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• Current tree cover models focus on factors
at a broad scale ignoring local-scale
factors.

• We assessed the relative importance of
broad- and local-scale factors on tree
cover.

• Local-scale factors alone explained more
variance than broad-scale factors.

• Future models must consider local-scale
factors to improve forest management.
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A B S T R A C T
A R T I C L E I N F O
Editor: Manuel Esteban Lucas-Borja
 Forests contribute directly to ecosystem structure and functioning, maintaining biodiversity, acting as a climate regu-
lator and reducing desertification. To better manage forests, it is essential to have high-resolution forest models and
appropriate spatial-explicit variables able to explain tree cover at different scales, including the management scale.
Most tree cover models rely only on broad-scale variables (>500 m), such as macroclimate, while only few studies in-
clude also local-scale variables (<500 m). This study aimed to identify the importance of local-scale factors relative to
broad-scale factors and identify the environmental variables at different scales that explain tree cover in oak wood-
lands in Mediterranean drylands. Sixty sites previously identified as being covered with Holm oak or Cork oak were
stratified by precipitation. Normalized Difference Vegetation Index, used here as a surrogate of tree cover, was
modelled using simultaneously broad-scale factors (macroclimate) and local-scale factors (microclimatic and edaphic
conditions). The percentage of variance explained by local- and broad-scale factors and the effect size of each environ-
mental variable on tree cover was determined for the study site. It was found that local-scale factors and their interac-
tion with broad-scale factors explained more variance than broad-scale factors alone. The most important local-scale
factors explaining tree cover were elevation, potential solar radiation, used as a surrogate of microclimatic conditions,
and wetness evaluated terrain used as an indicator of water flow accumulation. The main broad-scale factors were re-
lated to temperature and precipitation. The effect of some local-scale variables in tree cover seems to increase in areas
where water as a limiting factor is more important. This study demonstrates the critical importance of including local-
scale factors in multi-scale modelling of tree cover to obtain better predictions. These models will support well-suited
forest management decisions, such as reforestation and afforestation plans to reverse evergreen oaks decline in
Mediterranean drylands.
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1. Introduction

Changes in tree cover, whether due to increased tree canopy size or in-
creased tree density, play a crucial role in decreasing drylands' susceptibil-
ity to desertification and land degradation (FAO and Plan Bleu, 2018).
arch 2022
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Forest cover contributes to water retention, improves soil fertility, reduces
soil erosion, increases carbon sequestration, ameliorates climate conditions
and maintains biodiversity and food provisioning (Aronson et al., 2009;
Mitchell et al., 2014; Bugalho et al., 2016; FAO, 2019). In drylands, trees
play a key role in the delivery of important ecosystem services which con-
tribute to the United Nations' Sustainable Development Goals and the
three Sister United Nations Conventions, increasing biodiversity, reducing
climate change and halting desertification and land degradation. In the
largely humanized Mediterranean landscapes, the distribution patterns of
tree cover are multifactorial depending on factors such as precipitation,
aridity, elevation, slope, the type of land use and management (Crowther
et al., 2015).

To bettermanage the forest inMediterranean drylands and complywith
the multifunctionality potential of forests is essential to have high-
resolution forest models to support decision making at the management
scale. The challenge in building high spatial resolution models is to find ap-
propriate spatial-explicit variables able to explain tree cover at different
scales, including the management scale. Forest cover and tree productivity
have been estimated using empirical global vegetation models. Most of
these models are based on broad-scale factors, such as climate data with
low spatial resolution, e.g. the aridity index and average monthly tempera-
ture and precipitation (Crowther et al., 2015; Madani et al., 2018; Nemani
et al., 2003). Global vegetation models have the advantage of explaining
vegetation productivity at the global scale, but they do not explain vegeta-
tion productivity at the scale needed for land management decisions. Vari-
ations in natural tree cover at the local scale are largely caused by
differences in microclimatic conditions and/or edaphic factors (Maltez-
Mouro et al., 2005; Príncipe et al., 2014; Wu and Archer, 2005; Ukkola
et al., 2021). Although the importance of these local-scale factors is recog-
nized, and data are often available (e.g., Costa et al., 2008; David et al.,
2007), they are rarely included in tree cover spatial explicit models
(e.g., Fricker et al., 2019; Bennett et al., 2020). These predictive models
of forest cover potential at the local scale are needed for precision forest
management across different site conditions, especially in areas with topo-
graphic complex terrains, where local abiotic conditions (e.g., potential
solar radiation) are changing within a few meters (Alexander et al., 2016;
Miller and Franklin, 2002; Príncipe et al., 2014; Zellweger et al., 2020). Pre-
vious works (Príncipe et al., 2014, 2019) showed that tree cover varied con-
siderably at the local scale, within a few meters, from up to 90% tree cover
in the northern slopes to less than 20% in south slopes, even after 60 years
of natural regeneration. This considerable variation in tree cover was
mostly explained by topographic variables with 10 m spatial resolution
(Príncipe et al., 2014). However, it is still missing information about how
these changes in tree cover at the local scale compare with the changes in
tree cover due to variation in broad-scale drivers and whether there is an
interaction between drivers acting on the local- and broad-scales.

Environmental variables influence tree cover at different spatial scales.
The appropriate scale of analysis depends on the variance of environmental
variables over space (Box, 1995; Copeland et al., 2021).While climatic data
available at lower spatial resolutions do not have enough spatial variation
to explain vegetation patterns at local scales, topographic and edaphic fac-
tors are useful as surrogates of temperature and humidity at this scale. Re-
cently, the high spatial resolution of digital elevation models (DEM)
obtained from remote sensing data (e.g. satellite radar, Airborne LiDAR),
led to the development of new spatially explicit surrogates of edaphic and
microclimatic indicators (e.g., Lenoir et al., 2017; Zellweger et al., 2019).
Soil physical and chemical properties can have high variability at local
scales and are important drivers of tree species distribution and perfor-
mance patterns, influencing water retention capacity and limiting tree
root development (Brady and Weil, 1999; Fisher and Binkley, 2000). De-
spite its importance, edaphic data are challenging to obtain with a high spa-
tial resolution for large areas. Spatially explicit models are estimating soil
physical properties for 100 m2 to 500 m2 resolution (e.g., Ballabio et al.,
2016) and are being used as a factor to better understand vegetation distri-
bution (e.g., Sanchez-Ruiz et al., 2018). Similarly, climatic data at the local
scale can be estimated using proxies of climatic conditions close to the
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ground using topographic indices derived from the DEM (Lenoir et al.,
2017; Zellweger et al., 2019). For example, potential solar radiation
derived from topography (Fu and Rich, 2002) at high spatial resolution
(10 m) proved to be an important environmental factor to model tree
cover (Príncipe et al., 2014), tree height (Fricker et al., 2019) and treemor-
tality (Dorman et al., 2015). These high-resolution topographic variables
have the advantage of being spatially explicit and globally available at
the local scale.

Modelling forest cover with both broad- and local-scale factors is partic-
ularly important in Mediterranean areas, where water is a strong limiting
factor. Mediterranean evergreen oak woodlands exhibit different vegeta-
tion spatial structures, from open woodlands in silvopastoral systems to
more closed woodlands and dense forests with lower disturbance intensity
(Aronson et al., 2009; Pinto-Correia et al., 2011; Acácio et al., 2017). More-
over, these ecosystems are submitted to many pressures such as agriculture
intensification, overgrazing, climate change, fire and desertification (FAO
and Plan Bleu, 2018; Godinho et al., 2016). Indeed, in the last decades, in-
creasing tree decline and decreasing natural regeneration of key tree spe-
cies have been observed in Mediterranean evergreen oak woodlands
(Aronson et al., 2009; Brasier, 1999). The functioning of these ecosystems
is largely maintained by tree key species of evergreen oaks, namely Holm
oak (Quercus [ilex] rotundifolia Lam.) and Cork oak (Quercus suber L.),
which will be the focus of our work. Although Holm oak and Cork oak dis-
tribution models are available, they are not comparing broad- and local-
scale factors importance (Hidalgo et al., 2008) and often make predictions
to spatial resolutions equal or larger than 1 km (e.g., López-Tirado and
Hidalgo, 2018; Vessella and Schirone, 2013; Paulo et al., 2015). Therefore,
a critical step towards more precise tree cover predictions is the develop-
ment of models with spatial explicit outputs with high spatial resolution
and that integrate different spatial scales (Crowther et al., 2015; Franklin
et al., 2013; Hannah et al., 2014; Copeland et al., 2021).

This study aims to determine the importance of broad- and local-scale
factors and estimate the relative importance of relevant environmental var-
iables on Holm oak and Cork oak cover distribution in Mediterranean dry-
lands. The hypothesis of this study is that local-scale factors are critical for
tree cover in Mediterranean woodlands. Sites over a precipitation gradient
were selected and environmental variables were measured at different
scales (broad- and local-scale factors) to model Normalized Difference Veg-
etation Index (NDVI) used as a surrogate of Holm oak and Cork oak cover.

2. Material and methods

2.1. Study area

The study area included the region in the southwest Iberian Peninsula
dominated byHolm and Cork oak forests (Fig. 1 A and B). TheNational For-
est Inventory (NFI) 2005/06 (AFN, 2010) and the LandUse and Land Cover
Map of Continental Portugal (COS) 2007 v2.0 (DGT, 2010) were the basis
for the sampling sites selection. The forest type in the NFI is defined syste-
matically in a mesh grid of 500 m with field validation over a grid of 2 km.
The forest classification considers tree species with a minimum height of
5 m and 10% tree cover within a minimum area of 0.5 ha. The tree species
that dominates at least 75% of the sampling site is classified as dominant.
COS uses a minimum of 1 ha as a cartographic unit classified according to
dominant land use occupation in 75% of the area. In COS the land use occu-
pation classified as “forest” includes aminimumof 30% tree coverwith 5m
tree height, where the undercover was not explicitly used for farming. Both
datasets have been combined becausewhile NFI has more precise datawith
field validation in a regular grid of 500 m, COS has high detailed vectorial
maps with high spatial resolution on the extent of the land use occupations.
The following common criteria were used to select all the sites where:
i) tree species had principal and secondary occupation of Holm oak and
Cork oak (NFI) and land cover classified as Holm oak or Cork oak forests
and no sign of crop cultivation in the understory (COS); ii) no record of
fires since 1990 (National Cartography of Burned Areas: ICNF, 2021) and
iii) mean slope between 9 and 25°, to select topographic complex areas



Fig. 1.A. General location of the study area (black square) and distribution range of Holm oak or Cork oak (Gil and Varela, 2008; Caudullo et al., 2017). B. Distribution of the
60 sampling sites along a precipitation gradient within semi-arid and dry-subhumid climates (WorldClim v2.0, 1970–2000, Fick and Hijmans, 2017). C. Detail of one
sampling site within the sampling of 10 × 10 m grid of points. For detailed information about the 60 sites see Supplementary Material A Table A.1.
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where farming is most likely to be excluded due to the difficult accessibility
(Supplementary material A Fig. A.1). The sites were stratified by mean an-
nual precipitation (1970–2000) collected from WorldClim dataset (Fick
and Hijmans, 2017), to access different macroclimatic conditions in the
semi-arid and dry-subhumid climates of the southwest of the Iberian Penin-
sula. Sixty sampling sites were selected, 31 sites dominated by Holm oak
cover and 29 sites dominated by Cork oak cover, with 11.7 ha on average
(Fig. 1 B). The selected sites were then visually inspected using orthophotos
from 2004 to guarantee the presence of tree cover and lowmanagement in-
tensity in the understory. Over the sampling sites, mean annual tempera-
ture ranged from 15 to 17 °C, mean annual precipitation from 525 to 704
mm, and elevation ranged between 50 and 482 m (for a detailed descrip-
tion of sampling sites see Supplementary Material Table A.1). To assess
tree cover at high spatial resolution a grid of points (10× 10m, 1200 sam-
pling points on average) was used for each sampling site (Fig. 1 C).

2.2. NDVI as tree cover surrogate

Normalized Difference Vegetation Index (NDVI) was chosen to assess
tree cover and overall tree condition of Holm oak and Cork oak in the
3

study sites because it is widely used; it is available over time and space
with high spatial resolution and is an efficient tool to assess areas that are
difficult to sample in the field (e.g., private properties, hilly sites). More-
over, NDVI obtained from remote sensing has a significant relation with
Holm oak and Cork oak cover under different tree density levels, as already
shown by other studies (e.g., Carreiras et al., 2006; Godinho et al., 2017;
Soares et al., 2018). Specifically, NDVI showed a good performance on
predicting Holm oak cover in sites with high topographic complexity and
with lowmanagement intensity (Soares et al., 2018) which are similar con-
ditions to the sampling sites. Moreover, the sampling sites were individu-
ally verified using orthophotos from 2004 to guarantee the presence of
tree cover and low management intensity in the understory. For NDVI de-
termination, seven Sentinel-2A Level-1C (L1C) remote sensing images
from late July to mid-August 2017 were used, which represented the driest
season in the Mediterranean basin when only the evergreen vegetation is
present. Tiles 29SND, 29SNC, 29SNB, 29TPE, 29SPD, 29SPC and 29SPB
were downloaded from the ESA Sentinel Scientific Data Hub. Sentinel-2A
L1C products have a 10 × 10 m pixel resolution with 13 multispectral
bands (Copernicus Sentinel data, 2017, processed by ESA) and were ex-
tracted with less than 10% cloud cover. Sentinel-2 Toolbox (Sentinel
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Application Platform, SNAP v5.0.0) was used for atmospheric correction
and NDVI deriving. The NDVI was calculated using the following equation:
NDVI = (NIR− Red) / (NIR + Red), where NIR is the near-infrared and
Red is from the visible light spectrum.

2.3. Environmental variables

The division of environmental variables in broad-scale factors and local-
scale factors was based on the sampling units of the sampling design which
used the mesh grid of 500 m from the National Forest Inventory. Also, this
division took into consideration the scale of variation of the environmental
variables over space. The environmental variables classified as local-scale
factors were the ones with variation within the 500 m and broad-scale fac-
tors the ones that varied over 500 m. While climatic variables have great
variability at broad scales, microclimatic and edaphic factors have greater
variability at the local scale. Therefore, seventeen variables were measured
at different scales that potentially affect tree cover in topographic complex
areas in Mediterranean woodlands. Topographic and edaphic variables
with a resolution equal or lower than 500 m were considered local-scale
factors, as is common in other studies in Mediterranean forests
(e.g., Bacaro et al., 2008; Mammola et al., 2019), because of their high im-
portance for tree cover at local scales (Fricker et al., 2019; Príncipe et al.,
2014; Abadie et al., 2018).

Environmental variables were grouped according to their resolution:
macroclimatic variables (broad-scale factors), microclimatic variables and
edaphic variables (local-scale factors) (Table 1). Macroclimatic data, here
defined as the climate at a broad scale, included the aridity index
(Trabucco and Zomer, 2019), temperature and precipitation data available
in WorldClim v2 (Fick and Hijmans, 2017), averaged for a period of 30
years from1970 to 2000. Topographic vector data, derived fromhypsomet-
ric curves of 10 m, (1:25,000 Portuguese Military Map M888 series from
2000 to 2010) were used to generate a raster digital elevation model for
the study area with 10 m pixel resolution. This was used to calculate four
microclimatic variables (Table 1): i) annual sum of potential solar radiation
in 2017 (PSR) (Fu and Rich, 2002), i.e. the potential amount of solar radi-
ation that reaches a surface on the ground with a clear sky (WH/m2) calcu-
lated with Solar Analyst ArcMap tool (ESRI, 2018; Fu and Rich, 2002), ii)
elevation (ELEV), iii) slope (SLO) and iv) wetness evaluated terrain
(WET) (Neves, N., description in Supplementary Material B), which relates
the upslope water contributing areas inside a drainage basin with the
Table 1
Environmental variables used tomodel Holm oak andCork oak cover. The variables rang
10 m, N = 75,878).

Variable (units) [abbreviation] Variables range

Holm oak

Broad-scale
factors

Macroclimatic Global Aridity Index [AI] 4189–6804 (497

Annual Mean Temperature (°C) [AMT] 15.44–17.27 (16
Mean Diurnal Range (°C) [MeanDR] 8.93–12.22 (11.
Isothermality (°C) [Iso] 39.63–46.80 (43
Temperature Seasonality (°C) [Tseason] 432.3–619.5 (54
Mean Temperature Driest Quarter (°C)
[MeanTDryQ]

21.35–24.60 (23

Mean Temperature Coldest Quarter (°C)
[MeanTColdQ]

9.25–11.13 (10.

Precipitation Seasonality (mm) [Pseason] 55.39–69.16 (60
Precipitation of Wettest Quarter (mm)
[PWetQ]

227–299 (253.8

Precipitation Driest Quarter (mm) [PDryQ] 20–36 (28.1, 4.8
Local-scale
factors

Edaphic Clay soil (%) [CLAY] 6.50–26.92 (15.
Coarse soil (%) [COAR] 16.73–40.61 (28
Soil pH [pH] 4.25–7.75 (5.35

Microclimatic Elevation (m.s.l.) [ELEV] 98.44–508.83 (2
Potential Solar Radiation (WH/m2) [PSR] 745,588–1,397,

(1,180,346, 99,4
Slope (°) [SLO] 0–39.4 (13.507,
Wetness Evaluated Terrain [WET] 0.29–11.20 (1.8
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vertical distance to the water body and the natural logarithm of absolute
terrain elevation. Soil texture (clay and coarse) and pH were selected as
edaphic factors with potential impact on tree cover of Holm oak and Cork
oak. Soil texture was available at finer scales (500 m2 pixel resolution) at
the European level. This database consists of physical characteristics of top-
soil (top 20 cm), divided into soil texture classes: percentage of clay (CLAY)
and coarse sediment grain size (COAR). These soil texture maps were ob-
tained by the combination of LUCAS topsoil survey (Tóth et al., 2013),
which includes 19,857 topsoil samples in 25 Members of the European
Union collected in 2009, with climatic and land cover covariates
(Ballabio et al., 2016). The soil pH was obtained from Pena et al., 2015
which integrates the Soil Map for Portugal (1:50,000, SROA/CNROA series
published in 1973) and the LUCAS topsoil survey (476 points for Portugal
in 2009, Tóth et al., 2013). The edaphic variables were extracted from
the European Soil Data Centre (ESDAC, http://esdac.jrc.ec.europa.eu/;
Panagos et al., 2012) and EPIC WebGIS (http://epic-webgis-portugal.isa.
ulisboa.pt/) (Table 1). All the geospatial data collection and management
was performed using ArcMap v.10.6 (ESRI, 2018).

2.4. Statistical analysis

The influence of macroclimatic, microclimatic and edaphic variables on
NDVI of Holm oak and Cork oak derived from Sentinel-2A images was
modelled using Linear Mixed Models (LMMs) (Zuur et al., 2009). Site (ID,
Table A.1)was included as a random factor in all models. A grid of sampling
points (10 × 10 m, total N = 75,878) nested within sites (N = 60) was
used in statistical analysis to account for the hierarchical structure of the
data. The selection of the fixed effects in the model was done using Maxi-
mum Likelihood estimation but in the final model selection, Restricted
Maximum Likelihood was used instead (Zuur et al., 2009). The continuous
explanatory variables were standardized before analysis using the Z score
(Zuur et al., 2009). Variance Inflation Factors (VIF) were used to test for
model multicollinearity (Zuur et al., 2009). The variables more strongly
correlated were selected in pairs, where the variable with higher biological
meaning was primarily considered to be included in the model. The se-
lected variables included in the models had a Spearman correlation coeffi-
cient < 0.70 and VIF < 2 (correlations among predictors and VIF values are
in Supplement Material Fig. A.2 and Table A.4, respectively). The signifi-
cance of two-way interactions within broad-scale and local-scale variables
were tested using the selected variables. The last step for the final selection
e corresponds to the variation of the sampling pointswithin the sampling sites (10×

(mean, standard deviation) Source (resolution)

Cork oak

9, 697) 4446–6489 (5559, 543) Trabucco and Zomer, 2018 (1 km,
1970–2000 period)

.32, 0.39) 15.52–16.77 (16.20, 0.32) WorldClim v2.0 (Fick and Hijmans, 2017)
28, 0.74) 9.03–12.15 (10.20, 0.71) (1 km, 1970–2000 period)
.24, 1.77) 40.14–45.36 (43.61, 0.93)
4.2, 42.11) 420.6–578.8 (486.2, 39.9)
.19, 0.79) 21.43–23.48 (22.26, 0.45)

11, 0.52) 9.17–11.55 (10.64, 0.63)

.80, 4.21) 54.43–69.43 (63.33, 4.09)
, 21.38) 241–305 (280.8, 16.53)

4) 18–38 (27.39, 5.53)
98, 3.94) 5.67–27.30 (14.88, 4.48) European Soil Data Centre (Panagos et al.,

2012; Ballabio et al., 2016) (500 m).62, 4.78) 11.25–42.19 (22.43, 5.06)
, 0.69) 4.0–7.75 (5.16, 0.93) Pena et al., 2015 (1:25,000, 25 m)
27.69, 77.94) 26.44–445.82 (198.61, 101.7) DTM derived from hypsometric curves

of 10 m, Portuguese Military Map M888
series (10 m)

805
47)

805,469–130,961
(1,187,375, 94,222)

6.74) 0–32.75 (12.1, 5.99)
, 1.4) 0.51–10.87 (1.86, 1.31)

http://esdac.jrc.ec.europa.eu/;
http://epic-webgis-portugal.isa.ulisboa.pt/
http://epic-webgis-portugal.isa.ulisboa.pt/
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of the variables to be included in themodel was based on their importance,
extracted using the sum of weights (Burnham and Anderson, 2002). Then,
the predictors with their importance lower than 1 were excluded from the
final models for Holm oak and Cork oak. The variance explained (R2) by
the final models was calculated using marginal R2 (R2m), i.e. variance ex-
plained by fixed effects only, and conditional R2 (R2c), i.e. variance ex-
plained by both fixed and random effects (Nakagawa and Schielzeth,
2013). The bestfifteenmodels that resulted from the combination of the se-
lected variables in the final model are available in Supplement Material
Tables A.2 and A.3.

The final models were checked for the distribution of residuals and con-
trolled for the absence of spatial autocorrelation using theMoran I Test. The
goodness-of-fit of the models was evaluated using the root mean squared
prediction error (RMSE) calculated by repeated 10-fold cross-validation
(RMSE < 0.8 indicates good fit of the model). The model estimates, stan-
dard errors, p-values, variance inflation factors and variable importance
values, are available in Supplement Material Table A.4.

The relative importance of predictor variables was estimated using the
overall explanation of broad- and local-scale factors and the individual ex-
planation of each selected variable in the final model. The percentage of
variance explained by broad and local-scale factors, and their interaction
was determined using a variance partitioning analysis based on the final
model. Afterwards, the effect size of each variable on the prediction of
Holm oak and Cork oak cover was estimated. The parameters and the asso-
ciated averaged coefficients were estimated using a model averaging ap-
proach, calculated by the function “model.avg” from the MuMIn R
package (Barton, 2020). All analyses were done in R version 4.0.2 (R
Core Team, 2020) using packages Hmisc (Harrell Jr, 2020), nlme
(Pinheiro et al., 2020), MuMIn (Barton, 2020) and cvTools (Alfons, 2012).

3. Results

Tree cover in the study sites was measured using NDVI as a surrogate.
NDVI values in the study sites ranged from 0.03 to 0.96 (mean 0.41, stan-
dard deviation 0.16) for Holm oak and from 0.05 to 0.99 (mean 0.51, stan-
dard deviation 0.17) for Cork oak. Overall, local-scale factors together
showed higher relative importance, in explaining Holm oak and Cork oak
cover, than broad-scale factors. The local-scale factors alone explain most
of the variance for Holm oak cover (52% of the marginal R2 = 0.22)
(Table 2). The interaction between broad- and local-scale factors explained
39% and broad-scale factors alone 9% of the proportion of the relative var-
iance. On the other hand, the interaction between broad- and local-scale
Table 2
Summary of the best models selected examining the effects of the predictor variable
method. The proportion of the explained variance by macroclimate, edaphic and m
model, *** p-value < 0.001 (t-test).

Predictors

Broad-scale factors Macroclimatic Intercept
Precipitation of Driest Quarter
Isothermality
Aridity Index
Mean Temperature Driest Quarter

Local-scale factors Edaphic Coarse soil
Clay soil
Soil pH

Microclimatic Elevation
Slope
Potential Solar Radiation
Wetness Evaluated Terrain

Broad-scale × local-scale factors Elevation × Precipitation of Driest Quarte
Precipitation Driest Quarter ×Wetness Ev
Isothermality × Potential Solar Radiation
Clay soil × Mean Temperature Driest Qua
Aridity Index × Wetness Evaluated Terrai
Aridity Index × Potential Solar Radiation
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factors was the main factor explaining the Cork oak cover (49%), followed
by local-scale factors (35%) and broad-scale factors (16%) (Table 2).

The models for Holm oak and Cork oak cover included 7 environmental
variables with different scales and 3 variables interactions. Holm oak was
explained by precipitation of driest quarter, isothermality, coarse soil, soil
pH, elevation, potential solar radiation and wetness evaluated terrain.
Moreover, three interactions within the former variables were also signifi-
cant: i) elevation and precipitation of driest quarter, ii) wetness evaluated
terrain and precipitation of driest quarter and iii) isothermality and poten-
tial solar radiation. The environmental variables explained 22% of the var-
iance of Holm oak cover (R2m=0.22), but with random effects, the model
explained 85% (R2c = 0.85), with RMSE of 0.10 (Supplement Material
Fig. A.3). The precipitation of driest quarter, elevation, potential solar radi-
ation and the interaction of precipitation of driest quarter and elevation
were the variables with the highest effect on modelling tree cover of
Holm oak (PDryQavr.coef. = 0.044, ELEVavr.coef. = −0.074, PSRavr.coef. =
−0.044 and ELEVxPDryQavr.coef. = 0.043) (see the abbreviation in
Table 1, Fig. 2). All the variables included in the model that explained
Holm oak were positively related, except for potential solar radiation, and
elevation that had a negative effect. The precipitation of the driest
quarter showed a significant positive interaction with elevation
(PDryQxELEVavr.coef. = 0.042) and a weaker negative interaction with wet-
ness evaluated terrain (PDryQxWETavr.coef. = −0.013). This means the
higher the precipitation of the driest quarter, the stronger the negative ef-
fect of elevation on Holm oak cover. A weak positive interaction was
found between isothermality and potential solar radiation, meaning that
the negative effect of solar radiation exposition on tree cover is stronger
in more isothermal areas (i.e., areas where daily temperature oscillations
are higher relative to the annual temperature oscillations).

Cork oak cover was explained by aridity index, mean temperature of
driest quarter, clay content in the soil, soil pH, slope, potential solar radia-
tion and wetness evaluated terrain. Three interactions within the former
variables, were significant and also included in the model, the interaction
between i) clay content in the soil and mean temperature of driest quarter,
ii) aridity index and wetness evaluated terrain and iii) aridity index and po-
tential solar radiation. The environmental variables explained 48% of the
variance of Cork oak cover (R2m = 0.48), but the overall explanation of
the selected model with the random effects was 86% (R2c = 0.86), with
RMSE of 0.13 (Supplement Material Fig. A.3). Cork oak cover decreased
significantly with mean temperature of driest quarter (avr.coef. =
−0.196) and potential solar radiation (avr.coef. = −0.036). The signifi-
cant negative relations were with soil clay content and pH (avr.coef. =
s on the NDVI of Holm oak and Cork oak, using Restricted Maximum Likelihood
icroclimate was calculated using a variance partitioning analysis based on each

Holm oak Cork oak

R2m = 0.22 R2c = 0.85 R2m = 0.48 R2c = 0.86

Coeff. Prop. explain. var. (%) Coeff. Prop. explain. var. (%)

0.41*** 9 0.53*** 16
0.04***
0.02***

0.11***
−0.20***

0.02*** 52 35
−0.02***

0.02*** −0.02***
−0.07***

0.02***
−0.04*** −0.04***
0.01*** 0.04***

r 0.04*** 39 49
aluated Terrain −0.01***

0.01***
rter 0.04***
n −0.02***

0.05***



Fig. 2. Standardized model-averaged coefficients of predictor variables of Holm oak and Cork oak cover. Coefficients were averaged across models, means and 95%
confidence intervals are shown. Different colours represent the different scales of the environmental variables (blue, 1 km resolution; red, 500 m; pink, 25 m and yellow,
10 m). AI Aridity Index, Iso Isothermality, MeanTDryQ Mean Temperature Driest Quarter, PDryQ Precipitation Driest Quarter, CLAY Clay soil, COAR Coarse soil, PH Soil
pH, ELEV Elevation, PSR Potential Solar Radiation, SLO Slope, WET Wetness Evaluated Terrain.
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−0.024). On the other hand, the Cork oak cover increased significantly
with wetness evaluated terrain (avr.coef. = 0.036) and with slope, but
with a weaker influence (avr.coef. = 0.017). Clay content in the soil has
significant positive interaction with the mean temperature of the driest
quarter on the Cork oak cover (avr.coef. = 0.042). Therefore, the higher
is the soil clay content, the stronger the effect of the mean temperature of
the driest quarter on the Cork oak cover. The aridity index showed aweaker
interactions with wetness evaluated terrain (avr.coef. = −0.020) and po-
tential solar radiation (avr.coef. = 0.015).

4. Discussion

In this work, it was found that Holm oak and Cork oak cover in theMed-
iterranean drylands were mostly explained by local-scale factors and the in-
teractions between local- and broad-scale factors. Surprisingly, local-scale
factors alone had higher relative importance than broad-scale factors.
This confirms the hypothesis that the local-scale factors are crucial to better
predict tree cover with high spatial resolution and that models at this scale
are important since this is the scale where decision-making is often re-
quired. Additionally, the importance of local-scale factors, namely those re-
lated to favourable microclimatic conditions, was found to be higher in
areas where water is a more limiting factor for plant productivity. The
most important local-scale factors were related to microclimatic and
edaphic variables associated with topography, soil texture and pH. As ex-
pected, the most important macroclimatic variables were related to precip-
itation of the dry season and temperature. Therefore, water availability for
the trees was the critical factor underlying the effect of the most important
variables at both spatial scales. For example, Fricker et al. (2019) showed
that macroclimate was the most important factor at local and broad scales
(25–1000 m), but topography and edaphic factors increased its importance
at finer scales (25–50 m). However, after a search in the literature, no pre-
vious studies were found that measured the importance of broad-scale fac-
tors relatively to local-scale factors on Mediterranean woodlands
dominated by Holm oak and Cork oak.

Microclimatic and edaphic variables were important drivers of tree
cover at the local level for both tree species. Regarding microclimatic vari-
ables, both potential solar radiation andwetness evaluated terrainwere rel-
evant variables explaining Holm oak and Cork oak cover variation. The
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cover of the two oaks increased when potential solar radiation decreased,
which is here used as a surrogate of microclimatic conditions. This suggests
that where potential solar radiation is high (sun-exposed areas) evaporation
and soil temperature increase and soil moisture decreases. These microcli-
matic conditions can lead to an overall decrease in water availability
which is the most limiting factor for productivity in dryland areas, where
water and high evaporation due to high temperatures constrain the estab-
lishment and growth of plant species (Breshears et al., 1997). This suggests
that the two oaks in areas with low potential solar radiation may be taking
advantage of microclimatic refugia where water availability is higher com-
pared with the areas with high potential solar radiation, increasing tree re-
generation in these sites (McLaughlin et al., 2017; Príncipe et al., 2014).
Other authors found similar results on the effect of solar radiation on in-
creasing tree mortality of adult trees (Costa et al., 2010) and seedlings
(Ritsche et al., 2021). Also, Príncipe et al. (2014, 2019) found that Potential
Solar Radiation was the most important factor influencing Holm oak natu-
ral regeneration at the local scale. Holm oak and Cork oak cover increased
with higher wetness evaluated terrain in the sampling points (Table 1). This
is a topography related variable that plays a strong role in the spatial distri-
bution of soil moisture and groundwater flow and similarly to other topo-
graphic wetness indices was used to predict potential water content in the
soil fromflowaccumulation (Nobre et al., 2011). These results show the im-
portance of high spatial resolution data, here as local-scale variables, on the
distribution of tree productivity in drylands. Holm oak cover decreased
with increasing altitude, other authors also found a negative relationship
between elevation and Holm oak cover over time (Lloret et al., 2004;
Aubard et al., 2019). Higher elevation can be associated with shallow
soils, due to erosion processes and water flow that come from ridges to val-
leys. Therefore, lower elevations can have the accumulation of nutrients,
sediments, and water availability associated with higher tree cover. Cork
oaks showed to have more cover in areas with higher slopes. Although un-
expected, even in these sites where management is reduced, sites with
higher slopes are more inaccessible discouraging land use management as
cork stripping. The reduction ofmanagement, as Cork oak pruning and sea-
sonal clearing of understory vegetation, can contribute to more natural re-
generation and consequently increase the canopy cover in the long term.
Overall, microclimatic variables at high spatial resolution seem to deter-
mine the tree cover of these two important oaks inMediterranean drylands.
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Edaphic characteristics were also important local-scale predictors of
tree cover, although with lower relative importance than that of microcli-
matic factors. Soil texture and pH were important in explaining Holm oak
and Cork oak cover. Soil texture has a direct influence on soil water avail-
ability for plants. For example, coarse soils in dry environments can be an
indicator of non-compacted soils where water can infiltrate saving reser-
voirs of water (Hatten and Liles, 2019). On the other hand, soils with
high clay content have small pores which difficult water infiltration and
water drainage (Hatten and Liles, 2019), creating unfavorable conditions
for Cork oak performance (Costa et al., 2008; Hidalgo et al., 2008). Soil
pH can change at short distances influencing tree cover spatial patterns.
For instance, Cork oak has a high tolerance to acidic soils, being common
in areas where soil pH ranges from4.4 to 7 and is estimated to have optimal
conditions at a pH of 5.67 (Laiseca, 1949, Aronson et al., 2009).

Macroclimatic variables were important for both Holm oak and Cork
oak cover, despite their lower explanation. Tree cover of both species was
negatively influenced by high temperatures (i.e., higher isothermality for
Holm oak and lower MeanTDryQ for Cork oak) and positively by rainfall
(i.e., higher PDryQ for Holm oak and higher aridity index for Cork oak).
This is supported by previous studies reporting an overall decrease in tree
cover with aridity at the landscape scale (Scholes et al., 2002; Schulze
et al., 1996; Vessella and Schirone, 2013; Duque-Lazo et al., 2018). Drought
can negatively affect Holm oak reproductive success decreasing viable
seeds (Bykova et al., 2018) and tree growth (Ogaya et al., 2003). Addition-
ally, the Cork oak cover was negatively influenced by summer tempera-
tures. High temperatures increase evapotranspiration which, together
with summer droughts, have a negative synergistic effect on Cork oak
growth (Caritat et al., 2000; David et al., 2007) and induce oak mortality
mainly in water-limited areas, decreasing tree cover (Gea-Izquierdo et al.,
2009; Lloret et al., 2004).

The effect of local-scale variables on tree cover was also influenced in
some cases by macroclimatic variables, as evidenced by the significant in-
teractions between local- and broad-scale factors found in the models.
Macroclimatic variables can amplify, reduce, or modulate the effect of
local-scale factors (i.e., soil texture and local topography) in explaining
tree cover. For example, severe droughts can reduce tree cover only in
sites where potential solar radiation is higher (Peñuelas et al., 2000), or af-
fect trees in higher elevations (Asner et al., 2015). In this study, Holm oak
cover on high elevations was more dependent on the precipitation avail-
ability during the dry season. On the other hand, the Cork oak cover was
more affected by high temperatures in soils with high clay content. Cork
oaks growing in clay soils had in general lower performance and they can
be more susceptible to water stress caused by increasing temperatures in
the summer (Caritat et al., 2000; David et al., 2007). Moreover, Holm oak
and Cork oak cover showed to have a higher dependence on wetness eval-
uated terrain in drier climates. Overall, the effect of favourable microcli-
matic conditions in tree cover seems to increase in areas with a drier
climate, showing the importance of having high spatial resolution data to
explain tree cover across more arid areas.

The high relevance of local-scale factors to explain tree cover shows that
topographic and edaphic variables at 10 m to 500 m spatial resolutions are
undoubtedly important. Yet, the environmental variables considered in
models built for both species explain a relatively modest amount of varia-
tion in oak tree cover (i.e., by the fixed effects), suggesting it is also influ-
enced by other variables not addressed in this study. Factors such as
management practices and historical land use, such as crop cultivation,
grazing pressure, understory clearance and tree cutting are common drivers
in Mediterranean woodlands affecting tree cover at the landscape level
(e.g., Jones et al., 2011; Moreno-Fernández et al., 2019). Despite the influ-
ence of such variables, difficult to quantify, the selected environmental var-
iables in this study explained 22% and 48% of the variance for Holm oak
and Cork oak cover, respectively. The percentage of explanation of the se-
lected variables demonstrate the importance of microclimatic and edaphic
variables, as well as macroclimate, to explain tree cover. According to this
study's findings local-scale factors are important drivers of forest cover in
dryland forests on sites with high complex topography. However, the
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particular conditions of the sampling sites such as the dominant tree species
in Mediterranean drylands and the annual precipitation range from 500 to
700mm, limits the generalization about the importance of specific environ-
mental variables beyond these conditions. In other dryland forests, local-
scale factors will have high importance but they should be evaluated case
by case for its specific environmental conditions.

5. Conclusion

Local-scale factors and their interaction with broad-scale factors are
more important for modelling Holm oak and Cork oak cover in Mediterra-
nean woodlands than broad-scale factors alone. Microclimatic and edaphic
variables namely potential solar radiation, wetness evaluated terrain and
soil texture and pH were important drivers of tree cover at the local level
for both tree species. Topography derived variables, such as potential
solar radiation, used here as an indicator of microclimatic conditions, are
possible to calculate at higher resolutions and they can be included in
models to map NDVI potential at the landscape level. Overall, the most im-
portant broad- and local-scale factors were related to water availability for
the trees, reflecting the importance of water for tree productivity in dry-
lands. Understanding the contribution of local-scale factors for tree distri-
bution and canopy cover has important applications in the conservation
and restoration of forest cover in semi-arid regions, where they play a crit-
ical role in the delivery of many ecosystem services which are being highly
affected by climate change. Then, this work expects to increase the aware-
ness about the high importance of taking into consideration local-scale
factors in Mediterranean woodland ecosystems. Similar approaches can
be applied to other forest types using the selected environmental variables
to improve high spatial resolution planning of reforestation and forest
management.
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