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ABSTRACT The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike
protein is the main target for neutralizing antibodies. These antibodies can be elicited
through immunization or passively transferred as therapeutics in the form of convales-
cent-phase sera or monoclonal antibodies (MAbs). Potently neutralizing antibodies are
expected to confer protection; however, it is unclear whether weakly neutralizing anti-
bodies contribute to protection. Also, their mechanism of action in vivo is incompletely
understood. Here, we demonstrate that 2B04, an antibody with an ultrapotent neutraliz-
ing activity (50% inhibitory concentration [IC50] of 0.04 mg/ml), protects hamsters against
SARS-CoV-2 in a prophylactic and therapeutic infection model. Protection is associated
with reduced weight loss and viral loads in nasal turbinates and lungs after challenge.
MAb 2B04 also blocked aerosol transmission of the virus to naive contacts. We next
examined three additional MAbs (2C02, 2C03, and 2E06), recognizing distinct epitopes
within the receptor binding domain of spike protein that possess either minimal (2C02
and 2E06, IC50 . 20 mg/ml) or weak (2C03, IC50 of 5 mg/ml) virus neutralization capacity
in vitro. Only 2C03 protected Syrian hamsters from weight loss and reduced lung viral
load after SARS-CoV-2 infection. Finally, we demonstrated that Fc-Fc receptor interac-
tions were not required for protection when 2B04 and 2C03 were administered prophy-
lactically. These findings inform the mechanism of protection and support the rational
development of antibody-mediated protection against SARS-CoV-2 infections.

IMPORTANCE The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by
SARS-CoV-2, has resulted in the loss of millions of lives. Safe and effective vaccines
are considered the ultimate remedy for the global social and economic disruption
caused by the pandemic. However, a thorough understanding of the immune corre-
lates of protection against this virus is lacking. Here, we characterized four different
monoclonal antibodies and evaluated their ability to prevent or treat SARS-CoV-2
infection in Syrian hamsters. These antibodies varied in their ability to neutralize the
virus in vitro. Prophylactic administration of potent and weakly neutralizing antibod-
ies protected against SARS-CoV-2 infection, and this effect was Fc receptor inde-
pendent. The potent neutralizing antibody also had therapeutic efficacy and elimi-
nated onward aerosol transmission. In contrast, minimally neutralizing antibodies
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provided no protection against infection with SARS-CoV-2 in Syrian hamsters.
Combined, these studies highlight the significance of weakly neutralizing antibodies
in the protection against SARS-CoV-2 infection and associated disease.

KEYWORDS COVID-19, SARS-CoV-2, Syrian hamster, transmission, monoclonal antibodies

The ongoing coronavirus disease (coronavirus disease 2019 [COVID-19]) pandemic,
caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), has resulted in the loss of millions of lives and trillions of dollars within 1
year from its emergence. Safe and effective vaccines are considered the ultimate rem-
edy for the global social and economic disruption caused by the pandemic. Vaccines
aim to elicit neutralizing antibodies that target the spike (S) protein of SARS-CoV-2,
which mediates viral attachment and membrane fusion of the virus. However, a thor-
ough understanding of the immune correlates of protection against this novel corona-
virus remains lacking. Addressing this knowledge gap is urgently needed to comple-
ment the ongoing vaccine development and evaluation efforts.

Neutralizing antibodies targeting the receptor binding domain (RBD) or N-terminal do-
main (NTD) of the S protein may confer protection against SARS-CoV-2 by blocking viral
infection of cells by a variety of mechanisms, including preventing viral attachment to cel-
lular angiotensin-converting enzyme 2 (ACE2) receptors and other mechanisms (1–8). The
RBD is immunodominant and is usually the main target of the neutralizing activity in the
immune sera of COVID-19 patients (9). Both neutralizing and nonneutralizing antibodies
may mediate protection via Fc-mediated effector functions by interacting with Fcg recep-
tors (FcgR) on NK cells and phagocytes to trigger antibody-dependent cellular cytotoxicity
(ADCC) and antibody-dependent cellular phagocytosis (ADCP), respectively. Studies of
influenza viruses showed that strain-specific neutralizing monoclonal antibodies (MAbs),
targeting head domain of the hemagglutinin (HA), conferred in vivo protection via a Fc-in-
dependent mechanism. In contrast, optimal in vivo protection mediated by broadly cross-
reactive MAbs, targeting the stalk domain of the HA, or nonneutralizing MAbs, required
Fc-mediated effector functions (10, 11). Antibodies may also interact with the comple-
ment system and activate the complement-dependent cytotoxicity (CDC). The potential
for antibody-dependent enhancement of infection or disease (ADE) in coronavirus immu-
nopathogenesis has been suggested due to the observed association of time-dependent
progression into severe disease and the kinetics of neutralizing antibody development
(12, 13). However, no ADE has been observed in animals or humans after receiving vac-
cines against SARS-CoV-2 or from recovered COVID-19 patients thus far.

Neutralizing monoclonal antibodies derived from convalescent COVID-19 patients have
demonstrated potent prophylactic or therapeutic effect in nonhuman primates, hamsters,
and mice (4, 6, 14–16). Several of these MAbs are being evaluated as potential therapeutics in
human studies (17). Vaccination or natural infection will induce a spectrum of antibodies that
vary in their ability to neutralize SARS-CoV-2. How such differences influence the in vivo pro-
tective capacity of such antibodies remains unknown. Further, the significance of Fc-medi-
ated effector functions has not been fully investigated. We previously generated a panel of
RBD-targeting murine MAbs with different binding affinities and neutralizing activities and
demonstrated the protective effect of a highly potent neutralizing MAb in a murine model of
SARS-CoV-2 (18). To delineate the roles of neutralizing and nonneutralizing antibodies against
SARS-CoV-2, we compared the protective effect of a potently neutralizing MAb (2B04) (50%
inhibitory concentration [IC50] of 0.04mg/ml), a weakly neutralizing MAb (2C03) (IC50 of 5mg/
ml), and two minimal neutralizing MAbs (2C02 and 2E06) (IC50 . 20 mg/ml) in Syrian ham-
sters and determined the role of Fc receptor interactions on protection. We find that the
potently neutralizing MAb 2B04 reduces viral burden and disease severity when given as a
pre- or postexposure therapy. Preexposure administration of the weakly neutralizing MAb
2C03 also reduced viral load and weight loss after challenge, while the minimal neutralizing
MAbs 2C02 and 2E06 did not confer protection. The protective effect of 2B04 and 2C03 was
not dependent on Fc receptor engagement. Finally, we show that prophylactic treatment of
2B04 reduced viral load in the nasal turbinates of inoculated donors and prevented onward
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transmission of SARS-CoV-2 to naive hamsters by air. Overall, these results suggest that MAbs
targeting RBD of S may confer protection against SARS-CoV-2 in vivo under a wide range of
effective neutralizing titers. Our results may have implications on the protective effect of neu-
tralizing serum at reduced titers against the antigenic variants of SARS-CoV-2.

RESULTS
Antigenic characterization of RBD-binding MAbs. We previously generated and

characterized a panel of RBD-binding human chimeric MAbs (human immunoglobulin
[hu-Ig]) from mice immunized with recombinant RBD and boosted with S protein of
SARS-CoV-2 (18). Four MAbs, 2B04, 2C02, 2C03, and 2E06, that showed similar binding
to the RBD of the S protein of SARS-CoV-2 (Fig. 1a), were selected for further characteri-
zation. The binding affinity (KD), measured by biolayer interferometry was ,1028 M for
MAbs 2B04 and 2E06, whereas the KD was $1027 M for MAbs 2C02 and 2C03 (Fig. 1b).
The inhibitory concentration for the MAbs to neutralize 50% of chimeric vesicular

FIG 1 A single amino acid substitution abrogates MAb 2B04 binding to SARS-CoV-2 RBD. (a and b) ELISA binding to recombinant RBD (a) and binding
affinity measured by biolayer interferometry (b) of RBD-specific MAbs. OD490 nm, optical density at 490 nm. (c) Percent relative infection by chimeric
vesicular stomatitis virus harboring the SARS-CoV-2 S protein as a function of MAb concentration in a GFP reduction neutralization test. (d) Mutational
antigenic profiling of RBD-specific MAbs. The sum of the escape fractions of all amino acid substitutions at each site in the RBD for each Mab is shown.
Sites of strong binding escape for any of the four antibodies are indicated by pink bars along the x axis and shown in greater detail in panel e. (e) Logo
plots showing the effects of each amino acid substitution on antibody binding, with taller letters indicating more binding escape, and letters colored
according to how deleterious mutations are for ACE2 binding (20). Interactive visualizations of escape data can be found at https://jbloomlab.github.io/
SARS-CoV-2-RBD_MAP_Ellebedy_Abs/. (f) Antibody escape mapped to the RBD surface (PDB accession no. 6M0J [37]) for 2B04, 2C02, 2C03, and 2E06 MAbs.
The ACE2 contact surface is outlined in black. Sites are colored according to the maximum effect of a substitution at a given site, from white (no effect on
antibody binding) to red (mutation with the strongest effect on antibody binding). (g) ELISA to measure binding of MAbs to wild-type (black) and E484A
mutant (red) RBD. Values are means plus standard errors of the means (SEM) (error bars).
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stomatitis virus (VSV) expressing the S protein (19) of SARS-CoV-2 (IC50) was 0.04 mg/
ml, 4.7 mg/ml, 26 mg/ml, and 20 mg/ml for 2B04, 2C03, 2C02, and 2E06, respectively
(Fig. 1c), indicating 2B04 is a highly potent neutralizing MAb, 2C03 is a weak neutraliz-
ing MAb, and that 2C02 and 2E06 are minimally neutralizing MAbs.

To identify the antibody binding site on the RBD, we generated duplicated mutant yeast
display libraries expressing 3,804 of 3,819 possible amino acid substitutions in the RBD
derived from the Wuhan-Hu-1 strain of SARS-CoV-2 (20). After eliminating mutants that abro-
gated ACE2 binding, yeast cells that showed a 100-fold or greater reduction in MAb binding
were sorted and sequenced by next-generation sequencing (see Fig. S1a and b in the sup-
plemental material) (21). The frequency of each amino acid substitution was quantified in
the pre- and postsorted yeast cells and used to calculate an escape fraction score. The amino
acid substitution and location in the RBD domain or S protein are shown in Fig. 1d to f. The
predicted epitope for the highly potent MAb 2B04 was located along the receptor binding
“ridge” and amino acid changes at a small number of residues, most prominently positions
484, 486, and 494, are predicted to abrogate binding. In contrast, the predicted epitope for
the weakly neutralizing MAb 2C03 spans a wider swath of the ACE2-binding surface of S pro-
tein. Amino acid changes at many different residues of the RBD reduced 2C03 binding. Many
of them would also diminish ACE2 binding and thus are predicted to affect viral fitness (20).
The predicted epitope for the nonneutralizing MAb 2C02 was along the “edge” of the core
RBD and overlapped with an evolutionarily conserved patch around residue 465. Amino acid
changes at five different residues (357, 394, 462, 468, and 471) reduced the binding of the
2C02 MAb. Similar to 2C02, the predicted epitope for the nonneutralizing MAb 2E06 was
also within the evolutionarily conserved patch around residue 465. Loss-of-binding muta-
tions for 2E06 were highly focused on residue 462 and residue 357 where a putative glycan
knock-in mutation R357N was noted (Fig. 1d and e). To validate the yeast display assay, we
generated recombinant RBD with an E484A mutation and measured binding of each MAb
to wild type (WT) and E484A RBD by an enzyme-linked immunosorbent assay (ELISA) (Fig. 1g
and Fig. S1d). As predicted by the yeast display escape profiles, the E484A mutation com-
pletely abolished binding of 2B04, diminished binding by 2C03, but had no effect on the
binding of 2C02 or 2E06. Taken together, we observed that the two MAbs with a binding af-
finity to RBD of ,1028 M (2B04 and 2E06) demonstrated focused escape profiles with rela-
tively few residues on the RBD, while MAbs showing weaker binding affinities to RBD
($1027 M, 2C02 and 2C03) tend to be escaped by mutations at more residues on the RBD.

Prophylactic and therapeutic treatment with 2B04 protects Syrian hamsters
against SARS-CoV-2 challenge. We first evaluated the prophylactic and therapeutic effi-
cacy of the mouse-human chimeric MAb 2B04 (hu-Ig 2B04) against SARS-CoV-2 in 4- to 6-
week-old male Syrian hamsters. hu-Ig 2B04 was administered via intraperitoneal (IP) injec-
tion 24 h prior to (prophylactic treatment) or 16 h after (therapeutic treatment) intranasal
(IN) challenge with 105 50% tissue culture infective doses (TCID50) of SARS-CoV-2 (strain
BetaCoV/Hong Kong/VM20001061/2020) (Fig. 2a). Age- and sex-matched control animals
received human IgG isotype control antibody IP 24 h prior to SARS-CoV-2 challenge.
Prophylactic treatment with hu-Ig 2B04 significantly reduced infectious virus titer by more
than 100-fold in the nasal turbinates (P, 0.01, d = 5.8) (Fig. 2b) and in the lungs (P, 0.01,
d = 4.8 for prophylactic, and P, 0.01, d = 2.1 for therapeutic treatment) (Fig. 2c) on 2 days
postinoculation (dpi). Prophylactic treatment also significantly reduced RNA levels detected
in the lungs on 2 dpi (P , 0.01, d = 4.0) (Fig. 2c). On 5 dpi, the infectious virus titers
detected in the nasal turbinates and lungs were comparable between the isotype control
antibody-treated and hu-Ig 2B04-treated animals (Fig. 2b and c). However, the viral RNA
level was reduced in the nasal turbinates (P , 0.01, d = 2.2) and in the lungs (P , 0.05,
d = 1.8) of animals that received prophylactic hu-Ig 2B04 treatment. Prophylactic treatment
(P, 0.0001, d = 22.1), but not therapeutic treatment (P = 0.53), with hu-Ig 2B04 reduced in-
fectious virus titers in the nasal washes on 2 dpi compared to the isotype control group
(Fig. 2d); there was no significant difference in infectious virus load detected on 4, 6, or
8 dpi or by comparing the total area under the curve. The reduced viral load is reflected in
the weight changes of the animals, as animals treated with hu-Ig 2B04 prophylactically or
therapeutically lost significantly less weight than those that received isotype control
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antibody (Fig. 2e). The maximal average weight loss for the isotype control antibody, hu-Ig
2B04 prophylactic treatment, and hu-Ig 2B04 therapeutic treatment groups were 14.3% (on
7 dpi), 3.3% (on 2 dpi), and 5.7% (on 6 dpi), respectively. Overall, prophylactic and to a
lesser extent therapeutic treatment with hu-Ig 2B04 showed substantial capacity to
decrease the viral load in upper and lower respiratory tissues upon SARS-CoV-2 challenge.

Hamster Fc 2B04 MAb protects Syrian hamsters against SARS-CoV-2 challenge.
Since the human Fc portion of the hu-Ig 2B04 may not mediate Fc-mediated effector
function in the Syrian hamster model, the murine variable heavy and light chain of MAb
2B04, were cloned into expression vectors coding for hamster IgG2a constant regions to
produce chimeric hamster MAbs (ham-Ig 2B04 [Fig. S2a]). We confirmed that the ham-Ig
2B04 MAb reacted with anti-hamster but not with anti-human secondary antibodies
(Fig. 3a). Prophylactic efficacy of ham-Ig 2B04 compared to hamster IgG2a isotype

FIG 2 Neutralizing MAb 2B04 protects Syrian hamsters against SARS-CoV-2. (a) Experimental scheme for prophylactic or therapeutic treatment of Syrian
hamsters with chimeric human MAb. Hamsters received 1 mg of hu-Ig 2B04 or isotype control (IgG) 24 h prior to (prophylactic) or 16 h after (therapeutic)
IN challenge with 105 TCID50 of SARS-CoV-2. D-1, day 21; NT, nasal turbinate. (b and c) Infectious virus titer (left) and viral RNA level (right) detected in
nasal turbinates (b) and lungs (c). Statistical significance by two-way ANOVA followed by Tukey’s multiple-comparison test is indicated by asterisks as
follows: *, P , 0.05; **, P , 0.01. (d) Infectious virus titer (bars) and viral RNA level (circles) detected in nasal washes on the indicated day postinoculation
(dpi). Paired measurements share colors. (e) Percent weight change of hamsters receiving isotype control (left), hu-Ig 2B04 prophylactically (center), or
therapeutically (right). Statistical significance by ANOVA with Holm-Sidak correction for multiple comparisons is indicated by asterisks as follows: *, P ,
0.05, **, P , 0.01. Lines indicate means 6 standard deviations (SD). The dotted lines in panels b to d show the limit of detection of the assay, and each
symbol represents the value for one hamster. The dotted line in panel e represents no weight loss, and each symbol represents the value for one hamster.

Weakly Neutralizing Antibodies Protect against COVID-19 ®

September/October 2021 Volume 12 Issue 5 e02395-21 mbio.asm.org 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 2

2 
M

ar
ch

 2
02

2 
by

 7
5.

13
2.

44
.1

68
.

https://mbio.asm.org


FIG 3 Chimeric hamster neutralizing MAb protects Syrian hamsters against SARS-CoV-2. (a) Detection of RBD-specific
chimeric human (black) or hamster (orange) MAbs with anti-hamster (a-hamster) or anti-human secondary (2°)

(Continued on next page)
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control was evaluated in groups of hamsters treated 24 h prior to IN challenge with 105

TCID50 of SARS-CoV-2 (Fig. 3b). Sera collected from eight hamsters 1 day after IP injection
of ham-Ig 2B04 showed an average 90% plaque reduction neutralization titer (PRNT90)
titer of 1:10,200 (Fig. 3c). Compared to the isotype control group, prophylactic treatment
with ham-Ig 2B04 reduced the average infectious virus titer by .3.0 log10 units in the
nasal turbinates on 2 dpi (P , 0.001, d = 2.1). The infectious virus titer in the nasal turbi-
nates was comparable on 5 dpi (P = 0.10) (Fig. 3d). The viral RNA levels in the nasal turbi-
nates were significantly lower between the ham-Ig 2B04 and control antibody-treated
animals 2 dpi (P , 0.05, d = 1.5) and 5 dpi (P , 0.001, d = 3.0). In the lungs, prophylactic
treatment with ham-Ig 2B04 reduced the mean infectious virus titer by 3.7 and 2.4 log10

units compared to the isotype control antibody-treated animals on 2 dpi (P , 0.0001,
d = 3.0) and 5 dpi (P , 0.01, d = 6.3), respectively (Fig. 3e). Viral RNA levels were similarly
reduced by 1,700- and 800,000-fold in the lungs of ham-Ig 2B04-treated animals on
2 dpi (P , 0.001, d = 2.0) and 5 dpi (P , 0.0001, d = 9.8), respectively. To support these
findings, immunohistochemistry was performed on formalin-fixed nasal turbinates and
lungs from ham-Ig 2B04-treated and control antibody-treated animals. Less SARS-CoV-2
antigen was detected in the nasal turbinates (Fig. 3f) or lungs (Fig. 3g) of the ham-Ig
2B04-treated hamsters compared to the isotype control antibody-treated hamsters.
Finally, the maximal average weight losses for the isotype control antibody- and the
ham-Ig 2B04-treated animals were 10.1% (on 5 dpi) and 3.4% (on 2 dpi), respectively
(Fig. 3h). Starting 3 dpi, the ham-Ig 2B04-treated animals lose significantly less weight (P
, 0.001 for 3 dpi and P , 0.0001 for 4 and 5 dpi) compared to the isotype-treated ani-
mals. The results showed a comparable protective effect between hu-Ig 2B04 and ham-
Ig 2B04 against SARS-CoV-2 in the hamster model. Importantly, no deleterious effect was
observed in hamsters after receiving a chimeric hamster MAb for prophylactic treatment.

Hamster Fc 2B04 MAb prevented SARS-CoV-2 aerosol transmission in hamsters.
We have demonstrated previously that SARS-CoV-2 transmits efficiently among hamsters
via respiratory aerosols (22). In this experimental model, naive hamsters that were
exposed to SARS-CoV-2-inoculated donors on 1 dpi for 8 h were 100% infected (in three
pairs of donor and aerosol-contact hamsters), shed infectious viruses for 5 days after ex-
posure (Fig. 3d of reference 22), and with 7.72% maximal loss on day 7 postexposure (Fig.
3f of reference 22). Since prophylactic treatment of ham-Ig 2B04 reduced viral loads in
the nasal turbinates and lungs on 2 dpi (Fig. 3d to g), we further evaluated whether pro-
phylactic treatment with ham-Ig 2B04 in donor hamsters reduced SARS-CoV-2 transmis-
sion to naive untreated hamsters. We followed the identical experimental design as
reported previously (22), except that the donor hamsters received ham-Ig 2B04 24 h prior
to IN challenge with 105 TCID50 of SARS-CoV-2 (Fig. 4a). Nasal washes collected on 2, 4, 6,
and 8 dpi of the donors (1, 3, 5, and 7 days postexposure of the aerosol contacts) showed
reduced viral replication after 2B04 prophylactic treatment, with no virus shedding in one
animal and reduced infectious virus titers detected in the other two animals (Fig. 4b).
Importantly, no infectious virus was detected from any of the aerosol-contact hamsters
(Fig. 4b) and none of the aerosol-contact animals developed neutralizing antibodies
against SARS-CoV-2 at 14 days postexposure (serum PRNT90 of ,1:20). No apparent

FIG 3 Legend (Continued)
antibodies, respectively. (b) Experimental scheme for SARS-CoV-2 challenge of Syrian hamsters receiving 1 mg of
chimeric hamster 2B04 (ham-Ig) or isotype control 24 h prior to IN challenge with 105 TCID50 of SARS-CoV-2. (c) Serum
virus neutralizing titer (PRNT90) 1 day after IP administration of 1 mg of chimeric hamster 2B04 or isotype control (IgG).
(d and e) Infectious virus titer (left) and viral RNA copy numbers (right) detected in nasal turbinate (d) and lungs (e) 2
and 5 dpi. Lines indicate mean 6 SD. The dotted lines in panels c to e show the limit of detection of the assay, and
each symbol represents the value for one hamster. Statistical significance by two-way ANOVA followed by Tukey’s
multiple-comparison test is indicated by asterisks as follows: *, P , 0.05, **, P , 0.01, ***, P , 0.001, ****, P , 0.0001.
(f and g) Hematoxylin and eosin staining (left panels) and immunohistochemistry for SARS-CoV-2 N protein (brown
color, middle and right panels) in nasal turbinates (f) and lungs (g) of SARS-CoV-2-challenged hamsters 2 dpi. Scale
bars = 500 mm. Higher-magnification images (right panels) of the boxed areas in the immunochemistry sections
(middle panels) are shown for lungs and nasal turbinates. (h) Weight changes of hamsters receiving isotype (IgG, black
circles) or 2B04 (blue circles) after SARS-CoV-2 challenge. Statistical significance by two-way ANOVA with Holm-Sidak
correction for multiple comparisons is indicated by asterisks as follows: **, P , 0.01; ****, P , 0.0001. The dotted line
in panel h represents no weight loss and each symbol represents one hamster.
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weight loss was observed from aerosol-contact animals (Fig. 4c). These results suggest
that potent neutralizing antibodies may reduce viral load after SARS-CoV-2 infection and
block onward transmission via aerosols to naive animals. Furthermore, histopathological
examination of tissues (nasal, lung, heart, liver, spleen, and kidney) collected on day 12
postchallenge of SARS-CoV-2 from donor hamsters treated prophylactically with ham-Ig
2B04 found no viral antigen, inflammation, or infiltration of immune cells associated with
immunopathology (data not shown).

Efficacy of weak neutralizing and nonneutralizing antibodies against SARS-
CoV-2 in Syrian hamsters. Thus far, we have demonstrated the protective effect of a
highly potent neutralizing MAb, 2B04, against SARS-CoV-2 challenge in hamsters. Next,
we evaluated a weakly neutralizing 2C03 that targets an epitope overlapping that of
2B04, and two minimally neutralizing MAbs (2C02 and 2E06) that target a unique
epitope in the core RBD but exhibit different binding affinities in vitro (Fig. 1a). To
optimize Fc-Fc receptor interactions in the hamsters, all MAbs were expressed as
mouse-hamster chimeric MAbs (ham-Ig [Fig. S2]). To further delineate whether the

FIG 4 Chimeric hamster neutralizing MAb protect against SARS-CoV-2 transmission. (a) Experimental scheme
for SARS-CoV-2 challenge and aerosol transmission in Syrian hamsters receiving 1 mg of ham-Ig 2B04. (b)
Infectious virus titer (bars) and viral RNA copy numbers (circles) detected in nasal washes of inoculated donor
animals (left) and the aerosol-contact animals (right). (c) Weight changes of donor (left) and aerosol-contact
(right) hamsters. The dotted line in panel b shows the limit of detection of the assay, and each symbol
represents the value for one hamster. The dotted line in panel c represents no weight loss, and each symbol
represents the value for one hamster.
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protective mechanisms conferred by these ham-Ig MAbs was dependent on Fc recep-
tor binding, we generated ham-Ig MAbs bearing two leucine-to-alanine substitutions
at positions 123 and 124 (LALA). To confirm that the LALA substitutions abrogated Fc
receptor binding, a capture ELISA, using recombinant human and mouse FcgR1 chain
(CD64) was performed. The ham-Ig 2B04, 2C02, 2C03, and 2E06 all bound to the
human and mouse FcgR1 chain, albeit the binding was lower for the murine FcgR1 re-
ceptor. Importantly, the LALA substitutions completely abrogated binding of the ham-
Ig MAbs to both human and mouse FcgR1 (Fig. 5a and Fig. S3). To test the protective
efficacy of these antibodies and the role of Fc receptor engagement, groups of 5- to 6-
week-old male hamsters received either the wild-type or LALA mutant of ham-Ig 2B04,
2C02, 2C03, or 2E06 24 h prior to IN inoculation with 2.5 � 105 PFU of SARS-CoV-2 virus
(Fig. 5b). Infectious virus titer, viral RNA level, and weight loss were measured on 3 dpi.
Both the highly potent neutralizing ham-Ig 2B04 (P , 0.0001, d = 9.1) and the weakly
neutralizing ham-Ig 2C03 (P , 0.05, d = 1.4) significantly reduced infectious virus titers
in the lungs on 3 dpi (Fig. 5c). This reduction corresponded to lower viral RNA levels
(P , 0.0001 and d = 2.5 for 2B04; P , 0.05 and d = 1.7 for 2C03) and less weight loss
(P , 0.0001 and d = 3.2 for 2B04; P , 0.001 and d = 2.5 for 2C03) (Fig. 5d and e).
Furthermore, the wild-type and LALA versions of 2B04 and 2C03 showed comparable
effects in reducing lung viral load (P , 0.0001 and d = 3.2 for 2B04; P , 0.05 and

FIG 5 Neutralizing MAbs protect Syrian hamsters from SARS-CoV-2 infection in a Fc-independent manner. (a) ELISA binding of wild-type (circles) and LALA
mutant (triangles) chimeric hamster MAbs to human (top panels) and mouse (bottom panels) FcgR1. (b) Experimental scheme for SARS-CoV-2 challenge of
hamsters receiving 1 mg of wild-type or LALA mutant ham-Ig 2B04, 2C02, 2C03, or 2E06 24 h prior to intranasal challenge with 2.5 � 105 PFU of SARS-
CoV-2. (c) Infectious virus titer in the lungs of isotype or wild-type and LALA mutant ham-Ig 2B04-, 2C02-, 2C03-, or 2E06-treated hamsters. Statistical
significance by Kruskal-Wallis test with a multiple comparison correction between isotype and wild- type or LALA 2B04-, 2C02-, 2C03-, and 2E06-treated
groups is indicated by asterisks as follows: *, P , 0.05; ****, P , 0.0001. Lines represent geometric mean 6 geometric SD, and the dotted line is the limit
of detection for the assay. Each symbol represents the value for one hamster. (d) Viral RNA copy numbers in lungs of isotype or wild-type and LALA
mutant ham-Ig 2B04-, 2C02-, 2C03-, or 2E06-treated hamsters. Statistical significance by one-way ANOVA and a multiple comparison correction between
isotype and wild type or LALA 2B04-, 2C02-, 2C03-, and 2E06-treated groups is indicated by asterisks as follows: *, P , 0.05, ****, P , 0.0001. Lines
represent the geometric mean, and the dotted line is the limit of detection for the assay. Each symbol represents the value for one hamster. (e) Weight
changes of hamsters receiving the indicated wild-type (WT) (circles) or LALA mutant (triangles) MAb 3 dpi. Statistical significance by one-way ANOVA with
a multiple comparisons between isotype and wild-type or LALA 2B04-, 2C02-, 2C03-, and 2E06-treated groups is indicated by asterisks as follows: *, P ,
0.05; ***, P , 0.001; ****, P , 0.0001. The dotted line represents no weight loss. Each symbol represents the value for one hamster.
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d = 1.5 for 2C03 [Fig. 5c]), viral RNA copy number (P , 0.0001 and d = 2.1 for 2B04;
P , 0.05 and d = 1.9 for 2C03 [Fig. 5d]), and preventing weight loss (P , 0.0001 and
d = 3.4 for 2B04; P, 0.05 and d = 0.9 for 2C03 [Fig. 5e]), suggesting that the protection
was mediated in an Fc receptor-independent manner. In contrast, neither ham-Ig 2C02
nor ham-Ig 2E06 significantly reduced infectious virus titers or viral RNA levels in the
lungs 3 dpi (Fig. 5c and d). Also, treatment of ham-Ig 2C02 or ham-Ig 2E06 did not pre-
vent weight loss in hamsters challenged with SARS-CoV-2. These results suggest that
prophylactic treatment with weakly neutralizing antibodies confer some protection
from SARS-CoV-2 infection if targeting particular epitopes and that nonneutralizing
MAbs do not enhance infection. We also demonstrated that the highly potent and
weak neutralizing antibodies targeting the RBD of S protein conferred protection
against SARS-CoV-2 infection in an Fc-independent manner.

DISCUSSION

Understanding how antibodies confer protection against SARS-CoV-2 in vivo is essen-
tial for the development and implementation of antibody therapy and vaccines.
Specifically, the role of poorly neutralizing or nonneutralizing antibodies targeting the
RBD of the S protein of SARS-CoV-2 on protection against COVID-19 is not well under-
stood. In this study, we antigenically characterized four MAbs with different virus neutral-
izing capacities and evaluated their efficacy in the SARS-CoV-2 hamster model. A highly
potent MAb, 2B04, prevented weight loss in hamsters if given prophylactically or thera-
peutically; prophylactic treatment also abolished onward transmission to naive and
untreated contact animals. Interestingly, administration of a weak neutralizing MAb
2C03 prior to SARS-CoV-2 challenge also reduced infectious virus titers and protected
against weight loss. Importantly, the protective effect of these neutralizing antibodies
was independent of Fc-Fc receptor interactions. Combined, these studies suggest the
potential benefit of low levels of neutralizing antibodies against SARS-CoV-2 infection.

Prophylactic treatment of a potent neutralizing MAb effectively reduced viral loads in
the nasal tissue and nasal wash of donor hamsters, which blocked SARS-CoV-2 transmis-
sion to naive untreated hamsters via respiratory aerosols. This is the first demonstration
that parenteral delivery of MAb can reduce or eliminate transmission of SARS-CoV-2, and
it suggests that a highly potent neutralizing IgG response elicited after vaccination may
protect the mucosal surface of the upper airways. The antibody threshold required to
protect against onward transmission remains to be investigated. We found that the aver-
age serum antibody neutralization titer (PRNT90) in ham-Ig 2B04-treated hamsters was
;1:10,000. This is higher than what is found in the sera of most vaccinated and infected
individuals. Also, with the emerging resistance of SARS-CoV-2 variants to antibody neu-
tralization, it is possible that the neutralizing antibody titer in vaccinated individuals is
not sufficient to eliminate transmission of SARS-CoV-2 infection.

The four MAbs in this study bind to two antigenically distinct epitopes on the sur-
face of the S protein of SARS-CoV-2. The predicted epitopes for MAbs 2B04 and 2C03
were located in the receptor-binding motif (RBM). 2B04 selects escape mutations local-
ized to the ACE2-binding ridge, similar to MAbs COV2-2832, COV2-2479, and COV2-
2050 (21). Coincidentally, amino acid changes between residues 475 to 490 on the RBD
significantly impacted the binding of these MAbs to the RBD. The predicted epitope
for MAb 2C03 overlaps the ACE2-binding ridge sites selected by 2B04 but also spans a
broader set of sites across the RBM surface, similar to LY-CoV016 (23). Virus isolates har-
boring an E484K mutation in the RBD of the S protein have emerged recently (24, 25),
and it is likely that this mutation will escape binding and neutralization by these two
MAbs. The two minimally neutralizing antibodies, 2C02 and 2E06, recognize an epitope
along the “edge” of the core RBD and overlap with an evolutionarily conserved patch
around residue 465. To our knowledge, this is the first description of an antibody that
binds this epitope (9). Interestingly, these two antibodies cross-reacted with the S pro-
tein of SARS-CoV-1 (18). Antigenic mapping of other SARS-CoV-1 cross-reactive anti-
bodies (CR3022, COV2-2082, and COV2-2094) (21) revealed that these antibodies also
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target the core of the RBD; however, the predicted epitope is distinct from that of
2C02 and 2E06. Besides the location of the predicted epitope, the affinity of the neu-
tralizing (2B04 and 2C03) and minimally neutralizing (2C02 and 2E06) antibodies were
distinctly different. Additional studies are needed to determine the significance of
these two variables on the overall effectiveness of anti-SARS-CoV-2 antibodies.

Fc-Fc receptor interactions were not required when Mab 2B04 and 2C03 were
administered prior to SARS-CoV-2 exposure, suggesting their mechanism of protection
depends largely on the neutralizing capacity of the antibody to prevent initial viral
infection and limit dissemination. This finding is in agreement with previous reports
showing that LALA-PG loss-of-function Fc variant of potently neutralizing antibodies
were equally effective when administered prophylactically (26, 27). However, the in
vivo efficacy of LALA-PG antibodies were diminished compared to their WT counter-
parts when the MAb was administered 1 day after SARS-CoV-2 infection (26, 27). This
reduction was associated with increased virus titers, weight loss, and inflammatory
gene expression in the LALA-PG-treated animals. The requirement of Fc effector func-
tion varied among MAbs (26).

One of the limitations of this study is that we tested the Fc-Fc receptor interaction
requirements for a single hamster IgG subclass. Different IgG subclasses have different
affinities for Fc receptors, and therefore, it is possible that the LALA mutations differen-
tially affect the IgG subclasses in hamsters. Due to the lack of reagents for hamsters,
we also did not evaluate the impact of complement binding or activation of the ham-
ster Fc-containing antibodies. Another limitation of our study is that we did not estab-
lish a serological correlate of protection against SARS-CoV-2 infection and transmission.
This is a particularly important question given the emergence of SARS-CoV-2 variants
and increasing number of breakthrough infections in vaccinated individuals. Given the
size and scope of this analysis, we believe that this is a separate study. Finally, we did
not include an isotype control in the transmission studies and only compare the results
with the untreated donor hamsters (22). We and others have shown that the adminis-
tration of an isotype antibody has no effect on the infectious virus titers in nasal
washes and lungs, and therefore, we believe that the lack of transmission of SARS-CoV-
2 in the 2B04-treated animals is due to the neutralization of the virus and not due to
the IP administration of a MAb.

Overall, our studies in hamsters demonstrate that potent neutralizing MAbs protect
against SARS-CoV-2 transmission and severe disease and that this activity is independ-
ent of Fc receptor engagement. The ability of a weakly neutralizing MAb to reduce viral
loads in the lungs and protect animals from weight loss suggests that low or reduced
neutralizing antibody titers due to waning immunity, subclinical infections, or against
antigenic variants may still provide protection from severe disease in vivo.

MATERIALS ANDMETHODS
Cells and viruses. Expi293F cells (Gibco) were cultured at 37°C and 8% CO2 in Expi293 expression me-

dium (Gibco) with 130 rpm shaking. Vero E6 cells (CRL-1586; ATCC), Vero CCL81 cells (ATCC), Vero-Creanga
cells (Vero cells overexpressing human ACE2 and TMPRSS2, gift from Adrian Creanga and Barney Graham,
NIH), and HEK293 cells were cultured at 37°C in Dulbecco’s modified Eagle medium (DMEM) supplemented
with 10% fetal bovine serum (FBS), 10 mM HEPES (pH 7.3), 1.0 mM sodium pyruvate, 1� nonessential
amino acids, and 100 U/ml of penicillin-streptomycin. MA-104 cells (CRL-2378; ATCC) were cultured at
37°C in 199 medium supplemented with 5% FBS and 2.5mg/ml of amphotericin B.

SARS-CoV-2 (strain BetaCoV/Hong Kong/VM20001061/2020) was expanded three times in Vero E6
cells in DMEM supplemented with 4.5 g/liter D-glucose, 100 mg/liter sodium pyruvate, 2% FBS, 100 U/ml
penicillin-streptomycin, and 25 mM HEPES. The consensus sequence of the expanded stock virus (107.25

TCID50/ml) was identical to the original specimen (BioProject accession no. PRJNA741371). SARS-CoV-2
(strain 2019-nCoV/USA-WA1/2020) was obtained from the U.S. Centers for Disease Control (CDC) and
propagated on MA-104 monkey kidney cells. The virus stock was sequenced by next-generation
sequencing, and the spike protein sequence was identical to the original WA1 isolate. However, approxi-
mately 50% of the sequences, contained a 30- to 36-nucleotide deletion at the furin cleavage of the
spike protein. The virus titer of this stock was determined by a focus-forming assay (6.9 � 104 focus-
forming units/ml [ffu/ml]) and plaque assay (5.2 � 106 plaque-forming units/ml [PFU/ml]).

Recombinant proteins. The receptor binding domain (RBD) of the spike protein of SARS-CoV-2 was
generated as previously described (28). Mammalian cell codon-optimized nucleotide sequences coding
for the wild type and an E484A mutant (generated using site-directed mutagenesis [QuikChange
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Lightning; Agilent]) of the receptor binding domain (RBD, amino acids 319 to 541) along with the signal
peptide (amino acids 1 to 14) and a hexahistidine tag were cloned into mammalian expression vector
pCAGGS. Recombinant proteins were produced in Expi293F cells (ThermoFisher) by transfection with
purified DNA using the ExpiFectamine 293 transfection kit (ThermoFisher). Supernatants from trans-
fected cells were harvested 3 days posttransfection, and recombinant RBD was purified using nickel-
nitrilotriacetic acid (Ni-NTA) agarose (ThermoFisher), then buffer exchanged into phosphate-buffered sa-
line (PBS), and concentrated using Amicon Ultracel centrifugal filters (EMD Millipore).

Monoclonal antibodies. Chimeric mouse-human SARS-CoV-2 RBD-specific MAbs (hu-Ig) 2B04, 2C02,
2C03, and 2E06 were described previously (18). To generate hamster Fc-bearing variants (ham-Ig), their
V-J coding segments were cloned into vectors coding for hamster IgG2a, heavy and light chain constant
regions (see Fig. S2 in the supplemental material). The immunoglobulin constant gene coding regions
for IGHG2A-like and Kappa were derived from previously identified Armenian hamster (Cricetulus migra-
torius) mRNAs (GenBank accession no. U17166.1 and S80615.1) (29, 30). The coding region for the ham-
ster lambda constant is the predicted annotation “immunoglobulin lambda-1 light chain-like” (RefSeq
accession no. XM_021231508.1, LOC101839749) from Syrian hamster (Mesocricetus auratus) genomic
DNA (BioProject accession no. PRJNA210213). Antibody V-J coding segments were either synthesized in-
frame with the constant regions (2B04, 2C02, and 2C03) along with restriction enzyme sites in the same
locations as the pAbVec6W vector (31), or V-J regions were cloned into the hamster vector backbones
by standard restriction endonuclease subcloning. To generate LALA mutants, the leucine residues for
the LALA mutation in the hamster Fcg gene, positions 123 and 124, were identified by alignment with
the human gamma Fc gene. The LALA mutations in the hamster Fcg expression vectors were introduced
by site-directed mutagenesis (QuikChange Lightning; Agilent).

SARS-CoV-2 hamster studies (The University of Hong Kong [HKU]). All procedures involving ani-
mals were performed in accordance with guidelines of the Committee on the Use of Live Animals in
Teaching and Research, The University of Hong Kong (CULATR no. 5411-20). Four- to 6-week-old male
AURA Syrian hamsters were obtained from Laboratory Animal Services Centre, The Chinese University of
Hong Kong and housed in the biosafety level 3 (BSL-3) core facility, Li Ka Shing Faculty of Medicine, The
University of Hong Kong. Animals were randomized from different litters into experimental groups and
were acclimatized at the BSL-3 facilities for 4 to 6 days prior to experiments. Hamsters received 1 mg of iso-
type control or anti-SARS-CoV-2 MAbs via intraperitoneal (IP) injection. For hamsters receiving ham-Ig
2B04 prophylactically, the median weight was 93.22 g (interquartile range, 90.10 to 96.78 g), and the me-
dian MAb dose received was 10.73 mg/kg of body weight (interquartile range, 10.33 to 11.10 mg/kg).
Injections were given either at 24 h prior to (prophylactic regimen) or at 16 h after (treatment regimen)
SARS-CoV-2 challenge. For challenge studies, hamsters were anesthetized with ketamine (150 mg/kg) and
xylazine (10 mg/kg) via IP injection and were intranasally (IN) inoculated with 1 � 105 TCID50 of SARS-CoV-
2 in 80 ml DMEM (Fig. 2 to 4). Animal weights were measured every day for the duration of experiments.
Nasal washes were collected 2, 4, 6, and 8 days postinoculation (dpi). For nasal wash collection, hamsters
were anesthetized using ketamine (100 mg/kg) and xylazine (10 mg/kg) via IP injection, and 160 ml PBS
containing 0.3% bovine serum albumin (BSA) was used to collect nasal washes from both nostrils of each
hamster. Nasal washes were diluted 1:1 by volume and aliquoted for TCID50 assay in Vero E6 cells and for
quantitative reverse transcription-PCR (RT-PCR). Animals were euthanized 2, 3, or 5 dpi, and the nasal turbi-
nates and lungs were collected for virological or histological analyses. Left lung lobes were homogenized
in 1 ml of PBS or DMEM, clarified by centrifugation, and used for virus titer determination.

To evaluate the effect of MAb treatment on SARS-CoV-2 transmission via aerosols, we adopted the
identical experimental design as reported previously, including the stock virus, dose of inoculation for
the donor hamsters, and the exposure time (22). In brief, one naive hamster was exposed for 8 h to one
inoculated donor hamster in two adjacent stainless steel wired cages at 1 dpi of the donor animal. The
donor animals were injected 24 h prior to SARS-CoV-2 infection with 1 mg of isotype control or anti-
SARS-CoV-2 MAb via IP injection. DietGel 76A (ClearH2O) was provided to the hamsters during the 8-h
exposure. Exposure was done by holding the hamsters inside individually ventilated cages (IsoCage N;
Techniplast) with 70 air changes per h. Experiments were repeated with three pairs of donor and aero-
sol-contact hamsters at a 1:1 ratio. After exposure, the hamsters were housed singly in separate cages
and were monitored daily for 14 days. Nasal washes were collected 2, 4, 6, and 8 dpi, and infectious virus
titers and viral RNA loads were quantified.

SARS-CoV-2 hamster studies (Washington University). All procedures involving animals were per-
formed in accordance with guidelines of the Institutional Animal Care and Use Committee of
Washington University in Saint Louis. Five-week-old male hamsters were obtained from Charles River
Laboratories and housed in the enhanced BSL-3 facility at Washington University. The animals were
acclimatized for 5 or 6 days prior to experiments. Hamsters received 1 mg of isotype control or anti-
SARS-CoV-2 MAbs via intraperitoneal (IP) injection 24 h prior to challenge. Following sedation with iso-
flurane, the animals were challenged via the IN route with 2.5 � 105 PFU of SARS-CoV-2 (Fig. 5). Animal
weights were measured daily for the duration of the experiment. Three days after challenge, the animals
were sacrificed, and their lungs were collected for virological analysis. The left lobe was homogenized in
1.0 ml DMEM, clarified by centrifugation (1,000 � g for 5 min) and used for viral titer analysis by quanti-
tative RT-PCR using primers and probes targeting the N gene, and by a focus-forming assay (FFA).

Plaque reduction neutralization titer assay. Sera collected from hamsters 24 h after 2B04 antibody
injection were heat inactivated at 56°C for 30 min, serially diluted, and incubated with 30 to 40 PFU of
SARS-CoV-2 for 1 h at 37°C. The virus–serum mixtures were added to Vero E6 cells seeded in 24-well cul-
ture plates and incubated 1 h at 37°C and 5% CO2. The plates were overlaid with 1% agarose in cell cul-
ture medium and incubated for 3 days. Thereafter, the plates were fixed with 10% formalin in PBS and
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stained with 0.3% crystal violet in PBS. Antibody neutralization titers were defined as the highest serum
dilution that resulted in.90% reduction in the number of plaques (PRNT90).

Virus neutralization assay with chimeric VSV-S. Neutralization assays with chimeric VSV express-
ing the SARS-CoV-2 S protein in place of the endogenous glycoprotein G were performed as previously
described (19). Serial dilutions of MAbs were incubated with 104 PFU of VSV-SARS-CoV-2-S421 virus for 1
h at 37°C. Antibody-virus complexes were added to Vero E6 cells and incubated for 7.5 h at 37°C. Cells
were then fixed and stained with Hoechst 33342 nuclear stain (Invitrogen). Images were acquired with
the InCell 2000 Analyzer (GE Healthcare) automated microscope to visualize nuclei and infected cells
(enhanced green fluorescent protein [eGFP]-positive cells). Images were analyzed in InCell Analyzer
1000 Workstation Software (GE Healthcare), and data were processed using Prism version 8 (GraphPad
Software, Inc.).

Virus titration assays. Plaque assays were performed on Vero E6 cells or Vero-Creanga cells in 24-well
plates. Lung tissue homogenates or nasal washes were serially diluted 10-fold, starting at 1:10, in cell infec-
tion medium (DMEM plus 2% FBS plus 100 U/ml of penicillin-streptomycin). Two hundred fifty microliters of
the diluted virus was added to a single well per dilution per sample. After 1 h at 37°C, the inoculum was
aspirated, the cells were washed with PBS, and a 1% methylcellulose overlay in MEM supplemented with
2% FBS was added. Seventy-two hours after virus inoculation, the cells were fixed with 4% formalin, and
the monolayer was stained with crystal violet (0.5% [wt/vol] in 25% methanol in water) for 1 h at 20°C. The
number of plaques were counted and used to calculate the plaque-forming units per milliliter (PFU/ml).

The 50% tissue culture infectious dose (TCID50) was determined in confluent Vero E6 cells in 96-well
flat-bottom tissue culture plates. Prior to infection, cells were washed once with PBS and overlaid with
infection medium (DMEM supplemented with 4.5 g/liter D-glucose, 100 mg/liter sodium pyruvate, 2%
FBS, 100 U/ml penicillin-streptomycin, and 25 mM HEPES). Cells were incubated with serial half-log
diluted samples (hamster nasal washes and tissue homogenates) at 37°C for 72 h. Cytopathic effect was
monitored to determine the endpoint of infection, and virus titers (log10 TCID50/ml) were calculated by
the Reed-Muench method (32).

To quantify viral load in nasal swabs, lung tissue homogenates, and nasal washes, RNA was extracted
from 100-ml samples using E.Z.N.A. Total RNA kit I (Omega) and eluted with 50ml of water. Four microliters
of RNA was used for real-time quantitative RT-PCR (qRT-PCR) to detect and quantify N gene of SARS-CoV-2
using TaqMan RNA-to-CT one-step kit (Thermo Fisher Scientific) as described (33) using the following pri-
mers and probes: forward, GACCCCAAAATCAGCGAAAT; reverse, TCTGGTTACTGCCAGTTGAATCTG; probe,
ACCCCGCATTACGTTTGGTGGACC; 59Dye/39Quencher, 6-carboxyfluorescein (6-FAM)/ZEN/Iowa black fluo-
rescence quencher (IBFQ). Viral RNA was expressed as (N) gene copy numbers per milligram for lung tissue
homogenates or per milliliter for nasal swabs and nasal washes, based on a standard included in the assay,
which was created via in vitro transcription of a synthetic DNA molecule containing the target region of
the N gene.

Histopathology and immunohistochemistry. Tissues (nasal turbinate and right lung) were fixed in
10% formalin and processed for paraffin embedding. Four-micron sections were stained with hematoxy-
lin and eosin for histopathological examinations. For immunohistochemistry, SARS-CoV-2 N protein was
detected using monoclonal antibody (4D11) (34). Images were captured using a Leica DFC 5400 digital
camera and were processed using Leica Application Suite v4.13.

Epitope and escape mutation mapping using yeast-displayed deep mutational scanning
libraries. Antibody epitopes were mapped via a deep mutational scanning approach (21). We previously
constructed two independent mutant libraries of the SARS-CoV-2 RBD containing virtually all of the
3,819 possible amino acid mutations in the RBD (20). These libraries were cloned into a vector enabling
the expression of RBD on the surface of yeast (35, 36). RBD mutant libraries were previously sorted to
enrich for mutant variants that successfully express on the yeast cell surface and bind human ACE2 as
described by Greaney et al. (21).

Antibody escape experiments and analysis were performed as described by Greaney et al. (21).
Briefly, 9 optical density (OD) units were thawed in 45 ml SD-CAA (6.7 g/liter yeast nitrogen base, 5.0 g/li-
ter Casamino Acids recipe, 1.065 g/liter morpholineethanesulfonic acid [MES], and 2% [wt/vol] dextrose)
and grown overnight at 30°C and 275 rpm. Then 33.3 OD units were back diluted into 50 ml SG-
CAA plus 0.1% (wt/vol) dextrose (SD-CAA with 2% [wt/vol] galactose and 0.1% [wt/vol] dextrose in place
of 2% dextrose) to induce RBD surface expression for 16 to 18 h at 23°C with mild agitation. Twenty-five
OD units of cells were washed twice with PBS-BSA (1� PBS with 0.2 mg/ml BSA) and incubated with
400 ng/ml antibody for 1 h at room temperature with gentle agitation, followed by secondary labeling
with 1:100 fluorescein isothiocyanate (FITC)-conjugated anti-Myc (CYMC-45F; Immunology Consultants
Lab) to quantify RBD expression and 1:200 phycoerythrin (PE)-conjugated goat anti-human IgG (catalog
no. 109-115-098; Jackson ImmunoResearch) to measure MAb binding. Flow cytometry and cell sorting
were used to select RBD variants (Myc-positive and PE-negative or low [Myc1 PEneg/low]) that reduce anti-
body binding via a selection gate drawn to capture wild-type-RBD-expressing cells labeled at 1% of the
antibody concentration of the library samples (Fig. S1a and b). Sorts were conducted in duplicate for
each antibody using the two independent RBD mutant libraries. For each sample, approximately 10 mil-
lion RBD-positive (RBD1) cells were processed on the flow cytometer, with between 400,000 and
2,800,000 Myc1 PEneg/low cells collected per sample (see fractions in Fig. S1b). Antibody-escaped cells
were grown overnight in SD-CAA. Plasmids were extracted from the Myc1 PEneg/low (antibody-escaped)
and preselected yeast populations. Unique identifier barcode sequences that were previously linked to
RBD mutant variants (20) were amplified via PCR and sequenced on an Illumina HiSeq 2500.

Read counts were parsed to determine the frequency of RBD variant v in the preselection ( fprev

� �
) and

antibody-escape (fpostv ) samples, with a pseudocount of 0.5 added to preselection and antibody-escape
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read counts. Per-variant escape fraction Evð Þ, reflecting the fraction of cells with an RBD genotype that fall
into the antibody escape bin, was calculated as

Ev ¼ F � f postv

f prev

where F represents the total fraction of the library that escapes binding, as determined experimen-
tally (percentages given in Fig. S1B). To eliminate genotypes that escape antibody due to global loss of
folding or function, we eliminated any variants where the per-variant measurement or any of the com-
ponent amino acid mutations fell below phenotypic thresholds for binding and expression as deter-
mined in our prior deep mutational scan (20), eliminating variants and mutations with expression scores
of less than –1 and binding scores of less than –2.35 (the binding level of the RaTG13 homolog RBD).
Global epistasis models were used to decompose single-mutant escape fractions from per-variant
escape scores as described by Greaney et al. (21). Final escape fraction scores were well correlated
between replicates at the level of individual mutation effects (Fig. S1c) and the sum of mutation effects
per RBD site (Fig. 1e). Final escape scores were taken as the averages of our duplicate library values.
Sites of strong escape from each antibody were determined heuristically as sites whose summed muta-
tional escape scores were at least 10 times the median sitewise sum of selection and within 10-fold of
the sitewise sum of the most strongly selected site.

Enzyme-linked immunosorbent assay. Ninety-six-well microtiter plates (Nunc MaxiSorp; Thermo
Fisher Scientific) were coated with 100ml recombinant SARS-CoV-2 RBD at a concentration of 1 mg/ml in
1� PBS (Gibco) at 4°C overnight; negative-control wells were coated with 1 mg/ml BSA (Sigma). The
plates were blocked for 1.5 h at room temperature with 280 ml blocking solution (1� PBS supplemented
with 0.05% Tween 20 [Sigma] and 10% FBS [Corning]). The MAbs were diluted to a starting concentra-
tion of 10 mg/ml, serially diluted 1:3, and incubated for 1.5 h at room temperature. The plates were
washed three times with T-PBS (1� PBS supplemented with 0.05% Tween 20), and 100 ml anti-human
IgG horseradish peroxidase (HRP) antibody (goat polyclonal; Jackson ImmunoResearch) diluted 1:2,500
in blocking solution or 100 ml HRP-conjugated anti-hamster IgG2/IgG3 antibody (Southern Biotech cata-
log no. 1935-05) diluted 1:500 in blocking solution was added to each well and incubated for 1 h at
room temperature. The plates were washed three times with T-PBS and three times with 1� PBS, and
100ml peroxidase substrate (SigmaFast o-phenylenediamine dihydrochloride; Sigma) was added to each
well. The reaction was stopped after 5 min using 100 ml of 1 M hydrochloric acid, and the plates were
read at a wavelength of 490 nm using a microtiter plate reader (BioTek).

To evaluate Fc receptor binding of the chimeric hamster MAb (ham-Ig) and the LALA derivatives, 96-
well microtiter plates were coated with 0.02 mg per well of recombinant Fc receptor (human FcgRI
[CD64], mouse FcgRI [CD64], mouse FcgRIII [CD16], and mouse FcgRIIIb [CD32b]; BioLegend catalog no.
790006, 773806, 790104 and 783306, respectively) in PBS at 4°C overnight. The plates were blocked for
1.5 h at room temperature with 280 ml blocking solution (1� PBS supplemented with 0.05% Tween 20
[Sigma] and 10% FBS [Corning]). The WT and LALA variant ham-Ig MAbs were diluted to a starting con-
centration of 10 mg/ml, serially diluted 1:3, and incubated for 1.5 h at room temperature. The plates
were washed three times with T-PBS (1� PBS supplemented with 0.05% Tween 20), and 100 ml of HRP-
conjugated F(ab9)2 anti-hamster IgG antibody (Jackson ImmunoResearch catalog no. 306-036-003)
diluted 1:1,000 in blocking solution was added to each well and incubated for 1 h at room temperature.
The plates were washed three times with T-PBS and three times with 1� PBS, and 100 ml peroxidase
substrate (SigmaFast o-phenylenediamine dihydrochloride; Sigma) was added to each well. The reaction
was stopped after 5 min using 100ml of 1 M hydrochloric acid, and the plates were read at a wavelength
of 490 nm using a microtiter plate reader (BioTek).

Quantification and statistical analyses. Statistical significance was assigned when P values
were ,0.05 using GraphPad Prism version 9.0. Tests, number of animals (n), median values, and statisti-
cal comparison groups are indicated in the figure legends. Analysis of weight change was determined
by one-way or two-way analysis of variance (ANOVA). Changes in infectious virus titer, viral RNA levels,
or inflammatory gene expression were compared to isotype-treated animals and were analyzed by one-
way ANOVA that is corrected for multiple comparison by controlling the false discovery rate. The
Cohen’s d value was calculated to measure the effect size of the treatment.

Data availability. The complete computational pipeline used to analyze these epitope mapping
experiments, and raw and processed data can be found on GitHub at https://github.com/jbloomlab/
SARS-CoV-2-RBD_MAP_Ellebedy_Abs. Raw Illumina sequencing data are available from the NCBI SRA at
BioSample PRJNA741371 under BioProject PRJNA639956.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 1.2 MB.
FIG S2, TIF file, 1.2 MB.
FIG S3, TIF file, 0.2 MB.
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