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Abstract

As ontologies are developed in an uncoordinated manner, differences in scope and design compromise
interoperability. Ontology matching is critical to address this semantic heterogeneity problem, as it finds
correspondences that enable integrating data across the Semantic Web. One of the biggest challenges in
this field is that ontology schemas often differ conceptually, and therefore reconciling many real­world
ontology pairs (e.g., in geography or biomedicine) involves establishing complex mappings that contain
multiple entities from each ontology. Yet, for the most part, ontology matching algorithms are restricted
to finding simple equivalence mappings between ontology entities.

This work presents novel algorithms for Complex Ontology Alignment based on Association Rule
Mining over a set of shared instances between two ontologies. Its strategy relies on a targeted search
for known complex patterns in instance and schema data, reducing the search space. This allows the
application of semantic­based filtering algorithms tailored to each kind of pattern, to select and refine the
most relevant mappings.

The algorithms were evaluated in OAEI Complex track datasets under two automated approaches:
OAEI’s entity­based approach and a novel element­overlap–based approach which was developed in the
context of this work. The algorithms were able to find mappings spanning eight distinct complex patterns,
as well as combinations of patterns through disjunction and conjunction. They were able to efficiently
reduce the search space and showed competitive performance results comparing to the State of the Art
of complex alignment systems.

As for the comparative analysis of evaluation methodologies, the proposed element­overlap–based
evaluation strategy was shown to be more accurate and interpretable than the reference­based automatic
alternative, although none of the existing strategies fully address the challenges discussed in the literature.

For future work, it would be interesting to extend the algorithms to cover more complex patterns and
combine them with lexical approaches.

Keywords: Ontology Alignment, Ontology Matching, Complex Ontology Alignment, Association
Rule Mining
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Resumo

Os dados existem na Web em formatos muito heterogéneos. Os conceitos de “dados interligados” e
“Web Semântica” emergiram num esforço para potencializar o uso dos dados em aplicações inteligentes.
Sob este paradigma os dados encontram­se caracterizados, contextualizados e associados a outros da­
dos, tornando­os acessíveis a operações humanas e automáticas. Neste contexto, os dados heterogéneos
poderiam ser facilmente integrados e ser alvo de mineração por agentes inteligentes, sustentando diver­
sas aplicações corporativas e campos de investigação multidisciplinares tal como as ciências da vida e do
ambiente.

A integração semântica dos dados requer uma camada estrutural, como é o caso das ontologias, que
oferecem uma descrição expressiva dos conceitos e o contexto em que eles se inserem e podem ser utiliza­
dos. Contudo, diferentes ontologias surgem como consequência de existirem diversas formas de modelar
o mesmo domínio, dependendo do objetivo e granularidade pretendida. Isto, combinado com o facto de
que as ontologias são tipicamente desenvolvidas de forma independente nos vários domínios do conhec­
imento, deu origem ao problema de heterogeneidade semântica.

O alinhamento de ontologias surge como uma solução para este problema de interoperabilidade, uma
vez que permite estabelecer correspondências entre conceitos de duas oumais ontologias. Contudo, atual­
mente estes sistemas apenas abordam correspondências simples, i.e. aquelas que relacionam diretamente
entidades individuais das ontologias. Contudo, as diferenças conceptuais entre as ontologias podem ser
de tal magnitude que exigem um tipo de correspondência mais expressiva, de modo a garantir que todas
as transformações de conceitos necessárias à interoperabilidade das ontologias são satisfeitas.

As correspondências complexas são correspondências mais expressivas que compreendem não só en­
tidades individuais das ontologias, mas também expressões que conjugam ou modificam estas entidades
através de operadores de restrição, conjunção, disjunção, entre outros. A um conjunto de correspondên­
cias complexas denomina­se um alinhamento complexo.

O Alinhamento Complexo de Ontologias é então visto como um caminho para a integração semân­
tica de dados, e a sua relevância tem sido reconhecida pela comunidade científica. Em 2018, a Ontology
Alignment Evaluation Initiative (OAEI) implementou uma modalidade para alinhamentos complexos,
tendo fornecido dados de elevada qualidade, alinhamentos de referência e protocolos de avaliação. Con­
tudo, persistem alguns desafios no que diz respeito às estratégias de avaliação, uma vez que estas não
se adequam inteiramente à natureza dos alinhamentos complexos. Para além disso, o Estado da Arte em
algoritmos de alinhamento de ontologias está, na sua maioria, limitado a encontrar equivalências simples
entre entidades.
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As estratégias para alinhamento complexo de ontologias que existem atualmente dividem­se em duas
famílias: métodos baseados em semelhança lexical e métodos estruturais. Os métodos lexicais estão
limitados a casos em que os nomes das entidades são semelhantes lexicamente, o que não é verdade
para muitas ontologias do mundo real. Os métodos estruturais são tipicamente estatísticos ou recorrem
a técnicas de mineração de dados para explorar padrões nos indíviduos partilhados entre duas ontologias
populadas. A intuição para estes métodos é que se existem relações recorrentes entre indivíduos e as
classes e propriedades que os descrevem nas duas ontologias, estes padrões frequentes ou correlações
indicam a possibilidade de uma relação semântica relevante entre essas mesmas entidades.

Esta dissertação propõe uma série de algoritmos devotos ao alinhamento complexo de ontologias, que
são baseados em regras de associação obtidas da mineração de dados de indivíduos partilhados entre duas
ontologias. A estratégia consiste numa procura direcionada de padrões complexos conhecidos a priori,
em dados provenientes dos esquemas e instâncias das ontologias. Isto permite por um lado reduzir o
espaço de procura, e, por outro, refinar os resultados pela aplicação de algoritmos de filtração baseados
na semântica de cada um dos padrões.

Este trabalho também propõe uma nova estratégia automática de avaliação de alinhamentos com­
plexos, baseada num alinhamento de referência. Esta abordagem element­overlap reflete o esforço es­
perado para corrigir manualmente um alinhamento, atribuindo uma pontuação a cada correspondência que
o compõe consoante a sua semelhança a uma correspondência comtemplada no alinhamento de referên­
cia. Esta semelhança é calculada através de um índice de Jaccard entre os dois conjuntos que contêm os
elementos de cada correspondência (incluindo operadores).

Os algoritmos propostos foram implementados num sistema de alinhamento de ontologias conhecido,
AMLC, que possui métodos para o carregamento de ontologias e estruturas de dados eficientes que com­
portam esses dados. Em seguida, foram avaliados segundo uma implementação do protocolo de avali­
ação utilizado na OAEI, mas também segundo a estratégia de avaliação proposta neste trabalho, element­
overlap. Os dados utilizados e alinhamentos de referência são também provenientes da OAEI.

Os resultados mostram que é possível encontrar correspondências abrangendo oito padrões com­
plexos distintos, assim como combinações desses padrões através de operadores de conjunção e disjunção.
A performance dos algoritmos mostrou­se comparável ao Estado da Arte.

O facto de que os algoritmos serem desenhados especificamente para cada padrão permite que haja um
controlo fino sobre o processo de alinhamento e sobre os algoritmos de refinamento, filtro e agregação.
Esta estratégia provou­se benéfica uma vez que os resultados após filtração e agregagação aumentaram
significativamente a precisão enquanto que o impacto no recall foi mínimo.

Contudo, a maior limitação dos algoritmos de alinhamento propostos reside também na sua natureza
particionada aos padrões conhecidos, uma vez que isso implica que seja desenvolvido um algoritmo
por cada padrão, colocando maior peso na implementação. É por essa razão também que os algoritmos
deste trabalho se encontram limitados atualmente a padrões s:s e s:c, não apresentando resultados de
performance favoráveis em datasets ricos em correspondências c:c.

Foram encontradas algumas diferenças nos resultados obtidos relativamente às duas estratégias de
avaliação automática. Procedeu­se então a uma análise comparativa exaustiva que revelou que a abor­
dagem element­overlap proposta é mais precisa e interpretável do que a alternativa, ainda que nenhuma
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das estratégias atualmente existentes solucione por completo os desafios na avaliação discutidos na lit­
eratura. A estratégia de avaliação proposta possui várias limitações que advêm do facto de se sacrificar
a precisão de avaliação pela escalabilidade, contudo, obter uma versão significativamente mais precisa,
que, por exemplo, implementasse raciocínio dedutivo, não é uma tarefa trivial. Isto porque as corre­
spondências complexas frequentemente incluem expressões que vão para além do reino de semântica
DL, comprometendo a decidibilidade do problema.

Os algoritmos foram também avaliados manualmente, obtendo uma precisão global de 75%. A
análise específica para cada padrão mostrou que os algoritmos não foram capazes de encontrar alguns
dos padrões esperados, contudo, encontraram outros que não estavam contemplados na referência, com
precisão elevada. Estes resultados sugerem que os alinhamentos de referência não contemplam todas
as correspondências válidas entre duas ontologias e realçam a importância de estabelecer métricas de
avaliação que sejam simultaneamente automáticas e considerem vários graus de correção.

A performance dos algoritmos de alinhamento foi também comparada à de uma implementação sim­
ples de um método de mineração de regras de associação tradicional, o FP­Growth. Esta implementação
não foi capaz de gerar regras de associação para os conjuntos de dados de maior magnitude e complex­
idade, mostrando que a abordagem proposta nesta dissertação é capaz de reduzir de forma eficiente o
espaço de procura e o tempo de corrida, produzindo resultados em tempo útil.

Em trabalhos futuros, seria interessante estender os algoritmos propostos neste trabalho a outros
padrões complexos, tais como restrições de cardinalidade exatas, máximas e mínimas com valor superior
a um, e padrões m:n, incluindo cadeias de propriedades. Para além disso, explorar outros conjuntos de da­
dos, incluindo aqueles que não possuam dados de instâncias partilhadas entre as ontologias, com a ajuda
de técnicas de alinhamentos de instâncias. Quanto às estratégias de avaliação, poderia ser proveitoso o
uso de uma abordagem baseada em regras simples para comparar semanticamente as correspondências
de forma a melhorar a precisão de avaliação.

Palavras Chave: Alinhamento de Ontologias, Alinhamento Complexo de Ontologias, Regras de
Associação
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Chapter 1

Introduction

1.1 Context and Motivation

Data is ubiquitous on the Web and available in many heterogeneous formats. The concepts of Linked
Data and Semantic Web emerged to potentiate the use of data in meaningful ways, by ensuring that it
is properly described, contextualised, and linked to other data, so it is accessible to both humans and
machines [4]. In this context, heterogeneous data could be smoothly integrated and mined by intelligent
agents, fueling many enterprise applications and interdisciplinary research fields such as the life and
environmental sciences [22].

The semantic integration of data requires a schema layer, such as ontologies, which provides a more
expressive description of resources and the context in which they can be used. Different ontologies can
model the same domain differently, depending on the intended application and the required granularity
and expressiveness. This, combined with the widespread and typically uncoordinated development of
ontologies in several domains, has led to the semantic heterogeneity problem [17].

The ontology alignment (or matching) field emerged to overcome this interoperability problem, by
providing mappings interrelating the concepts between two or more related ontologies [17]. However,
to date, most systems only cover simple ontology alignments that connect individual ontology entities
directly through equivalence or subsumption relations [37]. This is often not sufficient to capture all
data transformations required for the interoperability between ontologies, especially when they differ
conceptually [36].
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rdf:type

Person

 ≡
Person

rdf:typeOnlyChild

O1 O2

Ricardo

rdfs:subclassOf

MarriedPerson

rdf:type

Madalena

rdfs:subclassOf

Cookie
Cat

rdf:type
Pet

 ≥
rdf:type

rdf:type

rdf:type

rdf:type

hasSibling

rdf:type

owns
hasSpouse

Joana

Figure 1.1: Ontology alignment given shared instance data. O1 and O2 represent two ontologies of
intersecting domains. Coloured circles and rectangles represent ontology classes and data values, respec­
tively. Full arrows are ontology properties and dashed arrows define the alignment relationship between
ontology entities. Grey circles represent individuals shared between the two ontologies.

As an example, consider ontologiesO1 andO2 (Figure 1.1) that model family relations under differ­
ent perspectives. WhileO1 focuses on describing themain concepts as classes such asO1 : MarriedPerson,
O2 does so using properties such as O2 : hasSpouse. In order to correctly transform data between
the two ontologies, one would need to map the class O1 : MarriedPerson to the class expression
O2 : hasSpouse some Person, i.e.:

O1 : MarriedPerson ≡ O2 : hasSpouse some O2 : Person

Additionally, O1 and O2 differ in the level of detail used to describe the domain. In O1, the level
of detail is such that it is possible to discriminate different types of people by the number of siblings
they have. In O2, there is no such concept, only a more general one that describes that people can have
siblings. A correct mapping in this case, would involve a cardinality restriction to that general concept.

O1 : OnlyChild ≡ O2 : hasSibling exactly 1

The previous mappings are said to be complex ontology mappings, since at least one of the mapped
entities is an expression rather than a simple ontology entity. They are more expressive than simple map­
pings (represented by dashed arrows in Figure 1.1), which fall short of describing the semantic meaning
of the main concepts in this example.
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Complex Ontology Alignment (COA) is then viewed as an essential tool for interoperability, semantic
data integration and Data Science in general, as it aims to link data from different sources in a way that
supports knowledge extraction. Doing complex alignment in an automated way is critical as ontologies
often encompass thousands of concepts, making their manual alignment time­consuming and demanding
of domain expertise.

The relevance of COA has been recognised by the ontology alignment community, which has been
formulating complex alignment tasks and evaluation methodologies as part of the Ontology Alignment
Evaluation Initiative (OAEI), since 2018. Nevertheless, there are still many challenges to overcome
regarding benchmarks, evaluation, visualisation of alignments, among others [52]. Moreover, the per­
formance of state­of­the­art alignment systems in complex tasks is not at a level where the alignments
could be reliably used in real applications.

1.2 Objectives and Contributions

The goal of this work is to investigate data mining­based approaches for finding complex ontology map­
pings by searching for specific patterns defined apriori. The guiding hypothesis is that a targeted pattern­
based approach that reduces the search space, will not only improve efficiency, but also performance by
providing semantically sensible mappings.

According to [13], ontology alignment techniques can be divided into two categories: rule­based
solutions and learning­based solutions. The first only exploit schema­level information in specific rules
whereas the second may exploit instance information with machine­learning or statistical analysis. It is
in that sense that this work proposes to go beyond rule based approaches, since, even though Association
Rule Mining (ARM) is a rule­based machine learning technique, the strategy behind it relies on statistical
measures and pattern mining over the ontologies schema and instance data.

This dissertation’s main contributions include:
1. Development of PG­ARM, a suite of novel pattern­oriented and ARM­based complex alignment

and filtering algorithms.
2. Comparative evaluation with state­of­the­art complex alignment systems using Ontology Align­

ment Evaluation Initiative (OAEI) datasets, under different evaluation modalities.
3. A novel element­overlap–based evaluation strategy for complex ontology alignments.
4. Fully automated implementation of the preprocessing step used in the entity­based evaluation strat­

egy employed in the OAEI. Using this implementation, it was possible to perform the reference­
based evaluation of OAEI’s Populated Conference dataset, which is not presently contemplated in
OAEI.

5. Poster presentations of preliminary results in the 6th LASIGEWorkshop and the 15th International
Workshop on Ontology Matching collocated in the 19th International Semantic Web Conference
ISWC­2020.

3



Chapter 1 Introduction

6. Accepted poster in the 20th International Semantic Web Conference, ISWC­2021, titled “Pattern­
Guided Association Rule Mining for Complex Ontology Alignment”.

7. Accepted full paper titled “Challenges of evaluating complex alignments” to the 16th International
Workshop on Ontology Matching collocated in the 20th International Semantic Web Conference
ISWC­2021.

8. Participation of the proposed alignment and filtering algorithms in the OAEI 2021’s Complex track.

1.3 Thesis Outline

This dissertation is organised as follows:

• The current chapter introduces the semantic heterogeneity problem and the complex ontology align­
ment field as a semantic data integration solution;

• Chapter 2 provides a formal explanation of key concepts required for understanding this work;

• Chapter 3 presents the State of the Art in the Complex Ontology Alignment field, regarding both
matching and evaluation approaches; additionally, the use of ARM in other Semantic Web related
tasks is discussed;

• Chapter 4 presents the algorithms for ontology alignment and ontology alignment evaluation de­
veloped in this work;

• Chapter 5 describes the data used in the evaluation of the proposed algorithms, presents their results
under different evaluation modalities and discusses the challenges in evaluating complex align­
ments, comparing the proposed evaluation strategies to existing ones;

• Chapter 6 presents the main takeaways from this work, its limitations and the perspectives in terms
of future work.
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Chapter 2

Concepts

The data used in the scope of this work is not the most typical in Data Mining tasks, being enriched with
semantic information. For this reason, the following sections delve into the particularities of this type of
data and the Data Mining technique employed, Association Rule Mining.

2.1 Linked Data and Knowledge Graphs

Linked Data is a paradigm for publishing structured data on the Web interlinked to data from different
sources [5]. It emerged as a re­interpretation of the Web of Documents, which consists of documents
linked through hyperlinks [22]. As each document represents information in its own formats, machines
are oblivious to the meaning and context of data, and automatic data processing approaches are not pos­
sible.

The Resource Description Framework (RDF) is the most popular format for Linked Data, which
conveys that a specific data resource is connected to another resource through some kind of relationship,
composing a triple subject, predicate, object [5].

The Semantic Web features Linked Data [4], enabling it to be shared and reused among applica­
tions. This translates into more powerful applications as their data sources are not restricted. Moreover,
Data links can be used to integrate new data from different sources with ease, and automated knowledge
discovery strategies can be employed [22].

In the last few years, Knowledge Graph (KG) has become a popular term to refer to a graph­based
representation of large collections of data which are annotated to a semantic schema layer, such as on­
tologies [15]. In the case of RDF triples of Linked Data, the nodes in the graph represent RDF subjects
and objects, and the edges represent RDF predicates.
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2.2 Ontologies

Ontologies are key components of the Semantic Web, as they provide a semantic model of a domain so
that it can be the object of automated reasoning. As defined in [17], ontologies “provide a vocabulary
describing a domain of interest and a specification of the meaning of terms in that vocabulary”. In other
words, they specify the context and the semantic rules that apply to the vocabulary, allowing for the
interpretation of those concepts through their logical axioms.

Using ontologies to represent domains reduces ambiguity and facilitates machine understanding [17].
They can serve as the semantic layer of smart information systems [42] or more recently, as the schema
layer of Knowledge Graphs [15]. In the broader sense, their applications include named entity disam­
biguation, data interoperability and integration, enabling meaningful and intelligent queries over data on
the Web and decision support.

Ontologies are often populated with individuals, which are instances at the data level, and include
literals, such as strings or integers (see Figure 2.1). They are composed by classes, which represent cat­
egories or collections of individuals and properties, which establish a relation between an individual and
a literal (data property) or another individual (object property). Ontologies intrinsically imply transitive
closure, i.e. each given class is a subclass of not only its direct superclass but all the others that precede
it.

The concepts of “Populated Ontology” and “Knowledge Graph” are often used interchangeably
throughout the literature, being their separation somewhat ambiguous. Ehrlinger et al. [15] argue that
the difference between the concepts resides in the fact that KG are typically large and provide additional
features than ontologies, such as built­in strategies for knowledge derivation.

The use of ontologies does not impose a restricted or authoritarian way to model concepts, as users
can create new ontologies at any given time, covering the same or intersecting domains, depending on
the purpose and granularity required to their application. As ontologies are developed in an uncoordi­
nated manner, some heterogeneity among them becomes inevitable. The heterogeneity may be in terms
of syntax, when they are not expressed in the same ontology language, but also terminological, when
different names are used to describe the same entities. Another source of heterogeneity, and usually the
most difficult to overcome, is when ontologies differ conceptually: the same domain could be covered in
different levels of detail and from different perspectives [17].

In this context, it can become difficult to define which concepts have the same meaning in the several
existing ontologies. Furthermore, if different data sources use different ontologies to describe their data,
one cannot ensure that the data is truly usable and integrated in a way that could allow intelligent queries,
reasoning and the production of knowledge. In an effort to overcome this interoperability problem, on­
tology alignment strategies have been developed [17].
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Figure 2.1: Example of an ontology populated with individuals. Coloured circles represent classes, while
individuals are represented as uncoloured circles. Arrows represent properties.

2.3 Ontology Alignment

Ontology Alignment (OA) (or matching) is the process of producing entity mappings between ontologies
of the same or intersecting domains. A mapping or correspondence is defined as the form < e1, e2, r >

where e1 and e2 are ontology entities from two related ontologies and r is the semantic relation that
connects the concepts (e.g. equivalence (≡), subsumption (≥ or ≤), disjointness (⊥), etc.) [52].

Alignments can be produced manually by humans, or automatically by ontology alignment systems,
whose methodology typically follows the same general steps [17]. The system takes as input the source
and target ontologies to be aligned and may also require some parameter specification and external re­
sources. Matchers are algorithms with a central role in the alignment process and can vary greatly in the
strategies used. The systems may run multiple matchers and output several alignments that need to be
integrated into one final alignment. In those cases, filters or selectors may be employed in order to en­
sure the desired cardinality, by applying thresholds to discard less relevant mappings and by performing
logical consistency checking [17].

The cardinality specifies how many entities can be assigned to each entity of the opposite ontology
and the desired cardinality depends on the purpose of the application; for example, a cardinality of 1:1
specifies that each entity is only mapped to at most one other entity of the opposite ontology.
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2.4 Complex Ontology Alignment

AComplex Ontology Alignment (COA) is an alignment that includes mappings with at least one complex
entity.

While simple entities consist of a single ontology class, property or individual, with a unique identifier
(e.g. O1 : Teacher), complex entities are expressions that involve not only single entities but also logical
operators (e.g. O2 : Educator or O2 : Instructor), restrictions on cardinality, type, range, value and
more (e.g. O2 : teaches some O2 : Student) or transformation functions (e.g. weight × O2 : grade).
In the same line of thought, some examples of complex mappings are:

O1 : Teacher ≤ O2 : Educator or O2 : Instructor

O1 : Teacher ≡ O2 : teaches some O2 : Student

Given a simple entity s and a complex entity c, complex mappings can assume the form c:s or s:c, de­
pending on whether the complex entity belongs to the source or target ontologies, respectively. Complex
mappings between two complex entities are denoted as c:c [52]. Another standard notation for complex
mappings is 1:n, m:1 and m:n, which specify if the source and target entities are composed of a single (1)
or several ontology entities (n, m) [52]. However, this notation is misleading, as some complex entities
comprise only a single ontology entity (e.g. InverseOf(O1 : theaches)).

Efficiently finding complex mappings is much a more challenging task than finding simple ones.
While one can only find as many simple mappings as those resulting from the pairwise combination
between the single entities of both ontologies, in complex matching, each mapping could involve many
single entities and nested operators, leaving us with a boundless search space [38].

2.4.1 Complex patterns

Some of the most common patterns comprised in complex ontology alignments have been thoroughly
described in the literature [30, 38, 41, 62]. They comprise several types of class and property expressions.

A class expression may be defined as an abstract class that groups the individuals that hold a certain
relation (object or data property) to some restrict group of individuals or values (Table 2.1). Additional
logic operators such as and, or, not may combine several class expressions.

A property expression may be defined as an abstract property obtained by restricting attributes such as
domain and range of single properties to a specific group of individuals or values (Table 2.2). Operators
such as and, or, not, and compose may combine several property expressions.

2.4.2 Representation format

There are several representation formats for complex mappings [52]. The Alignment API [16] provides
a standard way to represent alignments, enabling them to be easily exchangeable among applications.
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Table 2.1: Description of class expressions that compose common complex patterns.

Expression Definition Example

Object Property
Range restriction

Constrains the range of an object property
to a specific type of individuals.

memberOf some Committee

Object Property Car­
dinality restriction

Restricts the object property to be related
to a specific number of individuals.

min 1 acceptedBy

Data Property Value
restriction

Restricts a data property to a specific lit­
eral value.

hasTopic value ”Science”

Data Property Type
restriction

Restricts a data property to a specific type
of literal values.

hasID some xsd : integer

Table 2.2: Description of property expressions that compose common complex patterns.

Pattern Definition Example

Inverse Object
Property

Defines an abstract property analogous
to a given property, but with reversed
domain and range.

InverseOf contributes

Object Prop­
erty Domain
restriction

Restricts the domain of a given object
property to a certain type of individuals.

writePaper∧domain(CoAuthor)

Object Property
Range restriction

Restricts the range of a given object
property to a certain type of individuals.

contributes ∧ range(Review)

Data Property
Domain restric­
tion

Restricts the domain of a given data
property to a certain type of individuals.

hasID ∧
domain(ConferenceProceedings)
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The Expressive and Declarative Ontology Alignment Language (EDOAL) 1[10] was developed as an
extension of the Alignment API to accommodate the representation of complex expressions in ontology
alignments. EDOAL has been widely accepted by the community and it’s currently employed in OAEI’s
Complex Track datasets [52].

Although heavily inspired by description logic and OWL restrictions, conjunctions, and disjunctions,
it is an independent language, which allows it to also represent alignments of heterogeneous and weak
representations such as thesauri and relational databases [17]. While some complex expressions could
be covered by conventional OWL expressions, others such as the concatenation of property values (e.g.,
the values of hasFirstName and hasLastName in one ontology corresponding to value of hasName in
another ontology), value restrictions with comparators (e.g. hasAge comparator:greater­than ”18”) and
transformation functions (e.g. converting prices in one currency to another) go beyond OWL Semantics.

EDOAL features four types of expressions: constructions, restrictions, transformations and linkkeys.
Analogously to the previously discussed elements that compose complex entities (Section 2.4.1), con­
structions amalgamate simple entities through algebraic operators, restrictions define new entities by
narrowing the scope of existing entities, and transformations modify property values (although the suite
of transformations supported by EDOAL is limited). Linkkeys establish equivalences between individu­
als of aligned entities.

As an example, take Figure 2.2 which represents the EDOAL representation of the mapping be­
tween class “conference : Accepted_contribution” and the class defined by the union of “cmt :

hasDecision some cmt : Acceptance” and “min 1 cmt : acceptedBy”.
All things considered, EDOAL supports the complex patterns presented in Section 2.4.1 and it is the

representation format chosen for the implementation of this work.

2.5 Association Rule Mining

Association Rule Mining (ARM) [2] is a data mining technique that aims at finding structural frequent
patterns. In this work, ARM is used to search for recurring relationships between entities of two ontolo­
gies among their common instances.

In the typical ARM process, the data is organised in a transaction database, where each transaction
has a unique ID and contains a set of items, named an itemset. A k­itemset is one that contains k items
[24]. The support computation is carried out for each k­itemset.

The support or frequency of an itemset is the percentage of transactions in the database that contain
it. The support is used to find frequent patterns that are represented as association rules. Association
rules are directional and comprise an antecedent and a consequent. Strong association rules satisfy both
a minimum support and confidence threshold.

1https://moex.gitlabpages.inria.fr/alignapi/edoal.html
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The confidencemeasure reflects the certainty of a rule and it is given by Equation 2.1, where A and B
are itemsets, sup(A∪B) is the number of times that those itemsets were found together in the transaction
database and sup(A) is the support of itemset A.

Confidence(A =⇒ B) =
sup(A ∪B)

sup(A)
(2.1)

Lift is a metric for correlation analysis commonly used in rule selection [24]. Lift (Equation 2.2)
measures whether the events of a random transaction ”containing all items in the antecedent” and ”con­
taining all items in the consequent” are statistically independent. Rules with a lift higher than 1 reflect a
significant association between the antecedent and consequent, therefore being the most interesting ones.

Lift(A =⇒ B) =
sup(A ∪B)

sup(A) · sup(B)
(2.2)

Some of the most commonly used methods for frequent pattern mining include the Apriori [1] and
FP­growth [23] algorithms.

The Apriori algorithm cuts down the search space by considering only frequent itemsets, i.e. those
that occur at least as frequently as a minimum predetermined threshold, and relying on the observation
that if an itemset is not frequent, none of its supersets can be frequent as well. It can be further optimised
with the use of hash­based techniques, partitioning, sampling and more.

The FP­growth algorithm adopts a ”divide and conquer” strategy, where the transaction database of
frequent itemsets is compressed into a frequent pattern tree (FP­tree), where nodes represent itemsets
and edges represent associations between itemsets. The tree is then divided into conditional trees, each
associatedwith one frequent itemset, and conditional trees aremined separately. Hence, it does not require
candidate itemset generation, contrarily to the Apriori algorithm. The FP­growth algorithm is about an
order of magnitude faster than the Apriori algorithm, but can be troublesome for large databases, given
that the tree may not fit in memory. In such cases, partioning [12, 40] and parallelization [6, 31, 59]
strategies may be employed.
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Figure 2.2: EDOAL representation of an example mapping.

<map>
<Cell>

<entity1>
<edoal:Class rdf:about="http://conference#Accepted_contribution"/>

</entity1>
<entity2>

<edoal:Class>
<edoal:or rdf:parseType="Collection">

<edoal:AttributeDomainRestriction>
<edoal:onAttribute>

<edoal:Relation rdf:about="http://cmt#hasDecision"/>
</edoal:onAttribute>
<edoal:all>

<edoal:Class rdf:about="http://cmt#Acceptance"/>
</edoal:all>

</edoal:AttributeDomainRestriction>
<edoal:AttributeOccurenceRestriction>

<edoal:onAttribute>
<edoal:Relation rdf:about="http://cmt#acceptedBy"/>

</edoal:onAttribute>
<edoal:comparator rdf:resource="http://edoal#greater-than"/>
<edoal:value>0</edoal:value>

</edoal:AttributeOccurenceRestriction>
</edoal:or>

</edoal:Class>
</entity2>
<relation>=</relation>
<measure rdf:datatype='http://xsd#float'>1.0</measure>

</Cell>
</map>
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State of the art

Research in the ontology alignment field is mainly focused on simple alignments. The complex ontology
alignment scope is somewhat recent, and still faces many challenges concerning datasets, benchmarks,
evaluation, visualisation and edition of the alignments [52].

3.1 Complex Ontology Alignment

The Ontology Alignment Evaluation Initiative (OAEI) 1 introduced the Complex Matching track in 2018
[46], which currently provides seven datasets, covering five different domains: Conference, Populated
Conference, Hydrography, Geolink, Populated Geolink, Populated Enslaved and Taxon.

The OAEI 2020 results [37] for this track show that automated complex ontology alignment is still a
remote prospect. Out of the twelve participating systems, only three (AMLC [20, 32], AROA [65, 61],
CANARD [48, 53]) were able to present complex mappings and their performance was very modest in
comparison with the results of simple matching tracks (F­measures of at most 60%). Moreover, their ef­
forts towards the systematic evaluation of complex alignment have brought to the forefront the difficulties
in providing an accurate and fair evaluation of complex ontology alignments [65].

3.1.1 Methods

Complex ontology alignment approaches can be divided into two categories, according to the type of
information explored: lexical and instance­based methods.

Lexical approaches [38, 39, 21] rely on finding patterns in the labels of the ontology entities, such
as when the label of one class in one ontology overlaps with the label of both a class and a property in
the other ontology (e.g. class ProgramCommitteeMember versus object property memberOf and class
ProgramCommittee). Consequently, they are limited to finding mappings between entities with lexically

1http://oaei.ontologymatching.org
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similar labels. Although the search space can potentially be extended through the use of thesauri, this
approach will still fail to capture many real­world mappings (e.g. if a broader scope property such as
partOf had been used instead of memberOf in the preceding example).

Instance­based approaches (e.g., [35, 58, 61]) explore data concerning individuals shared between
the two ontologies. Their strategy is typically statistical or pattern mining­based. The intuition is that if
there are recurring relationships between individuals and the classes and properties that describe them in
opposite ontologies, those frequent patterns or correlations indicate the possibility of a semantic relation
between the classes or properties. For example, if all individuals of classO1: ProgramCommitteeMember
are connected to an individual of class O2:ProgramCommittee through O2:memberOf, a mapping such
as O1 : ProgramCommitteeMember ≡ O2 : memberOf some O2 : ProgramCommittee can be
inferred.

The mandatory use of instance data can be a limitation of instance­based approaches, but since data
interoperability and integration are among the main applications of complex ontology alignment, instance
data will be available more often than not. To obtain shared instance data, matching techniques can be
used to map the individuals of two ontologies [37] with the accuracy being contingent on the lexical
similarity between their entities’ labels. Another limitation of these approaches is that their statistical
nature makes them vulnerable to data sparseness, biases and errors, which can compromise the soundness
of produced mappings [52].

3.1.2 Complex alignment systems

AMLC is a version of the alignment system AgreementMakerLight (AML) designed to perform complex
ontology alignment [20, 19]. Its strategy consists of searching for lexical similarities between ontology
entities according to a few predefined complex alignment patterns [38]. It allows for the optional use of
an input simple alignment. This system does not rely on instance data for the alignment process, being the
only OAEI participant capable of producing results in the non­populated datasets of the Complex track.
However, it shows worse performance than the other two systems in some of the datasets where instance
data is available since it cannot make use of this data.

AROA [65, 61] uses traditional ARMalgorithms over a transaction database derived from the instance­
level triples shared by two ontologies. As illustrated in Figure 3.1, the triples’ subjects are represented as
transaction IDs, being the predicates and objects represented as items. However, instead of having items
as property|instance, since the goal is to establish mappings between the ontologies, the instance is
substituted by its class or value (property|class or value). The transaction database is then mined using
the FP­Growth algorithm [23] and rules with patterns similar to those described in [38, 62] are selected
to the final alignment.
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Figure 3.1: Illustration of transaction database construction from instance­level triples as described in
[62]. GBO and GMO are the ontologies that compose the Geolink dataset [63].

Following the example in Figure 3.1, some possible association rules would be:

• rdf : type|gbo : Cruise→ rdf : type|gmo : Cruise

• gbo : hasCruiseType|gbo : Cruise→ rdf : type|gmo : Cruise

translating into simple and complex class mappings, respectively. Some limitations to AROA include: it
does not process sameAs relationships between individuals, and therefore does not produce results in the
Populated Conference dataset; it requires prior knowledge of complex alignment patterns [61].

CANARD [48, 53] is a system that uses both a lexical and instance­based approaches. It relies on
instance data and Competency Questions for Alignment (CQA) to discover complex mappings. CQAs
”express the knowledge that an alignment should cover” [54]. In this approach, CQAs have the for­
mat of SPARQL queries over the source ontology, resulting in a set of instances. Those individuals are
then matched to individuals annotated by the target ontology and their lexically similar surroundings are
matched. CANARD’s limitations include that it requires a set of domain­specific input questions to guide
the matching process. They have been able to generate them automatically based on a set of patterns,
as required for the OAEI participation [53]. It is also somewhat dependent on lexical similarity between
ontology entities’ labels. Additionally, CANARD’s runtimes on OAEI 2020 were very long (up to 12
hours) which the authors justify by its dependence on the performance of the SPARQL endpoint among
other factors [53].

3.1.3 Evaluation

While the evaluation of simple alignments is well established, the evaluation of complex alignments is
still an open field of research.

The evaluation for simple mappings is primarily reference­based, consisting of an exact match with
the reference, i.e. candidate mappings are considered correct if they are identical to a mapping in the
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reference alignment, and incorrect otherwise. This approach is fairly adequate in the simple alignment
realm, although some mappings could be considered semi­correct, such as a subsumption mapping be­
tween two classes that are in fact equivalent, or an equivalence mapping where one of the classes is a
superclass of the correct class [14]. But in practice, such cases tend to be relatively rare and have little
impact in evaluating matching systems on simple mappings.

However, this traditional approach is inadequate for complex mappings because the intricacy of the
mappings and the unbound search space (due to the nesting of expressions) mean that cases where align­
ment systems predict complex mappings that approximate but do not exactly match those in the reference
alignment are the norm rather than the exception. Moreover, two complex mappings can be syntactically
different but semantically equivalent [52] (e.g. Parent is equivalent to both min 1 hasChild and
hasChild some Child). Considering these factors, the traditional evaluation approach is too unforgiv­
ing for complex mappings and does not accurately reflect their usefulness [65].

Manual evaluation is seldom used as it is a very time­consuming task, can introduce biases and incon­
sistencies to the evaluation [65], is not fully reproducible and may require domain expertise (especially
for more complex mappings).

Zhou et al. [65] have overviewed existing evaluating approaches, dividing them into two families,
depending on whether they require a reference alignment or not. They have discussed that to date, no
evaluation approach that is simultaneously automated, comprehensive and able to accurately reflect the
usefulness of complex alignments has been proposed. They argue that we are still far from achieving fully
automatic evaluation and manual validation is still indispensable; in this scenario, an evaluation approach
that reflected the expected human effort in validating amapping, such as an edit­distance approach, would
be the most suitable strategy for ontology integration tasks.

3.1.3.1 Evaluation with a reference alignment

Evaluation strategies dependent on a reference alignment compare the mappings of the evaluated align­
ment to those of a reference in order to compute Precision and Recall.

Zhou et al. [65] have detailed the general framework for this type of evaluation, which consists of: an­
choring, mapping comparison, scoring, and aggregation. Additionally, they enumerate the challenges
that should be addressed by a reference­based evaluation strategy (Table 3.1).

3.1.3.2 Evaluation without a reference alignment

Evaluation approaches that are not reference­dependent are an enticing solution as methods for generating
reference alignments are still primarily manual, and, consequently, time­consuming and demanding of
domain expertise. The non­reference­dependent evaluation approaches assess the overall quality of the
alignment, being divided into two families, according to Zhou et al. [65]: one that aims to measure the
logical soundness of an alignment [33, 44] and another which tests the fitness of the alignment for certain
tasks [26, 27, 43].
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Table 3.1: General framework for reference­based evaluation and challenges associated with each step,
as described by Zhou et al. [65]

Step Definition Challenges (C)

Anchoring Selection of the reference map­
ping(s) that should be compared to
each candidate mapping

C1: avoid the necessity of a full pairwise
comparison of reference and system map­
pings.

Comparison Compute the relation between each
pair of mappings.

C2: determine the relation between a can­
didate mapping and a reference mapping.
C3: handle mapping decomposition (as
two separate mappings can be equivalent
to a single other mapping).
C4: factor the mapping relation.

Scoring Apply a scoring function to each re­
lation identified in the comparison
step

C5: accurately reflecting the quality/use­
fulness of each mapping.

Aggregation Produce a final aggregated score
which concerns the whole align­
ment.

C6: factor partially correct mappings.
C7: factor cases of mapping decomposi­
tion.
C8: handle the occurrence of (redundant)
multiple candidate mappings that are im­
plied by a single reference mapping.

Alignment quality metrics
Jiménez et al. [28] proposed the measurement of consistency and conservativity in order to assess the
logical soundness of the aligments.

The consistency principle is related to the coherence of the alignment, predicated on the fact that it
is desirable that the final alignment does not contain logical errors, in order for them to be compatible
with certain applications. Meilicke et al. [33] proposed two metrics for assessing alignment logical
coherence: one that takes into account the number of unsatisfiable classes, and another which is based
on “the minimum number of mappings that must be removed to obtain a coherent merged ontology”.

The conservativity principle states that alignments shouldn’t contain “semantic relationships between
any two entities that were originally from the same input ontology”. Solimando et al. [44] proposed a
metric that takes into account the number of violations to this principle.

These metrics do not reflect the alignment completeness or correctness, as an alignment can be fully
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coherent and conservative but not encompass the most relevant mappings between two ontologies. More­
over, they are limited to evaluating alignments that are expressible in OWL DL, which is not always the
case in the complex realm. The fact that the assessment of coherence requires reasoning strategies that
can be computationally intensive when dealing with complex alignments is another major challenge.

Task­based evaluation
In practice, alignments are often built with the goal of being used in specific tasks or applications. There­
fore, it is reasonable to evaluate their quality by assessing how well they perform in those tasks. Proposed
tasks include ontology evolution, query answering [11, 43, 55] and thesaurus merging and data translation
[27].

One of the downsides of these approaches is that, as the quality of the alignment is measured with
respect to a particular task, the evaluation scope is narrowed. Additionally, Zhou et al. [65] discuss the
challenges of generating generalizable quality metrics for the success of the task and, in the case of query
answering–based strategies, rewriting SPARQL queries for more expressive mappings.

3.1.3.3 OAEI Complex track

As of the 2020 edition, the OAEI Complex track has established evaluation protocols for each of its
datasets.

The Populated Conference task is automatically evaluated with Competency Questions for Alignment
[45], assessing if the alignment can answer some basic queries. Precision is rendered by comparing the
instances described by the source and target members of the mappings.

The evaluation of Taxon is task­oriented: first the quality of the generated alignments in terms of
precision is manually assesed; second, there is a manual assessment of whether the alignment can answer
SPARQL queries produced by a query rewriting system.

The evaluation of the Hydrography, Populated Geolink and Populated Enslaved tasks is based on an
entity­based relaxed precision and recall approach, divided into three modalities: entity identification,
relationship identification and full complex alignment identification. Performance is assessed using the
relaxed precision and recall metrics [14], which penalise mappings that have correctly identified entities,
but have failed to identify the correct relationship, according to a scale of similarity (Table 3.2).

Consider the following mappings from the cmt− conference task of the OAEI (including reference
and hypothetical candidate mappings) that will be used throughout this work as a running example:

• Reference mappings:

(A) [hasDecision some Acceptance] or [min 1 acceptedBy] = Accepted_contribution
(B) ExternalReviewer = min 1 inverseOf(invited_by)
(C) Reviewer or ExternalReviewer = Reviewer
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Table 3.2: Relationship identification task scores, which are attributed to a reference/candidate pair
according to their relation similarity. Adapted from http://oaei.ontologymatching.org/2019/
results/complex/hydrography/index.html

Score Description Ref. relation Candidate relation

1.0 Correct relation
= =
> >
< <

0.8
Candidate mapping returns less information,
but is still correct

< =
= >

0.6
Candidate mapping returns more information,
but is incorrect

> =
= <

0.3 Incorrect relation
< >
> <

• Candidate mappings:

(A’) hasDecision some Acceptance > Accepted_contribution
(B’) ExternalReviewer = min 1 invited_by
(C’) Reviewer = Reviewer

According to the steps identified in Table 3.1, the OAEI entity­based evaluation strategywould handle
their evaluation as detailed bellow:

1. Anchor step: a manual preprocessing step converts reference and candidate mappings into a list
of key­value pairs of related entities plus their mapping relation. The key is a source ontology
entity (or combination of entities) belonging to the mappings and manually chosen to represent
them (several mappings can share the same key if they have the same source entity). The value is
the set of all remaining source and target ontology entities for the mapping(s) that have the key.
The preprocessing of the running example mappings would result in the following key­value pairs:

• Reference mappings:

(A) hasDecision : {Accepted_contribution,Acceptance, acceptedBy},=
(B) ExternalReviewer : {invited_by},=
(C) Reviewer : {Reviewer,ExternalReviewer},=
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• Candidate mappings:

(A’) hasDecision : {Accepted_contribution,Acceptance}, >
(B’) ExternalReviewer : {invited_by},=
(C’) Reviewer : {Reviewer},=

2. Correspondence comparison step: each candidate mapping is compared with the reference map­
ping that has the same key­entity.

3. Scoring step: for each value­entities pair in the candidate mapping, entity­precision and entity­
recall are computed against those pairs in the reference mapping. These score are then multiplied
with a relation similarity score according to the criteria defined in Table 3.2.

4. Aggregation step: the final score of an alignment is the average of the entity scores. Applying this
evaluation algorithm to the example above would result in the scores listed in Table 3.3.

Table 3.3: Scores obtained for the running examples under the OAEI entity­based evaluation strategy.

Alignment TP FP FN
Entity

Precision
Entity
Recall

Relation
score

Relaxed
Precision (%)

Relaxed
Recall (%)

A×A’ 2 0 1 1 2/3 0.6 60 40
B×B’ 1 0 0 1 1 1.0 100 100
C×C’ 1 0 1 1 1/2 1.0 100 50

Final ­ ­ ­ ­ ­ ­ 86.7 63.3

3.2 Association Rule Mining in other Semantic Web­related tasks

The use of ARM for solving Semantic Web­related tasks is limited as it is not as scalable as other numeric
Machine Learning technologies. While numeric­based ML approaches mainly target data in their graph
representation, i.e. primarily plain RDF­based languages, symbol­based methods such as ARM easily
incorporate more expressive languages such as OWL. ARM is also typically more interpretable than
numeric­based ML approaches [9].

ARM as a pattern mining technique is suited for unsupervised tasks such as learning new rules or
axioms given ontology instance and schema­level data. Moreover, it can be advantageous when deductive
reasoning is impossible due to inconsistencies and incompleteness in ontologies. In this sense, ARM has
been employed in the tasks of knowledge completion, ontology learning and learning disjointness axioms
[9].
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Knowledge completion is the task of finding assertions that are missing in knowledge bases. It is of
particular interest to the fields of link prediction and Knowledge Graph development. Works in this area
include systems that can automatically mine and generate semantically enriched rules from RDF data
[3, 18, 29, 34].

Ontology learning is the process of constructing an ontology schema from RDF data. Völker et al.
[56] have rendered that task by means of ARM.

Disjointness axioms are a way to represent the negative knowledge in a domain, but ontology authors
often do not specify them. Völker et al. [57] showed that it is possible to find disjoint relations in the
ontology schema by relying on correlation coefficients and negative association rules.
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Algorithms

4.1 Complex Ontology Alignment Algorithms

Traditional ARM requires a single database containing all the transactions to be mined, and employs an
algorithm to find all frequent itemsets in the database, from which association rules are generated. Zhou
et al. [62] demonstrated how a complex ontology alignment dataset can be transformed into a traditional
ARM problem, and implemented this approach in AROA [61]. However, their approach relied on prior
knowledge of the complex alignment patterns detailed by [38] to filter the ARM results and produce
complex ontology mappings. Given prior knowledge of the complex alignment patterns, which translates
to prior knowledge of the types of rules we want to find, then it is unnecessary and inefficient to use a
“catch­all” ARM algorithm to perform an exhaustive search for frequent itemsets of all make­ups.

The strategy used in this work for efficient ARM­based Complex Ontology Alignment is two­fold.
On the one hand, as complex alignment patterns are known a priori, the mining process can be carried
out independently for each alignment pattern, concerning only the schema information that is relevant to
the targeted pattern, thus reducing the search space. On the other hand, the incorporation of the ARM
paradigm into a typical ontology alignment system [20] that parses ontology data into separate hash­table­
based data structures for different types of data (e.g., hierarchical relations, lexical annotations) provides
the basis for scalable alignment algorithms.

This approach will be mentioned as Pattern­Guided Association Rule Mining (PG­ARM) throughout
this dissertation. Its pipeline is depicted in Figure 4.1, consisting of the following steps:
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Figure 4.1: Complex ontology alignment pipeline based on pattern­guided association rule mining (PG­
ARM). Grey indicates the external ontology loading system facilities, blue thematching algorithms, green
the refinement algorithms and purple the filtering algorithms.

1. An initial ontology loading step renders the set of individuals shared by the two ontologies and
efficient data structures (e.g. hash tables) which contain schema and instance­level data. These
are:

• Individual Types­ holds the rdf:type relationships, i.e. class assignments, of individuals in
the dataset;

• Individual Relations ­ holds the relationships between individuals in the dataset and the
object property that relates them. It also contains information on object properties’ domains,
ranges and other attributes;

• Individual Values ­ holds the relationships between individuals and data values, and the data
property that relates them;

• Hierarchy ­ holds the hierarchical relationships between ontology classes and properties.

2. For each complex alignment pattern, an individual algorithm finds all mapping candidates (or item­
sets) that match that pattern, by searching the appropriate data structures, and computes the support
of the two entities (source and target) in the mapping candidate as well as the support of the map­
ping candidate itself (i.e., the fraction of shared individuals that have both the source and target
entities).

3. A common ARM matching algorithm is invoked by each pattern matching algorithm to extract
association rules, in the form of mappings, from the set of mapping candidates.
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4. Refinement algorithms receive mappings generated by some of the pattern matching algorithms as
input and refine those mappings, converting simple subsumption mappings into complex equiva­
lence ones.

5. Filtering algorithms select which of the candidate mappings to include in the final alignment, ex­
cluding redundant mappings and conflicting mappings with lower confidence.

6. An aggregator combinesmappings for the same entity into a singlemapping using logical operators.

4.1.1 Matching algorithms

This work encompasses a total of nine matching algorithms, each corresponding to an alignment pat­
tern. The alignment patterns chosen were based on EDOAL expressions [10]. A brief description on the
patterns and the data structures required to find them are the following:

◦ Class ­ Class

– Type: s:s
– Example: PaperAbstract ≤ Abstract
– Hash tables: individual types; class hierarchy

◦ Class ­ someValues restriction on Object Property

– Type: s:c
– Example: ProgramCommitteeMember ≡ memberOf some ProgramCommittee
– Hash tables: individual types; individual relations; class hierarchy

◦ Class ­ cardinality restriction on Object Property

– Type: s:c
– Example: AcceptedContribution ≡ min 1 acceptedBy
– Hash tables: individual types; individual relations; class hierarchy
– Note: limited to ”min 1” cardinality restrictions;

◦ Class ­ hasValue restriction on Data Property

– Type: s:c
– Example: SciencePaper ≡ hasTopic value “Science”
– Hash tables: individual types; individual values; class hierarchy

◦ Class ­ someValues restriction on Data Property

– Type: s:c
– Example: PaperId ≡ hasID some integer
– Hash tables: individual types; individual values; class hierarchy
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◦ Object Property ­ Object Property

– Type: s:s
– Example: hasAuthor ≡ writtenBy
– Hash tables: individual relations

◦ Data Property ­ Data Property

– Type: s:s
– Example: email ≡ has_an_email
– Hash tables: individual values

◦ Object Property ­ Data Property

– Type: s:s
– Example: acceptedBy ≡ isAccepted
– Hash tables: individual relations, individual values

◦ Object Property ­ InverseOf Object Property

– Type: s:c
– Example: hasAuthor ≡ InverseOf contributes
– Hash tables: individual relations

The matching algorithms share the same core structure that is detailed in Algorithm 1. The matching
process can be divided into two steps: support computation and mapping generation.

4.1.1.1 Support computation

The algorithm iterates through the set of individuals shared by the two input ontologies and, for each
individual, searches the hash table data structures containing the relevant data for the alignment pattern
targeted by the matching algorithm. This approach bypasses the need to build a transaction database, by
iterating directly through the alignment system’s efficient data structures. A mapping candidate< a, b >

is generated if an individual is annotated to entities a and b (from opposite ontologies) that satisfy the pat­
ternA−B. For each mapping candidate found, the support of source and target entities (EntitySupport),
and the pair (MappingSupport) are incremented.

The ontology alignment format is directional, meaning that mappings are expected to be listed from
a source ontology to a target ontology. Since the algorithms were not designed to be directional, i.e. they
search for patternA−B regardless ofA andB being from the source or target ontologies, both mappings
< a, b, rel > and < b, a, rel > will be generated depending on which ontology comprises the entities a
and b.
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Hierarchical expansion of mapping candidates is performed for all patterns in which one of the en­
tities is a single ontology class1, i.e. mapping candidates are generated not only for the classes directly
instanced by the individuals but also for all ancestors of those classes. This step allows for transitive
closure, which is formally required in ontology alignments.

Take this example for the “Class ­ someValues restriction on Object Property” matching algorithm,
which produces mappings of the type < c1, op2 ∧ c2, rel, score >, where c1 is a class from the source
ontology, op and c2 are an object property and class from the target ontology that compose the restriction
on object property op2 ∧ c2. In a first step, support tables are produced by iterating through shared
individuals and counting the EntitySupport for c1 and op2 ∧ c2, andMappingSupport c1 ∧ op2 ∧ c2 :

• The Individuals Types hash table allows for counting how many individuals are of type c1, thereby
obtaining its EntitySupport. The combination of Hierarchy and Individuals Types tables allows us
to extend the EntitySupport count to all of c1’s ancestors;

• The combination of the Individual Relations and Individual Types tables allows the count of support
for the entity op2 ∧ c2, i.e. how frequently the object property op2 ranges individuals of the type
c2;

• The MappingSupport is calculated concomitantly, attending to how frequently the two entities
appear together (c1 ∧ op2 ∧ c2).

The process is analogous for all mapping patterns, with merely the combinations of hash tables
searched changing. For most of the pattern matching algorithms, the support computation can be done
in a single iteration over the set of individuals shared by the two ontologies. The exception are the Prop­
erty matching algorithms, that require an additional iteration over the set of properties found in the first
iteration that connect the shared individuals.

The “Class ­ minimum cardinality restriction on Object Property” mappings are found by looking for
sets of individuals of a given class in one ontology that have a relation through the same Object Property
in the other ontology. This is similar to the “Class ­ someValues restriction on Object Property” except
that no range specification is defined (the restriction is unqualified). Although cardinalities above one
would be considered, at present the algorithm contemplates only cardinality 1.

Using traditional ARM terms, PG­ARM only searches for frequent 2­itemsets, as the goal is to find
rules that establish correspondences between a source and a target entity. These entities can be simple or
complex, according to the patterns described in 4.1.1. For this reason, PG­ARM algorithms are currently
bound to finding s:s and s:c mappings.

1Includes ”Class­Class”, ”Class ­ someValues restriction on Object Property”, ”Class ­ cardinality restriction on Object
Property”, ”Class ­ hasValue restriction on Data Property” and ”Class ­ someValues restriction on Data Property” matching
algorithms.
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4.1.1.2 Mapping generation

A common ARM core algorithm is invoked at this point, which first filters the mapping candidates by
support and then by confidence or lift. The confidence and lift of the mapping are calculated according
to Equations 4.1 and 4.2, respectively.

Confidence(A =⇒ B) =
MappingSupport(A,B)

EntitySupport(A)
(4.1)

Lift(A =⇒ B) =
MappingSupport(A,B)

EntitySupport(A) · EntitySupport(B)
(4.2)

In this work, the minimum support threshold was set to 1% of the total number of individuals. The
confidence and lift thresholds were set to 70% and 1.0, respectively. These thresholds were chosen em­
pirically based on the Conference dataset results, in order to ensure adequate recall.

The support threshold chosen is very low which aligns with this application’s purpose. Traditional
ARM applications, such as market basket analysis, are generally interested in rules that describe pre­
vailing patterns in the dataset, showing both ample dataset coverage and a high association between the
antecedent and consequent; in this sense, they typically employ high support and confidence thresholds.
However, the general goal of the ontology alignment task is to find rules for mapping as many individuals
as possible, even those of low prevalence types, while simultaneously ensuring that the mappings are as
precise as possible. In other words, even if a pattern only covers a few individuals in the dataset (low
support), provided that all those individuals exhibit that pattern (high confidence) one would be interested
in mapping the entities that compose the pattern.

As discussed in Section 2.5, a lift higher than 1 reflects a significant association between the an­
tecedent and consequent, therefore being the chosen threshold for this correlation metric. Although neg­
ative correlation is extracted from lift values lower than 1, this work opted not to consider negative
correlation given the nature of the matching task. The fact that two entities are negatively correlated does
not always reflect that they are semantically opposite or disjunct (NOT and OR operators, respectively);
the entities might describe separate groups of individuals that simply do not share the same vocabulary or
domain. Moreover, this strategy underlies a ClosedWorld assumption2, which is not valid for ontologies,
and could render many false mappings that would overburden further filtering steps. For these reasons,
negative correlation was not explored in this work.

2The Closed World Assumption (CWA) is used in knowledge representation to define that if a statement is not currently
known as true, then it is considered false. The opposite concept is the open­world assumption (OWA), stating that lack of
knowledge does not imply falsity
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Algorithm 1 ARM­based pattern matching algorithm
1: output: Set of mappings < a, b, rel, score > or < b, a, rel, score > where a and b are entities that

compose a predefined alignment pattern A − B (see Section 4.1.1), rel is the mapping relationship
and score is the mapping score.

2: input: Ontologies O1 and O2, their shared individuals S, hash tables HA and HB storing the data
relevant to entity types A and B, and support and confidence thresholdsmins andminc.

3: procedureMatch(O1, O2, S, HA, HB ,mins,minc)
4: // Support count
5: init: hash table EntitySupport, hash tableMappingSupport, SetMappings

6: for i in S do
7: for a in HA(i) do
8: EntitySupport(a) += 1;
9: for b in HB(i) do
10: if (a ∈ O1 & b ∈ O2) ∥ (a ∈ O2 & b ∈ O1) then
11: MappingSupport(a, b) += 1;
12: end if
13: end for
14: end for
15: for b in HB(i) do
16: EntitySupport(b) += 1;
17: end for
18: end for
19: // Mapping generation
20: for (a,b) inMappingSupport do
21: if MappingSupport(a,b) > mins then
22: confa⇒b ←MappingSupport(a, b)/EntitySupport(a)

23: confb⇒a ←MappingSupport(a, b)/EntitySupport(b)

24: if confa⇒b ≥ minc & confb⇒a ≥ minc then
25: confa,b ← GeometricMean(confa⇒b, confb⇒a)
26: if a ∈ O1 then
27: Mappings.add(a, b,≡, confa,b);
28: else
29: Mappings.add(b, a,≡, confa,b);
30: end if
31: else if confa⇒b ≥ minc then
32: if a ∈ O1 then
33: Mappings.add(a, b,≤, confa⇒b);
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34: else
35: Mappings.add(b, a,≥, confa⇒b);
36: end if
37: else if confb⇒a ≥ minc then
38: if a ∈ O1 then
39: Mappings.add(a, b,≥, confb⇒a);
40: else
41: Mappings.add(b, a,≤, confb⇒a);
42: end if
43: end if
44: end if
45: end for
46: returnMappings;
47: end procedure

4.1.2 Refinement algorithms

Refinement algorithms are used to capture alignment patterns contingent on simpler alignment patterns,
which were found by previous matching algorithms (see Figure 4.1). The output is not a new align­
ment, but instead a modified alignment where the original mappings were replaced with the refined and
semantically more accurate mappings whenever their confidence is higher.

These algorithms have a similar structure to that of matching algorithms (Algorithm 1) in the tasks of
computing the support for relevant entities and generatingmappings from association rules; the difference
lies in the fact that they use an input alignment to reduce the search space for relevant entities.

For example, consider two simple entities of the same type, e1 and e2, and the true semantic relation­
ship between them, e1 ≡ e2 ∩X , where X is any expression. The pattern e1 ≤ e2 is logically implied
by the true relation, and it is likely to be captured by the corresponding ARM­based matching algorithm.
Thus, for any alignment pattern of the type e1 ≡ e2∩X , we can restrict the search space to the subsump­
tion mappings found by the matching algorithms, rather than search through all of the shared individuals
of the two ontologies. Furthermore, only shared individuals that are related to the broader entity e2 are
considered in the search for X , as there is strong evidence that e1 implies e2.

The alignment patterns presently encompassed in the refinement algorithms, the data structures re­
quired to find them and the input mapping types they depend on are the following:
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◦ Object Property ­ Object Property + domain restriction

– Type: s:c
– Example: coWritePaper ≡ writePaper ∧ domain CoAuthor
– Hash tables: individual relations; property domains
– Input: Object Property ­ Object Property subsumption mappings

◦ Object Property ­ Object Property + range restriction

– Type: s:c
– Example: writeReview ≡ contributes ∧ range Review
– Hash tables: individual relations; property ranges
– Input: Object Property ­ Object Property subsumption mappings

◦ Data Property ­ Data Property + domain restriction

– Type: s:c
– Example: has_an_ISBN ≡ hasID ∧ domain ConferenceProceedings
– Hash tables: individual values; property domains
– Input: Data Property ­ Data Property subsumption mappings

Many restriction expressions may be candidates to the final mapping, attending to their confidence scores;
in such cases, they may be filtered or combined into one final expression (e.g. e1 ≡ e2 ∩X ∩ Y where
X is a domain restriction, and Y is a range restriction).

4.1.3 Filtering algorithms

The outcome of the ARM matching and refinement algorithms is a complex ontology alignment that
contains a substantial number of mappings, including multiple mappings per ontology entity.

In simple ontology alignments, the filtering task consists of finding the set of mappings that max­
imise the scores, while ensuring that each entity is only assigned once. This constitutes a fundamental
combinatorial optimisation problem known as the Assignment Problem, which has a deterministicO(n3)

solution.
However, for complex alignments, things are not so straightforward, as complex expressions may

involve several entities, and it is uncertain if entities should be restricted to integrating one complex
entity at most, or if they should be allowed to engage in more than one assignment. Much like classes in
ontologies can be declared equivalent to or subclasses of multiple class expressions, it is plausible for a
class of one ontology to be equivalent to or a subclass of multiple class expressions in the other.

Nevertheless, it is necessary to remove semantically redundant mappings and select the best map­
ping(s) for each ontology entity, while excluding less reliable conflicting mappings as they may be arte­
facts of the dataset.
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Considering these additional challenges to the Assignment Problem due to the nature of complex
entities, the filtering algorithms developed in this work constitute a heuristic selection approach. The
following sections delve into the general and pattern­specific criteria used in their design.

4.1.3.1 General criteria

The four pillars of my mapping selection heuristic are the relation, the confidence, whether the mapping
is simple or complex and whether it is more generic or specific than related mappings.

First, attending that one of the main goals of complex ontology alignment is to enable data transfor­
mations to support data interoperability and integration, equivalence mappings are favoured over sub­
sumption mappings, as the latter do not enable precise bidirectional transformations.

Second, mappings with 100% confidence are favoured over lower confidence ones, to ensure the
transformations are valid for all available data.

Third, simple mappings are preferred over complex ones, in accordance with Occam’s razor.
Finally, broader complex mappings are favoured over narrower ones to reduce the risk of overfitting

the dataset and ensure the transformation is as encompassing possible.
In the context of an instance­based approach, one needs to consider dataset biases and that underrep­

resentation of ontology classes could lead to incorrect mappings. Considering the following mappings as
an example,

• Accepted_contribution ≡ hasDecision some Acceptance
• Camera_ready_contribution ≡ hasDecision some Acceptance

where Accepted_contribution > Camera_ready_contribution. In a dataset where all instances of
class Accepted_contribution are also from subclass Camera_ready_contribution, both these map­
pings would have the same confidence score, while only the first is accurate. In these situations, choosing
more general mappings may be a safer option to avoid innacurate mappings.

4.1.3.2 Pattern­specific criteria

Some complex patterns may be more restricting than others. As explained in the previous section, the al­
gorithms prefer broader complexmappings over more specific ones. We consider that a complexmapping
is broader than another if:

• it has a broader simple entity (e.g. Accepted_contribution vs. its subclassCamera_ready_contribu­
tion);

• it has a broader restriction of the same type, i.e. a restriction of a broader property, with a broader
range or domain, or with a broader cardinality;

• it has a broader complex pattern (e.g. cardinality restrictions are broader than someValues restric­
tions for the same property, which in turn are broader than hasValue restrictions).
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Another pattern­specific criterion is that the mappings must be coherent with the ontology schemas;
for example, domain and range restrictions must be compatible with the domain and range of the property
declared in the ontology, i.e. one of its subclasses 3.

Take this analogous class mappings example, the first two containing someV alues restrictions and
the last one containing a cardinality restriction.

Accepted_contribution ≡ acceptedBy some ConferenceMember (4.3)

Accepted_contribution ≡ acceptedBy some Administrator (4.4)

Accepted_contribution ≡ min 1 acceptedBy (4.5)

The range specified in the ontology schema for the property acceptedBy is class Administrator.
Hence, all mappings restricting its range to a class that is not Administrator or one of its subclasses is
an incorrect mapping. Under this premise, the algorithm discards mapping 4.3. Comparing 4.4 to 4.5,
the cardinality restriction would be chosen as it is broader than the someV alues restriction. Moreover,
the restriction in 4.4 is redundant, as it is the declared range of the property in the ontology.

The criteria used to filter property expressions is that mappings involving object properties are more
reliable because incrementing the support of object property pairs requires them to relate the same two
instances, while incrementing the support of data property pairs requires them to relate the same instance
to a literal of the same datatype. Since this approach is purely instance­based and does not make use of
string matching, it is not possible to compare literals. Additionally, mappings between properties of the
same type (i.e. object­object and data­data) are preferred over object property­data property mappings.

4.1.4 Aggregation algorithm

If multiple mappings for the same entity persist following the semantic filtering step, an aggregation
algorithm is applied. The algorithm combines all conflicting mappings, i.e. those that have a same
common entity, into a single mapping using logical operators ∩ or ∪.

Conflicting mappings with 100% confidence imply that all individuals in the dataset related to the
common entity are also covered by the conflicting entities, meaning that they invariably occur together.
For this reason, the final mapping takes the form:

commonEntity ≡ conflictingEntity1 ∩ ... ∩ conflictingEntityN

On the other hand, mappings with confidence lower than 100% suggest that some individuals in the
dataset related to the common entity are not related to some of the conflicting expressions. Thus we
concatenate them using a union operator:

commonEntity ≡ conflictingEntity1 ∪ ... ∪ conflictingEntityN

3Note that if the class restricting the domain of a property is the same as the declared domain, then the mapping is redundant.
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If by chance the commonEntity is complex, the final generated mapping will be c:c. This aggrega­
tion step is the sole responsible for the generation of c:cmappings, since the pattern matching algorithms
implemented in this work only cover s:s and s:c mapping patterns.

4.2 Complex Ontology Alignment Evaluation Algorithms

As discussed in Chapter 3, evaluation strategies non­dependent on reference alignments are able to assess
the accuracy of data transformations to some extent, but are less comprehensive than evaluation based on
a full reference alignment. For this reason, this work will only be focusing on reference­based evaluation
strategies.

Although the OAEI’s entity­based evaluation strategy is comprehensive, it is neither fully automated
(as the transformation of complex mappings into mapped entities is done manually) nor entirely accurate
(as it doesn’t account for the semantic constructs in the complex mappings, only the entities). In order
to address the former, I developed an algorithm that aims to automate the preprocessing step of this
approach (Section 4.2.2) and, adressing the latter, I propose a novel element­overlap–based evaluation
strategy (Section 4.2.1).

This work also comprises a fine grained manual evaluation, for which I have developed a scale based
on the mappings correctness (Section 4.2.3).

4.2.1 Element­overlap–based evaluation

This work proposes a novel reference­based evaluation strategy that is fully automated, reproducible and
open access. The element­overlap–based evaluation metric was inspired by Zhou et al. [65] and it aims
to reflect the mapping correctness and quantify the expected effort to manually correct an alignment. It
is not an edit­distance approach in the strict sense, as it reflects the similarity between the candidate and
reference alignments, rather than the dissimilarity.

The detailed description of the element­overlap–based evaluation approach is presented in Algorithm
2. Given candidate and reference complex alignments, Ac and Aref , the candidate and reference map­
pings are decomposed into lists of elements. Applying the preprocessing to the running example (see
Section 3.1.3.3), we would obtain:

Reference mappings:

(A) {hasDecision, Acceptance, or, min, 1, accepted_by, =, Accepted_contribution}

(B) {ExternalReviewer, =, min, 1, InverseOf , invited_by}

(C) {Reviewer, or, ExternalReviewer, =, Reviewer}
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Candidate mappings:

(A’) {hasDecision, Acceptance, >, Accepted_contribution}

(B’) {ExternalReviewer, =, min, 1, invited_by}

(C’) {Reviewer, =, Reviewer}

Note that the alignments are stored in data structures where each mapping is indexed by each of
the ontology entities it contains, thus making the preprocessing step of trivial complexity. The element­
overlap–based approach then follows the methodology described in Table 3.1:

1. Anchor step: for each mapping in the alignment, select the mappings from the reference sharing
at least one entity from both ontologies.

2. Correspondence comparison & Scoring step: perform a syntactical comparison between the el­
ements of each mapping to the selected reference mappings. Each mapping is scored by the max­
imum Weighted Jaccard score computed against the reference mappings. The weighted Jaccard
score between two lists Lc and Lref is given by:

WJaccard(Lc, Lref ) =

∑
k∈Lc∪Lref

min(count(k, Lc), count(k, Lref ))∑
k∈Lc∪Lref

max(count(k, Lc), count(k, Lref ))

This is an adaptation of the traditional Jaccard score between sets, taking into account that the same
element can occur multiple times in a list (as is the case in a complex mapping).

3. Aggregation step: Precision is computed as the average of the best scores obtained for each map­
ping in the candidate alignment. Recall is defined as the average of the best scores obtained for
each mapping in the reference alignment. Although this approach enables reference mappings to
be used for comparison multiple times, each one of them should be assigned to only one score (in
this case, the highest). Following the running example, the resulting scores would be those listed
in Table 4.1.

Table 4.1: Element­overlap scoring for the running example mappings.

Example Precision Recall

A×A’ 3/8 3/8
B×B’ 5/6 5/6
C×C’ 3/5 3/5

Aggregate 60.3% 60.3%
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Algorithm 2 Element­overlap–based evaluation algorithm
1: output: Precision and Recall metrics.
2: input: Candidate (Ac) and reference (Aref ) alignments.
3: function convert(A) ▷ Preprocessing
4: init: HashTable lists
5: formappingi in A do
6: for elementj inmappingi do
7: lists.add(mappingi,elementj)
8: end for
9: end for
10: end function
11:

12: init: HashTable listsref = convert(Aref ), listsc = convert(Ac), Scoresref , Scoresc
13: init: double Precision = 0
14: formappingi in Ac do ▷ Anchoring
15: init: Ar_sources, Ar_targets

16: for source_entityj ∈mappingi do
17: Ar_sources.addAll(Aref .get(source_entityj))
18: end for
19: for target_entityj ∈mappingi do
20: Ar_targets.addAll(Aref .get(target_entityj))
21: end for
22: Arelated = Ar_sources.retainAll(Ar_targets)
23: formappingj in Arelated do ▷ Comparison & Scoring
24: sim = WJaccard(listsc.get(mappingi), listsref .get(mappingj))
25: if sim > Scoresref .get(mappingj) then
26: Scoresref .add(mappingj ,sim)
27: end if
28: if sim > Scoresc.get(mappingi) then
29: Scoresc.add(mappingi,sim)
30: end if
31: end for
32: Precision += Scoresc.get(mappingi) ▷ Aggregation
33: end for
34: Precision /= Ac.size
35: init: double Recall = 0
36: formappingi in Aref do
37: Recall += Scoresref .get(mappingi)
38: end for
39: Recall /= Aref .size
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4.2.2 Automation of the OAEI entity­based evaluation preprocessing

As explained in Section 3.1.3.3, the OAEI’s entity­based evaluation strategy includes a manual prepro­
cessing step whereby reference and candidate mappings are converted into key­value pairs of related
entities plus the mapping relation. The fact this step is manual hinders scalability and reproducibility.

My proposed algorithm to automate the preprocessing step of this evaluation strategy was built as to
emulate the manual process of identifying key­entities while operating under a set of rules that ensure an
objective solution, to enable reproducibility. This set of rules was extracted through a process of reverse
engineering, from the observation of the original manual files.

The algorithm first converts the reference alignment into key­value pairs under the following rules:

1. All mappings that have a single source entity will be identified by that entity as key, and have the set
of target entities as value. If more than one mapping has the same key, the values will be merged.

2. All mappings that have multiple source entities will be identified by each of the source entities that
is not already the key of a single­source mapping.

(a) If there are multiple such source entities, the mapping will be decomposed into a key­value
pair with each of those source entities as key, and the set of all target entities and all other
source entities as value.

(b) If there are no such source entities and the mapping contains exactly two source entities, it
will be identified by the set of those two source entities as key.

(c) If there are no such source entities and the mapping contains more than two entities, it will
be identified by all pairwise combinations of source entities that are not keys of two­entity
mappings.

i. If there are multiple such pairs of source entities, the mapping will be decomposed into
a key­value pair with each of those pairs as key.

ii. If there is no such pair, the mapping will be identified by the set of all source entities.

Then, the candidate alignment is converted into key­value pairs using analogous rules, except that the
reference alignment is used as anchor. For example, rule 2 becomes:

2’. All mappings that have multiple source entities will be identified by each of the source entities that
is not the key of a single­source mapping in the reference alignment.

The same logic is applied to all rules, as the goal is to establish a parallel between the candidate alignment
and the reference alignment so as to enable the evaluation of the former.

The remaining steps (beyond preprocessing) of the entity­based evaluation employed in this work
were performed exactly as described in Section 3.1.3.3, as the OAEI organisers kindly shared the respec­
tive source code.
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4.2.3 Manual evaluation scale

The manual evaluation strategy employed in this work classifies mappings according to a rating scale
consisting of the following five categories with associated scores:

• Correct [1.0]: The mapping is formally correct (regardless of whether it is present in the reference
alignment).

• Nearly correct [0.75]: Only minor changes would be necessary for the mapping to be correct (e.g.
alter the mapping relation type or substitute a class for its sub­ or super­class).

• Plausible [0.5]: The mapping seems sensible and no information in the ontologies or reference
alignment contradicts it.

• Implausible [0.25]: The mapping does not seem sensible, and is likely an artefact derived from
biases in the dataset, but no information in the ontologies or reference alignment contradicts it.

• False [0.0]: The mapping is contradictory to the reference alignment and/or ontologies.

These scores were used to compute a weighted precision which reflects how sensible and close to
being true the mappings are, contemplating the context of the ontologies and instance data rather than
assume the reference alignment as the only source of ground truth.

4.3 Implementation

This work’s pattern­guided complexmatching approach implementation4, PG­ARM, consists of an exten­
sion of the complex version of the ontology alignment system AgreementMakerLight (AMLC) [19, 20].
This system was chosen for the following reasons: (1) it already has internal data structures required for
complex ontology matching, including expressions and an implementation of the EDOAL alignment for­
mat [20]; (2) it can handle the incorporation of instance data [21]; and (3) its modular framework allows
for an easy addition of new matchers and filters [19].

AML is based on the design principles of AgreementMaker [8, 7] while it is more qualified for the
alignment of large ontologies given its added focus on efficiency. The core framework includes two
modules: the ontology loading module and the ontology matching module.

The ontology loading module is concerned with the loading of the input ontology files and the con­
struction of ontology objects, which are organised in efficient hash­based data structures. The ontology
matching module is responsible for aligning the ontology objects by the means of multiple matchers and
selectors.

4Code and data available at: https://github.com/AgreementMakerLight/AML-Project.git
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PG­ARM does not make use of any of the existing matching or filtering algorithms implemented in
AMLC, only making use of loading, exporting and data structure facilities. The results are then indepen­
dent of this alignment system and could virtually be reproduced in any other.

4.3.1 Parsing of equivalent individuals

AMLwas not prepared to handle owl:sameAs relationships between individuals. However, the Populated
Conference datasets don’t encompass shared individuals per se, but rather each ontology has their own
individuals, which are mapped to individuals of other ontologies (Figure 4.2). For this reason, I extended
the ontology loading module to parse owl:sameAs relationships and, more importantly, extended the
transitive closure so that (1) each individual could be linked to both ontologies’ entities and (2) equivalent
individuals would not be taken into account more than once in the support computation task. In this
manner, the system was adapted to handle mapped instance data so that the algorithms could function
ordinarily as if the individuals were indeed shared.

contributes

I1

writtenBy

cmt
conference

I2

SubjectArea

hasSubjectArea

rdf:type

Topic

contributes

Instances

I3rdf:type rdf:type

PaperAuthor

rdf:type

I1

I2

I3owl:sameAs

owl:sameAs

owl:sameAs

rdf:type

rdf:type

Figure 4.2: Example of mapped individuals in one of the Populated Conference alignments (cmt −
conference). Dashed arrows represent the relationships that had to be added in transitive closure in
order to simulate the shared instance scenario required in the matching algorithms.

4.3.2 Alignment visualisation

As complex EDOAL Alignments can be challenging to read and process by humans, a small tool 5 was
developed for converting an EDOAL alignment into a human­friendly csv file, so that the analysis of

5Available at https://github.com/liseda-lab/EDOAL-2-CSV.git.
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results could be eased.
The EDOAL alignment elements are divided into columns, having each line represent a mapping. The

columns include the list of single entities involved in a complex entity expression, an external constructor
(AND, OR, COMPOSE), mapping relationship andmapping score. It also includes columns with the type
of entities involved (class or property) and whether the mapping is complex, for filtering purposes.

Additionally, the tool implements evaluation methods based on direct comparison of table cells in
order to find exact matches between two alignments (usually reference and system alignment), but also
the mappings that were missing in the system alignment, which facilitates an overview analysis of the
results when assessing performance in terms of precision and recall, respectively.
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Evaluation

In order to evaluate the alignment algorithms proposed in this work, they were implemented in an existing
alignment system, AMLC. The result alignments were evaluated under three modalities:

• Automated evaluation, under (5.2.1) a novel element­overlap–based approach and a (5.2.2) an im­
plementation of the entity­based evaluation strategy employed in the OAEI, in order to evaluate
the impact of filtering and aggregation and to compare this approach with state of the art systems;

• (5.2.3) Fine­grained manual evaluation to assess the performance on different patterns;
• (5.2.4) Run­time comparison with a traditional ARM algorithm FP­Growth.

5.1 Data

The datasets chosen for the evaluation of the proposed algorithms are two of the populated datasets avail­
able in the OAEI 2020 Complex track 1. These datasets have quality reference alignments available and
defined protocols for evaluation.

A general description of the datasets is provided in Table 5.1 and the summary of complex patterns
present in their reference alignments can be found in Table 5.2.

The Populated Conference dataset [51] comprises five ontologies (cmt, conference, confOf, edas and
ekaw). It is based on the OntoFarm dataset [60] and it covers the vocabulary on Academic conferences,
articles, awards, etc. which is one that academics are familiar with, thus facilitating comprehension. Its
reference alignments are provided by Thiéblin et al. [47].

The GeoLink dataset [63] is composed of two ontologies: the GeoLink Base Ontology (GBO) and
the GeoLink Modular Ontology (GMO), which are inserted in the Geography domain. The reference
alignment is curated by domain experts and the instance data are from real­worlds and can be found at
the OAEI website.

1Available at http://oaei.ontologymatching.org/2020/complex/
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Table 5.1: Description of datasets available in OAEI 2020. From left to right, columns describe: the
number of ontologies that compose the dataset; number of simple (1:1) and complex (1:n, m:n) mappings;
the number of individuals present in the dataset; the number of alignments between the dataset ontologies
that have a reference alignment available.

Dataset Ontologies 1:1 1:n m:n
Size

(individuals)
Alignments

Populated Conference (v_100) 5 111 86 98 137,311 20
Populated Geolink 2 19 5 43 22,301 1
Hydrography 4 113 69 15 10 4

Table 5.2: Occurrence of complex patterns (as described in 2.4.1) and logical operators in the reference
alignments of the datasets used in this work’s matching tasks. O.P: Object Property, D.P: Data Property.
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The Enslaved [64], Taxon [49] and Hydrography [46] datasets from the OAEI 2020 will not be used
for the purpose of testing the matching algorithms.

There are unsolvable syntactical issues in the reference alignment of the Enslaved dataset, including
ontology entities listed in the reference alignment which are not present in the ontologies or are present
with a different namespace. No reference alignment is available for the Taxon dataset, thus precluding
the reference­based evaluation.

The Hydrography dataset is not populated, which is incompatible with the instance­based algorithms
proposed in this work; however, it is applicable for assessing the novel element­overlap–based evaluation
strategy proposed, as it has reference alignments available. This dataset contains four source ontologies
(Hydro3, HydrOntology_native, HydrOntology_translated and Cree) which are meant to be aligned to the
target Surface Water Ontology (SWO). The source ontologies offer different challenges for the alignment
task: Hydro3 is similar in both language and structure to the target, whereas HydrOntology, although
similar in structure, is written in Spanish; Cree is very different from the target in both language and
structure.
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5.2 Complex Alignment Algorithm Evaluation

5.2.1 Element­overlap–based evaluation

The automated element­overlap evaluation results of this work’s complex alignment approach for the
populated Conference and Geolink datasets is presented in Table 5.3.

Table 5.3: Comparative element­overlap–based evaluation. The unfiltered, filtered and aggregated ap­
proaches correspond to PG­ARM alignments prior to filtering, after filtering, and after aggregation. Av­
erage and standard deviation reported for Conference. Size represents the number of mappings present in
the alignment. The run times represent the time spent in the alignment process (excluding the ontology
loading and evaluation).

Dataset Approach
Precision
(%)

Recall
(%)

F­measure
(%)

Size
Run time

(s)

Conference

Unfiltered 2.8±0.5 52.3±10.2 5.3±0.9 326­1149 130±42
Filtered 31.1±7.0 35.2±7.6 32.6±6.1 23­52 140±44
Aggregated 41.6±9.8 33.9±7.3 36.7±6.3 16­38 142±46
AMLC [20] 38.0±18.3 36.7±9.8 35.8±13.1 9­110 ­
CANARD [50] 23.5±13.1 43.2±8.3 28.7±11.0 34­172 ­
Reference ­ ­ ­ 17­44 ­

Geolink

Unfiltered 24.8 32.0 27.9 120 1
Filtered 46.0 19.9 27.8 31 1
Aggregated 63.6 16.1 25.7 18 1
AMLC [20] 47.3 20.5 28.6 29 ­
AROA [61] 72.2 44.2 54.8 45 ­
CANARD [50] 53.5 32.6 40.5 41 ­
Reference ­ ­ ­ 67 ­

The performance prior to filtering, after filtering, and after aggregation was assessed. As expected,
the filtering results in an increase in precision and a decrease in recall. It is noteworthy that aggregation
allows for a substantial improvement on precision (∼ 10­20%) with a considerably smaller loss in recall
(∼ 1­4%).

Comparing PG­ARM approach to other OAEI 2020 participating alignment systems, it achieves the
highest F­measure in the Conference tasks, but performs worse than AROA and CANARD in Geolink. In
Conference, it achieves the highest average precision, with a somewhat lower recall, whereas in Geolink
it achieves the second highest precision, but considerably lower recall. These results are expected, since
PG­ARM only includes matching algorithms for s:s and s:c mappings (with c:c only possible through
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aggregation), and over 60% of the Geolink reference mappings are c:c.
The run times show that the system can function at real time and the filtering and aggregation steps

are not significantly time consuming.

5.2.2 Entity­based evaluation

The entity­based evaluation results obtained for PG­ARM alignments prior to filtering, after filtering and
after aggregation, as well as the evaluation of AMLC, CANARD and AROA alignments are presented
in Table 5.4.

Table 5.4: Comparative entity­based evaluation. The unfiltered, filtered and aggregated approaches
correspond to PG­ARM alignments prior to filtering, after filtering, and after aggregation. Average and
standard deviation reported for Conference. Size represents the number of identified entities in the align­
ment.

Dataset Approach
Relaxed

Precision (%)
Relaxed
Recall (%)

Relaxed
F­measure (%)

Size

Conference

Unfiltered 4.7±1.3 46.8±12.0 8.5±2.0 28­82
Filtered 39.4±8.2 39.4±10.7 38.8±7.7 14­45
Aggregated 44.6±9.8 41.2±9.8 42.0±7.3 12­43
AMLC [20] 48.7±14.2 38.1±12.0 42.1±12.0 8­53
CANARD [50] 31.9±11.3 42.9±9.4 35.8±9.5 19­61
Reference ­ ­ ­ 16­44

Geolink

Unfiltered 37.4 31.0 33.9 36
Filtered 67.7 19.7 30.5 25
Aggregated 64.4 20.7 31.4 25
AMLC [20] 50.3 23.1 31.7 28
AROA [61] 87.9 45.8 60.3 38
CANARD [50] 83.9 37.0 51.3 33
Reference ­ ­ ­ 57

As expected, the filtering resulted into a significant boost in precision (>20%), with some recall loss
(>10%). As for aggregation, the results differ for each dataset and were also different from those obtained
in the element­overlap evaluation; while it caused a precision increase in Conference, it had the opposite
effect in Geolink, but both datasets showed an increase in recall.

It’s difficult to interpret the aggregation effects on relaxed precision and recall, since the entity­based
evaluation approach does not reflect these metrics in terms of the total number of mappings in the can­
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didate and reference alignments, but rather the total number of entities identified. While the aggregation
directly influences the number of mappings in the candidate alignment, its impact on the entities associ­
ation is unpredictable.

The relaxed precision results imply that the aggregation somehow caused candidate alignment entities
in Conference to be defined more correctly, but in Geolink the aggregation introduced wrong definitions
to the identified alignment entities. Notice that the number of identified entities does not change con­
siderably with the aggregation, which also justifies why the shifts in precision were not as high as in the
element­overlap–based evaluation, where the total number of mappings was reduced by over 30%.

As for recall, both strategies showed an increase in this metric as a consequence of aggregation. One
would not expect that more information about the reference would be gained by aggregating mappings;
all this information would have been included in the filtered alignment as well, only decomposed. These
results suggest that this evaluation strategy penalises decomposed mappings, a topic that will be further
discussed in Section 5.3.

Table 5.4 also shows that AMLC and AROA achieved the highest F­measure scores in the Conference
and Geolink tasks, respectively. Under the element­overlap–based evaluation, PG­ARM performed best
in Conference, while the results were fairly close to AMLC.

Comparing the entity­based results to that of the element­overlap evaluation approach, the former are
generally shifted upwards in terms of precision scores, while conserving the approaches’ ranking for the
most part.

5.2.3 Manual evaluation

The pattern­oriented summary of the manual evaluation of the cmt­conference task2 is presented in Table
5.5. It yielded a global weighted precision of 75%, but revealed PG­ARM was unable to find mappings
for some of the patterns present in the reference. Conversely, several mappings for patterns not present
in the reference were found with high weighted precision (≥78%).

Most patterns show similar weighted precision values (73.9­80.6%), but there are considerably lower
values for “Class ­ someValues restriction on Object Property”, with only 3 mappings out of 6 considered
completely correct.

The discrepancy between the number of “Class ­ cardinality restriction on Object Property” mappings
found by PG­ARM and those present in the reference was one of the most notorious. According to the
manual evaluation, of the total 22 mappings found, 13 are considered completely correct and only 2
incorrect. Moreover, 2 out of the 5 mappings contemplated in the reference were found by the system
and manually evaluated as correct or partially correct.

The higher weighted precision scores obtained in the manual evaluation in comparison with the auto­
mated evaluation is explained by the fact that many mappings that were not contemplated in the reference

2Full manual evaluation files available in Appendix (Chapter A)
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Table 5.5: Pattern­oriented analysis of the results obtained in the cmt− conference alignment using the
filtered approach. N: number of mappings. Ref: reference alignment. W: weighted
* The total alignment size does not correspond to the sum of pattern occurrences as the same mapping
may contain multiple patterns.

Pattern Ref. N Result N W.Precision (%)

Class ­ Class 16 10 77.5
Class ­ cardinality restriction on Object Property 5 22 73.9
Class ­ someValues restriction on Object Property 4 6 58.3
Class ­ hasValue restriction on Data Property ­ ­ ­
Class ­ someValues restriction on Data Property ­ 1 100
Object Property ­ Object Property 10 3 75.0
Data Property ­ Data Property 1 ­ ­
Object Property ­ Data Property ­ ­ ­
Object Property ­ InverseOf Object Property 2 ­ ­
Object Property ­ Object Property+range restriction ­ 9 80.6
Object Property ­ Object Property+domain restriction ­ 8 78.1
Data Property ­ Data Property+domain restriction ­ ­ ­

Total alignment* 35 51 75.0

were considered correct in the manual evaluation. These results show that the reference alignment is not
exhaustive in all non­trivial correspondences that are valid between these two ontologies, suggesting that
complex alignment references may be incomplete.

5.2.4 Comparison with traditional ARM approach

In order to assess the efficiency of the proposed ARM­based matching algorithms, a Java implementation
of traditional ARM algorithm FP­growth 3 was used for comparison.

This implementation is a parallelised version of FP­Growth inspired by the work of Li et al. [31],
which distributes the task of growing the FP­trees across several independent machines, thus being more
scalable than traditional FP­Growth. The parallelised FP­Growth algorithm was shown to have virtually
linear speedup in large mining tasks.

This implementation takes as input a transaction database in the form of a text file. For the purpose
of this experiment, the transaction database was built from ontology triples, employing the same strategy
as that of AROA (see Section 3.1.2). The transaction database is then mined in order to generate a set of

3https://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.html
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association rules, which could virtually be used to generate an alignment.
In order to compare the performance of PG­ARM with that of this FP­Growth Algorithm set up, it is

assumed that the process ranging from the transaction database generation to association rule generation
is the bottleneck of the matching task, and that time spent in the conversion of the association rules to an
alignment format is negligible.

The chosen parameter values include minimum support of 1% of individuals and minimum confi­
dence of 70%, same as this work’s matching algorithms’ settings. A total of 16 partitions were used in a
Intel(R) Core(TM) i9­9900K CPU @ 3.60GHz, 32GB RAM machine.

The run times for the alignment process emulation using an FP­Growth, as well as the sizes of the
transaction databases generated, are presented in Table 5.6. The run times shown correspond to the total
time spent (1) generating the transaction database, (2) building the FP­Growth tree and (3) generating
association rules.

Table 5.6: FP­Growth results. Columns from left to right show: the number of transactions generated in
the process of aligning each pair of ontologies; the number of generated association rules and their text
file size; Run times of (1) transaction database generation, (2) construction of the FP­tree, (3) association
rule generation; PG­ARM runtimes shown for comparison. * Were not able to finish in a timely manner.

Run time (s)

Dataset
Transaction

count
A. rules
count

A. rules
size

(1) (2) (3) PG­ARM

gbo­gmo 10875 13884 3.7 MB 420 611 825 1
cmt­conference 26571 ­ ­ 5641 2201 * 128
cmt­confOf 24730 ­ ­ 2559 905 * 166
cmt­edas 26453 ­ ­ 3050 929 * 144
cmt­ekaw 28178 ­ ­ 5459 1457 * 106
conference­confOf 13460 ­ >300 GB 2494 1291 >16h 388
conference­edas 26629 ­ ­ 3874 1800 * 135
conference­ekaw 27298 ­ ­ 4965 2222 * 88
confOf­edas 16641 ­ ­ 2579 864 * 203
confOf­ekaw 15977 ­ ­ 2934 1560 * 344
edas­ekaw 29485 ­ ­ 5406 970 * 105

The alignment of the Conference ontologies was not possible as even the smallest dataset spent over
16 hours and produced files with sizes over 300GB, finally crashing down as the computer ran out of disk
space. Table 5.6 shows that the bottleneck of this operation was the generation of association rules.

For the (1) and (2) tasks, the Conference run times were about one order of magnitude higher than
Geolink’s, which is as expected as the input ontology files are considerably larger.
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As for the big discrepancy between Geolink and Conference run times in the association rule genera­
tion task (3), considering that the number of transactions in the Geolink database is not so different from
that of the smallest Conference dataset, and attending to Figure 5.1, I hypothesise that the transaction size
is the main responsible aspect. On the one hand, [25] have discussed that a greater number of items in
transactions translates into larger frequent itemsets, which require more memory for storage and greater
processing time to traverse them. On the other hand, there seems to be a large dispersion of transaction
sizes in the Conference datasets, which constitutes a data skew that may influence the conditional FP­
trees computation. This may be the cause for the significant increase in the run time and the memory
errors. Hence, doing outlier removal on the transactions with disproportional amount of items might be
a solution to consider.
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Figure 5.1: Distribution of transaction sizes in terms of number of items that compose them.

Comparing these results with PG­ARM run times, it appears that the FP­Growth implementation over
a transaction database obtained from ontology triples takes significantly more time and resources than the
pattern­guided algorithms presented in this work. However, it is important to note that the FP­Growth
algorithm is not bound to 2­itemsets, as the PG­ARM algorithms currently are (as c:c patterns are not
included), and thus works under a much vaster search space. Nevertheless, given that the generation of
association rules wasn’t even feasible for all datasets, these results show that a pattern­guided solution
may be more reasonable, as long frequent patterns are neither very common nor necessary to the overall
alignment of ontology entities.
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5.2.5 Discussion

The performance assessment presented in this chapter places PG­ARM into a competitive position com­
pared to other state­of­the­art complex ontology alignment systems.

The fine control over the alignment process and the refinement/filtering algorithms tailored to each
alignment pattern proved to be an advantage of PG­ARM, as the filtering and aggregation rendered signif­
icant improvements in terms of precision, with low impact on recall. Additionally, the manual evaluation
revealed that most of the patterns featured in PG­ARM are found with high precision.

On the other hand, this approach places more burden on the implementation, requiring an individual
matching algorithm for each alignment pattern targeted. This work implements only algorithms spanning
the most common patterns found in the Conference dataset, covering only s:s and s:c patterns, which is
the main factor hampering PG­ARM’s performance in Geolink.

Another advantage of PG­ARM is that it greatly reduces the ARM search space and enables an effi­
cient exhaustive search, since one knows a priori the form of the rules to find. Employing a “catch­all”
ARM algorithm such as FP­growth [23], that searches the whole space for rules of any and all types was
show inefficient in this scenario (Section 5.2.4). Moreover, this reduction of the search space allows the
hierarchical expansion of the rules – i.e., generate rules not only for the classes directly instanced by the
individuals, but also for all ancestors of those classes – which is formally necessary in ontology matching,
but in a traditional ARM approach leads to an explosion of the size of the transactions. The drawback
of performing this expansion is that it leads to a much larger number of mappings, as evidenced by the
unfiltered results (Table 5.3), thus demanding a filtering step.

5.3 Complex Evaluation Approach Comparison

Inadvertently, the development of complex alignment algorithms has made us stumble into the challenges
of evaluating complex alignments, which are not fully addressed by existing evaluation strategies. This
section is dedicated to comparing some of the evaluation strategies mentioned throughout this work,
discussing the challenges they are able to tackle and those that remain neglected.

5.3.1 Element­overlap vs. entity­based evaluation

5.3.1.1 Comparative results

Table 5.7 summarises some of the results obtained using the element­overlap–based evaluation approach
(Element­overlap) and the OAEI evaluation algorithm with the automated implementation of the pre­
processing step (OAEI auto.), which were already presented in Section 5.2. Additionally, the OAEI
evaluation algorithm with manual preprocessing (OAEI man.), as published in the OAEI website 4, is

4http://oaei.ontologymatching.org/2020/results/

49

http://oaei.ontologymatching.org/2020/results/


Chapter 5 Evaluation

also presented. For the Conference dataset, the OAEI evaluation was based on query answering, which
is not comparable with the other two evaluation strategies, and, therefore, was omitted from the table.
There are no OAEI manual results for PG­ARM, as it has not yet participated in the OAEI Complex track.
Figure 5.2 provides a more intelligible visualisation of the performance of all alignment systems in the
Conference dataset.
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Figure 5.2: Conference Precision, Recall and F­measures scores according to the entity­based and
element­overlap–based evaluation strategies, considering all alignment systems (AMLC, CANARD and
PG­ARM).

The results show that the OAEI entity­based evaluation with automated preprocessing closely ap­
proximates the evaluation with manual preprocessing in most cases, with the only substantial difference
being observed for CANARD in the Geolink dataset. However, the results of the two strategies were not
the exact same, which suggests that the automated implementation did not replicate all the rules that went
into the manual preprocessing of the alignments, although it provided a reasonable approximation. There
were likely additional criteria of a different nature (e.g. favouring classes over properties as key­entities
of mappings) which were not contemplated in this implementation.

It can be observed that the entity­based evaluation is consistently more generous in terms of precision
than the element­overlap–based evaluation, while recall tends to be similar for both strategies. This can
be attributed to the fact that the element­overlap–based approach factors both the ontology entities and the
semantic constructs of the expressions in its scoring, whereas the entity­based evaluation factors only the
entities. Since it is generally easier to automatically find related entities than to infer the exact semantic
relations between them, matching systems would tend to score higher in precision under an entity­based
evaluation.
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Table 5.7: Evaluation of OAEI participating systems in the several complex datasets using the pro­
posed element­overlap evaluation, the OAEI entity­based evaluation using the manual preprocessing step
(OAEI man.) and this work’s automated implementation (OAEI auto).

Alignment
system

Evaluation
strategy

Precision
(%)

Recall
(%)

F­measure
(%)

Populated Conference

AMLC
Element­overlap 38±18 37±10 36±13
OAEI auto. 49±14 38±12 42±12

CANARD
Element­overlap 24±13 43±8 29±11
OAEI auto. 32±11 43±9 36±10

PG­ARM
Element­overlap 42±10 34±7 37±6
OAEI auto. 45±10 41±10 42±7

Populated Geolink

AMLC
Element­overlap 47 21 29
OAEI man. 50 23 32
OAEI auto. 50 23 32

AROA
Element­overlap 72 44 55
OAEI man. 87 46 60
OAEI auto. 88 46 60

CANARD
Element­overlap 54 33 41
OAEI man. 89 39 54
OAEI auto. 84 37 51

PG­ARM
Element­overlap 64 16 26
OAEI man. ­ ­ ­
OAEI auto. 64 21 31

Hydrography

AMLC
Element­overlap 43±15 8±10 12±14
OAEI man. 48±17 7±8 12±13
OAEI auto. 47±19 8±10 12±14
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Through the study of the entity­basedmethodology, it has become apparent that bothmanual and auto­
matic preprocessing are unnecessarily complex. While an entity­based evaluation simplifies the problem
of evaluating nested and complex mappings, it seems arbitrary that each mapping would be represented
by only key­entities, instead of all the entities in the mapping. Moreover, this strategy does not guar­
antee that a candidate mapping is compared to the best or most similar reference mapping available, as
it may happen that their key entity is not the same. Further, the relaxed precision and recall scores are
neither based on the number of mappings (as in a traditional evaluation and this work’s element­overlap
approach) nor based on the total number of mapped entities (as in a pure entity­based approach), but
somewhere in between, making them hard to interpret or compare, as discussed in Section 5.2.2.

5.3.1.2 Addressing the evaluation challenges

This section aims to gauge the degree of which each of these two strategies address the challenges in
evaluating complex alignments, as described in the literature [65]. Table 5.8 summarises this analysis.

Table 5.8: Challenges addressed by the element­overlap–based evaluation and the OAEI entity­based
evaluation.

Challenge Element­overlap Entity­based
(C1) Avoid full pairwise ✓ ✓
(C2) Relation between mappings ✓­ ✓­ ­
(C3|C7) Mapping decomposition ✓­ ­ ­
(C4) Mapping relation ✓ ✓
(C5) Reflect usefulness ✓­ ✓­ ­
(C6) Partially correct mappings ✓­ ✓­
(C8) Redundant mappings ­ ­

Starting with (C1), both strategies are able to avoid the necessity of a full pairwise comparison of
reference and system mappings. The element­overlap–based evaluation does so by restricting the refer­
ence candidates to those that share at least one entity from both ontologies with the system mapping. The
entity­based evaluation uses the entity identification step to assign each system mapping to the most suit­
able reference; reference source entities are identified first, and system entities are identified according
to those.

As for (C2), Zhou et al. [65] mention that in order to determine the relation between two mappings,
the comparison should encompass not only the singular entities but also the expressions in which they
are listed for both mappings. Only the element­overlap–based approach addresses this issue, although
with some limitations; for instance, the Jaccard similarity measure doesn’t factor the order in which
the elements appear in a mapping, and thus would not be able to distinguish between cases such as the
following two hypothetical mappings that have the opposite meaning:
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• (Reviewer or ExternalReviewer) and (not Author) = Reviewer

• not (Reviewer or ExternalReviewer) and author = Reviewer

Concerning mapping decomposition (C3|C7), none of the strategies fully address this issue. This is
supported by the results in Section 5.2.2, as mapping aggregation showed some effects (although min­
imal) on recall. An evaluation approach resilient to mapping decomposition would not have its recall
score affected by the aggregation of mappings. Nevertheless, the element­overlap–based approach al­
lows multiple candidate mappings to be compared against the same reference mapping thus providing an
answer to this challenge to some extent.

Both evaluation strategies are able to factor the mapping relation (C4) and partially correct mappings
(C6), although not completely in the case of the latter. I consider that the factoring of the mapping
relation in the entity­based evaluation is richer than in the element­overlap–based approach, as it factors
the semantic meaning of the relationship rather than if they simply match.

Assessing if the evaluation strategies successfully reflect the usefulness of mappings (C5) is a com­
plex issue. From the human­validation point of view, identifying which entities are semantically related
between two ontologies is more time­consuming than assessing how they are related. Nevertheless, there
is still a cost to the latter, which should be factored into scoring the usefulness of a mapping. As an
example, consider the two reference mappings (R1, R2) from the conference − confOf task and the
two corresponding hypothetical candidate mappings (S1, S2):

(R1) Reviewed_Contribution = min 1 InverseOf(reviews)
(R2) Reviewer = min 1 reviews
(S1) Reviewed_Contribution = min 1 reviews
(S2) Reviewer = min 1 InverseOf(reviews)

Under an entity­based evaluation, both candidate mappings would score 100% in precision and re­
call, since the presence of the InverseOf construct is invisible to this evaluation strategy. However, the
reference states that these mappings are in fact wrong, as they have inverted the intended usage of the
reviews property (i.e. its declared domain and range). With the element­overlap–based approach, on the
other hand, the construct would be factored into the score, providing a more accurate measure of the
usefulness of the mappings.

The impact of redundant mappings (C8) in the evaluation approaches was also studied. A manual
removal of redundant mappings was carried out for CANARD’s conference − confOf alignment, as
it contained a high number of these mappings.

In this context, redundant mappings are those that are semantically equivalent but syntactically dis­
tinct to some other mapping in the alignment. For instance, the following mappings are redundant since
has_authors and has_a_review are the declared inverse properties of contributes and reviews, re­
spectively:
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• [contributes and domain(Reviewer)] and [reviews and domain(Review)] = reviews

• [InverseOf(has_authors) and domain(Reviewer)] and
[InverseOf(has_a_review) and domain(Review)] = reviews

Attending to Table 5.9, both evaluation strategies showed a gain in precision when the redundant
mappings were removed. I posit that the the redundant mappings were given a low score in evaluation,
thus their removal increased the final precision; I would expect the opposite effect when the redundant
mappings are highly scored.

Table 5.9: CANARD’s conference − confOf alignment evaluation in the presence and absence of
redundant mappings, according to the element­overlap–based evaluation approach and the automatic
implementation of the OAEI evaluation (OAEI auto.).

Dataset
Evaluation
strategy

Precision
(%)

Recall
(%)

F­measure
(%)

With redundant
mappings

Element­overlap 31 49 38
OAEI auto. 40 53 46

Without redundant
mappings

Element­overlap 39 48 43
OAEI auto. 46 53 49

Moreover, the increase in recall after removing redundant mappings also evidences the element­
overlap–based approach’s lack of ability to handle redundant mappings. One would expect the recall
to remain the same after removing redundant mappings, as they do not add any more information to the
alignment. However, under the element­overlap–based approach, an evaluation artefact occurs: the (S1)
mapping is evaluated using the reference mapping “reviews and contributes = reviewes”, but, since
the second mapping (S2) does not include contributes or reviews, it doesn’t meet the minimum criteria
that the evaluated and reference mappings should share at least one source and target entities. In this
sense, (S2) would be evaluated against another reference mapping, “Reviewer = reviewes min 1”.
This translates into an increase in recall, as an additional reference mapping was found for the redundant
dataset.

In this manner, both evaluation strategies are affected by redundant mappings as they are not able
to identify and process logically equivalent mappings. An OWL reasoner would be required for that
task, which heavily increases the complexity of the evaluation. The complex alignments often include
semantic constructs that aren’t expressible in OWL and go beyond DL semantics, which compromises the
decidability of the reasoning problem. Thus, while the element­overlap–based approach only provides
a gross estimate of the usefulness of mappings, providing a significantly more accurate estimate in a
scalable manner is not trivial.
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All things considered, there is no challenge that the element­overlap–based evaluation approach ad­
dresses worse than the entity­based approach. For this reason, the former should be preferred over the
latter.

5.3.2 Manual vs. element­overlap–based evaluation

Reference­based evaluation approaches are limited to the reference alignment quality. As discussed pre­
viously (Section 5.2.3), it is very difficult to provide all valid complex mappings between two ontologies
which translates into incomplete references.

This section establishes a comparison between the mapping scores from the manual evaluation of
conference − confOf task to those attributed under the element­overlap–based evaluation strategy.
Entity­based evaluation was not included in this analysis, as it doesn’t attribute one score per mapping,
but rather one score per entity, which makes the scores not quite comparable.

Figure 5.3 presents the distribution of scores according to both evaluation strategies. The results show
that while the majority of mappings scored highly under the manual evaluation, there is a shift to very
low score regions according to the element­overlap–based evaluation approach.
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Figure 5.3: Distribution of mapping scores obtained from manual and element­overlap–based evaluation
of conference­confOf.

Moreover, the correlation analysis of the scores assigned by the manual and element­overlap–based
evaluation (Table 5.10) show that these two strategies are only moderately consensual on the semantic
usefulness of the mappings, with the exception of the AMLC alignment, which rendered a very strong
correlation between the manual and element­overlap scores attributed to each mapping.
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Table 5.10: Pearson correlation of mapping scores attributed according to the manual and element­
overlap–based evaluation approaches. The mappings belong to the conference − confOf alignments
of three alignment systems.

Alignment
system

Evaluation
strategy

Manual Element­overlap

AMLC
Manual 1 0.949
Element­overlap ­ 1

CANARD
Manual 1 0.581
Element­overlap ­ 1

PG­ARM
Manual 1 0.672
Element­overlap ­ 1

These results corroborate those discussed in Section 5.2.3, with many correct mappings identified
by the means of the manual evaluation not being contemplated in the reference alignment and thus be­
ing wrongly penalised in the reference­based evaluation. The complex ontology alignment field would
definitely benefit from novel evaluation metrics that consider varying degrees of correctness beyond the
reference alignment, while being fully automated.

56



Chapter 6

Conclusion

This work represents a paradigm shift in the Complex Ontology Alignment field, as instead of trying
to fit COA to a traditional ARM setting as in previous work [65], the ARM process is designed around the
problem of COA, taking advantage of the rich semantic information inherent to the dataset to cut down
the search space and produce more sensible mappings to begin with, rather than a posteriori to process
ARM results.

The pattern­oriented nature of the alignment algorithms allows for a fine control over the alignment
and filtering process, as each algorithm is tailored to each pattern. Although this simultaneously limits
the universe of patterns this approach can find, it seems that very long nested patterns are neither very
common nor necessary to the overall alignment of ontology entities.

The element­overlap–based evaluation approach was proposed as an alternative to the OAEI eval­
uation strategies, addressing some of its shortcomings: (1) each mapping in the resulting alignment is
compared only once, with the best fitting reference mapping; (2) it considers not only the entities present
and mapping relation, but also the constructs; (3) it is fully automatic.

The comparative analysis of evaluation approaches showed that the entity­based evaluation employed
in the OAEI is unnecessarily complex, and falls shorter of addressing the challenges identified for the
evaluation of complex alignments [65] than the proposed element­overlap strategy. While this novel
strategy knowingly sacrifices accuracy for scalability, a significant gain in accuracy is not easily achiev­
able, due to complex mappings often falling outside DL semantics and thereby leading to undecidable
reasoning problems.

6.1 Limitations

It is important to highlight some of the limitations of the alignment and evaluation algorithms proposed in
this work. Concerning the former, their main limitation is that their pattern­oriented nature places more
burden on the implementation, requiring an individual matching algorithm for each alignment pattern
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targeted. Moreover, this work only contemplates algorithms for finding the most common s:c patterns
found in the Conference dataset, excluding the following:

• cardinality restrictions on object properties beyond ”min 1”; this includes minimum restricitions
with values other than 1, maximum and exact restrictions, as well as restrictions on data properties.

• hasValue restrictions on object properties.

• allValues restrictions on data/object properties.

• c:c patterns, including property chains (although some c:c mappings may be outputted by as a
consequence of the aggregation process).

Additionally, the alignment algorithms require a populated dataset with shared instances to be avail­
able. Nevertheless, given that data interoperability and integration are one of the main applications of
complex ontology alignment, instance data will often be available, and instance matching techniques can
be used to map the individuals of two ontologies with typically high accuracy [37].

As for the proposed evaluation approaches, the element­overlap–based evaluation approach does not
sufficiently address the challenges of assessing the relation between mappings, accounting for mapping
decomposition and partially correct mappings. Being based on the Weighted Jaccard index, it only con­
siders a ’bag’ of mapping elements, not being able to capture the order in which the elements appear.
Additionally, it does not address redundant mappings at all.

6.2 Future work

This work paved the way for further studies, developments and optimisations. Regarding the evaluation
approaches, one possible path is to perform the semantic comparison of mappings using simple rule­based
approaches, in an attempt to provide a more accurate evaluation than that obtained with the proposed
element­overlap–based strategy, without sacrificing scalability. Additionally, it could be interesting to
incorporate more complex similarity metrics than the Weighted Jaccard index.

Going forward, it could be worthwhile to explore other datasets of linked data, making use of instance
matching strategies for those that don’t encompass shared instance data. This is the case of OAEI’s
Hydrography datasets, which differ in levels of complexity and are very rich in terms of cardinality
restrictions and other complex patterns.

As for the alignment task, the development of algorithms to cover the patterns mentioned in 6.1 would
increase PG­ARM’s scope with minimal decrease in run time performance. It would also be interesting
to combine this purely instance­based strategy with a lexical approach, specially in filtering steps, which
could most certainly enhance the system’s performance in trivial cases.
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Appendix A

Manual evaluation

Table A.1 provides the summary of manual evaluation results in terms of scores obtained for mappings
of each pattern.

Table 7.2 represents the full manual evaluation of the cmt­conference alignment produced by PG­ARM.

Table A.1: Summary of manual evaluation results
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Entity1 Entity2 Relation Evaluation
http://cmt#assignedByReviewer http://conference#invited_by = 0.75
http://cmt#assignExternalReviewer http://conference#invites_co-reviewers = 0.75

onAttribute: Relation(http://cmt#hasDecision); 
class: http://cmt#Acceptance http://conference#Accepted_contribution

= 1

onAttribute: Relation(http://cmt#hasDecision); 
class: http://cmt#Rejection http://conference#Rejected_contribution

= 1

http://cmt#Author http://conference#Regular_author = 1

http://cmt#memberOfProgramCommittee

AND{Relation(http://conference#was_a_member_of); 
RelationCoDomainRestriction 
(Class(http://conference#Program_committee); }

= 1

http://cmt#Co-author http://conference#Contribution_co-author = 1
http://cmt#Document http://conference#Conference_document = 1

http://cmt#Meta-Review
onAttribute: Relation(http://conference#has_authors);  
comparator: greater-than, value: 0

< 1

http://cmt#co-writePaper

AND{ RelationCoDomainRestriction (AND{ 
Class(http://conference#Conference_contribution); } 
Relation(http://conference#contributes); 
RelationDomainRestriction (AND{ 
Class(http://conference#Conference_contributor); }}

= 0.75

http://cmt#hasAuthor

AND{ RelationDomainRestriction (AND{ 
Class(http://conference#Conference_contribution); } 
RelationCoDomainRestriction (AND{ 
Class(http://conference#Conference_contributor); } 
Relation(http://conference#has_authors); }

= 0.75

http://cmt#hasProgramCommitteeMember http://conference#has_members = 0.75

http://cmt#hasCo-author

AND{ RelationDomainRestriction (AND{ 
Class(http://conference#Conference_contribution); } 
RelationCoDomainRestriction (AND{ 
Class(http://conference#Conference_contributor); } 
Relation(http://conference#has_authors); }

= 0.75

http://cmt#markConflictOfInterest

AND{ RelationCoDomainRestriction (AND{ 
Class(http://conference#Conference_contribution); } 
Relation(http://conference#contributes); 
RelationDomainRestriction (AND{ 
Class(http://conference#Conference_contributor); } }

= 0.75

http://cmt#Meta-Review
onAttribute: Relation(http://conference#reviews);  
comparator: greater-than, value: 0

< 1

onAttribute: Relation(http://cmt#acceptedBy);  
comparator: greater-than, value: 0 http://conference#Accepted_contribution

= 1

http://cmt#Person http://conference#Person = 1
http://cmt#Review http://conference#Review = 1
http://cmt#SubjectArea http://conference#Topic = 1

http://cmt#ProgramCommitteeMember

onAttribute: 
Relation(http://conference#was_a_member_of); class: 
http://conference#Program_committee

= 1

http://cmt#PaperFullVersion http://conference#Submitted_contribution = 0

http://cmt#Reviewer

onAttribute: 
Relation(http://conference#was_a_member_of); class: 
http://conference#Program_committee

= 0

http://cmt#User
onAttribute: Relation(http://conference#contributes); 
class: http://conference#Conference_contribution

= 0

Table 7.2: Full manual evaluation of the cmt-conference alignment produced by PG-ARM



Entity1 Entity2 Relation Evaluation
http://cmt#ConferenceMember http://conference#Conference_contributor = 0.25

http://cmt#submitPaper

AND{ RelationCoDomainRestriction (AND{ 
Class(http://conference#Conference_contribution); } 
Relation(http://conference#contributes); 
RelationDomainRestriction (AND{ 
Class(http://conference#Conference_contributor); } }

= 0.75

http://cmt#AuthorNotReviewer
onAttribute: Relation(http://conference#contributes); 
class: http://conference#Submitted_contribution

= 0.5

http://cmt#writePaper

AND{ RelationCoDomainRestriction (AND{ 
Class(http://conference#Conference_contribution); } 
Relation(http://conference#contributes); 
RelationDomainRestriction (AND{ 
Class(http://conference#Conference_contributor); }}

= 0.75

http://cmt#writeReview

AND{ Relation(http://conference#contributes); 
RelationDomainRestriction (AND{ 
Class(http://conference#Reviewer); 
Class(http://conference#Committee_member); } 
RelationCoDomainRestriction 
(Class(http://conference#Review); }}

= 0.75

http://cmt#writtenBy

AND{{ RelationCoDomainRestriction (AND{ 
Class(http://conference#Reviewer); 
Class(http://conference#Committee_member); } 
Relation(http://conference#has_authors); 
RelationDomainRestriction 
(Class(http://conference#Review); }}

= 0.75

onAttribute: Property(http://cmt#paperID); , 
datatype: 
http://www.w3.org/2001/XMLSchema#integer http://conference#Written_contribution

= 1

onAttribute: 
Relation(http://cmt#assignedByAdministrator);  
comparator: greater-than, value: 0 http://conference#Reviewer

< 1

onAttribute: 
Relation(http://cmt#assignedByReviewer);  
comparator: greater-than, value: 0 http://conference#Reviewer

< 1

onAttribute: 
Relation(http://cmt#assignExternalReviewer);  
comparator: greater-than, value: 0 http://conference#Reviewer

< 1

onAttribute: 
Relation(http://cmt#hasBeenAssigned);  
comparator: greater-than, value: 0 http://conference#Reviewer

< 1

onAttribute: Relation(http://cmt#hasDecision);  
comparator: greater-than, value: 0 http://conference#Reviewed_contribution

= 1

onAttribute: Relation(http://cmt#readPaper);  
comparator: greater-than, value: 0 http://conference#Reviewer

< 1

onAttribute: Relation(http://cmt#rejectedBy);  
comparator: greater-than, value: 0 http://conference#Rejected_contribution

= 1

onAttribute: Relation(http://cmt#submitPaper);  
comparator: greater-than, value: 0 http://conference#Contribution_1th-author

= 1

onAttribute: Relation(http://cmt#writePaper);  
comparator: greater-than, value: 0 http://conference#Contribution_1th-author

= 1



Entity1 Entity2 Relation Evaluation
http://cmt#Paper http://conference#Conference_contribution = 0.75
http://cmt#PaperAbstract http://conference#Extended_abstract = 0.75

onAttribute: Relation(http://cmt#writeReview);  
comparator: greater-than, value: 0 http://conference#Reviewer

< 1

onAttribute: Relation(http://cmt#addedBy);  
comparator: greater-than, value: 0 http://conference#Reviewer

< 0

onAttribute: 
Relation(http://cmt#memberOfProgramCommit
tee);  comparator: greater-than, value: 0 http://conference#Reviewer

< 0

onAttribute: Relation(http://cmt#assignedTo);  
comparator: greater-than, value: 0 http://conference#Reviewed_contribution

= 0.25

onAttribute: Relation(http://cmt#hasAuthor);  
comparator: greater-than, value: 0 http://conference#Reviewed_contribution

= 0.25

onAttribute: 
Relation(http://cmt#hasSubjectArea);  
comparator: greater-than, value: 0 http://conference#Written_contribution

= 0.5

onAttribute: 
Relation(http://cmt#memberOfConference);  
comparator: greater-than, value: 0 http://conference#Organizer

> 0.5

onAttribute: Relation(http://cmt#readByMeta-
Reviewer);  comparator: greater-than, value: 0 http://conference#Reviewed_contribution

= 0.5

onAttribute: 
Relation(http://cmt#readByReviewer);  
comparator: greater-than, value: 0 http://conference#Reviewed_contribution

= 0.5

http://cmt#ExternalReviewer
onAttribute: Relation(http://conference#invited_by);  
comparator: greater-than, value: 0

= 0.75
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