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A B S T R A C T   

The variation in experiences between high and low-socioeconomic status contexts are posited to play a crucial 
role in shaping the developing brain and may explain differences in child outcomes. Yet, examinations of SES and 
brain development have largely been limited to distal proxies of these experiences (e.g., income comparisons). 
The current study sought to disentangle the effects of multiple socioeconomic indices and dimensions of more 
proximal experiences on resting-state functional connectivity (rsFC) in a sample of 7834 youth (aged 9–10 years) 
from the Adolescent Brain Cognitive Development (ABCD) study. We applied moderated nonlinear factor 
analysis (MNLFA) to establish measurement invariance among three latent environmental dimensions of expe
rience (material/economic deprivation, caregiver social support, and psychosocial threat). Results revealed 
measurement biases as a function of child age, sex, racial group, family income, and parental education, which 
were statistically adjusted in the final MNLFA scores. Mixed-effects models demonstrated that socioeconomic 
indices and psychosocial threat differentially predicted variation in frontolimbic networks, and threat statisti
cally moderated the association between income and connectivity between the dorsal and ventral attention 
networks. Findings illuminate the importance of reducing measurement biases to gain a more socioculturally- 
valid understanding of the complex and nuanced links between socioeconomic context, children’s experiences, 
and neurodevelopment.   

1. Introduction 

Socioeconomic inequality in the United States is prevalent and 
disproportionately affects youth—especially youth of color (Koball and 
Jiang, 2018; Henry et al., 2019). Given the stressors families face from 
resource scarcity and intersecting forms of systemic racial inequity, so
cioeconomic disparities in mental and physical health have been found 
between children from low- and high-socioeconomic status (SES) 
homes, and this gap widens as children age (Evans and Kantrowitz, 
2002; Fletcher and Wolfe, 2014). The variation in lived experiences 
between high and low-SES contexts are thought to play a crucial role in 
shaping the developing brain and may explain observed differences in 
subsequent outcomes (Dufford et al., 2020). Yet, much of the literature 
on SES and brain development has been limited to categorial and/or 

coarse proxies of these experiences—often comparing groups of children 
designated as “high” or “low” on some broad-scale SES indicator like 
family income (Blair and Raver, 2012; Hanson et al., 2013; Noble et al., 
2015). A comprehensive and nuanced investigation into the ways SES 
alters brain development is crucial for identifying malleable environ
mental factors that can inform programs aimed at reducing socioeco
nomic disparities across developmental domains. Doing so calls for 
careful, valid measurement of the socioeconomic context as well as a 
multivariate individual differences approach, which we apply in the 
present study using the Adolescent Brain and Cognitive Development 
Study (ABCD) dataset (Casey et al., 2018). 
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1.1. Associations between SES and resting-state functional connectivity 

Burgeoning research at the intersections of neuroscience and psy
chology has begun investigating the neurodevelopmental correlates of 
SES, providing insight into the ways such inequalities come to affect 
children’s wellbeing. Here we focus on brain resting-state functional 
network connectivity (rsFC), thought to represent intrinsically corre
lated patterns of neural activity (independent of task performance) 
cultivated by a prior history of temporal co-activation within and be
tween key brain networks (Gordon et al., 2016; Graham et al., 2021). 
Individual differences in rsFC are apparent across childhood and have 
been shown to predict behavioral variation, providing insight into early 
markers of adaptive functioning (Marek et al., 2019; Casey et al., 2005). 

Studies have found SES-related differences in children’s functional 
resting state networks that support emotional, cognitive, and reward 
processing. Broadly, these studies demonstrate greater within- and 
between-network connectivity among youth growing up in high-SES 
homes compared to youth from more socioeconomically disadvan
taged homes (for a comprehensive review and meta-analysis, see Yaple 
and Yu, 2020). The most pronounced converging evidence comes from 
research showing less frontolimbic rsFC in low-SES youth (Barch et al., 
2016; Marshall et al., 2018; Gellci et al., 2019; Park et al., 2021) that 
persists into adolescence and early adulthood (Brody et al., 2019; Tooley 
et al., 2020). Childhood poverty has also been shown to predict 
decreased connectivity in key networks in adulthood (Sripada et al., 
2014), and a longitudinal study by Gao et al. (2015) suggests that these 
relations may emerge as early as the first year of life. Collectively, 
research has connected SES to differences in rsFC. However, key gaps 
remain in part due to limitations in the operationalization and mea
surement of socioeconomic advantage and disadvantage. 

1.2. A case for ensuring valid measurement of experiences implicated 
across the socioeconomic context 

SES is a multidimensional construct that includes measures of eco
nomic resources and is associated with a wide variation of both positive 
and negative psychosocial experiences. Yet, most of the research to date 
has relied on the use of income or parental education as interchangeable 
proxies of SES. Although income and parental education are correlated, 
they reflect different social and economic components, and there is an 
accumulating consensus that they should not be used interchangeably or 
without additional contextual factors (Hackman and Farah, 2009; 
Duncan and Magnuson, 2012). Certainly, income and parental educa
tion in and of themselves do not directly affect the brain; rather, they are 
distal indices that exert their influence in interactions with more prox
imal environmental factors, such as material deprivation or food inse
curity (Farah, 2017; Smith and Pollak, 2021). Indeed, one recent study 
showed that supportive parenting moderated the association between 
cumulative childhood poverty and rsFC in networks underlying 
self-regulation in adulthood (Brody et al., 2019). Emerging evidence 
demonstrates that measuring SES without proximal environmental 
measures may obscure important heterogeneity in relations between 
SES and child outcomes (DeJoseph et al., 2021; Raver et al., 2015; 
Hurwich-Reiss et al., 2019). 

A core aim of the current study is to deploy more proximal envi
ronmental measures to clarify the key factors by which SES-related 
adversity may influence brain development. Here we incorporate 
contemporary dimensional and topological models of adversity 
(McLaughlin and Sheridan, 2016; Ellis et al., 2020; Smith and Pollak, 
2021) to shed light on the links between early experience and brain 
function. Although these approaches span multiple and sometimes 
opposing views (McLaughlin et al., 2020), we chose to adopt elements 
from both. Specifically, we distinguish between effects of deprivation 
and threat (as the dimensional approach urges) while also utilizing 
measures that can reflect the intensity of those experiences as subjec
tively experienced by the child (as the topological model urges). 

Accumulating evidence suggests that early deprivation and threat 
are associated with different brain networks underlying cognition (e.g., 
cingulo-opercular, salience, dorsal attention; Herzberg et al., 2021; 
Rakesh et al., 2021a) and emotion regulation (e.g., fronto-amygdala 
network connectivity; Gee et al., 2013; Thijssen et al., 2020), respec
tively. Given this body of research, we believe that it is prudent to 
continue to distinguish between these sources of adversity. However, we 
aim to build on this work and move beyond using SES to index depri
vation, and to instead use measures that more directly index how chil
dren’s home environments confer opportunities for sociocognitive 
stimulation (e.g., Rosen et al., 2019). We do this by including measures 
of both subjective material deprivation and quality of caregiver social 
support, the latter of which builds upon past work that illustrates the 
promotive and protective roles that high-quality caregiving and social 
support have on self-regulation and underlying neurobiological devel
opment (Blair and Raver, 2012; Brody et al., 2019; Perry et al., 2019; 
Palacios-Barrios and Hanson, 2019). 

Although studies using the ABCD sample have begun uncovering 
associations between aspects of children’s environments and rsFC 
(Thijssen et al., 2020; Modabbernia et al., 2021; Ellwood-Lowe et al., 
2020; Hong et al., 2021; Rakesh et al., 2021b), approaches that aim to 
disentangle the effects of broader socioeconomic context (e.g., SES, 
parental education) from youths’ downstream experiences of these 
broader contexts (e.g., their home environment) remain to be explored. 
Based on prior work mentioned above (e.g., Brody et al., 2019), it is 
likely that the magnitude of SES effects on brain connectivity will be 
stronger in the context of proximal environmental factors. Indeed, 
prominent conceptual models of child development highlight the 
importance of considering interactions between more macro sociopo
litical contexts with more proximal experiences occurring within the 
children’s immediate home environments (Bronfenbrenner and Ceci, 
1994). 

It is our view that while it is important to select measures that 
distinguish between different dimensions of SES-related adversity and 
protective factors, quality measurement work is necessary for making 
valid comparisons of these dimensions across individual differences in 
SES. To do so, it is essential that the measures we use to represent 
constructs of deprivation, threat, and support are invariant (measure
ment invariance (MI); Meredith, 1993; Widaman et al., 2010), meaning 
they reflect common substantive and qualitative scales across develop
ment and sociodemographic groups. Testing and adjusting for mea
surement non-invariance (i.e., when the meaning of a scale differs across 
groups)—also known as differential item functioning (DIF)—ensures 
that conclusions are drawn from true differences on dimensions of 
experience, rather than by measurement artifacts that may result in 
spurious associations. In other words, there may be developmental, so
cioeconomic, or racial group differences in how the items in a given 
environmental measure operate. For example, on a measure capturing 
social support where the “true” latent level is constant over develop
ment, younger children may endorse an item like “My parent makes me 
feel better when talking about my worries with them” more often than 
older children whose peers tend to be more salient sources of support. 
When using a raw sum or mean score that weights all items in the 
construct equally, one would erroneously conclude that social support 
decreased with age. Extending this example to group differences by race 
or social class, such biased conclusions have potentially large implica
tions for policy and the effectiveness of individualized intervention ef
forts that aim to serve diverse groups of families (for a detailed review of 
MI and its implications for socioeconomically diverse samples, see 
DeJoseph et al., 2021). With a sample as large and diverse as the ABCD, 
and the benefits that the conclusions from such a study could have for 
the wellbeing of children, careful consideration of the quality of our 
measures is critical. 

M.L. DeJoseph et al.                                                                                                                                                                                                                            
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1.3. The present study 

In the current study, we leveraged recent advances in psychometrics 
to test two primary aims. The first aim was to replicate and extend the 
measurement model of environmental adversity and resources pre
sented in DeJoseph et al. (2021), which used a population-based sample 
of children living in predominantly low-income rural communities, and 
extend it to the ABCD sample (a population-based socioeconomically 
diverse sample of children in urban communities). We chose three 
measures characterizing key dimensions of children’s environments (i. 
e., material/economic deprivation, caregiver social support, and psy
chosocial threat) to examine the extent to which the measures were 
commensurable across key sociodemographic variables. To do this we 
used moderated nonlinear factor analysis (MNLFA; Bauer, 2017; Bauer 
and Hussong, 2009; Curran et al., 2014). MNLFA allows one to empir
ically test and adjust for possible sociodemographic bias at the item 
level, resulting in factor scores that reflect true differences at the latent 
construct level (see Fig. 1 for a conceptual overview of MNLFA). We 
hypothesized that income, parental education, and racial group mem
bership would contribute to measurement artifacts that ultimately 
manifest in biases in the latent representations of the constructs of in
terest. Finally, given the tight age range of the sample (9- to 10-year-
olds), we anticipated less pronounced effects of age. Exploratory 
analyses as a function of reported sex at birth were also conducted. 

Our second aim sought to examine the associations of continuous 
measures of both family income-to-needs and parental education on a 
subset of rsFC networks (Gordon et al., 2016) purportedly associated 
with cognitive, emotional, and behavioral regulation. Based on prior 
literature, we hypothesized that higher income and education would be 
associated with greater connectivity in these a priori selected networks. 
We further explored whether individual differences in more proximal 
and subjective experiences, measured via the latent factors established 

in our first aim, moderated the relation between SES and rsFC to provide 
a more comprehensive understanding of how SES shapes brain 
development. 

2. Methods 

2.1. Participants 

The ABCD study (http://abcdstudy.org) is a prospective, longitudi
nal neuroimaging study of approximately 11,000 children and care
givers across the United States. Using a multi-stage probability sampling 
approach (Heeringa et al., 2010), 9- and 10-year-old children were 
recruited across 21 sites to yield a nationally representative sample of 
youth in urban areas. Procedures were approved by individual sites’ 
institutional review boards and all participants and legal guardians gave 
informed consent. For more information on ABCD recruitment and 
sampling procedures, see Garavan et al. (2018). 

Data from the baseline assessment (ABCD DEAP version 2.0.1, 
N = 11,685 youths) were included in this study if the rsFC data met 
minimal quality control criteria (see Hagler et al., 2019). Of the data 
available, we excluded children whose rsFC data were collected using 
Philips scanners due to internal communication about processing errors 
(n = 1512). We further excluded cases that had less than 375 TRs (time 
resolution or sampling rate) (n = 1593), as directed by ABCD’s usability 
criteria (Hagler et al. 2019). Finally, cases that had implausible rsFC 
values across any of the chosen networks (i.e., r values above 0.9 or 
below − 0.9) were removed (1.4%). 

Families in this final analytic sample (N = 7834) reported an average 
income-to-needs ratio (INR; see measures section for how INR was 
calculated) of 3.7 (range =0.10 - 12.13) and a mean parent education 
level of 20 years (range = 9–24 years). Approximately 13.8% identified 
as Black, 20.1% as Hispanic, 53.5% White, and the remainder (9% 
mixed, 2% Asian, .3% American Indian and Alaskan Native (AIAN), .1% 
Native Hawaiian and Pacific Islander (NHPI)) were collapsed into an 
“other-race” category due to low base rates that posed model conver
gence issues (see measures below). See Table 1 for more demographic 
information on the analytic sample. 

2.2. Imaging procedure 

The imaging parameters used in the ABCD study have been reported 
in detail elsewhere (Casey et al., 2018). Briefly, imaging sessions were 
completed using one of three 3 T scanner models, depending upon 
site—Prisma (Siemens, Munich, Germany), Discovery MR750 (GE 
Healthcare, Chicago, IL), or Achieva dStream (Philips, Amsterdam, 
Netherlands) all using a 32-channel head coil. Participants completed 
T1-weighted and T2-weighted structural scans (1 mm isotropic) with 
prospective motion correction as determined by the ABCD pipeline 
(Hagler et al., 2019). Subjects completed four 5-minute eyes-open 
resting-state blood oxygen level-dependent scans. These resting-state 
images were acquired in the axial plane using an echo-planar imaging 
(EPI) sequence (2.4 mm isotropic voxels, TR = 800 ms, multiband ac
celeration factor = 6). Other resting-state image parameters varied by 
3 T scanner type and are detailed elsewhere (Casey et al., 2018). 

The Multi-Model Pressing Stress software package was used to 
analyze rsFC data using a combination of neuroimaging software 
packages (see Hagler et al., 2019 for a detailed review). Functionally 
defined cortical ROI time series (n = 333; Gordon et al., 2016) were 
calculated as the mean across all vertices in the surface representation 
and subcortical time series were calculated as the mean across all 
included voxels in the subcortical ROIs (n = 30; Fischl et al., 2002). 
Pairwise Pearson correlation values were generated for each of the [(N 
roi*Nroi-1)/2] possible pairs of ROIs and then Fisher-z transformed. 
Each ROI was assigned to a previously defined functional network 
(Hagler et al., 2019). Average within-system connectivity was computed 
using the average Fisher transformed correlation between each unique 

Fig. 1. Simplified illustration of moderated nonlinear factor analysis (MNLFA; 
Cole et al., 2020). MNLFA hypothesizes that the items/indicators on a given 
environmental measure all measure the same construct (i.e. material/economic 
deprivation, psychosocial threat, or social support) and iteratively tests and 
subsequently adjusts for non-invariance or DIF. All the indicators are related to 
the latent variable via factor loadings, which represent the predicted change in 
items associated with a one-unit shift in the latent variable. Each indicator 
includes an intercept, which represents the predicted value of the indicator 
when the value of the latent variable is zero. Ultimately, MNLFA generates 
adjusted person-specific estimates from questionnaire data to reduce the degree 
of measurement bias attributable to demographic factors such as age, sex, so
cioeconomic status, or race. Importantly, MNLFA factor scores assure a com
mon scale of measurement across groups and age, as well as adjust for 
measurement DIF that would have otherwise bias substantive analyses. Note. 
DIF paths, in which covariates affect the measurement of the items: ID (inter
cept DIF); LD (loading DIF). Impact paths, in which covariates affect the latent 
variable itself: MI (mean impact); VI (variance impact). The three arrows from 
environmental latent construct (oval) to the indicators generically represent 
factor loadings; the curved arrow on the latent construct represents its variance. 
Only DIF for ID, LD, and MI were tested in the current manuscript. 
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pair of ROIs in the network. Similarly, between-system connectivity was 
computed by averaging the Fisher transformed correlation between each 
ROI in one network and all of the ROIs in a second network. Finally, 
network-to-ROI relationships were calculated by averaging the Fisher 
transformed correlations between each ROI in a given network and three 
subcortical ROIs (averaged across right and left hemispheres): the 
amygdala, hippocampus, and nucleus accumbens. These subcortical 
ROIs were chosen because of prior demonstrated relations between 
adverse childhood experiences and frontolimbic connectivity (e.g., 
Yaple and Yu, 2020). 

2.3. Measures 

2.3.1. Socioeconomic indices 
Income-to-needs ratios (INR) were calculated by first taking the 

average of each binned income (<$5000, $5,000 - $11,999, $12,000 - 
$15,999, $16,000 - $24,999, $25,000 - $34,999, $35,000 - $49,999, 
$50,000 - $74,999, $75,000 - $99,999, $100000 - $199999, 
>=$200000) as a rough approximation of the family’s total reported 
income. Income was then divided by the federal poverty threshold for 
the year at which a family was interviewed (range = $12,486 – 
$50,681), adjusted for the number of persons in the home. Highest ed
ucation (in years) out of the two caregivers (or one if a second caregiver 
was not provided) was used as a continuous variable. 

2.3.2. Material and economic deprivation 
A total of seven items pertaining to economic hardship were chosen 

from the caregiver-reported ABCD Demographics Questionnaire. Spe
cifically, seven items assess whether or not (1 =Yes; 0 =No) a family 
experienced any of the following financial-related hardships over the 
last 12 months: could not afford food, went without telephone service, 
could not pay rent or mortgage, were evicted, had gas or electric services 
suspended, and had a family member unable to visit the doctor or 

dentist. 

2.3.3. Psychosocial threat 
Threat exposure in the home was measured using youth reports on 

the 9-item ABCD Youth Family Environment Scale (FES). Items assess 
youths’ perceived conflict within their family (e.g., We fight a lot in our 
family, Family members sometimes get so angry they throw things, Family 
members sometimes hit each other; 1 = True; 0 = False). Two items were 
positively-valenced and thus reverse-scored so that higher scores indi
cated greater experiences of threat. 

2.3.4. Caregiver social support 
The ABCD Children’s Report of Parental Behavior Inventory (CRPBI) 

was used to measure levels of caregiver social support. While some 
youth reported on both caregivers, only five items corresponding to the 
primary caregiver (85% biological mother) were used to maximize the 
available data. Youth were asked how true (1 =Not like him/her; 
2 =Somewhat like him/her; 3 =A lot like him/her) each of the following 
statements applies to their primary caregiver: Makes me feel better after 
talking over my worries with him/her, Smiles at me very often, Is able to make 
me feel better when I am upset, Believes in showing his/her love for me, and Is 
easy to talk to. Across all items, a score of 1 was endorsed in less than 1% 
of cases and therefore scores were collapsed and dichotomized such that 
a score of 1 or 2 was recoded to 0 and a score of 3 was recoded to 1. 

2.3.5. Sociodemographic covariates 
Child race and sex were included as control covariates in our sub

stantive analytic models. Informed by group base rates (see Participants 
section above), child race was collapsed into 4 levels (White, Black, 
Hispanic, Other) and subsequently dummy-coded with White (the most 
numerous racial group) serving as the reference category in all models. 
Child sex was dichotomized such that 1 = Female and 0 = Male. Child 
age (in months) was used as a continuous variable and centered on the 
mean. 

2.4. Statistical analyses 

2.4.1. Establishing invariant measures of adversity and support 
In an effort to ensure valid measurement of our environmental di

mensions of experience, we conducted a series of psychometric analyses. 
Items from the ABCD demographics survey, family conflict survey, and 
caregiver support survey were chosen to represent measures of mate
rial/economic deprivation, psychosocial threat, and caregiver social 
support, respectively. Initial item screening was conducted via a series of 
graphical and descriptive statistics. For categorical items that did not 
meet a minimum covariance cell coverage (i.e., scores that did not have 
at least 1% endorsement), items were collapsed so that the models could 
be identified (this was the case for the caregiver social support items). 

We then applied confirmatory factor analysis (CFA) models to assess 
the unidimensionality of each construct. CFA models for each construct 
demonstrated reasonable model fit, based on commonly-used thresholds 
(Hu and Bentler, 1999; Material and economic deprivation: χ2 =

22534.32, p = .00, CFI =.96, RMSEA ==0.075 Psychosocial threat: χ2 =

16532.77, p = .00, CFI =.=0.95RMSEA =.053; Caregiver social support: 
χ2 = 176.27, p = .00, CFI =.9=0.99MSEA =.0=0.054). To test and 
subsequently adjust for partial measurement invariance among each of 
the established constructs, we then conducted MNLFA models (Fig. 1) 
using the automated MNLFA (aMNLFA; Gottfredson et al., 2019) R 
package Version 1.1.0 (Cole et al., 2021). Specifically, we tested for 
differences in the factor means, item intercepts/thresholds, and item 
factor loadings as a function of age, sex, race/ethnicity, INR, and 
parental education. In all models, the factor mean and factor variance 
were constrained to 0 and 1 when all covariates were centered (desig
nating White 9.9-year-old boys with a college graduate parent and a 
family INR of 3.6 as the reference group). All models were fitted using a 
maximum likelihood estimator with Monte Carlo integration. 

Table 1 
Participant and collection site characteristics for cases included in the final 
sample (N = 7834).   

N (%) 

Site   
site02 480 (6.1) 
site03 502 (6.4) 
site04 599 (7.6) 
site05 284 (3.6) 
site06 442 (5.6) 
site07 249 (3.2) 
site08 222 (2.8) 
site09 328 (4.2) 
site10 505 (6.4) 
site11 325 (4.1) 
site12 433 (5.5) 
site13 509 (6.5) 
site14 467 (6.0) 
site15 281 (3.6) 
site16 928 (11.8) 
site18 254 (3.2) 
site20 541 (6.9) 
site21 454 (5.8) 
site22 31 (0.4) 

Child race   
Black 1084 (13.8) 
Hispanic 1574 (20.1) 
Other (mixed, Asian, AIAN, NHPI) 983 (12.5) 
White 4193 (53.5) 

Child sex   
Female 3922 (50.1) 
Male 3912 (49.9)  

M (SD) 
Child age (mo) 119.3 (7.52) 
Income-to-needs 3.73 (2.41) 
Parent highest education (yrs) 20.28 (2.48)  
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After testing for heterogeneity in the factor means and variances as a 
function of each of the sociodemographic covariates, heterogeneity in 
the loadings and the measurement intercepts were tested iteratively for 
each indicator variable. Benjamini-Hochberg adjustments were applied 
in this step to account for inflated type-1 error rates. A final model was 
generated by retaining all significant covariate effects on the factor 
(mean and variance) and items (thresholds and loadings) and fitted to 
the entire sample. Factor scores (expected a posteriori estimates) were 
then extracted from this final model and used in the main substantive 
analyses. In short, MNLFA factor scores assure a common scale of 
measurement across groups and age, as well as adjust for measurement 
DIF that would have otherwise biased our substantive analyses. 

2.4.2. Investigating main and interactive effects of SES and environmental 
experiences on resting state functional connectivity 

A series of mixed-effects models were fitted with distal indices of SES 
(INR and parent education) and environmental exposures (MNLFA 
scores) as predictors. Model outcomes (based on prior literature) 
included (1) within-network connectivity for the cingulo-opercular 
(CON), default mode (DMN), dorsal attention (DAN), ventral attention 
(VAN), frontoparietal (FPN), and salience networks (SAL); (2) between- 
network connectivity between the default mode (DMN) and SAL net
works as well as the DAN and VAN networks; and (3) network- 
subcortical connectivity, specifically CON connectivity with the amyg
dala, hippocampus, and nucleus accumbens. To examine the robustness 
and predictive utility of our models, all model fitting steps were esti
mated with a randomly selected training set (2/3 of the sample, 
n = 5172). Final models were then used to predict rsFC outcomes in the 
holdout test set (n = 2662), and cross-validated R2 was calculated to 
estimate the proportion of variance explained in data the model had not 
been fit to. Rates of missing data were low (less than 10% across all 
predictors) and missing predictors were interpolated using predictive 
mean matching (MICE package in R; Groothuis-Oudshoorn and Van 
Buuren, 2011). All models used a Nelder-Mead optimizer. 

For each rsFC outcome, linear mixed-effects models were conducted 
using the lme4 package (Bates et al., 2015) in R 3.3. Specifically, we 
fitted a taxonomy of models. First, to address our key questions 
regarding the main-effect relations between our environmental mea
sures and neural connectivity, we regressed each of the respective 
connectivity metrics on our key environmental measures and control 
covariates. This included sensitivity checks (e.g., quadratic terms) to 
confirm the linear nature of the relation of interest. We note that while 
race/ethnicity had to be retained as control covariates in our mixed 
models due to MNLFA requirements (see above), we do not interpret 
observed effects of race/ethnicity on rsFC. This is because such racial 
categories are confounded by historical and structural forms of 
marginalization that we did not measure explicitly (Henry et al., 2019), 
making any main effects challenging to thoroughly disentangle. 

Each outcome was fitted in its own model and random effects for 
research site and family were included in all models to account for site- 
and family-level (i.e., sibling) nesting. Second, we then tested the extent 
to which the magnitude of the relation between common, broad markers 
of SES (i.e., income and parent education) and resting connectivity 
varied as a function of children’s experiences of threat, deprivation, and 
support. Specifically, we examined the INR x threat and INR x support 
interactions, followed by parent education x threat, parent education x 
support interactions. Interactions between SES and material deprivation 
were not examined due to the potential for extrapolation (i.e., there 
were very few cases for which a child had high SES and high material 
deprivation). Significant interaction effects were probed for significance 
of simple slopes at one standard deviation below and one standard de
viation above the mean for the moderator variable. All comparisons of 
nested models were conducted using likelihood ratio tests and changes 
in AIC. 

The predictive utility of our final models was assessed by calculating 
R2 in the held-out set, with an R2 > 0 indicating that the model 

performed above chance in predicting variation in new data (Meteyard 
and Davies, 2020). Models that fell below an R2 of 0 were deemed un
reliable. We note that although this is a low threshold, R2 from a 
cross-validated approach is more sensitive than from what is calculated 
in models fit to the full dataset, which are likely to be overfit and thus 
result in inflated R2. Model estimates for models with cross-validated 
R2 > 0 were then estimated using the full sample. Models were 
adjusted for false discovery rate (FDR; p < .05) to correct for multiple 
comparisons and the adjusted p-values are reported (Benjamini and 
Hochberg, 1995). 

Code for analyses presented here is available at https://osf. 
io/ma3sh/?view_only=c01ce6fbf24d46c29899d3624d164eb3. 

3. Results 

3.1. Measurement model of environmental experiences 

Significant findings of non-invariant items, and non-invariant factor 
means and variances are reported below (for detailed model results see  
Table 2). Observed DIF effects were on item intercepts (i.e., predicted 
value of the indicator when the value of the latent variable is zero) and 
loadings (i.e., predicted change in items associated with a one-unit shift 
in the latent variable). In other words, even after controlling for the level 
of the latent variable, there were still some items that differed as a 
function of child age, racial group, sex, INR, and/or parental education 
level. 

3.1.1. Material and economic deprivation 
DIF testing via MNLFA indicated that five of the seven items were 

non-invariant as a function of income, parent education, and race. 
Specifically, holding the latent factor scores of material and economic 
deprivation constant, children from lower SES families, and children 
who identify as Black tended to endorse items referring to greater eco
nomic strain at different frequencies (see Table 2 and Fig. S2). Loading 
DIF was also found for three items as a function of INR, indicating a 
stronger association between those items and the latent factor. After 
adjusting for this non-invariance (i.e. DIF) at the item level, average 
group differences at the latent construct level indicated that children 
identifying as Black and children identifying as members of the other 
race category were exposed to greater levels of material and economic 
deprivation (B = 0.437, p < .001 and B = 0.248, p <

[TS8201 0.001ctively). Group differences were also found with parental 
education and INR, such that families with greater years of parental 
education and higher income had lower average deprivation exposure (B 
= − 0.059, p <.001; B = − 0.298, p < .001, respectively). 

3.1.2. Psychosocial threat 
Intercept and loading DIF was found across eight of the nine items of 

the youth-reported family conflict scale, indicating large amounts of DIF 
as a function of multiple sociodemographic characteristics (Table 2 and 
Fig. S2). Notably, while children from Black and less educated house
holds endorsed threat items more frequently than other groups, there 
were no “true” substantive differences at the latent construct level after 
adjusting for these measurement biases. Average latent differences were 
found for age (B = − 0.009, p < .001), with experiences of threat 
decreasing as children age. Children identifying as female (B = − 0.137, 
p < .001) and children from higher-income families (B = − 0.093, 
p < .001) experienced less threat, on average. 

3.1.3. Caregiver social support 
The MNLFA results indicated DIF for three items in the youth- 

reported CRPBI scale. Specifically, intercept DIF was found for three 
items as a function of several sociodemographic covariates and loading 
DIF was found for one item as a function of child sex. Notably, while 
Black children and children from higher educated homes endorsed two 
items more frequently, there were no corresponding substantive 
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Table 2 
Results from final MNLFA models for material and economic deprivation, psychosocial threat, and caregiver social support constructs. In all models, the latent means 
are constrained to 0 and variances are constrained to 1 when all covariates are set to 0 for categorical covariates and mean-centered for continuous covariates 
(designating White 9.9-year-old boys with a college graduate parent and a family INR of 3.7 as the reference group).   

Differences at the latent level (factor means) and item level (DIF) 

Material deprivation (last 12 months) Sex Age Black Hispanic Other INR Education 

Factor mean: 0.00a – – 0.44 * ** – 0.25 * ** -0.30 * ** -0.06 * ** 
Factor variance: 1.00a – – – – – – – 

Item 1. Needed food but couldn’t afford to buy it or couldn’t afford to go out to get 
it?        
Threshold: 7.31 – – – – – -0.92 * ** – 
Loading: 3.25 – – – – – 0.39 * * – 

Item 2. Were without telephone service because you could not afford it?        
Threshold: 12.49 – – 0.50 * ** – – -2.37 * ** – 
Loading: 4.81 – – – – – 0.87 * ** – 

Item 3. Didn’t pay the full amount of the rent or mortgage because you could not 
afford it?        
Threshold: 4.69 – – – – – – – 
Loading: 2.33 – – – – – – – 

Item 4. Were evicted from your home for not paying the rent or mortgage?        
Threshold: 10.50 – – – – – -1.31 * * – 
Loading: 3.29 – – – – – 0.49 * * – 

Item 5. Had services turned off by the gas or electric company, or the oil company 
wouldn’t deliver oil because payments were not made?        
Threshold: 5.49 – – – – – – – 
Loading: 2.14 – – – – – – – 

Item 6. Had someone who needed to see a doctor or go to the hospital but didn’t go 
because you could not afford it?        
Threshold: 5.11 – – – – – 0.01 0.12 * ** 
Loading: 1.95 – – – – – – – 

Item 7. Had someone who needed a dentist but couldn’t go because you could not 
afford it?        
Threshold: 3.94 – – -1.07 * ** – – -0.15 * ** – 
Loading: 1.76 – – – – – – – 

Psychosocial threat Sex Age Black Hispanic Other INR Education 
Factor mean: 0.00a -0.14 * ** -0.01 * ** 0.08 -0.03  -0.09 * ** 0.01 
Factor variance: 1.00a – – – – – – – 

Item 1. We fight a lot in our family.        
Threshold: 1.85 – – – – – – – 
Loading: 2.12 – – – – – – – 

Item 2. Family members rarely become openly angry.b        
Threshold: 0.88 0.12 * – 0.23 * * – – – -0.04 * ** 
Loading: 0.93 0.33 * ** – -0.24 * – – – 0.05 * ** 

Item 3. Family members sometimes get so angry they throw things.        
Threshold: 2.60 – – – -0.42 * ** – -0.11 * ** – 
Loading: 1.46  – – – – –  

Item 4. Family members hardly ever lose their tempers.b        
Threshold: 0.56 -0.04 – -0.17 -0.31 * ** – 0.05 * * -0.04 * * 
Loading: 1.38 0.29 * * – -0.31 * * – – 0.07 * * – 

Item 5. Family members often criticize each other.        
Threshold: 1.86 – – 0.12 – – – – 
Loading: 1.37 – – – – – – – 

Item 6. Family members sometimes hit each other.        
Threshold: 1.60 -0.24 * ** -0.02 * ** – -0.51 * ** – -0.06 * ** – 
Loading: 1.63 – – – – – – – 

Item 7. If there’s a disagreement in our family, we try hard to smooth things over 
and keep the peace.b        
Threshold: 2.66 – – – – – -0.04 * – 
Loading: 1.02 – – – – – – – 

Item 8. Family members often try to one-up or outdo each other.        
Threshold: 1.46 – 0.020 * ** – – – – – 
Loading: 1.07 – – – – – – – 

Item 9. In our family, we believe you don’t ever get anywhere by raising your voice. 
b        
Threshold: 1.15 -0.14 * * – – – – – – 
Loading: 0.61 – – – – – – – 

Caregiver social support Sex Age Black Hispanic Other INR Education 
Factor mean: 0.00a 0.19 * ** 0.01 * * -0.02 – -0.15 * ** 0.02 * -0.004 
Factor variance: 1.00a – – – – – – – 

Item 1. Makes me feel better after talking over my worries with him/her.        
Threshold: − 2.05 – – 0.37 * ** – – – – 
Loading: 2.13 – – – – – – – 

Item 2. Smiles at me very often.        
Threshold: − 1.40 0.27 * ** – – – – 0.07 * ** 0.05 * * 
Loading: 1.48 – – – – – – – 

Item 3. Is able to make me feel better when I am upset.        
Threshold: − 2.46 – – – – – – – 

(continued on next page) 

M.L. DeJoseph et al.                                                                                                                                                                                                                            



Developmental Cognitive Neuroscience 53 (2022) 101043

7

differences at the latent construct level. Of the average differences on 
the latent construct that were found, older children (B = 0.006, 
p < .001), children identifying as female (B = 0.188, p < .001), and 
higher-income children (B = 0.015, p = .032) experienced greater social 
support from caregivers. Children in the other-race category experi
enced less social support compared to White children, on average (B =
− 0.154, p < .001). 

3.2. Associations between SES, environmental factors, and rsFC 

3.2.1. Associations between SES and environmental factor scores 
Correlations between our environmental factor scores of material 

deprivation, psychosocial threat, and material support ranged between 
r = − 0.26 to 0.04, highlighting the limited overlap of these constructs. 
These environmental measures were also associated with broader 
measures of SES, like INR and parental education (see Fig. 2 and Sup
plementary Figs. S1 and S3). Specifically, as expected, the material and 
economic deprivation factor was more strongly correlated with INR 
(r = − 0.71) and less so for parental education (r = − 0.19). In contrast, 
psychosocial threat exhibited only modest negative correlations with 
INR (r = − 0.25) and parental education (r = − 0.12). Even weaker cor
relations were found for caregiver social support and INR (r = 0.04) and 
education (r = − 0.001). See Fig. S1 in Supplemental Material for a full 
and partial correlation matrix. 

3.2.2. Associations with rsFC 
As outlined above, the predictive utility of measures of SES and our 

environmental MNLFA factor scores on rsFC were investigated via 
mixed-effects models. All final models discussed below performed above 
chance (R2 > 0 in the held-out test set), explaining between.7 – 3.5% of 
the variance in the held-out sample. Although this range is notably 
small, this represents a more robust indicator than the R2 of models fit to 
the data used to generate the models themselves, which are prone to 

overfitting and thus can result in inflated R2 estimates. Model estimates 
for statistically significant models were then estimated using the full 
sample, and are described in more detail below. Models reported below 
were adjusted for false discovery rate (FDR; p < .05) to correct for 
multiple comparisons (Benjamini and Hochberg, 1995). Full model re
sults can be seen in Table 3 and Fig. 3. 

3.2.2.1. Main effects of interest. Contrary to hypotheses and prior 
literature, few statistically significant associations between SES indices 
or environmental variables and rsFC were evident. Of the relations that 
reached statistical significance, standardized effect sizes were minimal 
in traditional terms but are nonetheless considered meaningful for a 
sample of this size according to recent reports by ABCD study team 
members (see Dick et al., 2021; Owens et al., 2020). Specifically, higher 
parental education was related to greater connectivity in the SAL 
network (β = 0.04; p < .05), as well as greater CON-hippocampus con
nectivity (β = 0.04; p < .05). With respect to our environmental MNLFA 
scores, greater psychosocial threat was related to less CON-amygdala (β 
= − 0.05; p < .001) and CON-hippocampus connectivity (β = − 0.03; 
p < .05). Notably, all of the aforementioned effect sizes fall around the 
ABCD median in-sample absolute value of.03 (Owens et al., 2020). 

3.2.2.2. Interactions between SES and environmental factors on rsFC. We 
found that psychosocial threat moderated the association between INR 
and DAN-VAN connectivity (β = − 0.03; p < .05). Although estimates 
are based on threat as a continuous variable, visualizations of this 
interaction using + /- one SD above (0.77) and below (− 0.89) the mean 
(− 0.06) (Fig. 3) illustrate that for DAN-VAN connectivity, children from 
lower-income families combined with higher levels of threat exhibited 
more connectivity than those who experienced lower levels of threat. 
The reverse was true for children from higher income families, such that 
children from higher-income homes combined with higher levels of 
threat demonstrated less connectivity than those who experienced lower 

Table 2 (continued )  

Differences at the latent level (factor means) and item level (DIF) 

Material deprivation (last 12 months) Sex Age Black Hispanic Other INR Education 

Loading: 2.42 – – – – – – – 
Item 4. Believes in showing his/her love for me.        

Threshold: − 4.72 – – – – – – – 
Loading: 2.59 – – – – – – – 

Item 5. Is easy to talk to.        
Threshold: − 1.13 -0.12 -0.02 * ** – – – – – 
Loading: 1.34 0.39 * ** – – – – – – 

*p < .05, * *p < .01, * **p < .001. 
a Indicates parameter values are fixed to identify the model and set the scale of the latent variable. 
b Indicates item-reverse coded for interpretability. 

Fig. 2. Density plots illustrating overlap of MNLFA-derived dimensions of experience as a function of family income. Red = Families that fall at or below an income- 
to-needs ratio of 1 (i.e., 100% of the federal poverty threshold) and blue = those above an INR of 1. Plots demonstrate substantial individual variation in latent 
dimensions of children’s experiences across high and low SES indices, further supporting the utility in moving beyond group comparisons of children designated as 
“high” or “low” on broad-scale SES indicators like family income. 
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levels of threat. Johnson-Neyman plots and analysis of simple slopes 
further showed that the relation between INR and DAN-VAN was only 
statistically significant for children experiencing high levels of threat 
(+1 SD: β = − 0.002; p = .01; Mean: β = − 0.001; p = .13; − 1 SD: β =
0.00; p = .93 (Supplementary Fig. S4)). No other statistically significant 
interactions were found. 

4. Discussion 

An accumulating body of research has begun elucidating the neural 
correlates of socioeconomic differences in childhood. This work has 
largely been distinct from much of the developmental psychology 
literature, which has increasingly adopted more nuanced approaches to 
measuring the SES context and children’s experiences to better under
stand sources of risk, resilience, and adaptation in child outcomes. In 
this study, we sought to advance our understanding of the neural cor
relates of SES by disentangling the effects of individual variation in 
continuous indices of SES as well as dimensions of more proximal and 
subjective experiences. To do this, we adopted moderated nonlinear 
factor analysis to ensure our measures were valid representations of true 
individual differences at the latent construct level (MNLFA; Bauer, 
2017). MNLFA afforded empirical tests and subsequent statistical 
adjustment for measurement DIF—or biases—as a function of key 
sociodemographic covariates including child age, sex, racial group, 
family INR, and parental education level. Broadly, our findings illumi
nate the importance of reducing measurement biases to gain a more 
socioculturally-valid understanding of the complex links between the 
environment and brain development. 

4.1. Measuring dimensions of experience: Do these measures mean the 
same thing for diverse groups of children in the ABCD study? 

Our first aim sought to characterize individual variation in key as
pects of children’s experiences. We found substantial item-level 

measurement biases across all three dimensions of experience, sug
gesting that these scales did not mean the same thing for children from 
diverse sociodemographic groups. This was a critical finding given that 
such measurement DIF can lead to biased conclusions if left unadjusted. 
Psychosocial threat—indexed via child-reported family conflict in the 
home—showed the most extensive sociodemographic measurement 
differences. Specifically, eight out of nine items that make up this 
measure showed evidence for DIF as a function of at least one of the 
sociodemographic covariates tested except for the ‘other’ racial group 
category. The most notable effects came from DIF for the Black and 
household education covariates, which importantly did not show cor
responding significant effects at the latent construct level. In other 
words, children who identified as Black and children from lower- 
educated households were more likely to endorse several items corre
sponding to more severe family conflict regardless of their actual levels 
of threat. A typical summary score would have inaccurately suggested 
that Black and lower SES children experience more psychosocial threat 
than White or higher SES children, despite the true latent construct 
being the same across groups. Evidence for such racial and class mea
surement biases has far reaching implications that could compromise 
our collective efforts for a more socioculturally-appropriate cumulative 
science. MNLFA’s ability to empirically adjust for this measurement bias 
demonstrates the utility of the method. 

Our measure of material and economic deprivation revealed that 
lower-income as well as Black families tended to endorse items related 
to difficulty paying for certain services and food—irrespective of their 
true value on the latent construct. In other words, beyond broad material 
deprivation, certain groups face specific barriers to accessing particular 
resources. Our measure of caregiver social support exhibited the fewest 
instances of DIF, with stronger endorsement of positive caregiver in
teractions from Black children and children from higher SES homes. 
Child sex and age also showed DIF for one item referring to ease of 
communication with their caregiver, reflecting normative develop
mental changes in the meaning of caregiver-child relationship (Larson 

Table 3 
Final mixed effects models for resting-state connectivity outcomes that exhibited significant main or interactive effects of interest that survived correction. INR 
=income-to-needs ratio. INR and highest parent education are mean-centered. Material/Economic Deprivation, Caregiver Social Support, and Psychosocial Threat are 
MNLFA scores.  
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et al., 1996). 
At the latent construct level, average group and individual differ

ences were found across all three environmental factors, highlighting 
how key dimensions of experience are uniquely characterized for 
different children. For the material and economic deprivation factor, 
Black children, children from the other-race category, and children from 
lower-income or lower educated households experienced greater 
deprivation. We speculate that these differences in families’ levels of 
resource scarcity are a reflection of the ways both race and education 
intersect with historical forms of racial segregation and social stratifi
cation in the U.S., with persisting racial wealth gaps and barriers to 
accessing social safety nets (Henry et al., 2019; Gibson-Davis et al., 
2021; Parker et al., 2016). For both the psychosocial threat and care
giver social support factors, similar effects were found. First, average 
differences were found for sex and age, which could reflect sex-specific 
and developmental shifts in children’s ability to recognize and appraise 
emotional and social interactions (for a review, see McClure, 2000). 
Children from the other-race category also experienced less caregiver 
support, whereas children from lower-income families experienced 
greater threat and less caregiver support. These findings align with prior 
research demonstrating how financial hardship and/or being a part of a 
marginalized racial group places added pressures on families (Coll et al., 
1996; Henry et al., 2019). Such pressures may lead families to adopt 
more culturally- and ecologically-adaptive socialization processes that 

better equip children with the tools needed to navigate social and racial 
marginalization (Wang et al., 2020). 

Descriptively, minimal to moderate correlations between all but one 
of the factor scores and SES indices illuminate the importance of moving 
beyond income or education to better understand the rich heterogeneity 
in adversity and support that children across the socioeconomic spec
trum experience. In this large population-based sample of children 
spanning a wide SES range, we found significant overlap in our envi
ronmental constructs between high- and low-SES children—providing 
further support for incorporating methods that account for individual 
variation in several key contextual and ecological factors. These 
descriptive findings also replicate and extend the relations found in an 
MNLFA model, composed of similar environmental constructs among a 
population-based sample of children living in rural poverty (DeJoseph 
et al., 2021). Collectively, these observations support the growing 
appreciation in the field for individual differences in children’s envi
ronmental experiences to better understand sources of strength and risk 
implicated in socioeconomic advantage and disadvantage (Ellis et al., 
2020; Merrick et al., 2019). 

4.2. Associations with resting-state functional brain connectivity: 
Disentangling the effects of SES and environmental experiences 

Our second aim sought to test the unique and interactive effects of 

Fig. 3. (A) Main effects relations between so
cioeconomic and environmental variables and 
child resting-state functional connectivity. (B) 
Interactive effect of income-to-needs ratio (INR) 
and psychosocial threat MNLFA score on DAN- 
VAN connectivity. Only effects that remained 
statistically significant following correction in 
final mixed models are illustrated. Blue lines 
indicate the predicted effect superimposed on 
the raw data points. Abbreviations: MNLFA 
= moderated nonlinear factor analysis; DAN 
= dorsal attention network; VAN = ventral 
attention network. Hippocampus and amygdala 
ROIs not shown.   
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SES and our newly-derived dimensions/factors of child experiences on 
an a priori subset of rsFC networks underlying cognitive, emotional, and 
behavioral regulation. Overall, we found very few statistically signifi
cant relations and did not replicate many environmental and SES brain 
relations typically observed in prior work. However, given our mea
surement approach and large sample size, our findings offer enhanced 
precision to detect small but nonetheless important effects. Beginning 
with findings related to SES, parent education was uniquely associated 
with greater connectivity in the SAL network, which is responsible for 
voluntary top-down attentional control as well as detecting and filtering 
salient stimuli (Grayson and Fair, 2017). Parent education, over income, 
may be related to this more goal-directed attention monitoring network 
given the ways experiences with caregivers shape individual differences 
in higher order cognitive processes (e.g., Rosen et al., 2019). We also 
found parental education to be a unique predictor of CON-hippocampus 
connectivity, which aligns with prior work showing relations between 
education and patterns of activation involved in working memory pro
cesses (e.g., Sheridan et al., 2012). These findings for education, which 
were not demonstrated for income, could be suggestive of the more 
direct role parent education has for scaffolding executive networks. 
Similarly, these findings highlight the importance of using multiple 
indices of SES and align with recent meta-analyses showing variations in 
neural and cognitive outcomes depending on how SES is operationalized 
(Yaple and Yu, 2020; Chuan-Peng, Cai, Fried, Forschner, 2021). 

Beyond the effects of socioeconomic factors, only one of our envi
ronmental variables uniquely predicted rsFC. Greater levels of psycho
social threat were associated with lower CON-amygdala and CON- 
hippocampus connectivity. This finding aligns with prior work sug
gesting that threat may be primarily associated with stress and affect 
regulation—with greater threat linked to more “adult-like” or negative 
frontolimbic coupling (Gee et al., 2013; Rosen et al., 2019; McLaughlin 
and Sheridan, 2016; Tian et al., 2021). 

We found little support for our hypotheses about the potentially 
interactive role of proximal experiences on SES-rsFC relations. The as
sociation between INR and DAN-VAN connectivity—networks that are 
known to interact to control dynamic top-down and bottom-up shifts in 
attention (Vossel et al., 2014)—was moderated by psychosocial threat. 
In the context of higher threat, children from lower-income homes 
showed amplified connectivity whereas children from more affluent 
homes showed attenuated connectivity. It may be the case that the 
combination of both economic scarcity and high threat results in the 
recruitment of more sustained hypervigilance, which may not be as 
critical in more economically-resourced homes. This interpretation is 
consistent with both neural and behavioral evidence showing enhanced 
attention biases to threat in the context of adversity (e.g., Raver et al., 
2017; Silvers et al., 2017; Dufford et al., 2019). In other words, due to 
compounding constraints, what is adaptive in one context may not be 
adaptive in another, and recent brain-behavior evidence in the ABCD 
supports this (Ellwood-Lowe et al., 2020). Disentangling how these 
observed patterns are related to behavior and wellbeing is an important 
future direction. 

Linking the above findings to our first aim, the absence of many of 
our predicted associations highlight the importance of testing and 
adjusting for potential measurement biases. Indeed, prior work in the 
ABCD study has shown relations between the environmental measures 
used in the current study and various neurodevelopmental metrics (e.g., 
Thijssen et al., 2020; Modabbernia et al., 2021; Hong et al., 2021; 
Rakesh et al., 2021b). We may not have come to similar conclusions due 
to the way in which MNLFA creates person-specific scores that empiri
cally adjust for sociodemographic heterogeneity in item responses. 
Instead of weighting each item equally as is done implicitly in any sum 
or mean score, MNLFA creates adjusted factor scores that statistically 
weight each item as a function of person-level measurement biases as 
well as variation in the type and severity of each item’s relation to the 
latent construct (Gottfredson et al., 2019). Not accounting for DIF and 
item-level weighting in this way can lead to substantively different 

conclusions, which our team has shown in prior work (DeJoseph et al., 
2021). Thus, a notable benefit of MNLFA is that it increases confidence 
that associations between environmental dimensions and neuro
development are driven by variation at the construct level rather than by 
measurement artifact. 

While we can speculate about what the aforementioned 
environment-brain associations may mean, we are limited in our ability 
to make any strong conclusions given the cross-sectional nature of our 
approach and the lack of behavioral measures included in the current 
study. Developmental theory rests on the idea that dynamic fluctuations 
in one’s environment bi-directionally interact across multiple levels of 
analysis over time (Gottlieb, 1991). In the present study, we were only 
able to capture a very small snapshot of time, and thus an important next 
step in the ABCD (and beyond) is to examine the role that timing, 
chronicity, and dosage of these environmental dimensions play across 
brain-environment and brain-behavior patterns (Hyde et al., 2020; 
Smith and Pollak, 2021; McLaughlin et al., 2020). It is also critical to 
move beyond racial group membership as a proxy for systemic racial 
injustices which are inextricably linked to accessibility to a range of 
health, school, and community resources that can affect brain devel
opment (Graham et al., 2021). An intersectional approach that considers 
the complex relationship between race and class in the U.S. will be 
required to better understand how structural dynamics intersect with 
the more proximal dimensions of experience like those examined in the 
current study (for a review, see Henry et al., 2019). Indeed, recent work 
has demonstrated various approaches to measuring structural inequities 
(e.g., Dougherty et al., 2020), and such measures can be considered as an 
additional dimension that should be empirically tested when adopting 
dimensional models of adversity. Finally, the integration of both 
adversity and strengths-based perspectives will be essential in under
standing how socioeconomic disadvantage both undermines and en
hances aspects of neurodevelopment under various ecological 
conditions—informing remedial programs as well as efforts that 
leverage unique stress-adapted strengths (Ellis et al., 2020; Frankenhuis 
et al., 2020). 

4.3. Methodological considerations 

Although this study has numerous strengths, several limitations are 
worth noting. As mentioned, we only used the first full wave of data, 
precluding our ability to examine causal or developmental processes 
that could be driving associations between the environment and rsFC. 
The use of cross-sectional data also prevented any valid tests of statis
tical mediation (Kline, 2015), which will be an important future direc
tion to further probe the ways in which dimensions of experiences 
explain broader relations between SES and neural connectivity over 
time. Second, our study assessed three environmental dimensions of 
experience limited to three representative measures, but the inclusion of 
additional measures and dimensions that incorporate the broader 
ecological context is warranted. For example, measures of unpredict
ability and the home linguistic environment are thought to shape brain 
development in important ways, and direct examination of these asso
ciations is an important avenue for future investigation. Third, while our 
factor scores afforded enhanced individual variation, summary mea
sures of network connectivity may obscure heterogeneity necessary for 
detecting certain effects. Indeed, research has demonstrated substantial 
individual differences in node-to-node connectivity that will be an 
important area of future inquiry in this sample (Cui et al., 2020). Fourth, 
recent research has highlighted the interpretive importance of the 
choice of brain parcellation used in studies of resting-state functional 
connectivity (Bryce et al., 2021). However, we restricted our analyses to 
the tabulated data in the ABCD repository which only includes the 
Gordon parcellation, thus future research should attempt to replicate 
these results using alternative parcellations or individual-specific brain 
atlases. Fifth, we are unable to draw meaningful conclusions about the 
observed effects for the other-race category (mixed, Asian, AIAN, NHPI), 
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which was collapsed due to low cell counts that posed issues with model 
identification. Future work should examine these relationships in more 
direct ways via subgroups analyses or person-centered approaches. 
Finally, the generalizability of our findings is constrained to 
9-to-10-year-old children living in predominantly urban U.S. cities, and 
therefore future analyses with similar types of variables to those 
assessed here will be important for assessing measurement validity of 
environmental constructs and respective associations with brain 
development. 

5. Conclusions 

Collectively, the current study provides critical insights into socio
demographic measurement biases in commonly-used environmental 
measures in the ABCD, providing a methodological solution for testing 
and adjusting for these psychometric biases resulting in more sociocul
turally accurate conclusions. We further demonstrated how the greater 
socioeconomic context additively contributes to, and interacts with, 
such environmental measures to predict select brain connectivity net
works supporting cognitive, emotional, and behavioral regulation. 
Importantly, the brain is highly malleable during adolescence, which 
can be viewed as a period of opportunity for promoting resilience in the 
face of hardship. As we reflect on growing inequalities stemming from 
the COVID-19 pandemic and persistent racial injustices, ensuring valid 
measurement of our constructs should remain a top priority for mean
ingful scientific progress that aims to guide policies serving diverse 
children and families. Our results lend support for legislation that in
vests in families through supplemental income, like the recent child tax 
credit expansion, which is likely to promote children’s healthy brain 
development. Our findings also shed light on the more proximal expe
riential factors that may serve as targets for intervention as we wait for 
large-scale policy reform. Taken together, a more nuanced under
standing of the complex ways the socioeconomic context and children’s 
day-to-day experiences interact to shape neurodevelopment holds 
promise to yield insights that promote and protect the wellbeing of to
day’s youth. 
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