

2021

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Bio-inspired Optimization Algorithms for Unit Test Generation

Gonçalo Miguel Inácio Duarte

Mestrado em Engenharia Informática

Especialização em Engenharia de Software

Dissertação orientada por:

Prof. Doutor José Carlos Medeiros de Campos e

Prof. Doutor Alcides Miguel Cachulo Aguiar Fonseca

Acknowledgments

First, I would like to thank my supervisors José Campos e Alcides Fonseca for all the
guidance, support and availability throughout this year.

I am very grateful to my parents and my brother, for all the support and encouragement
during this phase of my life. Without them, my academic journey would not be possible.

I want to thank Diogo Faustino, Hugo Cristino, Luís Mestre and Francisco Veiga for
the friendship, the happy moments and even the crazy ones we shared together. I also
wish to thank Rita Costa and João Neto for all their support, help and friendship.

A big thanks to all the other people, friends and family who were not mentioned but
helped during this journey.

Lastly, I am thankful to the Foundation for Science and Technology (FCT), project
reference CPCA/A0/7402/2020 for the support given to this work.

i

Dedicatória.

Resumo

Na sociedade atual nós estamos rodeados e usamos todo o tipo de aplicações de soft-
ware. Problemas no software pode causar todo o tipo de consequências, desde pessoas
não conseguirem jogar um jogo como era suposto a uma aeronave despenhar-se matando
toda as pessoas a bordo. De modo a que se evite certas consequências, convém que esse
software não tenha problemas e funcione como é suposto. Porém, o software é escrito por
humanos pelo que está sujeito a ter erros. Para lidar com esta situação, testes de software
são feitos, de modo a que se descubra e resolva os problemas no software. Testar software
baseado em pesquisa é uma área de teste de software que se tem mostrado bastante bem-
sucedida na geração de conjuntos de teste unitários otimizados para cobertura de código.
Esta abordagem usa algoritmos meta-heurísticos guiados por critérios de cobertura de có-
digo para gerar os testes. Neste estudo, foi utilizado um critério de cobertura múltiplo
que é composto por oito critérios diferentes: a cobertura de linhas, cobertura de ramos,
cobertura de métodos, cobertura de métodos de nível de topo sem exceção, cobertura de
ramos direto, cobertura de output, mutação fraca e cobertura de exceções.

No que diz respeito aos algoritmos meta-heurísticos, os algoritmos evolucionários são
o estado da arte atual, tendo apresentado os melhores resultados em estudos anteriores,
superando os algoritmos aleatórios. No entanto, serão os algoritmos evolucionários real-
mente os melhores algoritmos neste contexto? E quanto aos algoritmos de inteligência de
grupo, poderão eles também apresentar bons resultados? Poderá o atual estado da arte ser
substituído por um algoritmo de inteligência de grupo?

Deste modo, para responder a estas e outras questões, decidimos explorar os algorit-
mos bio-inspirados, também conhecidos por algoritmos de inteligência de grupo. Estes
algoritmos baseiam-se no comportamento de indivíduos que pertencem a grupos na natu-
reza, tais como os enxames de abelhas. Os algoritmos bio-inspirados não são completa-
mente novos na área de testar software. Estudos anteriores mostram que os algoritmos de
inteligência de grupo são geralmente melhores que os algoritmos genéticos para testes de
estrutura, que na geração de dados para testes o desempenho dos algoritmos depende do
tipo de problema e que na geração automática de testes Artificial Bee Algorithm teve o
melhor desempenho e o Bat Algorithm é o mais rápido a executar.

Nós escolhemos implementar dez algoritmos de inteligência de grupo que possuem
várias características diferentes, com diferentes graus de popularidade e que incluem al-

v

goritmos antigos e recentes. Os algoritmos escolhidos são: Genetic Bee Colony (GBC)
Algorithm, Fish Swarm Algorithm (FSA), Cat Swarm Optimization (CSO), Whale Op-
timization Algorithm (WOA), Artificial Algae Algorithm (AAA), Elephant Herding Op-
timization (EHO), Chicken Swarm Optimization Algorithm (CSOA), Moth Flame Op-
timization (MFO) Algorithm, Grey Wolf Optimization (GWO) Algorithm and Particle
Swarm Optimizer (PSO). Para representar os algoritmos evolucionários e servir de com-
paração contra os algoritmos de inteligência de grupo, escolhemos o Standard Genetic Al-
gorithm (Standard GA), Many-Objective Sorting Algorithm (MOSA) e o Dynamic Many-
Objective Sorting Algorithm (DynaMOSA). Este último é o estado da arte atual. Além
destes algoritmos, foi implementado mais um algoritmo que é um híbrido (fusão de algo-
ritmos de inteligência de grupo e evolucionários), o Elephant Dynamic Many-Objective
Sorting Algorithm (Elephant-DynaMOSA). O EvoSuite foi a ferramenta de geração de
testes escolhida para implementar o híbrido e os dez algoritmos de inteligência de grupo
por já possuir diversas otimizações, os algoritmos evolucionários já estão implementa-
dos e a natureza modular da ferramenta permite facilmente adicionar novos algoritmos ao
módulo dos algoritmos.

O estudo empírico realizado consiste em duas experiências: a calibração dos parâme-
tros e a avaliação dos algoritmos. Na primeira experiência, escolhemos vários parâmetros
e testámos vários valores destes para cada algoritmo. Foi selecionado um subconjunto de
34 classes e testou-se em 30 seeds diferentes durante 60 segundos para se obter os resulta-
dos de cada configuração. De seguida, aplicámos o método estatístico Vargha-Delaney de
modo a encontrar a melhor configuração de cada algoritmo. A segunda experiência con-
sistiu em correr a melhor configuração de cada algoritmo em 312 classes com 30 seeds
durante 60 segundos. Depois, com o intuito de interpretar os resultados obtidos e conse-
guir ver qual o melhor algoritmo de inteligência de grupo, se os algoritmos de inteligência
de grupo são melhores que os três algoritmos evolucionários e quão boa é a performance
do algoritmo híbrido, foram usados os métodos estatísticos de Vargha-Delaney e teste de
Friedman. Também se observou a relação entre diversos aspetos dos resultados: a cober-
tura e o número de gerações, cobertura e a pontuação de mutação, cobertura e diversidade
e cobertura e tamanho dos testes.

Os nossos resultados revelam que EHO foi o melhor algoritmo de inteligência de
grupo e que também superou o Standard GA. Porém, tanto DynaMOSA e MOSA mostram-
se superior ao EHO. Em relação ao Elephant-DynaMOSA, que é o híbrido do melhor
algoritmo de inteligência de grupo e evolucionário, os resultados foram melhores que o
EHO, visto que tem um desempenho semelhante ao MOSA. No final, DynaMOSA foi o
algoritmo com maior cobertura média e com os melhores resultados estatísticos nos dois
métodos usados.

Posteriormente, decidimos discutir outras particularidades dos resultados e propuse-
mos três hipóteses: o melhor algoritmo é superior em todas as classes, qualquer algoritmo

vi

consegue atingir pelo menos 50% de cobertura em todas as classes e o desempenho au-
menta se o tempo de execução aumentar. A primeira hipótese provou-se falsa visto que
houve seis algoritmos estatisticamente melhor que os outros em certas classes: Stan-
dard GA, MOSA, DynaMOSA, EHO, Elephant-DynaMOSA e FSA. Isto foi provado
ao mostrar-se os valores médios de vários aspetos obtidos nas execuções (número de
gerações e testes, tamanho dos testes e cobertura), os resultados do método estatístico
Vargha-Delaney e o desempenho de cada algoritmo por critério de cobertura de código.
A segunda hipótese também se provou falsa porque 17.5% das classes obtiveram menos
de 50% de cobertura independentemente do algoritmo usado. Uma das principais razões
é a limitação do EvoSuite como ferramenta de testes, por exemplo não conseguir gerar os
inputs necessários para correr a classe. A última hipótese foi a única que se provou ser
verdadeira. Para responder a esta hipótese, selecionados a melhor configuração por algo-
ritmo e correu-se 312 classes em uma seed durante uma hora. A cobertura média de todos
os algoritmos subiu cerca de 7% e 13 dos 14 algoritmos melhoraram a sua cobertura.
Também observámos a evolução dos algoritmos durante a execução e apenas uma mino-
ria dos algoritmos mostrou uma melhoria significativa no desempenho após 60 segundos.
Por isso, concluiu-se que apesar da melhoria geral no desempenho, tal melhoria poderá
não valer a pena devido ao aumento de recursos necessários com um maior orçamento de
tempo.

Com isto podemos concluir que apesar do DynaMOSA manter-se como o estado
da arte, ele não é o melhor em todas as situações. E que os algoritmos de inteligên-
cia de grupo mostraram um certo grau de potencial, principalmente o algoritmo híbrido,
Elephant-DynaMOSA. Por isso, nós sugerimos que para trabalho futuro se teste mais
algoritmos de inteligência de grupo e algoritmos de múltiplos objetivos, com foco em
algoritmos híbridos que combinem os melhores aspetos dos vários algoritmos. Outra ini-
ciativa que pode ser realizada é analisar que algoritmos são melhores para cada critério
de cobertura e criar um algoritmo múltiplo capaz de se adaptar e otimizar a procura tendo
em conta os critérios de cobertura escolhidos.

Palavras-chave: testes de software baseados em pesquisa, algoritmos de inteligência de
grupo, estudo empírico

vii

Abstract

Search-based software testing is an area of software testing that has shown to be quite
successful in generating unit test suites optimized for code coverage. This approach uses
meta-heuristic algorithms guided by code coverage criteria (e.g., branch coverage) to gen-
erate the tests.

When it comes to meta-heuristic algorithms, evolutionary algorithms are the current
state-of-the-art, having presented the best results in previous studies. However, are evo-
lutionary algorithms truly the best algorithms in this context? What about bio-inspired
algorithms, can they also present good results? Will the current state-of-the-art be re-
placed with a bio-inspired algorithm?

In order to answer these and other questions, we performed an empirical study where
we evaluated ten bio-inspired algorithms, three evolutionary algorithms and one hybrid
algorithm (a mix of bio-inspired and evolutionary algorithms) on a selection of non-trivial
open-source classes. EvoSuite was the test generation tool chosen to implement the ten
bio-inspired algorithms and the hybrid since it already has several optimizations and the
evolutionary algorithms implemented.

Our results show that the Elephant Herding Optimization has the best performance
among the bio-inspired algorithms and has surpassed the Standard Genetic Algorithm.
However, both the Many-Objective Sorting Algorithm (MOSA) and the Dynamic Many-
Objective Sorting Algorithm (DynaMOSA) showed superior efficiency compared to all
ten bio-inspired algorithms. When it comes to the hybrid algorithm, Elephant Dynamic
Many-Objective Sorting Algorithm (Elephant-DynaMOSA), it ended up with a similar
performance to MOSA but still worse than the current state-of-the-art, DynaMOSA. We
also discussed three hypotheses about the results obtained.

Although DynaMOSA remains the state-of-the-art algorithm, it is not the best in all
classes. Not only so, but the bio-inspired algorithms showed some potential, especially
in the case of the hybrid, Elephant-DynaMOSA. Thus, we suggest future work on hybrid
algorithms that fuse the best aspects of several algorithms.

Keywords: search-based software testing, bio-inspired algorithms, empirical study

ix

x

Contents

List of Figures xvi

List of Tables xviii

Acronyms xx

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Contributions . 3
1.4 Thesis Outline . 3

2 Related Work 5

3 Search-based Software Testing 7
3.1 Representation of a solution . 8
3.2 Fitness Functions . 8
3.3 Local Search . 11

3.3.1 Hill Climbing . 11
3.3.2 Simulated Annealing . 11

3.4 Global Search . 11
3.4.1 Genetic Algorithms . 12

3.5 EvoSuite . 16
3.6 Summary . 18

4 Bio-inspired Algorithms 19
4.1 Particle Swarm Optimization . 19
4.2 Genetic Bee Colony Algorithm . 20
4.3 Cat Swarm Optimization . 22
4.4 Whale Optimization Algorithm . 23
4.5 Moth-flame Optimization Algorithm . 25
4.6 Grey Wolf Optimization Algorithm . 26

xi

4.7 Artificial algae algorithm . 28

4.8 Chicken Swarm Optimization Algorithm 28

4.9 Elephant Herding Optimization . 31

4.10 Fish Swarm Algorithm . 32

4.11 Elephant-DynaMOSA . 34

4.12 Summary . 34

5 Empirical Study 35
5.1 Research Questions . 35

5.2 Experimental Setup . 35

5.2.1 Classes Under Test . 35

5.2.2 Experimental Infrastructure . 36

5.2.3 Experimental procedure . 36

5.2.4 Experimental metrics . 37

5.2.5 Statistical Analysis . 39

5.3 Threats to Validity . 40

5.3.1 Internal Validity . 40

5.3.2 External Validity . 40

5.4 Tuning Results . 41

5.5 RQ1: Which bio-inspired algorithm performs best? 45

5.6 RQ2: How does swarm-based search compare to traditional evolutionary
search? . 53

5.7 RQ3: How does swarm-based search compare to many-objective opti-
mization algorithms? . 57

5.8 RQ4: How does a hybrid that combines swarm-based search with many-
objective optimization performs? . 62

5.9 Summary . 66

6 Discussion 69
6.1 The algorithm with the highest overall coverage is best in all classes . . . 69

6.2 Any algorithm can execute more than 50% of the classes 71

6.3 The performance of the algorithms increases with a larger budget 72

6.4 Summary . 77

7 Conclusion and Future Work 79
7.1 Conclusion . 79

7.2 Future Work . 80

A Details of the Java projects and classes used in the empirical evaluation 81

xii

B Class under test for each algorithm X performed statistically better than any
another algorithm 89

C Detailed coverage achieved by each algorithm as a heatmap 93

Bibliography 104

xiii

xiv

List of Figures

3.1 Example of program under test. 8
3.2 Diagram of a genetic algorithm taken from Fraser [23]. 12
3.3 Examples of genetic operations in the context of software testing. 14

5.1 Example of three different individuals. 38
5.2 Overall Coverage distribution by each algorithm. The grey line represents

the mean of all algorithms, while the symbol * is the mean of each algorithm. 45
5.3 Density of the relative coverage and mutation score. 46
5.4 Mutation Score distribution by each algorithm. The grey line represents

the mean of all algorithms, while the symbol * is the mean of each algorithm. 47
5.5 Scatter plot of % Relative Overall Coverage vs Mutation Score. 48
5.6 Scatter plot of % Relative Overall Coverage vs Generations 49
5.7 Scatter plot of % Relative Overall Coverage vs Size 50
5.8 Scatter plot of % Relative Overall Coverage vs Diversity. Due to the

limitations of EvoSuite, it is not possible to obtain the values of diversity
of DynaMOSA, MOSA and Elephant-DynaMOSA. 51

5.9 Distribution of effect sizes and p-values: Swarm-based algorithms vs.
Standard GA. 56

5.10 Distribution of effect sizes and p-values: Swarm-based algorithms vs.
MOSA. 60

5.11 Distribution of effect sizes and p-values: Swarm-based algorithms vs.
DynaMOSA. 61

5.12 Distribution of effect sizes and p-values: All algorithms vs. Elephant-
DynaMOSA. 65

5.13 Conover posthoc test’s p-values of the Friedman ranking test. 67

6.1 Classes with a maximum of 50% absolute coverage 72
6.2 Overall Coverage distribution by each algorithm in the one hour exper-

iment. The grey line represents the mean of all algorithms, while the
symbol * is the mean of each algorithm. 73

6.3 Density of the relative coverage in the one hour experiment. 74
6.4 Evolution of the overall coverage in the one hour experiment. 76

xv

6.5 Evolution of the diversity in the one hour experiment. Due to the lim-
itations of EvoSuite, we could not obtain the values of diversity of Dy-
naMOSA, MOSA and Elephant-DynaMOSA. 77

C.1 Heatmap of class weka.core.FindWithCapabilities. The number besides
the algorithm is the number of occurrences where the targets were covered
by more than 15 runs. The best algorithm is Elephant-DynaMOSA. . . . 94

C.2 Heatmap of class org.apache.commons.lang3.Conversion. The number
besides the algorithm is the number of occurrences where the targets were
covered by more than 15 runs. The best algorithm is DynaMOSA. 95

C.3 Heatmap of class net.sourceforge.jwbf.mediawiki.actions.queries.TemplateUserTitles.
The number besides the algorithm is the number of occurrences where the
targets were covered by more than 15 runs. The best algorithm is Standard
GA. 96

C.4 Heatmap of class geo.google.mapping.AddressToUsAddressFunctor. The
number besides the algorithm is the number of occurrences where the tar-
gets were covered by more than 15 runs. The best algorithm is MOSA. . . 97

C.5 Heatmap of class com.puppycrawl.tools.checkstyle.utils.AnnotationUtility.
The number besides the algorithm is the number of occurrences where the
targets were covered by more than 15 runs. Best algorithm is Fish. 98

C.6 Heatmap of class org.apache.commons.math3.optim.univariate.BrentOptimizer.
The number besides the algorithm is the number of occurrences where the
targets were covered by more than 15 runs. Best algorithm is Elephant. . . 99

List of Tables

3.1 Example of branch distance applied on several predicates adapted from
Fraser [23]. 9

3.2 Example of how selection works. 13

5.1 Top-3 best configurations per algorithm. 43

5.2 Top-10 best configurations of the Elephant algorithm. 44

5.3 Top-10 best configurations of the Elephant-DynaMOSA algorithm. 44

5.4 # G represents the average number of generations, the values between
parentheses represents the absolute values, # T represents the average
number of test cases generated by each algorithm across all classes un-
der test, and L represents the average length (i.e., number of lines) of the
generated test cases. 48

5.5 Pairwise tournament: Swarm-based algorithms. 52

5.6 Pairwise tournament: Swarm-based algorithms and Standard GA. 54

5.7 Swarm-based algorithms vs. Standard GA. 55

5.8 Pairwise tournament: Swarm-based algorithms, MOSA, and DynaMOSA. 58

5.9 Swarm-based algorithms vs. MOSA and Swarm-based algorithms vs.
DynaMOSA. 59

5.10 Pairwise tournament: All algorithms. 63

5.11 All algorithms vs. Elephant-DynaMOSA. 64

5.12 Friedman ranking test. 66

6.1 # C represents the number of classes where the algorithms were statisti-
cally better than all others, the values between parentheses represents the
absolute values, and Â12 is the effect size of the algorithm in the selected
classes. 70

6.2 # G represents the average number of generations, the values between
parentheses represents the absolute values, # T represents the average
number of test cases generated by each algorithm across all classes un-
der test, and L represents the average length (i.e., number of lines) of the
generated test cases. 75

xvii

B.1 # G represents the average number of generations, the values between
parentheses represents the absolute values, # T represents the average
number of test cases generated by each algorithm across all classes un-
der test, and L represents the average length (i.e., number of lines) of the
generated test cases. The best algorithm per class has a * in front of the
name. 91

Acronyms

AAA Artificial Algae Algorithm.

BIA Bio-inspired Algorithm.

CI Confidence Interval.

CSO Cat Swarm Optimization.

CSOA Chicken Swarm Optimization Algorithm.

CUT Class Under Test.

DynaMOSA Dynamic Many-Objective Sorting Algorithm.

EHO Elephant Herding Optimization.

EIA Evolution-inspired Algorithm.

Elephant-DynaMOSA Elephant Dynamic Many-Objective Sorting Algorithm.

FCT Foundation for Science and Technology.

FSA Fish Swarm Algorithm.

GA Genetic Algorithm.

GB Giga Bytes.

GBC Genetic Bee Colony.

GHz Giga Hertz.

GWO Grey Wolf Optimization.

JDK Java Development Kit.

MFO Moth Flame Optimization.

xix

MOA Many-objective Algorithm.

MOSA Many-Objective Sorting Algorithm.

PSO Particle Swarm Optimizer.

RAM Random Access Memory.

RQ Research Question.

RT Random Testing.

SBST Search-based Software Testing.

SE Symbolic Execution.

WOA Whale Optimization Algorithm.

Chapter 1

Introduction

1.1 Motivation

Nowadays, software is everywhere, e.g., smartphones, computers, cars and all kinds of
different machines. It has become something of utmost importance for today’s society
and it is responsible for all kinds of technological advances.

Unfortunately, all software programs have bugs. This is something inevitable since
code is written by humans and we are not perfect. Bugs can be mistakes when writing
code, failure to satisfy certain requirements, etc. A few examples of bugs that have hap-
pened in the last decade are: Toyota’s electronic throttle control system could cause sud-
den unintended acceleration, Valve’s Steam client for Linux could accidentally delete all
the user’s files in every directory on the computer and the aeroplane Boeing 787 Dream-
liner would have an integer overflow bug that shut down all electrical generators if the
aircraft was on for more than 248 days [1]. These bugs caused all sorts of consequences,
in the case of the customers/users that used those products, they had their properties dam-
aged or destroyed and some even lost their lives. In the case of the companies responsible
for the defective software, they lost trust from the customers, experienced stock market
drops, lost lawsuits against them, etc.

What can be done if all software has bugs? To ensure that the software is as “bug-free”
as possible, software testing is used, since it is the main approach for quality assurance.
Just by performing simple testing on error handling code, the majority of catastrophic
failures can be avoided [2]. However, when developing software, software testing usually
costs around 50% of the resources, e.g., time, of the project [3].

Nowadays, it has already been shown that automatic generation of test cases is su-
perior to manually writing them since they usually are computationally cheap, faster and
more complete, as they are generated in a systematically way [4].

Search-based software testing (SBST) consists of partially or fully automate a testing
task, e.g. automatic generation of test suites, using meta-heuristic optimization tech-
niques, like genetic algorithms (GAs). In order to reach an optimal or near-optimal solu-

1

Chapter 1. Introduction 2

tion within a practical time limit, a problem-specific fitness function, which evaluates how
good a solution is, is used to guide the search in the enormous search space to promising
solutions, through the evaluation of the solutions found [5, 6].

In recent years, there has been a trend in the optimization of coverage criteria, in that
single coverage criteria loses significance over multiple coverage criteria [7]. This hap-
pens because single coverage criteria are often insufficient to make a good test unit suite
since its desired properties are multi-faceted. The fact that multiple coverage criteria are
computationally cheap also helps in their favour. According to Rojas et al. [7], combining
9 different criteria lead to an average decrease of only 0.4% of the constituent coverage
criteria and an up to 70% increase in the size of test suites. In the end, even though the
average coverage has a slight decrease, it is worth it because the quality of the test suites
is better.

The term nature-inspired algorithm (NIA), as the name implies, includes all kinds
of algorithms inspired by nature, making it a very broad term. In Tang et al. [8], NIAs
are further divided into four major groups of algorithms depending on their inspiration:
evolution-inspired algorithms (EIAs), bio-inspired algorithms (BIAs), physics-inspired
algorithms and human-behaviour-inspired algorithms. Molina et al. [9] add another two
groups to these four, plant-inspired algorithms and miscellaneous (those that do not fit in
the other groups).

Regarding the automatic generation of tests suites optimized for code coverage, the
search-based approach of EIAs has shown to be quite effective, having a better perfor-
mance than random approaches [10].

However, the EIAs are just a type of NIAs. There exists an enormous amount of NIAs,
and most of them remain largely unexplored. In this thesis, we will focus on a different
type of NIAs, the BIAs [8, 9].

1.2 Objectives

In this thesis, the objective is to answer these next questions:
RQ1: Which bio-inspired algorithm performs best?
RQ2: How does swarm-based search compare to traditional evolutionary search?
RQ3: How does swarm-based search compare to many-objective optimization algo-

rithms?
RQ4: How does a hybrid that combines swarm-based search with many-objective

optimization performs?
In order to answer these questions, we used the state-of-the-art generation tool Evo-

Suite, since it has been shown to have good performance in similar contexts [7, 10].
In this thesis, we explored ten BIAs: Genetic Bee Colony (GBC) Algorithm, Fish

Swarm Algorithm (FSA), Cat Swarm Optimization (CSO), Whale Optimization Algo-

Chapter 1. Introduction 3

rithm (WOA), Artificial Algae Algorithm (AAA), Elephant Herding Optimization (EHO),
Chicken Swarm Optimization Algorithm (CSOA), Moth Flame Optimization (MFO) Al-
gorithm, Grey Wolf Optimization (GWO) Algorithm and Particle Swarm Optimizer (PSO).
Several of them have already shown promising results in a similar context in previous
studies [11]. We also decided it would be interesting to fuse bio-inspired and genetic
algorithms and created Elephant Dynamic Many-Objective Sorting Algorithm (Elephant-
DynaMOSA).

We evaluated the performance of these 11 algorithms by comparing them with three
EIAs: the Standard GA, Many-Objective Sorting Algorithm (MOSA) and the Dynamic
Many-Objective Sorting Algorithm (DynaMOSA) [10, 12]. We believe these algorithms
are representative of EIAs, as one of the best performing single-objective EIA is Standard
GA, despite having no optimization towards the particular goal of generating tests. While
MOSA and DynaMOSA are evolutionary algorithms optimized to generate tests, with the
latter being the state-of-art algorithm for unit test generation [10].

1.3 Contributions

This thesis has several contributions related to the use of BIAs for unit test generation.
We explained and presented several alterations necessary to adapt the BIAs to the

context of software testing. We also created a hybrid algorithm, Elephant-DynaMOSA,
that combines the characteristics of EHO and DynaMOSA. The idea behind Elephant-
DynaMOSA is to take the concepts of a BIA and insert them in an algorithm optimized
to test generation.

We performed an empirical study of ten BIAs, three EIAs and one hybrid algorithm
that optimize multiple criteria for the generation of unit tests. This study shows the perfor-
mance of the 11 algorithms implemented and compares it with the performance of EIAs
specialised in software testing or not specialised.

1.4 Thesis Outline

This thesis is organized into seven chapters. Chapter 2 presents the related work where
BIAs and the three EIAs used in this study are used in software testing. Chapter 3 intro-
duces the field of search-based software testing, covering local search algorithms, global
search algorithms, fitness functions and the state-of-art tool EvoSuite. Chapter 4 explains
the adaptations done during the implementation of the BIAs. Chapter 5 describes the ex-
perimental setup, presents the threats to validity for this study and shows the results of
the experiments. Chapter 6 analyses three hypotheses about the results. Chapter 7 are the
conclusions and future work.

Chapter 1. Introduction 4

Chapter 2

Related Work

Swarm intelligence is a sub-field of artificial intelligence, that consists of solving real-
world problems through simulating the behaviours and interactions of individuals that
belong to biological swarms, e.g., colonies of ants, flocks of birds and swarms of fishes.
Hence, the BIAs are also commonly known as swarm intelligence algorithms. BIAs are
used in all kinds of applications, e.g., network routing, power systems, parameter opti-
mizations, image processing and software testing [8, 9, 13].

In the context of software testing, Windisch et al. [11] applies PSO to structural test-
ing and compares its performance with GAs. Their results show that PSO has as good
or even better performance (mostly in complex problems) than GAs and it is much faster
in most cases. Sahin and Akay [14] evaluate PSO, Differential Evolution, Artificial Bee
Colony, Firefly Algorithm and Random Search Algorithm on software test data genera-
tion. They conclude that the best algorithm depends on the type of problem, e.g., Artificial
Bee Colony is effective in problems that have multimodality and the random approach has
a good performance in simple problems with a small search space. Bruce et al. [15] pro-
poses a novel Ant Colony Optimization Algorithm to object-oriented unit test generation
and develops a tool that implements the said algorithm. The results were promising, with
the tool that implements the ant algorithm beating Randoop, a testing tool that has been
under development for around ten years. However, the other testing tool used in the study,
EvoSuite, obtained the best results which show there is still room for improvement. Khari
et al. [16] test Hill Climbing Algorithm, PSO, Firefly Algorithm, Cuckoo Search Algo-
rithm, Bat Algorithm and Artificial Bee Colony for automated test suite generation. Their
results show that Artificial Bee Colony is the most optimal algorithm follow by Bat Al-
gorithm and PSO. Considering execution time, Bat Algorithm is the fastest followed by
Hill Climbing and Artificial Bee Colony. Campos et al. [10] despite not using any BIA,
performed an empirical study that evaluates 13 EIAs (including Standard GA, MOSA
and DynaMOSA) and two random algorithms for unit test generation. They conclude that
random approaches are inferior to the evolutionary ones, that DynaMOSA is the state-of-
the-art algorithm and that there is not an algorithm superior in all classes.

5

Chapter 2. Related Work 6

Chapter 3

Search-based Software Testing

Software testing is a key part of the developing process of a product of software and aims
to improve the software quality of the said product. This is done with the verification and
validation of software [17]. The former serves to check if the developers have fulfilled
the software specifications, while the latter sees if the software does what is supposed to
do. Software testing cannot prove the absence of bugs, but it can expose their existence.
This happens because it is not feasible to try every possible input and/or configuration in
the vast majority of software products.

Currently, there are three main areas of study in software testing: random testing (RT),
symbolic execution (SE) and SBST.

RT consist of generating random inputs from the whole input domain to test the soft-
ware. There is some disagreement about its coverage and effectiveness, e.g., Shamshiri et
al. [18] demonstrated that RT can be better than GAs, while Campos et al. [10] explored
GAs with several optimizations and they end up being better than random approaches.
Some enhancements to RT such as Adaptive Random Testing have been proposed, with
Adaptive Random Testing having less than 1% chance of finding bugs [19].

SE uses symbolic values instead of concretes inputs and that computes symbolic ex-
pressions representing the software variables [17]. In general, SE and its variants can
produce high-coverage tests but can have several problems with more complex programs
and object-oriented programs. This is due to the problem of path explosion, i.e., the num-
ber of paths can grow exponentially with the size of the software. And also the fact that
object-oriented programming is more complicated than just optimizing certain inputs to
cover several specific paths, i.e., it is necessary to have in account certain sequences of
statements to invoke and interact with objects. Another problem with SE is the mod-
ulation of side effects that exist in several programming languages, such as Java. This
modulation of side effects consists in the results of functions be only known during run-
time, and SE analyses the source code without running it. So, this means that SE is not a
reliable tool when this happens.

SBST is the application of meta-heuristic algorithms to software testing. Meta-heuristic

7

Chapter 3. Search-based Software Testing 8

algorithms are inspired by natural evolution and have been successfully used to address
many kinds of optimisation problems, e.g., at generating test suites (i.e., set of unit test
cases) optimized for code coverage in object-oriented classes [10]. In meta-heuristic algo-
rithms, a solution is encoded “genetically” as an individual (“chromosome”), and a set of
individuals is called a population. The population is gradually optimised using genetic-
inspired operations such as crossover, which merges genetic material from at least two
individuals to yield new offspring, and mutation, which independently changes the ele-
ments of an individual with a low probability. SBST is further explored in the following
sections, in particular: representation of a solution (Section 3.1), evaluation of a solu-
tion (Section 3.2), and optimization of a solution (Section 3.3 and Section 3.4). Finally,
Section 3.5 presents the SBST tool used in this thesis.

3.1 Representation of a solution

In the context of SBST, a solution (also known as an individual) is test data that aim to
exercise most of the program under test.

For example, assuming we have developed the program in Figure 3.1, a solution can
be represented by a test suite, i.e, a set of test cases. Each test case has four integer
numbers that are used as input of method my_func, e.g., T = {t1, t2} where t1 = {a =

3, b = 5, c = 1, d = 8} and t2 = {a = 6, b = 4, c = 2, d = 7}. Although T might

1 void my_func(int a, int b, int c, int d) {
2 if (a >= b) {
3 if (b >= c) {
4 if (c >= d) {
5 // target
6 }
7 }
8 }
9 ...

Figure 3.1: Example of program under test.

exercise/test a part of my_func’s source code, is it the most effective test data? Is there a
better one? In the following sections, we describe how a solution can be evaluated and we
then describe two types of meta-heuristic algorithms (local and global search) that aim to
optimize one or more solutions.

3.2 Fitness Functions

A fitness function computes and assigns a fitness value to a solution. A fitness function
is also used in order to provide a gradient to local/global search algorithms [6, 7, 10, 17]

Chapter 3. Search-based Software Testing 9

(more on this in the next section).
One of the most known fitness functions in SBST is branch coverage [7, 17, 20].

Usually, it is often interpreted as the number of branches of conditional statements that
are covered by a test suite. Thus, a test suite is said to fully satisfy the branch coverage
criterion if and only if for every branch statement in the class under test (CUT), it contains
at least one test case whose execution evaluates the branch predicate to true, and at least
one test case whose execution evaluates the branch predicate to false. As a software bug
can only be triggered if the buggy code is executed, a test with a higher branch coverage
is more likely to trigger a bug than a test with low code coverage [21].

The fitness value of a test suite T is measured by executing all its test cases, keeping
track of the branch distances d(b, T) for each branch b in the program under test. Hence,
the equation is a follows [7, 10, 17]:

fitness(T,B) =
∑
b∈B

d(T, b) (3.1)

where d(T, b) is be defined as:

d(T, b) =

0 if branch b has been covered,
v(dmin(t ∈ T, b) if the predicate has been executed at least twice,
1 otherwise.

(3.2)
The branch distance, d(T, c), is a heuristic that quantifies how far a branch (i.e., the control
flow edge resulting from a true/false evaluation of an if condition) is from being evaluated
to true or to false. Table 3.1 shows how branch distance is applied on a few predicates of
a test case depending on the evaluation of true and false. There are several normalising
functions v that can be used, e.g., bd(x) = 1 − α−x, where α > 1 [22]. A typical value
for α is 1.001.

Expression Distance True Distance False

x == y |x – y| 1
x != y 1 |x – y|
x > y y – x + 1 x - y

x >= y y - x x – y + 1
x < y x – y + 1 x – y
x <=y x - y x – y + 1

Table 3.1: Example of branch distance applied on several predicates adapted from Fraser
[23].

In order to show an example of how to calculate the fitness of branch coverage in a test
suite, we will consider the program under test in Figure 3.1, which has three branches:
lines 2, 3, and 4; and the T = {t1, t2}; t1 = {a = 3, b = 2, c = 4, d = 8}, t2 = {a =

Chapter 3. Search-based Software Testing 10

6, b = 4, c = 2, d = 7}. In this case, t1 evaluates the first branch as true, the second
as false and does not execute the last branch. While t2 evaluates the first two branches
as true and the last one as false. We can see that the first branch has not been covered
and has been executed more than once, the second branch has been covered (at least one
test evaluates as true and other as false) and the last branch has not been covered and
only executed once. Now we have to assign the values for each branch according to the
previous equations: for the first branch we will use v(dmin(t ∈ T, b), i.e, calculate the
distance to false for the two test cases (dt1 = 2 and dt2 = 3), select the smaller one (dt2)
and use it for the normalising function (1 − 1.001−2 = 0.001997). The second branch is
covered so it is assigned the value 0, while the last branch has 1 assigned to it. With this
we can see that the fitness value of T is 0.001997 + 0 + 1 = 1.001997.

When using multiple coverage criteria, a weighted linear combination of the different
fitness functions could be used. That is, each fitness function has a weight assigned to it
and the more relevant it is for the testing, the more weight it has [7]. In this thesis, we
explored multiple coverage criteria, using the seven different fitness functions described
below in addition to branch coverage. All fitness functions have the same weight assigned
to them.

• Method coverage - checks if a method in the CUT is called at least once by a test
suite. This call can be a direct or indirect one.

• Exception-free Top-level Method coverage - checks if a method in the CUT is di-
rectly called at least once by a test suite and does not terminate with an exception.

• Line coverage - checks if every line in the source code is covered by at least one test.
Comments lines and lines that do not contain code, do not count for this coverage.

• Direct Branch coverage – checks if each branch of a public method in the CUT is
covered by a direct call. There is not a restriction on branches in private methods.

• Output coverage – whether the different output of each public method is covered,
e.g, a boolean method has to have at least a test that returns true and another that
returns false to cover all possible outputs.

• Weak Mutation – the test generation creates small changes to the source code, i.e.,
mutations, and then checks if the tests can distinguish the mutants from the origi-
nals. A mutant is considered ‘killed’ if the test that executes it ends up in a different
state than it was supposed to in the original source code.

• Exception coverage - counts how many exceptions were caught in the CUT. Since
it is impossible to know in advance of many exceptions there are, no percentage of
the total number of exceptions can be given.

Chapter 3. Search-based Software Testing 11

3.3 Local Search

In local search optimization algorithms, only one solution is optimized at a time and when
they have to consider other solutions and see if they are better than the present one, the
algorithms only consider the neighbours [6]. These neighbours are the closest solutions
to the current solution when looking through the search space.

3.3.1 Hill Climbing

Hill climbing is a well-known local search algorithm. It consists of selecting a random
solution of the search space, then compares it with its neighbours, e.g., in a 1-dimensional
search space, the existing solution is compared with its left and right neighbours. The
solution with the best score, i.e., best fitness value, replaces the current one. This com-
parison is repeated until the existing solution is better than its neighbours.

This algorithm is simple and fast, but it can give sub-optimal results. This happens
because the fitness function only explores the neighbours of the existing solution and do
not take the whole space search into consideration, which can lead to a solution that is
better than its neighbours, but when taking into account the global of the search space
is not the best solution. As a way to improve this, there are several extensions of Hill
climbing that incorporate several “restarts”, i.e., use several different starting solutions, to
explore more of the search space.

3.3.2 Simulated Annealing

Simulated annealing is a local search algorithm similar to Hill climbing. But unlike the
previous algorithm, is capable of accepting worse solutions depending on an ever decreas-
ing probability. This probability is represented by a parameter called temperature.

The search starts with a high temperature so that the starting position is no longer
so decisive for the algorithm and allow greater freedom to explore the search space. As
the search continues, the value of the temperature decreases until it reaches zero. At this
point, Simulated annealing works just like Hill climbing.

The rate at which the temperature decreases, is important since if the temperature
reaches zero very quickly, the algorithm might stop at a sub-optimal solution. On the
other end, if the temperature decreases very slowly, the amount of time the algorithm
takes to run can become unreasonable long.

3.4 Global Search

In global search optimization, unlike local search optimization, the algorithms consider
several solutions at once and they are not restricted to the neighbourhood of said solu-

Chapter 3. Search-based Software Testing 12

tions [6]. This way the search is no longer bound by the local solutions and encompasses
the whole search space when trying to find the optimal solution.

3.4.1 Genetic Algorithms

GAs are very well known among the NIAs, mostly because they are the target of studies
in the past decades and usually have good results. Not only that, but they are also easy to
implement and understand. GAs are based on the principles of the Darwinian theory of
evolution.

Figure 3.2: Diagram of a genetic algorithm taken from Fraser [23].

A few terms that are used with GAs are individuals, population, selection, crossover
and mutation. An individual is a solution that represents a genetically encoded chromo-
some, while a population is a set of individuals. The other three terms are operations
that help optimize the population of individuals. The case of selection consists of choos-
ing individuals for reproduction, wherein fitter/better individuals have a higher chance of
being chosen. On the other hand, the crossover is the merging of the genes of at least
two individuals, in order to create a new individual. The mutation is the operation that
changes/mutate the genes of an individual, according to a low probability. Finally, af-
ter all the operations are over, the GA ends up with a new population of individuals and
repeats the previous operations or it terminates with the new population being the final
population. This termination can be determined by executing time or by fulfilling several
problem-specific criteria. The flow of a GA is depicted in Figure 3.2.

An important fact to mention is that the three genetic operations have several types,
i.e., each operation has several possible techniques that can be used. In the case of se-
lection, three of the most popular operators are rank, tournament and roulette wheel se-
lection [24]. Rank selection is usually used when the fitness values of the individuals are
very similar (more common at the end of the run) and basically, it ranks the individu-
als according to the fitness values and uses that absolute ranking as the factor to select

Chapter 3. Search-based Software Testing 13

the individuals, instead of the fitness values. In tournament selection, a random subset
of individuals of the population is selected and then they compete to find the individual
with the best fitness value among them. Roulette wheel selection is a method where the
probability of an individual being chosen is proportional to its fitness, i.e., the better the
fitness value the larger chance of being selected.

One-point and two-point crossovers are the most popular recombination operators [24].
The one-point crossover consists of a single random point being selected on the chromo-
some of the parents, then that point serves as a mark where the genes of the parents are
swapped when the parents reproduce and create the children. This way, the children are
different from their parents and have their genetic information. In the two-point crossover,
two points are randomly selected instead of one, and the genes between those two points
are the ones swapped when the parents reproduce.

Two relevant mutation operators are swap and scramble mutation. Swap mutation
consists of randomly selecting two genes of an individual and interchange their values.
While scramble mutation selects a subset of genes and then shuffles it at random.

We will now apply these genetic operations in the context of SBST using the program
under test in Figure 3.1 and three test suites:

T1 = {t1, t2}; t1 = {a = 3, b = 2, c = 4, d = 8}, t2 = {a = 3, b = 2, c = 2, d = 1}
T2 = {t3, t4}; t3 = {a = 6, b = 3, c = 4, d = 8}, t4 = {a = 6, b = 4, c = 2, d = 7}
T3 = {t5, t6}; t5 = {a = 1, b = 4, c = 7, d = 8}, t6 = {a = 2, b = 4, c = 5, d = 9}

Test Suite Fitness Rank Selection Roulette Wheel Selection

T1 1.001997 1st ≈ 40.008%
T2 1.002994 2nd ≈ 39.988%
T3 2.001997 3rd ≈ 20.004%

Table 3.2: Example of how selection works.

In Table 3.2, we can see the fitness values of the three individuals used in this exam-
ple, along with the application of two selection techniques. In rank selection, the fittest
individual is placed in the first position, while the worst individual is placed in the last
position. In the roulette wheel selection, each individual has assigned to it a certain per-
centage that defines how probable it is to being selected.

We use rank selection to choose the two fittest individuals (T1 and T2). Then, we
apply the crossover operation that consists of selecting a random test case from T1 and
T2, followed by a single-point technique as we can see in Figure 3.3a. In Figure 3.3b,
we can see an example of swap mutation on test case t1 from individual T1, that consists
of selecting a random input, read it in byte format and swap the value of a single bit
(4 = 0100 changes to 0 = 0000).

Chapter 3. Search-based Software Testing 14

(a) Crossover example between test case t1 from individual T1 (blue) and test case t4
from individual T2 (orange).

(b) Mutation example on test case t1 from
individual T1.

Figure 3.3: Examples of genetic operations in the context of software testing.

Standard Genetic Algorithm

Standard GA (Algorithm 1) is a well-known algorithm that uses the three genetics op-
erations (selection, crossover and mutation). In the beginning, a random population of
individuals is generated and evaluated according to their fitness value (lines 1-2). Then,
following a certain selection technique (e.g., rank selection), two individuals are selected
(line 7). After that, according to a probability value, the individuals may go through a
crossover operation, where according to a certain function (e.g, single-point), are recom-
bined and create two offsprings (line 8). Then, the two offspring have a certain probability
to suffer a mutation, according to a mutation function and are joined together with the next
population (lines 9-11). In the end, the fitness values of the individuals of the new popu-
lation are computed and the archive is updated (lines 14-15). This archive saves the tests
that have better coverage values and also taking into account their size (tests with fewer
lines of code are preferred over large tests with the same coverage value).

MOSA/DynaMOSA

MOSA and DynaMOSA are many-objective algorithms (MOAs) and like other MOAs
they use test cases as individuals. On the other hand, most GAs like Standard GA uses
test suites as individuals. This happens because, unlike the Standard GA that tries to cover
all goals at the same time, the MOAs aim to optimize each test case for a distinct coverage
goal [10].

Algorithm 2 illustrates how DynaMOSA works. At the beginning of the search pro-
cess, through the use of G, the algorithm perceives which coverage goals are free of
control dependencies (U∗) and the ones that can only be covered after satisfying other
targets (line 1). Then it generates a random population of test cases, computes their fit-

Chapter 3. Search-based Software Testing 15

Algorithm 1 Standard Genetic Algorithm as described in [10]
Input: Stopping condition C, Fitness function λ, Population size ps, Selection function

sf , Crossover function cf , Crossover probability cp, Mutation function mf , Mutation
probability mp

Output: Archive of optimised individuals A
1: P ← GENERATERANDOMPOPULATION(ps)
2: PERFORMFITNESSEVALUATION(λ, P)
3: A← { }
4: while ¬C do
5: NP ← { } ∪ ELITISM(P)
6: while |NP | < ps do
7: p1, p2 ← SELECTION(sf , P)
8: if cp then
9: o1, o2 ← CROSSOVER(cf , p1, p2)

10: else
11: o1, o2 ← p1, p2
12: end if
13: MUTATION(mf ,mp, o1)
14: MUTATION(mf ,mp, o2)
15: NP ← NP ∪ {o1, o2}
16: end while
17: P ← NP

18: PERFORMFITNESSEVALUATION(λ, P)
19: UPDATEARCHIVE(A,P)
20: end while
21: return A

ness evaluation only considering the targets in U∗ and updates the archive and the targets
to be covered (lines 3-6). The last one serves as a way to include any uncovered target
that is control dependent on newly covered targets. After this, the offspring is created
using the genetic operations selection, crossover and mutation. Followed by their fitness
evaluation using U∗ (lines 8-11). Selection sorts the combination of parents and off-
spring, making use of both preference sorting criterion and non-dominance relation (line
14). The preference sorting criterion assigns the best individuals for each non-covered
target the highest rank (F0) to give them a better chance to survive in the next generation
(elitism). If the numbers of test cases that belong to F0 are less than ps then the remaining
tests are ranked according to their non-dominance relation for U∗, else they are just put in
F1. Later, individuals are selected, starting from those with rank F0 until the ps is reached
(lines 16-20). If the ps is not reached, then tests of the last rank previously used (Fr) are
selected according to crowding distance, in which those with higher distance values are
chosen. This happens until ps is reached (lines 21-22).

DynaMOSA is an extension of MOSA that was specially designed to handle test gen-
eration with coverage optimizations [12]. They are very similar algorithms, but there

Chapter 3. Search-based Software Testing 16

Algorithm 2 DynaMOSA as described in [12]
Input: Stopping condition C, Fitness function λ, Population size ps, Selection function

sf , Crossover function cf , Crossover probability cp, Mutation probability mp, Control
dependency graph G, Partial map between edges and targets ϕ, Set of coverage targets
U

Output: Archive of optimised individuals A
1: U∗ ←targets in U with no control dependencies
2: A← { }
3: P ← GENERATERANDOMPOPULATION(ps)
4: PERFORMFITNESSEVALUATION(λ, P)
5: UPDATEARCHIVE(A,P)
6: UPTATETARGETS(U∗, G, ϕ)
7: while ¬C do
8: No ← GENERATEOFFSPRING(sf , cf , cp,mp, P)
9: PERFORMFITNESSEVALUATION(λ,No)

10: UPDATEARCHIVE(A,No)
11: UPTATETARGETS(U∗, G, ϕ)
12: Rt ← P ∪No

13: r ← 0
14: Fr ← PREFERENCESORTING(Rt, U

∗)
15: NP ← { }
16: while |NP |+ |Fr| ≤ ps do
17: CALCULATECROWDINGDISTANCE(Fr, U

∗)
18: NP ← NP ∪ Fr

19: r ← r + 1
20: end while
21: DISTANCECROWDINGSORT(Fr)
22: NP ← NP ∪ Fr with size ps − |NP |
23: end while
24: return A

is one difference, DynaMOSA only considers the targets with no control dependencies.
This gives DynaMOSA the edge in SBST since there can be structural dependencies be-
tween targets that should be considered when deciding which targets to optimize, e.g., in
Figure 3.1 the branch in line 3 can only be reached after the branch in line 2 has been
covered.

3.5 EvoSuite

EvoSuite is a state-of-the-art search-based tool that automatically generates executable
test suites, i.e, a set of test cases for Java code [10, 17]. These test cases can be seen
as a sequence of calls with a non-fixed length and that can have dependencies between
statements. A statement can be a method call on an instantiated object, a definition of

Chapter 3. Search-based Software Testing 17

primitive variables (strings, integers, booleans, . . .), among others. So, a dependency in
this context can be something as simple as a definition of a string that will be used as a
parameter in a future method call.

EvoSuite already includes implementations of several meta-heuristics algorithms, like
the Standard GA and DynaMOSA, that were used in this thesis [10]. Along with these
algorithms, it has the implementation of several techniques for each genetic operation
used by the GAs (selection, crossover and mutation). The majority of these algorithms
use test suites as a representation of individuals.

In the case of selection, EvoSuite supports several standard techniques, e.g., elitism
selection and rank selection. However, due to the inconsistent size of the test suites and
test cases (number of test cases and number of statements are variable, respectively), there
can be problems with bloat [10, 17]. Bloat is a complex phenomenon in EAs, where the
length of the individuals grows abnormally over time, which can lead to a larger execution
time and/or consumption of all memory of the device that is running the test suites [20].
Therefore, as a way to counter bloat, after rank selection (standard selection technique of
EvoSuite) is applied, if there is a draw in the first position, then the factor size (number of
lines of code) is used to sort the best individuals and the smaller one is selected.

In EvoSuite, crossover consists of the exchange of test cases between test suites, i.e.,
amongst the individuals [10, 17]. On the other hand, mutation can be divided into two:
adding or modifying tests cases to test suites and adding, removing or changing statements
inside test cases [10, 17]. This last type of mutation requires special attention since we
have to guarantee that the test cases are still valid after the mutation. For example, if a
statement is removed, we have to guarantee that that are not pendant dependencies with
that statement. A few examples of techniques already implemented in EvoSuite for these
last two genetic operations are single-point crossover, mutation binomial e uniform.

Meta-heuristic algorithms rely on fitness functions and EvoSuite supports several of
them. It also has implemented several optimizations to improve the performance of the
algorithms. In Section 3.2 it is possible to see a few examples of this.

Another major aspect of EvoSuite is the fact that it has a modular architecture. This
makes it easier to extend functionalities to satisfy our needs. In our case, we extended
the algorithms’ module and implemented ten new BIAs. EvoSuite is a black-box testing
tool, meaning that it only needs the byte code (no source code required) to create and
run the tests. It supports several plugins and can be used on the command line, Maven
plugin, Jenkins (interacts with the Maven plugin), Eclipse and IntelliJ development envi-
ronments [25, 26].

It is worth mentioning that EvoSuite has won seven out of eight editions of the annual
competition of search-based software testing tools, only being bested on the 3rd edition
where it ended up as the 2nd best tool [26].

Chapter 3. Search-based Software Testing 18

3.6 Summary

In this chapter, we saw the explanation of how SBST works, the EIAs used for this study
and a description of the testing tool EvoSuite. Next chapter, we will show a different
kind of algorithms, the BIAs. We will explain how they work, present their implemen-
tation including the adaptions introduced that were necessary to our context and display
their pseudo-code. Later on, the performance of all algorithms will be evaluated through
several experiments.

Chapter 4

Bio-inspired Algorithms

In this chapter, we describe how the implemented BIAs work and show their pseudo-code.
All BIAs implemented had to be adapted to the context of SBST, i.e., the formulas that
could not be directly used had to be replaced with operations that represent the same pro-
cess. The most common adaptations are the random movement from an individual in the
search space turning into a mutation and the movement in a 2D/3D physical space in a
straight line from an individual towards a certain target (food, best individual, etc) being
replaced by a crossover operation between said individual and target. In our adaptions,
we only consider one D-dimensional space since in SBST there are no physical coordi-
nates to determine the position in the search space. Our algorithms consider test suites as
individuals, except Elephant-DynaMOSA which use test cases.

4.1 Particle Swarm Optimization

PSO is inspired by the movements of social animal groups, particularly fish swarms and
bird flocks [11, 27]. The individuals of PSO are called particles and their whole is called
a swarm. Individuals can gain information in two ways: through a social part shared by
all (global memory) and through the individual own experience within the swarm (local
memory) [27].

PSO starts with the creation of a random population and its fitness evaluation (lines 1-
2). Right after that, the local memory is initialized with the population values (line 3). To
update the position of each particle in the swarm we do a crossover operation having both
the local and global memories as a reference. After which the particle suffers a mutation
(lines 8-15). Then, the local memory is updated, the new population is evaluated and
finally, the archive is updated (lines 16-19).

Our adaption of PSO uses genetic operations to update the particle’s positions, the
local memory saves the best particle associated with a population index and the global
memory is the best particle of the swarm. Originally, the update position phase uses a
velocity variable to calculate the velocity of a particle in a certain dimension and then uses

19

Chapter 4. Bio-inspired Algorithms 20

Algorithm 3 PSO as described in [27]
Input: Stopping condition C, Fitness function λ, Population size ps, Crossover function

cf , Mutation function mf

Output: Archive of optimised individuals A
1: P ← GENERATERANDOMPOPULATION(ps)
2: PERFORMFITNESSEVALUATION(λ, P)
3: lm← INITIALIZELOCALMEMORY(P)
4: A← { }
5: while ¬C do
6: NP ← { } ∪ ELITISM(P)
7: pb ← PARTICLE WITH THE BEST FITNESS VALUE

8: for i← 0, ps do ▷ 1-Update position phase
9: if P [i] ̸= lm[i] then

10: p← CROSSOVER(cf , P [i], lm[i])
11: end if
12: p← CROSSOVER(cf , p, pb)
13: MUTATION(mf , p)
14: NP ← NP ∪ {p}
15: end for
16: UPDATELOCALMEMORY(NP , lm) ▷ 2-Update local memory phase
17: P ← NP

18: PERFORMFITNESSEVALUATION(λ, P)
19: UPTADEARCHIVE(A,P)
20: end while
21: return A

it to change the current particle’s position. This velocity depends on several coefficients,
random numbers and uses the local memory and global memory as references [27].

4.2 Genetic Bee Colony Algorithm

GBC (Algorithm 4) is a meta-heuristic algorithm that combines crossover and mutation
operations of GAs with the artificial bee colony algorithm [13]. In this algorithm, the
individuals are represented as food sources while the bees are the variables and operations
that run the GBC itself. The GBC is divided into three main phases: employer, onlooker
and scout bees phase. GBC begins with the generation of a population of random
individuals and their fitness evaluation (lines 1-2). Then comes the employer bees phase
where each bee is assigned a food source of the population and tries to discover a new
food source better than the current one (lines 6-9). This process (Algorithm 1) consists
of selecting two random neighbours (other population members) and using them as a
reference for a crossover operation with the individual to create children. Then, these
children suffer a mutation to create grandchildren. In the end, we compare the food
source, two children and two grandchildren and select the best solution (the one with

Chapter 4. Bio-inspired Algorithms 21

Algorithm 4 Genetic Bee Colony Algorithm as described in [13]
Input: Stopping condition C, Fitness function λ, Population size ps, Selection function

sf , Crossover function cf , Mutation function mf , Limit L, Onlooker Rate or, Number
of Scouts ns

Output: Archive of optimised individuals A
1: P ← GENERATERANDOMPOPULATION(ps)
2: PERFORMFITNESSEVALUATION(λ, P)
3: A← { }
4: while ¬C do
5: NP ← { }
6: for all food ∈ P do ▷ 1-Employee bee phase
7: food←DISCOVERNEWFOOD(P, λ, cf ,mf , food)
8: NP ← NP ∪ {food}
9: end for

10: NPs ← NP SIZE

11: for j ← 0, NPs ∗ or do ▷ 2-Onlooker bee phase
12: food← SELECTION(sf , NP)
13: food2 ←DISCOVERNEWFOOD(NP , λ, cf ,mf , food)
14: if food ̸= food2 then
15: NP ← NP \ {food}
16: NP ← NP ∪ {food2}
17: end if
18: end for
19: scouts← 0
20: foodage ←VALUE OF p WHEN THE food WAS CREATED

21: for all food ∈ NP do ▷ 3-Scout bee phase
22: if p− foodage > L then
23: NP ← NP \ {food}
24: food←GENERATERANDOMINDIVIDUAL()
25: PERFORMFITNESSEVALUATION(λ, food)
26: NP ← NP ∪ {food}
27: scouts← scouts+ 1
28: if scouts ≥ ns then
29: end for
30: end if
31: end if
32: end for
33: P ← NP

34: UPTADEARCHIVE(A,P)
35: end while
36: return A

the best fitness value). The next step of the algorithm is the onlooker bees phase which
is similar to the employer phase (lines 11-18). The differences are that the number of
onlooker bees is a percentage of the population and the individuals that are explored are

Chapter 4. Bio-inspired Algorithms 22

Method 1 Discover new food source in GBA as described in [13]
Input: Population P , Fitness function λ, Crossover function cf , Mutation function mf ,

Individual food
Output: Individual foodnew

1: foodr1 ← GETRANDOMNEIGHBOUR(P) ▷ 1-Select Random Neighbours
2: foodr2 ← GETRANDOMNEIGHBOUR(P)
3: foodc1 ← CROSSOVER(cf , food, foodr1) ▷ 2-Generate Children
4: foodc2 ← CROSSOVER(cf , food, foodr2)
5: foodgc1 ← MUTATION(mf , foodc1) ▷ 3-Generate Grandchildren
6: foodgc2 ← MUTATION(mf , foodc2)
7: foodnew ←GETBESTINDIVIDUAL(λ, food, foodc1, foodc2, foodgc1, foodgc2) ▷

4-Choose Best Individual
8: return foodnew

selected according to a selection function. The scout bees phase consists of discarding
the individuals that did not get updated a certain number of generations and generate new
individuals to replace them (lines 21-32). Lastly, the GBC ends with the update of the
archive (line 34).

The number of bees in bee algorithms is variable [28], so we decided to have a fixed
number of employees equal to the population size to give each individual a chance to
improve in each iteration, while the number of onlookers and scouts can vary depending
on the emphasis we want to give to exploitation and exploration respectively.

4.3 Cat Swarm Optimization

Cats are animals that spend most of their time resting and being attentive to their sur-
roundings. They also have moments where they are more active, e.g, hunting preys. CSO
(Algorithm 5) uses these behaviours as its inspiration.

CSO starts with the same procedures as the previous algorithms (lines 1-2). Then,
depending on a random value and the crossover probability it can have one of two be-
haviours: tracing or seeking phase. The tracing phase simulates the behaviour of cats
when they are more active, so the cat will try to move towards its target, which in this
case it is a crossover operation with the best solution in the swarm (lines 9-10). The seek-
ing phase represents the behaviour of cats when they are saving energy in which they can
move to better positions. This phase consists of creating a list of clones of the cat, their
mutation and selecting one of them for the next generation. This list can include the cur-
rent cat or only its mutated clones (whether the self-position consideration is true or false)
and its size depends on the seeking memory pool (lines 11-16). After the new population
is filled, it goes through a fitness evaluation and the archive is updated (lines 19-21).

By origin, CSO’s tracing phase has a similar equation to the update position of Al-
gorithm 3. The difference lies in the fact that in CSO the velocity variable has only 1

Chapter 4. Bio-inspired Algorithms 23

Algorithm 5 Cat Swarm Optimization as described in [13, 29]
Input: Stopping condition C, Fitness function λ, Population size ps, Mixture ratio mr,

Seeking memory pool smp, Self position consideration spc, Selection function Sf ,
Crossover function cf , Crossover probability cp, Mutation function mf

Output: Archive of optimised individuals A
1: P ← GENERATERANDOMPOPULATION(ps)
2: PERFORMFITNESSEVALUATION(λ, P)
3: A← { }
4: while ¬C do
5: catb ← CAT WITH THE BEST FITNESS VALUE

6: NP ← { } ∪ ELITISM(P)
7: for all cat ∈ P do
8: r1← RANDOM VALUE [0,1]
9: if r1 < cp then ▷ 1-Tracing phase

10: catnew ← CROSSOVER(cf , cat, catb)
11: else ▷ 2-Seeking phase
12: list← CREATELISTOFCLONES(spc, smp, cat)
13: MUTATION(mf , list)
14: PERFORMFITNESSEVALUATION(λ, list)
15: catnew ← SELECTION(Sf , list)
16: end if
17: NP ← NP ∪ {catnew}
18: end for
19: P ← NP

20: PERFORMFITNESSEVALUATION(λ, P)
21: UPTADEARCHIVE(A,P)
22: end while
23: return A

coefficient, one random number and only considers the best solution in the swarm as a
reference. As for the seeking phase in CSO, we replaced the random alterations to the
copies of the cat for a mutation operation.

4.4 Whale Optimization Algorithm

WOA (Algorithm 6) is inspired by the hunting method of the humpback whales and con-
sists of three different behaviours: encircle the prey using the shrinking encircling mech-
anism or the spiral updating position and search for food.

In WOA, in every iteration, each whale can do one of the three phases depending on
the calculated variables (line 8) and the inputs given. In the shrinking encircling mech-
anism, the whale tries to move towards the best solution since it assumes it is close to
the optimum. This is done with a crossover operation with the best whale (line 11). The
search for food behaviour explores the search space using a random member of the pop-

Chapter 4. Bio-inspired Algorithms 24

Algorithm 6 Whale Optimization Algorithm as described in [13, 30]
Input: Stopping condition C, Fitness function λ, Population size ps, Crossover function

cf , Crossover probability cp, Mutation function mf , Mutation probability mp, Shin-
rinking probability sp

Output: Archive of optimised individuals A
1: P ← GENERATERANDOMPOPULATION(ps)
2: PERFORMFITNESSEVALUATION(λ, P)
3: A← { }
4: while ¬C do
5: whaleb ← WHALE WITH THE BEST FITNESS VALUE

6: NP ← { } ∪ ELITISM(P)
7: for all whale ∈ P do
8: v1, v2, r1 ← CALCULATEBEHAVIORALVARIABLES(C)
9: if r1 < cp then

10: if |v1| < 2 ∗ sp then ▷ 1a-Shrinking Encircling Mechanism
11: whalenew ← CROSSOVER(cf , whale, whaleb)
12: else ▷ 1b-Search For Prey
13: whaler ← RANDOM WHALE OF P
14: whalenew ← CROSSOVER(cf , whale, whaler)
15: end if
16: if v2 ≤ 2 ∗mp then
17: whalenew ← MUTATION(mf , whalenew)
18: end if
19: else ▷ 2-Spiral Updating Position
20: whalenew ← MUTATION(mf , whale)
21: end if
22: NP ← NP ∪ {whalenew}
23: end for
24: P ← NP

25: PERFORMFITNESSEVALUATION(λ, P)
26: UPTADEARCHIVE(A,P)
27: end while
28: return A

ulation as a reference, hence it is represented with a crossover operation with a random
whale from the population (line 13-14). Both these phases can also suffer a mutation to
add more randomness to the behaviours (line 16-17). Finally, there is the spiral updating
position phase. Originally in this phase, the whale also tries to move towards the best
solution, but it simulates a spiral movement instead of a straight line. Since we don’t have
a way to move individuals in a spiral movement in the context of SBST and we used a
crossover operation and a possible mutation in the shrinking encircling mechanism phase,
we decided to represent the spiral updating position with a mutation (line 20).

Chapter 4. Bio-inspired Algorithms 25

Algorithm 7 Moth-flame Optimization Algorithm as described in [13, 31]
Input: Stopping condition C, Fitness function λ, Population size ps, Crossover function

cf , Mutation function mf

Output: Archive of optimised individuals A
1: P ← GENERATERANDOMPOPULATION(ps, ds)
2: PERFORMFITNESSEVALUATION(λ, P)
3: A← { }
4: while ¬C do
5: NP ← { }
6: F ← UPDATEFLAMES(P,C)
7: SORTFLAMES(F)
8: for all moth ∈ P do ▷ 1-UpdatePosition
9: v1 ← CALCULATEBEHAVIORALVARIABLE(C)

10: if v1 < 0 then ▷ 1a-Exploitation behaviour
11: flame← GETFLAME(F, ps)
12: mothnew ← CROSSOVER(cf ,moth, flame)
13: else ▷ 1b-Exploration behaviour
14: mothnew ← MUTATION(mf ,moth)
15: end if
16: NP ← NP ∪ {mothnew}
17: end for
18: P ← NP

19: PERFORMFITNESSEVALUATION(λ, P)
20: UPTADEARCHIVE(A,P)
21: end while
22: return A

4.5 Moth-flame Optimization Algorithm

MFO takes the spiral movements of the moths around a source of light as inspiration.
MFO has more than one set of solutions: moths and flames. The moths are the “standard”
individuals while the flames are the best individuals found so far.

Algorithm 7 begins with the generation of the population of moths and their fitness
evaluation (lines 1-2). Then, the number of flames is updated according to how close
the execution is to the end (line 6). Initially, the number of flames is the same as the
number of months to promote exploration and avoid a local optimum. As the execution
advances, the number of flames diminishes accordingly, to promote the exploitation of the
best solutions found during the execution. Following that, each moth in the population
can go through an exploitation or exploration behaviour to update its position. The former
consists of a crossover with a flame (lines 11-12), while the latter is a mutation (line 14).
Lastly, the new population of moths is evaluated according to the fitness functions and the
archive is updated (lines 19-20).

In the original MFO, the update position is an equation that simulates a spiral move-

Chapter 4. Bio-inspired Algorithms 26

Algorithm 8 Grey Wolf Optimization Algorithm as described in [13, 32]
Input: Stopping condition C, Fitness function λ, Population size ps, Crossover function

cf , Crossover probability cp, Mutation function mf , Mutation probability mp

Output: Archive of optimised individuals A
1: P ← GENERATERANDOMPOPULATION(ps)
2: PERFORMFITNESSEVALUATION(λ, P)
3: A← { }
4: while ¬C do
5: NP ← { } ∪ ELITISM(P)
6: wolfα ← BEST SOLUTION ∈ P
7: wolfβ ← 2ND BEST SOLUTION ∈ P
8: wolfδ ← 3RD BEST SOLUTION ∈ P
9: for all wolf ∈ P do ▷ 1-Hunting behaviour

10: v1, v2 ← CALCULATEBEHAVIORALVARIABLES(C)
11: if v1 < 2 ∗ cp then ▷ 1.1-Attacking Prey - exploitation
12: wolfnew ← CROSSOVER(cf , wolf, wolfα, wolfβ, wolfδ)
13: end if
14: if v1 ≥ 2 ∗ cp ∨ v2 ≤ 2 ∗mp then ▷ 1.2-Search for Prey - exploration
15: wolfnew ← MUTATION(mf , wolfnew)
16: end if
17: NP ← NP ∪ {wolfnew}
18: end for
19: P ← NP

20: PERFORMFITNESSEVALUATION(λ, P)
21: UPTADEARCHIVE(A,P)
22: end while
23: return A

ment of a moth around a flame. In this case, the exploitation and exploration are both
considered part of this equation depending on whether the final position of the moth is
between the initial position and the flame or if it is “around” the flame.

4.6 Grey Wolf Optimization Algorithm

GWO algorithm (Algorithm 8) is inspired by the social behaviour of the grey wolves,
more specifically the hunting of these apex predators. GWO imitates the behaviour of
real grey wolves by assigning a hierarchy to the pack: the alpha is the best solution, the
beta is the 2nd best solution, the delta is the 3rd best solution and all the other wolves are
the omegas (lines 6-8). As for the hunting behaviour of the wolves, it is influenced by
several variables (line 10) and it is composed of two parts: attack or search for the prey.
When attacking the prey, real-life wolf packs are guided by the alpha and the beta and
the delta can also participate. When adapting this to an algorithm, these three wolves
are used as a reference for the pack to move towards the prey since it is assumed they

Chapter 4. Bio-inspired Algorithms 27

Algorithm 9 Artificial algae algorithm as described in [33]
Input: Stopping condition C, Fitness function λ, Population size ps, Selection function

sf , Adaptation probability ap, Max amount of energy Emax, Loss of energy constant
le, Crossover function cf

Output: Archive of optimised individuals A
1: P ← GENERATERANDOMPOPULATION(ps, ds)
2: A← { }
3: while ¬C do
4: NP ← { } ∪ ELITISM(P)
5: for all algae ∈ P do
6: E ← CALCULATEENERGY(Emax, algae)
7: while E > 0 ∧ ¬C do ▷ 1-Helical Movement phase
8: algaes ← SELECTION(sf , P)
9: algaenew ← CROSSOVER(cf , algae, algaes)

10: LOSSOFENERGY(E, le)
11: PERFORMFITNESSEVALUATION(algaenew, λ)
12: if algaenew IS BETTER THAN algae then
13: algae← algaenew
14: else
15: LOSSOFENERGY(E, le)
16: end if
17: end while
18: NP ← NP ∪ {algae}
19: end for
20: algaebest ← BEST SOLUTION ∈ NP

21: algaeworst ← WORST SOLUTION ∈ NP

22: REPRODUCTION(algaebest, algaeworst) ▷ 2-Reproduction phase
23: r1 ← RANDOM NUMBER [0,1]
24: if r1 < ap then ▷ 3-Adaptation phase
25: algaebest ← BEST SOLUTION ∈ NP

26: algaeoldest ← OLDEST SOLUTION ∈ NP

27: NP ← NP \ {algaeoldest}
28: algaenew ← CROSSOVER(cf , algaebest, algaeoldest)
29: NP ← NP ∪ {algaeoldest}
30: end if
31: P ← NP

32: PERFORMFITNESSEVALUATION(λ, P)
33: UPTADEARCHIVE(A,P)
34: end while
35: return A

know where the food is. We adapted this to a crossover operation between the wolf and
the three references (line 12). However, during the pursuit of prey, several obstacles can
appear (rocks, trees, ...) and to simulate these random hurdles it is also possible for the
attacking wolf to suffer a mutation operation (line 15). Searching for prey represents the

Chapter 4. Bio-inspired Algorithms 28

real-life behaviour of wolves in which they disperse to find prey and it also is depicted as
a mutation (line 15).

The equations we replaced with the crossover and mutation operations have the pur-
pose of exploiting the best solutions and explore the search space and avoid local optimum
respectively.

4.7 Artificial algae algorithm

AAA (Algorithm 9) uses the characteristics of real algae to find optimal solutions in the
search space. AAA focus on three algae behaviours: movement, evolutionary process and
adaption. Each iteration of the algorithm goes through these three phases in this order.
The algae can develop better the closer to the water surface they are, which gives them
more energy to move around. In the movement phase (lines 5-19), each alga is assigned an
energy value according to its fitness value. Then, while the said energy is above zero, the
alga goes through a crossover with one individual of the population previously selected
(target to move towards), loses energy and saves the best solution to the new population.
Following that, there is the evolutionary/reproduction process that consists of replacing a
random test case of the worst individual with the copy of a random test case from the best
individual (lines 20-22). This represents the death of a portion of the cells of the worst
colony and the reproduction of the biggest colony. Finally, the adaption phase replaces the
oldest member of the population with the individual that we get from a crossover between
the best and oldest algae (lines 24-30). It simulates the algae behaviour in which they
copy the fittest individuals to better adapt to the environment.

Our adaption of the AAA has several changes from the original algorithm: the equa-
tions that decide the helical movement in a 3D space and the variables used are simplified
to a single crossover operation, in the reproduction phase we select a random test case
from each individual that represent the algae cells of the algae colonies and the adaptation
phase equation was replaced by a crossover operation.

4.8 Chicken Swarm Optimization Algorithm

CSOA (Algorithm 10) uses chickens as its inspiration, more specifically their social and
gather food behaviours. In CSOA, the population is divided into different groups and
hierarchical ranks (lines 5-8): the roosters (best solutions), the chicks (worst solutions),
the hens and the mother-hens (randomly selected among the hens). Each group is com-
posed of one rooster, a random number of hens and if at least one hen is a mother-hen her
chicks. After that, the CSOA simulates the behaviour of the chicken swarms in search-
ing for food: in each group, the hens will follow the rooster and compete with other hens,
hence the crossover operation using the rooster and another random hen from the group as

Chapter 4. Bio-inspired Algorithms 29

Algorithm 10 Chicken Swarm Optimization as described in [34]
Input: Stopping condition C, Fitness function λ, Population size ps, Number of roosters

Nr, Number of chicks Nc, Number of mother hens Nm, Groups update constant gc,
Crossover function cf , Mutation function mf

Output: Archive of optimised individuals A
1: P ← GENERATERANDOMPOPULATION(ps)
2: PERFORMFITNESSEVALUATION(λ, P)
3: A← { }
4: while ¬C do
5: if p%gc == 0 then ▷ 1-Update Groups Hierarchy
6: G←UPDATEGROUPS(P,Nr, Nh, Nc, Nm)
7: G← GROUPS OF CHICKS, HENS AND ROOSTERS

8: end if
9: NP ← { }

10: for all g ∈ G do
11: Ng ← { }
12: rooster ← BEST SOLUTION ∈ g
13: for all chicken ∈ g ∧ chicken ̸= rooster do
14: if CHICKEN IS HEN then ▷ 2-Update Hen Position
15: hennew ← CROSSOVER(cf , hen, rooster)
16: henr ← RANDOM HEN, henr ∈ g ∧ (henr ̸= rooster ∧ henr ̸= hen)
17: hennew ← CROSSOVER(cf , hennew, henr)
18: Ng ← Ng ∪ {hennew}
19: else ▷ 3-Update Chick Position
20: henm ← MOTHER OF CHICK

21: chicknew ← CROSSOVER(cf , chick, henm)
22: Ng ← Ng ∪ {chicknew}
23: end if
24: end for
25: rooster ← MUTATION(mf , rooster) ▷ 4-Update Rooster Position
26: Ng ← Ng ∪ {rooster}
27: NP ← NP ∪Ng

28: end for
29: G← NP

30: P ← NP

31: PERFORMFITNESSEVALUATION(λ, P)
32: UPTADEARCHIVE(A,P)
33: end while
34: return A

references (line 14-18). The chicks will follow their mother on their quest for food, which
is expressed as a crossover using the mother as a reference (lines 19-23). The movement
of the rooster is represented by a mutation (line 25). Finally, CSOA ends with the creation
of the new population with the new roosters, hens and chicks, evaluating their fitness and
updating the archive (lines 29-32).

Chapter 4. Bio-inspired Algorithms 30

Algorithm 11 Elephant Herding Optimization as described in [13, 35]
Input: Stopping condition C, Fitness function λ, Population size ps, Number of clans

Nclan, Number of male per clan Nmale, Crossover function cf , Mutation function mf ,
Select from Archive SA

Output: Archive of optimised individuals A
1: P ← GENERATERANDOMPOPULATION(ps)
2: Cclans ← GENERATECLANS(P,Nclan)
3: PERFORMFITNESSEVALUATION(λ, P)
4: A← { }
5: while ¬C do
6: NP ← { }
7: NCLANS ← { }
8: for all clan ∈ Cclans do
9: Nclan ← { }

10: elebest ← BEST SOLUTION ∈ clan
11: for all ele ∈ clan ∧ ele ̸= elebest do ▷ 1.1-Update Elephant Position
12: elenew ← CROSSOVER(cf , ele, elebest)
13: Nclan ← Nclan ∪ {elenew}
14: end for
15: elebest ← MUTATION(mf , elebest) ▷ 1.2-Update Matriarch Position
16: Nclan ← Nclan ∪ {elebest}
17: NCLANS ← NCLANS ∪Nclan

18: end for
19: for all clan ∈ NCLANS do ▷ 2-Male Separation phase
20: male← 0
21: while male < Nmale do
22: elemale ← WORST SOLUTION ∈ clan
23: clan← clan \ {elemale}
24: ele←GENERATERANDOMINDIVIDUAL(SA, A)
25: clan← clan ∪ {ele}
26: male← male+ 1
27: end while
28: end for
29: NP ← NP ∪NCLANS

30: P ← NP

31: PERFORMFITNESSEVALUATION(λ, P)
32: UPTADEARCHIVE(A,P)
33: end while
34: return A

In the original CSOA, the roosters are divided into two groups and their equations
depend on a Gaussian distribution, while the equations of the movement of the hens and
chicks are similar to the equations of the previous algorithms that use a reference to move.
The reason we only use one type of rooster is that we assign one rooster per group, so
there is not a need to differentiate between the roosters.

Chapter 4. Bio-inspired Algorithms 31

Algorithm 12 Fish Swarm Algorithm as described in [13, 36, 37]
Input: Stopping condition C, Fitness function λ, Population size ps, Neighbour range

nr, Fish concentration γ, Number of attempts Nat, Crossover function cf , Mutation
function mf

Output: Archive of optimised individuals A
1: P ← GENERATERANDOMPOPULATION(ps)
2: PERFORMFITNESSEVALUATION(λ, P)
3: A← { }
4: while ¬C do
5: NP ← { } ∪ ELITISM(P)
6: for all fish ∈ P do
7: nei← CREATENEIGHBOURHOOD(P, fish, nr, λ)
8: fish1 ← SWARMPHASE(P, fish, nei, γ,Nat, cf ,mf) ▷ 1-Swarm behavior

phase
9: fish2 ← FOLLOWPHASE(P, fish, nei, γ,Nat, cf ,mf) ▷ 2-Following

behavior phase
10: fishnew ← CHOOSEBESTFISH(fish1, fish2, λ) ▷ 3-Best behaviour phase
11: NP ← NP ∪ {fishnew}
12: end for
13: P ← NP

14: PERFORMFITNESSEVALUATION(λ, P)
15: UPDATEARCHIVE(A,P)
16: end while
17: return A

4.9 Elephant Herding Optimization

EHO (Algorithm 11) uses elephant clans, how they are organised and move, as its inspi-
ration. EHO begins with the generation of a random population of elephants and their
fitness evaluation (lines 1-3). Like real elephants, this population is organised in clans
that are lead by a matriarch (the best solution in the clan). Each clan will move towards
their matriarch through a crossover (line 11-14), while her movement is expressed by a
mutation (line 15). Then, comes the separation phase where the male elephants (worst so-
lutions in each clan) leave the clan (lines 19-28). This phase replaces the males with new
individuals that can be from the archive or newly generated. Lastly, all the new clans are
joined together to create the new population, which then goes through a fitness evaluation
and the archive is updated (lines 29-32).

In this algorithm, we use the crossover operation between the elephants and the ma-
triarch the same way we did with movement towards a target in other algorithms. The
mutation of the matriarch however is different, originally it moves toward the central
position of the clan, but we do not have that concept. Finally, the separating equation
that represents the males leaving the clans after reaching puberty was replaced with the
replacement of a new individual.

Chapter 4. Bio-inspired Algorithms 32

Method 2 Swarm and Follow phases of FSA as described in [13, 36, 37]
Input: Population P , Individual fish, Neighbourhood nei, Fish concentration γ, Num-

ber of attempts Nat, Crossover function cf , Mutation function mf

Output: Individual fishnew

1: fishnew ← { }
2: if nei = { } then ▷ 1-Swarm/Follow phase
3: fishn ←GETNEIGHBOUR(P, nei)
4: λfishn ←FITNESS OF fishn

5: neis ← NEIGHBOURHOOD SIZE

6: if λfishn/neis < λfishn ∗ γ then
7: fishnew ← CROSSOVER(cf , fish, fishn)
8: end if
9: end if

10: if fishnew = { } then
11: if nei = { } then ▷ 2-Prey phase
12: for i← 0, Nat do
13: fishr ←GETRANDOMNEIGHBOUR(P, nei)
14: if ChooseBestFish(fish, fishr, λ) = fish then
15: fishnew ← CROSSOVER(cf , fish, fishr)
16: end for
17: end if
18: end for
19: end if
20: fishnew ← MUTATION(mf , fish) ▷ 3-Random phase
21: end if
22: return fishnew

4.10 Fish Swarm Algorithm

FSA (Algorithm 12) is inspired by the pattern behaviours of fish swarms, such as forming
swarms to avoid danger and search for food. For each fish in the population, we create
a neighbourhood according to its fitness value and the range in the input (line 7). We
decided that the neighbours are those fishes that are closer to the individual from a fitness
value perspective since in our context we do not have a physical space to check which
fishes are physically closer to each other. Then, we generate two fishes from the original
fish, one is from the swarming phase while the other is from the following phase (lines
8-9). These phases are very similar to each other, depending on the parameters, we will
have a crossover (with the best neighbour in the following behaviour and with the middle
neighbour in the swarming one) or go through the prey phase. The prey phase consists
of selecting a random neighbour and if the said neighbour is better then the fish do a
crossover with it. A certain number of attempts can be done at this stage. If no crossover
is done, the fish goes through the random phase where it does a random movement which
we represented with a mutation. The two fishes generated end up in the best behaviour

Chapter 4. Bio-inspired Algorithms 33

Algorithm 13 Elephant-DynaMOSA - fusion between EHO and DynaMOSA
Input: Stopping condition C, Fitness function λ, Population size ps, Crossover function

cf , Crossover probability cp, Mutation probability mp, Control dependency graph G,
Partial map between edges and targets ϕ, Set of coverage targets U , Number of clans
Nclan, Number of male per clan Nmale, Select from Archive SA

Output: Archive of optimised individuals A
1: U∗ ←targets in U with no control dependencies
2: P ← GENERATERANDOMPOPULATION(ps)
3: PERFORMFITNESSEVALUATION(λ, P)
4: Cclans ← GENERATECLANS(P,Nclan)
5: A← { }
6: while ¬C do
7: NCLANS ← { }
8: Np+1 ← { }
9: for all clan ∈ Cclans do

10: No ← GENERATEOFFSPRING(cf , cp,mp, clan)
11: PERFORMFITNESSEVALUATION(λ,No)
12: Rt ← clan ∪No

13: r ← 0
14: Fr ← PREFERENCESORTING(Rt, U

∗)
15: Nclan ← { }
16: while |Nclan|+ |Fr| ≤ ps do
17: CALCULATECROWDINGDISTANCE(Fr, U

∗)
18: Nclan ← Nclan ∪ Fr

19: r ← r + 1
20: end while
21: DISTANCECROWDINGSORT(Fr)
22: Nclan ← Nclan ∪ Fr with size ps − |Nclan|
23: male← 0
24: while male < Nmale do ▷ Male Separation phase
25: elemale ← WORST SOLUTION ∈ Nclan

26: Nclan ← Nclan \ {elemale}
27: ele←GENERATERANDOMINDIVIDUAL(SA, A)
28: Nclan ← Nclan ∪ {ele}
29: male← male+ 1
30: end while
31: NCLANS ← NCLANS ∪Nclan

32: end for
33: Np+1 ← Np+1 ∪NCLANS

34: UPDATEARCHIVE(A,Np+1)
35: UPTATETARGETS(U∗, G, ϕ)
36: end while
37: return A

phase, where the best one is selected for the new population (lines 10-11).

Chapter 4. Bio-inspired Algorithms 34

4.11 Elephant-DynaMOSA

As we are going to see in chapter Chapter 5, EHO was the BIA that stood out the most
and showed the greatest potential of becoming the new state-of-the-art. So, we decided to
explore his properties in more detail and see if his performance would allow it to become
the best algorithm. However, DynaMOSA still remained as the state-of-the-art. This
made us think of the possibility of fusing both algorithms. Not only we thought it would
be interesting, but we also concluded it would be relevant to create Elephant-DynaMOSA.
This hybrid combines elements of swarm-based search with many-objective optimization
and has the potential of becoming the new state-of-the-art algorithm.

This new algorithm uses DynaMOSA (Algorithm 2) and introduces a few concepts
from EHO (Algorithm 11). The differences from the DynaMOSA are that the algorithm
works with clans instead of the whole population. In the generate offspring phase (line
10) the concept of the matriarch is introduced and we removed the step where newly
generated test cases are added to the offspring and the male separation phase from EHO
was added (lines 24-32).

4.12 Summary

After learning about the BIAs implemented in this chapter we will go on to the next
chapter to see how the experiments and evaluation were done. With that, we can analyse
the performance of the algorithms, allowing us to rank them accordingly. Will the state-
of-the-art be updated?

Chapter 5

Empirical Study

In this chapter, we first describe the experiments we performed to evaluate the perfor-
mance of the algorithms described in Section 5.2 and analyse the results obtained.

5.1 Research Questions

In this section, we list the RQs that will be answered in this chapter by the analysis of our
results.

RQ1: Which bio-inspired algorithm performs best?

RQ2: How does swarm-based search compare to traditional evolutionary search?

RQ3: How does swarm-based search compare to many-objective optimization algorithms?

RQ4: How does a hybrid that combines swarm-based search with many-objective opti-
mization performs?

5.2 Experimental Setup

5.2.1 Classes Under Test

The selection of classes under test is one of the most important aspects to evaluate tech-
niques that aim to automatically generate tests for. The reason is that, on one hand, if the
classes under test are too simple then all algorithms should have a great performance. On
the other hand, if classes are too complicated then all algorithms are expected to perform
badly. Both these cases make it harder to distinguish the algorithms’ performance and
show their differences in performance. Thus, we choose the classes under test from a set
of classes used in previous studies [10, 12] 1.

1https://github.com/jose/non-trivial-java-classes-to-study-search-
based-software-testing-approaches

35

https://github.com/jose/non-trivial-java-classes-to-study-search-based-software-testing-approaches
https://github.com/jose/non-trivial-java-classes-to-study-search-based-software-testing-approaches

Chapter 5. Empirical Study 36

The set is composed of 117 open-source Java projects and 346 Java classes. These
classes have several degrees of complexity: the number of lines varies between 5 and
4940 the number of branches can go from 2 to 7938. The average number of lines is 226
and the average number of branches is 176.

5.2.2 Experimental Infrastructure

All experiments were executed on a cluster composed of 600 compute nodes where each
node has two Intel 8-core “Sandy Bridge” generation Xeon processors at 2.7 GHz with 32
GB of RAM and a shared storage with 1.5 PB 2. The operating system installed on these
nodes was CentOS Linux 7. We used Java Development Kit (JDK) 8 on our experiments
as it is required by the classes under test. The implementation of the algorithms described
in Chapter 4 was done in the EvoSuite [25, 38] 3 tool. As it was explained previously,
one of the main reasons for choosing EvoSuite is the fact that the algorithms used as a
benchmark in RQ2, RQ3 and RQ4 are already implemented.

We wish to affirm our commitment to open science, and make our scripts and our
detailed analysis available for others to use. Likewise, we make all of our own research
data produced in our experiments available to the research community to assist in future
research. Data and scripts are available at https://github.com/gmiduarte/
swarm-study-data (commit 8305c13).

5.2.3 Experimental procedure

In our study, we performed two experiments to access the performance of all 14 algo-
rithms. First, we did a tuning experiment and then we ran a comparison experiment.

The tuning experiment served to find the best configuration for each algorithm. To
do this, we selected a subset of 34 classes 4 from several different projects, we ran each
algorithm in 30 different seeds (due to the underline randomness of each algorithm) with
a budget of 60 seconds and varied the values of several properties of the algorithms.

In the comparison experiment, we ran the best configuration of each algorithm on the
remaining 312 classes 5 in the same conditions (i.e., 30 seeds and a search budget of 60
seconds).

2Despite having a total of 9600 cores available, we were only allowed to use 256 nodes as part of the
CPCA/A0/7402/2020 project supported by the Foundation for Science and Technology (FCT).

3Fork of the EvoSuite’s official repository with our changes in here https://github.com/
gmiduarte/evosuite/tree/develop_SIAs, commit 04bdc8b.

42 classes were excluded due to EvoSuite bugs.
54 classes were excluded due to EvoSuite bugs, configuration issues and instrumentation limitation.

https://github.com/gmiduarte/swarm-study-data
https://github.com/gmiduarte/swarm-study-data
https://github.com/gmiduarte/evosuite/tree/develop_SIAs
https://github.com/gmiduarte/evosuite/tree/develop_SIAs

Chapter 5. Empirical Study 37

5.2.4 Experimental metrics

In our experiments, we used eight different criteria to measure overall coverage (see Sec-
tion 3.2 for more information), as well as other metrics to measure the performance of
the algorithms: the number of test cases and lines of code of the test suites, number of
iterations, diversity and mutation score [39, 40].

Diversity

Diversity measures how different the individuals of a population are from each other. To
compute the diversity value it is necessary to compare each individual with the rest of the
population.

Each comparison consists of comparing all the statements of each individual, i.e., the
type and the underlying type of the statements. The types of statements are constructor,
method, field and primitive depending on whether the statement calls on a method, initial-
ize a primitive variable, etc. The underlying types go into more detail inside the type, e.g.,
the primitive statements can be int primitive statement, long primitive statement, among
others. The value of each comparison can vary between -1.0 and 1.0, where:

• -1.0, the two individuals do not share a single statement that has a common type
and underlying type.

• 0.0, the same number of differences and similarities between the statements of the
two individuals.

• 1.0, the two individuals have the same number of statements and can associate each
statement with a statement of the other that shares the same type and underlying
type.

Then the following equation is used to compute the diversity value of a population:

D = 1.0− c

nc

(5.1)

where D is the Diversity, c is the sum of the values of all the comparisons between the
individuals and nc is the number of comparisons. The diversity varies between 0.0 and
2.0, where 0.0 means all the comparisons have the value of 1.0 and 2.0 is the case where
the comparisons have all the value of -1.0. To help demonstrate how diversity is computed
let’s consider the following individuals represented in Figure 5.1:

test1: one int primitive statement.

test2: two int primitive statements.

test3: no statements.

Chapter 5. Empirical Study 38

1 public class TestClass1 {
2 @Test
3 public void test1() {
4 int i = 10;
5 }
6 }

(a) Individual 1.

1 public class TestClass2 {
2 @Test
3 public test2() {
4 int i = 10;
5 int l = 42;
6 }
7 }

(b) Individual 2.

1 public class TestClass3 {
2 @Test
3 public test3() {
4 // NO-OP
5 }
6 }

(c) Individual 3.

Figure 5.1: Example of three different individuals.

Comparing individual 1 with individual 2 the value obtained is 0.0 while individual 1
with individual 3 and individual 2 with individual 3 results in -1.0 in both cases. The sum
of the three comparisons is -2.0, resulting in a diversity of approximately 1.67.

Note that in EvoSuite, this metric only works on algorithms that consider a test suite as
an individual. Due to this, the diversity for MOSA, DynaMOSA and Elephant-DynaMOSA
was not computed.

Relative Coverage

When it comes to measuring code coverage, we do not use absolute coverage values.
Instead, we use relative coverage. This is due to the fact that there are several pieces of
code that are always covered regardless of the algorithm and/or configuration, the easy
code [10]. One example of that is a constructor of an object that only has an integer as
a parameter. The initial populations in EvoSuite, most of the time already have the easy
code covered, giving them a certain level of coverage despite the algorithm has not even
started. The relative coverage, δ(c,r), is computed as the values of the absolute coverage
of class c in a run r along with the maximum and minimum values of the coverage of c of
all runs, max(cov(c)) and min(cov(c)):

δ(c, r) =
cov(c, r)−min(cov(c))

max(cov(c))−min(cov(c))
(5.2)

To get the average relative coverage from a set of runs R the following equation is used:

△ (c) =
1

|R|
∑
r∈R

δ(c, r) (5.3)

Chapter 5. Empirical Study 39

Finally, the relative of an algorithm A in a set of classes C is defined with this formula:

covA =
1

|C|
∑
c∈C

△(c) (5.4)

To show a practical example of how the relative coverage works let’s assume:

• Class A with algorithm X has a coverage value of 0.50.

• Class A with algorithm Y has a coverage value of 0.75.

Using Equation (5.2), we compute a relative coverage of 0.00 using algorithm X and
1.00 using algorithm Y since the relative coverage focus on the values where the algo-
rithms are relevant (between 50% and 75% of coverage).

Although both absolute and relative coverages have the same algorithm as the better
one (Y in the case above), the relative coverage allows us to highlight the differences be-
tween algorithms, making it clearer where the algorithms are relevant and the magnitude
of their impact. Thus, the relative coverage treats all classes the same, regardless of their
size and complexity.

5.2.5 Statistical Analysis

Along with the computation of the coverage values, we present the standard deviation σ,
confidence intervals (CI) at 95%, and statistical results.

For the statistical analysis of comparing different randomized algorithms over a set of
subjects, we followed the same procedures as others have used (e.g., Campos et al. [10]).
In detail, we used the Wilcoxon-Mann-Whitney U-test to determine whether there is a
statistically significant difference between two algorithms and the Vargha-Delaney Â12

effect size to measure this difference (if any), and the Friedman test.
The Vargha-Delaney compares two algorithms at a time, to see which one is better

statistically. It consists of pairwise tournaments, where we compare the 30 executions of
each class (one per seed) and return an effect size that varies between 0.0 and 1.0. When
comparing algorithm X with Y, if the value is >0.5 it means X has better performance, 0.5
both algorithms have the same performance and <0.5 means X has worse performance
than Y. The largest the distance to 0.5, the larger the difference in the algorithms’ perfor-
mance.

The Friedman test is a non-parametric test for multiple-problem analysis and we used
it to compute the ranking between algorithms over multiple independent problems, i.e.,
Java classes in our case. A significant p-value (i.e., < 0.05) indicates that the null hypoth-
esis (i.e., no algorithm in the tournament performs significantly different from the others)
has to be rejected in favour of the alternative one (i.e., the performance of algorithms is
significantly different from each other). If the null hypothesis is rejected, we use the post

Chapter 5. Empirical Study 40

hoc Conover’s test for pairwise multiple comparisons. Such a test is used to detect pairs
of algorithms that are significantly different. The Friedman test allows us to compare all
algorithms at the same time and rank them accordingly. We take one class at a time, sort
the algorithms for each class and calculate the mean of all the ranks. In the end, the final
ranking is determined by that mean.

5.3 Threats to Validity

5.3.1 Internal Validity

As in all empiric studies, there are threats to its validity. When it comes to internal validity,
we thoroughly tested the test generation tool, to reduce the likelihood of finding faults.
Although this does not mean that we can consider that there are no defects. Also, to coupe
with the randomized aspects of the algorithms, we executed each experiment 30 times and
used meticulous statistical methods.

To have a fair comparison between algorithms, they were all implemented in the same
testing tool, EvoSuite, and we run all executions on the same machine. Additionally, in
our tuning experiments besides testing several specific parameters of the algorithms, we
also tested several shared parameters. The latter used the same set of values regardless of
the algorithm. All other relevant parameters used the default values of EvoSuite.

To evaluate the performance of the algorithms, we used several metrics as explained
in Section 5.2.4. It is possible that there are several errors in the implementation and
analysis of the results and that a few adaptions done to the BIAs are not correct and do
not capture what the original algorithm is supposed to do. To cope with this issue all
authors reviewed the work done in all phases of this study.

Another threat that exists is the fact that a BIA we did not evaluate could potentially
invalidate our conclusions. This comes from the fact that there are countless algorithms
and it is not feasible to evaluate all of them. To avoid this threat we selected several BIAs
among the most famous ones, we choose BIAs of several ages and we also make sure that
they are diverse in the ways they optimize the population.

5.3.2 External Validity

As for the external validity, there is the threat of a lack of generalization of the subjects
(i.e., classes under test) used in our empirical study. To handle this issue we used 346
classes of 117 open source projects, with several degrees of complexity and different sizes
(see Section 5.2.4). Despite this is not being enough to prove that our study generalises
for all classes, it is still a best effort that mitigates this particular threat.

Chapter 5. Empirical Study 41

5.4 Tuning Results

In the tuning experiment, we evaluated five different properties each with different values:

• Population size: 10, 25, 50, and 100 for all 14 algorithms.

• Elitism: 0 and 1 for Whale, Cat, Fish, Algae, and Particle; and 0 and 3 for Wolf.

• Number of clans of 10%, 20%, and 50% of the population size for Elephant and
Elephant-DynaMOSA.

• Number of male elephants per clan of 10%, 25%, 50%, and 75% of the clan size, 0
and all except the matriarch for Elephant and Elephant-DynaMOSA.

• Whether to select elephants from the archive or not for Elephant and Elephant-
DynaMOSA.

This means that algorithms such as Standard GA, DynaMOSA, MOSA, Bee, Moth, and
Chicken have 4 configurations; Wolf, Whale, Cat, Fish, Algae, and Particle have 8 con-
figurations; Elephant and Elephant-DynaMOSA have 144 configurations.

We choose population number since it is a common property among all algorithms
and its optimum value can easily change depending on the algorithm. We choose to use
the same values as a previous study [10]. Elitism was chosen because several BIAs use
the best individuals as a reference and depending on the number of references so does
the value of the property. The other three properties were evaluated after the preliminary
results showed that Elephant was the most promising BIA. More information on this
can be found in Section 4.11. The values of the number of clans have two aspects in
consideration: the algorithms are supposed to run with clans and not a population (one
clan), and each clan should have at least two individuals. When it comes to the number
of males we explored all kinds of possibilities, since having no males per clan all the
way to a clan of only males except the matriarch. Both properties use a percentage of the
population and clan size so that the values scale accordingly.

All other properties had fixed values. In the case of the properties that were part of
EvoSuite prior to the implementation done in Chapter 4 (e.g., crossover rate, mutation
rate, etc), we used EvoSuite’s default values. The only exception being the selection
function, which we decided not to use the default of EvoSuite (rank selection) in the al-
gorithms that have a specific selection function in their descriptions: tournament in Algae
and roulette wheel in both Bee and Cat algorithms [13, 29, 33]. As for the properties that
were implemented with the BIAs we assigned them to the following values:

• Number of scouts 1, onlooker bee rate of 100% of population size and maximum
number of iterations without improvement of 5 for Bee.

Chapter 5. Empirical Study 42

• Self position consideration with a value of false and seeking memory pool of 6 for
Cat.

• Shrinking encircling mechanism rate of 50% for Whale.

• Chicken swarm update interval of 5 and number of roosters, chicks and mother hens
of 1 for Chicken.

• Maximum energy of 100, energy loss rate of 20% and adaption rate of 10% for
Algae.

• Number of attempts of 1, fish neighbourhood of 0.0025, and fish concentration of
0.04 for Fish.

Tables 5.1 to 5.3 report the Vargha-Delaney statistical method which consists of a
pairwise tournament where for each class, a configuration of an algorithm competes with
another configuration of the same algorithm. Each win in a comparison is given a point.
The configuration with the most points in 30 seeds is considered better in that class and
wins the tournament. After calculating the difference between tournaments won and lost,
the configuration with the highest value is considered to be the best. In the case of a
draw, the winner is the configuration with the highest effect size. The best configuration
per algorithm is annotated with a grey background in Tables 5.1 to 5.3. The configuration
column shows the values of the properties altered throughout the experiments: population,
population and elitism or in the case of the Elephant, population, number of clans, number
of males per clan, and whether the males can be replaced with solutions from the archive.
The Â12 and p-value columns show how good the performance of the configuration is
having into account all configurations of each algorithm. Table 5.1 reports the three best
configurations per algorithm, whereas Tables 5.2 and 5.3 show the ten best configurations
of the Elephant and Elephant-DynaMOSA in detail.

Chapter 5. Empirical Study 43

Tournaments Won Tournaments Lost
Algorithm Configuration Â12 p-value # Â12 p-value # Â12 p-value

Standard GA (10) 0.51 0.21 22 / 384 0.79 < 0.01 19 / 384 0.27 0.01
Standard GA (50) 0.51 0.22 17 / 384 0.71 0.01 15 / 384 0.26 0.01
Standard GA (25) 0.50 0.26 15 / 384 0.77 < 0.01 14 / 384 0.27 0.01

MOSA (50) 0.52 0.24 15 / 384 0.72 0.01 6 / 384 0.31 0.02
MOSA (25) 0.51 0.27 13 / 384 0.72 0.01 11 / 384 0.30 < 0.01
MOSA (100) 0.49 0.21 15 / 384 0.76 < 0.01 19 / 384 0.28 0.01

DynaMOSA (100) 0.55 0.32 22 / 384 0.79 < 0.01 4 / 384 0.34 0.02
DynaMOSA (50) 0.52 0.40 10 / 384 0.75 < 0.01 4 / 384 0.25 0.01
DynaMOSA (25) 0.51 0.39 7 / 384 0.73 < 0.01 9 / 384 0.23 < 0.01

Wolf (100, 0) 0.54 0.24 50 / 1792 0.72 0.01 21 / 1792 0.28 0.01
Wolf (100, 3) 0.53 0.24 49 / 1792 0.74 < 0.01 25 / 1792 0.29 0.01
Wolf (50, 0) 0.52 0.35 30 / 1792 0.71 0.01 9 / 1792 0.29 0.01

Bee (50) 0.51 0.33 9 / 384 0.72 0.01 4 / 384 0.29 0.01
Bee (100) 0.51 0.27 15 / 384 0.75 < 0.01 11 / 384 0.29 0.02
Bee (25) 0.50 0.35 7 / 384 0.72 0.01 9 / 384 0.29 0.01

Whale (50, 1) 0.52 0.34 29 / 1792 0.70 0.01 15 / 1792 0.31 0.02
Whale (50, 0) 0.51 0.33 26 / 1792 0.70 0.01 12 / 1792 0.32 0.02
Whale (100, 0) 0.51 0.25 38 / 1792 0.72 < 0.01 29 / 1792 0.26 < 0.01

Cat (50, 0) 0.51 0.37 22 / 1792 0.68 0.02 10 / 1792 0.32 0.02
Cat (100, 1) 0.50 0.33 31 / 1792 0.72 0.01 25 / 1792 0.27 0.01
Cat (50, 1) 0.50 0.38 17 / 1792 0.68 0.02 12 / 1792 0.32 0.03

Elephant (10, 5, 1, false) 0.73 0.09 18 / 64 0.87 < 0.01 1 / 64 0.26 < 0.01
Elephant (50, 5, 1, false) 0.27 0.09 1 / 64 0.74 < 0.01 18 / 64 0.13 < 0.01

Chicken (100) 0.68 0.11 57 / 384 0.85 < 0.01 10 / 384 0.22 < 0.01
Chicken (50) 0.54 0.11 36 / 384 0.77 < 0.01 25 / 384 0.24 < 0.01
Chicken (25) 0.41 0.15 14 / 384 0.71 0.01 36 / 384 0.19 < 0.01

Moth (100) 0.55 0.21 25 / 384 0.75 < 0.01 11 / 384 0.30 0.02
Moth (50) 0.52 0.32 16 / 384 0.71 0.01 6 / 384 0.30 0.01
Moth (25) 0.48 0.32 6 / 384 0.68 0.02 13 / 384 0.26 < 0.01

Fish (50, 0) 0.55 0.29 49 / 1792 0.74 < 0.01 11 / 1792 0.28 0.02
Fish (50, 1) 0.54 0.28 49 / 1792 0.74 < 0.01 15 / 1792 0.25 0.01
Fish (100, 0) 0.54 0.24 58 / 1792 0.78 < 0.01 31 / 1792 0.22 < 0.01

Algae (100, 1) 0.77 0.13 157 / 1792 0.87 < 0.01 0 / 1792 N/A N/A
Algae (100, 0) 0.77 0.13 155 / 1792 0.88 < 0.01 0 / 1792 N/A N/A
Algae (50, 1) 0.60 0.14 104 / 1792 0.84 < 0.01 42 / 1792 0.21 < 0.01

Particle (100, 0) 0.52 0.22 54 / 1792 0.75 < 0.01 35 / 1792 0.24 < 0.01
Particle (100, 1) 0.52 0.23 52 / 1792 0.75 < 0.01 34 / 1792 0.26 0.01
Particle (50, 1) 0.51 0.28 31 / 1792 0.71 0.01 24 / 1792 0.30 0.01

Table 5.1: Top-3 best configurations per algorithm.

Chapter 5. Empirical Study 44

Tournaments Won Tournaments Lost
Configuration Â12 p-value # Â12 p-value # Â12 p-value

(10, 2, 4, false) 0.72 0.11 1905 / 304192 0.86 < 0.01 97 / 304192 0.24 < 0.01
(10, 1, 9, false) 0.71 0.12 1828 / 304192 0.86 < 0.01 93 / 304192 0.26 < 0.01
(25, 6, 3, false) 0.70 0.12 1799 / 304192 0.85 < 0.01 99 / 304192 0.27 0.01
(25, 2, 11, false) 0.70 0.12 1783 / 304192 0.85 < 0.01 106 / 304192 0.27 < 0.01
(10, 5, 1, false) 0.70 0.12 1791 / 304192 0.85 < 0.01 124 / 304192 0.23 < 0.01
(50, 5, 9, false) 0.70 0.12 1769 / 304192 0.86 < 0.01 117 / 304192 0.29 0.01
(10, 1, 7, false) 0.69 0.12 1732 / 304192 0.85 < 0.01 144 / 304192 0.26 < 0.01
(10, 2, 3, false) 0.69 0.12 1742 / 304192 0.85 < 0.01 183 / 304192 0.23 < 0.01
(50, 25, 1, false) 0.69 0.13 1718 / 304192 0.85 < 0.01 159 / 304192 0.26 < 0.01
(50, 12, 3, false) 0.69 0.14 1656 / 304192 0.85 < 0.01 118 / 304192 0.28 0.01

Table 5.2: Top-10 best configurations of the Elephant algorithm.

Tournaments Won Tournaments Lost
Configuration Â12 p-value # Â12 p-value # Â12 p-value

(25, 2, 11, false) 0.68 0.17 1661 / 304192 0.83 < 0.01 88 / 304192 0.33 0.02
(100, 10, 9, false) 0.68 0.18 1638 / 304192 0.84 < 0.01 84 / 304192 0.34 0.02
(100, 10, 7, false) 0.67 0.18 1595 / 304192 0.83 < 0.01 82 / 304192 0.34 0.02
(50, 5, 7, false) 0.68 0.18 1566 / 304192 0.83 < 0.01 68 / 304192 0.31 0.02
(50, 5, 9, false) 0.68 0.19 1537 / 304192 0.84 < 0.01 68 / 304192 0.31 0.02
(10, 1, 9, false) 0.66 0.19 1562 / 304192 0.82 < 0.01 96 / 304192 0.26 0.01
(10, 1, 7, false) 0.66 0.18 1561 / 304192 0.82 < 0.01 100 / 304192 0.29 0.01
(25, 2, 6, false) 0.65 0.18 1509 / 304192 0.82 < 0.01 107 / 304192 0.29 0.01
(100, 10, 5, false) 0.66 0.19 1481 / 304192 0.82 < 0.01 84 / 304192 0.29 0.02
(25, 2, 9, false) 0.66 0.21 1450 / 304192 0.84 < 0.01 89 / 304192 0.28 0.02

Table 5.3: Top-10 best configurations of the Elephant-DynaMOSA algorithm.

Chapter 5. Empirical Study 45

5.5 RQ1: Which bio-inspired algorithm performs best?

Figure 5.2 shows the distribution of the overall coverage and relative coverage per algo-
rithm. On one hand, the distribution of absolute values shows that most BIAs perform
similarly. On the other hand, the distribution of the relative coverage shows a different
result and it is easier to see the BIAs’ performance differences. Recall Section 5.2.4 for
the reason why we computed relative coverage. Out of the ten BIAs, Elephant is the only
one above the average, Fish and Bee are very close to the average, and the other seven
BIAs perform below the average. Figure 5.3a, clearly shows that the Algae and Chicken
have the worst performance as they have the highest density of classes for low percentage
values. That is, both algorithms achieved a low coverage (less than 10%) for a larger
portion of classes under test.

Similar conclusion if we take into account mutation score. In Figure 5.4, we can see

70%

Standard GA

MOSA

DynaMOSA

Wolf

Bee

Whale

Cat

Elephant

Elephant−DynaMOSA

Chicken

Moth

Fish

Algae

Particle

0 10 20 30 40 50 60 70 80 90 100

% Overall Coverage

(a) Distribution of overall coverage.

60%

Standard GA

MOSA

DynaMOSA

Wolf

Bee

Whale

Cat

Elephant

Elephant−DynaMOSA

Chicken

Moth

Fish

Algae

Particle

0 10 20 30 40 50 60 70 80 90 100

% Relative Overall Coverage

(b) Distribution of relative overall coverage.

Figure 5.2: Overall Coverage distribution by each algorithm. The grey line represents the
mean of all algorithms, while the symbol * is the mean of each algorithm.

Chapter 5. Empirical Study 46

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60 70 80 90 100

% Relative Overall Coverage

D
e
n
s
it
y

Algorithm

Standard GA

MOSA

DynaMOSA

Wolf

Bee

Whale

Cat

Elephant

Elephant−DynaMOSA

Chicken

Moth

Fish

Algae

Particle

(a) Density of relative overall coverage

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60 70 80 90 100

% Relative Mutation Score

D
e
n
s
it
y

Algorithm

Standard GA

MOSA

DynaMOSA

Wolf

Bee

Whale

Cat

Elephant

Elephant−DynaMOSA

Chicken

Moth

Fish

Algae

Particle

(b) Density of relative mutation score

Figure 5.3: Density of the relative coverage and mutation score.

that almost all BIAs have similar values. The Chicken and the Algae are the ones that
stand out, being the only BIAs below 55%. Also in Figure 5.3b, both algorithms have a
slightly higher density of classes with lower percentages of coverage.

Table 5.4 reports the absolute and relative coverage and mutation score, the number of
generations each algorithm ran, the number of test cases of the final solution and their av-
erage size in terms of the number of lines. Note that EvoSuite performs a minimization at
the end of execution, i.e., discards all generated tests and/or lines of code within tests that
are considered redundant—tests/lines that do not contribute to exercise more code of the
class under test. As we can see, the BIAs have similar performances if we look at the ab-
solute values: 9.02% and 8.58% difference between the highest and lowest coverage and
mutation score, respectively. The relative values show a maximum difference of 34.94%
and 20.54%, making it much easier to compare and see the impact the algorithms have
in terms of overall values. The Elephant algorithm achieved the highest relative coverage
(64.38%), followed by Bee, Fish and Cat (60.12%, 60.10%, and 59.26%, respectively).

Chapter 5. Empirical Study 47

44%

Standard GA

MOSA

DynaMOSA

Wolf

Bee

Whale

Cat

Elephant

Elephant−DynaMOSA

Chicken

Moth

Fish

Algae

Particle

0 10 20 30 40 50 60 70 80 90 100

% Mutation Score

(a) Distribution of mutation score

60%

Standard GA

MOSA

DynaMOSA

Wolf

Bee

Whale

Cat

Elephant

Elephant−DynaMOSA

Chicken

Moth

Fish

Algae

Particle

0 10 20 30 40 50 60 70 80 90 100

% Relative Mutation Score

(b) Distribution of relative mutation score

Figure 5.4: Mutation Score distribution by each algorithm. The grey line represents the
mean of all algorithms, while the symbol * is the mean of each algorithm.

The Chicken and the Algae algorithms stand out with their low values of 45.28% and
43.55%, respectively. As for the relative mutation score, all BIAs except Chicken and
Algae achieved scores between 56.88% and 59.32%. Once again, these two algorithms
have the lowest values: 53.54% and 53.01%.

High coverage means more code of the class under test is explored, which in turn
increases the chances of detecting and killing mutants (alterations to the source code). As
we can in Figure 5.5, all BIAs follow this rule and show a significant improvement in
performance the higher the values of both coverage and mutation score.

There is a large difference between a few algorithms in terms of the number of gener-
ations, e.g., Elephant has 81 and Algae has 5. This happened even though all algorithms
had the same time budget of 60 seconds. The two main reasons for this are the population
size and the number and type of operations done per individual in each generation (e.g.,
crossovers and mutations) which affect the execution time of generation. Although the

Chapter 5. Empirical Study 48

% Relative Overall % Relative Mutation
Algorithm # G Coverage σ CI Score σ CI # T L

Standard GA 380 57.72 (69.87) 31.06 [57.08, 58.39] 55.74 (43.06) 32.67 [55.06, 56.42] 31 109
MOSA 63 71.75 (72.96) 25.79 [71.19, 72.27] 68.65 (47.87) 29.39 [68.05, 69.23] 41 145
DynaMOSA 51 78.49 (74.91) 23.19 [78.02, 78.98] 73.55 (49.77) 27.70 [72.99, 74.06] 46 168
Wolf 9 57.14 (69.62) 27.45 [56.58, 57.68] 58.08 (43.41) 31.40 [57.40, 58.76] 37 120
Bee 10 60.12 (70.23) 27.06 [59.58, 60.68] 58.78 (43.84) 30.94 [58.19, 59.42] 36 118
Whale 28 57.35 (69.77) 27.43 [56.77, 57.90] 56.88 (43.13) 31.11 [56.20, 57.53] 35 116
Cat 23 59.26 (70.18) 27.08 [58.69, 59.84] 58.04 (43.53) 31.03 [57.41, 58.73] 36 118
Elephant 81 64.38 (71.09) 26.28 [63.86, 64.85] 59.32 (44.21) 31.03 [58.67, 59.92] 35 127
Elephant-DynaMOSA 146 71.82 (72.99) 25.43 [71.32, 72.32] 67.74 (47.36) 29.18 [67.15, 68.35] 43 184
Chicken 11 45.28 (66.36) 30.26 [44.68, 45.88] 53.54 (41.45) 33.24 [52.85, 54.20] 35 109
Moth 9 54.47 (68.62) 28.03 [53.83, 55.02] 56.92 (42.80) 31.87 [56.23, 57.60] 36 117
Fish 43 60.10 (69.61) 27.53 [59.50, 60.68] 58.41 (43.47) 31.10 [57.79, 59.07] 37 125
Algae 5 43.55 (65.89) 30.62 [42.99, 44.21] 53.01 (41.19) 33.56 [52.33, 53.69] 34 108
Particle 7 58.83 (69.77) 27.09 [58.28, 59.38] 59.07 (43.76) 31.23 [58.43, 59.72] 37 123

Table 5.4: # G represents the average number of generations, the values between paren-
theses represents the absolute values, # T represents the average number of test cases
generated by each algorithm across all classes under test, and L represents the average
length (i.e., number of lines) of the generated test cases.

Algae Particle

Chicken Moth Fish

Cat Elephant Elephant−DynaMOSA

Wolf Bee Whale

Standard GA MOSA DynaMOSA

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

% Mutation Score

%
 R

e
la

ti
ve

 O
ve

ra
ll

C
o
ve

ra
g

e

n

5

10

15

Figure 5.5: Scatter plot of % Relative Overall Coverage vs Mutation Score.

Chapter 5. Empirical Study 49

Algae Particle

Chicken Moth Fish

Cat Elephant Elephant−DynaMOSA

Wolf Bee Whale

Standard GA MOSA DynaMOSA

 0.2 4.0 64.0 1024.0 0.2 4.0 64.0 1024.0

 0.2 4.0 64.0 1024.0

0

40

80

0

40

80

0

40

80

0

40

80

0

40

80

Generations
(log2 scale)

%
 R

e
la

ti
ve

 O
ve

ra
ll

C
o
ve

ra
g

e

n

1.00

1.25

1.50

1.75

2.00

Figure 5.6: Scatter plot of % Relative Overall Coverage vs Generations

BIA with the highest coverage and mutation score values has the most generations and
the BIA with the lowest values has the least generations, having more generations does
not necessarily mean that the algorithm will achieve a better coverage/mutation score at
the end of the execution. Each algorithm explores a different amount of search space
per generation. This can be observed in the case of the Bee and Whale, where the Bee
achieved higher coverage and mutation score than the Whale algorithm while having the
number of generations nearly three times lower. When considering Figure 5.6 we see
that the BIAs can be divided into three groups. Algae and Chicken tend to have worse
coverage values the higher the number of generations. Moth, Particle and Fish have a
slight increase in coverage values when the generations increase. Wolf, Bee, Whale, Cat
and Elephant have a clear increase in performance the higher number of generations go.
In order to explain why these groups exist, we will explain a few aspects in the figure
that lead to the execution of the classes to be like that. High coverage and a low num-
ber of generations mean the classes are so simple that the initial/first few populations can
already achieve a good performance at the end of the execution. High coverage with a
high number of generations signifies that the algorithm was able to efficiently explore the
search space and find good solutions. The reason for that can be either the classes were

Chapter 5. Empirical Study 50

Algae Particle

Chicken Moth Fish

Cat Elephant Elephant−DynaMOSA

Wolf Bee Whale

Standard GA MOSA DynaMOSA

 0.2 4.0 64.0 0.2 4.0 64.0

 0.2 4.0 64.0

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

Size
(log2 scale)

%
 R

e
la

ti
ve

 O
ve

ra
ll

C
o
ve

ra
g

e

n

1

2

3

4

5

6

Figure 5.7: Scatter plot of % Relative Overall Coverage vs Size

simple and/or the algorithm was good enough to explore the more complex classes. Low
coverage with a low number of generations implies that the budget was not enough for
the algorithms to explore the classes that have a certain degree of complexity. Low cov-
erage with a high number of generations can be attributed to the algorithm being bad for
those classes. The algorithm has many useless operations that do not help it achieve high
coverage for those classes.

Lastly, the number of test cases of the final solution and their average size is similar
among all BIAs. As we can see in Table 5.4, the Algae algorithm generated the lowest
number of test cases (34) and the smallest tests (108 lines of code on average). In theory,
fewer tests and/or smaller tests means tests would take less time to run, they could also
mean less code being exercised. However, this does not hold to our results. As we can
see, the Bee and Moth algorithms generated tests with nearly the same number of lines
of code, yet Bee has the 2nd highest coverage value and Moth has the 8th. In Figure 5.7,
we can see that Chicken and Algae clearly benefit from larger sizes, allowing them to
reach higher coverage values. Bee, Cat, Whale, and Elephant are the opposite, i.e., their
performance gets worst the larger the final solution is.

As explained in Section 5.2.4, diversity shows the degree of difference between the

Chapter 5. Empirical Study 51

Algae Particle

Chicken Moth Fish

Cat Elephant Elephant−DynaMOSA

Wolf Bee Whale

Standard GA MOSA DynaMOSA

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

0.0 0.5 1.0 1.5

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Diversity

%
 R

e
la

ti
ve

 O
ve

ra
ll

C
o
ve

ra
g

e

n

1.0

1.5

2.0

2.5

3.0

Figure 5.8: Scatter plot of % Relative Overall Coverage vs Diversity. Due to the lim-
itations of EvoSuite, it is not possible to obtain the values of diversity of DynaMOSA,
MOSA and Elephant-DynaMOSA.

individuals of a population. Achieving a high or low diversity in the final solution should
not affect the coverage by itself, it only shows if the algorithms tend to converge towards
a certain point in the search space or favour exploration. In Figure 5.8 we can observe the
influence diversity has on coverage. From the slopes, the BIAs where diversity seems to
have a certain degree of influence are Bee, Elephant and Whale. However, if we pay at-
tention to the uncertainty (grey area) it is possible to see that no conclusion can be reached
for all BIAs. This happens because in all BIAs the values of diversity are concentrated in
a small range of values and outside said range there are too few results to make the size of
the uncertainty reasonable. Due to the limitations of EvoSuite, DynaMOSA, MOSA and
Elephant-DynaMOSA do not have values of diversity during their execution.

Table 5.5 illustrates how the Vargha-Delaney method ranks the BIAs in terms of rela-
tive coverage and mutation score. Each tournament consists in comparing one algorithm
with another in a single class, and the one who wins more comparisons in the 30 execu-
tions wins. The columns with the tournament won and lost only considers the statistically
relevant comparisons in which the algorithm is better or worse than another. The ranking

Chapter 5. Empirical Study 52

Tournaments Won Tournaments Lost
Algorithm Rank Â12 p-value # Â12 p-value # Â12 p-value

% Relative Overall Coverage
Wolf 6 0.52 0.22 663 / 2772 0.81 < 0.01 538 / 2772 0.22 < 0.01
Bee 4 0.55 0.20 841 / 2772 0.82 < 0.01 464 / 2772 0.22 < 0.01
Whale 7 0.49 0.21 551 / 2772 0.82 < 0.01 700 / 2772 0.23 < 0.01
Cat 5 0.54 0.23 713 / 2772 0.82 < 0.01 483 / 2772 0.23 < 0.01
Elephant 1 0.64 0.12 1423 / 2772 0.85 < 0.01 351 / 2772 0.18 < 0.01
Chicken 9 0.33 0.18 194 / 2772 0.78 < 0.01 1400 / 2772 0.14 < 0.01
Moth 8 0.47 0.20 542 / 2772 0.81 < 0.01 780 / 2772 0.20 < 0.01
Fish 2 0.58 0.17 1064 / 2772 0.81 < 0.01 408 / 2772 0.21 < 0.01
Algae 10 0.31 0.17 164 / 2772 0.79 < 0.01 1477 / 2772 0.13 < 0.01
Particle 3 0.56 0.21 854 / 2772 0.80 < 0.01 408 / 2772 0.23 < 0.01

% Relative Mutation Score
Wolf 3 0.52 0.33 402 / 2772 0.76 < 0.01 228 / 2772 0.25 < 0.01
Bee 5 0.51 0.30 436 / 2772 0.76 < 0.01 335 / 2772 0.25 < 0.01
Whale 8 0.48 0.32 263 / 2772 0.77 < 0.01 400 / 2772 0.26 0.01
Cat 6 0.50 0.32 345 / 2772 0.76 < 0.01 327 / 2772 0.26 < 0.01
Elephant 2 0.53 0.23 692 / 2772 0.79 < 0.01 456 / 2772 0.23 < 0.01
Chicken 9 0.44 0.29 232 / 2772 0.75 < 0.01 654 / 2772 0.20 < 0.01
Moth 7 0.50 0.33 337 / 2772 0.75 < 0.01 321 / 2772 0.25 < 0.01
Fish 4 0.52 0.28 477 / 2772 0.78 < 0.01 333 / 2772 0.27 0.01
Algae 10 0.44 0.29 229 / 2772 0.75 < 0.01 686 / 2772 0.19 < 0.01
Particle 1 0.55 0.32 508 / 2772 0.75 0.01 181 / 2772 0.27 0.01

Table 5.5: Pairwise tournament: Swarm-based algorithms.

reported in this table is done by subtracting the tournament lost from the tournament won
and sorting that value. Looking at the relative coverage, the ranks are consistent with the
number of tournaments won and lost, i.e, the rankings are the same as if we were to order
the algorithms according to the tournaments won (descending order) and the tournaments
lost (ascending order). The best BIA is the Elephant with 51.33% of the tournaments won
and 12.66% lost. The worst BIAs are clearly the Chicken and Algae which won 7.00%
and 5.91% and lost 50.50% and 53.28%, respectively.

Considering relative mutation score, the best BIA is Particle (won 18.32% and lost
6.52%), followed by the Elephant (won 24.96% and lost 16.45%). The worst BIAs
are once again Chicken (won 8.36% and lost 23.59%) and Algae (won 8.26% and lost
24.74%).

RQ1: Elephant is the bio-inspired algorithm that achieves the highest coverage and
the second highest mutation score (in line with the Particle algorithm).

Chapter 5. Empirical Study 53

5.6 RQ2: How does swarm-based search compare to tra-
ditional evolutionary search?

Figure 5.2a reports that the Standard GA has similar absolute coverage as most BIAs,
around 70%. While in Figure 5.2b, Standard GA is below the mean of all algorithms
as are most BIAs (Particle, Algae, Moth, Chicken, Cat, Whale and Wolf). Similarly,
Figure 5.4 reports that the absolute and relative mutation score of the Standard GA is very
similar to all BIAs.

When it comes to the density values (see Figure 5.3), Standard GA achieved the high-
est value (∼25%), which is different from the values achieved by each BIA.

Looking at Table 5.4, we can see that the Standard GA achieved a relative coverage
of 57.72%, i.e., performing worse than Elephant, Bee, Fish, Particle, and Cat. As for the
mutation score, the value is 55.74%, only higher than Chicken and Algae. One interesting
fact is the sheer amount of generations made by the Standard GA, 380. This value is
more than four times larger than the number of generations of Elephant (the BIA with
the highest number of generations). The reason for this value is that Standard GA has a
small population and a low number of operations done per generation compared to other
algorithms. This makes the time used to run each generation very small compared to the
BIAs. Standard GA generated the lowest number of test cases (31) with a low average
number of lines of code (109).

Looking at Figures 5.5 to 5.8, we can see that Standard GA shows a tendency to
achieve higher coverage values the higher the mutation score, diversity, and generations
are. We can also ascertain that a smaller number of tests benefits the performance.

In Tables 5.6 and 5.7, we can see the pairwise tournament of the BIAs and the Standard
GA. The former uses all 11 algorithms in the comparisons, while the latter is focused on
an individual comparison between each BIA and the Standard GA.

Table 5.6 shows that Standard GA is ranked 6th in terms of relative coverage, despite
being the 3rd with the most tournaments won (34.12%). This is because it is the 3rd

algorithm that lost more tournaments (30.75%). From this, we can conclude that Standard
GA in some executions achieved higher coverage values than most BIAs while in others
achieved lower coverage values than almost all BIAs.

Standard GA is almost the worst algorithm when it comes to relative mutation score,
ranked 9th. The reason for this low rank is because it is the algorithm that lost the highest
amount of tournaments (29.22%), while the number of tournaments won is not far from
the numbers of most BIAs (17.31%).

When comparing BIAs and Standard GA (see Table 5.7 and Figure 5.9), we can see
that Bee, Cat, Elephant, Fish, and Particle performed, overall, better in terms of relative
coverage as the effect size is higher than 0.5. If we look at the relative mutation score
values, only Chicken and Algae performed worse in general than Standard GA.

Chapter 5. Empirical Study 54

Tournaments Won Tournaments Lost
Algorithm Rank Â12 p-value # Â12 p-value # Â12 p-value

% Relative Overall Coverage
Standard GA 6 0.50 0.11 1051 / 3080 0.83 < 0.01 947 / 3080 0.15 < 0.01
Wolf 7 0.52 0.21 757 / 3080 0.82 < 0.01 657 / 3080 0.21 < 0.01
Bee 4 0.55 0.20 938 / 3080 0.82 < 0.01 537 / 3080 0.22 < 0.01
Whale 8 0.49 0.21 620 / 3080 0.83 < 0.01 799 / 3080 0.23 < 0.01
Cat 5 0.54 0.22 808 / 3080 0.82 < 0.01 572 / 3080 0.23 < 0.01
Elephant 1 0.64 0.12 1565 / 3080 0.85 < 0.01 397 / 3080 0.19 < 0.01
Chicken 10 0.33 0.17 268 / 3080 0.81 < 0.01 1555 / 3080 0.13 < 0.01
Moth 9 0.47 0.18 631 / 3080 0.81 < 0.01 906 / 3080 0.19 < 0.01
Fish 2 0.58 0.17 1180 / 3080 0.81 < 0.01 493 / 3080 0.21 < 0.01
Algae 11 0.32 0.16 237 / 3080 0.82 < 0.01 1635 / 3080 0.13 < 0.01
Particle 3 0.56 0.20 952 / 3080 0.81 < 0.01 509 / 3080 0.22 < 0.01

% Relative Mutation Score
Standard GA 9 0.46 0.20 533 / 3080 0.79 < 0.01 900 / 3080 0.21 < 0.01
Wolf 3 0.53 0.32 503 / 3080 0.77 < 0.01 292 / 3080 0.25 < 0.01
Bee 5 0.52 0.29 524 / 3080 0.77 < 0.01 365 / 3080 0.25 < 0.01
Whale 8 0.48 0.31 331 / 3080 0.77 < 0.01 446 / 3080 0.26 0.01
Cat 6 0.51 0.31 429 / 3080 0.77 < 0.01 370 / 3080 0.26 < 0.01
Elephant 2 0.53 0.23 790 / 3080 0.79 < 0.01 484 / 3080 0.23 < 0.01
Chicken 10 0.45 0.28 316 / 3080 0.76 < 0.01 733 / 3080 0.20 < 0.01
Moth 7 0.51 0.31 431 / 3080 0.76 < 0.01 382 / 3080 0.24 < 0.01
Fish 4 0.52 0.27 567 / 3080 0.78 < 0.01 374 / 3080 0.26 < 0.01
Algae 11 0.44 0.27 312 / 3080 0.77 < 0.01 773 / 3080 0.19 < 0.01
Particle 1 0.55 0.31 618 / 3080 0.76 < 0.01 235 / 3080 0.26 < 0.01

Table 5.6: Pairwise tournament: Swarm-based algorithms and Standard GA.

RQ2: Five out of ten bio-inspired algorithms performed better (not significantly
better) than the Standard GA at coverage level, and eight out of ten bio-inspired al-
gorithms performed better (not significantly better) than the Standard GA at mutation
level.

Chapter 5. Empirical Study 55

vs Standard GA
Algorithm Â12 p-value

% Relative Overall Coverage
Wolf 0.48 0.09
Bee 0.55 0.14
Whale 0.49 0.16
Cat 0.53 0.13
Elephant 0.62 0.13
Chicken 0.38 0.09
Moth 0.46 0.09
Fish 0.55 0.12
Algae 0.38 0.08
Particle 0.51 0.09

% Relative Mutation Score
Wolf 0.55 0.18
Bee 0.56 0.25
Whale 0.53 0.23
Cat 0.55 0.22
Elephant 0.57 0.21
Chicken 0.49 0.15
Moth 0.53 0.18
Fish 0.56 0.21
Algae 0.49 0.14
Particle 0.56 0.19

Table 5.7: Swarm-based algorithms vs. Standard GA.

Chapter 5. Empirical Study 56

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Effect Size A12

(a) Effect size (% Relative Overall Coverage).

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p−value

(b) p-value (% Relative Overall Coverage).

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Effect Size A12

(c) Effect size (% Relative Mutation Score).

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p−value

(d) p-value (% Relative Mutation Score).

Figure 5.9: Distribution of effect sizes and p-values: Swarm-based algorithms vs. Stan-
dard GA.

Chapter 5. Empirical Study 57

5.7 RQ3: How does swarm-based search compare to many-
objective optimization algorithms?

In Figures 5.2 and 5.4, we can see that the absolute values achieved by MOSA and Dy-
naMOSA are clearly above the mean and higher than any BIAs’ values. When we look
at the relative coverage and mutation score the difference between the MOSAs and the
BIAs is even higher.

Figure 5.3 shows that for a larger number of classes, DynaMOSA and MOSA achieved
80% to 100% coverage and mutation score. This supports the observation made above,
that both MOSA and DynaMOSA achieved higher values than the BIAs.

Table 5.4 shows that DynaMOSA and MOSA achieved the highest values for relative
coverage (78.49% and 71.75%) and mutation score (73.55% and 68.65%) than the BIAs.
As for the number of generations (51 and 63), both have more than all BIAs, except the
Elephant (81). The generated solutions are clearly larger than the ones of the BIAs, having
more test cases and a higher average number of lines. DynaMOSA has an average of 46
test cases with an average of 168 lines while MOSA has 41 test cases with an average size
of 145.

Looking at Figures 5.5 and 5.6, we can see that both MOSA and DynaMOSA achieve
higher coverage values the higher the mutation score and number of generations is. When
it comes to Figure 5.7, DynaMOSA achieves higher coverage the larger the number of
tests, while MOSA’s performance was hardly influenced by it.

Table 5.8 reports the comparisons of 13 algorithms and Table 5.9 reports two direct
comparisons: BIAs vs. MOSA and BIAs vs. DynaMOSA. DynaMOSA is clearly the best
algorithm follow by MOSA in both relative coverage and mutation score. Both MOSAs
won the most tournaments and lost the fewest tournaments. As for the BIAs, they are
clearly below DynaMOSA and MOSA. In detail, for relative coverage, DynaMOSA with
74.11% tournaments won and 3.72% lost while MOSA has 61.74% won and 10.89% lost.
As for mutation score, DynaMOSA has 60.42% won and 2.13% lost while MOSA has
49.76% won and 8.35% lost.

When comparing bio-inspired algorithms with MOSA and DynaMOSA (see Table 5.9
and Figures 5.10 and 5.11), there are several statistically relevant results. MOSA per-
formed statistically better than Chicken and Algae, while DynaMOSA performed statisti-
cally better than Cat, Chicken, and Algae. In terms of mutation score, neither MOSA nor
DynaMOSA performed statistically better than any BIA.

RQ3: Many-objective optimization algorithms perform better than any single-objective
bio-inspired algorithm but only statistically better on three out of ten algorithms.

Chapter 5. Empirical Study 58

Tournaments Won Tournaments Lost
Algorithm Rank Â12 p-value # Â12 p-value # Â12 p-value

% Relative Overall Coverage
MOSA 2 0.71 0.08 2092 / 3388 0.88 < 0.01 369 / 3388 0.20 < 0.01
DynaMOSA 1 0.80 0.06 2511 / 3388 0.91 < 0.01 126 / 3388 0.20 < 0.01
Wolf 8 0.47 0.19 702 / 3388 0.81 < 0.01 983 / 3388 0.16 < 0.01
Bee 6 0.50 0.18 876 / 3388 0.82 < 0.01 896 / 3388 0.17 < 0.01
Whale 9 0.44 0.19 577 / 3388 0.82 < 0.01 1151 / 3388 0.18 < 0.01
Cat 7 0.48 0.20 746 / 3388 0.82 < 0.01 926 / 3388 0.18 < 0.01
Elephant 3 0.58 0.12 1475 / 3388 0.84 < 0.01 730 / 3388 0.16 < 0.01
Chicken 11 0.30 0.15 218 / 3388 0.79 < 0.01 1886 / 3388 0.12 < 0.01
Moth 10 0.42 0.17 575 / 3388 0.81 < 0.01 1236 / 3388 0.16 < 0.01
Fish 4 0.52 0.15 1099 / 3388 0.81 < 0.01 836 / 3388 0.16 < 0.01
Algae 12 0.28 0.15 183 / 3388 0.80 < 0.01 1969 / 3388 0.11 < 0.01
Particle 5 0.50 0.19 894 / 3388 0.80 < 0.01 840 / 3388 0.16 < 0.01

% Relative Mutation Score
MOSA 2 0.65 0.12 1686 / 3388 0.84 < 0.01 283 / 3388 0.24 < 0.01
DynaMOSA 1 0.73 0.11 2047 / 3388 0.87 < 0.01 72 / 3388 0.29 0.01
Wolf 5 0.48 0.29 435 / 3388 0.76 < 0.01 589 / 3388 0.19 < 0.01
Bee 7 0.47 0.27 452 / 3388 0.76 < 0.01 688 / 3388 0.20 < 0.01
Whale 10 0.44 0.28 283 / 3388 0.77 < 0.01 769 / 3388 0.20 < 0.01
Cat 8 0.46 0.28 367 / 3388 0.76 < 0.01 691 / 3388 0.20 < 0.01
Elephant 4 0.49 0.21 712 / 3388 0.79 < 0.01 792 / 3388 0.20 < 0.01
Chicken 11 0.41 0.25 262 / 3388 0.75 0.01 1039 / 3388 0.17 < 0.01
Moth 9 0.46 0.29 366 / 3388 0.75 < 0.01 694 / 3388 0.19 < 0.01
Fish 6 0.48 0.25 497 / 3388 0.78 < 0.01 686 / 3388 0.21 < 0.01
Algae 12 0.41 0.25 261 / 3388 0.75 < 0.01 1075 / 3388 0.17 < 0.01
Particle 3 0.50 0.28 540 / 3388 0.75 0.01 530 / 3388 0.19 < 0.01

Table 5.8: Pairwise tournament: Swarm-based algorithms, MOSA, and DynaMOSA.

Chapter 5. Empirical Study 59

vs MOSA vs DynaMOSA
Algorithm Â12 p-value Â12 p-value

% Relative Overall Coverage
Wolf 0.26 0.06 0.19 0.05
Bee 0.28 0.08 0.21 0.06
Whale 0.25 0.07 0.19 0.05
Cat 0.27 0.08 0.20 0.05
Elephant 0.34 0.10 0.26 0.08
Chicken 0.19 0.04 0.14 0.04
Moth 0.24 0.06 0.17 0.05
Fish 0.29 0.07 0.21 0.06
Algae 0.18 0.04 0.13 0.04
Particle 0.28 0.08 0.20 0.06

% Relative Mutation Score
Wolf 0.33 0.10 0.27 0.08
Bee 0.33 0.14 0.27 0.12
Whale 0.31 0.11 0.25 0.10
Cat 0.32 0.12 0.26 0.10
Elephant 0.34 0.12 0.29 0.12
Chicken 0.30 0.07 0.24 0.07
Moth 0.32 0.10 0.26 0.09
Fish 0.34 0.11 0.27 0.10
Algae 0.29 0.07 0.23 0.07
Particle 0.34 0.12 0.27 0.10

Table 5.9: Swarm-based algorithms vs. MOSA and Swarm-based algorithms vs. Dy-
naMOSA.

Chapter 5. Empirical Study 60

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Effect Size A12

(a) Effect size (% Relative Overall Coverage).

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p−value

(b) p-value (% Relative Overall Coverage).

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Effect Size A12

(c) Effect size (% Relative Mutation Score).

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p−value

(d) p-value (% Relative Mutation Score).

Figure 5.10: Distribution of effect sizes and p-values: Swarm-based algorithms vs.
MOSA.

Chapter 5. Empirical Study 61

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Effect Size A12

(a) Effect size (% Relative Overall Coverage).

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p−value

(b) p-value (% Relative Overall Coverage).

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Effect Size A12

(c) Effect size (% Relative Mutation Score).

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p−value

(d) p-value (% Relative Mutation Score).

Figure 5.11: Distribution of effect sizes and p-values: Swarm-based algorithms vs. Dy-
naMOSA.

Chapter 5. Empirical Study 62

5.8 RQ4: How does a hybrid that combines swarm-based
search with many-objective optimization performs?

When we look at Figures 5.2 to 5.4, we can see that Elephant-DynaMOSA has similar val-
ues to both MOSAs. This is further shown in Table 5.4 where Elephant-DynaMOSA has
very close values to the ones of MOSA: 71.82% of relative coverage and 67.74% of rela-
tive mutation score. When it comes to the number of generations, Elephant-DynaMOSA
has over double the value of the MOSAs, being the 2nd algorithm with the highest amount
of generations (146). This can be attributed to the low population number. As for the
number of test cases of the final solution, it is around the same as the other MOSAs, but
the average size of the tests is the biggest of all algorithms (184).

Figures 5.5 and 5.6 shows that Elephant-DynaMOSA is another algorithm that has
higher coverage values the higher the mutation score and number of generations is. Lastly,
in Figure 5.7, the performance of Elephant-DynaMOSA shows us that size is not a rele-
vant factor to its performance.

Table 5.10 shows that the performance of all algorithms according to the Vargha-
Delaney method. Elephant-DynaMOSA ranks 2nd in relative coverage behind DynaMOSA,
having won 60.66% of the tournaments and lost only 10.89%. For comparison pur-
poses, we will show the MOSAs and best BIA percentages: DynaMOSA won 71.65%
and lost 4.34%, MOSA won 58.81% and lost 11.81% and Elephant won 40.76% and
lost 23.78%. Elephant-DynaMOSA ranks 3rd in relative mutation score being worse than
the two MOSAs with 46.75% of tournaments won and lost only 8.32%. Looking at the
MOSAs and best BIA we have: DynaMOSA won 58.81% and lost 2.27%, MOSA won
48.10% and lost 8.52% and Particle won 16.63% and lost 18.43%.

When considering more direct comparisons in Table 5.11 and Figure 5.12, we have
a few statistically relevant results in the relative coverage. We can see that Elephant-
DynaMOSA is statistically better than Chicken and Algae. As for the other algorithms,
we can see that in general, the BIAs are worse than the hybrid, DynaMOSA is better and
MOSA is equal or better (coverage and mutation score, respectively).

RQ4: Elephant-DynaMOSA performances better than all the bio-inspired algorithms
(statistically better than Chicken and Algae) and the Standard GA; it has a similar
performance to MOSA (effect size equal to 0.50), and performs worse than Dy-
naMOSA.

Chapter 5. Empirical Study 63

Tournaments Won Tournaments Lost
Algorithm Rank Â12 p-value # Â12 p-value # Â12 p-value

% Relative Overall Coverage
Standard GA 9 0.45 0.11 1133 / 4004 0.83 < 0.01 1539 / 4004 0.13 < 0.01
MOSA 3 0.69 0.09 2355 / 4004 0.88 < 0.01 473 / 4004 0.20 < 0.01
DynaMOSA 1 0.78 0.07 2869 / 4004 0.90 < 0.01 174 / 4004 0.21 < 0.01
Wolf 10 0.45 0.18 815 / 4004 0.82 < 0.01 1319 / 4004 0.15 < 0.01
Bee 7 0.48 0.17 994 / 4004 0.82 < 0.01 1172 / 4004 0.17 < 0.01
Whale 11 0.43 0.18 661 / 4004 0.83 < 0.01 1469 / 4004 0.17 < 0.01
Cat 8 0.47 0.19 860 / 4004 0.82 < 0.01 1228 / 4004 0.17 < 0.01
Elephant 4 0.56 0.12 1632 / 4004 0.84 < 0.01 952 / 4004 0.17 < 0.01
Elephant-DynaMOSA 2 0.70 0.10 2429 / 4004 0.89 < 0.01 436 / 4004 0.19 < 0.01
Chicken 13 0.30 0.14 311 / 4004 0.81 < 0.01 2280 / 4004 0.11 < 0.01
Moth 12 0.41 0.16 683 / 4004 0.82 < 0.01 1581 / 4004 0.15 < 0.01
Fish 5 0.51 0.15 1235 / 4004 0.81 < 0.01 1120 / 4004 0.16 < 0.01
Algae 14 0.28 0.14 272 / 4004 0.82 < 0.01 2369 / 4004 0.11 < 0.01
Particle 6 0.49 0.17 1012 / 4004 0.81 < 0.01 1149 / 4004 0.16 < 0.01

% Relative Mutation Score
Standard GA 12 0.42 0.18 574 / 4004 0.78 < 0.01 1440 / 4004 0.19 < 0.01
MOSA 2 0.65 0.13 1926 / 4004 0.84 < 0.01 341 / 4004 0.24 < 0.01
DynaMOSA 1 0.72 0.12 2355 / 4004 0.87 < 0.01 91 / 4004 0.30 0.01
Wolf 6 0.48 0.27 551 / 4004 0.77 < 0.01 814 / 4004 0.19 < 0.01
Bee 8 0.47 0.26 551 / 4004 0.76 < 0.01 866 / 4004 0.20 < 0.01
Whale 11 0.44 0.26 361 / 4004 0.77 < 0.01 991 / 4004 0.20 < 0.01
Cat 9 0.46 0.27 461 / 4004 0.76 < 0.01 898 / 4004 0.20 < 0.01
Elephant 5 0.49 0.20 817 / 4004 0.79 < 0.01 981 / 4004 0.20 < 0.01
Elephant-DynaMOSA 3 0.64 0.16 1872 / 4004 0.83 < 0.01 333 / 4004 0.23 < 0.01
Chicken 13 0.41 0.23 362 / 4004 0.76 < 0.01 1298 / 4004 0.16 < 0.01
Moth 10 0.46 0.27 475 / 4004 0.76 < 0.01 918 / 4004 0.18 < 0.01
Fish 7 0.48 0.24 600 / 4004 0.78 < 0.01 883 / 4004 0.21 < 0.01
Algae 14 0.40 0.23 364 / 4004 0.76 < 0.01 1343 / 4004 0.16 < 0.01
Particle 4 0.50 0.27 666 / 4004 0.76 < 0.01 738 / 4004 0.20 < 0.01

Table 5.10: Pairwise tournament: All algorithms.

Chapter 5. Empirical Study 64

vs Elephant-DynaMOSA
Algorithm Â12 p-value

% Relative Overall Coverage
Standard GA 0.29 0.09
MOSA 0.50 0.19
DynaMOSA 0.64 0.17
Wolf 0.24 0.09
Bee 0.27 0.09
Whale 0.24 0.09
Cat 0.26 0.09
Elephant 0.32 0.15
Chicken 0.18 0.05
Moth 0.22 0.08
Fish 0.28 0.10
Algae 0.17 0.05
Particle 0.26 0.09

% Relative Mutation Score
Standard GA 0.32 0.13
MOSA 0.52 0.25
DynaMOSA 0.62 0.23
Wolf 0.34 0.15
Bee 0.34 0.17
Whale 0.32 0.14
Cat 0.33 0.15
Elephant 0.34 0.16
Chicken 0.30 0.11
Moth 0.32 0.14
Fish 0.34 0.15
Algae 0.29 0.11
Particle 0.35 0.16

Table 5.11: All algorithms vs. Elephant-DynaMOSA.

Chapter 5. Empirical Study 65

Standard GA

MOSA

DynaMOSA

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Effect Size A12

(a) Effect size (% Relative Overall Coverage).

Standard GA

MOSA

DynaMOSA

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p−value

(b) p-value (% Relative Overall Coverage).

Standard GA

MOSA

DynaMOSA

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Effect Size A12

(c) Effect size (% Relative Mutation Score).

Standard GA

MOSA

DynaMOSA

Wolf

Bee

Whale

Cat

Elephant

Chicken

Moth

Fish

Algae

Particle

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p−value

(d) p-value (% Relative Mutation Score).

Figure 5.12: Distribution of effect sizes and p-values: All algorithms vs. Elephant-
DynaMOSA.

Chapter 5. Empirical Study 66

5.9 Summary

In this chapter, we saw how the experiments were set up, how they were performed and
their results. We provided answers to the RQs presented in Section 5.1, report the average
values of several metrics, and the statistical analysis described in Section 5.2.5.

Table 5.12 reports another statistical method to rank the algorithms, the Friedman
ranking test. It compares all algorithms at the same time and the lower the ranking
value the better. As we have seen before, the MOSA, DynaMOSA, and the Elephant-
DynaMOSA algorithms are the best ranking algorithms. There are some differences from
the pairwise tournament ranking, e.g., MOSA is ranked higher than Elephant-DynaMOSA
in overall coverage. These differences happen due to the way the two methods rank the
algorithms: Vargha-Delaney compares two algorithms at a time while Friedman ranking
test compares all algorithms at once (more information in Section 5.2.4).

Algorithm Value σ CI Rank σ CI

% Relative Overall Coverage (χ2 = 1443.62, p-value < 0.01)
Standard GA 57.72 27.21 [54.82, 60.68] 8.31 4.63 [7.81, 8.83]
MOSA 71.75 21.63 [69.31, 74.31] 4.38 3.35 [4.01, 4.75]
DynaMOSA 78.48 19.38 [76.15, 80.62] 2.84 3.00 [2.51, 3.16]
Wolf 57.14 24.14 [54.50, 59.85] 8.25 2.70 [7.95, 8.57]
Bee 60.12 23.85 [57.67, 62.69] 7.57 2.72 [7.27, 7.86]
Whale 57.35 23.65 [54.80, 59.81] 9.04 2.64 [8.76, 9.33]
Cat 59.26 23.54 [56.74, 61.77] 7.99 2.39 [7.74, 8.27]
Elephant 64.38 22.58 [61.80, 67.00] 6.36 3.59 [5.96, 6.77]
Elephant-DynaMOSA 71.81 21.47 [69.73, 74.37] 4.48 3.63 [4.05, 4.90]
Chicken 45.28 27.71 [41.92, 48.43] 11.02 2.81 [10.72, 11.37]
Moth 54.47 24.89 [51.72, 57.20] 9.13 2.89 [8.80, 9.47]
Fish 60.10 24.41 [57.26, 62.82] 6.91 2.95 [6.57, 7.24]
Algae 43.55 28.70 [40.41, 46.51] 11.51 3.19 [11.17, 11.88]
Particle 58.83 23.66 [56.22, 61.40] 7.20 2.70 [6.91, 7.51]

% Relative Mutation Score (χ2 = 1020.57, p-value < 0.01)
Standard GA 55.74 27.78 [52.58, 58.91] 9.44 4.33 [8.92, 9.94]
MOSA 68.65 25.07 [65.73, 71.36] 4.51 3.59 [4.09, 4.89]
DynaMOSA 73.55 23.47 [70.88, 75.99] 3.18 3.23 [2.81, 3.52]
Wolf 58.08 27.72 [55.20, 61.27] 7.58 3.11 [7.25, 7.94]
Bee 58.77 26.99 [55.89, 61.75] 7.92 2.98 [7.56, 8.24]
Whale 56.88 26.60 [54.23, 59.71] 9.25 2.75 [8.93, 9.58]
Cat 58.04 26.93 [54.94, 61.16] 8.45 2.80 [8.15, 8.77]
Elephant 59.32 26.53 [56.60, 62.40] 7.84 3.80 [7.38, 8.25]
Elephant-DynaMOSA 67.74 25.11 [65.07, 70.52] 4.75 3.50 [4.35, 5.13]
Chicken 53.54 30.32 [50.21, 56.95] 9.41 3.42 [9.02, 9.81]
Moth 56.92 28.29 [54.07, 60.08] 8.27 2.87 [7.96, 8.59]
Fish 58.41 27.08 [55.36, 61.64] 7.98 3.16 [7.62, 8.36]
Algae 53.01 31.07 [49.69, 56.47] 9.56 3.61 [9.17, 9.98]
Particle 59.07 27.33 [56.08, 62.27] 6.85 2.80 [6.54, 7.16]

Table 5.12: Friedman ranking test.

Chapter 5. Empirical Study 67

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.25 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0.29 0

0 0 0 0

0 0 0.25

0 0

0

Algae

Cat

Chicken

DynaMOSA

Elephant−DynaMOSA

Elephant

Fish

Bee

Wolf

MOSA

Moth

Particle

Standard GA

C
a

t

C
h

ic
k
e

n

D
y
n

a
M

O
S

A

E
le

p
h

a
n

t−
D

y
n

a
M

O
S

A

E
le

p
h

a
n

t

F
is

h

B
e

e

W
o

lf

M
O

S
A

M
o

th

P
a

rt
ic

le

S
ta

n
d

a
rd

 G
A

W
h

a
le

0.00

0.25

0.50

0.75

1.00
p−value

(a) % Relative Overall Coverage.

0 0.06 0 0 0 0 0 0 0 0 0 0.13 0

0 0 0 0 0 0 0 0 0.02 0 0 0

0 0 0 0 0 0 0 0 0 0.66 0.05

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0.1 0.66 0 0 0 0 0 0

0.66 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0.02

Algae

Cat

Chicken

DynaMOSA

Elephant−DynaMOSA

Elephant

Fish

Bee

Wolf

MOSA

Moth

Particle

Standard GA

C
a

t

C
h

ic
k
e

n

D
y
n

a
M

O
S

A

E
le

p
h

a
n

t−
D

y
n

a
M

O
S

A

E
le

p
h

a
n

t

F
is

h

B
e

e

W
o

lf

M
O

S
A

M
o

th

P
a

rt
ic

le

S
ta

n
d

a
rd

 G
A

W
h

a
le

0.00

0.25

0.50

0.75

1.00
p−value

(b) % Relative Mutation Score.

Figure 5.13: Conover posthoc test’s p-values of the Friedman ranking test.

Figure 5.13 shows the p-values of the Friedman test and we can see which compar-
isons are statistically relevant (i.e., p-value less than 0.05). This shows whether that the
ranking of the algorithms is consistent throughout all classes, e.g., DynaMOSA is always
better than Cat as the p-value is 0. If the p-value is 1, that means two algorithms are
always changing the ranks between each other. In Figure 5.13, the cases that stand out the
most are the three 0.66 values in mutation score, which show that the algorithms in the
following pairs, Bee and Fish, Bee and Elephant, and Standard GA and Chicken, change
the ranking among themselves quite frequently.

Although we have studied in detail the performance of bio-inspired algorithms vs.
state-of-the-art algorithms, there are still several questions that need to be answered. In
the following chapter, we are going to discuss several aspects and insights of our results
that were not covered in this chapter: the performance of the algorithms throughout the
execution, what makes an algorithm the best in some classes, generalisation of the results,
among others.

Chapter 5. Empirical Study 68

Chapter 6

Discussion

In this chapter, we propose and discuss three hypotheses (one in each section). To answer
these hypotheses we analysed the results of the previous chapter from another point of
view.

In Section 6.1 we examine the reasons that allow an algorithm to reach its level of
coverage in certain classes. While in Section 6.2 we explain the causes behind the lim-
itations of the coverage values in several classes, regardless of the algorithm. Lastly, in
Section 6.3 we interpret the results of a 3rd experiment with a larger budget, which show
how all 14 algorithms evolve during their execution allowing us to see whether the results
would be the same as in the previous study.

6.1 The algorithm with the highest overall coverage is
best in all classes

In the previous chapter, we saw how DynaMOSA has the highest overall coverage and
it is also statistically better than all the other algorithms. However, does that mean that
DynaMOSA is the best in all classes? No, as we can see in Table 6.1 six algorithms are
considered statistically better in a certain number of classes. As expected DynaMOSA
is the algorithm with the highest number of classes. On the other hand, Standard GA
which had a relatively poor performance is actually the 3rd algorithm with more classes
and MOSA has a very low number of classes where it is statistically the best algorithm.

In Table B.1, we can see detailed information about the best class out of all classes
selected in Table 6.1 per algorithm. This means that these classes are the ones where the
algorithms have the best results in comparison to all the other algorithms. They are the
classes that best highlight the algorithms in Table 6.1. Table B.1 has the name of the class,
the number of generations, the number of test cases and their average size, the absolute
and relative values of coverage, and the effect size and p-value. An effect size of 1 means
the algorithm was the best in all criteria in all 30 runs.

In Figures C.1 to C.6, we can see all criteria used to measure the coverage, the number

69

Chapter 6. Discussion 70

Algorithm # C % Relative Overall Coverage Â12 p-value

Standard GA 7 57.72 (69.87) 0.89 < 0.01
MOSA 2 71.75 (72.96) 0.92 < 0.01
DynaMOSA 90 78.49 (74.91) 0.95 < 0.01
Elephant 1 64.38 (71.09) 0.92 < 0.01
Elephant-DynaMOSA 13 71.82 (72.99) 0.90 < 0.01
Fish 1 60.10 (69.61) 0.92 < 0.01

Table 6.1: # C represents the number of classes where the algorithms were statistically
better than all others, the values between parentheses represents the absolute values, and
Â12 is the effect size of the algorithm in the selected classes.

of targets in each criterion (columns), the number of targets that were covered by more
than half of the runs and how many runs the algorithm managed to covered the targets
(colours). This allows us to see how each algorithm can reach the values of coverage in
Table B.1 and what makes them the best or worse for the class. The higher the number
of runs each algorithm is able to cover the targets in all criteria, the higher coverage will
be. One cannot forget that all criteria have the same weight, so the value of each target
takes that into account, i.e., the more targets a criterion has, the fewer coverage percentage
those targets represent on an individual level.

In Figure C.1 we can see that Elephant-DynaMOSA is clearly the best algorithm since
it is the algorithm with the most targets covered in at least 16 out of 30 runs in every single
criterion. Looking at the colours we can also see that it is the algorithm that is the more
consistent in all criteria. In Method and No Method Exception, it has similar performance
to other algorithms and it is in the other criteria that the difference is clear. On the other
hand, we can also identify Standard GA as the worst algorithm looking at both the colours
and numbers beside the names.

In Figure C.5, we can see exactly why Fish, Standard GA, MOSA and DynaMOSA
have the highest coverage and the likes of Algae and Chicken have the lowest values.
Ignoring the few criteria where all algorithms have the same performance, we can see that
Algae and Chicken are the algorithms we the lowest number of targets covered throughout
the executions, in many cases having very low values. On the other hand, the four best
algorithms are the ones with the highest number of targets covered in more than half the
executions. Though there are several differences among them. E.g., DynaMOSA and
MOSA have better performance in branch and cbranch (difference in the colours). While
Standard GA and Fish are better in output. The reason why Fish is the best algorithm in
this class is that it is the most consistent taking into account all criteria.

The algorithm with the highest overall coverage is best in all classes False, the
algorithm with the highest overall coverage is not the best in all classes. There are a
total of six algorithms that are statistically better than all others in certain classes.

Chapter 6. Discussion 71

6.2 Any algorithm can execute more than 50% of the
classes

Ideally, to catch as many bugs in the source code as possible we want 100% coverage in
all criteria. This means that the more code is executed by the test suites, the more likely
it is to find and get rid of bugs. The algorithms used in this thesis were implemented to
create test suites capable of reaching high coverage values in all kinds of classes.

However, out of all 308 classes used in the main experiment, there were 54 (17.5%)
that regardless of the algorithm always had low absolute coverage. We can see in Fig-
ure 6.1 the classes that, regardless of the algorithm, have a maximum of 50% coverage.
As we have already seen in Table 5.4, the algorithm with the lowest overall coverage
achieved 65.89%, which is a much higher value than the mark of 50% used in this sec-
tion.

So, why is it that the best algorithms for the classes presented in Figure 6.1 have
significantly lower values than the lowest overall value?

One reason may be the limitations of the algorithms and/or operations used, e.g., a
new algorithm could be able to explore more of the search space. Or the time budget was
not enough for the algorithms to explore these 54 classes and reach higher percentages of
coverage.

We also analysed the source of several of the classes present in Figure 6.1 and believe
that the limitations of EvoSuite as a testing tool are also a reason for the low coverage. In
the case of class Predicates from project guava, all that its methods do is create instances
of its nested classes and interact with the enumerate that is inside the class. This shows
that EvoSuite had trouble exploring the nested classes in detail, achieving coverage of
around 40%. On the other hand, on class ConsumerGUI from project water-simulator,
EvoSuite only achieved coverage of around 10%. With this class, we can see that Evo-
Suite has problems handling graphical user interfaces. The coverage value is not 0% due
to exception coverage and method coverage criteria (EvoSuite caught the single exception
and called the constructor). In class WikipediaInfo from project wikipedia, the majority of
the public methods require at least one of the same two objects as parameters. The other
public methods do not require parameters. From the fact that the coverage achieved is
around 40%, we can assume that most of the methods were called. This allows the cover-
age of several lines of code at the beginning of the methods that are just the initialization
of simple variables. However, once we look past those “easy” lines, we have calls for
methods from project-specific classes. We believe that the reason for the low coverage
is the fact EvoSuite is unable to execute these methods. Another case is class MP3 from
project celwars2009, where despite its simplicity, it only reached 40% coverage. Looking
at the source code, we saw that the problem in this class is in the fact EvoSuite is not
able to generate valid music files. EvoSuite can initialize the variables but cannot read

Chapter 6. Discussion 72

% Overall Coverage

 0 10 20 30 40 50

Abrir

AbstractResources

Battle

battlecryGUI

BrentOptimizer

Capture

ClassReader
ClassViewer

ConsumerAgent

ConsumerGUI Convert

Evaluation

Fps370Panel

HomeController

HttpAnalyzerView

InteractionAdjuster

JsDocInfoParser

Menu

MethodWriter

Monitor

MovePage

Newzgrabber

Parser

Predicates

Purchase

RoomController

Scanner

SweetHome3D

Table

TederFrame

TwitterBaseImpl

TwitterImpl

UserManagement

WikipediaInfo

Figure 6.1: Classes with a maximum of 50% absolute coverage

the information of the music file created because its content is null. This causes both
line coverage and branch coverage criteria to have low values. Nonetheless, due to its
simplicity, several coverage criteria always have 100% coverage, e.g., method coverage
(constructor initializes some variables with null values and calls the only other method)
and output coverage (has no goals, so EvoSuite automatically assigns 100% coverage).

After this analysis, we can see that although EvoSuite is a state-of-the-art testing tool
there is still room for improvement. These improvements can be extending EvoSuite so
that it can generate more types of files or making EvoSuite able to work with graphical
user interfaces.

Any algorithm can execute more than 50% of the classes: False, there are 54
classes where the algorithms could not achieve 50%. The reasons for this are the
limitations of EvoSuite, the time budget was too small or the algorithms have trouble
optimizing these classes in specific.

6.3 The performance of the algorithms increases with a
larger budget

After we analysed the results in Chapter 5, we wondered if the values obtained would
change if we had a different time budget. Is it possible to increase the performance if the
algorithms had more time to optimize the solution? Maybe that is the reason why 100%
coverage was not achieved.

So we decided to perform another experiment in which we had all 14 algorithms
running their best configurations in all 312 classes during one hour. In this experiment, we
decided to only use one seed since it takes a great amount of time to finish the execution
and we did not have enough time to run several seeds.

Chapter 6. Discussion 73

77%

Standard GA

MOSA

DynaMOSA

Wolf

Bee

Whale

Cat

Elephant

Elephant−DynaMOSA

Chicken

Moth

Fish

Algae

Particle

0 10 20 30 40 50 60 70 80 90 100

% Overall Coverage

(a) Distribution of overall coverage.

69%

Standard GA

MOSA

DynaMOSA

Wolf

Bee

Whale

Cat

Elephant

Elephant−DynaMOSA

Chicken

Moth

Fish

Algae

Particle

0 10 20 30 40 50 60 70 80 90 100

% Relative Overall Coverage

(b) Distribution of relative overall coverage.

Figure 6.2: Overall Coverage distribution by each algorithm in the one hour experiment.
The grey line represents the mean of all algorithms, while the symbol * is the mean of
each algorithm.

Looking at Figure 6.2, we can see the distribution of the overall coverage and relative
coverage during the one hour experiment. In terms of absolute coverage, we have three
outliers that are the only algorithms clearly below average: Algae, Chicken and Fish.
All the other algorithms are around or above the average value. Comparing the average
with Figure 5.2a from the comparison experiment, we can see an increase of around 7%.
When it comes to the distribution of the relative coverage, it is very easy to see several
differences among the algorithms. Algae has very low values, follow by Chicken. Fish
and Moth are the other two algorithms below average. The algorithms that stand out with
the highest values are Standard GA, DynaMOSA, MOSA and Elephant-DynaMOSA.

In Figure 6.3, the most noticeable aspect is the high-density values for the low relative
coverage values by Algae and Chicken. Just like the previous experiment, most of the
classes tested by these two algorithms ended up with low coverage values in comparison

Chapter 6. Discussion 74

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60 70 80 90 100

% Relative Overall Coverage

D
e
n
s
it
y

Algorithm

Standard GA

MOSA

DynaMOSA

Wolf

Bee

Whale

Cat

Elephant

Elephant−DynaMOSA

Chicken

Moth

Fish

Algae

Particle

Figure 6.3: Density of the relative coverage in the one hour experiment.

to the other algorithms.

Table 6.2 shows the summary of the values obtained during the one hour experiment.
Looking at the differences in absolute values between DynaMOSA (highest values) and
Algae (lowest values), we obtained 15.3% and 15.35% for coverage and mutation score.
If we look at the relative values, the difference is massive, with 70.01% for coverage and
49.42% for mutation score. Another thing of note is the fact that all algorithms except
Algae and Chicken show an increase in the number and length of the test cases. Also,
when it comes to the length Elephant-DynaMOSA has a much larger number than all the
other algorithms.

Comparing Table 6.2 to Table 6.2 from the previous experiment, we can observe that
the difference in relative values is clearly larger. This proves that the difference in the
performance of the best and worst algorithms is much larger with the increase in time
budget. Looking closer to the coverage, we can see that there are two major differences
between the results: Standard GA is the 3rd algorithm with the highest coverage (was the
9th) and Fish ended up in 12th (was the 6th). With these coverage values is almost certain
that the answers to the RQ2 would change since Standard GA is one of the algorithms
with the highest coverage. As for the answer to RQ1, the best algorithm would be a close
call between Elephant and Bee. Finally, the answer to RQ3 and RQ4 has a fair chance
to change because DynaMOSA, MOSA, Standard GA, Elephant-DynaMOSA, Elephant
and Bee have all achieved a relative coverage close to 80%. One interesting fact is that
Algae has lower values during the one hour experiment than the comparison experiment.
The reason behind this fact may also be the case of the two major differences between
the results of the experiments. This reason is that in the experiment that ran each class
for one hour a total of 54 classes were discarded (the comparison experiment only had
4). Perhaps the 50 extra classes excluded would increase the coverage achieved by the
Fish and do the opposite for Standard GA. We conjecture these classes would increase

Chapter 6. Discussion 75

% Relative Overall % Relative Mutation
Algorithm # G Coverage σ CI Score σ CI # T L

Standard GA 57394 81.39 (79.50) 26.28 [78.15, 84.60] 66.91 (51.64) 34.03 [62.88, 71.28] 49 217
MOSA 7809 82.76 (79.89) 27.13 [79.78, 86.42] 73.92 (53.66) 32.06 [69.66, 77.69] 60 289
DynaMOSA 6832 83.29 (80.59) 29.44 [79.72, 86.90] 78.69 (55.24) 30.50 [75.17, 82.61] 60 277
Wolf 1288 70.35 (76.99) 29.16 [66.70, 73.86] 63.12 (50.73) 34.21 [59.34, 67.19] 44 169
Bee 1799 79.93 (79.42) 25.52 [76.96, 82.95] 69.23 (52.25) 32.46 [65.01, 73.33] 49 195
Whale 3148 73.65 (77.66) 26.64 [70.63, 76.94] 61.94 (49.86) 33.94 [57.99, 66.15] 45 187
Cat 2269 76.46 (78.35) 26.81 [73.26, 79.88] 65.36 (51.42) 33.06 [61.31, 69.74] 47 202
Elephant 9241 79.30 (79.11) 25.72 [76.31, 82.28] 66.16 (51.52) 33.32 [62.04, 70.38] 50 248
Elephant-DynaMOSA 15785 80.18 (79.11) 29.50 [76.70, 83.48] 75.74 (54.22) 29.72 [72.21, 79.37] 65 452
Chicken 2748 37.98 (71.22) 35.62 [33.53, 42.18] 40.43 (43.53) 40.04 [35.44, 45.02] 33 113
Moth 883 68.12 (76.67) 28.75 [64.51, 71.83] 59.90 (49.99) 35.30 [55.58, 64.45] 43 170
Fish 4680 62.82 (73.76) 32.87 [58.50, 67.18] 56.41 (47.86) 35.73 [52.27, 61.03] 44 183
Algae 1206 13.28 (65.29) 30.81 [9.66, 17.19] 29.27 (39.89) 40.59 [24.11, 34.25] 30 94
Particle 916 74.43 (78.18) 26.82 [71.05, 77.91] 65.45 (51.51) 31.81 [61.54, 69.32] 45 180

Table 6.2: # G represents the average number of generations, the values between paren-
theses represents the absolute values, # T represents the average number of test cases
generated by each algorithm across all classes under test, and L represents the average
length (i.e., number of lines) of the generated test cases.

the coverage value of Algae because it is very unusual for the performance to decrease
with such a big increase in the time budget. Though more unlikely, there is a chance that
the Algae is just not suitable for this task and ended up blocked in a local optimum. This
reflects an inefficiency to explore the search space.

Analysis throughout the execution

To not only see the final values of the experiment, we decided to analyse the evolution
of the values throughout the execution. Here we have the overall coverage and overall
diversity values of all the algorithms. This not only allows us to see how the values
evolved during the execution but also compare the difference in the evolution of the values
in the first minute and the other 59 minutes.

In Figure 6.4 we can see the evolution of coverage, with the black points referring to
the first minute and the red ones to time after that. All algorithms evolve the coverage
the fastest in the black points and after that, there are some differences between the algo-
rithms: Algae seems to not evolve any further, others show a small increase of around 5%
(e.g., MOSA) and the final group are the algorithms with a substantial increase (e.g., Stan-
dard GA with almost 20%). This reflects the different capability between the algorithms
to not be stuck in a local optimal solution and always try to reach a better solution.

Figure 6.5 also has different colours to distinguish the first minute from the rest. In
the first minute, all algorithms except Elephant and Standard GA have a big variation in
the diversity values. They share the same pattern between them, starting with very low
values and at around 15 seconds a steep increase in values start until it reaches values
close to 1 at around 30 seconds. On the other hand, Elephant and Standard GA start with

Chapter 6. Discussion 76

Algae Particle

Moth Fish

Elephant−DynaMOSA Chicken

Cat Elephant

Bee Whale

DynaMOSA Wolf

Standard GA MOSA

1 2 3 4 5 6 7 8 10 15 20 30 40 60
120

300
600

1200
2400

3600 1 2 3 4 5 6 7 8 10 15 20 30 40 60
120

300
600

1200
2400

3600

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Seconds

C
o
ve

ra
g

e
T

im
e

lin
e

Figure 6.4: Evolution of the overall coverage in the one hour experiment.

higher values and then, show a slight increase and steep decrease, respectively. The rea-
son for the difference in the starting points, even though the initial populations are the
same between all algorithms, is the fact that only Elephant and Standard GA does not
need several seconds to create the initial population. This happens because they have a
smaller population number making the start much faster. For the remaining 59 minutes,
we have several algorithms (e.g., Elephant) that maintain a similar value of diversity while
others have a gradual decrease (e.g., Bee). Higher values of diversity mean the algorithm
is favouring exploration over exploitation, while lower values mean the opposite. E.g.,
Standard GA selects the two best individuals per generation and uses them as references
for all new individuals. This makes the population converge towards the best individu-
als. Elephant always maintains a high diversity since it replaces all members of the clan
(except matriarch) with new random individuals. Thus, we can see the behaviours of the
algorithms throughout the execution. One interesting fact is that in general, algorithms
that focus the most on exploitation have better coverage values than the other algorithms.
Moth and Elephant are the algorithms that go against this tendency.

The performance of the algorithms increases with a larger budget: True, almost
all algorithms manage to obtain higher values with a larger budget. However, the
increase in performance is small for most cases and the increase in resources (e.g.,
time) is very large, making it needless in most cases.

Chapter 6. Discussion 77

Particle

Fish Algae

Chicken Moth

Cat Elephant

Bee Whale

Standard GA Wolf

1 2 3 4 5 6 7 8 10 15 20 30 40 60
120

300
600

1200
2400

3600

1 2 3 4 5 6 7 8 10 15 20 30 40 60
120

300
600

1200
2400

3600

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Seconds

D
iv

e
rs

it
y
T

im
e

lin
e

Figure 6.5: Evolution of the diversity in the one hour experiment. Due to the limitations
of EvoSuite, we could not obtain the values of diversity of DynaMOSA, MOSA and
Elephant-DynaMOSA.

6.4 Summary

In this chapter, we answered the three hypotheses we proposed at the beginning of the
chapter. We explain why the best overall algorithm is not the best in all classes, we
saw the reasons that make several classes have low coverage values regardless of the
algorithm used and in the end, we analysed the values obtained in our 3rd experiment.
This experiment allows us to see in more detail the impact the time budget has on the
performance of the algorithms.

Chapter 6. Discussion 78

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Meta-heuristic algorithms have several applications, e.g., SBST where these algorithms
are responsible for the automatic generation of test suites optimized for code coverage.
The EIAs were shown to be the best algorithms for SBST, being superior to random
algorithms. However, there are groups of algorithms that remain largely unexplored in
this context, e.g., the BIAs. This leads to the questions such as: How good are the BIAs
in SBST?

The work described in this study focus on the implementation and evaluation of BIAs
in SBST. The implementation of BIAs in EvoSuite required several adaptions in each
algorithm. As for the evaluation, it consists of an empirical study divided into two ex-
periments: tuning and comparison experiments. In the first one, the parameters of the
algorithms were tweaked to find the best configuration for each algorithm. In the com-
parison experiment, the best configuration of each algorithm executed 312 classes for 60
seconds with 30 seeds.

The results obtained through the use of Vargha-Delaney and Friedman test statisti-
cal methods show that Elephant is the BIA with the best performance. And also that
Standard GA is inferior in comparison to Elephant. Nonetheless, Elephant was not the
best algorithm, as it was surpassed by both MOSA and DynaMOSA. As for the perfor-
mance Elephant-DynaMOSA, it was similar to that of the MOSA and worse than the
performance of DynaMOSA. With this DynaMOSA maintained the position of the state-
of-the-art algorithm, as it was the algorithm with the best performance.

Afterwards, three hypotheses were proposed and discussed: The algorithm with the
highest overall coverage is the best in all classes, any algorithm can execute more than
50% of the classes and the performance of the algorithms increases with a larger budget.
DynaMOSA was not the best in all classes. In total, six algorithms were statistically better
than all others in a certain number of classes. So, the first hypothesis is false. The second
hypothesis is also false since 17.5% of classes achieved less than 50% coverage value.

79

Chapter 7. Conclusion and Future Work 80

One of the reasons is the fact that EvoSuite was unable to generate the required inputs to
test the classes. To check the validity of the third hypothesis, another experiment was run
where the best configurations of the algorithms were executed during one hour with one
seed. The results of this experiment were that the average coverage increased by 7% and
that the improvement of coverage past the 60 seconds mark was small in the majority of
algorithms. With this, it was proven that the hypothesis is true but the number of extra
resources necessary makes this improvement in performance unnecessary for most cases.

7.2 Future Work

In this study, BIAs showed some potential in SBST but this is just a small sample of BIAs.
There are many BIAs that remain unexplored so we suggest adapting them to SBST and
evaluate their performance.

Our results showed that the hybrid Elephant-DynaMOSA was superior to the BIAs
and was among the top three algorithms. This hybrid combines the aspects of BIAs
with MOAs, which leads us to suggest further experimentation with hybrid algorithms.
Another observation taken is the fact that the best three algorithms consider test cases as
individuals while the other algorithms use test suites as a representation of the individual.
Perhaps optimizing algorithms using test cases as individuals might lead to better results.

In the future, we intend to evaluate the enhanced Multiple-Searching Genetic Algo-
rithm which has already shown promising results in SBST, surpassing six GAs, Chemical
Reaction Optimization and Random Search.

Looking at Section 6.1, where it is possible to see the performance of the algorithms
per fitness criterion, we thought about seeing which algorithms are the best per criteria
and create a multi-algorithm with those algorithms. The idea is for the multi-algorithm to
select the algorithms within and adapt to the criteria chosen.

We also suggest future work in extending EvoSuite to solve several of the problems
that make several classes impossible or very hard to get good coverage values, e.g., in-
crease the number of types of files that EvoSuite can generate.

Appendix A

Details of the Java projects and classes
used in the empirical evaluation

This table presents all 117 open-source Java projects and 346 Java classes used in this
study. It shows the name of the project and class, whether the class was used in tuning
(type equals training) or comparison experiment (type equals testing), the number of lines
(column #L) and branches (column #B).

Project Class Type # L # B

tullibee c.i.c.ExecutionFilter testing 20 20
tullibee c.i.c.ComboLeg testing 23 21
water-simulator s.C.g.ConsumerGUI testing 163 59
water-simulator s.C.ConsumerAgent testing 301 137
jgaap jgaapGUI testing 237 23
netweaver c.s.m.s.a.s.HeapInfo testing 70 73
netweaver c.s.m.s.a.s.J2EEApplicationAlias testing 56 69
squirrel-sql n.s.s.c.p.GlobalPreferencesSheet testing 149 51
squirrel-sql n.s.s.f.g.CascadeInternalFramePositioner testing 31 21
sweethome3d c.e.s.v.HomeController testing 928 618
sweethome3d c.e.s.v.RoomController testing 283 154
sweethome3d c.e.s.SweetHome3D testing 374 228
sweethome3d c.e.s.j.Room3D testing 360 353
vuze c.a.a.u.s.s.SWTSkinObjectContainer testing 154 119
vuze c.a.a.u.s.f.FeatureManagerUIListener testing 196 134
freemind f.e.ExportHook training 76 29
freemind a.p.t.JDayChooser testing 400 208
weka w.c.Memory training 48 29
weka w.c.Evaluation testing 1378 809
weka w.c.b.n.s.c.ICSSearchAlgorithm testing 188 267
weka w.c.FindWithCapabilities testing 387 247
liferay c.l.p.k.s.f.i.FilterMapping testing 81 93
liferay c.l.p.d.m.DLSyncWrapper testing 128 78
pdfsam j.HelpCmdLineHandler training 56 41
pdfsam o.p.g.b.t.c.JPodThmbnailCallable testing 50 17
imsmart c.i.s.HTMLFilter testing 18 15
firebird o.f.g.i.w.AbstractJavaGDSImpl testing 1717 1040
firebird o.f.j.FBProcedureCall testing 117 98
firebird o.f.e.EncodingFactory testing 242 195
dsachat d.s.Handler testing 186 98

81

Appendix A. Details of the Java projects and classes used in the empirical evaluation 82

dsachat d.c.g.InternalChatFrame testing 189 69
jdbacl o.d.j.SQLUtil testing 251 188
jdbacl o.d.j.DBUtil testing 324 197
omjstate u.m.j.j.s.Transition testing 36 30
beanbin n.s.b.r.MethodReflectionCriteria testing 61 47
beanbin n.s.b.r.ReflectionSearch testing 52 41
inspirento c.a.i.u.XmlElement testing 156 95
inspirento c.a.i.u.MainMenu testing 54 27
jsecurity o.j.w.f.a.BasicHttpAuthenticationFilter testing 51 36
jsecurity o.j.w.DefaultWebSecurityManager training 97 67
jsecurity o.j.u.AntPathMatcher testing 172 170
jmca c.s.C.J.J.JavaCharStream testing 239 216
jmca c.s.C.J.J.JavaParserTokenManager training 981 1707
jmca c.s.C.J.J.JavaParser testing 4940 7938
jmca c.s.C.J.JMCAAnalyzer testing 222 199
a4j n.k.a.D.Product testing 62 31
a4j n.k.a.f.FileUtil training 357 125
geo-google g.g.d.GeoStatusCode testing 18 23
geo-google g.g.m.AddressToUsAddressFunctor testing 37 30
byuic c.y.p.y.c.ScriptOrFnScope testing 79 39
byuic c.y.p.y.c.YUICompressor training 127 87
byuic c.y.p.y.c.JavaScriptCompressor training 475 561
byuic o.m.j.Parser testing 1211 735
jwbf n.s.j.m.a.e.MovePage testing 64 52
jwbf n.s.j.m.a.q.TemplateUserTitles testing 39 45
saxpath o.s.Axis testing 43 55
saxpath c.w.s.XPathLexer testing 250 484
jipa j.Main testing 161 134
jipa j.Variable testing 37 23
gangup g.AudioManager testing 89 32
apbsmem a.Main training 815 388
apbsmem j.p.PlotAxis testing 88 41
bpmail c.b.e.c.t.MessageList testing 44 27
xisemele n.s.x.i.OperationsHelperImpl testing 31 27
httpanalyzer h.HttpAnalyzerView testing 960 200
httpanalyzer h.Password testing 120 56
javaviewcontrol c.p.j.t.TokenMgrError testing 35 32
javaviewcontrol c.p.j.t.JVCParser testing 355 223
javaviewcontrol c.p.j.t.JVCParserTokenManager testing 1350 2380
corina c.f.TucsonSimple testing 55 55
schemaspy n.s.s.m.x.TableMeta testing 27 17
schemaspy n.s.s.m.Table testing 438 380
petsoar o.p.o.CreditCardInfo testing 14 16
petsoar o.p.s.l.DefaultLuceneDocumentFactory testing 94 47
javabullboard f.u.StringUtils testing 148 98
javabullboard f.u.j.JDBCUtils testing 214 141
diffi d.b.s.h.IndexedString testing 30 20
diffi d.b.s.StringIncrementor testing 57 35
rif c.d.r.s.t.WebServiceDescriptor testing 31 21
glengineer g.b.Block testing 42 23
glengineer g.a.GroupAgent testing 157 115
follow g.f.g.TabbedPane testing 31 20
follow g.f.s.SearchableTextPane training 81 35
asphodel o.a.DefaultRepositoryManager testing 73 42
lilith d.h.l.d.a.AccessEvent training 86 134
summa o.a.l.s.e.c.NamedCollatorComparator testing 42 30

Appendix A. Details of the Java projects and classes used in the empirical evaluation 83

summa o.a.l.s.e.ExposedTimSort testing 376 372
summa d.s.s.s.d.StatementHandler training 84 108
summa d.s.s.s.h.InteractionAdjuster testing 373 279
lotus l.c.p.Phase testing 21 28
lotus l.c.Game testing 30 24
nutzenportfolio c.b.e.n.c.AuswertungGrafik testing 97 21
nutzenportfolio c.b.e.n.s.f.NaOpNuDaoService testing 174 48
dvd-homevideo Capture testing 148 29
dvd-homevideo Convert testing 223 52
dvd-homevideo Menu testing 185 84
resources4j c.m.r.i.AbstractResources testing 289 176
diebierse b.m.Drink testing 220 81
diebierse b.c.DefaultSettingsController testing 52 27
templateit o.t.Region testing 15 31
templateit o.t.WorkbookParser training 77 54
biff Scanner testing 1391 817
jiprof c.m.t.p.r.Profile testing 166 76
jiprof o.o.a.j.c.LocalVariablesSorter testing 110 87
jiprof o.o.a.j.MethodWriter testing 1084 824
jiprof o.o.a.j.ClassReader testing 891 817
lagoon n.s.l.LagoonGUI testing 195 63
lagoon n.s.l.LagoonCLI testing 144 65
db-everywhere c.g.d.u.DBEHelper testing 303 123
db-everywhere c.g.d.s.SapdbTableList training 26 15
lavalamp n.s.l.d.TimeOfDay testing 28 18
jhandballmoves v.h.m.a.CreateMovePdfAction testing 44 26
jhandballmoves v.h.m.x.HandballModelReader testing 93 31
hft-bomberman c.n.ForwardingObserver testing 29 13
hft-bomberman s.ServerGameModel testing 139 128
fps370 f.Fps370Panel testing 412 151
fps370 t.TederFrame testing 186 70
mygrid m.w.Fail testing 28 28
mygrid m.w.AvailableJobsResponse testing 28 28
sugar n.s.s.f.FSPathResult testing 37 24
sugar n.s.s.f.c.FSPathExplorer testing 75 51
noen f.v.n.t.o.f.DaikonFormatter testing 113 71
noen f.v.n.m.b.p.s.ProbeInformation training 40 67
objectexplorer d.p.e.e.ExplorerFrameEventConverter testing 240 175
objectexplorer d.p.e.m.AttributeModelComparator testing 12 17
jtailgui f.p.j.g.a.IndexFileAction testing 40 13
jtailgui f.p.j.g.v.JTailPanel testing 65 23
gsftp c.g.f.FtpApplet training 48 29
gsftp m.s.SSHSCPGUIThread testing 253 91
openjms o.e.j.n.c.DefaultConnectionPool testing 214 99
openjms o.e.j.n.s.SocketRequestInfo testing 54 34
biblestudy b.o.Verse testing 79 32
biblestudy b.u.Queue testing 62 37
lhamacaw m.u.DisplayableListPanel testing 203 70
lhamacaw m.p.MacawWorkBench testing 112 23
sfmis c.h.s.c.Base64 testing 75 32
ext4j n.s.e.l.l.ExtrasPatternParser testing 14 11
ext4j n.s.e.t.b.Request testing 154 139
battlecry b.bcGenerator testing 284 281
battlecry b.battlecryGUI testing 312 78
fim1 o.o.s.a.u.UpdateUserPanel training 223 73
fim1 o.o.s.c.u.u.FontChooserDialog testing 61 25

Appendix A. Details of the Java projects and classes used in the empirical evaluation 84

fixsuite o.f.m.Library testing 51 35
fixsuite o.f.m.v.TreeView testing 155 72
openhre c.b.a.User testing 192 97
openhre c.b.o.h.i.r.ExpressionImpl testing 62 50
io-project i.s.n.ClientGroup testing 53 66
caloriecount c.l.e.SimpleKeyListenerHelper testing 23 25
caloriecount c.l.s.c.SimpleComboBox testing 43 26
caloriecount c.l.i.DirectoryScanner testing 307 232
twfbplayer d.o.f.s.BattleStatistics testing 236 156
twfbplayer d.o.f.m.i.SimpleSector testing 105 74
gfarcegestionfa f.u.g.d.OracleIdentiteDao testing 111 76
gfarcegestionfa f.u.g.i.ModifTableStockage testing 184 123
wheelwebtool w.u.DynamicSelectModel training 75 40
wheelwebtool w.a.FieldWriter testing 85 58
wheelwebtool w.a.ClassReader testing 868 817
wheelwebtool w.a.ClassWriter testing 345 174
javathena o.j.l.p.FromClient testing 60 49
javathena o.j.l.UserManagement testing 711 329
javathena o.j.l.Login testing 433 255
javathena o.j.u.ConfigurationManagement training 237 190
ipcalculator i.BinaryCalculate testing 243 103
ipcalculator i.WhoIS testing 229 55
xbus n.s.x.b.c.MessageHandler testing 71 27
xbus n.s.x.b.c.r.XBUSClassLoader testing 29 17
ifx-framework o.s.i.b.IFXObject testing 94 72
shop u.c.s.JSState testing 80 41
shop u.c.s.JSPredicateForm testing 165 87
shop u.c.s.JSTerm testing 318 192
shop u.c.s.JSJshop testing 225 114
at-robots2-j n.v.a.g.r.RobotRenderer testing 83 37
at-robots2-j n.v.a.r.Robot testing 212 123
jaw-br j.e.Salvar testing 61 46
jaw-br j.e.Abrir testing 50 26
jopenchart d.p.c.DefaultChart testing 50 20
jopenchart d.p.c.CoordSystemUtilities testing 196 92
jiggler j.i.o.l.Clip testing 67 33
jiggler j.i.o.Shift testing 57 56
jiggler j.i.o.ConnectedComponents testing 75 74
jiggler j.i.l.LevelSetNudge testing 162 118
dcparseargs d.d.p.ArgsParser testing 83 80
classviewer c.j.v.ClassViewer testing 599 235
classviewer c.j.v.SAXDirParser training 87 60
classviewer c.j.v.ClassInfo testing 209 168
jcvi-javacommon o.j.j.a.c.p.DefaultPhdReadTag testing 61 61
jcvi-javacommon o.j.j.a.c.f.Distance testing 51 28
quickserver o.q.n.s.i.BlockingClientHandler testing 327 228
quickserver o.q.n.s.i.NonBlockingClientHandler testing 723 501
quickserver o.q.u.x.QuickServerConfig testing 96 69
quickserver o.q.n.c.m.HostMonitoringService training 131 74
jclo e.m.c.j.JCLO testing 183 133
celwars2009 MP3 testing 30 11
celwars2009 Client training 836 350
heal o.h.u.InterfaceUtilitiesBean testing 99 38
heal o.h.m.s.AdvSearchDAO testing 266 175
feudalismgame s.VassalRebellion testing 16 11
feudalismgame s.Purchase testing 73 56

Appendix A. Details of the Java projects and classes used in the empirical evaluation 85

feudalismgame s.Battle testing 730 788
trans-locator J.F.FoxHuntFrame testing 127 34
trans-locator J.F.HuntDisplay testing 50 23
newzgrabber N.BatchDriver testing 90 32
newzgrabber Newzgrabber testing 222 78
newzgrabber N.Downloader training 339 268
checkstyle c.p.t.c.a.AbstractLoader testing 27 9
checkstyle c.p.t.c.a.AutomaticBean testing 76 18
checkstyle c.p.t.c.a.FileContents testing 79 50
checkstyle c.p.t.c.a.FileText testing 82 26
checkstyle c.p.t.c.u.AnnotationUtility testing 32 28
checkstyle c.p.t.c.u.ScopeUtils testing 92 110
commons-cli o.a.c.c.HelpFormatter testing 198 144
commons-cli o.a.c.c.Option training 110 98
commons-codec o.a.c.c.l.DoubleMetaphone testing 404 498
commons-collections o.a.c.c.p.ArrayByteList testing 66 28
commons-collections o.a.c.c.l.TreeList testing 359 219
commons-collections o.a.c.c.s.SequencesComparator testing 82 89
commons-lang o.a.c.l.t.t.NumericEntityUnescaper testing 39 48
commons-lang o.a.c.l.ClassUtils testing 279 266
commons-lang o.a.c.l.ArrayUtils testing 1263 1163
commons-lang o.a.c.l.t.ExtendedMessageFormat testing 183 138
commons-lang o.a.c.l.t.StrBuilder testing 747 589
commons-lang o.a.c.l.t.FastDateFormat testing 45 40
commons-lang o.a.c.l.LocaleUtils testing 81 99
commons-lang o.a.c.l.t.DurationFormatUtils testing 239 159
commons-lang o.a.c.l.t.DateUtils testing 299 298
commons-lang o.a.c.l.BooleanUtils testing 187 265
commons-lang o.a.c.l.b.CompareToBuilder testing 253 249
commons-lang o.a.c.l.Validate testing 138 134
commons-lang o.a.c.l.Conversion testing 521 764
commons-lang o.a.c.l.b.HashCodeBuilder testing 148 116
commons-math o.a.c.m.f.ProperFractionFormat testing 63 26
commons-math o.a.c.m.o.d.CMAESOptimizer testing 460 266
commons-math o.a.c.m.d.HypergeometricDistribution testing 66 38
commons-math o.a.c.m.l.RectangularCholeskyDecomposition testing 56 31
commons-math o.a.c.m.o.n.EmbeddedRungeKuttaIntegrator testing 108 62
commons-math o.a.c.m.o.AbstractIntegrator testing 124 82
commons-math o.a.c.m.g.e.t.Rotation testing 316 123
commons-math o.a.c.m.u.MultidimensionalCounter testing 68 41
commons-math o.a.c.m.o.g.LevenbergMarquardtOptimizer testing 371 207
commons-math o.a.c.m.o.l.SimplexTableau testing 167 149
commons-math o.a.c.m.f.Fraction testing 155 114
commons-math o.a.c.m.u.MathUtils training 40 66
commons-math o.a.c.m.a.i.TricubicSplineInterpolatingFunction testing 102 80
commons-math o.a.c.m.o.n.s.n.AbstractSimplex training 87 59
commons-math o.a.c.m.l.MatrixUtils testing 253 159
commons-math o.a.c.m.g.e.o.IntervalsSet testing 66 52
commons-math o.a.c.m.d.DfpDec training 134 138
commons-math o.a.c.m.d.f.MultivariateNormalMixtureExpectationMaximization testing 119 66
commons-math o.a.c.m.a.FunctionUtils testing 214 157
commons-math o.a.c.m.o.u.BrentOptimizer testing 113 75
commons-math o.a.c.m.l.SchurTransformer testing 189 92
compiler c.g.j.j.CheckGlobalThis testing 56 73
compiler c.g.j.j.ExploitAssigns testing 80 87
compiler c.g.j.j.CollapseProperties testing 365 273

Appendix A. Details of the Java projects and classes used in the empirical evaluation 86

compiler c.g.j.j.PeepholeSubstituteAlternateSyntax testing 741 615
compiler c.g.j.j.ControlFlowAnalysis testing 402 413
compiler c.g.j.j.ScopedAliases training 197 140
compiler c.g.j.r.j.RecordType testing 107 79
compiler c.g.j.j.p.JsDocInfoParser testing 1042 757
compiler c.g.j.j.ReferenceCollectingCallback training 204 196
guava c.g.c.m.BigIntegerMath testing 139 133
guava c.g.c.c.CacheBuilderSpec testing 142 141
guava c.g.c.u.c.Monitor testing 248 191
guava c.g.c.b.Joiner testing 94 60
guava c.g.c.b.Predicates testing 140 107
guava c.g.c.b.SmallCharMatcher testing 46 27
guava c.g.c.b.Splitter testing 111 86
guava c.g.c.b.Suppliers testing 71 45
guava c.g.c.b.Utf8 testing 57 63
guava c.g.c.b.Objects training 52 37
guava c.g.c.b.CharMatcher testing 347 325
hibernate o.h.s.u.l.i.LoggerFactory testing 9 3
javaml n.s.j.c.AbstractInstance testing 65 38
javaml n.s.j.c.Complex testing 33 12
javaml n.s.j.c.DefaultDataset testing 95 52
javaml n.s.j.c.DenseInstance testing 76 49
javaml n.s.j.c.Fold testing 61 48
javaml n.s.j.c.SparseInstance training 104 56
javaml n.s.j.t.d.ARFFHandler testing 29 16
javex o.j.Expression testing 225 173
jdom o.j.u.NamespaceStack testing 140 84
jdom o.j.t.JDOMResult testing 123 50
jdom o.j.o.SAXOutputter testing 138 90
jdom o.j.o.XMLOutputter testing 164 62
jdom o.j.Verifier testing 236 277
jfree-chart o.j.c.r.c.AbstractCategoryItemRenderer testing 422 216
jfree-chart o.j.d.c.DefaultIntervalCategoryDataset testing 143 103
jfree-chart o.j.c.p.MultiplePiePlot testing 182 93
jfree-chart o.j.d.t.TimeSeries testing 271 157
jfree-chart o.j.d.g.DatasetUtilities testing 507 335
jfree-chart o.j.c.p.ValueMarker testing 22 13
jfree-chart o.j.c.r.c.MinMaxCategoryRenderer testing 129 60
jfree-chart o.j.c.r.GrayPaintScale testing 25 15
jfree-chart o.j.c.r.c.StatisticalBarRenderer testing 160 79
jfree-chart o.j.c.a.Axis testing 286 156
jfree-chart o.j.c.p.XYPlot testing 1353 822
jfree-chart o.j.d.t.TimePeriodValues testing 149 74
joda o.j.t.b.BaseSingleFieldPeriod testing 69 53
joda o.j.t.t.ZoneInfoCompiler testing 382 232
joda o.j.t.f.PeriodFormatterBuilder testing 665 579
joda o.j.t.f.DateTimeFormatterBuilder testing 1026 746
joda o.j.t.DateTimeZone testing 349 205
joda o.j.t.MutableDateTime testing 237 140
joda o.j.t.Partial testing 249 134
joda o.j.t.Period testing 281 129
joda o.j.t.f.DateTimeFormatter testing 208 113
joda o.j.t.b.BasePeriod testing 173 79
joda o.j.t.c.BasicMonthOfYearDateTimeField testing 110 63
joda o.j.t.c.LimitChronology testing 236 112
joda o.j.t.MutablePeriod testing 147 76

Appendix A. Details of the Java projects and classes used in the empirical evaluation 87

jsci J.m.s.SimpleCharStream testing 174 84
jsci J.m.s.ExpressionParser testing 565 435
jsci J.m.SpecialMath testing 321 196
jsci J.m.LinearMath training 584 280
scribe o.s.m.OAuthConfig testing 15 12
scribe o.s.m.OAuthRequest testing 10 8
scribe o.s.m.Request testing 73 37
scribe o.s.m.Response testing 21 15
scribe o.s.m.Token testing 13 7
scribe o.s.m.Verifier testing 5 2
tartarus o.t.s.e.turkishStemmer testing 1008 514
tartarus o.t.s.e.italianStemmer testing 358 228
tartarus o.t.s.e.englishStemmer testing 417 290
trove g.t.d.TDoubleShortMapDecorator testing 90 77
trove g.t.d.TShortByteMapDecorator testing 90 77
trove g.t.i.h.TCharHash training 96 60
trove g.t.i.h.TFloatCharHash testing 142 87
trove g.t.i.h.TFloatDoubleHash testing 142 87
trove g.t.i.h.TShortHash testing 96 60
trove g.t.l.l.TDoubleLinkedList testing 466 281
trove g.t.m.h.TFloatObjectHashMap testing 384 254
trove g.t.m.h.TByteObjectHashMap testing 384 254
trove g.t.m.h.TByteFloatHashMap testing 476 297
twitter4j t.ExceptionDiagnosis testing 37 27
twitter4j t.GeoQuery testing 76 65
twitter4j t.Paging testing 104 54
twitter4j t.TwitterException testing 129 123
twitter4j t.TwitterBaseImpl testing 198 131
twitter4j t.OEmbedRequest testing 81 69
twitter4j t.TwitterImpl testing 442 319
wikipedia d.t.u.w.a.Title testing 41 19
wikipedia d.t.u.w.a.CategoryDescendantsIterator testing 54 27
wikipedia d.t.u.w.a.WikipediaInfo testing 155 72
wikipedia d.t.u.w.a.CycleHandler testing 43 21
xmlenc o.z.x.XMLChecker training 102 1213
xmlenc o.z.x.XMLEncoder testing 119 182

Appendix A. Details of the Java projects and classes used in the empirical evaluation 88

Appendix B

Class under test for each algorithm X
performed statistically better than any
another algorithm

Algorithm # G # T # L % Relative Overall Coverage Â12 p-value

org.apache.commons.lang3.Conversion
Standard GA 51 149 275 19.75 (67.30) — —
MOSA 29 336 3749 71.53 (83.19) — —
DynaMOSA* 31 426 1491 92.51 (89.63) 1.00 < 0.01
Wolf 5 266 500 69.32 (82.51) — —
Bee 4 234 440 58.29 (79.13) — —
Whale 15 228 429 56.01 (78.43) — —
Cat 12 240 452 59.94 (79.63) — —
Elephant 14 188 350 38.99 (73.20) — —
Elephant-DynaMOSA 22 435 3608 72.51 (83.49) — —
Chicken 8 253 477 65.80 (81.43) — —
Moth 8 265 496 68.44 (82.24) — —
Fish 22 256 477 64.72 (81.10) — —
Algae 4 253 476 65.72 (81.41) — —
Particle 6 272 509 70.80 (82.97) — —

weka.core.FindWithCapabilities
Standard GA 58 42 152 17.02 (71.12) — —
MOSA 32 56 244 36.75 (74.75) — —
DynaMOSA 25 68 322 58.93 (78.82) — —
Wolf 3 56 243 44.88 (76.24) — —
Bee 3 51 207 28.83 (73.29) — —
Whale 12 51 204 32.51 (73.97) — —
Cat 8 52 212 31.55 (73.79) — —
Elephant 22 57 248 41.65 (75.65) — —
Elephant-DynaMOSA* 106 76 397 83.92 (83.41) 0.99 < 0.01
Chicken 6 54 233 40.41 (75.42) — —
Moth 6 56 243 44.16 (76.11) — —
Fish 13 56 236 40.97 (75.52) — —

89

Appendix B. Class under test for each algorithm X performed statistically better than
any another algorithm 90

Algae 3 55 234 40.36 (75.41) — —
Particle 4 57 250 48.70 (76.94) — —

net.sourceforge.jwbf.mediawiki.actions.queries.TemplateUserTitles
Standard GA* 1553 20 131 97.49 (89.27) 0.93 < 0.01
MOSA 70 18 85 89.75 (83.36) — —
DynaMOSA 75 17 77 91.64 (84.80) — —
Wolf 27 15 85 89.83 (83.42) — —
Bee 34 18 103 94.87 (87.27) — —
Whale 50 14 83 88.40 (82.33) — —
Cat 63 17 104 92.41 (85.39) — —
Elephant 231 16 87 90.32 (83.79) — —
Elephant-DynaMOSA 262 16 76 91.25 (84.50) — —
Chicken 24 4 16 26.69 (35.23) — —
Moth 15 9 51 70.50 (68.67) — —
Fish 183 8 43 50.62 (53.50) — —
Algae 11 2 5 0.00 (14.86) — —
Particle 14 12 65 82.34 (77.70) — —

geo.google.mapping.AddressToUsAddressFunctor
Standard GA 628 8 98 86.43 (87.87) — —
MOSA* 178 11 134 93.36 (90.87) 0.93 < 0.01
DynaMOSA 115 10 119 86.48 (87.89) — —
Wolf 21 4 26 24.26 (60.93) — —
Bee 24 7 76 74.05 (82.50) — —
Whale 64 6 53 60.14 (76.47) — —
Cat 58 6 54 55.88 (74.63) — —
Elephant 234 7 70 65.75 (78.91) — —
Elephant-DynaMOSA 438 7 75 64.61 (78.41) — —
Chicken 23 3 17 5.99 (53.01) — —
Moth 16 4 23 15.09 (56.95) — —
Fish 192 6 46 52.00 (72.95) — —
Algae 13 3 16 5.27 (52.69) — —
Particle 19 5 44 44.74 (69.80) — —

com.puppycrawl.tools.checkstyle.utils.AnnotationUtility
Standard GA 330 14 28 79.13 (64.51) — —
MOSA 116 14 29 80.58 (64.65) — —
DynaMOSA 130 15 30 82.49 (64.84) — —
Wolf 10 11 18 15.17 (58.26) — —
Bee 14 12 22 49.60 (61.63) — —
Whale 33 12 21 34.17 (60.12) — —
Cat 31 12 20 31.63 (59.87) — —
Elephant 218 13 24 56.65 (62.31) — —
Elephant-DynaMOSA 380 12 23 31.01 (59.81) — —
Chicken 13 10 16 1.25 (56.91) — —
Moth 10 11 17 12.73 (58.03) — —
Fish* 59 14 29 88.88 (65.46) 0.92 < 0.01
Algae 10 10 16 1.25 (56.91) — —
Particle 10 12 20 33.36 (60.04) — —

Appendix B. Class under test for each algorithm X performed statistically better than
any another algorithm 91

org.apache.commons.math3.optim.univariate.BrentOptimizer
Standard GA 426 13 54 86.20 (46.01) — —
MOSA 44 14 35 80.68 (45.68) — —
DynaMOSA 50 14 35 82.81 (45.81) — —
Wolf 12 10 29 60.88 (44.49) — —
Bee 9 11 34 68.69 (44.96) — —
Whale 44 12 47 75.76 (45.38) — —
Cat 27 11 34 69.40 (45.00) — —
Elephant* 126 13 92 90.65 (46.28) 0.92 < 0.01
Elephant-DynaMOSA 184 13 35 81.38 (45.72) — —
Chicken 11 7 19 8.33 (41.34) — —
Moth 11 9 24 43.69 (43.46) — —
Fish 38 12 50 75.33 (45.36) — —
Algae 7 8 18 6.24 (41.21) — —
Particle 10 11 34 69.05 (44.98) — —

Table B.1: # G represents the average number of generations, the values between paren-
theses represents the absolute values, # T represents the average number of test cases
generated by each algorithm across all classes under test, and L represents the average
length (i.e., number of lines) of the generated test cases. The best algorithm per class has
a * in front of the name.

Appendix B. Class under test for each algorithm X performed statistically better than
any another algorithm 92

Appendix C

Detailed coverage achieved by each
algorithm as a heatmap

93

Appendix C. Detailed coverage achieved by each algorithm as a heatmap 94

WeakMutation

Output

MethodNoException

Method

Line

Exception

CBranch

Branch

Algae (151)
Bee (121)
Cat (124)

Chicken (151)
DynaMOSA (185)

Elephant (144)
Elephant−DynaMOSA (200)

Fish (135)
MOSA (130)

Moth (153)
Particle (159)

Standard GA (112)
Whale (127)

Wolf (155)

Algae (141)
Bee (121)
Cat (124)

Chicken (141)
DynaMOSA (156)

Elephant (135)
Elephant−DynaMOSA (197)

Fish (134)
MOSA (124)

Moth (143)
Particle (143)

Standard GA (112)
Whale (127)

Wolf (143)

Algae (11)
Bee (11)
Cat (11)

Chicken (11)
DynaMOSA (14)

Elephant (14)
Elephant−DynaMOSA (19)

Fish (13)
MOSA (13)

Moth (11)
Particle (11)

Standard GA (9)
Whale (11)

Wolf (12)

Algae (251)
Bee (215)
Cat (218)

Chicken (251)
DynaMOSA (307)

Elephant (238)
Elephant−DynaMOSA (321)

Fish (229)
MOSA (231)

Moth (253)
Particle (260)

Standard GA (202)
Whale (221)

Wolf (255)

Algae (26)
Bee (26)
Cat (26)

Chicken (26)
DynaMOSA (26)

Elephant (26)
Elephant−DynaMOSA (26)

Fish (26)
MOSA (26)

Moth (26)
Particle (26)

Standard GA (26)
Whale (26)

Wolf (26)

Algae (24)
Bee (25)
Cat (24)

Chicken (24)
DynaMOSA (26)

Elephant (25)
Elephant−DynaMOSA (26)

Fish (25)
MOSA (26)

Moth (25)
Particle (25)

Standard GA (24)
Whale (24)

Wolf (24)

Algae (31)
Bee (29)
Cat (30)

Chicken (31)
DynaMOSA (32)

Elephant (33)
Elephant−DynaMOSA (37)

Fish (31)
MOSA (25)

Moth (32)
Particle (33)

Standard GA (27)
Whale (28)

Wolf (31)

Algae (185)
Bee (165)
Cat (165)

Chicken (185)
DynaMOSA (189)

Elephant (176)
Elephant−DynaMOSA (205)

Fish (173)
MOSA (170)

Moth (185)
Particle (185)

Standard GA (161)
Whale (177)

Wolf (185)

Covered

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Figure C.1: Heatmap of class weka.core.FindWithCapabilities. The number besides the
algorithm is the number of occurrences where the targets were covered by more than 15
runs. The best algorithm is Elephant-DynaMOSA.

Appendix C. Detailed coverage achieved by each algorithm as a heatmap 95

WeakMutation

Output

MethodNoException

Method

Line

Exception

CBranch

Branch

Algae (540)
Bee (525)
Cat (531)

Chicken (541)
DynaMOSA (720)

Elephant (494)
Elephant−DynaMOSA (621)

Fish (534)
MOSA (600)

Moth (543)
Particle (550)

Standard GA (429)
Whale (520)

Wolf (546)

Algae (496)
Bee (473)
Cat (476)

Chicken (494)
DynaMOSA (709)

Elephant (417)
Elephant−DynaMOSA (547)

Fish (480)
MOSA (525)

Moth (498)
Particle (509)

Standard GA (372)
Whale (461)

Wolf (504)

Algae (84)
Bee (81)
Cat (81)

Chicken (84)
DynaMOSA (101)

Elephant (74)
Elephant−DynaMOSA (95)

Fish (87)
MOSA (90)

Moth (86)
Particle (89)

Standard GA (57)
Whale (78)

Wolf (87)

Algae (425)
Bee (412)
Cat (415)

Chicken (426)
DynaMOSA (494)

Elephant (386)
Elephant−DynaMOSA (468)

Fish (424)
MOSA (467)

Moth (428)
Particle (436)

Standard GA (314)
Whale (407)

Wolf (433)

Algae (43)
Bee (43)
Cat (43)

Chicken (43)
DynaMOSA (43)

Elephant (43)
Elephant−DynaMOSA (43)

Fish (43)
MOSA (43)

Moth (43)
Particle (43)

Standard GA (43)
Whale (43)

Wolf (43)

Algae (42)
Bee (42)
Cat (42)

Chicken (42)
DynaMOSA (42)

Elephant (42)
Elephant−DynaMOSA (42)

Fish (42)
MOSA (42)

Moth (42)
Particle (42)

Standard GA (41)
Whale (42)

Wolf (42)

Algae (100)
Bee (90)
Cat (91)

Chicken (102)
DynaMOSA (105)

Elephant (69)
Elephant−DynaMOSA (92)

Fish (96)
MOSA (95)
Moth (103)

Particle (103)
Standard GA (60)

Whale (86)
Wolf (103)

Algae (338)
Bee (315)
Cat (317)

Chicken (338)
DynaMOSA (464)

Elephant (295)
Elephant−DynaMOSA (394)

Fish (345)
MOSA (379)

Moth (348)
Particle (369)

Standard GA (222)
Whale (309)

Wolf (366)

Covered

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Figure C.2: Heatmap of class org.apache.commons.lang3.Conversion. The number be-
sides the algorithm is the number of occurrences where the targets were covered by more
than 15 runs. The best algorithm is DynaMOSA.

Appendix C. Detailed coverage achieved by each algorithm as a heatmap 96

WeakMutation

Output

MethodNoException

Method

Line

Exception

CBranch

Branch

Algae (1)
Bee (42)
Cat (40)

Chicken (1)
DynaMOSA (32)

Elephant (32)
Elephant−DynaMOSA (34)

Fish (12)
MOSA (30)

Moth (26)
Particle (30)

Standard GA (43)
Whale (31)

Wolf (33)

Algae (0)
Bee (42)
Cat (40)

Chicken (1)
DynaMOSA (32)

Elephant (32)
Elephant−DynaMOSA (34)

Fish (12)
MOSA (30)

Moth (26)
Particle (30)

Standard GA (43)
Whale (31)

Wolf (33)

Algae (2)
Bee (6)
Cat (5)

Chicken (2)
DynaMOSA (6)

Elephant (6)
Elephant−DynaMOSA (6)

Fish (2)
MOSA (6)

Moth (2)
Particle (3)

Standard GA (7)
Whale (4)

Wolf (5)

Algae (0)
Bee (35)
Cat (35)

Chicken (6)
DynaMOSA (35)

Elephant (35)
Elephant−DynaMOSA (36)

Fish (28)
MOSA (33)

Moth (34)
Particle (34)

Standard GA (36)
Whale (34)

Wolf (35)

Algae (1)
Bee (6)
Cat (6)

Chicken (1)
DynaMOSA (6)

Elephant (6)
Elephant−DynaMOSA (6)

Fish (6)
MOSA (6)

Moth (6)
Particle (6)

Standard GA (6)
Whale (6)

Wolf (6)

Algae (0)
Bee (6)
Cat (6)

Chicken (1)
DynaMOSA (6)

Elephant (6)
Elephant−DynaMOSA (6)

Fish (6)
MOSA (6)

Moth (6)
Particle (6)

Standard GA (6)
Whale (6)

Wolf (6)

Algae (0)
Bee (5)
Cat (5)

Chicken (0)
DynaMOSA (5)

Elephant (5)
Elephant−DynaMOSA (5)

Fish (5)
MOSA (5)

Moth (5)
Particle (5)

Standard GA (5)
Whale (5)

Wolf (5)

Algae (0)
Bee (96)
Cat (96)

Chicken (1)
DynaMOSA (97)

Elephant (96)
Elephant−DynaMOSA (97)

Fish (60)
MOSA (96)

Moth (90)
Particle (93)

Standard GA (97)
Whale (94)

Wolf (96)

Covered

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Figure C.3: Heatmap of class net.sourceforge.jwbf.mediawiki.actions.queries.TemplateUserTitles.
The number besides the algorithm is the number of occurrences where the targets were
covered by more than 15 runs. The best algorithm is Standard GA.

Appendix C. Detailed coverage achieved by each algorithm as a heatmap 97

WeakMutation

Output

MethodNoException

Method

Line

Exception

CBranch

Branch

Algae (5)
Bee (22)
Cat (15)

Chicken (5)
DynaMOSA (28)

Elephant (21)
Elephant−DynaMOSA (21)

Fish (18)
MOSA (29)

Moth (8)
Particle (13)

Standard GA (28)
Whale (18)

Wolf (9)

Algae (5)
Bee (22)
Cat (15)

Chicken (5)
DynaMOSA (28)

Elephant (21)
Elephant−DynaMOSA (21)

Fish (18)
MOSA (29)

Moth (8)
Particle (13)

Standard GA (28)
Whale (18)

Wolf (9)

Algae (1)
Bee (1)
Cat (1)

Chicken (1)
DynaMOSA (1)

Elephant (1)
Elephant−DynaMOSA (1)

Fish (1)
MOSA (1)

Moth (1)
Particle (1)

Standard GA (1)
Whale (1)

Wolf (1)

Algae (9)
Bee (29)
Cat (21)

Chicken (9)
DynaMOSA (35)

Elephant (28)
Elephant−DynaMOSA (29)

Fish (23)
MOSA (36)

Moth (13)
Particle (19)

Standard GA (35)
Whale (23)

Wolf (14)

Algae (3)
Bee (3)
Cat (3)

Chicken (3)
DynaMOSA (3)

Elephant (3)
Elephant−DynaMOSA (3)

Fish (3)
MOSA (3)

Moth (3)
Particle (3)

Standard GA (3)
Whale (3)

Wolf (3)

Algae (3)
Bee (3)
Cat (3)

Chicken (3)
DynaMOSA (3)

Elephant (3)
Elephant−DynaMOSA (3)

Fish (3)
MOSA (3)

Moth (3)
Particle (3)

Standard GA (3)
Whale (3)

Wolf (3)

Algae (2)
Bee (2)
Cat (2)

Chicken (2)
DynaMOSA (2)

Elephant (2)
Elephant−DynaMOSA (2)

Fish (2)
MOSA (2)

Moth (2)
Particle (2)

Standard GA (2)
Whale (2)

Wolf (2)

Algae (1)
Bee (20)
Cat (11)

Chicken (1)
DynaMOSA (17)

Elephant (19)
Elephant−DynaMOSA (17)

Fish (14)
MOSA (19)

Moth (3)
Particle (8)

Standard GA (16)
Whale (14)

Wolf (4)

Covered

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Figure C.4: Heatmap of class geo.google.mapping.AddressToUsAddressFunctor. The
number besides the algorithm is the number of occurrences where the targets were covered
by more than 15 runs. The best algorithm is MOSA.

Appendix C. Detailed coverage achieved by each algorithm as a heatmap 98

WeakMutation

Output

MethodNoException

Method

Line

Exception

CBranch

Branch

Algae (14)
Bee (17)
Cat (14)

Chicken (14)
DynaMOSA (19)

Elephant (17)
Elephant−DynaMOSA (16)

Fish (19)
MOSA (19)

Moth (14)
Particle (14)

Standard GA (18)
Whale (16)

Wolf (14)

Algae (14)
Bee (17)
Cat (14)

Chicken (14)
DynaMOSA (19)

Elephant (17)
Elephant−DynaMOSA (16)

Fish (19)
MOSA (19)

Moth (14)
Particle (14)

Standard GA (18)
Whale (16)

Wolf (14)

Algae (6)
Bee (6)
Cat (6)

Chicken (6)
DynaMOSA (6)

Elephant (6)
Elephant−DynaMOSA (6)

Fish (6)
MOSA (6)

Moth (6)
Particle (6)

Standard GA (6)
Whale (6)

Wolf (6)

Algae (20)
Bee (20)
Cat (20)

Chicken (20)
DynaMOSA (21)

Elephant (21)
Elephant−DynaMOSA (21)

Fish (21)
MOSA (21)

Moth (20)
Particle (21)

Standard GA (21)
Whale (20)

Wolf (20)

Algae (4)
Bee (4)
Cat (4)

Chicken (4)
DynaMOSA (4)

Elephant (4)
Elephant−DynaMOSA (4)

Fish (4)
MOSA (4)

Moth (4)
Particle (4)

Standard GA (4)
Whale (4)

Wolf (4)

Algae (2)
Bee (2)
Cat (2)

Chicken (2)
DynaMOSA (2)

Elephant (2)
Elephant−DynaMOSA (2)

Fish (2)
MOSA (2)

Moth (2)
Particle (2)

Standard GA (2)
Whale (2)

Wolf (2)

Algae (2)
Bee (3)
Cat (2)

Chicken (2)
DynaMOSA (3)

Elephant (3)
Elephant−DynaMOSA (2)

Fish (7)
MOSA (3)

Moth (2)
Particle (2)

Standard GA (7)
Whale (2)

Wolf (2)

Algae (32)
Bee (42)
Cat (34)

Chicken (32)
DynaMOSA (49)

Elephant (47)
Elephant−DynaMOSA (41)

Fish (49)
MOSA (49)

Moth (32)
Particle (39)

Standard GA (48)
Whale (41)

Wolf (32)

Covered

30

29

28

27

26

25

24

23

22

21

20

19

18

16

15

14

12

11

10

9

8

7

6

5

4

3

2

1

0

Figure C.5: Heatmap of class com.puppycrawl.tools.checkstyle.utils.AnnotationUtility.
The number besides the algorithm is the number of occurrences where the targets were
covered by more than 15 runs. Best algorithm is Fish.

Appendix C. Detailed coverage achieved by each algorithm as a heatmap 99

WeakMutation

Output

MethodNoException

Method

Line

Exception

CBranch

Branch

Algae (8)
Bee (15)
Cat (15)

Chicken (8)
DynaMOSA (17)

Elephant (17)
Elephant−DynaMOSA (17)

Fish (16)
MOSA (17)

Moth (14)
Particle (16)

Standard GA (17)
Whale (17)

Wolf (14)

Algae (8)
Bee (15)
Cat (15)

Chicken (8)
DynaMOSA (17)

Elephant (17)
Elephant−DynaMOSA (17)

Fish (16)
MOSA (17)

Moth (14)
Particle (16)

Standard GA (17)
Whale (17)

Wolf (14)

Algae (6)
Bee (6)
Cat (6)

Chicken (6)
DynaMOSA (6)

Elephant (6)
Elephant−DynaMOSA (6)

Fish (6)
MOSA (6)

Moth (6)
Particle (6)

Standard GA (6)
Whale (6)

Wolf (6)

Algae (24)
Bee (30)
Cat (30)

Chicken (24)
DynaMOSA (30)

Elephant (30)
Elephant−DynaMOSA (30)

Fish (30)
MOSA (30)

Moth (29)
Particle (30)

Standard GA (30)
Whale (30)

Wolf (29)

Algae (3)
Bee (3)
Cat (3)

Chicken (3)
DynaMOSA (3)

Elephant (3)
Elephant−DynaMOSA (3)

Fish (3)
MOSA (3)

Moth (3)
Particle (3)

Standard GA (3)
Whale (3)

Wolf (3)

Algae (2)
Bee (2)
Cat (2)

Chicken (2)
DynaMOSA (2)

Elephant (2)
Elephant−DynaMOSA (2)

Fish (2)
MOSA (2)

Moth (2)
Particle (2)

Standard GA (2)
Whale (2)

Wolf (2)

Algae (0)
Bee (0)
Cat (0)

Chicken (0)
DynaMOSA (0)

Elephant (0)
Elephant−DynaMOSA (0)

Fish (0)
MOSA (0)

Moth (0)
Particle (0)

Standard GA (0)
Whale (0)

Wolf (0)

Algae (38)
Bee (45)
Cat (45)

Chicken (38)
DynaMOSA (47)

Elephant (58)
Elephant−DynaMOSA (47)

Fish (49)
MOSA (47)

Moth (44)
Particle (46)

Standard GA (51)
Whale (51)

Wolf (44)

Covered

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Figure C.6: Heatmap of class org.apache.commons.math3.optim.univariate.BrentOptimizer.
The number besides the algorithm is the number of occurrences where the targets were
covered by more than 15 runs. Best algorithm is Elephant.

Appendix C. Detailed coverage achieved by each algorithm as a heatmap 100

Bibliography

[1] Wikipedia. List of software bugs. Accessed: 07-10-2020. URL: https://en.
wikipedia.org/wiki/List_of_software_bugs.

[2] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yon-
gle Zhang, Pranay U. Jain, and Michael Stumm. “Simple Testing Can Prevent
Most Critical Failures: An Analysis of Production Failures in Distributed Data-
Intensive Systems”. In: 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). Broomfield, CO: USENIX Association, Oct. 2014,
pp. 249–265. ISBN: 978-1-931971-16-4. URL: https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/yuan.

[3] Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. The art of
software testing. Vol. 2. Wiley Online Library, 2004.

[4] Gordon Fraser and José Miguel Rojas. “Software Testing”. In: Handbook of Soft-
ware Engineering. Springer, 2019, pp. 123–192.

[5] Mark Harman, Phil McMinn, Jerffeson Teixeira De Souza, and Shin Yoo. “Search
based software engineering: Techniques, taxonomy, tutorial”. In: Empirical soft-
ware engineering and verification. Springer, 2010, pp. 1–59.

[6] Phil McMinn. “Search-based software testing: Past, present and future”. In: 2011
IEEE Fourth International Conference on Software Testing, Verification and Vali-
dation Workshops. IEEE. 2011, pp. 153–163.

[7] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea Ar-
curi. “Combining multiple coverage criteria in search-based unit test generation”.
In: International Symposium on Search Based Software Engineering. Springer.
2015, pp. 93–108.

[8] Jun Tang, Gang Liu, and Qingtao Pan. “A Review on Representative Swarm Intel-
ligence Algorithms for Solving Optimization Problems: Applications and Trends”.
In: IEEE/CAA Journal of Automatica Sinica 8.10 (2021), pp. 1627–1643. DOI:
10.1109/JAS.2021.1004129.

[9] Daniel Molina, Javier Poyatos, Javier Del Ser, Salvador García, Amir Hussain,
and Francisco Herrera. “Comprehensive Taxonomies of Nature-and Bio-inspired
Optimization: Inspiration versus Algorithmic Behavior, Critical Analysis and Rec-
ommendations”. In: arXiv preprint arXiv:2002.08136 (2020).

[10] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and An-
drea Arcuri. “An empirical evaluation of evolutionary algorithms for unit test suite
generation”. In: Information and Software Technology 104 (2018), pp. 207–235.

101

https://en.wikipedia.org/wiki/List_of_software_bugs
https://en.wikipedia.org/wiki/List_of_software_bugs
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://doi.org/10.1109/JAS.2021.1004129

Bibliography 102

[11] Andreas Windisch, Stefan Wappler, and Joachim Wegener. “Applying particle swarm
optimization to software testing”. In: Proceedings of the 9th annual conference on
Genetic and evolutionary computation. 2007, pp. 1121–1128.

[12] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. “Automated
Test Case Generation as a Many-Objective Optimisation Problem with Dynamic
Selection of the Targets”. In: IEEE Trans. Software Eng. 44.2 (2018), pp. 122–158.
DOI: 10.1109/TSE.2017.2663435. URL: https://doi.org/10.
1109/TSE.2017.2663435.

[13] Ashraf Darwish. “Bio-inspired computing: Algorithms review, deep analysis, and
the scope of applications”. In: Future Computing and Informatics Journal 3.2
(2018), pp. 231–246.

[14] Omur Sahin and Bahriye Akay. “Comparisons of metaheuristic algorithms and fit-
ness functions on software test data generation”. In: Applied Soft Computing 49
(2016), pp. 1202–1214.

[15] Dan Bruce, Héctor D Menéndez, Earl T Barr, and David Clark. “Ant Colony Opti-
mization for Object-Oriented Unit Test Generation”. In: International Conference
on Swarm Intelligence. Springer. 2020, pp. 29–41.

[16] Manju Khari, Anunay Sinha, Enrique Herrerra-Viedma, and Rubén González Cre-
spo. “On the Use of Meta-Heuristic Algorithms for Automated Test Suite Genera-
tion in Software Testing”. In: Toward Humanoid Robots: The Role of Fuzzy Sets:
A Handbook on Theory and Applications (2021), pp. 149–197.

[17] José Carlos Medeiros de Campos. “Search-based Unit Test Generation for Evolv-
ing Software”. PhD thesis. University of Sheffield, 2017.

[18] Sina Shamshiri, José Miguel Rojas, Gordon Fraser, and Phil McMinn. “Random or
genetic algorithm search for object-oriented test suite generation?” In: Proceedings
of the 2015 annual conference on genetic and evolutionary computation. 2015,
pp. 1367–1374.

[19] Andrea Arcuri and Lionel Briand. “Adaptive random testing: An illusion of ef-
fectiveness?” In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis. 2011, pp. 265–275.

[20] Gordon Fraser and Andrea Arcuri. “Handling test length bloat”. In: Softw. Test.
Verification Reliab. 23.7 (2013), pp. 553–582. DOI: 10.1002/stvr.1495.
URL: https://doi.org/10.1002/stvr.1495.

[21] Wikipedia. Code coverage. Accessed: 23-10-2020. URL: https://en.wikipedia.
org/wiki/Code_coverage.

[22] Andrea Arcuri. “It Does Matter How You Normalise the Branch Distance in Search
Based Software Testing”. In: Third International Conference on Software Test-
ing, Verification and Validation, ICST 2010, Paris, France, April 7-9, 2010. IEEE
Computer Society, 2010, pp. 205–214. DOI: 10.1109/ICST.2010.17. URL:
https://doi.org/10.1109/ICST.2010.17.

[23] Gordon Fraser. Search-based Test Generation at International Summer School on
Training And Research On Testing (TAROT). 2014.

https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1002/stvr.1495
https://doi.org/10.1002/stvr.1495
https://en.wikipedia.org/wiki/Code_coverage
https://en.wikipedia.org/wiki/Code_coverage
https://doi.org/10.1109/ICST.2010.17
https://doi.org/10.1109/ICST.2010.17

Bibliography 103

[24] Ahmad B. A. Hassanat, Khalid Almohammadi, Esra’a Alkafaween, Eman Abunawas,
Awni Mansoar Hammouri, and V. B. Surya Prasath. “Choosing Mutation and Crossover
Ratios for Genetic Algorithms - A Review with a New Dynamic Approach”. In: Inf.
10.12 (2019), p. 390. DOI: 10.3390/info10120390. URL: https://doi.
org/10.3390/info10120390.

[25] Andrea Arcuri, José Campos, and Gordon Fraser. “Unit Test Generation During
Software Development: EvoSuite Plugins for Maven, IntelliJ and Jenkins”. In:
2016 IEEE International Conference on Software Testing, Verification and Vali-
dation, ICST 2016, Chicago, IL, USA, April 11-15, 2016. IEEE Computer Society,
2016, pp. 401–408. DOI: 10.1109/ICST.2016.44. URL: https://doi.
org/10.1109/ICST.2016.44.

[26] Annibale Panichella, José Campos, and Gordon Fraser. “EvoSuite at the SBST
2020 Tool Competition”. In: ICSE ’20: 42nd International Conference on Software
Engineering, Workshops, Seoul, Republic of Korea, 27 June - 19 July, 2020. ACM,
2020, pp. 549–552. DOI: 10.1145/3387940.3392266. URL: https://
doi.org/10.1145/3387940.3392266.

[27] Adnan Acan and Ahmet Ünveren. “A memory-based colonization scheme for par-
ticle swarm optimization”. In: Proceedings of the IEEE Congress on Evolution-
ary Computation, CEC 2009, Trondheim, Norway, 18-21 May, 2009. IEEE, 2009,
pp. 1965–1972. DOI: 10.1109/CEC.2009.4983181. URL: https://doi.
org/10.1109/CEC.2009.4983181.

[28] Dervis Karaboga and Bahriye Basturk. “A powerful and efficient algorithm for nu-
merical function optimization: artificial bee colony (ABC) algorithm”. In: Journal
of global optimization 39.3 (2007), pp. 459–471.

[29] Shu-Chuan Chu, Pei-Wei Tsai, et al. “Computational intelligence based on the be-
havior of cats”. In: International Journal of Innovative Computing, Information
and Control 3.1 (2007), pp. 163–173.

[30] Seyedali Mirjalili and Andrew Lewis. “The Whale Optimization Algorithm”. In:
Adv. Eng. Softw. 95 (2016), pp. 51–67. DOI: 10.1016/j.advengsoft.2016.
01.008. URL: https://doi.org/10.1016/j.advengsoft.2016.
01.008.

[31] Seyedali Mirjalili. “Moth-flame optimization algorithm: A novel nature-inspired
heuristic paradigm”. In: Knowledge-based systems 89 (2015), pp. 228–249.

[32] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. “Grey wolf
optimizer”. In: Advances in engineering software 69 (2014), pp. 46–61.

[33] Sait Ali Uymaz, Gülay Tezel, and Esra Yel. “Artificial algae algorithm (AAA) for
nonlinear global optimization”. In: Appl. Soft Comput. 31 (2015), pp. 153–171.
DOI: 10.1016/j.asoc.2015.03.003. URL: https://doi.org/10.
1016/j.asoc.2015.03.003.

https://doi.org/10.3390/info10120390
https://doi.org/10.3390/info10120390
https://doi.org/10.3390/info10120390
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1145/3387940.3392266
https://doi.org/10.1145/3387940.3392266
https://doi.org/10.1145/3387940.3392266
https://doi.org/10.1109/CEC.2009.4983181
https://doi.org/10.1109/CEC.2009.4983181
https://doi.org/10.1109/CEC.2009.4983181
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.asoc.2015.03.003
https://doi.org/10.1016/j.asoc.2015.03.003
https://doi.org/10.1016/j.asoc.2015.03.003

Bibliography 104

[34] Xianbing Meng, Yu Liu, Xiao Zhi Gao, and Hengzhen Zhang. “A New Bio-inspired
Algorithm: Chicken Swarm Optimization”. In: Advances in Swarm Intelligence
- 5th International Conference, ICSI 2014, Hefei, China, October 17-20, 2014,
Proceedings, Part I. Ed. by Ying Tan, Yuhui Shi, and Carlos A. Coello Coello.
Vol. 8794. Lecture Notes in Computer Science. Springer, 2014, pp. 86–94. DOI:
10.1007/978-3-319-11857-4_10. URL: https://doi.org/10.
1007/978-3-319-11857-4_10.

[35] Gai-Ge Wang, Suash Deb, and Leandro dos S Coelho. “Elephant herding opti-
mization”. In: 2015 3rd International Symposium on Computational and Business
Intelligence (ISCBI). IEEE. 2015, pp. 1–5.

[36] Hsing-Chih Tsai and Yong-Huang Lin. “Modification of the fish swarm algorithm
with particle swarm optimization formulation and communication behavior”. In:
Appl. Soft Comput. 11.8 (2011), pp. 5367–5374. DOI: 10.1016/j.asoc.
2011.05.022. URL: https://doi.org/10.1016/j.asoc.2011.05.
022.

[37] AR Moradi, Y Alinejad-Beromi, and K Kiani. “Artificial Fish Swarm Algorithm for
solving the Economic Dispatch with Valve-Point Effect”. In: International Journal
of Engineering and Technology 2.3 (2014), pp. 299–313.

[38] Gordon Fraser and Andrea Arcuri. “EvoSuite: automatic test suite generation for
object-oriented software”. In: Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering. ES-
EC/FSE ’11. Szeged, Hungary: ACM, 2011, pp. 416–419. ISBN: 978-1-4503-0443-
6. DOI: 10.1145/2025113.2025179. URL: http://doi.acm.org/10.
1145/2025113.2025179.

[39] Gordon Fraser and Andrea Arcuri. “Achieving Scalable Mutation-based Genera-
tion of Whole Test Suites”. In: Empirical Software Engineering (2014), pp. 1–
30. ISSN: 1382-3256. DOI: 10.1007/s10664-013-9299-z. URL: http:
//dx.doi.org/10.1007/s10664-013-9299-z.

[40] Gordon Fraser and Andreas Zeller. “Mutation-driven Generation of Unit Tests and
Oracles”. In: IEEE Transactions on Software Engineering 38.2 (2012), pp. 278–
292. ISSN: 0098-5589. URL: http://doi.ieeecomputersociety.org/
10.1109/TSE.2011.93.

https://doi.org/10.1007/978-3-319-11857-4_10
https://doi.org/10.1007/978-3-319-11857-4_10
https://doi.org/10.1007/978-3-319-11857-4_10
https://doi.org/10.1016/j.asoc.2011.05.022
https://doi.org/10.1016/j.asoc.2011.05.022
https://doi.org/10.1016/j.asoc.2011.05.022
https://doi.org/10.1016/j.asoc.2011.05.022
https://doi.org/10.1145/2025113.2025179
http://doi.acm.org/10.1145/2025113.2025179
http://doi.acm.org/10.1145/2025113.2025179
https://doi.org/10.1007/s10664-013-9299-z
http://dx.doi.org/10.1007/s10664-013-9299-z
http://dx.doi.org/10.1007/s10664-013-9299-z
http://doi.ieeecomputersociety.org/10.1109/TSE.2011.93
http://doi.ieeecomputersociety.org/10.1109/TSE.2011.93

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Objectives
	Contributions
	Thesis Outline

	Related Work
	Search-based Software Testing
	Representation of a solution
	Fitness Functions
	Local Search
	Hill Climbing
	Simulated Annealing

	Global Search
	Genetic Algorithms

	EvoSuite
	Summary

	Bio-inspired Algorithms
	Particle Swarm Optimization
	Genetic Bee Colony Algorithm
	Cat Swarm Optimization
	Whale Optimization Algorithm
	Moth-flame Optimization Algorithm
	Grey Wolf Optimization Algorithm
	Artificial algae algorithm
	Chicken Swarm Optimization Algorithm
	Elephant Herding Optimization
	Fish Swarm Algorithm
	Elephant-DynaMOSA
	Summary

	Empirical Study
	Research Questions
	Experimental Setup
	Classes Under Test
	Experimental Infrastructure
	Experimental procedure
	Experimental metrics
	Statistical Analysis

	Threats to Validity
	Internal Validity
	External Validity

	Tuning Results
	RQ1: Which bio-inspired algorithm performs best?
	RQ2: How does swarm-based search compare to traditional evolutionary search?
	RQ3: How does swarm-based search compare to many-objective optimization algorithms?
	RQ4: How does a hybrid that combines swarm-based search with many-objective optimization performs?
	Summary

	Discussion
	The algorithm with the highest overall coverage is best in all classes
	Any algorithm can execute more than 50% of the classes
	The performance of the algorithms increases with a larger budget
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Details of the Java projects and classes used in the empirical evaluation
	Class under test for each algorithm X performed statistically better than any another algorithm
	Detailed coverage achieved by each algorithm as a heatmap
	Bibliography

