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Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder and

characterized by early childhood-onset impairments in social interaction and

communication, restricted and repetitive patterns of behavior or interests. So far there is

no effective treatment for ASD, and the pathogenesis of ASD remains unclear. Genetic

and epigenetic factors have been considered to be the main cause of ASD. It is known

that endocannabinoid and its receptors are widely distributed in the central nervous

system, and provide a positive and irreversible change toward a more physiological

neurodevelopment. Recently, the endocannabinoid system (ECS) has been found to

participate in the regulation of social reward behavior, which has attracted considerable

attention from neuroscientists and neurologists. Both animal models and clinical studies

have shown that the ECS is a potential target for the treatment of autism, but the

mechanism is still unknown. In the brain, microglia express a complete ECS signaling

system. Studies also have shown that modulating ECS signaling can regulate the

functions of microglia. By comprehensively reviewing previous studies and combining

with our recent work, this review addresses the effects of targeting ECS on microglia,

and how this can contribute to maintain the positivity of the central nervous system,

and thus improve the symptoms of autism. This will provide insights for revealing the

mechanism and developing new treatment strategies for autism.

Keywords: endocannabinoid system, microglia, autism spectrum disorder, immune, neurodevelopmental

disorders

INTRODUCTION

Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental disorders
characterized by language and social dysfunctions and repetitive stereotyped behavior. In addition
to the core diagnostic features, ASD also has a variety of comorbid symptoms, including
aggression, hyperactivity, epilepsy, anxiety, sleep disorders, gastrointestinal disorders and immune
dysfunction. The global incidence rate is about 1% and a male to female ratio of about 3 to 4:1 (1).
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Currently, there is no pharmaceutical compound available
to alleviate the core symptoms of ASD. Risperidone and
aripiprazole have been approved by the US Food and Drug
Administration (FDA) to treat irritability and behavioral
disorders in patients with ASD. Long-term use of these drugs
may cause some side effects, including sedation and weight
gain (2). At present, the most widely used treatment of ASD
is behavior intervention, but it is usually time-consuming and
unaffordable. In recent years, oxytocin (OT) has attracted wide
attention because it plays an important role in regulating the
function of social communication in the central nervous system
(CNS), and has gradually become a potential treatment for
autism. For example, recent evidence supports entry of intranasal
oxytocin into the brain through the olfactory and trigeminal
neural pathways (3), as well as the nasal blood stream (4).
Intranasal administration of the OT can enter the CNS through
the blood-brain barrier, but the OT molecule is very likely to
enter the vein, that is, the peripheral nervous system, which
can cause uterine contraction in women. Therefore, almost all
nasal spray OT experimental studies on the treatment of ASD
were conducted on males (5). There may be gender differences
in the effect of OT on ASD, so it is questionable to extend
the results to all ASD patients. The Endocannabinoid system
(ECS) plays a putative role in the control of neural processes of
controlling social anxiety and social reward, and has become a
new target for autism intervention in the last decade (6). The
ECS includes the two most widely studied endogenous lipid
mediators [N-arachidonoylethanolamide (anandamide; AEA),
and 2-arachidonoylglycerol (2-AG)], cannabinoid type 1 and
type 2 receptors (CB1 and CB2), and endogenous lipid mediator
synthesis and catabolism enzymes (Figure 1). AEA and 2-AG
were identified in 1992 and 1995, respectively. CB1 and CB2
were cloned in 1990 and 1993, respectively. The amino acid
sequence homology of CB1 across species is 97–99%, which is
mainly found in the brain, especially in neuronal cells, while
CB2 are mainly found in immune cells. The two receptors have
44% homology (7). Lines of evidence demonstrated that targeting
different components of ECS may provide therapeutic strategies
for the treatment of ASD (8), but the mechanism is unclear.

It is reported that dysregulation of the immune system
is a possible mechanism related to ASD pathogenesis and
severity (9). Furthermore, microglia are the main producers
of endocannabinoids under neuroinflammatory conditions (10).
Here, we will review studies concerning the involvement of the
ECS in the immuno-pathological mechanism and therapeutic
strategies of ASD by summarizing preclinical and clinical studies
to shed light on ECS and microglia as a potential target for the
treatment of autism.

MATERIALS AND METHODS

A Medline (PUBMED) search using the terms “microglia
AND autism,” or “microglia AND autism spectrum disorder,”
or “microglia, endocannabinoid AND autism,” or “microglia,
cannabidiol AND autism,” or “microglia, endocannabinoid AND
autism spectrum disorder,” or “microglia, cannabidiol AND

FIGURE 1 | A simplified illustration of endocannabinoid synthesis and

degradation pathway. The diacylglycerol lipases (DAGLα and DAGLβ)

hydrolyze DAG to generate 2-AG. DAGL-α is expressed on postsynaptic

neurons within various brain regions. In contrast, DAGL-β is most highly

expressed on microglia. 2-AG is preferentially degraded by monoglyceride

lipase (MAGL). The main synthetase of AEA is

N-acyl-phosphatidylethanolamine-phospholipase D (NAPE-PLD). The

degradation enzyme of AEA is fatty amide hydrolase (FAAH). AEA,

anandamide; 2-AG, 2-arachidonoyl-glycerol; CB1, cannabinoid receptor 1;

CB2, cannabinoid receptor 2; TRPV1, transient receptor potential cation

channel subfamily V member 1; GPRs, orphan G-protein-coupled receptors;

AA, arachidonic acid; EtNH2, ethanolamine; EMT, extraneuronal monoamine

transporter.

autism spectrum disorder” was performed. A total of 339 articles
with a publication date up to April 1st, 2021 were included.
Articles related to clinical trials, preclinical studies, and animal
studies were selected for this review.

THE ENDOCANNABINOID SYSTEM: A
POTENTIAL TARGET FOR THE
TREATMENT OF AUTISM

2-AG
2-AG is the most abundant endogenous cannabinoid in the
brain and its concentration is about 200 times that of AEA
(11). The diacylglycerol lipases (DAGLα and DAGLβ) hydrolyze
DAG to generate 2-AG. DAGL-α is expressed on postsynaptic
neurons within various brain regions (12). In contrast, DAGL-β
is most highly expressed on microglia (13). 2-AG is preferentially
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degraded by monoglyceride lipase (MAGL). Fragile X mental
retardation 1 (FMR1) gene is one of the most common single-
gene mutations associated with autism. It was reported that 2-
AG-mediated decreased long term depression (LTD) in nucleus
accumbens (NAc) and medial prefrontal cortex (mPFC) in FMR1
knockout mice. Administration of JZL184, a pharmacological
inhibitor of MAGL, enhanced 2-AG signaling, corrected 2-
AG-mediated LTD, and improved hyperactivity and anxiety-
like responses in FMR1 knockout mice (14). In addition, a
single mutation of Shank3 is sufficient to induce the typical
autism syndrome (15). In terms of the neural circuits in the
treatment of ASD, studies have shown photogenetic activation
of the glutamatergic circuit in basolateral amygdala-nucleus
accumbens (BLA-NAc) reduced social activity and increased
social avoidance in Shank3B−/− mice. Systemic or local injection
of 2-AG hydrolase inhibitor JZL184 into the brain area of NAc
restored the social deficit of Shank3B−/− mice. At the same
time, electrophysiological recordings in mouse brain slices in
vitro showed that JZL184 corrected the abnormal excitatory and
inhibitory neural transmission of NAc in Shank3B−/− mice, and
reduced the feedforward inhibition of BLA on NAc neurons (16).

AEA
Compared with 2-AG, studies have shown that AEA is more
specific in mediating social reward response (17). The main
synthetase of AEA is the N-acyl-phosphatidylethanolamine-
phospholipase D (NAPE-PLD), and the degradation enzyme
of AEA is the fatty amide hydrolase (FAAH). Pharmacological
inhibition of FAAH enhances AEA levels and reverses the
behavioral deficits among different autistic animal models. FMR1
knockout mice displayed increased anxiety-related behaviors
during social interaction. It was reported that modulation of
AEA signaling can ameliorate some aspects of the behavioral
phenotype in FMR1 knockout mice. Qin et al. used acute
injection of FAAH inhibitor URB597 to improve aversion
memory and relieve anxiety behavior in FMR1 knockout mice,
but it did not affect social behavior (18). However, Wei
et al. showed that blocking FAAH by acute administration of
URB597 completely reversed the social impairment in FMR1
knockout mice (19), suggesting that increased AEA may play
a prosocial role in ASD animal models. The different time
points of pre-administration of URB597 [30min (18) and 3 h
(19), respectively] or the different mouse line [C57Bl/6J (18)
and FVB/NJ (19), respectively] may give an explanation for the
discrepancy reported in the two studies.

Both of the two FAAH inhibitors, PF3845 and URB597, can
reverse the abnormal behaviors of male offspring of the valproic
acid (VPA) model in SD rats (20, 21). It is noteworthy that
prenatal exposure to VPA produced gender-specific differences
in the rat model: the behavioral impairment of male rats exposed
to VPAwasmore serious than that of female rats. Increasing AEA
signaling by inhibiting AEA-degrading enzyme FAAH improved
the behavioral impairment of both male and female offspring
of the ASD model. Compared with male offspring VPA rats,
female offspring were less vulnerable in social communication,
emotional response and cognitive performance, while selective
deficiencies in social games and stereotyped behavior were

observed (22). This gender dichotomy is similar to the clinical
phenotype of ASD in humans. The phenotypic differences
of ASD between males and females may be partly related
to abnormally activated microglia during early development,
which leads to impaired microglia-mediated synaptic pruning,
especially in males (23). A recent study found that URB597 could
restore ECS-related synaptic plasticity by enhancing the AMPA
receptors transportation in mPFC of the offspring of the VPA
model, thus alleviating ASD-related behavioral symptoms (24).

In addition, autism has been associated with atypical sleep
patterns and circadian rhythms (25). Polymorphisms in ASMT
(involved in melatonin synthesis), paralleled by reduced levels
of circulating melatonin, have been reported in autism (26).
Interestingly, the EC system also plays a role in regulating
circadian rhythms (27), thus making it a putative target to
examine using animal models of autism-related phenotypes.

Cannabinoid Receptors
CB1 is widely distributed both in the central nervous
system (CNS) and peripheral nervous system, participates
in synaptogenesis, learning and memory, and regulates a
variety of physiological activities by regulating neurohormone
levels and signaling transduction. CB2 is mainly expressed in
the immune system, such as the spleen margin and thymus
of the peripheral immune organs. During inflammation or
other pathological injuries, the expression of CB2 in the CNS,
especially in glial cells, is significantly up-regulated (10). CB1
antagonist rimonabant can alleviate cognitive impairment,
epileptic sensitivity, and hyperalgesia in FMR1 knockout mice.
At the biochemical level, CB1 blockade corrected the excessive
activation of mTOR signaling and restored the morphology
of dendritic spines in the hippocampus of FMR1 knockout
mice. It is worth noting that the treatment with CB2 antagonist
AM630 can also reduce the sensitivity of anxiety-like behavior
and audiogenic epilepsy, indicating that both CB1 and CB2
are involved in the behavior of Fragile X syndrome (FXS) (28).
Another study also found that low doses of rimonabant and CB1
neutral antagonist NESS0327 prevented cognitive impairment
in FMR1 knockout mice. The therapeutic effect of rimonabant
on cognitive impairment is related to the functional recovery
of LTD induced by metabotropic glutamate (mGlu) in the
hippocampus of FMR1 knockout mice (29). In addition, the
behavioral phenotype of inbred BTBR mice is consistent with the
core symptoms of ASD. Multiple changes of neuroanatomy and
histology of BTBR mice are similar to those of ASD, which make
BTBR mice widely used in ASD study. Wei et al. reversed social
impairment in BTBR mice by using FAAH inhibitor URB597
to increase AEA levels, which was not attributed to reduced
anxiety. The reason is that FAAH inhibition did not change the
performance of BTBR mice in elevated mazes. In addition, the
effect of inhibition of FAAH on the social pathway in BTBR mice
strictly depends on the enhancement of AEA in CB1 signaling
pathway, since the CB1 antagonist AM251 can prevent the
recovery of social ability mediated by URB597, which is not
related to the alteration of 2-AG content (19).

Recently, imbalances in dopamine levels have been implicated
in behavioral disorders such as schizophrenia, autism and
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depression. Neurochemical evidence shows that activation of
CB1R expressed on Ventral tegmental area (VTA) GABA
neurons inhibits GABAergic transmission and in turn stimulates
dopaminergic neurotransmission in the NAc (30). Since the
dopamine signaling abnormalities have been reported in both
autistic patients (31) and ASD animal models (32), elucidating
the relationship between ECS and DA in ASDwill help to provide
a better understanding of the etiopathogenesis of ASD along with
new therapeutic strategies (33).

Clinical Case Studies
The changes of ECS in peripheral blood can be used as a new
non-invasive diagnostic index for several neuroinflammatory
diseases (34). Compared with healthy children, the expression
of AEA synthase NAPE-PLD mRNA in peripheral monocytes
of children with ASD was downregulated (35). Using improved
liquid chromatography-tandem mass spectrometry, it was found
that the AEA concentration in peripheral blood of children with
ASD was lower than that of healthy children (36). The levels
of endogenous cannabinoids AEA, OEA, and PEA in serum
samples were lower than those in age-and sex-matched normal
control groups, but there was no significant difference in 2-
AG between the two groups (37). Cannabidiol (CBD) is a non-
psychoactive component in the cannabis plant, which inhibits
FAAH by activating peroxisome proliferator-activated receptor
(PPAR) and transient receptor potential channels of vanilloid
type-1 (TPRV1), and finally compensates for the decrease of
AEA, OEA, and PEA levels in children with ASD. The Clinical
Trials (Registration number: NCT02956226) conducted by an
Israeli research team in 2017 for the first time investigated the
effectiveness of cannabis drugs against behavioral problems in
children with ASD. Nighty-three children with ASD and severe
behavioral problems (age: 11.8 ± 3.5 years, 83% were boys)
tolerated the use of drugs rich in CBD (the ratio of CBD to
THC was 20:1). Sixty-three percentage of the children reported
considerable amelioration in behavior problems associated
with ASD. Improvement was also found in anxiety and
communication problems in 39 and 47% of the children,
respectively (38). Another clinical study reported that CBD
treatment reduced comorbidities in multiple domains, including
self-harm behavior, anger attacks, hyperactivity symptoms, sleep
problems, and anxiety states (39). The average duration of CBD
treatment for ASD children in the study was 66 days, with mild
side effects, including mild drowsiness and appetite changes.

MICROGLIA AND AUTISM

Genetics and early environmental factors play a key role
in the etiology of ASD. Although disruptions of immune
system, abnormal neurotransmission, mitochondrial deficiency,
oxidative stress, aberrations of cell signaling transduction, and
epigenetic alterations have been proven to be associated with
ASD, the pathophysiological mechanisms of ASD remain poorly
understood, and no single etiology is identified. Microglia have
detrimental impacts on several key etiological factors of autism,
such as the synaptic plasticity, neural circuitry, brain immune
system, stem cell development, and the crosstalk between genetic

and environmental factors. Postmortem studies found immune-
related genes were upregulated, while the synaptic function-
related genes in the brain of ASD patients were downregulated
compared with the control group (40). Both genetic and
environmental factors could contribute to abnormal synaptic
pruning and immune responses mediated by microglia either in
utero or during the early postnatal period, which may underlie
the pathogenesis of ASD. An association between maternal
immune activation (MIA) and ASD in offspring was reported in
human epidemiological studies (41) and in rodent MIA models
(42). Disruptions in the composition of the gutmicrobiota during
early developmental stages due to perinatal events increase an
individual’s predisposition to autistic behavioral patterns (43).

Microglia and Neuroinflammation in Autism
A large number of studies have shown that immune abnormality
is one of the most important factors in the occurrence of
ASD (44). Microglia have long been thought to originate from
peripheral macrophages that enter the brain after birth. However,
it is now known that microglia develop from red marrow
progenitor cells in the yolk sac of early embryos and migrate
into the brain (45). Microglia are the innate immune effector
cells in the CNS and are the first line of defense against CNS
infection and injury. Microglia can be activated by any type of
pathological events or changes in brain homeostasis and release
cytokines, chemokines and growth factors to maintain normal
brain function. Abnormal immune signaling and microglial
function is consistently demonstrated in postmortem brain
tissues from autistic individuals as well as in autism mouse
models. Transcriptomic analyses of postmortem cortex tissue
of ASD patients revealed that genes associated with activated
microglia were upregulated with exhibited exaggerated M2
activation states (46). Early lipopolysaccharide (LPS) exposure
rats showed impairment in communication and cognition, which
is associated with M2-like microglia activation and enhanced
neurogenesis in both the subgranular zone (SGZ) and the
subventricular zone (SVZ) (47). Of note, a recent systematic
review comprising 1,007 autism patients from 14 genetic or
neuroimaging studies using PET/MRI collectively indicates that
microglia mediated neuroinflammation plays a causative role in
the pathogenesis of ASD. Those prominent manifestations of
microglia in autistic patients include increased cell number or cell
density, morphological alterations, and phenotypic shifts (48).
Despite this, microglial activation may have diverse meanings in
different patients, playing pathogenic roles among “dysimmune”
patients (49) and leading downstream consequence in “neural
disconnection” ASD patients (50).

Microglia and Synaptic Pruning in Autism
Microglia play an important role in maintaining a healthy brain
by engulfing improper and less active synapses. Thus, microglial
dysfunction is hypothesized to be involved in the pathogenesis
of ASD, and possibly through the mechanism of attenuated or
excessive synaptic pruning. For example, microglia give priority
to phagocytosis of weaker or less active synapses, promoting
the development of functional neural circuits with stronger or
more active synapses (51). Proper synaptic pruning is essential
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for the development of functional neural circuits. Defects in
synaptic pruning disrupt the excitatory and inhibitory balance
of synapses. For example, inhibition of microglia autophagy
can lead to an increase in synaptic density and a decrease
in social ability in mice (52). Chemokine CX3C receptor 1
(CX3CR1) is specifically expressed in microglia and mediates
neuron-microglial interactions (53). In CX3CR1 knockout mice,
the expression of IL-1β was robustly increased and the synaptic
long-term potentiation (LTP) was significantly decreased (54). In
addition, functional magnetic resonance imaging (fMRI) analysis
showed that the functional connection between hippocampus
and prefrontal cortex was impaired. It is noteworthy that those
CX3CR1 knockout mice showed decreased social interaction and
increased repetitive behavior similar to ASD (55).

A number of studies have shown that there are abnormalities
in the morphological characteristics of microglia in the brain
of postmortem ASD patients. Tetreault et al. found that the
density of microglia in two cortical regions (frontal lobe and
visual cortex) of ASD patients was significantly higher than that
in the normal brain (56). Tang et al. reported that the dendritic
density of layer V pyramidal neurons in Brodmann 21 area of
the middle temporal gyrus, which is mainly involved in social
interaction and communication, is increased in postmortemASD
specimens (57). The density of dendritic spines in the childhood
ASD group (2–9 years old) was similar to that in an age-matched
control group, while the dendritic spine density in the adolescent
ASD group (13–19 years old) was significantly higher than
that in age-matched healthy controls (58). Recently, large-scale
sequencing studies and transcriptomic genome-wide analyses
have identified two broad categories of genes, neuronal genes and
transcriptional regulation genes, which contains more than 100
de novo mutations or variants that encode proteins for synaptic
formation, transcriptional regulation and chromatin-remodeling
in ASD (59). Therefore, excessive microglial activation could
be the consequence of abnormal neurodevelopment leading to
unstable and malfunctioning long-range synaptic connections.

Besides being a key player in the brain’s immune system,
microglia also play a crucial role in synaptic pruning. Recently,
studies have clarified complement-mediated synaptic pruning
by microglia in the visual thalamus (60). In the dorsal lateral
geniculate nucleus (LGN), the classical complement cascade
mediates microglia’s functions (61). Both the complement
protein C1q, and the downstream complement protein C3 are
highly localized to immature synapses and are required for
synaptic pruning in the retinogeniculate system. C1q expression
was increased in the peripheral serum of children with ASD
(62). Alternatively, ubiquitously increased complement proteins
may cover the specific localization of complement proteins on
less active synapses, which may promote excessive synaptic
pruning by microglia. Recently, Thomas and colleagues
proposed the atypical synaptic over-pruning hypothesis
by a neurocomputational model that ASD is caused by
the exaggeration of a normal system-wide phase of brain
development, elimination of excess connectivity. Normal
individual differences in the onset or rate of this phase interact
with the pathological pruning process to create different
trajectories of atypical development. Individual differences in

other neurocomputational parameters and in environmental
stimulation operate as risk or protective factors. The atypical
pruning is assumed to impact more on long-range connectivity,
impairing integrative functions, which leads to the unique
behavioral profile of ASD (63).

Microglia and Maternal Immune Activation
in Autism
Environmental factors can also alter the functions of microglia,
thereby affecting synaptic connections and development of
the brain. Viral and bacterial infections during pregnancy are
associated with an increased risk of autism in offspring (64).
During neural tube closure, exposure to LPS induced maternal
immune activation (MIA) in rodents seems to be associated
with ASD-like behavior in offspring (65). Prenatal MIA and the
subsequent increase in pro-inflammatory cytokines increase the
risk of ASD and schizophrenia in the offspring (66).

Human epidemiological studies and MIA animal models
have reported the association between MIA and offspring ASD.
In MIA animal models, pregnant mice are immunologically
activated by injection of polyinosine and polycytidine or LPS
during embryonic development (E9-12). These MIA models will
help to study the possible role of microglia in the pathogenesis
of ASD, as offspring exhibit a range of ASD-like behavioral
phenotypes, including impaired social interaction, changes in
repetitive behavior, anxiety, and ultrasonic vocalization. LPS-
exposed rodents at early postnatal days showed deficits in social
interaction and induced a robust microglia activation, which is
characterized by mixed microglial proinflammatory (M1) and
anti-inflammatory (M2) phenotypes (47). A growing body of
rodent studies have demonstrated that diverse inflammatory
factors beyond infection, including stressors or environmental
toxins, may similarly induce persistent effects on microglia,
which in turn affect neurodevelopmental processes that lead to
ASD-like phenotypes in offspring (67).

Microglia and Gut-Brain Axis in Autism
The MIA-induced ASDmouse model not only showed abnormal
behavior, but also had changes in intestinal microflora (68).
The communication between microbes in the gastrointestinal
tract and the brain regulates mood and behavior through a
two-way brain-gut pathway. It is known that gastrointestinal
dysfunction affects inflammatory response and brain function
through nerve, hormone and immune signaling, but the exact
biological mechanism remains to be elucidated. Compared with
healthy people, patients with ASD are more likely to develop
gastrointestinal symptoms, including constipation, diarrhea, or
abdominal pain, as well as other intestinal diseases, such as
inflammatory bowel disease (IBD) (69).

Sharon et al. found that normal intestinal microbial
population is necessary for the development of microglial
structure and function to mature. Compared with mice fed
in a specific pathogen free (SPF) environment, axenic mice
showed significant differences in themicrobial mRNA expression
profile, microglial density in multiple brain regions and process
branching complexity and process length of microglia (70).
SPF mice are free of a specific list of pathogens, such as
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disease-causing pathogens. However, axenic mice are free of
all microorganisms, including those that are typically found
in the gut. After virus infection, the microglia in axenic mice
showed a decreased innate immune response, which indicated
that the host microbial population supported the resistance
of microglia to bacterial and viral stimulation. Compared
with SPF mice, aseptic mice showed lower social ability and
more repetitive self-grooming behavior (71). At the same time,
aseptic mice had more immature and malformed microglia
and reduced immune response to LPS or virus infection
(72). It is worth noting that the microglial phenotype and
social impairment in aseptic mice were rescued after intestinal
reproduction using microflora from typically developed mice.
As the microglia activation and the subsequent inflammation
in the CNS may partly result from microbial disorders, it
is important to analyze the integrity of mucosal barrier
and the changes of intestinal microbial population in those
disease models.

ENDOCANNABINOID SYSTEM AND
MICROGLIAL FUNCTIONS IN AUTISM

It is known that CB1 is widely expressed in neurons, while
CB2 is mainly expressed in immune cells and microglia. In
the pathological state, the expression of CB2 in microglia
significantly increased (10). The different activation states are
considered to represent different functional states of microglia.
Considerable studies have demonstrated that ECS may be a
promising tool for changing the outcome of inflammation,
especially by affecting the activity of microglia. Microglia contain
a complete functional ECS signaling system, including synthesis
and degradation components (Figure 2). The expression of
cannabinoid receptors (mainly CB2) and the production of
endogenous cannabinoids (eCB) are related to the activation
characteristics of these cells. Previous study has shown that
the ECS is closely associated with regulating polarization
of microglia (73). Indeed, activation of CB2 receptors not
only affects the migration, proliferation and releasing of
proinflammatory cytokines of microglia, but also affects the
phagocytosis and promotes the transformation of microglial cells
to the anti-inflammatory M2 phenotype from M1 phenotype
(10). Both CB1 and CB2 receptors are downregulated in
M1 microglia, whereas the M2a and M2c microglia show
phenotypic changes in the endocannabinoid machinery, such as
M2a favors 2-AG synthesis and M2c favors AEA (10). CB1 is
important for neuronal differentiation, normal axon migration
and the establishment of neuronal connectivity. Interference
in critical periods is considered to have adverse effects on
brain development (74, 75). Overall, microglia in ASD are
usually found more shifted toward the M2 state than M1
(76). This predominance of the M2 state would seem to
point toward a compensatory role of microglial activation,
not a pathogenic role, which would better explain the lack of
efficacy of minocycline in ASD (77). Although stimulation of
CB2 receptors promotes the shifting of microglia to the M2
state, it is still unclear whether overstimulating CB2 receptors

will produce any further improvement. However, chronic CB2
activation has not been found to produce any tolerance, while
CB1 activation is associated with withdrawal effects in the CNS
(77). Understanding the effects of overstimulating CB2 receptors
remains a topic of great interest. Hopefully, future research will
address this issue.

Doenni et al. found that early inflammation caused by a single
injection of LPS on postnatal day 14 reduced the social play
and non-play behavior of adolescents in male and female rats.
The social defect induced by LPS is related to the decreased
binding of eCB with CB1, elevated AEA levels, and increased
FAAH in the amygdala. Oral administration of FAAH inhibitor
PF-04457845 (1 mg/kg) before social testing could normalize
LPS-induced social behavior changes. A similar improvement
was observed after direct injection of PF-04457845 into the
basolateral amygdala, suggesting that changes in AEA signaling
in this brain region play a key role in mediating LPS-induced
social dysfunction (78).

Targeted activation of CB1 may bring some side effects
to the CNS, such as depression, suicidal tendency, and other
mental disorders (79). However, activation of CB2 receptor
does not cause these central side effects. On the contrary,
activation of CB2 can modulate inflammatory immune response
and is becoming a potential intervention target for immune
regulation, neuroinflammation and neurodegenerative diseases.
Zamberletti et al. report that cannabidivarin (CBDV) treatment
at two postnatal stages (postnatal day19–32 and postnatal day
34–58), respectively, bring beneficial therapeutic effect on the
VPA autism rat model. Early preventive treatment relieves
deficits in social novelty, impairment of short-term memory,
and hyperactivity without affecting stereotyped behavior. Late
rehabilitation therapy can improve social impairment, social
novelty preferences, short-term memory deficit repetitive
behavior and hyperactivity. CBDV treatment upregulated
CB2 protein in the hippocampus, restored the expression of
GFAP, CD11b, and TNF- α in the same brain region, promoted
the activation of microglia, and further demonstrated its
direct or indirect neuroprotective effect (80). Our previous
work also found that CB2 activation reduced the release of
proinflammatory cytokines such as IL-1β, IL-6, and TNF-α in
the peripheral skin of rats with inflammatory pain (81). Based
on those studies, ECS intervention may regulate neuroimmune
inflammation through CB2 to alleviate ASD symptoms.

FUTURE PERSPECTIVES

The above animal and clinical studies provide solid evidence
that unbalanced ECS signaling are involved in the occurrence of
ASD. Therefore, modulating ECS signaling by targeting different
components of ECS (2-AG, AEA, CB1, and CB2) may provide
therapeutic strategies for the treatment of ASD (Figure 3). In the
last decade, especially in 2018, FDA approved the application
of CBD-rich Epidiolex in the treatment of refractory epilepsy,
a common comorbid symptom of autism, and CBD and ECS
have received extensive attention for the pathophysiological
mechanism and therapeutic effect of neurological diseases in
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FIGURE 2 | Microglia comprise a complete endocannabinoid signaling system. Microglia produce ∼20-fold more endocannabinoids than neurons and other glial

cells, and may be a major cellular source of endogenous cannabinoids under neuroinflammatory conditions. Upon activation, microglia markedly increase their

endocannabinoids synthesis and upregulate their CB2 receptor expression, promoting protection of the microglia phenotype by enhancing their neuroprotective factor

production and reducing their proinflammatory factor release.

FIGURE 3 | Targeting different components of ECS (2-AG, AEA, CB1, and CB2) may provide therapeutic strategies for the treatment of ASD. Administration of

JZL184, a pharmacological inhibitor of MAGL, enhanced 2-AG signaling, by using FAAH inhibitor (PF3845, URB597) to increase AEA levels to promote the release of

excitatory and inhibitory amino acid transmitters by acting on cannabinoid receptors.

children. Currently, most of the studies on the relationship
between ASD and ECS are still in the preclinical stage. Many
histological and neurochemical abnormalities have been reported
in ASD patients and animal models, reflecting the heterogeneity
and complexity of this group of diseases, which poses a
serious challenge to study on clinical treatment and hinders
the identification of possible common pathophysiological

mechanisms of ASD. Microglia are indispensable coordinators
of CNS development and homeostasis, and possibly participated
in the pathogenesis of ASD. ECS signaling can regulate the
activity and functions of microglia (82). Both clinical and
preclinical studies demonstrate that the neuropathology of ASD
is characterized by an abnormal inflammatory status of the brain.
Therefore, a detailed investigation of the roles of CB2 receptors
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and related ligands may shed new light on the pathophysiological
mechanisms and therapeutic targets of autism.
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