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Abstract

The prevalent source for obtaining scientific knowledge remains the scientific literature. Considering
that the focus of biomedical research has shifted from individual entities to whole biological systems,
understanding the relations between those entities has become paramount for generating knowledge. Re­
lations between entities can either be positive, if there is evidence of an association, or negative, if there
is no evidence of an association. To this date, most relation extraction systems focus on extracting posi­
tive relations, therefore few knowledge bases contain negative relations. Disregarding negative relations
leads to the loss of valuable information that could be used to advance biomedical research.

This work presents the Negative Phenotype­Disease Relations (NPDR) dataset, which describes a
subset of negative disease­phenotype relations from a gold­standard knowledge base made available by
the Human Phenotype Ontology (HPO), and an automatic extraction system developed to automatically
annotate the entities and extract the relations from the NPDR dataset. The NPDR dataset was constructed
by analysing 177 medical documents and consists of 347 manually annotated at the document­level re­
lations, from which 222 were inferred from the HPO gold­standard knowledge base, and 125 were new
annotated relations. The main categories of the dataset are the characterization of the entities that partic­
ipate in the negative relation; the characterization of the sentence that implies the negative relation; and
the characterization of the location of the entities and sentences in the article.

The automatic extraction system was created to evaluate the impact of the NPDR dataset on the
Named­Entity Recognition (NER), Named­Entity Linking (NEL) and Relation Extraction (RE) text min­
ing tasks. The NER task showed an average of 20.77% more entities annotated when using disease and
phenotype synonyms lexica generated from the NPDR dataset, when comparing the number of annota­
tions produced by the OMIM and HPO lexica. The increase in annotated entities also resulted in 15.11%
more relations extracted. The RE task performed poorly, with the highest accuracy being 8.84%.

Keywords: Negative Relations, Biomedical Ontologies, Text Mining, Biomedical Literature, Rela­
tion Extraction.
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Resumo

Texto livre continua a ser, aos dias de hoje, o principal meio de produção e partilha de conhecimento.
Mais concretamente, a literatura biomédica é a principal fonte de conhecimento clínico e biológico para
investigadores e clínicos. Porém, à medida que a informação contida em texto livre, correspondente ao
número de publicações de artigos científicos aumenta a um ritmo exponencial, torna­se difícil para os
investigadores manterem­se a par dos desenvolvimentos dos variados domínios científicos. Para além
disso, extrair informação textual relevante é uma tarefa laboriosa e morosa para seres humanos, uma vez
que a maioria da informação se encontra retida em texto livre não estruturado. Embora esta tarefa possa
resultar em erros quando realizada por computadores, só poderá ser alcançada por meio de processos
automáticos. Nesse sentido, métodos de prospeção de texto são uma alternativa interessante para reduzir o
tempo despendido por especialistas na obtenção de informação relevante, para além de também cobrirem
um largo volume de dados provenientes da literatura biomédica.

Métodos de prospeção de texto incluem várias tarefas, tais como Named­Entity Recognition (NER),
Named­Entity Linking (NEL) e Extração de Relações (ER). O NER identifica as entidades mencionadas
no texto, o NEL mapeia as entidades reconhecidas a entradas numa base de dados, e o ER identifica re­
lações entre as entidades reconhecidas. Visto que o foco da investigação biomédica mudou de entidades
individuais, tais como genes, proteínas ou fármacos, para sistemas biológicos num todo, métodos de
ER automáticos tornaram­se fundamentais para entender relações entre entidades, tais como interações
proteína­proteína, interações fármaco­fármaco, ou relações gene­doença. Estas relações podem ser clas­
sificadas como negativas, caso haja evidência de não associação entre as entidades, ou positivas, caso
haja evidência de associação entre as entidades.

ER pode ser efetuada através de múltiplas abordagens que diferem nos métodos que empregam. Es­
sas abordagens podem ser divididas nos seguintes grupos: coocorrência, que é a abordagem mais sim­
ples, uma vez que apenas visa a identificação das entidades na mesma frase; baseada em regras, que são
definidas manualmente ou automaticamente; e aprendizagem automática, que utiliza corpora biomédica
anotada para aplicar supervisão distante. Métodos de supervisão distante podem ainda ser categoriza­
dos em feature­based e kernel­based. Aos dias de hoje, a maioria dos sistemas de ER não diferenciam
entre relações positivas, negativas ou falsas, porém podem­se salientar algumas excepções, tais como
os sistemas Excerbt e BeFree. O primeiro combina análises sintáticas e semânticas com abordagens de
regras e aprendizagem automática, e foi adaptado de forma a detetar representações léxicas negadas de
itens léxicos (tais como verbos, nomes ou adjetivos) para a anotação do Negatome, uma base de dados
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de proteínas que não interagem entre si. O segundo sistema utiliza uma combinação de métodos kernel­
based, nomeadamente o Shallow Linguistic Kernel e Dependency Kernel. Para a anotação do corpus
GAD usando este sistema, também foi treinado um classificador para distinguir entre relações positivas,
negativas e falsas entre genes e doenças.

Estima­se que 13.5% das frases de resumos da literatura biomédica possuem expressões negadas.
Desconsiderar expressões que poderão, potencialmente, conter relações negativas pode levar à perda de
informação valiosa. Porém, a maioria das bases de dados de extrações de relações biomédicas visam ape­
nas recolher relações positivas entre entidades biomédicas. No entanto, exemplos negativos e positivos
são igualmente importantes para treinar, afinar e avaliar sistemas de extração de relações. Contudo, uma
vez que os exemplos negativos não se encontram tão documentados como os positivos, poucas bases
de dados os contêm. Para além disso, a maioria das bases de dados de extração de relações biomédi­
cas não diferencia entre relações falsas, em que duas relações não estão relacionadas, e negativas, em
que existe afirmação de não associação entre duas entidades. Adicionalmente, alguns datasets de padrão
prata (compostos por dados gerados de forma automática) também contêm relações negativas falsas que
são desconhecidas ou não estão documentadas. Logo, a exploração dessas relações é um bom ponto de
partida para expandir as bases de dados de relações biomédicas e populá­las com exemplos negativos
corretos.

Este trabalho produziu um dataset de anotações de fenótipos e doenças humanas e as suas relações
negativas, o datasetNegative Phenotype­Disease Relations (NPDR), e ummódulo de anotação automática
de entidades e relações. Para a realização da primeira etapa da criação do dataset NPDR, foi necessário re­
alizar a recolha dos identificadores PubMed (PMIDs) associados à relações negativas descritas numa base
de dados padrão­ouro, disponibilizada pela Human Phenotype Ontology (HPO). A partir desses PMIDs
foi possível extrair artigos completos que foram subsequentemente analisados manualmente. Essa análise
consistiu na descrição das entidades que participam na relação negativa, que compreende a análise dos
fenótipos, doenças e os seus genes associados; a descrição das frases que sugerem a relação a negativa,
que engloba a caracterização do token de negação usado na frase e a coocorrência das entidades; e a de­
scrição da localização das entidades e frases no artigo. O dataset NPDR contem um total de 347 relações
anotadas ao nível do documento, das quais 222 foram obtidas a partir da base de dados padrão­ouro da
HPO, e 125 são novas relações.

De forma a avaliar o impacto do dataset NPDR na anotação e extração automática de entidades e as
suas relações, a partir dos artigos reunidos para o desenvolvimento da criação do dataset, um pipeline
que realiza NER, ER e extrai frases de negação foi implementado. NER reconhece fenótipos humanos e
doenças, e ER extrai e classifica a relação entre as entidades. De modo a obter os artigos num formato
que fosse legível por máquina, dois métodos foram empregues. O primeiro método consistiu em reunir
os PMIDs a partir do dataset NPDR, para os converter nos seus identificadores PubMed Central (PM­
CIDs) correspondentes, de forma a extrair os artigos completos usando a API do PubMed. O segundo
método consistiu na conversão dos artigos reunidos para a construção do dataset NPDR em formato PDF
para formato de texto, utilizando a ferramenta de extração de texto PDFMiner. A etapa NER foi real­
izada usando a ferramenta Minimal Name­Entity Recognizer (MER) para extrair menções de fenótipos,
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doenças e genes a partir dos artigos. Por fim, utilizando uma abordagem de supervisão distante, a base
de dados padrão­ouro da HPO foi usada para obter as relações obtidas pela ocorrência de fenótipos nas
frases que sugerem a relação negativa, e a ocorrência de doenças e genes relacionados presentes no ar­
tigo. As relações foram marcadas como Conhecida se a relação estivesse descrita na base de dados, ou
Desconhecida caso contrário.

Para a anotação de fenótipos dois léxicos foram utilizados, um de termos oficiais da HPO, e outro de
sinónimos obtidos a partir do dataset NPDR. Para a anotação de doenças e genes, o léxico principal foi
obtido a partir da base de dados da Online Mendelian Inheritance in Man (OMIM), e os restantes léxicos
foram construídos a partir de sinónimos e abreviaturas de doenças presentes no dataset NPDR. A adição
dos léxicos provenientes do dataset NPDR permitiram anotar, em média, mais 20.77% de entidades,
comparativamente à anotação de entidades com os léxicos da HPO e OMIM. Este maior número de
entidades também se refletiu num aumento de 15.11% de relações anotadas. A tarefa de ER teve um
desempenho fraco, sendo que a precisão de relações negativas detetadas foi de 8.84%.

Keywords: Relações Negativas, Mineração de Texto, Ontologias Biomédicas, Literatura Biomédica,
Extração de Relações.
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Chapter 1

Introduction

1.1 Motivation

Free text is still, to this day, the prevailing mean of producing and sharing knowledge. More specifically,
biomedical literature is the fundamental source of clinical and biological knowledge for researchers and
clinicians. However, as the information concealed in free text, corresponding to the number of publi­
cations of scientific articles, increases at an exponential rate [Jensen et al., 2006], it becomes extremely
demanding for researchers to keep up­to­date with the developments of numerous fields. Furthermore, re­
trieving relevant textual information is a gruelling and time­consuming enterprise for humans since most
of the information is trapped in free, unstructured text. Although this task can be prone to errors when
conducted by machines, it can only be attainable using an automatic process. Therefore, text mining tools
offer an interesting solution for reducing the time spent by experts on obtaining purposeful information,
while covering a larger amount of data from the biomedical literature.

Text mining tools comprise several tasks, such as Named­Entity Recognition (NER), Named­Entity
Linking (NEL) and Relation Extraction (RE). The aim of NER is to identify entities mentioned in text, of
NEL is to map these entities to entries in a knowledge base, and of RE is to identify the relations between
the entities [Sousa et al., 2019]. Considering that the focus of biomedical research shifted from individual
genes, proteins or chemicals, to whole biological systems, automatic relation extraction methods became
paramount for understanding the relations between these entities, such as protein­protein interactions
[Federico and Monti, 2021], drug­drug interactions [Hou et al., 2021], and disease­gene relations [Zhou
et al., 2021].

True relations can be either classified as negative, if there is evidence of no association between the
entities, or positive, if there is evidence of an association between the entities [Sousa et al., 2020]. For
example, the sentence Wilson disease (WD) is an autosomal­recessive disorder caused by mutations in
the copper (Cu)­transporter ATP7B is an illustration of a positive relation between the entities Wilson
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Disease and ATP7B. On the other hand, In conclusion, we found no association between the Gln­Arg
191 polymorphism of the human paraoxonase gene and coronary artery disease in Finns represents a
negative relation between the entities human paraoxonase gene and coronary artery disease (Figure
1.1).

Figure 1.1: Example sentences for positive and negative relations: positive (PMID:32778786), and negative
(PMID:8770857). Also present, the identified entities (NER) for each sentence, and their identifiers (NEL) in
the National Center for Biotechnology Information (NCBI) (for genes) and Online Mendelian Inheritance in Man
(OMIM) (for diseases).

RE can be achieved through multiple approaches that differ in their techniques. These approaches
can be divided into the following groups: co­occurrence, which is the simplest approach since it aims at
identifying co­ occurring entities in a sentence; rule­based, which uses manually or automatically defined
rules or patterns; and Machine Learning (ML), which uses annotated biomedical corpora to ap ply super­
vised learning. Supervised methods can be further categorised in feature­based and kernel­ based methods
[Zhou et al., 2014]. To this date, most biomedical RE systems do not differentiate between positive, neg­
ative and false relations, but some exceptions are worth mentioning, such as the Excerbt and BeFree
systems. The former combines syntactic and semantic analyses with rule­based and ML approaches, and
was adapted to detect negated lexical representation of argument­taking lexical items (e.g. verbs, nouns
or adjectives) for the annotation of the Negatome, a database of non­interacting proteins [Blohm et al.,
2013]. The later uses a combination of kernel­based methods, namely the Shallow Linguistic Kernel
[Giuliano et al., 2006a], and the Dependency Kernel. For the annotation of the GAD corpus using this
system, a classifier was also trained in order to distinguish between positive, negative and false relations
between genes and diseases [Bravo et al., 2015].

It is estimated that 13.5% of the sentences in abstracts from biomedical literature contain negated
expressions [Vincze et al., 2008]. Disregarding expressions that may possibly hold negative relations can
lead to the loss of valuable information. Still, most biomedical relation extraction databases seek only to
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collect positive relations among biological entities, losing relevant information by not annotating negative
ones. Negative and positive examples are equally important for training, tuning, and evaluating relation
extraction systems. The more examples that are fed into the system, the better it will be at extracting
new relations from the literature. However, since negative examples are not as documented as positive
ones, few knowledge bases contain them. Additionally, most biomedical relation extraction datasets do
not differentiate between false relations, where two entities are not related, and negative ones, where
there is an affirmation of no association between two entities. Besides, some silver standard datasets,
which are composed by automatically annotated data, also have false negative relations that are unknown
or undocumented [Sousa et al., 2020]. Therefore, the exploration of these relations is a good point of
departure for expanding biomedical relations knowledge bases and populate them with accurate negative
examples. The annotation of negative relations is equally valuable for clinicians and researchers, since
they restrict the search space by providing relations that were already refuted and enhance the quality of
available information to the scientific community.

Even though automatic text mining tools make information extraction from biomedical literature
more efficient, one of the major challenges it faces is the transformation of natural language into a
structured representation, which can be easily processed by computer programs [Lamurias and Couto,
2019]. Furthermore, the language of biomedicine is populated with various synonyms, abbreviations,
and acronyms that can point out to the same concept, making information extraction even more challeng­
ing for accurate computer­aided processing. Ontologies are formal descriptions of a set of concepts within
a specific domain and the relations between them, organized in a hierarchical manner. These descrip­
tions are determined by entities, classes, attributes, and relations. Thus, ontologies produce a framework
for integrating large amounts of data from multiple sources, making available relevant information in a
machine­readable way. They also provide a unique identifier for each concept or entity in a domain, in
addition to connect concepts with related meanings, which makes them an essential feature of biomed­
ical research fields. Moreover, their organisation in a machine­readable format makes their integration
in relation extraction models more straightforward [Robinson and Bauer, 2011]. Therefore, ontologies
help detect and classify relations between entities since they make available underlying characteristics
between entities with is­a relations. For example, astigmatism (HP:0000483), a phenotypic abnormality
of the curvatures on the anterior and/or posterior surface of the cornea, is­a abnormality of the curvature
of the cornea (HP:0100691), and is­a abnormal cornea morphology (HP:0000481), which in turn is­a
abnormal anterior eye segment morphology (HP:0004328) (Figure 1.2). Combining the knowledge of
different domain­specific ontologies, such as the Gene Ontology (GO) [Ashburner et al., 2000], the Hu­
man Phenotype Ontology (HPO) [Köhler et al., 2018b] and the Human Disease Ontology (DO) [Schriml
et al., 2018] to support automating searching for relations can contribute to the discovery of new rela­
tionships between entities. Therefore, ontologies have become an essential tool for biomedical research
in which a vast amount of data is handled.
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Figure 1.2: An excerpt of the HPO ontology showing the first ancestors of astigmatism, using is­a relationships.

1.2 Objectives

The lack of annotated datasets that accurately characterise negative relations makes it harder to develop
new systems for extracting negative, false, and unknown relations from biomedical literature. Therefore,
this work aims to create a Negative Phenotype­Disease Relations (NPDR) dataset containing human
phenotype and disease annotations, and their negative relations.

Thus, the main objective and contribution of this work is the creation of a dataset that characterises the
negative relations from a gold­standard knowledge base of relations1 provided by the Human Phenotype
Ontology (HPO), the Negative Phenotype­Disease Relations (NPDR) dataset.

The general hypothesis of this dissertation is that it is possible to extract negative relations from
biomedical literature, in order to create a knowledge base that can enable the development of better and
more accurate text mining applications for negation identification, and RE of negative relations.

1http://purl.obolibrary.org/obo/hp/hpoa/phenotype_annotation_negated.tab
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1.3 Methodology

The NPDR dataset was created by first gathering, from the HPO gold­standard knowledge base of neg­
ative phenotype­disease relations, the available Pubmed PMIDs associated with the negative relations.
From these PMIDs it was possible to retrieve full­text articles that were subsequently manually examined.
The analysis consisted in the description of the entities present in the negative relation, which comprises
the analysis of phenotype entities, disease entities and their associated genes; the description of the sen­
tence implying the negative relation, which comprises the characterization of the token of negation used
in the sentence and the co­occurrence of the entities; and the description of the location of the entities and
sentences in the article.

To evaluate the impact of the NPDR dataset on the automatic annotation and extraction of the entities
and their negative relations from the articles retrieved for the creation of the dataset, a pipeline that
performs NER and RE was implemented. NER recognizes human phenotypes and diseases entities, and
RE extracts and classifies the relation between the identified entities. In order the obtain the articles in
machine­readable format, two methods were used. Firstly, the PMIDs gathered from the NPDR dataset
were converted to their corresponding PubMed Central ID (PMCID), to retrieve full­text articles using the
PubMedAPI. Secondly, PDF articles were converted to text using the PDFMiner text extraction tool2. For
the NER stage, a dictionary lookup solution, the Minimal Name­Entity Recognizer (MER) tool [Couto
and Lamurias, 2018], was used for the annotation of the entities terms from the articles. More precisely,
diseases and their related genes were annotated from the abstract and body of the article, and phenotypes
were annotated from the sentences in the article that contained an adverb of negation, such as no, not,
negative, without or none, or a word that implied negation of association, such as impaired, impairment,
normal, lack of or present exclusively. The MER tool was chosen for its simplicity and efficiency, since
it only requires a lexicon as a text file, with a list of terms containing the entities of interest as input for
the annotation process [Couto and Lamurias, 2018]. Finally, the HPO gold­standard knowledge base was
used to mark the negative relations obtained by the occurrence of phenotype entities in the sentences that
implied a negative relation, and the occurrence of diseases and related genes present in the article. The
relations were marked True, if the relation was in the knowledge base, or False otherwise.

1.4 Contributions

The main objective of this thesis is the analysis of negative phenotype­disease relations that can be
found in biomedical literature. Related to this work, the overall contributions are as follow:

1. The creation of a negative phenotype­disease relation corpus that thoroughly characterizes these
relations, the NPDR dataset.

2. 125 new negative phenotype­disease relations manually annotated at the document level.
2https://github.com/pdfminer/pdfminer.six/
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Chapter 1 Introduction

1.5 Document Structure

Additionally, to the present introductory chapter, this document is structured in four chapters as follows:

• Chapter 2 (Related Work) presents the basic concepts and resources of text mining for biomedical
literature, text mining applications for negation identification, and an overview of knowledge bases
that can aid in the annotation of negative relations between biomedical entities.

• Chapter 3 (A Dataset of Negative Phenotype­Disease Relations) presents the work developed to
create a dataset that characterizes the negative phenotype­disease relations present in the HPO
gold­standard knowledge base.

• Chapter 4 (Conclusion) presents the main conclusions of this work, and the ideas for future work.
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Chapter 2

Related Work

This chapter presents the fundamental concepts of text mining for biomedical literature, text mining
applications for negation identification, and an overview of knowledge bases that aid in the annotation
of negative relations between biomedical entities.

2.1 Text Mining for Biomedical Literature

Text mining is an interdisciplinary field that gathers knowledge from data mining, information extraction,
Machine Learning (ML), computational linguistics and statistics, to process and analyse unstructured text
[Hotho et al., 2005]. Considering that a substantial amount of information is stored as text, research in
text mining has been very active. Consequentially, various tools and applications have been developed
in order to handle different types of documents. The expansion of these tools is especially relevant for
biomedical text mining, given the abundance and heterogeneity of scientific literature. Different types of
texts can have different forms depending on their nature (e.g., clinical report, journal paper, patent, book)
[Friedman et al., 2002], and a vast range of terms can be used with distinctive styles of spellings, abbrevi­
ations and database identifiers [Lamurias and Couto, 2019]. Therefore, extracting facts and relationships
in a structured form to derive meaning from multiple domains, is a challenging task. Nonetheless, text
mining has generated a lot of interest from the bioinformatics community, since patterns and knowledge
extracted from texts can be used to derive new facts or hypotheses, that can later be validated experimen­
tally.

2.1.1 Natural Language Processing

Natural language processing (NLP) is a field of computer science that studies how computers can under­
stand and derive meaning from human language [Manning and Schutze, 1999]. This Section will assess
NLP techniques relevant to text mining pre­processing tasks [Lamurias and Couto, 2019], which will be
described in Section 2.2.
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• Tokenization: is the first step in NLP, and consists of the segmentation of a given text into elemen­
tary units for subsequent analysis. These tokens are defined as a sequence of characters and can be
words, symbols, numbers, or phrases. For example, sentence splitting consists of the identification
of the sentence boundaries of a text, i.e., splitting the text into sentences in order to extract themean­
ing of an independent sentence. This task can be challenging due to the differences in punctuation
marks, such as a period corresponding to the end of a sentence or an abbreviation. The simplest
form of tokenization is the separation of words by spaces in a text. However, regarding biomed­
ical literature, this process needs to be more refined since the structure of scientific information
is different from general language. This makes tokenization in biomedical literature particularly
challenging since its terminology is inconsistently spelt, texts can be ungrammatical (i.e., they
do not conform to grammatical rules) and often include abbreviations and acronyms. Biomedical
terms also contain digits, special symbols (such as hyphens), greek or latin letters and capitalized
letters within words. Therefore, biomedical tokenization demands specially designed strategies in
order to minimize the propagation of errors in successive NLP analysis pipeline [Cruz Díaz and
Maña López, 2015].

• Part­of­Speech (POS) Tagging: aims at attributing one or more categories to each token, cor­
responding to its syntactic functions (such as noun, verb, adjective or punctuation) and semantic
context.

• Lemmatization and Stemming: consists of removing suffixes and inflexions of a token, in order
to reduce it to its base form. The fundamental principle of these techniques is to group similar words
by the same root or the same canonical citation [Nunzio and Vezzani, 2018]. The lemma determines
the canonical form of the word, which is always a real word, and the stemma corresponds to a one
and only fragment of a word. For example, the lemma of amusement will be amuse and the stem
amus.

2.1.2 Text Mining Tasks

The text mining tasks described below [Jurafsky and Martin, 2009] are common to all sources and do­
mains of text, but their performance may vary according to the domain they are applied to. Nonetheless,
all of them have a general goal of helping us to identify useful knowledge.

• Topic Modelling: is the classification of documents according to their themes, so that they can be
organised in order of relevance to a given topic.

• Named­Entity Recognition (NER): seeks to identify and classify the entities, i.e., pieces of text
relevant to a given domain, which can be composed of one or more tokens, specified in the text,
locating it by the offset of its first and last character. The class assigned to the entity depends on
the concept it is being referred to in the text.

8



Chapter 2 Related Work

• Named­Entity Linking (NEL): will link the entities to a formal identifier that can be found in an
external database or ontology.

• Relation Extraction (RE): identifies the relations between the entities that participate in a relation
described in the text. Conventional tools will mainly extract the relation between two entities that
are in the same sentence, by applying co­occurrence. Another more complex approach would be
document­level RE, where the relationship among the entities is extracted from a paragraph [Han
and Wang, 2020].

• Event Extraction: is an extension of the relationship extraction task, and has the purpose of iden­
tifying the label of the relationship and the role of each participant.

2.1.3 Text Mining Approaches for Relation Extraction

A wide range of approaches has been applied in the biomedical field for extracting relations. These
techniques can be broadly categorised into three groups, which are rule­based (including pattern­based),
co­occurrence and Machine Learning (ML)­based [Lamurias and Couto, 2019]:

• Co­occurrence: identifies co­occurring entities in a sentence, and is the simplest approach to iden­
tify or extract relations between entities.

• Rule­based: uses manually as well as automatically defined rules or patterns to extract relations.
Manual patterns are defined by domain experts, and automatic patterns use bootstrapping or are
directly generated from corpora.

• Machine Learning (ML)­based: takes advantage of large annotated biomedical corpora to ap­
ply supervised learning, in which RE tasks are modelled as classification problems. Mainly, these
tasks consist of pre­processing, parsing and RE [Muzaffar et al., 2015]. Supervised methods can be
further categorised in feature­based and kernel­based methods. Feature­based methods extract a
set of features from textual analysis, and represent them in a feature vector that will be presented to
a classifier, either for training or classification. These methods require heuristic choices, hence, to
maximise the performance of the classifier, these features have to be selected on a trial­and­error
basis and setting on the most favourable set of features can prove to be difficult since some of them
are not good indicators of entity relationships. Kernel­based methods use specialised kernels de­
signed for RE in order to utilise representation of data. The main goal is to assess the similarity
between the different data instances and compute the similarity of their representations. These
methods can be string kernels, where the similarity is computed for two strings at the character
level; bag­of­features kernel, where the similarity is computed at the word level, and word­context
around entities can also be used to extract relations; and tree kernels, where the similarity is com­
puted between structured shallow parse trees built on the sentence. Although distant supervised
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methods can yield high performances, this metric will greatly depend on the quality of the designed
features or kernels. On the one hand, the pre­processing data stage required to provide the neces­
sary labeled data is error prone, and on the other hand, these methods are difficult to extend to new
unlabelled entity­relation types [Bach and Badaskar, 2007].

Recently deep learning approaches have gained significant interest since they can directly extract
features from large­scale data, and consequently rely less on NLP tools. The goal of these ap­
proaches is to create a large network that is able to capture the features in the data. Deep learning
studies were originated from artificial neural networks research, in which an interconnected com­
bination of processing units can generate knowledge from information from the environment. This
approach is more effective than conventional ML since it can handle more non­linear and abstract
representations [Leng and Jiang, 2016]. Some common concepts across most deep learning models
are words embeddings, which consist of similarity vectors measured by semantic relevance; Con­
volutional Neural Networks (CNN), which are formed by an input layer, multiple hidden layers,
and an output layer; and Recurrent Neural Networks (RNN), which make use of sequential infor­
mation that is used to process sequences of inputs. RNNs execute the same task for every element
of a sequence, and the output of one calculation is dependent on the previous output. This model
has two types, Long Short­Term Memory Networks (LSTM) and Bidirectional RNN [Xue et al.,
2018].

2.1.4 Text Mining Tools for Relation Extraction

Below are briefly described some of the state­of­the­art tools used for biomedical RE.

• Textpresso: is a biomedical information extraction technique based on ontologies and regular ex­
pressions. It can be used as a curation tool, as well as a search engine for researchers [Müller et al.,
2004].

• jSRE: uses a combination of shallow linguistic kernel functions in order to combine different in­
formation sources, the whole sentence where the relation appears and the local contexts around the
interacting entities. Therefore, this kernel considers tokens, POS, and lemmas around each entity
[Giuliano et al., 2006b]. This system has been used to extract drug­drug relations [Segura­Bedmar
et al., 2011].

• Excerbt: is a text mining tool based on semantic sentence analysis combined with rule­based and
ML approaches, that classifies relations between genes, proteins, phenotypes and diseases [Blohm
et al., 2013].

• BeFree: is a text mining system that applies a kernel­based approach using both morpho­syntactic
and dependency information to identify drug­disease, drug­target and gene­disease relations from
text [Bravo et al., 2015].
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• DeepDive: applies DS to perform RE tasks in order to identify gene­gene relations [Mallory et al.,
2015].

• IBRel: is a Distant Supervision (DS)­based multi­instance learning tool that extracts microRNA­
gene relations from text [Lamurias et al., 2017].

• BioBERT: is a pre­trained language representation model for biomedical text mining based on
BERT [Devlin et al., 2019] that has been used to effectively extract human phenotype­gene relations
[Lee et al., 2019].

• SciBERT: is a pre­trained BERT­based language model that leverages unsupervised pretraining
on a large multi­domain corpus of scientific publications to improve scientific NLP tasks [Beltagy
et al., 2019].

• BiOnt: is a deep learning system that uses four types of biomedical ontologies, such as the Gene
Ontology, the Human Phenotype Ontology, the Human Disease Ontology and the Chemical Enti­
ties of Biological Interest in order to extract phenotype­gene relations, drug­drug interactions and
chemical­induced disease relations [Sousa and Couto, 2020].

• DEMMT: is a document­level entity mask method with type information, that masks each mention
of the entities by special tokens [Han and Wang, 2020].

• PubMedBERT: is a pre­trainedBERT­based languagemodel pretrained using abstracts fromPubMed,
which achieves state­of­the­art performance on several biomedical NLP tasks, as shown on the
Biomedical Language Understanding and Reasoning Benchmark [Gu et al., 2020].

Table 2.1 describes the performance of some of the RE systems mentioned above. It should be noted
that these systems cannot be directly compared, since each one was evaluated on a different corpus to
classify relations between different biomedical entities.

Table 2.1: Evaluation of biomedical RE systems.

Name Approach Evaluation Corpus Precision Recall F­Measure

Textpresso Rule­based Eight full­text journal articles 0.618 0.354 0.450

jSRE ML AImed 0.609 0.572 0.590

IBRel ML/DS TransmiR 0.359 0.486 0.413

BeFree ML EU­ADR 0.840 0.710 0.760

DeepDive ML/DS 100 000 full­text PLOS articles 0.760 0.490 0.596

BioBERT ML NCBI disease 0.883 0.890 0.886

BiOnt ML PGR 0.842 0.666 0.744
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2.1.5 Text Mining Tools for Negation Detection

Negation is a linguistic phenomenon defined as an assertion that some event, situation, or state of affairs
does not hold. Negative clauses usually occur in the context of some presupposition, functioning to negate
or counter­assert that presupposition [Payne, 1997]. Since the biomedical domain has an abundance of
negation statements, negation detection has become an important subtask of information extraction from
texts, such as clinical reports and scientific articles. Yet, this task is not trivial because the complexity
of language makes it challenging to identify the polarity of the information. Since the meaning of a
concept can significantly be affected by the scope of negation, identifying negated concepts based on the
presence of a negation token can lead to inaccurate information. For example, in the following sentence:
Radial dysplasia is not commonly associated with malformations of the lower limbs. (PMID:7077621),
the negation cue indicates that radial dysplasia is not associated with malformations of the lower limbs,
therefore, the negation token not affects the whole sentence. But in the sentence: Investigation of plasma
K+ concentrations in the members of the family revealed a similar syndrome in two of the three children
subjects C and D but not in the husband (PMID:2766660), the negation cue only partially negates the
sentence. Finally, in sentence: The present cases might be similarly characterized but extrapulmonary
manifestations could not be excluded in these living patients (PMID:1190822), the negation cue is not
being used to negate the scope of the sentence.

Negation can be intuitive for humans but delineating the scope of negation can be difficult for computer­
based systems. The initial approaches for tackling this task were made using rules and designed heuristics
but given the complexities of natural language other methods were developed, such as ML systems. Be­
low are described state­of­the­art tools for negation detection, and Table 2.2 summarizes the performance
for some of the systems.

• NegExpander: is an algorithm that uses syntactic processing techniques to identify noun phrases
or conjunctive phrases that define negation boundaries [Aronow et al., 1999].

• Negfinder: is a rule­based system that recognises negated patters in biomedical text. This system
uses a lexical scanner called lexer, that uses regular expressions in order to generate a finite state
machine, and a parser [Mutalik et al., 2001].

• NegEx: is a simple regular expression algorithm that implements phrases indicating negation,
filters out sentences containing phrases that falsely appear to be negation phrases, and limits the
scope of negation phrases [Chapman et al., 2001].

• NegHunter: is a negation detection algorithm that identifies negation triggers in clinical practice
guidelines [Gindl et al., 2008].

• DepNeg: is a dependency parsed­based negation algorithm that uses the dependency structure of
a target named entity in a sentence, instead of a fixed negation scope. This system applies manual
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negation rules based on the patterns of dependency paths between the targets and negation cues
[Sohn et al., 2012].

• DEEPEN: is a negation algorithm developed to decrease NegEx’s false positives by considering
the dependency relationship between negation words and concepts within a sentence using Stanford
dependency parser. This systemwas developed and evaluated in electronic health records data from
Indiana University (IU) and Mayo Clinic datasets [Mehrabi et al., 2015].

• NegMiner: is a tool that exploits basic syntactic and semantic information to deal with contiguous
and multiple negations [Elazhary, 2017].

• NegBERT: is a model that uses BERT’s transformer­based architecture to negation detection and
scope resolution. This model trains Deep Learning systems on corpora, such as the BioScope
Corpus, the Sherlock Dataset and the SFU Review Corpus [Khandelwal and Sawant, 2020].

Table 2.2: Evaluation of biomedical negation detection systems.

Name Approach Evaluation Corpus Precision Recall F­Measure

Negfinder Rule­based Surgery notes & Discharge summaries 0.918 0.957 0.929

NegEx Rule­based Discharge summaries 0.845 0.778 0.804

NegHunter Rule­based Clinical practice guidelines 0.675 0.835 0.747

DepNeg Dependency parser Mayo clinical notes 0.967 0.739 0.838

DEEPEN Dependency parser IU dataset 0.966 0.964 0.965

2.2 Textual Resources for Biomedical Natural Language Processing

Corpora are paramount to train, test, compare or develop text mining systems. On the other hand, datasets
and ontologies are also valuable resources for research on linguistic analysis of scientific and clinical
literature. This section describes some of the state­of­the­art ontologies, corpora and datasets used in
biomedical NLP.

2.2.1 Ontologies

An ontology is an explicit specification of a conceptualisation of a domain, as defined by Gruber [Gruber,
1993]. Therefore, an ontology defines a structure in which common vocabulary is used to represent
shared knowledge. The domain knowledge in biomedicine keeps on increasing in size and complexity,
consequently various bio­ontologies have been developed to overcome the need to merge and organise
all the information available. Phenotypes and diseases are some of the biomedical entities structured in
publicly available ontologies:
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• The Human Phenotype Ontology (HPO): is a standardised vocabulary of phenotypic abnormal­
ities associated with diseases, and serves as a database for deep phenotyping in the field of rare
diseases. The organization responsible for this ontology also provides a gold­standard relations
file of positive gene­phenotype relations and negative disease­phenotype relations [Köhler et al.,
2018b].

• The Human Disease Ontology (DO): is a standardised ontology of human diseases that provides
descriptions of human disease terms, phenotype characteristics, and related medical vocabulary
disease concepts through cross mapping of DO terms to MeSH, International Classification of Dis­
eases (ICD), National Cancer Institute’s (NCI) thesaurus, Systematised Nomenclature of Medicine
Clinical Terms (SNOMED) and OMIM [Schriml et al., 2018].

2.2.2 Corpora

A corpus is a collection of written texts on a specific topic, within a meaningful context and with a general
purpose, upon which a linguistic analysis is based. Most of them are annotated with NLP techniques and
domain­experts and are often assembled to answer a research question. Hence, high quality annotated
corpora are paramount for developing and evaluate text mining tools, and training ML models. Even
though document retrieval is achieved by automatic processes, domain experts should manually annotate
and curate the annotations, which are arduous efforts. Therefore, text mining tools may be used to assist
curators by supplying automatic annotations as a baseline.

There are many types of corpora available, which makes it important to choose the right one for the
type of annotation to be extracted. For example, for RE it is necessary to have a description in the text of
the relations between the entities and experts from multiple domains. Also, not all corpora come at the
same cost. Annotated corpora for RE are amongst the most expensive type of corpus since it first requires
the recognition of the entities present in the text by the annotators, and then the relationships described
between them. Nevertheless, the development of annotated corpora is important for the promotion of RE
research in the biomedical field, even if it is a time­consuming and error­prone task.

Below are described some of the state­of­the­art biomedical corpora, that have been developed to
provide reference material for applying biomedical RE, and for negation detection.

• GENIA: is a semantically annotated corpus of biological literature, consisting of a collection of
2000 abstracts extracted from the MEDLINE database. It contains more than 400 000 words and
almost 100 000 annotations hand­coded by two domain experts for biologically meaningful terms,
which have been semantically annotated with descriptors from the GENIA ontology [Kim et al.,
2003].

• BioText: is a corpus of 100 titles and 40 abstracts from Medline with annotated diseases and treat­
ments (both drug and medical treatments) at the sentence level, and positive and negative relations

14



Chapter 2 Related Work

between the entities [Rosario and Hearst, 2004].

• BioInfer (Bio Information Extraction Resource): is an annotated corpus of biomedical English,
containing 1100 sentences from abstracts of biomedical research articles, annotated for relation­
ships (positive and negative), named entities, and syntactic dependencies [Pyysalo et al., 2007].

• Bioscope: is a corpus composed of free texts, biological full papers and biological scientific ab­
stracts. It contains annotations at the token level for negative and speculative keywords and at
the sentence level for their linguistic scope. The corpus consists of over 20 000 sentences, and
over 10% of them contain one or more linguistic annotations that suggest negation or uncertainty
[Vincze et al., 2008].

• EU­ADR corpus: is a corpus of 300 abstracts with drugs, disorders and targets annotated with
their inter­relationships (target­disease, target­drug and drug­disease) [van Mulligen et al., 2012].

• NCBI disease corpus: is a corpus annotated with disease names and their corresponding Medical
Subject Headings (MeSH) and/or OMIM identifiers. This platform contains almost 800 PubMed
abstracts and more than 6800 disease mentions linked to unique concepts, providing a large foun­
dation for improving text­mining research on NER, namely by serving as a training corpus for ML
models [Doğan et al., 2014].

• NegDDI­DrugBank is an expansion of the DrugDDI corpus, a corpus of pharmacological sub­
stances and drug–drug interactions [Herrero­Zazo et al., 2013], annotated with negation cues and
scopes, following the BioScope guidelines. It contains 1448 sentences with at least one negated
scope [Bokharaeian et al., 2014].:

• Psychiatric disorders Gene association NETwork (PsyGeNET): is a high­quality resource of
psychiatric diseases and their associated genes. The information contained in the database is ex­
tracted from MEDLINE abstracts with text mining tools, namely the BeFree system, and manualy
curated by experts in psychiatry and neurosciences. This knowledge base includes positive as well
as negative relations [Gutiérrez­Sacristán et al., 2015].

• Biomedical entity Relation ONcology COrpus (BRONCO): is a gold­standard corpus that con­
tains over 400 genomic variants and their relations with genes, diseases, drugs, and cell lines in
the context of cancer anti­tumor drug screening research. The variants and their corresponding
relations were manually extracted from 108 full­text articles [Lee et al., 2016].

• DisGeNET: is a knowledge base of genotype­phenotype relations, that integrates data from various
sources, namelyGWAS catalogues, UniProt, ClinVar, The Comparative ToxicogenomicsDatabase,
Orphanet, The Genetic Association Database and The Mouse Genome Database. This platform
contains a comprehensive collection of more than 1 000 000 associations of genes and variants of
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human diseases, such as Mendelian, complex, rare, and environmental. The terms are annotated
with controlled vocabularies and community­driven ontologies but are not validated by experts
[Pinero et al., 2016].

• SNPPhenA: is a corpus of associations of single­nucleotide polymorphisms (SNPs) and pheno­
types, annotated with linguistic­based negation, modality markers, neutral candidates, and confi­
dence level of associations. [Bokharaeian et al., 2017].

• Phenotype­Gene Relations (PGR) corpus: is a silver standard corpus of human phenotype and
gene annotations and their relations. This corpus was generated in a fully automated manner and
partially evaluated by eight curators. It consists of 1712 abstracts, 5676 human phenotype annota­
tions, 13835 gene annotations and 4283 relations [Sousa et al., 2019].

• PGxCorpus: is a manually annotated corpus, designed to enable automatic RE of pharmacoge­
nomics relationships from text. It consists of 945 sentences from 911 PubMed abstracts, mainly
annotated with gene variations, genes, drugs and phenotypes, and their relationships [Legrand et al.,
2020].

To this date, annotated corpora focus mainly on positive relations, as shown in Table 2.3, where
a summary of biomedical corpora relevant to RE systems is provided. The lack of corpora for negative
relations annotated at the semantic level hinders the development of systems able to extract these relations.

Table 2.3: Biomedical corpora relevant to RE systems.

Name Entities Relation Type

BioText Diseases and treatments Positive & Negative

BioInfer Genes, proteins and RNAs Positive & Negative

EU­ADR Drugs, diseases and targets Positive

NCBI disease corpus Diseases Positive

NegDDI ­DrugBank Drugs Negative

PsyGeNET Genes and psychiatric disease phenotypes Positive & Negative

BRONCO Genes, diseases, drugs and cell lines Positive

DisGeNET Genes and disease phenotypes Positive

SNPPhenA SNPs and phenotypes Positive & Negative

PGR Genes and phenotypes Positive

PGxCorpus Genes, phenotypes and drugs Positive

16



Chapter 2 Related Work

2.2.3 Databases

Databases are another resource that can be as useful as corpora and serve as resources to aid in biomedical
text mining. Some of the state­of­the­art databases in biomedical NLP, and detection of negated events
are listed below.

• Online Mendelian Inheritance in Man (OMIM): is a relation knowledge base of human genes
and genetic disorders, with more than 24 600 entries, that aims to support human genetics research
and the practice of clinical genetics. It provides relations between phenotype terms, genetic disor­
ders (diseases), and genes [Hamosh et al., 2005].

• BioN∅T: is a searchable database of biomedical negated sentences. It contains approximately 32
million negated sentences extracted from over 336 million biomedical sentences, from full­text
biomedical articles in Elsevier and PubMed Central, and abstracts in PubMed [Agarwal et al.,
2011].

• Orphanet (ORPHA): is a European relation dataset of disease­gene relations that aims to help
improve the diagnostic process, care and treatment of patients with rare diseases. This knowledge
base establishes a link between rare genetic diseases and any published information regarding them,
and genes are cross­referenced with UniProt, OMIM, HGNC, and Genatlas [Rath et al., 2012].

• Negatome: is a database of proteins and proteins domains that are unlikely to interact physically.
It is extracted by manual curation of literature and by analysing three­dimensional structures of
protein complexes. The manual annotation process is also aided with the text mining tool Excerbet.
This database contains both positive and negative examples [Blohm et al., 2013].

• Phenotype Annotation Negated (HPO): is a gold­standard relations file of negative phenotype­
disease relations that contains over 1500 annotations. The main categories of this file are the name
of the database from which comes the disease, the disease identifier and name, the phenotype’s
HPO identifier and the reference for the negative relation [Köhler et al., 2018b].

The biomedical literature contains a vast amount of information regarding the associations of biomed­
ical entities, and the availability of published literature in electronic format makes the development of
text mining applications even more appealing for understanding the relations among biological systems.
But biomedical RE is a task that requires high quality annotated corpora (gold­standard corpora) which
are scarce since its construction is laborious and costly. Furthermore, when extracting negative relations,
in addition to having to correctly identify and name the entities present in text (NER), the presence of
a token of negation that implies no association between the entities also must be taken into considera­
tion. To this date, and to the best of my knowledge, the only gold­standard knowledge base for negative
phenotype­disease relations is a document made available by the HPO. Even though this gold­standard
relations file is a valuable resource for detecting negative phenotype­disease relations, it does not contain
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sufficient information to enable the automatic extraction of new negative phenotype­disease relations
from biomedical literature, such as synonyms or the negation token that indicates the negative relation.
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A Dataset of Negative Phenotype­Disease
Relations

In order to aid in the automatic annotation of negative relations a dataset that characterizes some of the
relations from the Human Phenotype Ontology (HPO) knowledge base, in addition to new manually
annotated negative relations, was created. The Negative Phenotype­Disease Relations (NPDR) dataset
comprises a thorough description of the entities present in the text, their location in the article, and the
location of the sentences that contain the negative relation.

3.1 Methods

The HPO is an ontology of phenotypic abnormalities that occur in human diseases. The developers of
the HPO also made available a gold­standard knowledge base that links these abnormalities to diseases
to which they are not associated. These negative relations are derived by text mining from texts in the
Online Mendelian Inheritance in Man (OMIM) and Orphanet (ORPHA) databases, where all phenotype
abnormalities that are not associated with a disease are assigned to a disease in the knowledge base. The
negative phenotype­disease relations from this document were used in the creation of the NPDR dataset.

From the HPO knowledge base of phenotype­disease relations it was possible to link a subset of
237 negative relations to 169 PubMed IDs (PMID), which led to the retrieval, in PDF format, of 169
articles and clinical reports, seven supplementary material documents, plus one book chapter, that were
subsequently manually examined. The NPDR dataset was then created from this analysis, and comprises
347 characterised negative relations, fromwhich 222 derive from the HPO knowledge base of phenotype­
disease relations, and 125 are new manually annotated relations. It should be noted that the investigation
of every annotation was performed at the document­level.

The main components of the dataset are the characterization of the entities (diseases, their associated
genes, and phenotypes), the characterization of the sentences that imply a negative phenotype­disease
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relation, and the location of the entities and sentences in the text. Each negative relation can also be
linked to the article PMID and PubMed Central ID (PMCID) (if available) from where it was annotated,
and an evidence code tag used by the HPO. The contents of the dataset are shown in Table 3.1.

Table 3.1: Summary description of the data categories of the NPDR dataset.

Categories Description

pmid_reference Article PMID

pmc_reference Article PMCID

evidence_code Evidence code tag used by HPO

disease_db Database from which the disease is sourced (OMIM)

disease_name OMIM designation

disease_abbreviation Disease abbreviation found in text

associated_gene_or_locus Associated gene or locus to the disease

disease_synonym Synonym of the disease found in text

disease_id OMIM identifier

disease_id_in_text Presence of the disease identifier in text

gene_id_in_text Gene OMIM identifier and its presence in text

hpo_name HPO designation

hpo_id HPO identifier

hp_synonym Synonym of the phenotype found in text

negation Word of negation in sentence

not_abnormal Presence of the word normal in sentence

sentence Sentence containing the negative relation

sentence_location Sentence location in text

disease_location Disease location in text

gene_location Gene location in text

co_occurrence Co­occurrence of entities in sentence

comments Further comments

3.1.1 Disease Annotations

Disease entities were characterised in terms of their official OMIM disease designation (disease_name),
OMIMdisease identifier (disease_id), synonym (disease_synonym), and abbreviation (disease_abbreviation).
In the case where the gene or locus associated to the disease participating in the negative phenotype­
disease relation was mentioned in the text, as well as referenced in the OMIM database, its OMIM desig­

20



Chapter 3 A Dataset of Negative Phenotype­Disease Relations

nation (associated_gene_or_locus) and identifier (gene_id_in_text) were also annotated. Furthermore,
the presence of the OMIM identifiers were characterized in terms of their presence in the article. For
diseases, if the identifier was present, the column disease_id_in_text would contain yes, and no other­
wise. For genes, if the identifier was present in the text, the column gene_id_in_text would contain the
identifier, and no otherwise.

In the HPO gold­standard knowledge base, the disease name corresponds to the main disease OMIM
term. However, in the NPDR dataset, the official designation corresponds to the closest name of the
entity found in text. Thus, whenever an official OMIM designation was not present, the disease name
was chosen based on the synonym found in text. Example 3.1 shows how the disease name ADENO­
SINE DEAMINASE 2 DEFICIENCY; DADA2 was chosen for article PMID:26867732. Also, it is worth
mentioning that the official OMIM designation is composed by the disease’s full name (ADENOSINE
DEAMINASE 2 DEFICIENCY ) followed by its abbreviation (DADA2).

The disease abbreviation could either be an abbreviation chosen by the article’s authors, an official
OMIM abbreviation, or the name of the associated gene or locus. In some cases, an exact match between
the three would occur. For example, in article PMID:21057262, the OMIM disease abbreviation for
MYD88 DEFICIENCY; MYD88 (MIM 612260) isMYD88D, as well as the disease abbreviation used by
the authors, and the gene name. On the other hand, in article PMID:31630789, the OMIM disease abbre­
viation for SPONDYLOEPIMETAPHYSEAL DYSPLASIA, ISIDOR­TOUTAIN TYPE; SEMDIST (MIM
618728) is SEMDIST, the disease abbreviation chosen by the authors is SEMD, and the gene name is
RPL13.

Example 3.1 Example of how a disease name is chosen.

• Article PMID: 26867732

• Disease Identifier: 615688

• Disease Synonym: ADA2 deficiency

• Chosen Disease Name (OMIM alternative title): ADENOSINE DEAMINASE 2 DEFICIENCY;
DADA2

• Disease Name from HPO dataset (main OMIM term): VASCULITIS, AUTOINFLAMMATION,
IMMUNODEFICIENCY, AND HEMATOLOGIC DEFECTS SYNDROME; VAIHS

3.1.2 Phenotype Annotations

Phenotype entities were characterized in terms of their HPO designation (hpo_name), HPO identifier
(hpo_id), and phenotype synonym (hp_synonym). Since the HPO gold­standard knowledge base only
contained the HPO identifier of the phenotype that participates in the negative relation, if the official
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HPO designation was not found in text, the name to which the entity was referred was annotated and
corresponds to its synonym. Like disease entities, phenotype synonyms are not an official HPO syn­
onym, and phenotype names were also chosen to match as closely as possible the phenotype synonym.
Therefore, the closest designation can either be the main HPO term of a given phenotype, or an official
synonym. Example 3.2 illustrates how the phenotype name degeneration of cerebellum was chosen for
article PMID:11706389.

Example 3.2 Example of how a phenotype name is chosen.

• Article PMID: 5571218

• Phenotype Identifier: HP:0000662

• Negative Relation Sentence: There has been no further subjective loss of vision in the past 30
years, and he denies any impairment in night vision or color vision

• Phenotype Synonym: impairment in night vision

• Main HPO term: nyctalopia

• Chosen Phenotype Name (HPO official synonym): poor night vision

3.1.3 Negative Relation Sentence Annotations

The sentences were identified based on two criteria. First, they had to contain the name or synonym of the
phenotype that participated in the negative phenotype­disease relation, and second, a word that implied
negation of association had to be present. Since the HPO is a database of phenotypic abnormalities
[Köhler et al., 2018a], if the word normal appeared in the sentence and was related to the phenotype,
the negation of association was established. Alternatively, adverbs of negation were also considered as
suggesting a negation of association.

Occasionally, a negative relation could be established in the absence of a sentence. This exception
would arise in the presence of a table summarising the clinical features of all the individuals affected by
the same disease. Table 3.2 illustrates this situation, where a negative relation can be established between
Phenotype 2 and the Clinical Syndrome. In a situation like the one described before, the name(s) of the
phenotype(s) that appeared in the table would be considered as the negative relation sentence. A list of
the words of negation found in the sentences, as well as tables, can be found in Table 3.3.

Co­occurrence of the entities in the sentence was also considered, and the type of entity term that
co­occurred with the phenotype entity was annotated. For example, in the sentence (PMID:26996948):
The first reported inherited GPI deficiency (IGD) was PIGM (MIM 610273) deficiency in individuals
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Table 3.2: Example of how a negative relation can be implied from a clinical feature table. In this example, a
negative relation between Phenotype 2 and the Clinical Syndrome would be implied.

Clinical Features
Clinical Syndrome

Patient 1 Patient 2 Patient 3

Phenotype 1 no no yes

Phenotype 2 no no no

Phenotype 3 yes yes yes

Table 3.3: Words of negation and their most common location.

Location Negation Words

Sentence
absence, absent, denied, excluded, free of, impaired, impairment,

lack of, negative, no, none, not, present exclusively, rules out, without

Table neg, N, NP

suffering from portal thrombosis and seizures without intellectual disability, the disease, gene and phe­
notype entities co­occur. More specifically, the entities types are the disease synonym (inherited GPI
deficiency), the disease abbreviation (IGD), the gene name (PIGM), the gene identifier (MIM 610273),
and the phenotype name (intellectual disability).

Finally, every negative association between a disease and HPO term can be linked to an HPO evidence
code. These codes are: inferred from electronic annotation (IEA), published clinical study (PCS), indi­
vidual clinical experience (ICE), inferred by text mining (ITM) and traceable author statement (ITAS)
[Köhler et al., 2013].

3.1.4 Entities and Sentences Location

Regarding the location of the entities and sentences in the articles, themain categories under consideration
were title, abstract, body and appendices (this last category was only applied to sentences). If the body
category was composed by other subsections, they were also annotated, but for analysis purposes were
subsequently attributed to an equivalent section, such as introduction, materials and methods, results,
discussion, and tables. These attributed sections were chosen depending on the context of the content
of the original section. It should be noted that when a negative relation sentence was not found in an
article and its supplementary materials were made available, then the latter document was retrieved to be
analysed. A list of every article location and attributed location can be viewed in Table 3.4.
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Table 3.4: Summary of article locations from the NPDR dataset and their equivalent location.

Equivalent Location Article Location

Introduction

Background
Biological Relevance

Introduction
Summary

Materials and Methods

Case report(s)
Candidate HSP Genes Identified by Network Analysis

Clinical and diagnostic relevance
Clinical Characteristics
Clinical Relevance
Clinical report(s)

Diagnosis
Extending Results to Larger HSP Cohort

Family history
Functional Testing Candidates with Expression and Zebrafish

Genetic Counselling
Genetically Related Disorders

HSP­Related Proteins Interact Within a Network
Implicated Causal Genes Suggest Modules of HSP Pathology
Link Between HSP and Neurodegenerative Disease Genes

Material(s) and Methods
Methods

Molecular Genetics
Multiple Genes Are Implicated in HSP

Patients and Methods
Subjects and Methods

Variants

Discussion
Discussion

Future Prospects
Results and Discussion

Results Results
Table Tables

Appendices

Supplemental Data
Supplementary Data

Supplementary Material
Supporting Information
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3.2 Evaluation

To test if it was possible to automatically annotate the entities described in the NPDR dataset, and extract
their negative relation, a system that performs Named Entity Recognition (NER), Named Entity Linking
(NEL) and Relation Extraction (RE) was developed. The information from the NPDR dataset, the OMIM
knowledge base, the HPO database and the HPO gold standard knowledge base was used as input for this
system, in order to compare the difference in the number of annotations and relations extracted by using
the HPO andOMIMknowledge bases or complementing their informationwith the NPDR dataset. Figure
3.1 shows the overall workflow of the developed system.

Figure 3.1: Workflow of the NPDR pipeline with the XML Corpus (A) and PDF Corpus (B).

3.2.1 Automatic Extraction Method

From the annotation of the NPDR dataset, it was possible to observe that most negative relation sentences
were in the article’s body. Therefore, the main constraint for the annotation of negative relations is that
articles have to be available as full­texts. Consequently, in order to retrieve the full­text, the PubMed
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PMIDs of the articles from the NPDR dataset were converted to their corresponding PubMed Central
PMCID. Using the Entrez Programming Utilities (E­utilities) web service1 and the 169 PMIDs from the
NPDR dataset as keywords, it was possible to obtain the PMCID of 104 articles. Unfortunately, for 80 of
these 104 PMC articles The publisher of this article does not allow downloading of the full­text in XML
form, which led to the retrieval of 24 articles’ bodies and 24 abstracts (XML Corpus). These documents
were retrieved on May 4, 2021. All documents were filtered to only retrieve articles in English with a
correct XML format and content.

Since so few articles were retrieved from the E­utilities web service, the 177 PDFs articles, clinical
reports and book chapter that were gathered during the development of the NPDR dataset were converted
to text, using the PDFMiner text extraction tool2. From this conversion it was possible to obtain 168
full­text articles, with their abstracts included (PDF Corpus).

Table 3.5: Summary description of the source of the documents, method used to retrieve them and final number of
documents retrieved for the XML and PDF Corpora.

Corpus Source Method Final number of documents

XML PMCIDs from NPDR dataset E­utilities web service 24 articles & 24 abstracts

PDF article PDFs PDFMiner tool 168 complete articles

3.2.1.1 Negation Extraction

After retrieving the documents, the next step was to apply a simple regular expression algorithm to detect
negation phrases. The patterns used to extract sentences indicating negation were the tokens of negation
found in the negation sentences from the NPDR dataset (Table 3.3).

3.2.1.2 Named Entity Recognition and Named Entity Linking

For the entities’ annotation, the Minimal Named­Entity Recognition (MER) tool [Couto and Lamurias,
2018] was used. MER is a dictionary­based NER tool that only requires a lexicon or ontology (e.g., text
or OWL file) with the list of terms containing the entities of interest and an input text in order to return
the recognized entities, their location, and links to their respective classes.

Several lexica were used to annotate diseases with MER. The main lexicon was created from the file
of OMIM’s Synopsis of the Human GeneMap (morbidmap.txt3). This file contains 8052 phenotype­gene
relationships of the Human Genome (as of July 12, 2021), more specifically the name of the phenotype
(i.e., the disease’s name), its MIM number (if different from that of the gene/locus), its gene symbol, the

1https://www.ncbi.nlm.nih.gov/books/NBK25501/
2https://github.com/pdfminer/pdfminer.six/
3https://https://www.omim.org/downloads
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MIM number of the gene/locus and its cyto location. Since several diseases can also be identified by their
gene or associated locus, besides a list of diseases and their identifier, a list of genes and their identifiers
was also created. Considering that one gene can be associated to more than one disease, i.e., one gene
name can be attributed to several MIM numbers, the get_entities.sh file from MER had to be modified
to annotate gene names with more than one identifier. The other two lexica used for the annotation of
diseases were generated from disease synonyms and diseases abbreviation synonyms from the NPDR
dataset. Disease annotations were made at the sentence level for the article’s bodies and full­text for
abstracts.

Phenotype entities were annotated from two lexica. The main lexicon was created from the HPO4,
and the second from a list of phenotype synonyms from the NPDR dataset. Phenotypes were annotated
from negation sentences only.

3.2.1.3 Relation Extraction

Relations were extracted using a distant supervision approach with the HPO gold standard knowledge
base. The relations were marked as True if they were present in the knowledge base, or False if they
were not identified or did not exist. To achieve this classification, the system extracted pairs of phenotype
entities present in each negative sentence, and disease entities from the abstracts and article’s body from
where the negative sentence was retrieved (Example 3.2).

To compare the impact of the NPDR dataset in the RE phase, two methods were applied. The first
method (Labels Method) consisted of extracting the relations between the entities annotated with the
OMIM and HPO lexica. The second method (AllLabels Method), was achieved by adding the annotated
entities from the NPDR phenotype synonyms, disease abbreviations and disease synonyms lexica to the
other two lexica mentioned above.

The evaluation of the classifier was done, firstly, by automatically verifying which of the extracted
relations was referenced in the HPO gold standard knowledge base. If the relation was marked as True
and existed in the knowledge base, the classification was correct. Since this approach assumes a closed­
world assumption, i.e., every unknown relation that is not contained within the knowledge base is false,
a manual evaluation was achieved by randomly selecting a sample from the total extracted relations, to
confirm if the identified relation existed in the article from which it was annotated. The sample size (n0)
for each method was determined using the Cochran [Cochran, 1977] formula with a confidence level of
95%:

n0 =
Z2pq

e2
(3.1)

where e is the margin of error, p is the estimated proportion of the population which holds the attribute
at issue (in this case the considered value was 0.5), q is 1­p, and the Z­score for a confidence level of

4http://purl.obolibrary.org/obo/hp.owl
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95% is 1.96. Lastly, the accuracy for the True relations was calculated in order to determine how many
correct relations were detected:

Accuracy =
True Relations

Total Relations
× 100 (3.2)

Example 3.2 Relation extraction.

• Article PMID: 32163377

• Sentence: Hemophagocytic lymphohistiocytosis HLHwas suspected, butno evidence ofhemophago­
cytosis was found in the bone marrow

• Disease: mycobacterial disease

• Disease Identifier: 618963

• Phenotype: hemophagocytosis

• Phenotype Identifier: HP:0012156

• Relation: True

3.3 Results and Discussion

3.3.1 NPDR Dataset

The main results of the statistical analysis regarding the NPDR dataset are shown in Table 3.6.

Regarding disease entities, the statistical analysis shows that 73.2% of the articles contain a disease
synonym, consequently, in the other 26.8%, an exact OMIM disease term could be found. For disease
abbreviations, 16.7% of the articles contained an exact match with the official OMIM disease abbre­
viation, but only 3.2% of the gene or locus names matched the official disease abbreviation. It is also
worth mentioning that in 79% of the articles the disease could be identified by its associated OMIM
gene or locus term. Furthermore, in 59.6% of the articles that included a disease synonym, instead of an
OMIM designation, the associated gene or locus term could be found. Thus, using gene terms related
to monogenic diseases, as an alternative disease designation, would greatly improve the success of the
NER task. This is especially relevant in articles that use disease names that refer to a broader disease
term. For example, article PMID:23434115 is about a heterogeneous group of inherited disorders called
Congenital Macrothrombocytopenia (MIM 155100), but the negative relation regards ACTN1­mutated
individuals. Consequently, the entity that participates in the negative relation is MACROTHROMBO­
CYTOPENIA, AUTOSOMAL DOMINANT, ACTN1­RELATED (MIM 615193). In this case, the disease
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Table 3.6: Statistics of the NPDR dataset categories.

Categories Number of records Percentage (%)

total relations 347 100

HPO dataset relations 222 64

new relations 125 36

disease_synonym 254 73.2

exact match disease_name with OMIM designation 93 26.8

hp_synonym 198 57.1

exact match hpo_name 148 42.6

disease_abbreviation 200 57.6

no disease_abbreviation 147 42.4

exact match disease_abbreviation with OMIM abbreviation 58 16.7

associated_gene_or_locus 274 79

no associated_gene_or_locus 73 21

exact match associated_gene_or_locus with OMIM abbreviation 11 3.2

disease_id_in_text 42 12.1

no disease_id_in_text 305 87.9

gene_id_in_text 121 34.9

no gene_id_in_text 226 65.1

sentences 285 82.1

negation 198 57.1

not_abnormal 87 25.1

co_occurrence 50 14.4

no co_occurrence 297 85.6

entity was identified by the gene term. Moreover, the highest percentage of articles contained the gene
identifier related to the disease (34.9%), instead of the disease’s identifier (12.1%).

Respecting phenotype entities, 42.6% of the articles included an exact match between the name of
the phenotype found in text and an official HPO designation. Like diseases, phenotype terms can be
complex and heterogeneous entities since they can be composed of multiple words. The fact that a higher
percentage of phenotype names, when compared to disease names, matched an official designation could
be the result of HPO holding numerous synonyms for their main phenotype terms. Nonetheless, some
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phenotype terms can still be difficult to catch. For example, in article PMID:31175426, the identified
HPO term is Global developmental delay, and even though the HPO holds over twenty synonyms for
this term, none of them matched the phenotype name found in text, which is gross motor development
(Example 3.3.1). It is also worth mentioning that contrary to disease and gene terms, very few documents
contained phenotype identifiers. The absence of identifiers in biomedical texts is another constraint for the
annotation of entities, especially for ones with complex designations, and makes it difficult to distinguish
between phenotypes and diseases terms. For example, the term ocular albinism can be linked to the HPO
identifier HP:0001107 and identifier MIM 300500. During the development of the NPDR dataset this
problem did not arise, since the phenotypes were only annotated from negative relation sentences, but
this situation should be taken into consideration for further annotations.

Example 3.3.1 Example of high heterogeneity in phenotype entities.

• Article PMID: 11706389

• Identified Phenotype Entity: Gross motor development

• Phenotype Identifier: HP:0001263

• HPO Name: Global developmental delay

• HPO Synonyms: Cognitive delay; Delayed cognitive development; Delayed development; De­
layed developmental milestones; Delayed intellectual development; Delayed milestones; Delayed
psychomotor development; Developmental delay; Developmental delay in early childhood; Devel­
opmental delay, global; Developmental retardation; Lack of psychomotor development; Mental
and motor retardation; Motor and developmental delay; Psychomotor delay; Psychomotor de­
velopment deficiency; Psychomotor development failure; Psychomotor developmental delay; Re­
tarded development; Retarded mental development; Retarded psychomotor development

In 82.13% of the articles a negative relation sentence could be found. This corresponds to a total of
285 negative relations that could be detected through a sentence. The other 62 relations that did not have
an associated sentence were all identified from tables, by the process exemplified in Table 3.2. It should
be noted that from these relations, 41 (68.33%) came from new manual annotations, which was expected
since they would be arduous to detect through an automatic process. As for adverbs of negation, they
appeared in 57.1% of the articles, making themmore frequent than the word normal. But when comparing
the percentage of individual words of negation and the word normal (Table 3.7), the latter was the most
frequent token (30.5%), followed by no (28.8%). The other most frequent adverbs were not (17.2%),
none (5.2%), without (4.5%), absent (3.5%) and negative (2.8%).

Co­occurrence of entities in the same sentence appeared in only 14.4% of the articles, and when it
was observed, the entities that co­occurred more frequently where the disease abbreviation term and the
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Table 3.7: Statistics of the NPDR dataset negation tokens.

Words of Negation (including normal) Number of records Percentage (%)

absence 8 2.8

absent 10 3.5

denied 1 0.4

excluded 1 0.4

free of 2 0.7

impairment 2 0.7

lack of 2 0.7

N 3 1.0

negative 8 2.8

neg 1 0.4

no 82 28.8

none 15 5.2

normal 87 30.5

not 46 16.1

NP 1 0.4

present exclusively 2 0.7

rules out 1 0.4

without 13 4.5

total 285 100

disease associated gene or locus (Table 3.8). Hence, co­occurrence should not be used as an approach for
extracting negative relations between phenotype and disease entities. The fact that these relations cannot
be detected at the sentence level is one of the main constraints for detecting them. Another approach
would be to use document­level RE, which is a more arduous task since relations are extracted from
multiple sentences.

Concerning the location of the sentences and entities in the articles (Table 3.9), the most common
location for both entities and sentences was the body section. More specifically, the Discussion section
for diseases (54.8%), the Introduction section for genes (50.1%), and the Results section for sentences
(28.5%). Disease and gene terms were also common in the abstract section (80.1% for diseases, and
62.5% for genes), and 20.5% of the negative relations could be inferred by tables (present in the body
or Appendices section). It is also worth mentioning that to be considered a true negative relation, the
negative association between the phenotype and the disease can only be inferred after analysing all cases.
Thus, sentences located in the Discussion section are more likely to imply a true negative relation than

31



Chapter 3 A Dataset of Negative Phenotype­Disease Relations

Table 3.8: Statistics of the NPDR dataset negation tokens.

Co­occurrence Number of records Percentage (%)

disease_name 4 8

disease_synonym 6 12

disease_abbreviation 20 40

associated_gene_or_locus 22 44

gene_id 1 2

sentences in the Materials and Methods section, since they usually refer to all individuals that were
characterised in the paper. For example, in article PMID:33772159, two sentences (located in the Results
section) can be found containing both a phenotype entity and a token of negation. If a negative relation
had been annotated from these sentences, it would have been a false positive relation, since each sentence
only applies to the description of one patient (Example 3.3.2). Furthermore, because the true negative
relation from this article was implied by a table, which means a negative relation sentence could not be
found, the chances of automatically annotating a false relation would have been considerable. Therefore,
the occurrence in the same article of several sentences that imply a negative relation could, paradoxically,
point to a false negative relation because they would be referring to one patient at a time.

Example 3.3.2 Example of False Negative Relations.

• Article PMID: 33772159

• Sentence 1: Nerve conduction studies and EMG were entirely normal

• Sentence 2: Nerve conduction studies showed normal sensory and motor conduction velocities,
with low­amplitude motor responses

• Disease: NEURODEVELOPMENTAL DISORDER WITH HYPOTONIA, NEUROPATHY, AND
DEAFNESS; NEDHND

• Disease Identifier: 618963

• Phenotype: abnormal nerve conduction

• Phenotype Identifier: HP:0040129

• Relation: False
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Table 3.9: Statistics of the NPDR dataset regarding entities and sentences location.

Location Diseases (%) Genes (%) Sentences (%)

title 68.6 54.5 0

abstract 80.1 62.5 6.6

body 93.9 78.1 90.5

Introduction 49.9 50.1 1.4

Materials and Methods 36.3 47 12.7

Results 40.9 46.7 28.5

Discussion 54.8 47.8 9.5

Tables 7.2 10.7 20.5

Appendices N.A N.A. 2.9

3.3.2 Automatic Extraction

The final number of phenotype and disease annotations for each corpus are shown in Table 3.10. From
these tables it is possible to see that by using the NPDR dataset as a supplementary lexicon, the final
number of disease annotations increased by 15.1% for the XML Corpus, and 21.2% for the PDF Corpus.
Regarding phenotype annotations, 23% of the total annotations were added by the NPDR lexicon for
the XML Corpus, and 23.8% for the PDF Corpus. It is also worth mentioning that the OMIM lexicon
yielded the larger number of annotations for both gene and disease entities, but since disease terms are
more complex and heterogeneous than genes, 74.6% of the disease annotations for the XML Corpus,
and 91.0% for the PDF Corpus, did not have an identifier and, consequently, were discarded for the RE
task. Therefore, from the initial 819 disease annotations from the OMIM lexicon for the XML Corpus,
and 7430 annotations for the PDF Corpus, only 208 and 668 were used for the XML Corpus and PDF
Corpus, respectively (Table 3.11). Even though the final number of disease annotations used for this task
decreased significantly, most diseases could still be linked to their correspondent identifier through their
associated genes (Example 3.2.2).

Regarding the annotation of negative sentences, the total number of phrases for the XML Corpus
was 1106, and for the PDF Corpus was 5945. Also, since most sentences showed a regular pattern such
as phenotype entity followed by negative expression (e.g., Ectopia lentis was not observed), the regular
expression algorithm was able to detect every negative relation sentence described in the NPDR dataset.

Example 3.3.2 Example of missed NER for a disease term, but correct NEL through its associated
gene term.

• Article PMID: 25038750

• Annotated Disease Entity: autoimmune disease
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Table 3.10: The final number of disease and gene annotations from the OMIM lexicon, disease abbreviations and
synonyms and phenotype synonyms from the NPDR lexicon, phenotype annotations from the HPO lexicon, and
total number of annotations for each corpus.

Lexicon Entity
Number of Annotations Total Annotations

XML Corpus PDF Corpus XML Corpus PDF Corpus

OMIM
gene 7873 41381

disease with id 208 668 8692 48811

disease without id 611 6762

NPDR
disease abbreviation 433 2502

disease synonym 1113 10603 1713 14550

phenotype synonym 167 1445

HPO phenotype 560 4619 560 4619

• Missed Disease Entity: autoimmune disease, multisystem, infantile­onset, 1

• Annotated Gene Entity: STAT3

• Disease and Gene Identifier: 615952

From the NPDR dataset it was possible to observe that only 7.8% of the articles contained simultane­
ously an exact match between the entities’ terms found in text and their correspondent official designation,
and a negative relation sentence. Therefore, it was not expected to find every relation present in every
document that served as an input for the automatic extraction system. So, to improve the RE task, the
NER and NEL tasks also had to be ameliorated. From Table 3.11, it is possible to observe that the addition
of the synonyms lexica from the NPDR dataset led to the extraction of more relations. The total added
relations was 124 for the XML Corpus and 545 for the PDF Corpus, when comparing the Labels Method
to the AllLabels Method. These added relations also translated in an improvement of the accuracy for
the True relations, as is shown in Table 3.12. Also, the XML Corpus achieved better results, which can
be explained by the fact that articles from the corpus were retrieved automatically, in a correct XML
format. Therefore, the NER, NEL and RE tasks were performed on a more regular text, whereas in the
PDF Corpus some documents did not retain the original article’s format, since they were converted from
PDF to text, which compromised the annotation of some entities and relations.

During the manual evaluation of the extracted relations from the four samples (corresponding to each
method and corpus), it was possible to observe that every disease annotation that appeared in a True re­
lation came from the associated gene or locus. This was expected, since most disease terms could not be
annotated during the NER phase, as described above. This poses two main problems for the extraction
of relations. Firstly, some genes are shared among multiple diseases, which can lead to the extraction
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Table 3.11: The final number of disease and gene annotations from the OMIM lexicon, disease abbreviations,
disease synonyms and phenotype synonyms from the NPDR lexicon, phenotype annotations from the HPO lexicon,
True and False relations, and total number of relations for each Method and Corpus.

Method Corpus
Annotations Relations

Gene Disease Phenotype True False Total

Labels
XML 7873 208 560 8 694 702

PDF 41381 668 4619 31 3695 3726

AllLabels
XML 7873 1754 727 25 811 826

PDF 41381 13773 6064 74 4197 4271

Table 3.12: The number of True and False relations detected, the total relations and the accuracy for the True
relations, for the automatic and manual evaluation for each Method and Corpus.

Method Corpus
Automatic Evaluation Manual Evaluation

True False Total Accuracy True False Total Accuracy

Labels
XML 56 646 702 7.98 10 238 248 4.03

PDF 28 3698 3726 0.75 6 343 349 1.72

AllLabels
XML 73 753 826 8.84 17 246 263 6.46

PDF 125 4146 4271 2.93 10 343 353 2.83

of false negative relations, since the wrong disease identifier can be attributed from the incorrectly as­
sociated gene. For example, the gene FIG4 is associated to AMYOTROPHIC LATERAL SCLEROSIS
11; ALS11 (MIM 612577), as well as CHARCOT­MARIE­TOOTH DISEASE, TYPE 4J; CMT4J (MIM
611228). Secondly, if the associated gene is not referenced in the article, it cannot be annotated. For in­
stance, in article PMID:25038750, the annotation of the disease PREKALLIKREIN DEFICIENCY; PKK
DEFICIENCY; FLETCHER FACTOR DEFICIENCY (MIM 612423) was missed because of the com­
plexity of the term, and although this entity possesses an associated gene term (KLKB1), the later was
not referenced in text and, consequently, the correct disease identifier was also not annotated (Example
3.3.3).

Overall, the results obtained from the evaluation show that it is possible to extract negative relations
from text using the HPO gold standard knowledge base, but also that many of them are missed, mainly
due to problems with the NER task.

Example 3.3.3 Example of missed disease annotation due to absent gene entity in article.

• Article PMID: 25038750

• Disease Entity: PREKALLIKREIN DEFICIENCY; PKK DEFICIENCY; FLETCHER FACTOR
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DEFICIENCY

• Annotated Disease Term: kallikrein

• Missed Disease Identifier: 612423

• Absent Gene Entity: KLKB1
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Chapter 4

Conclusion

To this day, scientific literature continues to be the prevailing source of biomedical knowledge. This
knowledge comprises the numerous relations between individual genes, proteins, or chemicals, which
constitute whole biological systems. These relations can either be classified as positive, if there is an
association between entities, or negative, if no association was found. Negative relations also carry
scientific significance by holding information about disproven relations, which limit the search space
for researchers and clinicians. Yet, most biomedical relations databases still focus on only annotating
positive relations, overlooking the knowledge encoded in negated findings. Moreover, the lack of high­
quality knowledge bases harbouring annotated negative relations, hinders the development of text mining
systems capable of automatically annotating new negative relations. Even though the Human Phenotype
Ontology (HPO)made available a gold standard­knowledge base of negative phenotype­disease relations,
the information it yields is not sufficient as training data for biomedical text mining models. Therefore,
this work made an important contribution in the understanding of biomedical negative relations present
in text, by creating a dataset that thoroughly characterizes negative phenotype­disease relations from
biomedical literature, the Negative Phenotype­Disease Relations (NPDR) dataset.

The initial hypothesis of this thesis was that it is possible to produce a knowledge base of negative
relations from the scientific literature. To this date, the NPDR dataset is the only resource available that
contains 347 manually annotated at the document­level negative relations, from which 222 derive from
the HPO knowledge base, and 125 are new annotated relations.

For the creation of the dataset, a subset of 237 relations from the HPO knowledge­base was linked
to to 169 PubMed IDs (PMID), which led to the retrieval of 177 biomedical documents (169 articles and
clinical reports, seven supplementary materials documents and one book chapter). These documents were
manually examined to study the negative relations present in each article. The NPDR dataset comprises
three main categories: the characterization of the entities present in the negative relation, which englobes
the analysis of phenotype entities, disease entities and their associated genes; the characterization of the
sentence containing the negative relation, which comprises the description of the token of negation used
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in the sentence and the co­occurrence of the entities; and the characterization of the location of the entities
and sentences in the article.

Even though negation occurs frequently in scientific literature, detecting negated events is still an
arduous task. Some results from the dataset can explain this situation. Firstly, 73.2% of disease entities
found in text were described through a non­official synonym, and for phenotype entities this happened in
55.9% of the articles. Secondly, 16.87% of the articles did not contain a negative relation sentence, and
when a negative phrase was found, co­occurrence of the entities appeared in only 14.4% of the sentences.
Thirdly, 90.5% of the sentences were present in the article’s body. Whereas disease entities could be
identified in the abstract, the full­text was needed in order to detect the negative relation and phenotype
entities.

To evaluate the impact of the NPDR dataset on the Named­Entity Recognition (NER), Named­Entity
Linking (NEL) and Relation Extraction (RE) tasks, an automatic system that performed these tasks, and
detected negative sentences, was developed. This system used as input the corpus of documents retrieved
for the creation of the NPDR dataset. Ideally, to enable an automatic process to perform the NER task,
an article should include simultaneously an exact match for both phenotype and disease terms with an
official HPO and OMIM designation, respectively, which happened in 12.4% of the articles. Therefore, to
improve the NER task, three lexica of disease abbreviations, disease synonyms and phenotypes synonyms
from the NPDR dataset were built. To the annotations from the OMIM and HPO lexica, it was possible
to increase by 18.15% and 23.4% the number of disease and phenotype entities annotated, respectively.
The added annotations also translated in an increase of 15.11% of relations extracted. Even though every
negative relation sentence described in the NPDR dataset was successfully captured by the system, the
RE task yielded poor results, with the highest accuracy only reaching 8.84%.

The main contribution of this work, the NPDR dataset, as well as the code for the automatic system,
are available on GitHub (https://github.com/lasigeBioTM/NPDR).

4.1 Future Work

The results from the NPDR dataset showed that negative relations from biomedical literature offer certain
constraints, making them arduous to detect through automatic systems. Specifically, during the NER
task many entities were missed due to the complexity and heterogeneity of disease and phenotype terms.
Integrating Machine­Learning (ML) methods into the NER task could greatly improve the chances of
correctly identifying the entities. For example, a tool such as the Identifying Human Phenotypes (IHP)
system [Lobo et al., 2017], which combine a ML approach with a dictionary­based and manual rules­
based method, is specifically designed to detect HPO entities in unstructured text. For the RE task, a
document­level relation extraction method could be applied, by using, for example, the document­level
entity mask method with type information (DEMMT) [Han and Wang, 2020]. This method is BERT­
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based model that can predict relations between entities at the document­level. The improvements of
these tasks, combined with the knowledge encoded in the NPDR dataset, could be used to create a corpus
of negative phenotype­disease relations, to improve negative relation extraction systems. Finally, future
work can include manually expanding the dataset, by exploring more negative relations from the HPO
gold­standard knowledge base.
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