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The mitochondrial pyruvate carrier (MPC) is an inner
mitochondrial membrane complex that plays a critical role in
intermediary metabolism. Inhibition of the MPC, especially in
liver, may have efficacy for treating type 2 diabetes mellitus.
Herein, we examined the antidiabetic effects of zaprinast and
7ACC2, small molecules which have been reported to act as
MPC inhibitors. Both compounds activated a bioluminescence
resonance energy transfer–based MPC reporter assay (reporter
sensitive to pyruvate) and potently inhibited pyruvate-
mediated respiration in isolated mitochondria. Furthermore,
zaprinast and 7ACC2 acutely improved glucose tolerance in
diet-induced obese mice in vivo. Although some findings were
suggestive of improved insulin sensitivity, hyperinsulinemic–
euglycemic clamp studies did not detect enhanced insulin ac-
tion in response to 7ACC2 treatment. Rather, our data suggest
acute glucose-lowering effects of MPC inhibition may be due to
suppressed hepatic gluconeogenesis. Finally, we used reporter
sensitive to pyruvate to screen a chemical library of drugs and
identified 35 potentially novel MPC modulators. Using avail-
able evidence, we generated a pharmacophore model to pri-
oritize which hits to pursue. Our analysis revealed carsalam
and six quinolone antibiotics, as well as 7ACC1, share a com-
mon pharmacophore with 7ACC2. We validated that these
compounds are novel inhibitors of the MPC and suppress he-
patocyte glucose production and demonstrated that one qui-
nolone (nalidixic acid) improved glucose tolerance in obese
mice. In conclusion, these data demonstrate the feasibility of
therapeutic targeting of the MPC for treating diabetes and
provide scaffolds that can be used to develop potent and novel
classes of MPC inhibitors.

Obesity is associated with an increased risk of several
chronic and progressive diseases, including insulin resistance
and type 2 diabetes mellitus, which constitute a significant
public health burden. Clinically approved drugs for type 2

diabetes employ a number of approaches for lowering blood
glucose including augmenting the release of insulin by
pancreatic beta cells, decreasing reabsorption of glucose by the
kidneys, suppressing the production of glucose by the liver, or
enhancing the sensitivity of target tissues to the effects of in-
sulin. The thiazolidinedione (TZD) class of drugs, including
rosiglitazone and pioglitazone, act as insulin sensitizers and are
agonists for a nuclear receptor transcription factor, the
peroxisome proliferator–activated receptor γ (PPARγ) (1),
which mediates many of their beneficial effects. However,
TZDs are known to interact with additional molecular targets
and can affect metabolism by mechanisms other than tran-
scription regulation (2–4). Indeed, TZDs rapidly suppress
hepatic glucose production (5, 6), and recent work has sug-
gested that TZDs with very limited activation of PPARγ
(PPARγ-sparing TZDs) also have beneficial metabolic effects
(7–11). This PPARγ-independent pharmacology has been
linked to the ability of these compounds to interact with the
mitochondrial pyruvate carrier (MPC) complex (3, 4).

The MPC is composed of two proteins, MPC1 and MPC2,
in a heterodimeric complex that mediates the transport of
pyruvate across the inner mitochondrial membrane into the
mitochondrial matrix (12, 13). This is an important and rate-
limiting step in intermediary metabolism. Both MPC1 and
MPC2 are required for pyruvate transport and complex sta-
bility, and thus, the deletion of one MPC protein essentially
results in a double knockout and complete loss of pyruvate
transport activity (14). Constitutive deletion of MPC1 or
MPC2 in mice results in lethality at an early embryonic stage
(14, 15). However, conditional deletion of either MPC proteins
in hepatocytes is well tolerated and results in protection from
diabetes, liver injury, and other high-fat (HF) diet–induced
metabolic derangements (9, 16–18). This fits well with the
accumulating evidence that TZDs targeting the MPC act in an
inhibitory manner to suppress the flow of pyruvate into
mitochondrial metabolic pathways. While the metabolic
benefit of interrupting normal pyruvate use in glucose-
consuming tissues, such as skeletal muscle, may seem coun-
terintuitive, impairing mitochondrial pyruvate flux in the liver
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is beneficial in certain disease states by reducing gluconeo-
genesis (16–18). Moreover, inhibition of the MPC also stim-
ulates fat oxidation and compensatory use of amino acids by
the liver (7, 16), brown adipose tissue (19, 20), and skeletal
muscle (21).

Herein, we tested the hypothesis that small-molecule in-
hibitors of the MPC can improve metabolic phenotypes in the
setting of obesity in mice. First, we confirmed previous reports
that zaprinast (22), a phosphodiesterase (PDE) inhibitor, and
7ACC2 (23), originally believed to be a plasma membrane
monocarboxylate transporter inhibitor, directly interact with
the MPC using a bioluminescence resonance energy transfer
(BRET)–based MPC conformation sensor (reporter sensitive
to pyruvate [RESPYR]) (24). We then demonstrated that
treatment with either compound acutely improved glucose
tolerance in diet-induced obese (DIO) mice. Although some
end points (insulin tolerance test [ITT] and insulin signaling
measures) were suggestive of improved insulin sensitivity,
hyperinsulinemic–euglycemic clamp studies did not detect
enhanced insulin action in response to 7ACC2 treatment.
Rather, our data suggest that acute metabolic improvements
with the novel MPC inhibitors may be due to suppressed he-
patic gluconeogenesis. Next, we used the RESPYR system to
conduct a limited screen of potential MPC-interacting com-
pounds in a 1600 compound chemical library of known drugs.
This unbiased approach identified several known MPC in-
hibitors (zaprinast, pioglitazone, and rosiglitazone), as well as a
variety of novel inhibitors of the MPC. To prioritize the novel
MPC inhibitors from our screen for further investigation, we
developed a pharmacophore model using the structure of the
very potent MPC inhibitor, 7ACC2. Based on this model, we
prioritized carsalam and six quinolone antibiotics that were
hits in the screen and demonstrated that these compounds are
novel inhibitors of the MPC. Collectively, these data validate a
novel pharmacophore model for inhibiting the MPC and
demonstrate the feasibility of therapeutic inhibition of the
MPC for treating diabetes.

Results

Zaprinast and 7ACC2 are potent inhibitors of the MPC

A BRET-based MPC activity assay (RESPYR) (24) has been
shown to be sensitive to pharmacologic inhibitors of the
MPC, including several TZDs and UK-5099 (8, 9). We have
shown that MPC inhibitors induce a strong increase in BRET
signal likely due to MPC complex conformational changes in
response to engagement of the pyruvate binding site (Fig. 1A)
(8, 9). Zaprinast, which has previously been reported to be an
MPC inhibitor (22), activated RESPYR activity in a dose-
dependent manner (Fig. 1B). Zaprinast was originally stud-
ied as a PDE inhibitor and was optimized to develop the
PDE5 inhibitor, sildenafil. Sildenafil, tadalafil, and vardenafil
did not activate RESPYR activity (Fig. S1A). A recent publi-
cation by Corbet et al. (23) suggested that 7ACC2, which was
previously thought to be an inhibitor of cellular lactate import
but not efflux, is actually an inhibitor of the MPC. We also
confirmed that 7ACC2 was very potent at stimulating BRET

activity in RESPYR analyses (Fig. 1B) demonstrating a direct
interaction.

Zaprinast directly inhibited pyruvate-stimulated respiration
in isolated mitochondria with an IC50 consistent with its ability
to increase RESPYR signal (Fig. 1C). Consistent with the idea
that zaprinast was affecting MPC independent of its effects on
PDE activity, other PDE5 inhibitors did not inhibit pyruvate-
stimulated respiration (Fig. S1B). By using mitochondria iso-
lated fromhearts ofmicewith cardiac-specific deletion ofMPC2
(25), we confirmed that zaprinast only inhibited pyruvate-
mediated respiration in mitochondria that expressed MPC
(Fig. 1D). 7ACC2 also inhibited mitochondrial respiration in a
dose-dependent manner when pyruvate was provided as meta-
bolic substrate and, consistent with RESPYR dose–response
curves, was more potent compared to zaprinast (Fig. 1C).
Finally, given that other known MPC inhibitors also activate
PPARγ, we confirmed, using a Gal4-PPARγ luciferase reporter
assay, that 7ACC2 and zaprinast did not activate this nuclear
receptor (Fig. 1E). Collectively, these data are consistent with a
direct inhibitor effect of these compounds on MPC activity.

Zaprinast and 7ACC2 improve glucose tolerance in DIO mice

To determine if these MPC inhibitors might elicit metabolic
improvements similar to the effects of TZD-based MPC in-
hibitors, WT and LS-Mpc2−/− mice were fed a HF diet for
12 weeks and then treated with a single injection of 30 mg/kg
zaprinast 18 h prior to assessing glucose tolerance. Zaprinast
markedly improved glucose tolerance in DIO mice (Fig. 2A).
Interestingly, zaprinast also further improved glucose toler-
ance in LS-Mpc2−/− mice, which were protected from the
effects of DIO on glucose tolerance (Fig. 2A). This may indi-
cate that zaprinast has peripheral effects that are not related to
hepatic MPC inhibition, such as inhibiting the MPC in other
tissues or stimulating muscle glucose uptake via PDE inhibi-
tion (26).

A single i.p. injection of 1 mg/kg 7ACC2 also markedly
improved glucose tolerance in DIO mice in a glucose tolerance
test (GTT) study performed 18 h later (Fig. 2B). In contrast to
zaprinast, 7ACC2 did not further improve glucose tolerance in
LS-Mpc2−/− mice. This suggests that both 7ACC2 and zap-
rinast enhance glucose tolerance in DIO mice; while the effects
of 7ACC2 require MPC2 in hepatocytes, some of the effects of
zaprinast may be mediated by effects independent of the MPC
in hepatocytes or by other molecular mechanisms entirely.

The GTT, while useful, can be influenced by many variables
and is not an indicator of insulin sensitivity per se. Treatment
with zaprinast or 7ACC2 for 3 days improved insulin tolerance
in an ITT performed in DIO WT mice (Fig. 2C). We also
observed that at sacrifice, DIO mice treated with zaprinast or
7ACC2 had lower plasma insulin concentrations (Fig. 2D),
which is consistent with a requirement for less insulin to
maintain normoglycemia. The 3-day course of zaprinast or
7ACC2 treatment enhanced liver insulin signaling (insulin-
induced phosphorylation of AKT-S473) following a bolus of
insulin injected 10 min prior to sacrifice (Fig. 2E). Altogether,
these results suggest that zaprinast and 7ACC2 may enhance
insulin sensitivity in DIO mice.

Novel MPC inhibitors and glucose production
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Metabolic improvements with acute MPC inhibition are not
due to enhanced insulin sensitivity

To further examine whether 7ACC2 treatment resulted in
improved insulin sensitivity, C57BL/6J DIO mice were treated
with 7ACC2 for three consecutive days and then underwent

hyperinsulinemic–euglycemic clamp. As observed previously,
fasting blood glucose (Fig. 3A) and insulin (Fig. 3B) concen-
trations at the start of the clamp were reduced by treatment
with 7ACC2. However, 7ACC2 did not affect glucose infusion
rate (Fig. 3C) or total glucose flux (Fig. 3D). Endogenous

Figure 1. Zaprinast and 7ACC2 are MPC inhibitors that do not activate PPARγ. A, the schematic depicts the BRET-based MPC biosensor (RESPYR) system
with MPC1–Venus and MPC2-RLuc fusion proteins in the absence (left) or presence (right) of MPC inhibitors. Created with BioRender.com. B, dose–response
effects of zaprinast or 7ACC2 in a RESPYR assay. Values are presented as mean ± standard error of the mean. n = 5 per group. C, pyruvate-stimulated
mitochondrial respiration with increasing doses of zaprinast or 7ACC2. D, the effects of zaprinast on mitochondrial pyruvate metabolism require MPC.
The effects of vehicle or zaprinast on pyruvate-stimulated respiration by cardiac mitochondria from WT or cardiac-specific MPC2-knockout mice are shown.
E, zaprinast and 7ACC2 do not activate PPARγ. The effects of zaprinast, 7ACC2, rosiglitazone, and pioglitazone on the activity of a Gal4-PPARγ–driven
luciferase reporter are shown. *p < 0.01 versus WT vehicle and MPC2−/−, **p < 0.01 versus all other groups. BRET, bioluminescence resonance energy
transfer; MPC, mitochondrial pyruvate carrier; MPP, mitochondrial pyruvate carrier; OCR, oxygen consumption rate; PPARγ, peroxisome proliferator–
activated receptor γ; RESPYR, reporter sensitive to pyruvate.
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Figure 2. Zaprinast and 7ACC2 improve glucose tolerance in DIO mice. A and B, WT and LS-Mpc2−/−mice were fed a high-fat (HF) diet for 12 weeks and
then administered a single dose of zaprinast (A) or 7ACC2 (B) or vehicle control. Glucose tolerance was then assessed 16 h later after an overnight fast.
*p < 0.05 compared to WT vehicle. **p < 0.05 compared to WT vehicle and all zaprinast-treated mice. C, insulin tolerance test in WT mice fed low-fat (LF) or
HF diet after 3 days treatment with vehicle, zaprinast, or 7ACC2 treatment. Values are presented as mean ± standard error of the mean. n = 7 to 10 per
group. D, plasma insulin concentrations in WT mice fed LF or HF diet after 3 days treatment with vehicle, zaprinast, or 7ACC2 treatment. Values are
presented as mean ± standard error of the mean. n = 8 to 18 per group. *p < 0.05 compared to LF vehicle. **p < 0.05 compared to LF and DIO vehicle. E, WT
mice were fed a HF diet or LF control diet and then received 3 days of zaprinast or 7ACC2 treatment. An insulin bolus was injected 10 min prior to sacrifice.
Liver insulin signaling was assessed using S473 phosphorylated–specific AKT antibodies by Western blot. The ratio of pAKT-s473/total AKT was quantified
using densitometric analysis of band intensity, and the values are presented as mean ± standard error of the mean below the Western blot images. DIO,
diet-induced obese.

Novel MPC inhibitors and glucose production
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glucose production (Ra) was also not statistically different in
mice treated with 7ACC2 compared to vehicle controls
(Fig. 3E). Because basal insulin concentrations were lower in
mice treated with 7ACC2 compared to vehicle mice, glucose
production rates as a function of plasma insulin were also
calculated. Under fasting conditions, 7ACC2-treated mice had
similar rates of Ra at a lower concentration of insulin. The
slope of the response curve for mice treated with 7ACC2 was
slightly shifted toward the left compared to the vehicle mice
(Fig. 3F). Together, these findings are suggestive of metabolic
improvements in response to 7ACC2 but do not definitively
indicate improved insulin sensitivity. Finally, 7ACC2 treatment

did not affect tissue 2-deoxyglucose uptake into muscle or fat
(Fig. 3G). Thus, the acute effects of 7ACC2 on insulin sensi-
tivity are very modest and likely suggest the metabolic
improvement is due to improving glucose effectiveness or
another mechanism of action.

Acute MPC inhibition reduces glucose levels by suppressing
hepatic glucose output

We have previously shown that pharmacologic inhibition or
genetic deletion of the MPC in hepatocytes attenuates
pyruvate-stimulated glucose production (16), which could
explain the in vivo metabolic effects of the MPC inhibitors.

Figure 3. 7ACC2 does not improve insulin sensitivity in DIO mice. C57BL/6J mice were fed a high-fat diet for 12 weeks and then treated with vehicle or
7ACC2 for 2 days before undergoing a hyperinsulinemic–euglycemic clamp. Graphs display: A, fasting arterial glucose; B, fasting or clamped insulin
concentrations; C, glucose infusion rate; D, glucose flux (Rd); E, endogenous rate of appearance (Ra); F, Ra versus fasting and clamped insulin concentrations;
and G, uptake of 14C 2-deoxyglucose into various insulin target tissues. Values are presented as mean ± standard error of the mean. n = (7) per group.
*p < 0.05 compared to WT vehicle, **p < 0.01 versus fasting values in same treatment group. DIO, diet-induced obese.
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Thus, we tested the effect of these compounds on pyruvate-
stimulated glucose production and found that zaprinast,
7ACC2, or the MPC inhibitor UK-5099 potently inhibited
glucose output in isolated hepatocytes from WT mice
(Fig. 4A). None of the MPC inhibitors had an effect on hepatic
glucose output in hepatocytes isolated from LS-Mpc2−/− mice
(Fig. 4A).

To confirm that the MPC inhibitors were affecting gluco-
neogenic flux using pyruvate as a substrate, we quantified
incorporation of 13C-pyruvate into TCA cycle and gluconeo-
genic intermediates in isolated hepatocytes treated with MPC
inhibitors (Fig. 4B). Treatment with 7ACC2, zaprinast, or UK-
5099 did not affect incorporation of 13C-pyruvate into lactate
or alanine (% 13C-labeled metabolite; Fig. 4C), which likely
occurs in the cytosol (Fig. 4B). However, chemical inhibition of
the MPC did increase the lactate pool size in the media
(Fig. S2A). Incorporation into citrate and other TCA cycle
intermediates was markedly disrupted by treatment with MPC
inhibitors (Fig. 4C). Moreover, incorporation into the gluco-
neogenic intermediates, 2/3 phosphoglycerate and glucose-6-
phosphate, was also markedly attenuated by MPC inhibition.

Consistent with an in vivo effect of the MPC inhibitors on
gluconeogenesis, we found that administration of zaprinast or
7ACC2 to lean C57BL6/J mice 30 min prior to conducting a
lactate/pyruvate tolerance test blunted the gluconeogenic
response compared to vehicle-treated mice (Fig. 4D). Admin-
istration of zaprinast or 7ACC2 increased blood lactate con-
centrations in these mice prior to but not after administration
of the lactate/pyruvate bolus (Fig. 4E). Administration of these
compounds also had no impact on gene expression of gluco-
neogenic or lipogenic enzymes (Fig. S2B). When taken alto-
gether, these data suggest that the metabolic improvement
observed with acute, pharmacologic MPC inhibition in vivo is
due to reduced hepatic glucose production using lactate/py-
ruvate as a substrate.

RESPYR-based high-throughput screen for MPC modulators

To identify novel MPC inhibitors, we screened the Phar-
makon 1600 library of known drugs using the BRET-based
MPC RESPYR system (Fig. 5A). Several compounds altered
the BRET signal ratio in cells on a control plate that were not
expressing the BRET donor protein (Venus-tagged MPC1),
indicating false positivity (Fig. 5B). However, 35 compounds
increased BRET activity only in cells expressing both the donor
and acceptor proteins and were deemed to be positive hits
(Fig. 5B and Table 1). Zaprinast, pioglitazone, and rosiglita-
zone are all included in the Pharmakon 1600 library and, as
expected, were positive hits in our screen, which serves as
validation for this approach.

Several compounds deemed positive hits were validated
using kinetic RESPYR assays (Figs. S3 and S4). However, some
of the compounds displayed responses of considerably smaller
magnitude compared to positive controls (Fig. S3) or that
required micromolar concentrations (Fig. S4).

To aid in prioritizing which hits to further pursue, we built a
pharmacophore model that represents the geometrical and
chemical features of 7ACC2 (Fig. 5C). To prioritize

compounds from the hits identified in the high-throughput
screen for further testing, we screened the 35 hits against the
pharmacophore model. The top scored compounds were the
six quinolone antibiotics shown in Figure 5C. These com-
pounds share a common pharmacophore with 7ACC2 because
they possess a Michael acceptor unit (highlighted in blue,
Fig. 5C). In addition, the screened compound carsalam, a
nonsteroidal anti-inflammatory agent, also possesses a similar
chemical structure (Fig. 5C). Finally, 7ACC1, which is sold as a
plasma membrane MCT inhibitor, shares the same coumarin
pharmacophore with 7ACC2 (Fig. 5D) but was not present in
the chemical library. Based on this common pharmacophore,
the quinolone compounds, carsalam, and 7ACC1 were
selected for further validation.

We tested the ability of some of the quinolones, carsalam,
and 7ACC1 to inhibit mitochondrial respiration using pyru-
vate as a metabolic substrate. We found that nalidixic acid,
7ACC1, and carsalam were the most effective of these com-
pounds at 10 μM (Fig. 6A). Respiration studies comparing
increasing doses of these top compounds revealed that 7ACC1
was nearly as potent as 7ACC2 (Fig. 6B) with an IC50 similar
to UK-5099 (data not shown). Nalidixic acid and carsalam
were relatively less potent but inhibited pyruvate-mediated
respiration by �50% at 10 μM (Fig. 6B). We then assessed
the ability of these novel MPC inhibitors to suppress hepato-
cyte glucose production. We found that 7ACC2, 7ACC1,
nalidixic acid, and carsalam potently inhibited glucose pro-
duction by isolated hepatocytes at 10 μM concentrations
(Fig. 6C).

Finally, we treated DIO mice with the nalidixic acid sodium
salt, which is water soluble, for 3 days and then conducted GTT
analyses. Nalidixic acid tended to reduce fasting glucose levels
compared to vehicle controls, but this did not reach statistical
significance (Fig. 6D). However, similar to the other MPC
inhibitors, glucose tolerance following a glucose bolus was
significantly improved by nalidixic acid treatment (Fig. 6D).

Discussion

Herein, we sought to determine the potential of using MPC
inhibitors for the pharmacologic treatment of metabolic de-
rangements in a mouse model. We confirm that zaprinast and
7ACC2 are direct and bona fide MPC inhibitors and demon-
strate that these compounds acutely lower plasma glucose and
insulin concentrations and improve glucose tolerance in DIO
mice. The metabolic improvements observed with acute MPC
inhibition are likely explained by the observed effects on
pyruvate-driven gluconeogenesis, which is known to be over-
active in diabetic liver, rather than an overt effect on insulin
sensitivity that has been observed in previous studies with a
TZD-based MPC inhibitor (7, 11). This could be due to the
acute duration of MPC inhibition in this study or due to other
effects of the TZD-based drugs. Our results demonstrate the
potential for therapeutics that interact with the MPC and
modulate its activity for treating a variety of obesity-related
metabolic diseases.

Metabolic improvements seen with MPC inhibitors are
potentially due to a variety of mechanisms that remain to be

Novel MPC inhibitors and glucose production
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Figure 4. 7ACC2 and zaprinast suppress hepatocyte glucose production. A, pyruvate-stimulated hepatocyte glucose production assay in hepatocytes
from littermate WT and LS-Mpc2−/− mice after treatment with vehicle, UK-5099, 7ACC2, or zaprinast. n = (3) per group. *p < 0.05 compared to pyruvate
plus vehicle. B, 13C- and 12C-pyruvate was administered to WT hepatocytes treated with vehicle, UK-5099, 7ACC2, or zaprinast. Created with BioRender.com.
C, total enrichment of 13C into the indicated metabolites measured by mass spectrometry after 3 h. Data presented as mean +standard error of the mean.
n = (3) per group of a representative experiment (of two). *p ≤ 0.05 versus vehicle-treated hepatocytes. D and E, C57BL6/J mice were administered a single
dose of vehicle, zaprinast, or 7ACC2, and a lactate/pyruvate tolerance test was conducted beginning 30 min later. Blood glucose (D) or lactate (E) con-
centrations are shown. *p < 0.05 compared to zaprinast and 7ACC2 concentrations at the same time point. MPC, mitochondrial pyruvate carrier.
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fully delineated. Studies conducted herein, and previous work
with liver MPC–null mice, suggest that attenuation of hepatic
glucose production contributes to the glucose-lowering effect
(16, 17). Pyruvate entry into the committed steps of the glu-
coneogenic and de novo lipogenic pathways requires mito-
chondrial metabolism of this substrate (Fig. 4B). Alternatively
or in addition, inhibition of pyruvate entry into mitochondria
may also enhance the use of other mitochondrial substrates.
Indeed, MPC-deficient hepatocytes exhibited enhanced reli-
ance on alanine and glutamine utilization for gluconeogenesis
and increased palmitate oxidation in vitro (16, 17). Herein, we
show that the acute effects of 7ACC2 on glucose tolerance
require intactMPC in hepatocytes because liverMPC2−/−mice
do not show further improvement in glucose tolerance after
7ACC2 treatment. Moreover, the metabolic improvements that

are shown do not correspond to a dramatic improvement in
insulin sensitivity in hyperinsulinemic clamp studies or reduced
expression of gluconeogenic enzymes (Fig. S2). Rather, it is
likely that much of the effect of acute MPC inhibition is driven
by metabolic suppression of hepatic glucose production.

Owing to the poor solubility and limited half-life of zaprinast
and 7ACC2, only acute studies were conducted to examine
metabolic effects. Possibly with longer term treatment, MPC
inhibition in tissues other than the liver could lead to insulin
sensitization and contribute to the beneficial effects. Although
somewhat counterintuitive, others have shown that MPC in-
hibition with TZDs or UK-5099 increased glucose uptake in
skeletal muscle myocytes in vitro, potentially via increased
AMP activated kinase phosphorylation in skeletal muscle (4).
MPC inhibition or knockout may also enhance brown

Figure 5. A high-throughput screen identifies novel modulators of the MPC. A, the experimental workflow of the high-throughput screen of the
Pharmakon 1600 library using the RESPYR system is shown. Created with BioRender.com. B, the first technical replicate is graphed on the y-axis, and the
second replicate is graphed on the x-axis. Average UK-5099 reads for the screen are indicated with the orange open circle. Positive hits are indicated with
blue dots. Compounds that altered the signal ratio in cells expressing only MPC2-RLuc8 in the absence of the acceptor, MPC1–Venus, are indicated in gray
and were excluded from further analysis. C and D, the chemical structures of known MPC inhibitors and compounds in the Pharmakon 1600 library with
similar chemical structures (C) or 7ACC1 (D) are shown. MPC, mitochondrial pyruvate carrier; RESPYR, reporter sensitive to pyruvate.
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adipocyte differentiation and beiging of white adipose tissue
depots (3, 20). However, inhibition of the MPC in pancreatic
beta cells may directly suppress glucose-stimulated insulin
secretion (14, 27, 28), which would potentially counteract
glucose-lowering effects on gluconeogenesis. Additionally,
cardiac-specific knockout of the MPC results in cardiomyop-
athy in mice (25, 29, 30), suggesting that strong inhibition in
the myocardium should be avoided. Further work is needed to
fully delineate the mechanistic aspects of the observed im-
provements with MPC inhibitor administration and define
whether liver-specific MPC inhibition might be preferable.

Both zaprinast and 7ACC2 have been associated with effects
on other transporters and metabolic enzymes. Zaprinast was
identified as an inhibitor of PDE enzymes many decades ago
(31). Previous work has demonstrated that it also acts as an
agonist for GPR35 (32) and as an inhibitor of glutaminase (33).
Zaprinast has several reactive groups andmay be promiscuously
interacting with a variety of proteins. There is evidence that PDE
inhibitionmay stimulate glucose uptake by skeletal muscle (26),
and our studies with the LS-Mpc2−/− mice indicate that zap-
rinast has effects on glucose tolerance that are independent of
liver MPC2 (Fig. 2A). In previous work, when zaprinast was
acutely administered to rats, muscle glucose uptake was
increased in clamp studies (26). But, the authors also observed a

significant rise in plasma lactate concentrations that likely came
from organs other than skeletal muscle, which is consistent with
the inhibitory effects of zaprinast on the MPC.

On the other hand, the effects of 7ACC2 on glucose toler-
ance seem to require MPC2 in liver (Fig. 2B). 7ACC2 was
originally described as an inhibitor of cellular lactate import,
but not efflux, believed to be mediated by inhibiting the plasma
membrane monocarboxylate transporter (34). However, recent
work suggested that this purported selective inhibition was
actually explained by accumulation of lactate secondary to
MPC inhibition (23). Herein, the use of the RESPYR assay
demonstrates that 7ACC2 directly interacts with the MPC and
seems as potent as the prototypical MPC inhibitor UK-5099.
The data showing that 7ACC2 improves glucose tolerance in
a manner that requires liver MPC2 are also indicative of this
selectivity. While zaprinast and 7ACC2 may be useful as tool
compounds, their potential for off-target effects (zaprinast),
poor solubility, and short half-life limited the duration of
studies presented herein and make them poor candidates to
advance in development as therapeutics.

The current screen providesmultiple hits that can be used as a
starting point toward discovering more potent and efficacious
MPC inhibitors. Although the newly identified drugs are weak
MPC inhibitors, they are amenable to chemical optimization to
improve their pharmacodynamics towardMPCandbenefit from
their good bioavailability, low toxicity, and favorable pharma-
cokinetics.Oneof theprimary targets of quinolones inbacteria is
the topoisomerase IV–DNA cleavage complex. The keto acid
group of quinolones facilitates binding to topoisomerase
through awater–Mg2+ ion bridge (35). Interestingly, quinolones
have been associated with hypoglycemia especially when used
with other antidiabetic agents (36, 37). Additionally, the phar-
macophore modeling also suggested that carsalam and 7ACC1
interact with the MPC by a similar mechanism, and inhibition
was validated experimentally. Chemical optimization of these
compounds canbeused to enhance thepotency and selectivity of
compounds toward MPC. Novel small-molecule inhibitors of
the MPC will be needed for potential utility in treating not only
diabetes but also other diseases including nonalcoholic steato-
hepatitis, cancer (23), neurological diseases (38), and even hair
loss (39). Identification of new MPC inhibitors could benefit
drug development programs for these diseases and other con-
ditions associated with altered metabolism.

In summary, our results demonstrated that chemically
diverse MPC inhibitors improve dysregulated metabolism in
DIO mice, likely by suppressing hepatic glucose production.
Furthermore, by using the results of a screen of a chemical
library, future chemical optimization of these drugs combined
with ligand-based design approaches will pave the way to
identification of novel MPC inhibitors with excellent phar-
macokinetics and potential for liver-specific effects.

Experimental procedures

High-throughput screen

A high-throughput screen of the Pharmakon 1600 library
was designed using a previously reported BRET-based MPC

Table 1
High-throughput screen hits

Drug name Brand name Known properties

Acrisorcin Akrinol Antifungal
Azilsartan kamedoxomil Edarbi Antihypertensive angiotensin II

antagonist
Benzbromarone Desuric Uricosuric
beta-Naphthol Microcidin Anthelmintic, antiseptic
Candesartan cilexetil Atacand Angiotensin 1 receptor antagonist
Carprofen Rimadyl Antiinflammatory, analgesic
Carsalam N/A Analgesic
Clinafloxacin
hydrochloride

N/A Antibacterial

Dantrolene sodium Dantrium Muscle relaxant
Diclazuril Clinacox Coccidiostat
Dicumerol Coumadin Anticoagulant
Diflunisal Dolobid Analgesic, antiinflammatory
Esomeprazole
potassium

Nexium Gastric acid secretion inhibitor

Flufenamic acid Arlef Antiinflammatory, analgesic
Flumequine Apurone Antibacterial
Idebenone N/A Cognition enhancer, nootropic
Lornoxicam Xefo Analgesic, antiinflammatory
Mexeneone Uvistat Sunscreen
Monobenzone Benoquin De-pigmentor
Moxifloxcian
hydrochloride

Avelox Antibacterial

Nadifloxacin Acuatim Antibacterial
Nalidixic acid Neggram Antibacterial
Nitrofurantoin Furadantin Antibacterial
Oxaprozin Daypro Antiinflammatory
Pefloxacin mesylate N/A Antibacterial, antiproliferative
Phenyl aminosalicylate Phenypastebamin Antibacterial (tuberculostatic)
Pioglitazone
hydrochloride

Actos Antidiabetic

Pregnenolone succinate formula 405 Glucocorticoid, antiinflammatory
Racecadotril Tiorfan Antidiarrheal
Rosiglitazone maleate Avandia Antidiabetic
Sarafloxacin
hydrochloride

Saraflox Antibacterial

Sulfadimethoxine Madribon Antibacterial
Telmisartan Micardis Antihypertensive, angiotensin II

blocker
Torsemide Demadex Diuretic, inhibits Na/K/2Cl carrier

system
Zaprinast N/A cGMP phosphodiesterase inhibitor
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activity assay (RESPYR) (Fig. 1A) (24). HEK-293 cells consti-
tutively expressing MPC1–Venus and MPC2-RLuc8 fusion
proteins, or the MPC2-RLuc8 construct only as a negative
control, were plated 24 h prior to assays in clear-bottom, white
96-well plates and maintained at 37 �C, 5% CO2 (Fig. 1A).
Liquid media were aspirated using an ELx405 Plate Washer. A
white sticker was placed on the bottom of each plate imme-
diately prior to each assay. Using a BiomekFX liquid handler,
BRET substrate (coelenterazine h) was added at 2× concen-
tration (5 μM final concentration) in PBS supplemented with
CaCl and MgCl2 to the cells, 5 min after which each well
received one of the Pharmakon 1600 library compounds
(MicroSource Discovery Systems; provided by the Washington
University High-Throughput Screening Center) at 2× con-
centration in PBS supplemented with CaCl and MgCl2 (10 μM
final concentration). Cells were then incubated for 9 min.
Following a 1-min dark adaptation, bioluminescence mea-
surements were taken using 485 nm (Donor; Rluc8) and

535 nm (Acceptor; Venus) filters with a PerkinElmer Envision
plate reader. Positive (UK-5099) and negative (0.5% dimethyl
sulfoxide [DMSO]) controls were included on each plate. Data
were normalized to vehicle (DMSO) controls on a per plate
basis and expressed as a percent of controls.

Two technical replicates were performed for each com-
pound. In addition, all compounds were also tested on a
single control plate with cells expressing only the BRET
donor construct, hMPC2-RLuc8, in the absence of the BRET
acceptor, hMPC1–Venus, to detect nonspecific changes in
donor signal upon compound addition. Compounds were
called as positives if both replicates showed a greater than 5%
increase in BRET signal. Compounds that altered the
hMPC2-RLuc8 signal in the absence of the hMPC1–Venus
acceptor are labeled in gray (Fig. 1B) and were considered
negative. Postscreen verification of positive hits was carried
out using kinetic RESPYR assays with dose–response curves,
as described (9).

Figure 6. The novel MPC inhibitors nalidixic acid, 7ACC1, and carsalam inhibit pyruvate-stimulated mitochondrial respiration, attenuate hepa-
tocyte glucose production, and improve glucose tolerance in DIO mice. A, pyruvate-stimulated mitochondrial respiration with 10 μM of the indicated
compounds are shown. Respiration values were normalized to vehicle control treatment. B, mitochondrial respiration dose–response curves of 7ACC2,
7ACC1, nalidixic acid, and carsalam. C, the effects of 7ACC2, 7ACC1, nalidixic acid, and carsalam on pyruvate-stimulated hepatocyte glucose production are
shown. D, C57BL/6J mice were fed a high-fat diet for 14 weeks and then administered a daily dose of nalidixic acid or vehicle control for 3 days prior to
glucose tolerance testing. Area under the curve was calculated and is displayed inset in the bar graph. *p < 0.05 compared to vehicle. DIO, diet-induced
obese; OCR, oxygen consumption rate.
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MPC inhibitors

Zaprinast, UK-5099, moxifloxacin, and nalidixic acid
(sodium salt) were obtained from Millipore Sigma. 7ACC2 was
obtained from Cayman Chemical. 7ACC1, nalidixic acid,
nadifloxacin, sarafloxacin, and carsalam were obtained from
MedChem Express. Pefloxacin was purchased from CP Lab
Safety.

Gal4-PPARγ luciferase reporter assays

The luciferase cotransfection assays were performed in a
4-day format. HEK293T cells (ATCC; CRL-1573) were seeded
in Corning 3598 96-well plates at a density of 20,000 cells per
well in 50 μl of Dulbecco’s modified Eagle’s medium (DMEM)
(Gibco) supplemented with 5 mM L-glutamine (Corning) and
10% fetal bovine serum (FBS) (Gemini Bio) and allowed to
settle overnight in a 5% CO2 incubator at 37 �C. On day 2,
transfection of the cells was performed by incubating Opti-
MEM (Gibco), lipofectamine2000 (ThermoFisher Scientific),
100 ng/μl pG-luc (Promega; E2440), and 50 ng/μl chimeric
Gal4-DBD fused to nuclear receptor–LBD in pBIND[Zeo] for
30 min. Twenty-five microliters of the transfection mixture
was then added to the corresponding well, and the cells were
gently centrifuged and placed back in the incubator overnight.
The following day, cells were treated with compound or
DMSO control by adding 4× treatment in DMEM media with
0.4% DMSO in a volume of 25 μl so that the final volume in
each well was 100 μl. Cells were briefly centrifuged and
incubated overnight. On the final day, 75 μl of OneGlo
Luciferase Reagent (Promega) was added to each well and
pipetted vigorously to lyse the cells. One-hundred microliters
of each sample was then transferred to a Corning 3912 opaque
white 96-well plate, and luminescence was read on a Biotek
Neo Alpha Instrument. Data were analyzed using GraphPad
Prism. Luminescence values were normalized to DMSO (ratio
relative luciferase units drug:DMSO), and then compound
concentrations were log-transformed and curves were fitted by
nonlinear regression (agonist mode). Data are represented by
mean (n = 4–8) ± SEM.

Animals

All experiments performed in mice were approved by the
Institutional Animal Care and Use Committee at the Wash-
ington University School of Medicine. Liver-specific Mpc2
knockout (LS-Mpc2−/−) or cardiac-specific Mpc2 knockout
(CS-Mpc2−/−) mice were generated as described using LoxP
technology with Cre expression driven by the albumin gene
promoter (16) or myosin light chain 2v promoter (25),
respectively. Control mice were littermates not expressing Cre
recombinase (fl/fl).

For HF diet studies, LS-Mpc2−/− and littermate control
mice were switched from standard chow to a 60% HF diet
(Research Diets Inc, #D12492) at 7 to 8 weeks old, and ex-
periments were performed after 12 weeks on diet. For studies
not in the Mpc2 null background, C57BL/6J DIO mice were
purchased from Jackson Laboratory (cat #380050) after
9 weeks of feeding a 60% fat diet (Research Diets Inc,

#D12492) and were maintained on the same diet for the
indicated times. When included in the experimental design,
low-fat (LF) diet C57BL/6J control mice were also purchased
from Jackson Laboratory (cat #380056) and fed 10% LF control
diet (Research Diets Inc, #D12450B). LF diet controls were
matched in age to DIO comparators.

Drug treatments

Zaprinast or 7ACC2 was solubilized in 25% DMSO/75%
saline and injected i.p. at a dose of 30 mg/kg or 10 mg/kg,
respectively, 18 h prior to GTT and �22 h prior to sacrifice.
Nalidixic acid (sodium salt) was dissolved in 0.9% saline and
injected i.p. at a dose of 30 mg/kg once daily for 3 days and
then again 4 h prior to the GTT. Control mice received a
similar volume of vehicle solution i.p.

Glucose, insulin, and lactate/pyruvate tolerance tests

Mice were fasted for 4 h, and glucose, insulin, or lactate/
pyruvate tolerance tests were performed as described (16).
Briefly, mice were injected i.p. with 1 g/kg glucose (GTT), 0.75
U/kg humulin (ITT), or lactate (900 mg/kg) and pyruvate
(100 mg/kg) (lactate/pyruvate tolerance test) in saline. Blood
glucose levels were measured from a drop of tail blood using a
OneTouch glucometer at 0, 15, 30, 60, 90, and 120 min.

Hyperinsulinemic–euglycemic clamp studies

Hyperinsulinemia clamp studies were performed by the
Vanderbilt Mouse Metabolic Phenotyping Center. Male
C57BL/6J DIO mice were purchased from Jackson Laboratory
(cat #380050) after 9 weeks of feeding a 60% HF diet (Research
Diets Inc, #D12492) and were maintained on this diet for the
duration of the study. After 11 weeks on the diet, the right
jugular vein and left carotid artery were surgically catheterized,
and mice recovered for 1 week. Mice were randomized by
weight to vehicle (25% DMSO in saline; n = 7) or drug
(7ACC2, 5 mg/kg i.p.; n = 7) and were treated for three
consecutive days (day 0, day 1, and day 2). On day 2, a
hyperinsulinemic–euglycemic clamp was performed on 5-h
fasted conscious mice using the protocol established at the
Vanderbilt Mouse Metabolic Phenotyping Center (40, 41). A
continuous infusion of 2.5 mU/min/kg body weight insulin
was carried out, and this dose was chosen to probe a predicted
improvement in liver insulin action. At t = −90 min, a primed-
continuous infusion of HPLC-purified 3-[3H]-glucose
(PerkinElmer) was begun and maintained throughout the
experiment. Euglycemia (�9 mmol/l) was maintained by
measuring blood glucose every 10 min starting at t = 0 min and
infusing 50% dextrose as necessary. Additional blood was
taken at t = 80, 90, 100, 110, and 120 min and processed to
determine plasma 3-[3H]-glucose. A 12-μCi bolus of 2-[14C]-
deoxyglucose (2-[14C]DG) was given at t = 120 min. Blood
samples were obtained at t = 122, 135, 145, and 155 min and
processed to determine plasma 2-[14C]DG. Mice received
saline-washed erythrocytes from donors beginning at t = 0 min
and continuously throughout the clamp to prevent a fall of
>5% hematocrit. Rates of glucose infusion, hepatic glucose
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output, and tissue 2-DG uptake were calculated. At 155 min,
pentobarbital anesthesia was administered to anesthetize the
mice, and tissue was collected and flash frozen.

Hepatocyte studies

Primary hepatocytes were isolated from fl/fl (WT) or
LS-Mpc2−/− mice by cannulation of the portal vein, and
collagenase digestion was performed as described (16). Cells
were then counted and plated on collagen-coated 12-well
plates in DMEM medium containing 10% FBS, 1× Pen–
Strep, and 1× amphotericin B.

Hepatocyte glucose production assays were performed as
described (16). The morning after isolation, cells were washed
2× with PBS and starved for 2 h in Hank’s Buffered Saline
Solution (HBSS) (containing 127 mM NaCl, 3.5 mM KCl,
0.44 mM KH2PO4, 4.2 mM NaHCO3, 0.33 mM Na2HPO4,
1 mM CaCl2, and 20 mM Hepes, pH 7.4). HBSS was removed,
and cells were washed in fresh HBSS and then treated for 3 h
in HBSS containing glucagon (100 ng/ml) alone or with 5 mM
sodium pyruvate in the absence or presence of either 2.5 μM
UK-5099 or 10 μM zaprinast, 7ACC2, or other candidate in-
hibitors. After the 3-h incubation, media were collected, and
glucose concentrations were measured using a glucose
oxidase–based glucose assay kit (Sigma Aldrich). Glucose
concentrations were normalized to cell protein amount, which
was measured by Micro BCA kit (ThermoFisher Scientific).

For studies using 13C-labeled pyruvate, the morning after
isolation, cells were rinsed with PBS twice. Cells were starved
for 2 h in HBSS (containing 127 mM NaCl, 3.5 mM KCl,
0.44 mM KH2PO4, 4.2 mM NaHCO3, 0.33 mM Na2HPO4,
1 mM CaCl2, and 20 mM Hepes, pH 7.4). HBSS was removed,
and cells were washed with fresh HBSS and then treated for
3 h in HBSS containing glucagon (100 ng/ml) and 5 mM py-
ruvate (unlabeled) or mixed 2.5 mM pyruvate with 2.5 mM
13C-labeled pyruvate and in the absence or presence of either
2.5 μM UK-5099 or 10 μM zaprinast or 10 μM 7ACC2. In
parallel, a separate group of cells were treated with 10% FBS-
DMEM solution containing glucagon (100 ng/ml) alone (for
background assessment) or 5 mM 13C-labeled pyruvate in
600 μl per well and allowed to incubate for 3 h. Studies were
conducted in triplicate in a 6-well plate. Media (100 μl) were
collected before harvesting cells. Samples were centrifuged at
14,000g and 4 �C for 10 min, and the supernatant was stored
at −80 �C until metabolite analysis. For cell harvest and
extraction, cells were washed twice with PBS and twice with
HPLC-grade water. Cold HPLC-grade methanol was used for
quenching, and cells were scraped and the lysates transferred
to sterile Eppendorf tubes. Samples were dried in a SpeedVac
for 2 to 6 h. The dried samples were reconstituted in 1 ml of
cold methanol:acetonitrile:water at a 2:2:1 ratio and subjected
to three cycles of vortexing, freezing in liquid nitrogen, and
10 min of sonication at 25 �C. Samples were then stored
at −20 �C for 1 h. After this, samples were centrifuged at
14,000g and 4 �C. The protein content of pellets was measured
by Micro BCA kit (ThermoFisher Scientific). Supernatants

were transferred to new tubes and dried by SpeedVac for 2 to
5 h. After drying, we added 1 μl of water:acetonitrile (at a ratio
of 1:2) per 2.5 μg of cell protein in pellets obtained after
extraction. Samples were subjected to two cycles of vortexing
and 10 min of sonication at 25 �C. Next, we centrifuged at
14,000g and 4 �C for 10 min, transferred supernatant to LC
vials, and stored at −80 �C until MS analysis.

Metabolite analysis by LC/MS

Ultrahigh-performance LC/MS was performed with a
Thermo Scientific VanquishHorizonUHPLC system interfaced
with a Thermo Scientific Orbitrap ID-X Tribrid Mass Spec-
trometer. Hydrophilic interaction liquid chromatography sep-
aration was accomplished by using a HILICON iHILIC-(P)
Classic column (HILICON AB) with the following specifica-
tions: 100 mm × 2.1 mm, 5 μm. Mobile-phase solvents were
composed of A = 20 mM ammonium bicarbonate, 0.1%
ammoniumhydroxide (adjusted to pH9.2), and 2.5Mmedronic
acid in water:acetonitrile (95:5) and B = 2.5 Mmedronic acid in
95:5 acetonitrile:water. The column compartment was main-
tained at 45 �C for all experiments. The following linear gradient
was applied at a flow rate of 250 l min−1: 0 to 1 min: 90% B, 1 to
12min: 90 to 35%B, 12 to 12.5min: 35 to 25%B, 12.5 to 14.5min:
25%B. The columnwas re-equilibratedwith 20 column volumes
of 90% B. The injection volume was 2 l for all experiments.

Data were collected with the following settings: spray
voltage, −3.5 kV; sheath gas, 35; auxiliary gas, 10; sweep gas, 1;
ion transfer tube temperature, 275 �C; vaporizer temperature,
300 �C; mass range, 67 to 1500 Da, resolution, 120,000 (MS1),
30,000 (MS/MS); maximum injection time, 100 ms; isolation
window, 1.6 Da. LC/MS data were processed and analyzed
with the open-source Skyline software (42). Natural abundance
correction of 13C for tracer experiments was performed with
AccuCor (43).

Mitochondrial respiration

Hearts were removed fromWT mice after CO2 asphyxiation
and homogenized in buffer containing 250 mM sucrose,
10 mM Tris base, and 1 mM EDTA (pH = 7.4) by 8 to 10
passes of a glass-on-glass Dounce homogenizer on ice. Ho-
mogenates were centrifuged at 1000g for 5 min at 4 �C to pellet
nuclei and undisrupted cells. The supernatants were then
centrifuged at 10,000g for 10 min at 4 �C to enrich for mito-
chondria, and this mitochondrial pellet was washed and
repelleted twice in fresh sucrose/Tris buffer. The mitochon-
drial pellet was then solubilized in �150 l of Mir05 respiration
buffer (0.5 mM EGTA, 3 mM MgCl, 60 mM lactobionic acid,
20 mM taurine, 10 mM KH2PO4, 20 mM Hepes, 110 mM
sucrose and 1 g/l of fatty acid free bovine serum albumin
[BSA]; pH 7.1). Mitochondrial protein content was then
measured by BCA, and 50 μg of mitochondrial protein was
added to an Oxygraph O2K chamber (Oroboros Instruments),
with a total volume of 2 ml Mir05 buffer. Respiration was
stimulated with 5 mM pyruvate/2 mM malate and 2 mM ADP.
After obtaining steady-state respiration measurements,
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compounds were added to the chamber at the indicated con-
centrations. Succinate (5 mM) was then added to determine
inhibitor specificity toward pyruvate-stimulated respiration.
Steady-state rates of oxygen consumption were assessed for 1
to 2 min before addition of subsequent substrate or inhibitor.
Oxygen consumption rates were calculated from the change in
oxygen concentration over time and normalized to 50 μg of
mitochondria within the chamber. For the experiments shown,
respiratory control ratios were between 7 and 10, indicating
high-quality mitochondrial preparations.

Western blotting for insulin signaling

Mice were injected i.p. with 0.9% NaCl or 5 mU/g insulin in
0.9% NaCl and sacrificed 10 min after injection. Tissues were
harvested and snap frozen in liquid nitrogen and stored at −80
�Cuntil analyzed. Liver tissue�50mgwas homogenized using a
bead homogenizer lysis buffer consisting of 15 mM NaCl,
25 mM Tris base, 1 mM EDTA, 0.2% NP-40, and 10% glycerol
supplemented with 1× complete protease inhibitor cocktail and
phosphatase inhibitors (1 mM Na3VO4, 1 mM NaF, and 1 mM
PMSF). Protein concentrations were measured by BCA assay,
and 50 g of protein was electrophoresed on 4% to 15% poly-
acrylamide gels and transferred onto 0.45 m poly(vinylidene
fluoride)membranes.Membranes were then blocked in 5% BSA
in Tris-buffered saline with Tween-20 (TBST) for 1 h. Primary
antibodies were then used at 1:1000 in 5% BSA-TBST overnight
while rocking at 4 �C. Antibodies for phosphorylated AKT S473
and total AKT were from Cell Signaling (4060 and 4691,
respectively), while the antibody for -Tubulin was from Sigma
(T5168). Primary antibodies were incubated overnight at 4 �C.
After primary antibody incubation, membranes were washed
with TBST and probed with near-IRDye secondary antibodies
(926-32213 and 926-68072) in 5% BSA-TBST for 1 h, washed,
and then developed on a LiCor Odyssey imager. AKT activation
by insulin was quantified by measuring the densitometry of
pAKT-S473 and total AKT using LiCor ImageStudio Lite
software.

Liver RNA expression

Liver tissue was collected at sacrifice and snap frozen in
liquid nitrogen. Total RNA from livers or hepatocytes was
isolated using RNA-Bee (Tel-Test). Complementary DNA was
synthesized by using a reverse transcription kit (Invitrogen),
and real-time PCR was performed using an ABI PRISM 7500
sequence detection system (Applied Biosystems) and a SYBR
green master mix. Arbitrary units of target mRNA were
normalized by the comparative Ct method to levels of 36B4
mRNA.

Statistical analyses

All data are presented as mean ± standard error of the mean,
with statistical significance defined as p < 0.05. RESPYR data
were analyzed by repeated measures ANOVA in GraphPad
Prism. Other data were analyzed by one-way or two-way
ANOVA as appropriate. Post hoc analysis was performed us-
ing Tukey’s multiple comparison tests.

Data availability

All data generated during these studies are included in the
text, figures, and tables of this article and electronic supple-
mentary material. Source data or materials will be supplied by
the corresponding author with reasonable request.
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