during inflammatory bowel disease. Consistent with this,
administration of IFNL to mice with graft-versus-host disease
(GVHD) induced by bone marrow transplantation exhibited
improved survival, reduced GVHD severity, and enhanced
epithelial proliferation and ISC-derived organoid growth after
BMT (77).

Genetic variations of IFNL genes have been strongly
correlated with outcomes following viral hepatitis. In humans a
single nucleotide polymorphism (SNP) of IFNL3 was correlated
with viral clearance following hepatitis C treatment with
pegylated interferon alpha and ribovarin (78, 79). A SNP of
IFNL4 also correlated with hepatic inflammation and fibrosis
from both viral and non alcoholic fatty liver disease (80).

Central Nervous System Autoimmunity
Recent work has demonstrated a role for IFNL in the
pathogenesis of central nervous system (CNS) autoimmune
disease [preprint, (81)]. In the experimental autoimmune
encephalomyelitis (EAE) model of multiple sclerosis (MS),
Ifnlr1-/- animals demonstrated improved clinical disease course
and decreased spinal cord axonal injury compared with WT
animals. These phenotypes correlated with decreased numbers of
Th1 cells, reduced production of proinflammatory cytokines
such as IFNg and GMCSF, and diminished activation of
antigen presenting cells within the CNS of Ifnlr1-/- animals
compared to WT animals. Therapeutic targeting of the IFNL
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receptor via antibody mediated neutralization also recapitulated
the EAE recovery phenotype observed in Ifnlr1-/- animals.
Notably, analysis of post-mortem CNS tissue showed increased
expression of IFNL and its receptor in lesions of MS patients
compared to normal appearing white matter from non MS
controls [preprint, (81)].

CONCLUDING REMARKS

Type III interferon-mediated responses during infections were
previously believed to be fairly limited, depending largely on cell-
specific expression of the IFNLR, which occurs largely by cells at
endothelial and epithelial barriers. However, given the
ubiquitous expression of this receptor on both innate and
adaptive immune cells, IFNL has increasingly been shown to
play a critical role in sculpting overall immune responses during
infection and inflammation, promoting Th1 polarization of
CD4+ T cells over Th2. This is especially relevant during
certain autoimmune diseases, where IFNL may exert pro-
inflammatory effects. In addition, low levels of expression of
IFNL in patients that develop virus-mediated autoreactive
diseases at epithelial barriers may underlie tissue damage due
to initial lack of virologic control, resulting in autoantigen-
mediated autoimmunity. Currently, there are no drugs that
block IFNL, and, therefore, no clinical trials looking at IFNL as

a target to treat autoimmune diseases. However, as previously
reviewed (54) JAK1 and JAK2 inhibitors are being tested for
treatment of SLE. These inhibitors are not specific for IFNLR
signaling, as they also target IFNAR. Future studies will define
the feasibility of targeting IFNL to prevent chronic
inflammatory diseases.
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