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Resumo

A utilização de Machine Learning (ML) tem vindo a aumentar ao longo dos últimos anos,

sendo utilizado em áreas tão distintas como a medicina de precisão, prevenção de fraude fiscal,

optimização de compiladores, assistência médica e genética.

A aplicação de ML em qualquer domı́nio envolve uma sequência de tarefas que incluem

extracção e pre-processamento de dados, e treino de modelos com posterior avaliação. Este fluxo

de trabalho é denominado pipeline de ML e existem várias formas de criar e orquestrar estas

pipelines.

A abordagem com base em código é a mais usada por data scientists (cientistas de dados).

Requer que o programador trate de importar as bibliotecas de ML e ciência de dados necessárias,

instancie objectos, passe parâmetros a funções e ainda trate de erros de compilação. Para além

de ser necessário ter conhecimento de ML, os data scientists precisam ainda de ser programado-

res proficientes para poder entender e manter pipelines existentes. Estudos efectuados com data

scientists demonstram que as suas maiores dificuldades estão no desenvolvimento de software.

Encontrar pessoas que dominem tanto as áreas de data science como de engenharia de software

poderá ser um desafio.

As ferramentas de programação visual para criação de pipelines de ML surgiram para remover

a necessidade de um data scientist ter de saber programar para poder orquestrar pipelines. Através

do uso de vários blocos que aplicam operações especificas aos dados e enviam o resultado para os

blocos seguintes a que se encontrem ligados, o data scientist consegue criar pipelines de ML sem

escrever uma única linha de código. Estas ferramentas proporcionam também uma experiência

de criação de pipelines mais intuitiva, visto que o arrastar e ligar blocos transmite imediatamente

o resultado final da pipeline, que pode ser discutido com relativa facilidade entre colegas de tra-

balho. No entanto, estes tipos de ferramentas têm algumas limitações que comprometem o seu

uso, nomeadamente o facto de prenderem o utilizador. Quando uma pipeline de ML é construı́da,

a sua continua manutenção tem de ser sempre feita usando a mesma ferramenta, sem que haja

uma forma de migrar a pipeline para uma outra. Outro problema nestas ferramentas consiste no

ambiente de desenvolvimento da pipeline ser o mesmo que o de execução. Após concluı́da a pipe-

line, a sua execução é feita dentro da ferramenta de desenvolvimento, impossibilitando assim uma

execução mais eficaz num ambiente externo, como em clusters. O Orange é um exemplo de tais

ferramentas.

Tanto a abordagem de código como a de programação visual para a criação de pipelines de ML

apenas detectam erros na pipeline quando a parte problemática da pipeline é executada, levando

vii



à perda de tempo e recursos para alcançar aquele ponto de execução. Isto é frequente quando se

trabalha com datasets muito grandes que passam por várias operações de transformação de dados

antes do erro ocorrer.

Este trabalho tem como objectivo melhorar sobre as lacunas existentes nas abordagens de

orquestração de pipelines de ML, melhorando assim a sua experiência geral de construção. De

forma a permitir a migração da pipeline pretendemos que esta seja compilada para uma linguagem

de programação de uso geral onde a importação de bibliotecas é feita de forma automática, assim a

pipeline pode ser mantida e alterada através da modificação do código fonte, permitindo ainda que

seja executada em qualquer máquina (e.x., clusters). No entanto, de forma a prevenir que o data

scientist fique limitado pelos blocos existentes na ferramenta de programação visual, propomos

que a linguagem de programação visual seja extensı́vel, permitindo que novos blocos possam ser

implementados.

Em relação aos erros presentes na pipeline, em vez de serem detectados no momento da

execução (como se verifica no Orange), pretendemos que sejam detectados de forma estática, sem

que necessite de ser executada, permitindo aos data scientists perceber quais os impactos das suas

decisões de desenho. Alguns exemplos de tais erros seriam a passagem de uma instância de um

classificador em vez de um dataset, a passagem de um dataset desequilibrado a um classificador

ou a passagem de um dataset que represente uma série temporal a um bloco para efectuar cross

validation.

Este documento começa por apresentar de forma breve as bases de ML necessárias para com-

preender o conceito deste trabalho, nomeadamente em que consistem pipelines de ML e quais as

fases que as constituem. Inicialmente existem fases de validação e pre-processamento de dados,

onde são descartadas informações menos relevantes sobre o domı́nio do problema, ou são cons-

truı́das informações mais relevantes. A estes procedimentos dá-se o nome de feature engineering.

Depois de validados e trabalhados, os dados são usados na fase de treinamento e validação do

modelo. Se o modelo passar na validação é então colocado num ambiente real a fazer previsões.

Neste capı́tulo é ainda dada uma introdução a ML supervisionado com referência aos problemas

de classificação e regressão.

De seguida apresenta o trabalho relacionado, onde foram estudadas as ferramentas existentes

para orquestrar pipelines de ML através de programação textual e visual. Neste capı́tulo são ainda

abordados trabalhos na literatura para verificar formalmente pipelines.

No capı́tulo seguinte é dada uma visão geral da implementação da ferramenta proposta neste

trabalho para que o leitor seja primeiro introduzido à linguagem de programação visual para cons-

truir pipelines e compreenda os elementos essenciais de funcionamento da ferramenta, nomeada-

mente a forma como é feita a verificação estática das pipelines, antes de lhe ser apresentado os

detalhes de implementação.

Posteriormente é detalhada de forma rigorosa o processo da implementação da ferramenta pro-

posta neste trabalho, desde o front-end com a selecção das frameworks para o implementar como

a sua arquitectura e os componentes que o constituem, até ao back-end onde corre o compilador
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usado para verificar e compilar as pipelines criadas no front-end. Este capı́tulo explica também

como é estabelecida a comunicação entre front-end e back-end, e como a ferramenta é enviada

para produção.

De seguida é demonstrada a avaliação feita à ferramenta implementada. Visto que o seu ob-

jectivo é detectar problemas em pipelines de ML antes de serem executadas, a avaliação baseou-se

na capacidade da ferramenta detectar erros comuns na construção de pipelines. Os erros usados

foram identificados em reuniões com gestores de projetos de data science da Feedzai, de forma a

garantir que a avaliação se focava em erros fundamentais e realistas. Por exemplo, concatenação

de datasets com nomes iguais, criação de colunas com tipos incompatı́veis, uso de datasets não

balanceados, e ordem de operações na pipeline não optimizadas.

Por fim tiram-se conclusões sobre o trabalho realizado, cujas contribuições consistiram no

desenho e implementação de uma linguagem de programação visual para construir pipelines de

ML, no desenho e implementação de 29 blocos para efectuar operações de data science e ML, no

desenho e implementação de um verificador de tipos para verificar de forma estática a correcção

da pipeline, e por fim no desenho e implementação de um compilador que traduz a pipeline de

uma linguagem de programação visual para código executável. É ainda mencionado as melho-

rias que podem ser feitas à ferramenta, nomeadamente o enriquecimento da linguagem com a

implementação de mais blocos para programação visual, auto-completar novas ligações com base

nos blocos compatı́veis, optimizar a ordem das operações na pipeline de forma automática, e pre-

ver o tempo de execução da pipeline.

Palavras-chave: Programação Visual, Aprendizagem Automática, Pipeline, Verificação de

Tipos, Compilador
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Abstract

ML pipelines are composed of several steps that load data, clean it, process it, apply learning

algorithms and produce either reports or deploy inference systems into production. In real-world

scenarios, pipelines can take days, weeks, or months to train with large quantities of data. Un-

fortunately, current tools to design and orchestrate ML pipelines are oblivious to the semantics of

each step, allowing developers to easily introduce errors when connecting two components that

might not work together, either syntactically or semantically. Data scientists and engineers often

find these bugs during or after the lengthy execution, which decreases their productivity.

We propose a Visual Programming Language (VPL) enriched with semantic constraints re-

garding the behavior of each component and a verification methodology that verifies entire pipelines

to detect common ML bugs that existing visual and textual programming languages do not. We

evaluate this methodology on a set of six bugs taken from a data science company focused on pre-

venting financial fraud on big data. We were able detect these data engineering and data balancing

bugs, as well as detect unnecessary computation in the pipelines.

Keywords: Visual Programming, Machine Learning, Pipeline, Verification, Data scientist
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Chapter 1

Introduction

This thesis tackles the challenge of designing large-scale machine-learning pipelines. This chapter

introduces the motivation for this work (Section 1.1), its goals (Section 1.2) and its contributions

(Section 1.3).

1.1 Motivation

ML is becoming increasingly pervasive in the world, even with applications of which the user is

unaware [1]. Examples of areas where ML usage is popular are precision medicine [2], financial

fraud prevention [3], compiler optimization [4], healthcare [5] and even genetics [6].

The application of ML in any domain involves a sequence of tasks that include extracting and

pre-processing data, model training, and model validation. This workflow is commonly referred

to as ML pipeline. There are several ways to create and orchestrate these pipelines.

Data scientists commonly use a code-based approach. It requires the programmer to manually

handle the imports of ML and data science libraries, instantiate objects, pass parameters to func-

tions and debug compilation errors. In addition to having a ML background, data scientists [7]

must also be proficient programmers, which could be a challenge for the development of ML

pipelines due to the lack of skill they have in this domain.

Pereira, Cunha, and Fernandes [8] conducted interviews with eight participants in the field of

data science to understand who are the data science workers of today, as well as the difficulties

experienced by them and the technologies they use the most. For example, participant P8, who has

no training in software engineering, reported his most significant challenge is developing stable

and scalable code.

Kim et al. [9] presented a large-scale survey with 793 professional data scientists at Microsoft

to understand their educational background, problem topics that they work on, tool usages, and

activities. Of the respondents, only 24% identified as software engineers, software development

engineers, or engineering managers.

1
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Kery, Horvath, and Myers [10] used semi-structured interviews and a survey to study data

scientists who program to experiment with data. The study showed that data scientists often code

new analyses from previous ideas and use informal versioning to keep track of their code. For

example, participant P6 even confessed to not caring about the quality of the code because he

would not use it again.

The difficulty data scientists have with software engineering principles is the reason for the

existence of tools that use Visual Programming (VP) to create pipelines since they remove the

need for the data scientist to be a proficient programmer. VP tools have several blocks/widgets that

apply specific operations to the data, forwarding the result to the following linked ones. However,

these approaches have some limitations that compromise their use. For example, in tool lock-

in, the user is forced to continue using the tool to maintain and improve the pipeline built, with

no migration path to alternatives. Another limitation is that they do not support efficient, high-

performance execution on clusters. Orange, which is an example of said tool, is explained in

greater detail in Section 3.2 from the related work chapter.

Both code-based and VP approaches to build pipelines have a significant flaw with pipeline

error detection. The errors are only detected at runtime when the problematic portion of the

pipeline executes, wasting time and resources to reach that point. This problem often happens

when working with large datasets with several data transformation operations before the error

occurrence.

1.2 Goals

Driven by the gaps present in existing ML pipeline orchestrating approaches, this work aims to

improve the overall experience of building ML pipelines. To tackle the tool lock-in issue, we pro-

pose to allow the compilation of the pipeline into a General Purpose Language (GPL), which uses

specialized libraries for dataset manipulation and ML related algorithms. Thus, the pipeline would

still be maintainable without using the tool by modifying the compiled source code. Furthermore,

the tool’s decoupling of the execution environment allows the pipeline to execute in any machine.

Nevertheless, to prevent the data scientist from being limited by the blocks implemented in the

VPL, the language would be extendable by implementing new custom ones.

Instead of approaching the pipeline creation as a continuous dynamic execution with every

change triggering a re-run (like in the Orange tool), the approach would be to use dataset metadata

to statically verify the pipeline correctness every time a change is made, without ever running the

pipeline. A static verification would allow non-engineering data scientists to create ML pipelines

and understand the run time performance impact of their design decisions by providing feedback

and suggestions in the process of designing pipelines. We consider these type of errors as semantic

errors, while other more syntactical errors would still be detected. An example of a more syntacti-

cal error (which would be a semantic error in a more general-purpose language like Python) would

be the passing of a classifier instance instead of a dataset.
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This work also proposes the detection of semantic errors, which novice data scientists often

make. A program containing semantic errors executes until the end. Then, however, it uses the

wrong methodologies to achieve an end goal. Examples of semantic errors are passing a dataset

to a classifier without having the data balanced beforehand or cross-validating with a time series

dataset. This work aims to detect and prevent both types of errors by having a static analysis

checker within the pipeline creation environment.

1.3 Contributions

This work gives the following contributions:

• Design and implementation of a VPL approach to build ML pipelines

• Definition of a set of blocks for data science and Machine Learning operations

• Design and implementation of a type checker to statically verify pipeline semantic and syn-

tactic correctness

• Design and implementation of a compiler to compile the VPL into executable code

1.4 Document Structure

This documents is organized as follows:

• Chapter 2 discusses the background required to understand the concept of this work

• Chapter 3 presents and discusses the related work

• Chapter 4 gives an overview of this work’s implementation

• Chapter 5 presents the implementation of this work

• Chapter 6 evaluates the implemented work

• Chapter 7 draws conclusions
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Chapter 2

Background

This chapter introduces the concept of ML pipelines and the phases they may contain, detailing

Supervised Learning as an application example.

2.1 Machine Learning Pipelines

ML can be described as the usage of algorithms to automate the process of making a prediction

based on existing data. Algorithms can take several steps to process data and prepare predictions.

The organization of these steps composes a ML pipeline. The data processed throughout the

pipeline is called dataset, which can consist of any kind. Images, audio, codebases, or tabular

data. Figure 2.1 shows a high level view of a ML pipeline.

Data 
Validation

Data Pre-
processing

Model 
Training

Model 
Validation

Deploy for
Serving

Raw 
Data

Serving 
Endpoint

Figure 2.1: Phases of a ML Pipeline

Data Validation [11] is the process of verifying the quality of the data before feeding it to

the ML pipeline. Data Pre-processing [12] is the process of applying several techniques to the

data before the model learns from it, including data cleaning, data fusion, data reduction, and data

transformation. Model Training is where the learning algorithm parses the data received from

the previous phase and learns from it. Model Validation is where the previously trained model

predicts unseen pre-labeled data to assess its accuracy. Finally, Deploy for Serving is where the

model is deployed in a real-world environment, constantly parsing data and making predictions.
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Machine Learning approaches [13, 14] can be considered Supervised Learning (Section 2.2)

when it implies a task of predicting values (regression, subsection 2.2.2) or labels (classification,

subsection 2.2.1) based on trusted pre-labeled data. Unsupervised Learning when it aims to

extract knowledge from uncategorized data by clustering similar instances in groups. Reinforce-
ment Learning when it aims to take suitable action to maximize reward in a particular situation.

This thesis focuses on Supervisioned Learning.

2.2 Supervised Learning

In Supervised Learning, each instance in the dataset (presented as rows) has an associated target

value (i.e., labeled data) along with a set of known and target features (presented as columns).

Thus, Supervised Learning is the task of predicting target features from known features and re-

quires a dataset that includes actual values for all features as a basis for learning.

The model trains using a dataset and afterward predicts the target value for new incoming data

points (missing the target value). If the values consist of discrete class labels, then it is considered

a classification problem (subsection 2.2.1). If instead, they are continuous values, then it is a

regression problem (subsection 2.2.2). Figure 2.2 illustrates a Supervised Learning ML Pipeline.

The pipeline begins by splitting the input dataset into two separate ones. The first is the training

dataset used to train the model, while the second is the test dataset used to evaluate an already

trained model. This evaluation consists of having the model predict the target value of unseen data

points to compare with the actual value.

Split into 
train//test 
datasets

Train 
Dataset

Test 
Dataset

Train Model

Report 
Accuracy

Raw 
Dataset

Trained 
Model

Model

Figure 2.2: Supervised Learning ML Pipeline
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2.2.1 Classification

Classification [15] problems are Supervisioned Learning problems where the domain of possi-

ble values for the target column of the dataset consists of discrete class labels. Table 2.1 is

a snippet of a credit card fraud dataset from Kaggle (https://www.kaggle.com/mlg-

ulb/creditcardfraud). Features V1, V2, to V28 are the principal components obtained

with Principal Component Anylisis (PCA), which is a technique to reduce the number of features.

The only features which have not been transformed with PCA are Time, which contains the sec-

onds elapsed between each transaction and the first transaction in the dataset, and Amount, which

is the transaction amount. The Class column is the label for each transaction, and it takes value 1

in case of fraud and 0 otherwise.

Time V1 ... V28 Amount Class
0 -1.359807134 -0.021053053 149.62 0
0 1.191857111 0.014724169 2.69 0
1 -1.358354062 -0.059751841 378.66 0
1 -0.966271712 0.061457629 123.5 0

472 -3.043540624 0.035764225 529 1
4462 -2.303349568 -0.153028797 239,93 1

Table 2.1: Snippet of the Credit Card Fraud Dataset

Most ML datasets have thousands or millions of records. The size and quality of the dataset

correlate with the difficulty of collecting trustful information about the problem in question and

its complexity. For very complex problems, there is the need to have several data points (records)

and several features (columns) describing the properties of each instance. This complexity can

also bring other issues, such as data skewness.

When records for some class label are more accessible to obtain than other class labels within

the problem domain, the dataset is considered an Imbalanced Dataset, meaning that the total

number of each label is highly disproportionate, which is the case on the credit card fraud dataset,

where the majority of transactions not being fraudulent. On the other hand, when the proportions

are similar, it is considered a Balanced Dataset. Figure 2.3 demonstrates the proportions of each

dataset, where each point of the same color represents a data point with the same class label.

(a) Balanced Dataset (b) Imbalanced Dataset

Figure 2.3: Balanced/Imbalanced Datasets Label Proportions

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud
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Models are ideally trained on balanced datasets and validated on unseen datasets, which do

not necessarily need to be balanced. Nonetheless, it must have enough records from each target

variable to increase the confidence levels in the model, since learning with more instances typically

results in better performance, especially regarding the under-represented class [16].

When selecting a classifier for a pipeline, it is crucial to take into account its characteristics:

• training time, the time necessary to train a classifier, which is the process of mapping input

data (the features) to an output value (the target values);

• inference time, the time for a trained classifier to make a prediction;

• generalization ability, the performance of a trained classifier on predicting unseen data.

There are two types of learners in classification [15], differing on the training process:

• Lazy learners, those that store the training data, and use it when then faced with the task of

predicting a target value for an incoming input. They have a small training time (dependent

on the time needed to store the data) and a big inference time since it needs to parse the

stored data to predict an outcome;

• Eager learners, which construct a classification model based on the given training data,

discarding the data afterward. Due to the model construction, eager learners have a consid-

erably longer training time when compared to lazy learners. However, the inference time is

short.

For instance, the K-Nearest Neighbors classifier spends little time on the training phase since

the core idea behind this algorithm is to find the K (a parameter) nearest neighbors to the instance

being predicted. The neighbor’s target majority will dictate the label prediction. Therefore it is

considered a lazy learner classifier.

On the other hand, Naive Bayes, Support Vector Machines (SVM), Decision Trees, and Ran-

dom Forests take longer during the training phase, and then each prediction is much faster. There-

fore they are considered eager learners. It is clear to see that, for a problem where the predictions

must be quick, the K-Nearest Neighbors is not ideal. There are several other classifier algorithms,

each one of them performs the training in different ways. Depending on the datasets and problem,

one may choose different classifiers.
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2.2.2 Regression

In regression problems, the domain of possible values for the label column of the dataset are

continuous quantities. The dataset snippet shown previously could be adopted to a regression

problem by changing the label column from a binary label to the probability of a transaction being

fraudulent or not. Table 2.2 is an example of a regression dataset. The predictions of a trained

regressor consist of predicting probability values in the [0;1] threshold.

Time V1 ... V28 Amount Fraudulent Score
0 -1.359807134 -0.021053053 149.62 0.54
0 1.191857111 0.014724169 2.69 0.03
1 -1.358354062 -0.059751841 378.66 0.13
1 -0.966271712 0.061457629 123.5 0.32

472 -3.043540624 0.035764225 529 0.94
4462 -2.303349568 -0.153028797 239,93 0.96

Table 2.2: Regression dataset
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Chapter 3

Related Work

This chapter introduces popular libraries used to implement ML projects, several ML orchestration

frameworks that aid data scientists when creating complex pipelines, and how the correctness of

pipelines is verified.

3.1 Machine Learning Libraries

Data scientists frequently rely on ML libraries and orchestration frameworks. Libraries provide

off-the-shelf transformations, models, and metrics, while orchestration frameworks allow a high-

level definition of the pipeline and automate its low-level execution.

3.1.1 General-purpose Libraries

One set of ML libraries are those that allow the creation of a project end-to-end, providing algo-

rithms for each phase of the ML process.

scikit-learn Scikit-learn [17] is an open-source Python library for ML, containing many classi-

fication, regression, clustering, and dimensionality reduction algorithms useful for solving super-

vised and unsupervised learning problems. It is available at https://github.com/scikit-

learn/scikit-learn.

Weka Weka [18] is an open-source ML software widely used for teaching, research, and indus-

trial applications. The ML pipelines can either be built using a Graphical User Interface (GUI) or

using its Java API. The former does not require programming, while the latter does, similarly to

Scikit-learn. Both methods come with implemented classifiers such as RandomForest and Naive-

Bayes. It is available at https://github.com/Waikato/weka-3.8.

11
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H2O H2O [19] is an open-source ML platform with linear scalability, supporting the most

widely used statistical and ML algorithms, including gradient boosted machines, generalized lin-

ear models, and deep learning. It is mostly used in enterprise scenarios, and it works on existing

big data infrastructures, bare metal, or on top of existing Hadoop, Spark, or Kubernetes clusters.

Some key features of H2O are the ability to use other Programming Language (PL) such as R and

Python to build models. It is available at https://github.com/h2oai/h2o-3.

3.1.2 Specific-purpose Libraries

Other ML libraries are specific for tasks in a single ML phase.

TensorFlow TensorFlow [20] is a complex library for distributed numerical computation using

data flow graphs, allowing the training and running of extensive neural networks efficiently by

distributing the computations across potentially thousands of multi-GPU servers. TensorFlow was

created at Google and later open-sourced in 2015, and it is available at https://github.

com/tensorflow/tensorflow.

XGBoost XGBoost [21] is an optimized distributed gradient boosting library designed to be

highly efficient, flexible, and portable. It implements ML algorithms under the Gradient Boosting

framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solves

many data science problems quickly and accurately. The same code runs on major distributed

environments (Kubernetes, Hadoop, SGE, MPI, Dask) and can solve problems beyond billions of

examples. Its implementation is available at https://github.com/dmlc/xgboost.

3.2 Machine Learning Orchestration

When implementing a ML pipeline, it is common to do it manually by implementing several

methods with specific tasks, such as data splitting or model training. Then they are called with a

specific order to create a flow of data to implement the actual pipeline. This approach is not ideal in

complex ML projects where it is common to have new people joining in. Enterprise projects need

to have an organized development environment so that every team member, especially newcomers,

understands the pipeline structure without spending days looking through several source files.

ML orchestration frameworks deliver improved development environments by having well-

defined separation of concerns that provide better code structure. Therefore, teams can easily

discuss pipeline structure and data flow while avoiding commit conflicts when further improving

the pipeline. The following paragraphs present the ML orchestrations frameworks studied during

this thesis.

https://github.com/h2oai/h2o-3
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://github.com/dmlc/xgboost
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igel igel [22] is built on top of the scikit-learn and pandas libraries for the ML and data manip-

ulation algorithms, respectively. The user defines the pipeline configuration from a file and then

runs it through the command line. The authors of this tool also developed a simple User Interface

(UI) that uses igel on the back-end. Its implementation is available at https://github.com/

nidhaloff/igel.

Kedro Kedro [23] is an open-source Python framework that applies software engineering best

practices to data and ML pipelines by breaking large chunks of code into small modular units

(https://github.com/quantumblacklabs/kedro).

The data catalog, which consists of a YAML file used to reference datasets, handles the loading

of datasets that can be stored locally or in the cloud by giving them a variable name.

Each ML pipeline operation unit is considered a Node, which consists of a Python function

that receives data as input from previous Nodes and returns the resulting data to be used by other

Nodes. The implementation of each operation in individual Nodes allows for the separation of

concerns within the project.

The pipeline can then be seen as a DAG composed by the defined nodes by using Kedro-Viz

(https://github.com/quantumblacklabs/kedro-viz). Kedro-Viz is a plugin that

generates a visual representation of the pipeline directly from the code, providing a high-level

overview of the data pipeline structure, which could be used to communicate the workflow of the

pipeline with colleagues and stakeholders, and give a better insight into the inner working of the

pipeline to new colleagues joining the project.

Dagster Dagster [24] is an open-source Python data orchestrator for ML that allows the defini-

tion of pipelines in terms of data flow between reusable and logical components. The pipelines

can then be tested locally and deployed anywhere. Dagster can schedule and orchestrate pan-

das, Spark, SQL, or any other Python library. It comes with Dagit, a web interface debugger

that allows for the inspection of executed pipelines, where it is possible to query over logs, dis-

cover the most time-consuming tasks via a Gantt chart, and re-execute subsets of steps. Dagster

is designed for data platform engineers, data engineers, and full-stack data scientists. Available at

https://github.com/dagster-io/dagster.

Orange Orange [25] is an open-source data visualization, ML and data mining toolkit that uses

scikit-learn and pandas libraries for the ML and data manipulation algorithms. It features a VP

environment, where the user can create ML pipelines by connecting series of widgets. Available

at https://github.com/biolab/orange3.

Figure 3.1 is a screenshot of the orange IDE. The sidebar at the left contains all the available

widgets for the data scientist to use, while at the right is where the creation of the pipeline happens

by connecting widgets.

https://github.com/nidhaloff/igel
https://github.com/nidhaloff/igel
https://github.com/quantumblacklabs/kedro
https://github.com/quantumblacklabs/kedro-viz
https://github.com/dagster-io/dagster
https://github.com/biolab/orange3
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Figure 3.1: Orange IDE

KNIME Analytics Platform KNIME Analytics Platform [26] is an open-source end-to-end

data science software for the creation of ML pipelines using VP. It features a drag-n-drop UI

to create blocks and links without the need for coding. Features several data sources, ranging

from the common local CSV file to connecting to hosts of databases such as Oracle, Microsoft

SQL, and Apache Hive. It also allows data retrieval from sources such as Salesforce, SharePoint,

SAP Reader (Theobald), Twitter, AWS S3, Google Sheets, and Azure. Available at https:

//www.knime.com.

Datrics Datrics [27] is an end-to-end data science for the creation of ML pipelines. The data

scientist drags and links blocks to build the pipeline without the need for coding, allowing for the

processing of data, as well as training and deployment of ML models. It is available at https:

//datrics.ai.

https://www.knime.com
https://www.knime.com
https://datrics.ai
https://datrics.ai
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3.3 Formal Methods for Machine Learning

Formal methods are an array of techniques that employ logic and mathematics to provide rigorous

guarantees about the correctness of computer software. They are an integral part of the devel-

opment process of traditional (non-machine-learned) critical software systems to provide robust,

mathematically grounded guarantees on the software behavior. For instance, they are used at an

industrial level in avionics [28], where the development processes of aircraft software systems

have very stringent assurance and verification requirements mandated by international standards.

Advances in Artificial Intelligence (AI) and ML along with the availability of vast amounts of

data, allows for the development of computer software that efficiently and autonomously performs

complex tasks that are difficult or even impossible to design using traditional explicit programming

(e.g., image classification, speech recognition). This makes ML desirable in many applications,

including safety-critical applications. For instance, in the avionics industry, ML is used for image-

based operations (taxiing, takeoff, landing) and aircraft voice control, while in the automotive

industry, it is used for autonomous driving.

The following paragraphs address current advances in formal methods for ML models, as well

as data preparation, the focus of this work [29].

Neural Networks Kurd and Kelly[30] proposed a characterization of verification goals for neu-

ral networks used in safety-critical applications. Most formal methods for neural networks aim at

verifying what they identified as goals G4 and G5. G4 states that neural networks are robust and

safe under all input conditions, while G5 states that the output should not be hazardous regardless

of the integrity of the input.

Support Vector Machines Ranzato and Zanella [31] proposed an approach that focuses on pro-

viding local robustness to adversarial perturbations of Support Vector Machine (SVM) based on

the most commonly used kernel functions (linear, polynomial, and radial basis function kernels).

It is implemented and available in an open-source tool named SAVer (https://github.com/

abstract-machine-learning/saver).

Decision Tree Ensambles Kantchelian et al. [32] proposed an approach for finding the nearest

adversarial example concerning the L0, L1, L2, and L∞ distances.

Chen et al. [33] presented a linear time algorithm for finding the nearest adversarial for a

decision tree.

Sato et al. [34] proposed an SMT-based approach for safety verification of random forests

and gradient boosted decision trees. Another SMT-based approach by Einziger et al. [35] veri-

fies the local robustness to adversarial perturbations of gradient boosted decision trees used for

classification.

https://github.com/abstract-machine-learning/saver
https://github.com/abstract-machine-learning/saver
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Törnblom and Nadjm-Tehrani proposed an abstraction-refinement approach for random fores-

ts [36] and gradient boosted decision trees [37, 38] with univariate split predicates. It is imple-

mented in an open-source tool named VoTE (https://github.com/john-tornblom/

VoTE).

Ranzato and Zanella [39] proposed a more general framework that supports arbitrary ab-

stract domains. The approach is available and implemented in an open-source tool named Silva
(https://github.com/abstract-machine-learning/silva).

Calzavara et al. [40] have proposed an approach that supports perturbations modeled as arbi-

trary imperative programs (as opposed to distance-based perturbations).

Data Preparation Urban and Muller [41] proposed an abstract interpretation framework for rea-

soning about data usage and a static analysis method for automatically detecting (possibly acciden-

tally) unused input data. Urban [42] also proposed a configurable static analysis for automatically

inferring assumptions on the input data.

The overview of the state of the art shows that there are still no approaches that focus on

verifying entire ML pipelines, which is necessary to ensure the safe use of ML software in safety-

critical applications [29].

https://github.com/john-tornblom/VoTE
https://github.com/john-tornblom/VoTE
https://github.com/abstract-machine-learning/silva


Chapter 4

Approach

The increasing popularity of ML over the years lead to a scarcity of data scientists proficient in

programming and with good knowledge of data science.

ML pipeline orchestration can either be approached through code, or VP. The former requires

the data scientist to manually handle the imports of ML and data science libraries and instantiate

objects. The latter relies on having the data scientist drag-n-drop blocks and then have them linked

to applying specific operations to the data received from previous blocks, forwarding the result to

the following ones.

VP approaches to orchestrate ML pipelines originated from the lack of data scientists that are

good at programming. By providing a more user-friendly approach to building pipelines, data

scientists can focus more on data science and less on software engineering.

Nonetheless, existing VP approaches still have gaps. This chapter describes the general ap-

proach of the proposed tool and how it improves over existing ones.

4.1 Decoupled Visual Programming

Existing VP tools for building ML pipelines approach pipeline creation from a dynamic point of

view. Datasets are fully loaded into the tool so that the pipeline re-executes as the data scien-

tist modifies it. At first sight, the dynamic execution of the pipeline may seem excellent since

it provides real-time feedback on the changes the datasets go through along the pipeline. How-

ever, when working with large datasets on complex pipelines that contain heavy data processing

operations, the constant re-executions of the pipeline consumes time. Besides, having to wait for

the pipeline to finish the execution constantly is unproductive. Moreover, forcing the pipeline to

only execute inside the tool prevents it from being executed in more powerful machines, such as

clusters, which is the case in enterprise ML pipelines.

17
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Our proposed tool improves over existing ones by separating the pipeline’s creation and ex-

ecution environments. Instead of having a dynamic execution of the pipeline as it changes and

requiring it to execute inside the tool, our approach features a compiler that translates the pipeline

into an executable code. The code can then execute in a cluster for increased performance and

better handling of big data. The advantage of using a compiler instead of an interpreter, like the

one used in the Orange tool, is the possibility for optimizing the pipeline’s DAG representation to

have a parallel execution of the program.

4.2 Language Definition

Each block contains a set of input and output ports used to link to other blocks. Links are only

possible between input and output ports of the same type, belonging to different blocks. Each

block processes the data received in the input ports, forwarding the result to the output port. The

user can adjust the block’s properties to tune the block operation.

Instantiated blocks have a unique identifier that identifies them within the program. The block

id and respective port id within the block from where the link starts (source ids) and the block and

port id where the link ends (target ids) characterize a link, which also possesses a unique identifier

in the program. The set of blocks and links formed between them characterize a program.

Listing 4.1 summarize the language of the blocks. Figure 4.1 presents the existing types and

Figure 4.2 presents their relationships, following the syntax of Pierce [43].

MetaBlock
input_ports_types: Dictionary<String,Type>
properties_types: Dictionary<String,Type>
output_ports_types: Dictionary<String,Type>
assertions: List<Formula>

Block
id: String
name: String
kind: MetaBlock
properties: Dictionary<String,Object>
input_ports: Dictionary<String,Port>
output_ports: Dictionary<String,Port>

Link
id: String
source: Tuple<block_id:String, port_id:String>
target: Tuple<block_id:String, port_id:String>

Program
blocks: Dictionary<String,Block>
links: Dictionary<String,Link>

Code Listing 4.1: Formal definition of block’s language
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Types T ::= Object | Port | DataSet | Classifier | Regressor

| Int | String | Float | Bool

Figure 4.1: The types used in the formal definition

T <: Object DataSet <: Port Classifier <: Port Regressor <: Port
(type-equality)

Figure 4.2: Relationships between types

For a program to be correct, the following conditions must be true.

Block correctness
For any b block:

• the set of keys in b.properties must be the same as in b.kind.properties types

– for any key k:

* b.properties[k] must have the type in b.kind.properties types[k]

• the set of keys in b.input ports must be the same as in b.kind.input ports types

– for any key k:

* b.input ports[k] must have the type in b.kind.input ports types[k]

• the set of keys in b.output ports must be the same as in b.kind.output ports types

– for any key k:

* b.output ports[k] must have the type in b.kind.output ports types[k]

Link correctness
For any program p:
For any link l in values(p.links):
For any b1 block:
For any b2 block:

• b1 != b2

• b1.id = l.source.block id

• b2.id = l.target.block id

then:

• b1.kind.output ports types[l.source.port id] = b2.kind.input ports types[l.target.port id]
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Assertions verification
For each program p:

• Ab = { formula | formula← b.kind.assertions, b← values(p.blocks) }

• Al = { p.blocks[l.source.block id].output ports[l.source.port id] =
p.blocks[l.target.block id].input ports[l.target.port id] | l← keys(p.links) }

Set of formulas to satisfy = Ab ∪ Al
Smt valid(Ab ∪ Al) must be true.

All ports are linked verification
For any program p:
For any link l in values(p.links):
For any b block in values(p.blocks):
For any in p key port in keys(b.input ports) there is:

• l.source.port id = in p key

• l.source.block id = b.id

• l.id in p.links

The conditions presented here are only used to verify the program’s correctness before
compilation. In the program development phase, they are omitted.

4.3 Static Analysis for Machine Learning Pipelines

Every block type in our tool contains a set of template assertions. Some of them are hardcoded

into the block’s type implementation and shared by all instances of a block type. Others have

placeholders to insert the values of the properties for the block instance and the dataset metadata

(column names and types) passing through it.

Links between block instances contain their own set of assertions reflecting the passage of data

between them. The assertions ensure dataset metadata equality between the metadata exiting one

block and entering the following one.

Figure 4.3 exemplifies the assertions between two blocks and the link that connects them. As-

suming that is used a dataset with 31 columns and 124 rows, those values replace the placeholders

(underlined) for the Import Dataset block’s assertions. The Random Forest Classifier block’s as-

sertions are hardcoded into the block type implementation. Therefore, all block instances of that

type expect to receive a dataset with more than one column and more than zero rows. The link

assertion establishes that the metadata of the dataset exiting A1 is the same entering B1.
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Import
Dataset

Random
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Classifier

A1_cols == 31 
A1_rows == 124

A1 B1

B1_cols > 1 
B1_rows > 0

A1_cols == B1_cols 
A1_rows == B1_rows

block assertion block assertion

link assertion

Figure 4.3: Block and link assertions

The collection of all block and link assertions in a given pipeline is added into an Satisfiability

Modulo Theories (SMT) solver to verify the pipeline correctness. If the SMT solver returns sat
no assertions are violated. If instead, it returns unsat, there are contradicting assertions within the

solver that need to be identified. Subsection 5.3.4 describes the type-checking algorithm imple-

mented to identify those assertions.

The assertions describe the dataset metadata along the pipeline. Examples of those properties

are:

• Number of columns/rows

• Whether the dataset is balanced

• Whether the dataset represents a time series

• Whether the dataset has been reduced or processed

The programmer of blocks can add more properties to the existing ones to enrich the pipeline’s

type checking.
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Chapter 5

Implementation

This chapter presents MLVP, a concretization of the approach presented in the previous chapter.

We present its architecture (Section 5.1), the pipeline editor (Section 5.2), the compiler (Sec-

tion 5.3) and the deployment strategy (Section 5.5).

5.1 Architecture

Front-end Back-end

HTTP

Type checking
service

Compilation
service

Pipeline 
canvas

Figure 5.1: Architecture overview

MLVP is composed of a front-end and a back-end. The front-end contains the pipeline canvas

where the data scientist creates ML pipelines by dragging and linking blocks (widgets in other

tools) together. Pipeline changes trigger type checking requests to the back-end server that val-

idates the semantic and syntactic correctness of the pipeline. The back-end server also handles

the compilation of correct pipelines. The following sections explain in greater detail the inner

workings of both front-end and back-end implementations.

23
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5.2 Pipeline Editor

The pipeline editor is responsible for allowing the user to design and edit ML pipelines.

5.2.1 UI Library Selection

To implement a pipeline editor, we selected a framework that supports the design of pipelines using

different blocks with multiple ports (the linking point between blocks). Each framework was eval-

uated by either implementing a straightforward project or using the samples implemented by the

framework’s authors. This evaluation allowed us to understand how each framework implements

blocks and ports and restricts links between different ports.

The criteria considered most relevant when evaluating the diagram frameworks were the fol-

lowing:

1. Supports TypeScript [44]

2. Supports React [45]

3. Support different types of blocks and ports

4. Complexity of the links between nodes

5. Allowing to save and restore the canvas state

6. Active community using the framework

Name Coded in Stars Commits Open/Closed
Issues

npm Weekly
Downloads

Rete
1.4.5-rc.1 [46]

TypeScript 6.3k 475 63/393 4.8k

Beautiful
React Diagrams

0.5.1 [47]

React
JavaScript

2.1k 89 27/17 0.5k

Storm
React Diagrams

6.3.0 [48]

React
TypeScript

5.6k 762 191/444 7.2k

Table 5.1: Diagram frameworks Github stats

Table 5.1 presents the frameworks considered for this approach. Because of requirement 2,

motivated by the increasing popularity of React, Rete was excluded.

A significant factor taken into consideration when choosing between the React frameworks

was the engagement of the community on the GitHub repositories. Stats from Table 5.1 show that

Storm React Diagrams had more popularity among users. The advantage of using a more popular

framework is that if any problem or doubt about the framework arises, it is easier to resolve by

looking through older issues. Therefore, the framework chosen to implement the project was the

Storm React Diagram framework.
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5.2.2 Front-end Design

components

core

blocks

ports

UI

MLVP-web-app

app

storm 
react 

diagrams

react 
bootstrap

(a) Decomposition View

components

core

usesuses

blocks

uses ports

uses UI

usesuses

MLVP-web-app

app

storm 
react 

diagrams

react 
bootstrap

uses uses

(b) Uses View

Figure 5.2: Web App Decomposition/Uses Module Views

Figures 5.2a and 5.2b respectively represent the Module Decomposition and Module Uses

Views of the React web application. The app module contains the class component managing

the overall app state, along with auxiliary classes defining the canvas responsiveness, for instance,

for when a user zooms or drags and selects links. The components module, which contains four

other sub-modules. The core sub-module contains the implementation for the base properties

for the blocks and ports. The blocks sub-module contains as many sub-modules as block types,

each sub-module containing the implementation for that respective block type. The UI contains

the implementation for the canvas, app modal, top, bottom, and sidebar functional components.

Finally, the ports module contains the several port types used by the blocks to create links between

each other.

5.2.3 Pipeline Canvas

The pipeline canvas is the area in which the data scientist creates ML pipelines by dragging and

linking blocks together. Each block receives and processes the data from its linked predecessors

and then forwards it to its successors, thus recreating the base idea behind a ML pipeline, intro-

duced in Section 2.1.

Figure 5.3 shows the MLVP tool. The sidebar on the left has eight differently coloured cate-

gories of blocks, each containing its block types. Dragging a block type into the canvas instantiates

a block of said type. The pipeline in the canvas is composed of five blocks, from left to right, the

first imports the dataset, the second splits it into train and test datasets, which will be then sent

respectively to the Random Forest Classifier and Evaluate Classifier blocks. The former uses it to

train the classifier, and the latter to evaluate the classifier after training.
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Figure 5.3: MLVP

Blocks are linked through their ports and can contain only input ports (on the left), only output

ports (on the right), or both. Regardless of the case, links are created between input and output

ports of the same type from different blocks.

5.2.4 Pipeline Serialization

The canvas is serialized into a JavaScript Object Notation (JSON) for two purposes: to save the

pipeline within for later and to communicate the state of the pipeline to the back-end server for

semantic error detection and compilation. This JSON is constituted by several key/value pairs

represented in Listing 5.1. Its structure is crucial to how the compiler works. The blocks and links

from Figure 5.4 will serve as running example throughout this section.

Figure 5.4: Block links used for JSON structure explanation
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Starting with the layers key, which contains the diagram-links and diagram-nodes layers, the

former containing all links established between blocks, the latter the blocks themselves.

{
"id": "d3449e70-7290-4d05-bbfa-fe6290b810a6",
"offsetX": -104.4161484859954,
"offsetY": 136.31951963396432,
"zoom": 125,
"gridSize": 0,
"layers": [ {diagram-links}, {diagram-nodes} ]

}

Code Listing 5.1: JSON structure

"type": "diagram-links",
"models": {

"AB": {
"id": "AB",
"source": "A",
"sourcePort": "A1",
"target": "B",
"targetPort": "B1",

},
"BC": {

"id": "BC",
"source": "B",
"sourcePort": "B2",
"target": "C",
"targetPort": "C1",

},
}

Code Listing 5.2: diagram-links layer

Let us consider the diagram-links layer (Listing 5.2), which has two link models in total, the

first being between blocks Import from CSV and Oversampling, and the second from Oversam-

pling to Random Forest Classifier. Every link model is defined by having its key, the id within the

diagram, and the value, a JSON object with the corresponding data regarding that link.

The source property stores the id of the block originating the link, the sourcePort property,

the port id within that block establishing the link (a block can have multiple ports, this way it is

possible to distinguish them). Similarly, the target and targetPort store the block and port id at the

other end of the link. Since links can only be created from an output port to an input port of two

distinct blocks, the sourcePort is always an output port, and the targetPort an input port.

Regarding the diagram-nodes layer (shown in Listing 5.3, omitting the ports array from all

blocks except Oversampling, for brevity), every block model shares a common set of properties,

such as id, type, ports and title, being in the same order, the id of the block, the unique name type as

well as the back-end class representing it, the array of ports within the block and the block’s title.
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"type": "diagram-nodes",
"models": {

"A": {
"type": "ImportFromCSV",
"ports": [ {"id": "A1"} ],
"fileName": "train-dataset.csv",
"numCols": 5,
"numRows": 150,

},
"B": {

"id": "B",
"type": "Oversampling",
"ports": [{

"id": "B1",
"type": "DatasetPort",
"name": "Dataset",
"parentNode": "B",
"links": [

"AB"
],
"in": true,

},
{

"id": "B2",
"type": "DatasetPort",
"name": "Balanced Dataset",
"parentNode": "B",
"links": [

"BC"
],
"in": false,

}
],
"randomState": None

},
"C": {

"type": "RandomForestClassifier",
"ports": [ {"id": "C1"}, {"id": "C2"} ],
"numTrees": 100,
"criterion": "gini",
"maxDepth": 10

}
}

Code Listing 5.3: diagram-nodes layer
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Each block type also has its respective set of properties regarding the logic behind it. For instance,

the Import From CSV block has the fileName, numCols and numRows properties, describing the

information about the dataset imported, and the Random Forest Classifier block the numTrees,

criterion and maxDepth properties to set the classifier settings.

Each port model also has its own properties, id, type, name, parentNode and in, respectively

they represent its id, its type (links can only be created between ports of the same type) as well as

the back-end class that represents it, the name of the port (useful to distinguish data flow when a

block has one or more ports of the same type), the id of the block owning the port, and whether it

is an input port or not.

5.3 Compiler

The compiler is responsible for verifying the pipeline and generating the final code that will ex-

ecute it. This section describes in depth the several phases of the compiler, the Parser (subsec-

tion 5.3.1), the Topological Sorter (subsection 5.3.2), the Data Flow Elaboration (subsection 5.3.3),

the Type Checker (subsection 5.3.4) and finally the Code Generator (subsection 5.3.5).

5.3.1 Parser

Figure 5.5: Pipeline to be parsed
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By parsing the JSON representation of a pipeline, the parser constructs a DAG, so it can be

used in the following phases of the compiler. Every block on the pipeline has a one-to-one relation

with a node on the graph. The term block refers to the instance within the front-end pipeline and

the term node to the instance in the DAG. The pipeline in Figure 5.5 is used throughout this section

as an example. Each JSON object within the diagram-nodes layer leads to an instantiation of the

respective back-end node by importing the class with the name stored in the type property. Every

port for that block is instantiated analogously and added to the node instance.

A block is considered root when it has no input ports, loose when it has and they are not linked

to any other block and connected when at least one of its input ports and linked to another block

(Figure 5.6). Therefore, its node representation in the back-end is considered the same. A root
block can be seen as the starting point of a complete pipeline because it does not depend on any

other block to function. For example, a block for importing a dataset only has an output port to

pass the dataset to another block. Whereas a loose block is the starting point of an incomplete

pipeline because it depends on other blocks to function (those who pass it the data for processing).

Figure 5.7 contains an example of what is considered a root, loose and connected blocks.

Figure 5.6: Root, loose and connected blocks

After parsing the diagram-nodes layer from Figure 5.5, the root and loose nodes are kept in

the roots and loose arrays, respectively (Figure 5.7).

The link dependencies between the blocks on the front-end are maintained by having each

node store its children node instances and the parents in SourceLink instances.

The SourceLink instance groups the link id, the source node instance, as well as the source

and target port instances. Every block in the pipeline depends on the output port of its predecessor.

This SourceLink instance maintains this dependency state on the back-end so that in the following

phases of the compiler, it is possible to distinguish from which input port the data comes. For

instance, the Split Dataset block, which splits the dataset received from the input port into train/test

datasets and respectively sends them to the train and test output ports.

After the parsing is complete, both DAGs (Figures 5.8a and 5.8b) representing the pipeline

are fully reconstructed on the back-end and accessible through the roots and loose arrays (the

complete and incomplete starting points of a pipeline respectively).
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Figure 5.7: Root/Loose nodes arrays
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Figure 5.8: DAGs from roots and loose arrays

5.3.2 Topological Sorter

A topological sort or topological ordering of a DAG is a linear ordering of its nodes such that for

every directed edge uv from node u to node v, u comes before v in the ordering.

Both DAGs reconstructed on the back-end (in the Parser phase) are topological sorted as shown

in Figures 5.8a and 5.8b. The result is stored in the sorted root (Figure 5.9) and sorted loose
(Figure 5.10) arrays respectively.

Both sorted root and sorted loose arrays are used on the Data Flow Elaboration and Type

Checker phases of the compiler. In the Code Generator phase, in which the pipeline is converted

into executable code, only the sorted root array is used. Since the sorted root array contains the

DAG representation of a complete pipeline, and the sorted loose array an incomplete representa-

tion, it only makes sense to generate code for a complete pipeline. Each phase mentioned in this

paragraph has its section in this document describing the usage of these arrays in greater detail.
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Figure 5.9: sorted root array
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Figure 5.10: sorted loose array

5.3.3 Data Flow Elaboration

Current VP tools for building ML pipelines, such as Orange (Section 3.2), fully load imported

datasets into the tool for a dynamical execution of the pipeline, allowing the data scientist to

observe the dataset changes in real-time while it is processed through the blocks. The downside of

this approach is the coupling of the pipeline creation and execution environments and the problems

this tool has when dealing with large datasets due to memory limitations.

MLVP focuses on a static analysis of the pipeline for detecting errors before execution. Instead

of having the entire dataset loaded into the tool, only the dataset metadata (column names and

types) is loaded. Leaving the user unaware of dataset changes during pipeline creation would turn

this process very unintuitive. That is why MLVP uses the dataset metadata to preview what would

happen during an eventual execution.

Figure 5.11 exemplifies the passing of dataset metadata through the block’s ports. For example,

the Feature Engineering block uses the dataset metadata entering its input port to state the creation

of two new columns using existing ones. The creation of the columns only occurs during the

execution of the pipeline.

Time int
V1 float
V2 float
... float
V28 float

Amount float
A float
B float

Class int

Time int

V1 float

V2 float

... float

V28 float

Amount float

Class int

Figure 5.11: Metadata data flow between blocks
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For achieving the dataset preview, each back-end node mimics the block executing an oper-

ation on the dataset received from the input ports by modifying the metadata according to what

would happen in a pipeline execution. Since both roots and loose sorted arrays contain the result

of topologically sorting the DAG representation of the pipeline, iterating over them to execute the

mimic operation guarantees that all nodes have the resulting metadata on their ports to be used in

the type-checking phase.

5.3.4 Type Checker

SMT generalizes boolean satisfiability (SAT) by adding equality reasoning, arithmetic, and other

applicable first-order theories. An SMT solver is a tool for deciding the satisfiability of formulas

in these theories, enabling applications such as extended static checking, predicate abstraction, test

case generation, and bounded model checking over infinite domains. Z3 [49] is an SMT solver

from Microsoft Research, and it targets the solving of problems that arise in software verification

and software analysis.

Each block has an array of formulas that asserts requirements for the metadata received through

the input port and ensures characteristics for the metadata exiting from the output port. An exam-

ple of requirement assertion would be the number of rows on the dataset received from the input

port to be greater than a certain value, and one of ensuring would be the dataset sent to the output

port being balanced. The assertions are constructed using Z3 variables to refer to both input and

output metadata in the following format: Z3 type(”port id; property”) == property value.

During the Type Checker phase, both roots and loose sorted arrays are iterated to append

each block’s assertions into an array containing all block assertions. At the same time, all source

link assertions of each block are added into a separate array. These assertions establish equality

between the dataset metadata properties of an output port with the input port of the following

linked blocks.

Figure 5.12 is a pipeline created in MLVP and is used throughout this section to demonstrate

how the type checker statically analyses and detects problems with a pipeline. The corresponding

arrays containing all the blocks and links assertions for the pipeline are represented in Figure 5.13

respectively.

Figure 5.12: Pipeline demonstrating type checking
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Int("A1;cols") == 31

Int("A1;rows") == 55 

Bool("A1;balanced") == True 

[0]
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Figure 5.13: Block and Link assertion arrays

The type checking process is continually being performed as the data scientist manipulates

the front-end canvas. The creation of new links or changing block’s properties triggers new type

checking requests to the back-end. For that reason, the response latency must be kept as low

as possible by performing only mandatory computation on the back-end. Therefore, the static

analysis of the pipeline is first approached optimistically. All link assertions are added first to

the Z3 solver. Only then all block assertions are added. Adding assertions by this order ensures

that if the pipeline contains an error, the reported set of assertions causing an unsatisfiable state

are block’s assertions, which are more helpful for the data scientist. Later in this section, the

procedure for finding those assertions is explained in greater detail.
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Int("C1;rows") == Int("D1;rows") 
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link

assertions

node
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Figure 5.14: Best case scenario is unsatisfiable
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Once both link and block assertions are added to the solver, its satisfiability is checked. If it

returns sat, the type-checking phase ends with no assertions being violated (optimistic). If instead

unsat is returned, there are contradicting assertions within the solver. To pinpoint what are the

violated assertions, the solver must be reset to a previous satisfiable state by popping the scope

containing all block assertions, leaving only the link assertions (Figure 5.14). Then an incremental

solving phase starts by iterating over the array containing all block assertions and individually

adding and checking for the solver’s satisfiability.

incremental adition 
of node assertions unsat 

reset state

check 
assertions 
individually
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Figure 5.15: Finding affected block

Figure 5.15 demonstrates the process described next. At every iteration, a new scope is pushed

into the solver’s stack, and the current block assertions are added to the solver, followed by a

satisfiability check. Eventually, the unsat will reappear, and the block whose assertions originate

the unsatisfiable state is found. The next step is to identify the specific assertion/s causing the

unsat within that block’s array of assertions. The procedure is similar to the one just described,

the current block’s assertions are removed by popping the solver scope, and then each assertion

is added to the solver individually after having a new scope pushed, with a posterior satisfiability

check.
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incremental adition 
of node assertions

Int("A1;cols") == Int("B1;cols") 
Int("A1;rows") == Int("B1;rows") 

Bool("A1;balanced") ==
Bool("B1;balanced")

Int("C1;cols") == Int("D1;cols") 
Int("C1;rows") == Int("D1;rows") 

Bool("C1;balanced") ==
Bool("D1;balanced")

Int("A1;cols") == Int("B1;cols") 
Int("A1;rows") == Int("B1;rows") 

Bool("A1;balanced") ==
Bool("B1;balanced")

Int("C1;cols") == Int("D1;cols") 
Int("C1;rows") == Int("D1;rows") 

Bool("C1;balanced") ==
Bool("D1;balanced")

Int("D1;cols") >= 2 
Int("D1;rows") > 0 

Bool("D1;balanced") == True

Int("C1;cols") == 31
Int("C1;rows") == 284807 

Bool("C1;balanced") == False

Int("A1;cols") == Int("B1;cols") 
Int("A1;rows") == Int("B1;rows") 

Bool("A1;balanced") ==
Bool("B1;balanced")

Int("C1;cols") == Int("D1;cols") 
Int("C1;rows") == Int("D1;rows") 

Bool("C1;balanced") ==
Bool("D1;balanced")

Int("D1;cols") >= 2 
Int("D1;rows") > 0 

Bool("D1;balanced") == True

Int("C1;cols") == 31

Bool("C1;balanced") == False

Int("C1;rows") == 284807

Figure 5.16: Finding originator block

Once all individual assertions are found, they are stored to be later sent to the front-end. How-

ever, the type checking is not over yet. There is still the need to find the other block whose

assertions are conflicting with the block just found (affected block) to give as much information

as possible to the data scientist about the problems of the pipeline. If the type-checking phase

were to end at this point, the data scientist would only know about the block, and its assertions,

affected by the problem but would not know what the block causing it was.

The whole procedure described for finding the affected block is applied to the reverse of the

array containing all block assertions, shown in Figure 5.16. The solver’s state is reset to a previous

satisfiable state containing only the link assertions. Then, the reverse of the array ranging from

the index of the affected block to the beginning of the array (index 0) is iterated, adding each

block’s assertions to the solver and checking for its satisfiability on every iteration. When the

unsat reappears, the block causing the unsatisfiable state (originator block) is found.

The iteration of the array in reverse consists of traversing the DAG backwards. That is, from

the affected block to the originator block. Once the conflicting assertions of the originator block

are found, they are sent to the front-end along with the conflicting affected block’s assertions.
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Pre-compilation type checking

Recall that a block is considered root when it has no input ports, loose when it has, and they are

not linked to any other block and connected when at least one of its input ports and linked to

another block. The back-end node representation follows the same terminology.

Before moving to the next and final phase of the compiler, it is essential to clarify a quirk

about the way the type checker functions. Depending on whether there is a code generation phase

immediately after the type checking, the type checker is more or less constrained on the static

analysis: If there is not a code generation phase immediately after the type-checking, then the

type checking is handled exactly the way it was described to this point. However, if there is, then

additional assertions are included to each block’s assertions array to ensure that all input ports

are linked to some other block, and all loose blocks and subsequent connected block which do

not have any link path to a root block are excluded from the type checking process. Since their

sub-graph representation is missing source links dependencies to a root block (the source of data

in the pipeline), its compilation would result in dead code. For the pipeline from Figure 5.12, the

assertions of the Temporal Aggregation block would not be part of the array containing all block

assertions.

Figure 5.17 contains a scenario in which the pipeline would pass the permissive type-checking

but fail the strong type checking due to the Evaluate Classifier block having an input port missing

a link.

Figure 5.17: Pipeline failing pre-compilation type checking

5.3.5 Code Generator

Code-based approaches to pipeline creation require the programmer to handle library imports,

object instantiation, and variable management manually. In the MLVP tool, the code is generated

automatically according to the pipeline created. Each block type has a code template shared by

all its instances in the compilation of the pipeline. During compilation, the code generator writes

the required library imports and object instantiations for each block composing the pipeline by

fulfilling their template placeholders with the values set by the data scientists in the front-end.
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Figure 5.18 represents a pipeline being compiled. The array resulted from topological sorting

its DAG representation is on the left of Figure 5.19, while the corresponding pipeline executable

source code is on the right. The array is iterated twice. Firstly to write each block’s import code

template so that all imports stay at the top of the output file. Secondly to write the block’s logic

code template in the output executable source code so that the topological sorting of the blocks

is maintained in the output file. To facilitate the observation of that order, the graph nodes in the

array share the colour of the code template in the output source code.

Taking as example the link between the Sample CSV and Random Forest Classifier blocks

from Figure 5.18 and the corresponding compiled code from Figure 5.19. The former reads the

”creditcard-train” CSV file and splits it into x1 and y1 data frames, which are then used by the

latter to train the classifier. The usage of an emitter to bind the output ports of the blocks with

the corresponding variable names containing the result of their operations makes this automatic

variable handling possible.

Figure 5.18: Compiled pipeline
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Sample 
CSV

Random 
Forest 

Classifier 

Import 
from 
CSV

Under-
sampling 

Evaluate 
Classifier

[0]

[1]

[2]

[3]

[4]

sorted_nodes

from sklearn.ensemble import RandomForestClassifier

from imblearn.under_sampling import RandomUnderSampler

from sklearn.metrics import accuracy_score

import pandas as pd

 

 

df1 = pd.read_csv('./creditcard-train.csv')

assert(31 == len(df1.columns))

x1 = df1.drop('Class', axis=1)

y1 = df1['Class']

 

clf2 = RandomForestClassifier(n_estimators=100,       

       criterion="gini", max_depth=21)

clf2.fit(x1, y1)

 

df3 = pd.read_csv('./creditcard.csv')

assert(284807 == len(df3))

assert(31 == len(df3.columns))

x3 = df3.drop('Class', axis=1)

y3 = df3['Class']

 

rus4 = RandomUnderSampler(random_state=None)

x_rus_res4, y_rus_res4 = rus4.fit_resample(x3, y3)

 

y_predicted5 = clf2.predict(x_rus_res4)

score5 = accuracy_score(y_rus_res4, y_predicted5)

print(score5)

Figure 5.19: Compiled pipeline’s executable source code

5.4 Blocks Library

This chapter presents the implemented blocks for MLVP and their respective assertions. The chap-

ter is organized into two sections. The first contains the simpler blocks, whose implementation

process mainly consists of replacing placeholders for the assertions and code templates. While

the second contains the blocks whose node representation on the back-end goes through a more

unique a complex process.

5.4.1 Simple Blocks

The blocks presented in this sub-section follow a common rule of implementation. The values

written by the data scientist in the input fields of the block’s properties on the UI are stored in the

pipeline’s JSON save representation. In the back-end, the JSON is parsed to recreate the pipeline

DAG representation by instantiating each graph node with those values. Finally, during both type
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checking and code generation phases, the values are inserted in the placeholders of the assertions

and code templates.

Abstract Dataset

The Abstract Dataset block allows for the definition of an abstract dataset by choosing the num-

ber of rows and columns, as well as indicating whether the dataset represents a time series or is

balanced without having to load any dataset file. Since these properties are not hardcoded in the

block type implementation, they must be mutable according to each block instance. Listing 5.4

contains the block’s assertions with ?< property > representing the placeholders of the block.

Output Dataset port
cols == ?cols
rows == ?rows
time_series == ?time_series
balanced == ?balanced
reduced == ?reduced
processed == ?processed
unique_column_names == True

Code Listing 5.4: Abstract Datset block assertions

Import from CSV

The Import from CSV block allows the definition of a dataset by parsing a dataset file. The block

then stores its metadata, which includes the number of rows and columns, each column name and

respective type, the number of instances for each class, and whether it is balanced or not. Similarly

to the Abstract Dataset block, it is possible to indicate if it represents a time series. Since these

properties are not hardcoded in the block type implementation, they must be mutable according to

each block instance. Listing 5.5 contains the block’s assertions with ?< property > representing

the placeholders of the block.

Output Dataset port
cols == ?cols
rows == ?rows
time_series == ?time_series
balanced == ?balanced
reduced == ?reduced
processed == ?processed
unique_column_names == True
col[1] == ?type
col[2] == ?type
...
col[n] == ?type

Code Listing 5.5: Import from CSV block assertions
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Sample CSV

The Sample CSV block is very similar to the Import from CSV block. The main difference being

the information about rows is ignored in the parsing of the dataset file. Therefore, the number

of rows is not stored in the block’s properties. Still, the block allows for manual identification

of whether the dataset represents a time series or is balanced. Listing 5.6 contains the block’s

assertions with ?< property > representing the placeholders of the block.

Output Dataset port
cols == ?cols
time_series == ?time_series
balanced == ?balanced
reduced == ?reduced
processed == ?processed
unique_column_names == True
col[1] == ?type
col[2] == ?type
...
col[n] == ?type

Code Listing 5.6: Sample CSV block assertions

PCA

The PCA block applies a PCA to the dataset received through the input port and forwards the result

to the output port. The block allows using a seed value for operation reproducibility and choosing

the number of column components to create. Listing 5.7 contains the block’s assertions.

Inner Properties
num_components > 0

Input Dataset port (input_ds)
num_components < cols
columns_of_type_string == False

Output Dataset port
cols == num_components + 1
rows == input_ds.rows
balanced == input_ds.balanced
time_series == input_ds.time_series
reduced == input_ds.reduced
processed == True
col[1] == float
col[2] == float
...
col[num_components] == float

Code Listing 5.7: PCA block assertions
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Temporal Aggregation

The Temporal Aggregation block applies a temporal aggregation operation to the dataset received

through the input port. The data scientist chooses the size of the rolling window, the column from

the input dataset used for the operation, the metric applied to the values, and the name of the new

column resulted from the operation. Listing 5.7 contains the block’s assertions.

Inner Properties
len(new_col_name) > 0
new_col_name_unique == True
type(used_col) == float or type(used_col) == int

Input Dataset port (input_ds)
time_series == True

Output Dataset port
cols == input_ds.cols + 1
rows == input_ds.rows
balanced == input_ds.balanced
time_series == input_ds.time_series
reduced == input_ds.reduced
processed == True
col(new_col_name) == float

Code Listing 5.8: Temporal Aggregation block assertions

Label Encoding

The Label Encoding block applies a label encoding on a chosen column of the dataset received on

the input port. That column must be of type categorical (int or string). Listing 5.9 contains the

block’s assertions.

Input Dataset port (input_ds)
type_col(chosen_column) == int or type_col(chosen_column) ==

string

Output Dataset port
cols == input_ds.cols
rows == input_ds.rows
balanced == input_ds.balanced
time_series == input_ds.time_series
reduced == input_ds.reduced
processed == True
type_col(encoded_column) == int

Code Listing 5.9: Label Encoding block assertions
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Label Decoding

The Label Decoding block reverts the label encoding performed by the Label Encoding block.

Therefore, the dataset received on the input port of the Label Decoding block must have at least

one column that is label encoded. Listing 5.10 contains the block’s assertions.

Input Dataset port (input_ds)
num_encoded_cols >= 1

Output Dataset port
cols == input_ds.cols
rows == input_ds.rows
balanced == input_ds.balanced
time_series == input_ds.time_series
reduced == input_ds.reduced
processed == True
type_col(decoded_column) == type_col(column_before_encoding)

Code Listing 5.10: Label Decoding block assertions

One Hot Encoding

The One Hot Encoding block applies a one-hot encoding on a chosen column of the dataset re-

ceived on the input port. That column must be of type categorical (int or string). Listing 5.9

contains the block’s assertions.

Input Dataset port (input_ds)
type_col(chosen_column) == int or type_col(chosen_column) ==

string

Output Dataset port
cols == input_ds.cols
rows == input_ds.rows
balanced == input_ds.balanced
time_series == input_ds.time_series
reduced == input_ds.reduced
processed == True
type_col(encoded_column) == one_hot_encoded

Code Listing 5.11: One Hot Encoding block assertions
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One Hot Decoding

The One Hot Decoding block reverts the one-hot encoding performed by the One Hot Encoding

block. Therefore, the dataset received on the input port of the One Hot Decoding block must have

at least one column that is one-hot encoded. Listing 5.12 contains the block’s assertions.

Input Dataset port (input_ds)
num_encoded_cols >= 1

Output Dataset port
cols == input_ds.cols
rows == input_ds.rows
balanced == input_ds.balanced
time_series == input_ds.time_series
reduced == input_ds.reduced
processed == True
type_col(decoded_column) == type_col(column_before_encoding)

Code Listing 5.12: One Hot Decoding block assertions

Vertical Concatenation

The Vertical Concatenation block vertically concatenates the datasets received from the two input

ports. The dataset rows received from the first input port stay on top of the rows of the dataset

received on the second input port. For the operation to be valid, both datasets must have an equal

number of columns, and the columns from both datasets that are at the same position must be of

the same type. Listing 5.13 contains the block’s assertions.

Inner Properties
top_input_ds.cols == bot_input_ds.cols
col_types(top_input_ds) == col_types(bot_input_ds)

Input Top Dataset port (top_input_ds)
---

Input Bottom Dataset port (bot_input_ds)
---

Output Dataset port
cols == top_input_ds.cols
cols == bot_input_ds.cols
rows == top_input_ds.rows + bot_input_ds.rows
balanced == False
time_series == False
reduced == False
processed == True

Code Listing 5.13: Vertical Concatenation block assertions
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Horizontal Concatenation

The Horizontal Concatenation block horizontally concatenates the datasets received from the two

input ports. The dataset columns received from the first input port stay on the left, while the dataset

columns received from the second input port stay on the right. For the operation to be valid, both

datasets must not share column names and have the same number of rows. Listing 5.14 contains

the block’s assertions.

Inner Properties
left_input_ds.rows == right_input_ds.rows

Input Left Dataset port (left_input_ds)
---

Input Right Dataset port (right_input_ds)
---

Output Dataset port
cols == left_input_ds.cols + right_input_ds.cols
rows = left_input_ds.rows
rows = right_input_ds.rows
balanced = right_input_ds.balanced
time_series == (left_input_ds.time_series and right_input_ds.

time_series)
reduced == False
processed == True

Code Listing 5.14: Horizontal Concatenation block assertions

Oversampling

The Oversampling block balances the dataset received from the input port by duplicating rows

in the minority classes. The resulting dataset is sent to the output port, ensured to be balanced.

Listing 5.15 contains the block’s assertions.

Input Dataset port (input_ds)
---

Output Dataset port
cols == input_ds.cols
input_ds.balanced == True -> rows == input_ds.rows
input_ds.balanced == False -> rows == input_ds.

max_label_count * input_ds.n_labels
balanced == True
time_series == False
reduced == input_ds.reduced
processed == True

Code Listing 5.15: Oversampling block assertions



Chapter 5. Implementation 46

Undersampling

The Undersampling block balances the dataset received from the input port by deleting rows in

the majority classes. The resulting dataset is sent to the output port, ensured to be balanced.

Listing 5.16 contains the block’s assertions.

Input Dataset port (input_ds)
processed == False

Output Dataset port
cols == input_ds.cols
input_ds.balanced == True -> rows == input_ds.rows
input_ds.balanced == False -> rows == input_ds.

min_label_count * input_ds.n_labels
balanced == True
time_series == input_ds.time_series
reduced == True
processed == input_ds.processed

Code Listing 5.16: Undersampling block assertions

Split Dataset

The Split Dataset block splits the dataset received from the input port in train and test datasets,

which is sent to each output port. The first output port contains the training dataset, while the

second output port the test dataset. Listing 5.17 contains the block’s assertions.

Input Dataset port (input_ds)
rows >= 2

Output Train Dataset port
rows == input_ds.rows * train_size
cols == input_ds.cols
reduced == input_ds.reduced
processed == True
stratify == True -> balanced == True

Output Test Dataset port
rows == input_ds.rows * test_size
cols == input_ds.cols
reduced == input_ds.reduced
processed == True
stratify == True -> balanced == True

Code Listing 5.17: Split Dataset block assertions
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Sampling

The Sampling block samples the dataset received from the input port using the fraction defined

in the block’s properties, allowing for the operation to be done with or without replacement, as

well as allowing the usage of a seed value for consistent replication of the operation. Listing 5.18

contains the block’s assertions.

Input Dataset port (input_ds)
processed == False

Output Dataset port
cols == input_ds.cols
rows == input_ds.rows * frac
balanced == False
time_series == False
reduced == True
processed == input_ds.processed

Code Listing 5.18: Sampling block assertions

Visualize Dataset

The Visualize Dataset block allows for the visualization of the dataset received on the input port.

This block does not have any defined assertions.

Abstract Classifier

All classifier blocks (Decision Tree, Random Forest, SVM, K Nearest Neighbors and Keras) train

using the dataset received from the input port, each one having their own specific properties. The

trained classifier is then sent to the output port. The base assertions for the classifier blocks are

shown in Listing 5.19.

Input Dataset port (input_ds)
balanced == True
cols > 1
rows > 0
all_features_types != string
col[:-1] == int or col[:-1] == string

Code Listing 5.19: Classifier block assertions
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Abstract Regressor

All regressor blocks (Random Forest, Linear, Logistic, SVM and Keras) train using the dataset

received from the input port, each one having their own specific properties. The trained regressor is

then sent to the output port. The base assertions for the regressor blocks are shown in Listing 5.20.

Input Dataset port (input_ds)
cols > 1
rows > 0
all_features_types != string
col[:-1] == int or col[:-1] == float

Code Listing 5.20: Regressor block assertions

Evaluate Classifier

The Evaluate Classifier block evaluates the prediction accuracy of the trained classifier received

from the second input port using the dataset received from the first input port. Listing 5.21 contains

the block’s assertions.

Input Dataset port
balanced == True
cols >= 2
rows > 0
all_features_types != string
col[:-1] == int or col[:-1] == string

Code Listing 5.21: Evaluate Classifier block assertions

Cross Validation Classifier

The Cross Validation Classifier block evaluates the prediction accuracy of the trained classifier

received from the second input port using the dataset received from the first input port through

cross-validation. Listing 5.22 contains the block’s assertions.

Inner properties
num_folds > 1

Input Dataset port
cols >= 2
rows > 0
balanced == True
time_series == False
all_features_types != string
col[:-1] == int or col[:-1] == string

Code Listing 5.22: Cross Validation Classifier block assertions
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Evaluate Regressor

The Evalaute Regressor block evaluates the prediction accuracy of the trained regressor received

from the second input port using the dataset received from the first input port. Listing 5.23 contains

the block’s assertions.

Input Dataset port
cols >= 2
rows > 0
all_features_types != string
col[:-1] == int or col[:-1] == float

Code Listing 5.23: Evaluate Regressor block assertions

5.4.2 Complex Blocks

Similar to the Simple Blocks (subsection 5.4.1), Complex Blocks also make use of the pipeline’s

JSON save representation to send information to the back-end. However, the block’s back-end

node representation procedure during both type checking and code generation phases goes beyond

replacing placeholders in the assertions and code templates. Instead, they have unique procedures,

which are explained in greater detail in the following paragraphs.

Feature Engineering

The Feature Engineering block allows for the engineering of new dataset columns using existing

ones. The block contains a coding area, which uses the DSL detailed in Figure 5.20 to create new

columns. The language includes the basic types bool, int, float, and string. Contains expressions

for literal values (l) or variables (x), which are the name of existing dataset columns.

Figure 5.21 contains the rules for the type checking of expressions is the DSL and Table 5.2

contains the operators represented by the
⊕

,
⊙

and▽ symbols.

Symbol Operators⊕
/, −, +, ×, %, ≥, >, ≤, <⊙

and, or
▽ +, ≥, >, ≤, <

Table 5.2: Feature Engineering Type Checking symbols

ANTLR [50, 51] is a powerful parser generator for reading, processing, executing, or trans-

lating structured text or binary files. It is widely used to build languages, tools, and frameworks.

From a grammar, ANTLR generates a parser that can build and walk parse trees.

For the construction of an Abstract Syntax Tree (AST) representing the code written in the

Feature Engineering block coding area, the DSL has its grammar defined in ANTLR. The parser

tree generated by ANTLR is then visited to build the AST.
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Types T ::= bool | int | float | string
Expressions e ::= x

| l
| e+ e

| e− e

| e ∗ e
| e/e
| e % e

| e and e

| e or e

| e == e

| e ! = e

| e ≥ e

| e > e

| e ≤ e

| e < e

| not e
| −e

Contexts Γ ::= ε | Γ, x : T

Figure 5.20: The syntax of Feature Engineering DSL

The initial context state during the type checking of the AST consists of the column names

and respective column types for the dataset received on the input port. During type checking,

expressions are checked to ensure they follow the rules from Figure 5.21. Every new column

created must have a unique name. If it has, its name and type are added to the context to be used

on the following column creation statements. Listing 5.24 contains the block assertions for the

Feature Engineering block.

During the code generation phase of the pipeline, the AST is visited once again to have the

expressions translated into the output executable code.
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Γ ⊢ b : bool Γ ⊢ i : int Γ ⊢ f : float Γ ⊢ s : string
(literal)

x : T ∈ Γ

Γ ⊢ x : T
(variable)

Γ ⊢ e1 : bool Γ ⊢ e2 : bool

Γ ⊢ e1
⊙

e2 : bool

Γ ⊢ e : bool

Γ ⊢not e : bool
(bool-operators)

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1
⊕

e2 : int

Γ ⊢ e1 : float Γ ⊢ e2 : float

Γ ⊢ e1
⊕

e2 : float
(same-type-operators)

Γ ⊢ e1 : int Γ ⊢ e2 : float

Γ ⊢ e1
⊕

e2 : float

Γ ⊢ e1 : float Γ ⊢ e2 : int

Γ ⊢ e1
⊕

e2 : float
(diff-type-operators)

Γ ⊢ e : int

Γ ⊢ −e : int
Γ ⊢ e : float

Γ ⊢ −e : float
(negative)

Γ ⊢ e1 : string Γ ⊢ e2 : string

Γ ⊢ e1 ▽ e2 : string
(string-concat-and-comparison)

Γ ⊢ e1 : string Γ ⊢ e2 : int

Γ ⊢ e1 × e2 : string

Γ ⊢ e1 : int Γ ⊢ e2 : string

Γ ⊢ e1 × e2 : string
(string-multiply)

Γ ⊢ e1 == e2 : bool Γ ⊢ e1 ! = e2 : bool
(type-equality)

Figure 5.21: Feature Engineering Type Checking

Inner properties
dsl_program_correct == True

Input Dataset port (input_ds)
---

Output Dataset port
cols == input_ds.cols + num_new_features_created
rows == input_ds.rows
balanced == input_ds.balanced
time_series == time_series.balanced
reduced == input_ds.balanced
processed == True

Code Listing 5.24: Feature Engineering block assertions



Chapter 5. Implementation 52

Keras Classifier/Regressor

Both Keras Classifier and Keras Regressor blocks allow for the creation of neural networks using

a dedicated neural network canvas within the block’s modal (Figure 5.22). The neural network

canvas works similarly to the pipeline canvas with its Model, Layer, Compiler, and Optimizer

blocks. When the pipeline is serialized into the JSON save representation (Subsection 5.2.4), the

neural network canvas of each Keras block is serialized as well and stored alongside the other

key/value pairs of the block (epochs, batch size and verbose).

Figure 5.22: Keras dedicated neural network canvas

When the Keras back-end node is initialized during the parsing phase of the pipeline’s JSON

representation. The neural network canvas inside of the block’s JSON representation goes through

its parser, topological sorter, data flow elaboration, and type checking phases, where the blocks

and links composing the neural network are verified. The code generation phase of the neural

network only occurs when triggered by the main pipeline code generation phase.

The Keras Classifier and Keras Regressor blocks share the block assertions of all classifier

and regressor blocks, respectively. Additionally, Keras blocks have an assertion to ensure that

the neural network is well built. The list of blocks implemented for the neural network are listed

below, with the Compiler block being the only one with assertions defined.

Sequential The Sequential block is the starting point of the neural network layers. It has an

output Layer port to initiate the neural network’s layer by connecting to a Dense block.

Dense The Dense block represents a layer in the neural network. By sequentially linking Dense

blocks, new layers are added to the neural network. The last Dense block is then linked to the

Compiler block to finish the network.
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Stochastic Gradient Descent The Stochastic Gradient Descent block represents a type of opti-

mizer used in the neural network. It has an Optimizer output port that is linked to the Compiler

block.

Compiler The Compiler block receives in one of its input ports the sequence of layers defined

for the neural network using the Dense blocks. On the other input port, it receives the optimizer

for the neural network. For the Compiler block to be valid, the number of layers used must be at

least one. Therefore, the Sequential block must not be direct linked to the Compiler block. It has

to have at least one Dense block in between. This condition is reflected in the Compiler block’s

assertions shown in Listing 5.25.

Input Layer port
num_dense_blocks >= 1

Code Listing 5.25: Compiler block assertions

5.5 Deployment

The front-end and back-end applications are deployed on a web server and compilation server,

respectively. The back-end server implements an Application Programming Interface (API) using

the Representational State Transfer (REST) architecture to receive type checking and compilation

requests over HyperText Transfer Protocol (HTTP).

MLVP 
Compiler

HTTP 
API Client

MLVP 
WebApp

MLVP 
Compiler

Web 
Server

Compilation
Server

User Machine

Desktop 
Browser

Server Machine

Legend

HTTP

HTTPHTTP

Figure 5.23: MLVP Deployment Allocation View

The requests are handled by different endpoints that make use of the MLVP compiler to send

a response. Figure 5.24 demonstrates how each endpoint uses the compiler phases to prepare a

response. Recalling what those phases were. The parser phase is where the JSON representation

of the pipeline canvas is parsed to recreate the DAG representations of the pipelines within. In
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the topological sorter phase, the DAG representing the pipeline are sorted topologically. The data

flow elaboration phase is where the metadata is successively processed and passed from each port

to the next. The type checker phase is where all formulas for each block and link are checked for

satisfiability. Finally, in the code generation phase, a valid pipeline is translated into executable

source code.

pre-compilation
type check

Parser 
Topological

Sorter 

Data Flow
Elaboration 

Type
Checker 

Code
Generator 

/dataFlow 

/typeCheck 

/compile 

permissive type check

Figure 5.24: Back-end endpoints

The MLVP compiler can be used without the front-end application. Either by directly contact-

ing the compilation server using an HTTP client, such as Postman, to send a POST request with

the JSON in its body or by locally passing the JSON path to the compiler application.
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Evaluation

This work aims to detect problems with ML pipelines before execution. The main benefit of this

approach is the time and resources saved when a problem is detected early instead of deep into the

pipeline.

The tool was evaluated through its ability to detect common errors in ML pipelines. These

errors were identified in meetings with Feedzai’s data science project managers to ensure that the

evaluation focuses on fundamental and realistic errors.

Tables 6.1 and 6.2 contain the dataset metadata of two datasets constructed from real-world

data on fraudulent credit card transactions. They are used throughout this section to demon-

strate the error detection of the tool along with the credit card fraud dataset from Kaggle pre-

sented in Section 2.2. This dataset is available at https://www.kaggle.com/mlg-ulb/

creditcardfraud.

Column Name Column Type
time int

bank id int
client id int

cost float
class int

Table 6.1: Dataset A metadata

Column Name Column Type
card number int
card brand string

amount float
class int

Table 6.2: Dataset B metadata

6.1 Dataset concatenation

Dataset concatenation is merging several datasets into a single dataset, either by performing hor-

izontal or vertical concatenation. For the resulting dataset to be valid, intervening datasets’ char-

acteristics must be compatible, which is not always the case. Often, data scientists concatenate

datasets, whose result is an invalid dataset with duplicate column names or values of both string

and numeric values in the same column, leading to errors in the pipeline.
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6.1.1 Horizontal Concatenation

Consider that datasets from Tables 6.1 and 6.2 were to be concatenated horizontally. Since

Datasets A and B have five and four columns, the final dataset would have nine columns. For

the operation to be valid, both datasets would need to: have an equal number of rows, to avoid

having columns with empty cells; unique column names so that the final dataset would be free of

duplicate column names. However, these datasets share the ’class’ column name. Therefore the

concatenation would result in an invalid dataset.

Figure 6.1 demonstrates the process of attempting to horizontally concatenate datasets A and B

in MLVP. Once loaded into two instances of the Sample CSV block, they are linked to a Horizontal

Concatenation block. Since both datasets share the ’class’ column name, when attempting to link

the Sample CSV B block to the Horizontal Concatenation block after having the Sample CSV

A already linked, an assertion violation is detected, and the link is never created. The assertion

violated is shown in Listing 6.1.

Figure 6.1: Datasets A and B share a column name

Horizontal Concatenation
Property unique_columns_from_input_ports

Code Listing 6.1: Horizontal concatenation error message

6.1.2 Vertical Concatenation

Consider that datasets from Tables 6.1 and 6.2 were to be concatenated vertically. For the final

dataset to be correct, both A and B datasets would need to have an equal number of columns,

which is not the case. Dataset A has five columns and B four. For the operation to be valid, both

datasets would need to: have an equal number of columns, to avoid having columns with empty

cells; equal column type at each column index from both datasets so that the final dataset would

be free of mixed types in all columns, for instance, values of type string and float in each column.

Figure 6.2 demonstrates the process of attempting to vertically concatenate datasets A and

B in MLVP. Once the datasets are loaded into two instances of the Sample CSV block, they are

linked to a Vertical Concatenation block. Since datasets A and B do not have an equal number
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of columns, when attempting to link the Sample CSV B block to the Vertical Concatenation block

after having the Sample CSV A already linked, an assertion violation is detected, and the link is

never created. The assertion violated is shown in Listing 6.2.

Figure 6.2: Datasets A and B do not have an equal number of columns

Vertical Concatenation
Top Dataset Port n_cols == Bottom Dataset Port n_cols
Concatenated Dataset Port n_cols == Bottom Dataset Port

n_cols

Sample CSV A
Dataset Port n_cols == 5

Code Listing 6.2: Vertical concatenation error message

6.2 Dataset transformation

Dataset transformation is when a dataset in its raw state is transformed into modeled data, ready for

analysis or training. This process could be, for instance, the conversion of non-numeric features

into numeric or the creation of new features from existing ones.

6.2.1 Feature Engineering

Feature engineering is creating new dataset columns from existing ones for better representation

of the underlying problem, possibly leading to improved model accuracy.

Consider that dataset B from Table 6.2 is used to engineer new features. For the resulting

dataset to be valid, the operands must be of compatible types. For instance, in addition operations,

both operands must be of type int or float. When working with unseen large datasets, it is common

for data scientists to create new features using incompatible column types unintentionally.

Figure 6.3 demonstrates the process of engineering new features on MLVP using dataset B.

Within the Feature Enginnering block, three new columns are being created: column ’row1’

through an addition operation of the values from column ’card brand’ (of type string) and the

literal 4 (of type int); column ’row2’ through an addition operation of the values from column
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’col’ (nonexistent on the dataset) and the literal 4 (of type int); column ’amount’ (whose name

already existents in the dataset) through a multiplication operation of the literals 4 (of type int)

and 3 (of type int);

All three operations contain type errors that MLVP detects. The respective error message is

shown in Listing 6.2.

Figure 6.3: Operations with invalid types and undeclared variables

Feature Engineering
expression using invalid types "string" + "int" - line 1
column "col" does not exist on the dataset - line 2
column "amount" is already part of the dataset - line 3

Code Listing 6.3: Feature engineering error message

The errors shown in Listing 6.2 could be fixed respectively by using compatible types on the

addition operation, creating the column col before attempting to use it, and choosing a name for

the new column that does not exist on the dataset, respectively.

Figure 6.4: All operations use valid types and declared variables

6.2.2 Temporal Aggregation

A dataset is considered a time series when all data points are ordered chronologically. In the case

of a credit card transaction dataset, each row would represent a transaction in time. Temporal

aggregation operations require datasets to represent a time series, for the result of applying a

rolling window on a feature of the dataset reflects meaning on how the data changes over time.

For instance, it would detect if a given transaction was ten times larger than the mean of the past

month. The result of applying temporal aggregation operations on datasets that do not represent a

time series is meaningless. Therefore they should not be done.

Consider that dataset B from Table 6.2 does not represent a time series. Figure 6.5 demon-

strates the process of temporal aggregating the dataset B, which is loaded into Sample CSV B

block, by linking it to the Temporal Agregation block. Since the Sample CSV B block does not

represent a time series, the port property reflects that as False. The Temporal Agregation block
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by expecting the property to be True causes a contradiction in the assertions. Both assertions are

shown in Listing 6.4.

Figure 6.5: Dataset B does not represent a time series

Sample CSV B
Dataset Port time_series == False

Temporal Aggregation
Dataset Port time_series == True

Code Listing 6.4: Temporal aggregation error message

The solution for this problem would be to identify the dataset as being a time series. This

identification could be manual or eventually automatic when a sample of the dataset is present.

6.3 Imbalanced Datasets

The prediction accuracy of models trained with imbalanced datasets may be affected due to the

training data lacking some target variable. Furthermore, in real scenarios, the variable that was

scarce in training may appear in more significant quantities, thus affecting the model performance.

Consider the credit card dataset from Kaggle, which is heavily imbalanced. The dataset was

loaded into the Import from CSV block, which was used to train a classifier by linking it to the

Random Forest Classifier block. Since the dataset is imbalanced, MLVP detects it and does not

allow the formation of the link.Listing 6.5 contains the errors shown when attempting to linked

both blocks.

Figure 6.6: Using an imbalanced dataset to train the classifier

Import from CSV
Dataset Port balanced == False

Random Forest Classifier
Dataset Port balanced == True

Code Listing 6.5: Imbalanced dataset error message
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The solution for this issue would be to either have an Undersampling, or Oversampling block

linked between the Import From CSV and Random Forest Classifier blocks (Figure 6.7). The

under-sampling and over-sampling techniques consist of deleting dataset rows in the majority class

and duplicating rows in the minority class to even out all class instances in the dataset. Therefore,

the requirement of receiving a balanced dataset in the Random Forest Classifier block is ensured.

Figure 6.7: Balancing the dataset before using it for training

6.4 Processing Datasets

When a dataset is fed into a ML pipeline, it can go through many operations. For example, new

columns are engineered, others are encoded, and rows are discarded from the dataset. The order

in which operations occur may impact the pipeline execution time.

Consider the credit card dataset from Kaggle [52], which contains 284807 rows, goes first

through feature engineering and then an undersampling operation. The resulting dataset would be

the same as doing the undersampling operation first and then the feature engineering. However, the

work applied and the time consumed to achieve the same result are higher on the second approach.

Since the under-sampling operation balances a dataset by removing the majority classes to even

out all instanced in a dataset, having the dataset go through the feature engineering first leads

to the discard of calculation on the under-sampling operation. Therefore, for the best efficiency,

the under-sampling should come before the feature engineering operation. For instance, every

operation that processes the whole dataset, feature engineering or encoding operations, should

always come before a reducing operation (undersampling or sampling).

Figure 6.8 demonstrates the scenario described in MLVP, in which the credit card dataset

is loaded into the Import from CSV block, then linked to a Feature Engineering block. When

attempting to create a link with the Undersampling block, the tool detects that the order of op-

erations results in unnecessary consumption of resources, and the link is not created. Listing 6.6

shows the error message displayed when attempting to perform such an operation.
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Figure 6.8: Order of operations results in unnecessary consumption of resources.

Undersampling
Dataset Port processed == False

Feature Engineering
Engineered Dataset Port processed == True

Code Listing 6.6: Processing dataset error message

The correct approach that does not trigger any error is to have the Undersampling block linked

before the Feature Engineering block. Figure 6.9 demonstrates the solution.

Figure 6.9: Optimized order of operations
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Chapter 7

Conclusion

Code-based approaches to build ML pipelines rely on the programming proficiency of the data

scientist. VP advancements have been made to facilitate the task of creating ML pipelines. Still,

they come with limitations. The coupling of the tool’s pipeline development and execution envi-

ronments compromises the high-performance execution of the pipeline on clusters, and the tool

lock-in prevents the migration of the pipeline to other alternatives.

Our proposed tool (MLVP) improves over existing VPL for creating ML pipelines by ap-

proaching the creation process from a static point of view. Each block contains a set of assertions

using dataset metadata to verify pipeline validity. During type checking, the addition of all asser-

tions into an SMT solver dictates pipeline satisfiability. Once a pipeline is proven to be valid, the

MLVP tool compiles the pipeline into executable code, allowing for the execution of the pipeline

in any machine (e.g., clusters).

This work proved that ML pipeline verifications could be approached using design by contract.

The main principles of this model as documented by Reddy [53] are threefold:

• Pre-conditions: the client is obligated to meet a function’s required preconditions before

calling a function. If the preconditions are not met, then the function may not operate

correctly;

• Post-conditions: the function guarantees that certain conditions will be met after it has fin-

ished its work. If a post-condition is not met, then the function did not complete its work

correctly;

• Class invariant: constraints that every instance of the class must satisfy. This defines the

state that must hold true for the class to operate according to its design.

In MLVP, the pre-conditions are the assertions regarding the dataset received from the blocks’

input port. The post-conditions are the characteristics ensured about the dataset leaving the block’s

output port. Finally, the class invariant constraints are the assertions regarding the block’s prop-

erties. In this work we applied design by contract in a VP approach to orchestrate ML pipelines.

Applying it in code-based approaches could also be explored in the future.
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Although MLVP achieved advances in the creation and execution of ML pipelines, there are

still improvement opportunities, for example:

• Enrich the VPL by implementing more blocks;

• Autocomplete new links, based on compatible blocks;

• Automatic optimization of the pipeline’s DAG representation;

• Predict pipeline execution time;

The development of MLVP resulted in the design and implementation of a VPL to build ML

pipelines featuring: 29 blocks for data science and ML operations; a type checker to statically

verify pipeline semantic and syntactic correctness; a compiler to compile the VPL into executable

code.
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