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Abstract

Molecular steps that activate store-operated calcium entry (SOCE) via Orai channel supra-

molecular complex remain incompletely defined. We have earlier shown that α-SNAP regu-

lates the on-site functional assembly and calcium selectivity of Orai1 channels. Here we

investigate the molecular basis of its association with Orai, Stim and find that the affinity of

α-SNAP for Orai and Stim is substantially higher than previously reported affinities between

Stim and Orai sub-domains. α-SNAP binds the coiled-coil 3 (CC3) sub-domain of Stim1.

Mutations of Tryptophan 430 in Stim1-CC3 disrupted α-SNAP association and SOCE, dem-

onstrating a novel α-SNAP dependent function for this crucial subdomain. Further, α-SNAP

binds the hinge region near the C-terminus of Orai1 and an additional broad region near the

N-terminus and Valine 262 and Leucine 74 were necessary for these respective interac-

tions, but not Orai, Stim co-clustering. Thus, high affinity interactions with α-SNAP are nec-

essary for imparting functionality to Stim, Orai clusters and induction of SOCE.

Introduction

The genome-wide RNAi screens initially identified Stim and Orai as two crucial components

of the store-operated CRAC channel complex [1–6] and the past decade has seen rapid growth

in the structure-function analysis of these two proteins. The depletion of calcium stores

induces oligomerization and translocation of Stim1 to the peripheral/ junctional endoplasmic

reticulum (ER) tubules localized in close proximity with plasma membrane (PM) [7]. The

translocation of Stim1 to ER-PM junctions has been extensively studied, and may be facilitated

by several other proteins [8]. However, the steps that follow Stim1 translocation remain far

from clear.

Stim1 oligomerization remains equated with the functional exposure and binding of the

Stim Orai activation region (SOAR)/ CRAC activation domain (CAD) of Stim1 with Orai1 [9,

10]. SOAR/ CAD is a ~100 amino-acid long minimal domain of Stim1 necessary for activating

SOCE [11, 12] and previous reports have assigned multiple different roles to it. It is thought to

be responsible for Stim1 oligomerization, entrapment of freely diffusing Orai1 in PM [13, 14],

via direct interactions with the C-terminus [15], and induce allosteric shifts in Orai1 for acti-

vating SOCE. Yet mechanistically, how Stim1 single-handedly performs all these roles remains
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unclear. Further, reduced SOCE in several Stim1 and Orai1 mutants remains correlated with

defects in Stim1 intrinsic intramolecular unlocking necessary to expose SOAR/ CAD or failure

to bind and induce allosteric shifts in Orai1 [10], irrespective of whether the mutations directly

reside within the Stim1 intra-locking or Stim, Orai interacting interfaces identified from struc-

tural studies [16, 17]. One reason for these gaps in understanding could be the extrapolation of

the qualitative observations that soluble Stim1 C-terminus can induce calcium extrusion via
Orai1 containing vesicles [11, 12, 18] to physiological activation of calcium-selective Orai1

channels in vivo. It is therefore not surprising that several mutants of full length Stim1 and

Orai1 are now being identified [12, 19], including the three identified in this paper, that are

able to co-cluster in ER-PM junctions, but fail to activate SOCE to the extent required to elicit

normal physiological responses.

A few years ago, we identified α-SNAP as an essential regulator of SOCE via Orai1 channels

[20]. In α-SNAP depleted cells, Orai1 entrapment by Stim1 is neither sufficient to retard its

diffusion nor trigger calcium selective SOCE [14, 20, 21]. We further showed that unstable

contacts between Stim1 and Orai1 N-terminus could, in part, underlie these defects in α-

SNAP depleted cells [14]. It is therefore unlikely that Stim, Orai contacts that entrap Orai1 in

ER-PM junctions are by themselves capable of inducing the hypothetical allosteric shifts

required for SOCE via Orai1 [9, 10]. Based on these findings, we reasoned that the steps that

entrap Orai1 in ER-PM junctions can be dissociated from the step of calcium selective SOCE

via disparate molecular interactions.

α-SNAP is the only molecular component, identified thus far, that consistently co-clusters

with Stim and Orai post store-depletion [14, 20]. Therefore, we sought to identify the molecu-

lar determinants of functional interaction between α-SNAP, Orai1 and Stim1. Here we iden-

tify the minimal sub-domains of Orai1 and Stim1 that bind α-SNAP and find that the affinities

of these associations are significantly higher when compared to previously reported affinity

between Stim1 and Orai1 sub-domains. We demonstrate that specific hydrophobic residues

are involved in the functional association of Orai1, Stim1 and α-SNAP. Collectively, these

findings systematically define the molecular basis of α-SNAP dependent functional assembly

of Orai1 channel supramolecular complex and ascribe additional functions to the domains

and residues previously found to be essential for SOCE.

Materials and methods

Cell lines, plasmids and transfection

Stable Orai1-/- and Stim1-/- MEF cell lines were established as described previously [14, 22].

The mEOS3.2 Orai1, Orai1-CFP, Orai-Myc-His and YFP-Stim1 plasmids have been described

previously [14, 20]. The point mutants of Stim1 and Orai1 were generated using the site

directed mutagenesis kit (Qiagen). For imaging, MEFs were plated on poly-D-lysine coated

glass bottom dishes, transiently transfected with the desired plasmids and their mutants using

Viafect transfection reagent (Promega Corp., WI) and analyzed 12–16 hour later. 1μM thapsi-

gargin (TG) was used for calcium store depletion while imaging store-depleted cells as

described before [20].

Cloning, expression and purification of proteins

Untagged fragments of Stim and Orai, Stim1 336–485, Orai1 1–103 and Orai1 245–292 were

amplified from human YFP-Stim1 and Orai1-Myc-His plasmids respectively [2, 23] and sub-

cloned in pSUMO vector (Clontech). The fusion proteins were expressed in LEMO21(DE3)

cells (New England Biolabs) and induced with IPTG (0.3 mM) for 14 hours at 18˚C. Cells were

lysed in a buffer containing 50 mM sodium phosphate buffer pH 7.4, 500 mM NaCl, 3 mM β-
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ME, 20 mM imidazole, 10% glycerol, Protease Inhibitor Cocktail, DNaseI and 1 mg/ml lyso-

zyme. Lysates were centrifuged at 25,000 xg for 30 min, and supernatants were applied on to

HisTrap HP column (GE Healthcare) using AKTA chromatography system (Amersham Phar-

macia). The column was washed and the fusion protein was eluted using 500 mM imidazole.

Purified fusion proteins were digested with Ulp1 protease to separate SUMO-tag from the

desired protein. The cleaved sample was reapplied to fresh HisTrap HP column to trap

SUMO-tag and Ulp1 protease. The desired protein in the flow-through fraction was collected,

pooled and further purified using ion exchange chromatography.

Human α-SNAP was amplified from HEK 293 cDNA and cloned into pET28b vector with

a Avitag and a C-terminal 6xHis tag. The protein was expressed as described above, and puri-

fied as reported previously [24]. The purified protein was in vitro biotinylated using BirA ligase

and the unlabeled biotin was removed using Zeba spin desalting column according to manu-

facturer instructions (Thermo Fisher Scientific).

Circular dichroism (CD) spectroscopy

CD analyses were performed using a Jasco J-810 spectropolarimeter (Jasco, Easton, MD). Far-

UV CD spectra were acquired in a 1-mm-path-length cuvette, with a 1-nm bandwidth, and a

scan rate of 50 nm/min. All measurements were conducted at room temperature in a buffer con-

taining 10 mM NaH2PO4 (pH 7.4), 150 mM NaF at indicated protein concentrations. In some

cases, 20% trifluoroethanol (TFE) was added before obtaining spectra. Spectra of each sample,

representing the average of three scans, were baseline corrected by subtracting the spectra of

buffer alone. DICHROWEB, an online server for protein structure analysis from CD spectro-

scopic data [25] was utilized to assess the secondary structure of the proteins from their spectra.

Bio-Layer interferometry (BLI)

All experiments were run on Octet RED96 biosensor system (ForteBIO) at 25˚C. For each

binding assay, 0.25 μM of biotinylated α-SNAP (termed as ligand in the assay description) was

diluted in assay buffer (PBS buffer supplemented with 2 mg/ml BSA and 0.02% Tween-20),

and incubated with streptavidin biosensor tips for 3 min. After coupling, the unbound strepta-

vidin sites were quenched with biocytin (10 μg/ml) for 3 min. The kinetic assay was performed

by taking pre-association baseline in assay buffer for 60 seconds followed by association with

indicated analyte (purified Orai1 or Stim1 fragments) at varying concentrations for 5 min, and

dissociation in assay buffer for 10 min. Double referencing with both a reference sample and

reference biosensors was performed. The reference sample was run using ligand-loaded bio-

sensor in assay buffer without analyte. Reference biosensors were loaded with biocytin alone

and run through the assay with various dilutions of analyte, matching with the ligand-loaded

biosensors. The reference biosensor was used to subtract non-specific binding of analytes to

the biosensors.

BLI assay data analysis. The association and dissociation analyses were performed using

ForteBIO data analysis software v8.2. The software uses the following equation to fit the associ-

ation curve to obtain kobs value:

Y ¼ Y0 þ Að1 � e� kobs�t Þ ð1Þ

where, Y = level of binding, Y0 = binding at start of association, A is an asymptote and

t = time, kobs is the observed rate constant.

Similarly, the following equation used to fit the dissociation curve to obtain kd value:

Y ¼ Y0 þ Ae� kd�t ð2Þ
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where, Y0 is binding at start of dissociation, and kd is the dissociation rate constant. The associ-

ation rate constant ka can then be calculated with the following equation:

ka ¼
kobs � kd

½Analyte�
ð3Þ

The equilibrium dissociation constant KD can be calculated using ka and kd:

KD ¼
½A� � ½B�
½AB�

¼
kd

ka
ð4Þ

Experimental data were first fit to a model for a single ligand binding to a single receptor

(1:1 binding model) to obtain an equilibrium dissociation constant value. Subsequently, data

were fit to the simplest two-site model of ligand binding. The goodness-of-fits of these two

models were analyzed visually by comparison with experimental data and statistically by R-

squared value. The simpler 1:1 binding model was chosen as the best fit unless the 2:1 binding

model fit significantly better.

Pull-down assay

The fragments of Stim1 (342–448, 344–382 and 408–442) and Orai1 (1–103, 1–47, 48–103,

228–301, 245–272 and 272–292) were amplified from full length constructs and cloned into

pMAL-c5X (New England Biolabs) or pGEX-4T2 (Addgene) vector, in-frame with MBP or

GST protein coding sequences, respectively. The fusion proteins were expressed in LEMO21

(DE3) cells (New England Biolabs) by inducing with IPTG (0.3 mM) for 14 hours at 18˚C. The

MBP- or GST-tagged proteins were purified by immobilizing on amylose (NEB) or glutathione

resin (Qiagen), respectively. The resin bound proteins were incubated with 20–50 nM of α-

SNAP protein in Ringer’s buffer containing 0.1% NP-40 and 2 mM imidazole for 1 hr at 4˚C.

The resin was washed thrice with Ringer’s buffer, boiled in SDS sample buffer and subjected to

SDS-PAGE followed by Western Blot analysis.

Measurement of single cell SOCE and [Ca2+]i

Cells were loaded with 1μM Fura-2-AM (Life Technologies) in Ringer’s buffer (135 mM NaCl,

5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 5.6 mM Glucose, and 10 mM Hepes, pH 7.4) for 40

min in the dark, washed, and used for imaging. Baseline images were acquired for 1 minute

and then cells were simulated with 1 micromolar TG and imaged simultaneously in nominally

calcium free Ringer’s buffer for 5 to 6 minutes. Subsequently, extracellular calcium was replen-

ished and cells were imaged for an additional 5–6 minutes. 20–30 cells were analyzed per

group in each experiment. An Olympus IX-71 inverted microscope equipped with a Lamda-

LS illuminator (Sutter Instrument, Novato, CA), Fura-2 (340/380) filter set (Chroma, Bellows

Falls, VT), a 10X 0.3NA objective lens (Olympus, UPLFLN, Japan), and a Photometrics Cool-

snap HQ2 CCD camera was used to capture images at a frequency of ~1 image pair every 1.2

seconds. Data were acquired and analyzed using MetaFluor (Molecular Devices, Sunnyvale,

CA), Microsoft Excel, and Origin softwares. To calculate [Ca2+]i, Fura-2 Calcium Imaging Cal-

ibration Kit (Life technologies) was used according to manufacturer’s instructions. Briefly,

standard samples containing dilutions of free Ca2+ (0 to 39 μM) were imaged as described

above to obtain the constant Kd. [Ca2+]i was then determined using the following equation:

Ca2þ½ � ¼ Kd �
½R � Rmin�

½Rmax � R�
�

F380
max

F380
min

ð5Þ

PLOS ONE High affinity associations with α-SNAP regulate Orai channels

PLOS ONE | https://doi.org/10.1371/journal.pone.0258670 October 15, 2021 4 / 17

https://doi.org/10.1371/journal.pone.0258670


where R is the ratio of 510 nm emission intensity with excitation at 340 nm versus 380 nm;

Rmin is the ratio at zero free Ca2+; Rmax is the ratio at saturating free Ca2+; F380
max is the fluores-

cence intensity with excitation at 380 nm, for zero free Ca2+; and F380
min is the fluorescence

intensity at saturating free Ca2+. SOCE was calculated as (SOCE = highest [Ca2+]i−basal [Ca2

+]i), where highest [Ca2+]i was the highest value after replenishing extracellular calcium and

basal [Ca2+]i was the lowest [Ca2+]i, following store-depletion in calcium free buffer.

TIRF microscopy

Mutants of full length YFP-Stim1, mEOS3.2 Orai1 and Orai1-CFP were expressed in HEK 293

cells and imaged under resting and store-depleted conditions on a custom built TIRF micros-

copy setup as described previously [20]. At least 6 to 7 cells per group were imaged under rest-

ing as well as store-depleted conditions.

Statistical analysis

Statistical significance represented as p value was calculated using unpaired student’s t-test. �

p<0.05, �� p<0.01, ��� p<0.001.

Results

α-SNAP binds to the CC3 domain of Stim1

We have previously shown that α-SNAP binds the SOAR/CAD domain of Stim1 [20]. Given

the ability of SOAR/ CAD to bind Orai1 as well as α-SNAP, we sought to determine whether

Orai1 and α-SNAP bind distinct or overlapping regions within SOAR/ CAD. SOAR/ CAD

exists as a mixture of dimer and tetramer in solution and consists of two long α-helices and an

intermediate, relatively less well-defined, region [11, 12, 17]. We expressed two long helical

regions of SOAR/ CAD, Stim1 342–382 (CC2 domain) and Stim1 408–442 (CC3 domain) [17]

(S1 Fig), tagged with maltose binding protein (MBP) and performed in vitro pulldown assays

with purified human α-SNAP. α-SNAP bound MBP-Stim1 408–442 but not MBP-Stim1 342–

382 (Fig 1A), the domain that has been shown to directly interact with Orai1 272–292 [16].

Hence α-SNAP and Orai1 bind non-overlapping coiled-coil regions of SOAR/ CAD.

To further narrow the interaction between Stim1 408–442 and α-SNAP, we used site-

directed mutagenesis and generated several point mutations in MBP-Stim1 408–442 (S2A–

S2D Fig). Because Stim, SNAP and Orai were originally identified from genome-wide RNAi

screens in Drosophila S2 cells [2, 20], we limited our analysis to residues that are conserved

across species. To determine whether reduced binding of Stim1 mutants to α-SNAP was asso-

ciated with inability to activate SOCE, we expressed the respective full length YFP tagged-

Stim1 mutants in mouse embryonic fibroblasts (MEF) derived from Stim1-/- mice and mea-

sured their ability to restore SOCE. In parallel, we analyzed their intracellular localization in

resting and store depleted cells and the mutants that failed to show normal distribution were

not analyzed further. In general, we found that mutating charged and polar residues did not

disrupt binding of SOAR/ CAD to α-SNAP (S2A–S2C Fig). However, mutation of W430

strongly reduced binding between MBP-Stim1 408–442 and α-SNAP (Fig 1B) and (S2D Fig).

Furthermore, expression of Stim1 W430Y and W430A mutants in Stim1-/- MEFs failed to

fully reconstitute thapsigargin (TG) induced SOCE (Fig 1C–1F), while demonstrating normal

resting [Ca]i (Fig 1G) and comparable protein expression levels per cell (Fig 1H). Interestingly,

while W430Y showed normal subcellular distribution and retained its ability to oligomerize as

well as co-cluster Orai1 post store depletion, W430A formed clusters constitutively, and co-

clustered Orai1 only partially suggesting additional likely roles in imparting structural stability
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Fig 1. α-SNAP binds to the CC3 domain of Stim1. (A) In vitro binding of α-SNAP to MBP-tagged CAD and its sub-domains Stim1 344–382 and Stim1

408–442. (Top) Ponceau S staining showing the input of MBP-tagged fragments. (Bottom) Immuno Blot (IB) for α-SNAP showing α-SNAP protein pull

down by MBP-tagged fragments. (n = 3) (B) In vitro binding of α-SNAP to MBP-tagged Stim1 408–442 and its mutants. (Top) Ponceau S staining

showing the input of MBP-tagged proteins. (Bottom) IB for α-SNAP showing α-SNAP pull down by MBP-tagged Stim1 fragments. (n = 3) (C&D)
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for this residue (Fig 1I). Taken together, these data demonstrate that α-SNAP binds to

Stim1-CC3, a region that is crucial for SOCE but does not overlap with the Orai1 interacting

region in the SOAR/ CAD domain of Stim1.

α-SNAP binds to the hinge region near the Orai1 C-terminus

We have previously shown that α-SNAP directly binds the C-terminus of Orai1 [20]. However,

given that SOAR/ CAD also binds the Orai1 C-terminus [16], we next sought to map the α-

SNAP interacting region in Orai1 C-terminus. We constructed MBP fusion proteins of the

entire C-terminus of Orai1, including the transmembrane region 4 (TM4) or its helical

regions; Orai1 245–272 and Orai1 272–292 (S1 Fig) and assessed the ability of these respective

fusion proteins to bind purified α-SNAP in in-vitro pull down assays (Fig 2A). Interestingly,

α-SNAP bound MBP-Orai1 245–272, but not MBP-Orai1 272–292, the ~20 amino acid long

coiled-coil region that binds SOAR/ CAD [16]. These data demonstrate that similar to the case

of SOAR/ CAD, non-overlapping regions of Orai1 C-terminus are involved in associating with

Stim1 and α-SNAP (Fig 2A).

Next, we used site-directed mutagenesis and found that mutating four residues, 262–265

(VHSK) to Alanine in the Orai1 C-terminus hinge region [26] showed significantly reduced

binding to α-SNAP (S3A Fig). Analysis of individual residues within and outside the hinge

(S3B and S3C Fig) revealed V262 as a crucial residue (Fig 2B). Remarkably, expression of full-

length mEOS3.2 tagged-Orai1 V262G or V262A mutant in Orai1-/- MEFs failed to fully

restore SOCE (Fig 2C–2F) but did not show constitutive calcium influx (Fig 2G) or defects in

the cell surface localization of Orai1 (Fig 2H). V262 mutants also retained the ability to co-

cluster with Stim1 in store-depleted cells (Fig 2I). Taken together, these data indicate that

direct binding of α-SNAP within the Orai1 C-terminus hinge enables SOCE via Orai1

channels.

α-SNAP binds a membrane proximal region of the Orai1 N-terminus

Previously, we have observed a faint association between GST-tagged Orai1 N-terminus and

purified α-SNAP [20]. Therefore, we first confirmed the interaction between Orai1 N-termi-

nus and α-SNAP by generating MBP-tagged Orai1 1–103 and its two fragments based on pre-

vious domain analysis [11, 12, 19, 20, 27] (S1 Fig). We found that α-SNAP bound much more

strongly to MBP-Orai1 48–103 when compared to Orai1 1–103, but not to MBP-Orai1 1–47

(Fig 3A).

We next sought to identify the residues crucial for binding between α-SNAP and the Orai1

N-terminus. Mutations of several charged residues in Orai1 N-terminus did not reduce bind-

ing to α-SNAP. However, mutation of L74 resulted in significantly reduced binding (Fig 3B).

L74, residing in the Extended Transmembrane Orai1 N-Terminal (ETON) region, has been

shown to be crucial for SOCE as well as coupling to Orai activating Stim fragment (OASF) [28,

29]. In accordance with previous studies, Orai1 L74E failed to fully restore SOCE when

expressed in Orai1-/- MEFs (Fig 3C–3E). Resting Orai1 L74E expressing cells showed normal

basal [Ca2+]i (Fig 3F) and cell surface expression (Fig 3G). Upon store-depletion, the ability of

Representative Fura-2 profiles showing real-time change in average [Ca2+]i in response to 1μM TG in Stim1-/- MEFs expressing WT (black) and W430Y

mutant Stim1 (red) (C) or WT (black) and W430A mutant Stim1 (blue) (D). Gray lines show the empty vector (EV) control in each panel. (n = 3; shown

here are average traces from n = 1 with ~20 to 30 cells per group). (E&F) Average SOCE (E), and rate of calcium influx after replenishing [Ca2+]e (F),

calculated from 3 independent experiments in panel (C&D). (G) Average basal [Ca2+]i in resting Stim1-/- MEFs expressing WT (black), W430Y Stim1

(red) or W430A Stim1 (blue). (n = 1 with ~20 to 30 cells per group). (H) Mean fluorescence intensity (MFI) of Stim1-/- MEFs expressing WT (black),

W430Y Stim1 (red) or W430A Stim1 (blue). (n = 3, with 20–30 cells/ group). (I) TIRF images of resting and store-depleted HEK 293 cells, co-expressing

WT, W430Y or W430A YFP-Stim1 and Orai1-CFP. Scale bar 10 μm. (n> 10 cells).

https://doi.org/10.1371/journal.pone.0258670.g001
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Orai1 L74E to co-cluster with full length Stim1 remained unchanged (Fig 3H). These data

demonstrate that L74 in the Orai1 N-terminus is involved in the functional interaction with α-

SNAP.

α-SNAP binds Stim1 as well as Orai1 with high affinity

Our previous in vitro pull down studies have suggested that α-SNAP binds to GST-tagged

CAD domain of Stim1 with relatively higher affinity compared to GST-tagged Orai1-C-termi-

nus and N-terminus [20]. To confirm these observations, and measure the binding parameters

and affinity of α-SNAP for Stim and Orai we used Bio-layer interferometry (BLI) (ForteBio

Inc., USA). BLI allows measurement of protein-protein interactions without the need for a tag.

We expressed and purified Stim1 336–485 (S1 Fig), as our attempts to purify CAD/SOAR were

unsuccessful [11] (Fig 4A). The circular dichroism (CD) spectra of purified Stim1 336–485

showed 44% alpha helical conformation (Fig 4B) [11]. In parallel, we expressed C-terminal

Avi-Tagged human α-SNAP, biotinylated using BirA ligase and purified it (Fig 4C). CD spec-

tra of purified α-SNAP showed the expected 73% alpha helical conformation (Fig 4D) [24].

We captured biotinylated α-SNAP on the streptavidin biosensor (ForteBio Inc., USA) and

tested its binding to soluble Stim1 336–485 at increasing concentrations. The raw data were

globally fit to 1:1 binding model using the ForteBio Inc. software and the dissociation constant

(KD) was found to be 158±1.2 nM (Fig 4E) and (Table 1).

We next expressed and purified untagged Orai1 C-terminal 245–292 (S1 Fig) and (Fig 5A),

confirmed its folding using CD spectra (Fig 5B), which showed 50% alpha helical content, and

measured the kinetics of its binding to α-SNAP using BLI. As described in Fig 4, we captured

biotinylated α-SNAP on the biosensor and incubated with varying concentrations of Orai1

245–292. The data obtained were globally fit to 1:1 (Fig 5C) and 2:1 (Fig 5D) binding models

and the KD obtained from the 2:1 binding model, which yielded a better fit, was 314±1.86 nM

(Table 2). The 2:1 model assumes that the analyte, Orai1 245–292, bound to two independent

sites on the ligand i.e. α-SNAP. Because impurities or aggregates in purified proteins can also

sometimes give bimodal binding, we verified these data using a commercially synthesized

Orai1 245–292 peptide. The CD spectra, binding parameters and affinity of the synthesized

Orai1 245–292 peptide were overall similar to purified Orai1 245–292 (Fig 5E–5H) and the KD

obtained from the 2:1 binding model was 198±19.5 nM (Table 3).

To determine the affinity of interaction between α-SNAP and the Orai1 N-terminus, we

expressed and purified a large untagged Orai1 1–103 fragment (S1 Fig) and (Fig 5I), as we

were unable to purify shorter regions. Orai1 1–103 purified relatively easily, showed minimal

degradation and the CD spectra showed 53% alpha-helical content (Fig 5J). We measured the

binding parameters of α-SNAP to increasing concentrations of Orai1 1–103 using BLI and fit-

ted the data using 1:1 binding model (Fig 5K). The KD obtained from these data was 763±20.7

nM (Table 4). Taken together, these data suggest that the affinities of α-SNAP for Orai1 245–

Fig 2. α-SNAP binds to the hinge region near the Orai1 C-terminus. (A) In vitro binding of α-SNAP to MBP-tagged Orai1 C-terminus 228–301 and its

subdomains, Orai1 245–272 and Orai1 272–292. (Top) Ponceau S staining showing the input of MBP-tagged fragments. (Bottom) Immunoblot (IB) for α-

SNAP showing α-SNAP protein pull down by MBP-tagged fragments of Orai1. (n = 3) (B) In vitro binding of α-SNAP to GST-tagged WT, V262G and V262A

mutants of Orai1 245–292. (Top) Ponceau S staining showing the GST-tagged protein input. (Bottom) IB for α-SNAP showing α-SNAP protein pull down by

GST-tagged Orai1 fragments. (n = 3) (C&D) Representative Fura-2 profiles showing real-time change in average [Ca2+]i in Orai1-/- MEFs expressing WT

(black) and V262G mutant Orai1 (red) (C) or WT (black) and V262A mutant Orai1 (blue) (D), in response to 1μM TG. Gray lines show the empty vector (EV)

control in each panel. (n = 3; shown here are average traces from n = 1 with ~20 to 30 cells per group). (E&F) Average SOCE (E), and rate of calcium influx

after replenishing [Ca2+]e (F), calculated from 3 independent experiments in panel (C&D). (G) Average basal [Ca2+]i in resting Orai1-/- MEFs expressing WT

(black), V262G Orai1 (red) or V262A Orai1 (blue). (n = 1 with ~20 to 30 cells per group). (H) Mean fluorescence intensity (MFI) of Orai1-/- MEFs expressing

WT (black), V262G (red) or V262A Orai1 (blue). (n = 3, with 20–30 cells per group). (I) TIRF images of resting and store-depleted HEK 293 cells, co-

expressing WT or V262 mutant mEOS3.2-Orai1 and CFP-Stim1. Scale bar 10 μm. (n> 10 cells).

https://doi.org/10.1371/journal.pone.0258670.g002
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Fig 3. α-SNAP binds a membrane proximal region of Orai1 N-terminus. (A) In vitro binding of α-SNAP to MBP-tagged Orai1 N-terminus 1–103 and

its subdomains, Orai1 1–47 and Orai1 48–103. (Top) Ponceau S staining showing the input of MBP-tagged Orai1-N terminus fragments. (Bottom) IB for

α-SNAP showing α-SNAP protein pull down by MBP-tagged fragments of Orai1-N terminus. (n = 3) (B) In vitro binding of α-SNAP to MBP-tagged WT

and L74E Orai1 48–103. (Top) Ponceau S staining showing the MBP-tagged protein input. (Bottom) IB for α-SNAP showing α-SNAP protein pull down

by MBP-tagged WT and L74E Orai1 48–103. (n = 3) (C) Representative Fura-2 profiles showing real-time change in average [Ca2+]i in Orai1-/- MEFs

expressing WT (black) or L74E mutant Orai1 (red), in response to 1μM TG. Gray line shows the EV control. (n = 3; shown here are average traces from

n = 1 with ~20 to 30 cells per group). (D&E) Average SOCE (D), and rate of calcium influx after replenishing [Ca2+]e (E), calculated from 3 independent

experiments in panel (C). (F) Average basal [Ca2+]i in resting Orai1-/- MEFs expressing WT (black) or L74E Orai1 (red). (n = 1 with ~20 to 30 cells per

group). (G) Mean fluorescence intensity (MFI) of Orai1-/- MEFs expressing WT (black) or L74E Orai1 (red). (n = 3, with 20–30 cells per group/

experiment). (H) TIRF images of resting and store-depleted HEK 293 cells, co-expressing mEOS3.2-Orai1 L74E and CFP-Stim1. Scale bar 10 μm.

(n>10).

https://doi.org/10.1371/journal.pone.0258670.g003
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Fig 4. α-SNAP binds Stim1 with high affinity. (A) SDS-PAGE showing purified human Stim1 336–485. (B) CD

spectra of purified Stim1 336–485. (C) SDS-PAGE showing Avi-Tagged human α-SNAP expressed, purified and

biotinylated using BirA ligase. (D) CD spectra of purified and biotinylated human α-SNAP. (E) BLI assay to measure

the binding parameters of increasing concentrations of soluble Stim1 336–485 (0.3 to 10 μM) to biotinylated α-SNAP

immobilized on streptavidin biosensor (ForteBio Inc., USA). Raw data (red lines) were globally fit to 1:1 binding

model (gray lines) using the ForteBio Inc. software. (n>2).

https://doi.org/10.1371/journal.pone.0258670.g004
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292 and Stim1 336–485 are comparable. Although, the association of α-SNAP with Orai1

1–103 was relatively weaker, the affinity is still higher in comparison to what has been previ-

ously reported for Orai1 N-terminal fragments and OASF interaction [29].

Discussion

In this study, we have identified the minimal sub-domains of Orai1 and Stim1 involved in

associating with α-SNAP, a calcium release activated calcium (CRAC) channel component

necessary for the functional assembly and selectivity of Orai1 multimers. By mutating specific

residues within these domains, our data further suggest that failure to bind α-SNAP results in

defective SOCE despite robust co-clustering of Stim, Orai in the endoplasmic reticulum-

plasma membrane (ER-PM) junctions. These observations reinforce our previous findings

[14, 20] that the step of Orai Stim co-clustering within ER-PM junctions can be dissociated

from SOCE at a molecular level.

Previous studies have implicated the SOAR/CAD subdomain, Stim1-CC3, in Stim oligo-

merization and W430 falls in the putative dimer interface region [17]. It was therefore surpris-

ing to see normal oligomerization of Stim1 W430Y and co-clustering with Orai1, post store-

depletion. One possibility is that the substitution of tryptophan 430 to tyrosine allowed the for-

mation of hydrogen bonds between full length Stim proteins in the W430Y expressing cells.

However, the amplitude of SOCE was still significantly reduced suggesting additional func-

tions for this domain. On the other hand, constitutive oligomerization of Stim1-W430A and

its failure to efficiently co-cluster Orai1 or stimulate SOCE could suggest potential structural

defects introduced by this mutation, which may preclude functional association with itself as

well as α-SNAP. Collectively, these data point to additional roles for Stim1 CC3 that are

beyond Stim1 oligomerization and facilitated by high affinity contacts with α-SNAP.

Previously, multiple mutations introduced in the Orai1 C-terminus hinge have revealed the

importance of this region in Orai1 gating by inducing hypothetical, allosteric changes in the

neighboring Orai1-transmembrane (TM) regions and the Orai1-N-terminus to activate con-

stitutive calcium influx [30]. However, unlike the earlier reported mutations of Orai1 in this

region [30], V262G or V262A mutations neither resulted in constitutively active nor non-

selective Orai1 by themselves, suggesting that the structure of Orai1 C-terminal hinge region

(261–265) per se was not altered in V262 mutants. The hinge region precedes the helix that

directly binds Stim1 CC2 and therefore it is also unlikely that the structure of Stim1-CC2 helix

was disrupted. Therefore, the simplest possible explanation in view of our data and earlier

reports is that reduced SOCE in V262 mutants results from defective functional interaction

with α-SNAP. In light of high affinity of α-SNAP for Orai1 245–292, its ability to bind Orai1

C- and N-termini independently of Stim1 and our previous findings [14], these data suggest

that the binding of α-SNAP to Orai1 facilitates structural shifts within Orai1 which enable

SOCE.

The structure of Sec17, the yeast homolog of α-SNAP, consists of 14 α helices with the first

nine forming a twisted sheet and the last 5 forming a globular bundle [31]. Previous studies

Table 1. Binding parameters for α-SNAP and Stim1 336–485.

KD (nM) kon (M-1s-1) koff (s-1) R2

158 ± 1.2 2.68 x 103 ± 12.5 4.22 x 10−4 ± 2.55 x 10−6 0.997

The experimental data in Fig 4E were fit to the single-site model of ligand binding (1:1 binding model) using

ForteBIO data analysis software to obtain association rate constant (kon), dissociation rate constant (koff), and

dissociation constant (KD) values.

https://doi.org/10.1371/journal.pone.0258670.t001
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regarding the association of α-SNAP with SNAREs have suggested that SNAPs recognize gen-

eral surface features of interacting proteins rather than individual residues. Therefore, while

we have identified specific residues within Orai1 and Stim1 that are crucial for in vitro binding,

these data do not rule out the involvement of additional residues within the overall interacting

Fig 5. α-SNAP harbors comparable affinity for Orai1 and Stim1. (A&E) SDS-PAGE showing purified human Orai1 245–292 (A) and Orai1 245–292 peptide (E).

(B&F) CD spectra of purified untagged Orai1 245–292 (B) and Orai1 245–292 peptide (F). (C,D & G,H) BLI assays to measure the binding parameters of increasing

concentrations of purified Orai1 245–292 (1.2 to 20 μM) (C,D) or Orai1 245–292 peptide (5 to 40 μM) (G,H) to biotinylated α-SNAP immobilized on the streptavidin

biosensor (Forte Bio Inc.). Raw data (red lines) were globally fit to 1:1 (C&G) and 2:1 (D&H) binding models (gray lines). (n>2 each). (I) SDS-PAGE showing purified

human Orai1 1–103. (J) CD spectra of purified untagged Orai1 1–103. (K) BLI assay to measure the binding parameters of increasing concentrations of soluble Orai1

1–103 (1.2 to 40 microM) to biotinylated α-SNAP immobilized on the streptavidin biosensor (ForteBio Inc.). Raw data (red lines) were globally fit to 1:1 binding model

(gray lines). (n>2).

https://doi.org/10.1371/journal.pone.0258670.g005
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region despite apparently normal in vitro binding of additional mutants. Likewise, although

the residues of Stim1 and Orai1 that we have identified here are crucial for association with α-

SNAP, the data presented here do not rule out additional roles for them, for instance, in

imparting the overall structural stability and/or allosteric effects on associations between

Stim1 and Orai1. While any mutation always holds the possibility that it may affect Orai, Stim

structure and interactions, the robust co-clustering that we observed in several of our mutants

argues that these mutations do not affect Orai-Stim physical interaction, while affecting SOCE,

further indicating that α-SNAP facilitates their functional interaction.

It is surprising that the affinity of α-SNAP for Orai1 as well as Stim1 was significantly

higher than the previously reported affinity of Stim1 for Orai1 [29]. A major goal of affinity

measurements in this study was to potentially determine the sequence of recruitment of these

three key components to the CRAC channel supramolecular complex. However, given that the

affinities of α-SNAP for Stim1 336–485 and Orai1 C-terminus are not very different, the

sequence of recruitment could not be discerned from these studies. Furthermore, previous

studies have suggested that Stim1-CC3, as well as the Orai1 interacting CC2 domains, could be

masked in resting cells by CC1 domain of Stim1 [17]. Similar allosteric constraints have been

reported for binding of CAD/ SOAR to membrane proximal regions of the Orai1 N-terminus.

Therefore, accessibility of sub-domains involved in the intermolecular interactions will also be

a crucial determinant of the sequence of recruitment of these proteins in vivo.

Table 2. Binding parameters for α-SNAP and purified Orai1 245–292.

1:1 binding model

KD (nM) kon (M-1s-1) koff (s-1) R2

548 ± 7.2 1.08 x 103 ± 9.86 5.95 x 10−4 ± 5.57 x 10−6 0.989

2:1 binding model

KD1 (nM) kon1 (M-1s-1) koff1 (s-1) R2

314 ± 1.9 6.78 x 102 ± 6.03 2.13 x 10−4 ± 4.02 x 10−6 0.998

KD2 (μM) kon2 (M-1s-1) koff2 (s-1)

202 ± 71.9 1.52 x 102 ± 53.9 3.06 x 10−2 ± 5.92 x 10−4

The experimental data in Fig 5C and 5D were fit to the single-site model (1:1 binding model) and the two-site model

(2:1 binding model) of ligand binding, respectively. The association rate constant (kon), dissociation rate constant

(koff), and dissociation constant (KD) values were obtained using the ForteBIO data analysis software.

https://doi.org/10.1371/journal.pone.0258670.t002

Table 3. Binding parameters for α-SNAP and Orai1 245–292 peptide.

1:1 binding model

KD (nM) kon (M-1s-1) koff (s-1) R2

369 ± 11.9 1.37 x 103 ± 32.7 5.06 x 10−4 ± 1.1 x 10−5 0.953

2:1 binding model

KD1 (nM) kon1 (M-1s-1) koff1 (s-1) R2

198 ± 19.5 2.84 x 102 ± 3.17 5.62 x 10−5 ± 5.5 x 10−6 0.996

KD2 (nM) kon2 (M-1s-1) koff2 (s-1)

715 ± 54.1 3.90 x 104 ± 2.87 x 103 2.79 x 10−2 ± 5.06 x 10−4

The experimental data in Fig 5G and 5H were fit to the single-site model (1:1 binding model) and the two-site model

(2:1 binding model) of ligand binding, respectively. The association rate constant (kon), dissociation rate constant

(koff), and dissociation constant (KD) values were obtained using the ForteBIO data analysis software.

https://doi.org/10.1371/journal.pone.0258670.t003
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In summary, we have identified novel high affinity intermolecular interactions necessary

for the activation of SOCE via Orai1. The interaction interfaces identified here could, in future,

be useful for designing peptide or small molecule inhibitors of SOCE.

Supporting information

S1 Fig. Schematics of Stim1 and Orai1 domains analyzed in this paper.

(TIF)

S2 Fig. In vitro binding of α-SNAP to MBP-tagged mutants of Stim1 408–442. (A) Stim1

408–442 basic residue mutants. (B) Stim1 408–442 acidic residue mutants. (C) Stim1 408–442

polar residue mutants. (D) Stim1 408–442 hydrophobic residue mutants. (Top) Ponceau S

staining showing the input of MBP-tagged Stim1 408–442 mutants. (Bottom) Western Blot for

α-SNAP showing α-SNAP pull down by various mutants.

(TIF)

S3 Fig. In vitro binding of α-SNAP to GST-tagged mutants of Orai1 245–292. (A-C) (Top)

Ponceau S staining showing the input of GST-tagged Orai1 245–292 mutants. (Bottom) West-

ern Blot for α-SNAP showing α-SNAP pull down by respective mutants.

(TIF)
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Table 4. Binding parameters for α-SNAP and Orai1 1–103.

KD (nM) kon (M-1s-1) koff (s-1) R2

763 ± 20.7 1.54 x 102 ± 1.21 1.17 x 10−4 ± 3.04 x 10−6 0.997

The experimental data in Fig 5K were fit to the single-site model of ligand binding (1:1 binding model) and

association rate constant (kon), dissociation rate constant (koff), and dissociation constant (KD) values were obtained

using the ForteBIO data analysis software.
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