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RESUMO (PORTUGUESE ABSTRACT) 

O metaboloma de um organismo engloba todas as pequenas moléculas químicas 

resultantes do metabolismo, denominadas de metabolitos. A metabolómica é um ramo das 

abordagens “Ómicas” que envolve a identificação e quantificação dos metabolitos e/ou 

variações destes em processos celulares, células individuais ou tecidos, bem como a 

compreensão destes nos diferentes sistemas biológicos. Apesar destes termos apenas terem 

surgido há aproximadamente 20 anos atrás, as abordagens de metabolómica têm sido cada 

vez mais utilizadas para estudar e compreender melhor, não só os diferentes Reinos existentes 

na Natureza, como também para explorar as interações entre regulação genética e o meio 

ambiente, mutações, mudanças de fenótipos, identificação de biomarcadores, avaliação da 

qualidade de produtos bem como a descoberta de novos medicamentos, entre outros. 

O reino vegetal contém uma grande diversidade de metabolitos (aproximadamente 

200000). A grande maioria destes metabolitos ainda é desconhecida e até agora os 

identificados são estruturalmente diferentes e as suas propriedades e funções biológicas são 

consideradas muito importantes em biologia vegetal. Sendo assim, uma abordagem não 

dirigida de metabolómica de plantas, tem como alvo um elevado número de metabolitos, em 

que grande parte tem estrutura desconhecida. Considera-se então um desafio para qualquer 

técnica analítica, quando um número tão elevado de compostos naturais desconhecidos com 

propriedades tão diferentes, necessitam de ser analisados simultaneamente.  

Existem várias técnicas disponíveis que permitem fazer estudos de metabolómica 

como a Ressonância Magnética Nuclear (Nuclear Magnetic Resonance, NMR) e Espectrometria 

de Massa (Mass spectrometry, MS) ou a combinação destas técnicas com processos de separação 

cromatográficos como a cromatografia gasosa (gas chromatography, GC) ou líquida (liquid 

chromatography, LC). Contudo, há que ter em conta que é necessária uma técnica analítica 

que permita a análise de amostras extremamente complexas e a identificação/deteção de 

dezenas de milhares de compostos individuais. Os limites de deteção por NMR são baixos e 

apesar da combinação destas técnicas com GC e LC possibilitarem a deteção de um elevado 

número de compostos, os processos cromatográficos demoram muito tempo e normalmente 

necessitam de vários passos de limpeza do equipamento. Normalmente a técnica escolhida 

para estudos de metabolómica de plantas é MS. Dentro dos equipamentos atuais, a 

espectrometria de massa de ressonância ciclotrónica de ião com transformada de Fourier 

(Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, FT-ICR-MS) é uma das 

tecnologias com maior potencial na análise metabolómica global de plantas (CAPÍTULO I). 

Esta técnica combina não só a elevada resolução com a elevada exatidão de massa, permitindo 

a identificação na ordem das centenas de milhares de compostos, como também permite uma 

rápida e fácil aquisição de resultados a partir da injeção direta da amostra. 
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A videira (Vitis vinifera L.) é atualmente uma das plantas de fruto mais cultivadas em 

todo o mundo devido à sua importância económica na indústria vitivinícola. Em 2020, a área 

mundial coberta por vinhas para produção de uvas, passas de uva, vinho e outros produtos foi 

de 7.3 milhões de hectares. Com um mercado global de 29.6 biliões de euros, esta planta 

desempenha um papel fundamental na economia de muitos países. A União Europeia é líder 

mundial na produção de vinho, tendo quase metade da área vitivinícola. Devido ao seu fácil 

cultivo e inúmeras aplicações, Portugal tem 194 kha de superfície de vinha, sendo o 5 º país 

da Europa com maior área coberta por vinhas. Como resultado, em 2020, Portugal produziu 

6,4 milhões de hectolitros de vinho, dos quais 3,1 foram exportados, tornando o país no 11 º 

produtor mundial de vinho e o 5 º na Europa. A receita total desta indústria foi de 846 milhões 

de euros para Portugal. 

De todos os produtos vitícolas, e apesar das uvas e do vinho serem maioritariamente 

os mais comercializados, alguns países como a Turquia, Arábia Saudita, Grécia, Bulgária, 

Roménia e Vietname cultivam algumas espécies de videira especificamente para a produção 

de folhas para consumo na alimentação. Em Portugal, as folhas de algumas cultivares de 

videira começaram já a ser analisadas para a inclusão na dieta, devido ao seu conteúdo 

antioxidante e compostos fenólicos. Os seus benefícios para a saúde têm sido cada vez mais 

estudados, tendo-se demonstrado que este produto pode ser utilizado, por exemplo, para o 

tratamento de dores crónicas, processos inflamatórios e pressão arterial elevada. Estas 

propriedades, o valor nutricional, o sabor e a qualidade são devidos a uma grande diversidade 

de compostos secundários que as folhas de videira possuem.  

Esta dissertação teve como foco principal a utilização de FT-ICR-MS para a 

caracterização do metaboloma total de folhas de diferentes espécies de videira. Foram 

efetuadas diferentes análises de modo a detetar metabolitos com possível interesse 

nutricional, outros associados à defesa intrínseca da planta e quais os metabolitos ativados 

após infeção com um patógeno.  

De modo a valorizar este produto secundário das vinhas, o valor nutricional de folhas 

de videira foi avaliado a partir de uma análise do metaboloma de folhas de videira de V. 

vinifera cv. Pinot noir por FT-ICR-MS (CAPÍTULO II). Foram identificados diferentes 

compostos que possuem diferentes propriedades nutricionais e farmacológicas, 

particularmente compostos fenólicos. A classe metabólica mais representada em folhas de 

videira foi a classe dos lípidos, em que os ácidos gordos representam quase 50% do total de 

lípidos detetados. A atividade antioxidante de folhas de videira foi também avaliada. Os 

resultados obtidos demonstram que as folhas de videira têm uma elevada atividade 

antioxidante semelhante aos frutos vermelhos, reconhecidos no mercado por serem alimentos 

de referência desta propriedade.  
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A grande maioria das cultivares de V. vinifera utilizadas na produção de vinho são 

suscetíveis a variadas doenças das quais podemos destacar o míldio, o oídio e a podridão 

cinzenta. Estas doenças são causadas, respetivamente, pelo oomicete Plasmopara viticola (Berk. 

et Curt.) Berl. et de Toni e pelos fungos Erysiphe necator (Schweinf.) Burrill e Botrytis cinerea 

(Pers.).  

P. viticola e E. necator são patógenos biotróficos obrigatórios, retiram nutrientes dos 

tecidos vivos da planta e desenvolvem estruturas para invadir as células da planta e obter 

produtos do seu metabolismo sem matar a planta. Este ciclo de vida contrasta com o de 

patógenos necrotróficos, B. cinerea, que matam os tecidos da planta à medida que se propaga, 

alimentando-se de células mortas. O modo de infeção destes patógenos também é diferente. 

O P. viticola invade a planta pelos estomas e o E. necator promove feridas no tecido da planta, 

pela secreção de enzimas líticas, por onde entra. B. cinerea entra no hospedeiro através de uma 

infeção local através de feridas. Em condições climáticas adequadas, estas doenças reduzem 

drasticamente o fitness da planta e a qualidade da uva, com perdas significativas, chegando a 

atingir 75% da vinha, levando consequentemente a uma diminuição na produção de vinho e 

à sua comercialização. 

A aplicação preventiva de produtos químicos é a abordagem mais usada pelos 

viticultores para controlar esses patógenos. Esta abordagem não é a mais eficaz, nem 

compatível com um desenvolvimento sustentável, nem segura para a saúde pública. Para além 

disto, as alterações climáticas têm afetado bastante a viticultura levando cada vez mais ao 

aparecimento de vários surtos mais agressivos de doenças. Na última década, surgiram 

exigências crescentes de práticas agrícolas mais sustentáveis. As diretrizes da União Europeia 

exigem a redução e o uso sustentável de produtos químicos (Diretiva 2009/128 / CE e Metas 

da Agenda 2030 para o Desenvolvimento Sustentável), de modo a aumentar a segurança para 

o consumidor e paralelamente reduzir os custos de produção. Para fazer frente a estas 

exigências, os produtores reforçam a necessidade de criação de novas variedades por meio de 

programas de melhoramento. Este processo envolve o cruzamento natural de plantas com 

características desejadas. Apesar das diferentes cultivares de videira serem extremamente 

suscetíveis a estes patógenos, existe um grau de diferenciação entre estas, desde as altamente 

suscetíveis até às mais tolerantes. Algumas espécies Americanas e Asiáticas de Vitis são 

tolerantes ao P. viticola, E. necator e B. cinerea, pelo que, uma possível alternativa na prevenção 

da infeção por estes patógenos é a criação de híbridos a partir da combinação de videiras com 

tolerâncias eficazes, e duráveis aos patógenos, com cultivares de V. vinifera com boa qualidade 

de uva para a produção de vinho. No entanto, um programa bem-sucedido de reprodução de 

plantas melhoradas com características de tolerância requer, não só uma compreensão dos 

mecanismos de tolerância inata de cultivares contra os fungos/oomicetes, mas também a 

identificação de biomarcadores de tolerância. De entre estes, os biomarcadores metabólicos 
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podem revelar-se particularmente úteis. Uma análise metabólica da videira é de elevada 

importância visto que as plantas contêm um metaboloma único que varia com as condições 

ambientais, o desenvolvimento da planta e infeções patogénicas. Para além disto, estes 

biomarcadores serão importantes em programas de melhoramentos para uma rápida seleção 

de cultivares com características de interesse. Em relação às folhas de videira, visto que é o 

primeiro órgão que estes patógenos infetam, estas podem possuir na sua composição 

biomarcadores de tolerância ou suscetibilidade contra estas doenças. 

Nos CAPÍTULOS III, IV e V, o metaboloma de vários genótipos de Vitis, com 

diferentes graus de tolerância a fungos/oomicetes, foi comparado de modo a compreender 

melhor os mecanismos de defesa intrínsecos da videira, associados a estas doenças, de modo 

a permitir uma fácil e rápida caracterização das videiras.  

A partir da comparação do metaboloma de duas V. vinifera (V. vinifera cv. Trincadeira 

e V. vinifera cv. Regent, suscetível e tolerante a patógenos, respetivamente) foi possível a 

discriminação destas cultivares e a identificação de compostos discriminativos (CAPÍTULO 

III). Uma comparação semelhante foi analisada entre uma Vitis vinifera (V. vinifera cv. 

Cabernet Sauvignon, suscetível) e uma espécie de Vitis (Vitis rotundifolia, tolerante) 

(CAPÍTULO IV). Os resultados obtidos permitiram uma discriminação entre estes genótipos 

a partir do metaboloma e perceber que o metaboloma da Vitis rotundifola apresenta uma 

maior complexidade de fórmulas químicas. A partir destes resultados foi possível perceber 

que apesar do metaboloma da videira ser bastante complexo, permite discriminar não só entre 

espécies como também variedades dentro da mesma espécie.  

Sendo assim, foi efetuado um estudo com um maior número de variedades de videira, 

com diferentes graus de tolerância a patógenos, para perceber as características intrínsecas de 

defesa das videiras (CAPÍTULO V). No total foram destacados sete compostos com um 

padrão de acumulação maior em apenas videiras suscetíveis. As vias metabólicas destes 

compostos foram analisadas e a expressão de genes, que codificam para enzimas de síntese ou 

degradação para estes compostos, foi quantificada por reação de polimerase de cadeia em 

tempo real. Como a expressão de genes de interesse tem de ser normalizada com genes de 

referência, a estabilidade de dez genes foi avaliada e foram estabelecidos genes de referência 

para este tipo de dados. Os três genes mais estáveis (ubiquitin-conjugating enzyme – UBQ; 

SAND family protein - SAND e elongation factor 1-alpha - EF1α) foram considerados para 

normalizar os dados. Os resultados obtidos demonstram um aumento significativo de 

catequina e derivados nas cultivares suscetíveis a patógenos. Estes resultados estão de acordo 

com os dados de expressão do gene envolvido na biossíntese da catequina e derivados 

[leucoanthocyanidin reductase 2 gene (LAR2)], mais expresso em videiras suscetíveis. Estes 

dados apontam para um possível biomarcador associado à suscetibilidade. 
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Foi também avaliado os diferentes compostos envolvidos na interação e defesa da 

videira a um dos patógenos, P. viticola. Os resultados obtidos encontram-se representados nos 

CAPÍTULOS VI e VII.  

De modo a utilizar diretamente os dados obtidos do equipamento de MS (dados raw) 

para distinguir rapidamente o metaboloma de videira após infeção com um patógeno (sem a 

sua identificação prévia dos compostos), foi efetuada uma análise do metaboloma de videira 

de V. vinifera cv. Trincadeira 24 horas após infeção com P. viticola. Os dados obtidos 

permitiram uma rápida e de fácil visualização separação do metaboloma de videira infetado 

e do não infetado (CAPÍTULOS VI).  

Por último, e como o P. viticola infecta a planta a partir da entrada na cavidade 

estomática, uma análise preliminar não direcionada do metaboloma de V. vinifera cv. 

Trincadeira foi efetuada com recurso a imagens por espectrometria de massa de 

ionização/dessorção a laser assistida por matriz de ressonância ciclotrónica de ião com 

transformada de Fourier (Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging 

- MALDI-FT-ICR-MSI), de modo a identificar os metabolitos responsáveis pela interação 

videira-P. viticola (CAPÍTULOS VII). A sacarose foi putativamente identificada, estando mais 

acumulada na superfície das folhas de videira infetadas com P. viticola. Para além disso, a 

distribuição da sacarose na folha verifica-se maioritariamente nos veios da folha. Estes 

resultados estão de acordo com o modo de infeção do patógeno, levando à hipótese do P. 

viticola extrair a sacarose da videira para se reproduzir.  

Cada capítulo desta tese foi escrito como um artigo científico e cada um possui o seu 

próprio resumo, introdução, materiais e métodos, resultados e discussão, conclusão, 

agradecimentos e referências bibliográficas.   

Os resultados obtidos nesta tese de doutoramento, irão ser uma mais valia para 

elucidar quais as bases moleculares inerentes à tolerância/suscetibilidade das videiras bem 

como perceber melhor os mecanismos de defesa da videira perante doenças. Permitirão 

também construir ferramentas de análise, para a identificação dos diferentes graus de 

tolerância/suscetibilidade a patógenos, em programas de melhoramento e análise de 

linhagens. 
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ABSTRACT 

Grapevine (Vitis vinifera L.) is one of most important fruit crops in the world due to 

its numerous food products, namely fresh and dried table grapes, wine and intermediate 

products, with a high economic importance worldwide.  

Concerning nutritional value, grapes are highly studied and a great diversity of 

secondary bioactive metabolites has already been identified. However, an important 

grapevine by-product, also containing a high nutritional value, but sometimes disregarded is 

grapevine leaves. They are an abundant source of compounds with interest in human health 

and are already included in human diet in several countries. The study of the nutritional 

values of this by-product is essential towards the improvement of food systems. Hence, in this 

PhD dissertation an untargeted metabolomic profiling of the leaves of Vitis vinifera cultivar 

‘Pinot noir’ was performed by Fourier-transform ion cyclotron-resonance mass spectrometry 

(FT-ICR-MS), (CHAPTER II). Numerous compounds with diverse nutritional and 

pharmacological properties, particularly polyphenols and phenolic compounds, several 

phytosterols and fatty acids (the most represented lipids’ secondary class), were identified. 

Grapevine leaves were also evaluated for their antioxidant capacity. It was found that leaves 

present a high antioxidant capacity, similar to berries, putting grapevine leaves at the top of 

the list of foods with the highest antioxidant activity. 

Traditional premium cultivars of wine and table grapes are highly susceptible to 

various diseases. Grapevine downy mildew, powdery mildew and gray mold are caused, 

respectively, by the biotrophic oomycete Plasmopara viticola (Berk. & Curt.) Berl. & de Toni) 

Beri, et de Toni], by the biotrophic fungus Erysiphe necator (Schweinf.) Burrill) and by the 

necrotrophic fungus Botrytis cinerea Pers.). 

In Europe, disease management became one of the main tasks for viticulture, being 

the current strategy, for disease control, the massive use of fungicides and pesticides in each 

growing season. This practice has several associated problems, from the environmental 

impact to the economical level, and even in human health.  

The alternative approach to the application of pesticides is breeding for resistance, 

clearly the most effective and sustainable approach, particularly if coupled to the selection of 

desirable traits from local grapevine cultivars. However, a successful breeding program of 

grape plants with increased resistance traits against pathogens requires not only an 

understanding of the innate resistance mechanisms of cultivars against fungi/oomycetes, but 

also the identification of biomarkers of tolerance or susceptibility. Among these, metabolic 

biomarkers may prove particularly useful, not only because they can be determined in a high 
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throughput way but, above all, because metabolites provide an accurate image of the 

metabolic state of the plant. To better understand the metabolic differences associated with 

intrinsic defence mechanisms of grapevine to pathogens, the metabolome of several 

genotypes with different tolerance degrees to fungal/oomycete pathogens was compared 

through an untargeted metabolomics approach by FT-ICR-MS (CHAPTERS III, IV and V).  

First, a comparison of two Vitis vinifera (V. vinifera cv. Trincadeira e V. vinifera cv. 

Regent, susceptible and tolerant, respectively, to pathogens) was performed and 

discriminatory compounds between these two cultivars, were identified (CHAPTER III). 

Also, through the comparison of the metabolome of one Vitis vinifera (V. vinifera cv. Cabernet 

Sauvignon, susceptible to pathogens) and one Vitis species (Vitis rotundifolia, tolerant), was 

possible to distinguish both genotypes and determine that Vitis rotundifolia metabolome 

appeared to be more complex according to the chemical formulas analysed (CHAPTER IV). 

Albeit grapevine metabolome is complex, it is possible to distinguish Vitis species and 

different genotypes within the same species.  

Ultimately, to identify compounds that contribute to the segregation between 

susceptible and tolerant grapevines, eleven Vitis genotypes, were compared at the metabolite 

level (CHAPTER V). From all the metabolites identified, seven compounds with a higher 

accumulation on susceptible genotypes were selected. Their metabolic pathways were 

analysed and the expression profile of biosynthesis and/or degradation enzymes coding genes 

was evaluated by Real-time Polymerase Chain Reaction (qPCR). qPCR studies require as 

internal controls one or more reference genes. Hence, in this study, ten possible reference 

genes were tested and the three most stable reference genes (ubiquitin-conjugating enzyme – 

UBQ, SAND family protein - SAND and elongation factor 1-alpha - EF1α) were established for 

our analysis and selected for qPCR data normalization. Our data revealed that the 

leucoanthocyanidin reductase 2 gene (LAR2) presented a significant increase of expression in 

susceptible genotypes, in accordance with catechin accumulation in this analysis group, being 

a possible metabolic constitutive biomarker, associated to susceptibility.  

The interaction of grapevine-P.viticola was also analysed by FT-ICR-MS (CHAPTERS 

VI and VII). The metabolome of Vitis vinifera cv. Trincadeira after 24 hours post-infection 

(hpi) was analysed and, based only on the chemical profile and representation plots, the 

discrimination between infected and non-infected grapevine leaves was possible (CHAPTER 

VI). A further analysis of Vitis vinifera cv. Trincadeira infected with P. viticola was performed 

through Matrix-assisted laser desorption/ionization (MALDI) FT-ICR-MS imaging, to 

identify leaf surface compounds related to the grapevine-pathogen interaction (CHAPTER 

VII). Putatively identified sucrose ions were more abundant on P. viticola infected leaves 

when compared to control ones. Also, sucrose was mainly located around the veins, which is 
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an indicator of the correlation of putatively identified sucrose at P. viticola infection sites, 

leading to the hypothesis that the pathogen is extracting sucrose from grapevine to reproduce. 

Each chapter was written as a scientific article and has its own abstract, introduction, 

materials and methods, results and discussion, conclusion, acknowledgments and references. 

The results obtained in this PhD thesis are a starting point on the elucidation of the 

molecular mechanisms related to the intrinsic tolerance/susceptibility to different pathogens. 

Also, these results can be used for the development of new approaches and help to improve 

breeding and introgression line programs. 
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1 INTRODUCTION 

1.1 MAJOR REMARKS IN MASS SPECTROMETRY HISTORY 

Mass spectrometry (MS) is a major analytical tool in chemistry, biochemistry, 

pharmacy, medicine and many related fields of science (Gross, 2017; Hiraoka, 2013). Its basic 

principle relies on the detection, identification and quantification of molecules based on their 

mass-to-charge (m/z) ratio, providing both molecular weight and structural information 

(Gross, 2017; Hiraoka, 2013). A mass spectrometer generates multiple ions from the sample 

under investigation; it then separates them according to their specific m/z, and then records 

the relative abundance of each ion (Gross, 2017; Hiraoka, 2013). The information delivered 

by mass alone can be sufficient for the identification of elements and the determination of 

the molecular formula of an analyte. The relative abundance of isotopes helps to decide which 

elements contribute to such formula and to estimate the number of atoms of a contributing 

element. Under the conditions of certain mass spectrometric experiments, fragmentation of 

ions can deliver information on ionic structure. Thus, MS may elucidate the connectivity of 

atoms within smaller molecules, identify functional groups, determine the (average) number 

and eventually the sequence of constituents of macromolecules, and in some cases even yields 

their three-dimensional structure (Gross, 2017; Hiraoka, 2013). 

The field of applications of mass spectrometry are countless ranging from elemental 

and isotopic analysis, organic and bio-organic analysis, structure elucidation and 

characterization of ionic species and chemical reactions to coupling to separation techniques, 

mass spectral imaging and miniaturization. Due to its multiple-applications, MS is now 

applied in various fields such as biological, non-biological and environmental research; 

forensic analysis; quality control of drugs, foods and polymers; industry; environmental; 

military and space exploration (Vestal, 2011).   

In order to understand how the field of MS has evolved to the present-day, it is helpful 

to look back and examine the major advances in the field. The history of Mass Spectrometry, 

remote to the beginning of the 20th century when Sir Joseph John Thomson developed MS 

(Thomson, 1897). Sir Thomson was working on another area of research at the time: cathode 

rays; and prevailed not only to understand what were the nature of cathode rays but also to 

measure the mass of the unknown particles involved on them. Sir Thomson first used his 

apparatus to measure electron/mass (early physicists typically reported a charge-to-mass ratio, 

e/m, rather than the present MS standard of m/z) of these fundamental particles/electrons in 

1897 (Thomson, 1910, 1907, 1897). He received the Nobel Prize in Physics in 1906 (Nobel 

Prize, 1906). His early work led to the discovery of atoms and isotopes and was the foundation 

of the MS field (Thomson, 1912, 1910, 1908).  
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On the following years, Francis William Aston’s built the first mass spectrometer, to 

provided means for the atomic characterization of numerous elements (Aston, 1920a, 1920b, 

1919). His work was also awarded with the Nobel Prize in chemistry in 1922 (Nobel Prize, 

1922). In 1929, Ernest O. Lawrence (Nobel Prize, 1939) invented the cyclotron: a device for 

accelerating nuclear particles to very high velocities without the use of high voltages 

(Lawrence et al., 1939), this principle lead to the creation of the first ion cyclotron resonance 

(ICR) mass spectrometers years later.  

Until 1940s, MS was used to measure masses of atoms and to demonstrate the 

existence of isotopes. Then, mass spectrometers started to become commercially available and 

MS was firmly established as a useful technique among physicists and industrial chemists. 

However, at the time, the major application of this technique was for the petroleum industry 

to control production processes and to measure the abundances of small hydrocarbons in 

process streams  (Westinghouse Electric International Company, 1943). 

Besides the slow beginning and small interest in the MS technique, remarkable 

progresses have been made in the last eighty years. In 1946, William Stephens presents the 

concept of Time-of-Flight (TOF) mass spectrometry (Stephens, 1946; Wolff and Stephens, 

1953), and since then, TOF mass analysers have grown, especially in the biological 

applications of mass spectrometry. Few years later, in 1949, the beginning of ultra-high 

resolution mass spectrometry started with the work of John A. Hipple, which developed the 

ICR mass spectrometer (Hipple et al., 1949). 

In the 1950s, Hans Dehmelt (Nobel Prize, 1989), developed a method for using 

magnetic fields to capture charged particles in a trap: the Penning trap (Dehmelt, 1952, 1951a, 

1951b, 1950; Dehmelt and Krüger, 1951a, 1951b, 1950). At the same time, Wolfgang Paul 

(Nobel Prize, 1989) developed a method to trap charged particles based on electrical currents 

and electromagnetic fields: quadrupole and quadrupole ion trap (Paul and Steinwedel, 1953). 

Both these works earn them the Nobel Prize in Physics in 1989. The ion trap technique is the 

most widely used today and is still being improved for an even wider range of applications.  

It was not until the late 1950s and 1960s that scientists really began to understand the 

complexity of molecules, the fragmentation mechanisms of different classes of organic 

compounds and determine the structures of unknown molecules by MS (Beynon, 1956; 

Gohlke, 1959; Ryhage et al., 1965). Also, the urge to discover more and more led to the 

combination of other techniques with MS: gas chromatography (GC-MS), liquid 

chromatography (LC-MS) and mass spectrometry imaging (MSI), (Beynon, 1956; Gohlke, 

1959; Ryhage et al., 1965). In 1968, Malcolm Dole developed the electrospray ionization (ESI) 

(Dole et al., 1968). Despite the mass spectrometers available at the time could not detect singly 
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charged ions with masses larger than a few thousand Daltons, below the mass range of 

macromolecules of biological interest, his experiments opened new insights for MS 

applications and are the groundwork for modern biological MS research. 

A major breakthrough happened in 1974 to John A. Hipple work, when Alan 

Marshall and Melvin Comisarow realized that Fourier Tranform, a mathematical 

transformation, could be applied to ICR. The advance was truly revolutionary (Comisarow 

and Marshall, 1974a). By the 1980s, small organic molecules were routinely being analysed 

by MS (Fenn et al., 1989; Karas et al., 1985; Lee et al., 1989; Tanaka et al., 1988; Yoshida et al., 

1988). Albeit incredible progress, proteins and other macromolecules still could not be 

detected  to address this problem, Franz Hillenkamp, Michael Karas and co-workers were 

investigating different techniques and developed the Matrix-Assisted Laser Desorption 

Ionization (MALDI), (Karas et al., 1985; Karas and Hillenkamp, 1988). Also, almost at the 

same time, John B. Fenn (Nobel Prize, 2002) showed that when a sample (small molecules 

and macromolecules) is sprayed with an electrical field, small charged drops are formed, and 

when the water evaporates, ions in gaseous form remain. John Fenn improved the 

Electrospray (ESI) technique to analyse biological molecules (Fenn et al., 1989). These 

ionization techniques, MALDI and ESI, triggered the explosive development of mass 

spectrometry and revolutionized biological MS. Moreover, they are still the dominant forms 

of macromolecule ionization to this day, especially to ionize proteins and peptides. Also, in 

that decade, Koichiro Tanaka (Nobel Prize, 2002) showed that laser pulses could blast apart 

protein molecules so that ions in gaseous form (Tanaka et al., 1988; Yoshida et al., 1988). The 

2002 Nobel Prize in Chemistry, was awarded with one half jointly to John B. Fenn and Koichi 

Tanaka "for their development of soft desorption ionisation methods for mass spectrometric analyses 

of biological macromolecules". 

In 2000, Alexander Makarov developed a new type of mass analyser which employs 

trapping in an electrostatic field: the orbitrap (Makarov, 2000).  

Although, all of these mass spectrometers are different and allow the analysis of all 

types of samples in a different way, the general layout of the equipment’s itself is common; 

they all consist of an ion source, a mass analyser and a detector which are operated under high 

vacuum conditions. 

Due to the advance in MS equipment’s and as the applications of MS rapidly expand, 

incredible progresses have been made in science, particularly during the past decade. There is 

no single “golden rule” in approaching the wide field of mass spectrometry. Mass 

spectrometry is an integrated science itself; it is based on physics, quantum mechanics, 

thermodynamics, physical chemistry, photochemistry, electromagnetism, instrumentation, 
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and so on. In other words, mass spectrometry is multi-facet rather than to be viewed from a 

single perspective. It is nowadays an indispensable analytical method in modern science and 

technology and albeit all the marvellous improvements, it is still a technology in progress. 

 
Figure 1.1 - Major milestones in mass spectrometry history. MS – Mass Spectrometry; TOF - Time-of-

Flight; ICR - ion cyclotron resonance; CI – Chemical Ionization; ESI - electrospray ionization; CID – 

Collision Induced Dissociation; APCI - Atmospheric Pressure Chemical Ionization; MALDI - Matrix-

Assisted Laser Desorption Ionization; ECD - Electron Capture Dissociation; ETD - Electron Transfer 

Dissociation; DESI - Desorption Electrospray Ionization. 
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1.2 PLANT METABOLOMICS 

Metabolomics targets an enormous number of compounds of unknown structure 

(Fiehn, 2002; Sumner et al., 2003; Schauer & Fernie, 2006). This is an extreme challenge in 

analytical chemistry when a high number of unknown natural compounds with different 

properties need to be addressed simultaneously (Ohta et al., 2007). 

But what is in fact “metabolomics” and the “metabolome”? The term “metabolomics” 

originates from metabolic profiling, a definition that dates from the early 1970s by researchers 

at the Baylor College of Pharmacy (Devaux et al., 1971; Horning & Horning, 1971). Years 

later, in 1998,  Oliver and co-workers proposed the concept of “metabolome” (Oliver et al., 

1998). Thereafter, many plant chemists conducted research in this area. In 1999, another 

concept was proposed by Nicholson and co-workers: “metabonomics”, defined as “the 

quantitative measurement of the dynamic multiparametric metabolic response of living 

systems to pathophysiological stimuli or genetic modification” (Nicholson et al., 1999). Next, 

in 2001, “metabolomics” concept arose defining the “comprehensive and quantitative 

analysis of all metabolites in a biological system” (Fiehn, 2001). In short, in a biological 

sample, the metabolome comprises the total metabolite pool of an organism, a tissue and a 

cell, at a given moment, which can be unrevealed to characterize genetic background and 

responses to environmental challenges. Within “OMICs” research areas, metabolomics 

includes the identification and quantification of small molecule compounds, as well as the 

understanding of the chemical patterns involved in the regulation of the cellular processes in 

different biological species (Razzaq et al., 2019). Studies in metabolomics are crucial to 

explore environment–to-gene interactions, phenotyping, biomarkers identification and drug 

detection (Razzaq et al., 2019). 

Within the different biological systems, plants are the group that contains the highest 

diversity of metabolites with thousands of compounds already identified and many still 

unknown (Wang et al., 2019). Hence, it is not only important to develop and improve new 

analytical techniques and protocols, but also to exploit already existing metabolomic 

platforms to discover more of the unknown plant metabolome, to explain complex biological 

pathways and to explore hidden regulatory networks controlling plant growth and 

development (Foito & Stewart, 2018; Chen et al., 2019; Razzaq et al., 2019; Wang et al., 2019; 

Castro-Moretti et al., 2020). 

In plant metabolomics, several techniques have been applied so far, from nuclear 

magnetic resonance (NMR) (Aranìbar et al., 2001; Choi et al., 2004; Crockford et al., 2006; 

Viant et al., 2003) to mass spectrometry (MS) (Gowda and Djukovic, 2014). Although NMR 

is extremely reproducible and allows absolute quantification of detected signals, it lacks 

sensitivity as only a limited number of compounds are identified in complex mixtures and 
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the resolution are not comparable to MS techniques. The choice of mass spectrometry for 

metabolomics studies has innumerous advantages, namely a higher coverage through the use 

of separation steps, such as liquid (LC) or gas chromatography (GC) and capillary 

electrophoresis, which provide robust platforms for metabolomic studies (Tomita & 

Nishioka, 2005). Regarding ionization methods in MS, the preferred ionization chemistry 

tends to be electrospray ionization (ESI) and/or matrix-assisted laser desorption/ionization 

(MALDI). Both ESI and MALDI are soft ionization methods, which means individual 

naturally occurring metabolites can be ionized with great sensitivity without fragmentation 

of the molecules (Hiraoka, 2013; Gross, 2017). Furthermore, these methods enable very 

sensitive measurements allowing the detection of small levels of biological metabolites (in 

the pico- or femtomolar concentrations), (Tomita & Nishioka, 2005). 

 

1.3 HIGH RESOLUTION PLANT METABOLOMICS: THE CASE OF FT-

ICR-MS 

For metabolomics analysis, mass spectrometers with high mass resolution, ability to 

achieve measurements with ppm errors, and ability to differentiate metabolites at the ppb to 

ppm level, is a prerequisite. These characteristics can only be achieved by using high 

resolution mass spectrometers, such as time-of-flight (TOF) and Fourier transform (FT) mass 

spectrometers, including FT ion cyclotron resonance (FT-ICR) and Orbitrap. These mass 

spectrometers have proven to be the most valuable for analyzing complex mixtures, not only 

for their mass accuracy and resolution but also due to the fact that direct infusion of the 

samples without chromatographic separation or derivatization reactions may be achieved 

(Allwood et al., 2011; Barrow et al., 2005; Haijes et al., 2019).  

The majority of the plant-based metabolomics published studies so far use the 

Orbitrap or TOF equipment (around 700 studies published since 2011 – Pubmed, August 

11th, 2021). The main reason is that most recent TOF equipment’s can achieve mass resolution 

values of 30,000–40,000 (Andrews et al., 2011; Pelander et al., 2011) and the resolution power 

is not affected by chromatography acquisitions rates (Ghaste et al., 2016; Glauser et al., 2013; 

Hopfgartner, 2011; Park et al., 2021). 

On the other hand, FT-ICR and Orbitrap outperform any other commonly used mass 

spectrometer in terms of absolute resolving power. Orbitrap mass spectrometers are especially 

useful in shotgun metabolomics as they allow rapid tandem MS spectra acquisition, high 

mass resolution (up to 240,000) and optional MSn fragmentation (Ghaste et al., 2016; Herzog 

et al., 2011; Schuhmann et al., 2012, 2011). Also, these mass spectrometers are capable of rapid 

polarity switching with high mass accuracy, which simplifies and accelerates the analysis and 
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improves the metabolome coverage (Ghaste et al., 2016; Glauser et al., 2013; Park et al., 2021; 

Schuhmann et al., 2012). 

Compared to TOF and Orbitrap, FT-ICR-MS had a slower start in metabolomics. 

Fourier transform ion cyclotron resonance mass spectrometer is an equipment with one of 

the highest resolution power and sensitivity. Its technical development began in the late 

1920s, when Ernest O. Lawrence invented the cyclotron, which uses electrical and magnetic 

fields to accelerate protons to high velocities in a spiral-shaped path before they collide with 

their target (Lawrence & Livingston, 1932; Comisarow & Marshall, 1996). A few years later, 

it was also demonstrated that in ion cyclotron resonance (ICR), the angular frequency of the 

circular motion of ions species is independent of the radius they are traveling on (Gross, 

2017). This principle was used by John A. Hipple to construct the first ICR mass spectrometer 

(Smith, 1951; Sommer et al., 1951). However, the major breakthrough in this technique 

happened in 1974 when Fourier transformation was applied to ICR by Alan Marshall and 

Melvin Comisarow (Comisarow & Marshall, 1974a; 1974b).  

Since then, the performance of FT-ICR-MS instruments has steadily improved to 

reach unprecedented levels of resolving power and mass accuracy (van Agthoven et al., 2011; 

Hendrickson et al., 2015; Smith et al., 2018; Kanawati & Schmitt-Kopplin, 2019). 

In most mass spectrometers, the sample is introduced in the equipment as a solid, 

liquid or gas, depending on the type of ion source used. Then, the ion species of the sample 

enter the mass analyzer, are detected and a mass-to-charge ratio (m/z) for each ion specie is 

obtained. In the case of FT-ICR-MS analyzers, ion species are usually generated externally in 

a separate ion source and then injected into a container known as the ‘‘ICR cell’’ (Kanawati 

& Schmitt-Kopplin, 2019). This cell is a Penning ion trap in which ion species are confined 

by a strong magnetic field, typically generated using a superconducting magnet, and possess 

not only excitation but also detection plates (Junot et al., 2010; Hiraoka, 2013).  

In the cell, the ion species must have a coherent ion motion (Junot et al., 2010).  To 

achieve that, the ion cloud present in the cell is excited, though the excitation plates. Due to 

the magnetic field, the ion species are forced on circular orbits by action of the Lorentz force. 

Once excited, the ions coherently circulate inside the ICR cell, perpendicular to the magnetic 

field, with an orbital frequency (cyclotron frequency) depending on their respective m/z 

ratios: ion species of equal m/z coherently circulate inside the ICR cell. The trajectories of the 

ion species induce an image current in the detection plates of the cell, which is amplified and 

stored as a time domain signal, and is composed of a set of frequencies corresponding to the 

motion of each ion species of a given m/z ratio. These currents are then transformed into 

frequency domain using a Fourier transform, from which the corresponding m/z values are 

calculated and mass spectra are reconstituted (Barrow et al., 2005; Junot et al., 2010; Hiraoka 
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2013; Gross, 2017). The Fourier transform is a mathematical operation that transforms one 

complex-valued function of a real variable into another. In the ICR, the domain of the ions 

original function is time and after Fourier transformation is the frequency domain (Gross, 

2017). Also, to allow a higher resolving power for small molecules a particular ion trap with 

dynamic harmonization was developed for FT-ICR mass spectrometers (Kostyukevich et al., 

2012). 

Nowadays, FT-ICR-MS has become one of the best-performing mass analyzers in 

terms of resolving power (105 to >106), mass accuracy (typically 0.1–2 ppm) and sensitivity 

(Barrow et al., 2005; Hiraoka, 2013; Gross, 2017). The resolving power and sensitivity of FT-

ICR-MS is such that it is possible to detect the naturally abundant elemental isotopes (e.g., 

13C, 41K, 15N, 18O, 34S, and 37Cl) and have the isotopic distribution for certain signals. This 

allows the calculation of highly accurate elemental compositions for the unknown signals, 

facilitating the selection of potential metabolite candidates prior to their confirmation by 

comparisons to analytical standards (Allwood et al., 2011). Such characteristics allow 

unequivocal mass assignment and the resolution of ion species which currently are not 

distinguishable with other types of mass spectrometers. As an example, this analytical 

technique has been used for the study of complex organic matter samples, such as crude oils, 

and is capable of evaluating around 50,000 molecular formulas in each analysis (Folli et al., 

2020; Hughey et al., 2002; Smith et al., 2018). Another advantage is the wide range of 

ionization source types that can be applied to FT-ICR-MS: electrospray ionization (ESI); 

atmospheric pressure chemical ionization (APCI); atmospheric pressure photoionization 

(APPI); matrix assisted laser desorption ionization (MALDI); electron impact and chemical 

ionization (EI and CI respectively), allowing a broader application to different kinds of 

samples (Allwood et al., 2011). Furthermore, it is possible to select the mode of introducing 

the sample in the FT-ICR-MS. 

Although, most of the FT-ICR-MS based untargeted metabolomics studies use the 

direct infusion of the sample extracts, FT-ICR-MS has the capability to be coupled to several 

chromatographic techniques for compound identification and quantification (Schrader & 

Klein, 2004; Barrow et al., 2005). 

Direct infusion mass spectrometry (DIMS) is an attractive approach with several 

advantages. Data acquisition only takes a few minutes with high throughput experiments and 

data processing is simpler than LC or GC-MS based approaches (Junot et al., 2014). Still, this 

imposes several disadvantages as well. Some studies reported that DIMS based approaches are 

prone to severe matrix effects and the biological material concentration that is introduced 

into the MS, needs to be optimized, to have high sensitivity and a correct metabolite detection 

(Madalinski et al., 2008). If not, tandem MS experiments may be affected due to incorrect 

selection of the precursor ions. Also, using this approach, ion species of biological relevance 
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could be masked by isomers or isobaric compounds, outlining another drawback (Junot et 

al., 2014). In addition, one should not disregard the space constraints of the ions directly 

infused in the FT-ICR cell. This space is limited and therefore the capacity for ion trapping is 

also limited. As a consequence, the direct infusion of complex samples in FT-ICR, such as 

plant extracts, may generate ion suppression, lower mass accuracy and decrease in measured 

frequencies of the trapped ions (Leach et al. 2012; Hohenester et al. 2020).  

Some authors suggest that DIMS could be used as a first screening filter used prior to 

chromatographic and spectral methods (Beckmann et al., 2008). In the case of 

chromatographic separation, it is important to have in mind that the achievable mass 

resolving power with FT-ICR-MS is proportional to ICR signal transient length (Park et al., 

2021). In other words, longer transient lengths can yield higher resolving power. This 

becomes a limitation of FT-ICR-MS coupled to chromatographic separation techniques (Park 

et al., 2021). Nevertheless, this limitation is being addressed by increasing the strength of the 

magnetic field (Blair et al., 2017; He et al., 2019; Smith et al., 2018; Walker et al., 2017), using 

multiple parallel mass analyzers (Park et al., 2016; S.-G. Park et al., 2017) and/or several 

frequency detectors (Cho et al., 2017; Nagornov et al., 2014; Park et al., 2020; Shaw et al., 

2018). For instance, FT-ICR-MS coupled with Ultra Performance Liquid Chromatography 

(UPLC) was used together with stable isotope (13C) allowing background contamination 

removal with a true positive identification of compounds with biological origin; also it 

empowered structural isomers discrimination (Giavalisco et al., 2009). The choice between 

DIMS or LC-MS should take in consideration the high throughput capability and the optimal 

metabolome coverage.  

The application of FT-ICR-MS to plant metabolomics started around the early 2000’s 

and roughly 90 studies have been published until now, the majority being published in the 

last 10 years. To uncover new metabolites and metabolic pathways, FT-ICR-MS plant 

metabolomics studies have been focused mainly on untargeted metabolomics approaches 

(Table 1.1). A crude plant extract is analyzed and through the different signal patterns of 

metabolites it is possible to correlate this information with metabolic pathways and other 

OMICs approaches, allowing for better understanding of plant regulatory systems. Targeted 

approaches have also been used in plant metabolomics studies using FT-ICR-MS (Table 1.2) 

allowing the detection of metabolites belonging to a specific class, metabolic pathway or 

already known compounds, ranging from medicinal to agrochemicals, increasing plants 

market value and industrial uses. The application of FT-ICR-MS to plant metabolism goes 

beyond full plant extracts, and some studies have been published on the investigation of intact 

plant cells and cell compartments (Table 1.3 and Table 1.4). Different plant samples’ 

extraction protocols compatible with FT-ICR-MS have been developed and guidelines for FT-



12 

ICR-MS application in plant science have been published (Allwood et al., 2011; Barrow et al., 

2005; Junot et al., 2010), (Figure 1.2). 

 

 

Figure 1.2 - The role of FT-ICR-MS applied to plant metabolomics in different fields. 

 

1.4 UNCOVERING THE PLANT METABOLOME THROUGH 

UNTARGETED FT-ICR-MS 

Untargeted metabolomics approaches aim for comprehensive analysis of all the 

measurable analytes in a sample, being the biological significance of each metabolite 

determined during data analysis and metabolite identification (Roberts et al., 2012). 

Therefore, the chemical identity of each metabolite in the study is not known a priori. The 

main aim is to maximize the number of metabolites detected and therefore provide the 

opportunity to observe unexpected changes. The selection of the right powerful analytical 

technique, capable of detecting and discriminate hundreds to thousands of metabolites in a 
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complex sample, such as FT-ICR-MS is a step in the right direction to increasing the 

metabolome coverage (Table 1.1). 

 

Table 1.1 - Untargeted FT-ICR-MS plant metabolomics studies (alphabetical order by plant species 

name). Tesla (T); Direct-infusion mass spectrometry (DIMS); Electrospray ionization (ESI); 

Atmospheric pressure chemical ionization (APCI); Linear Trap Quadrupole (LTQ); Ultra Performance 

Liquid Chromatography (UPLC); High-performance liquid chromatography (HPLC); liquid 

chromatography (LC); Collision-induced dissociation (CID). 

Plant (species) Experimental conditions Reference 

Allium sativum (Garlic) species DIMS 
4.7 T FT-ICR-MS (ESI source; 

CID) 
(Maccelli et al., 2020a) 

Ananas comosus var. comosus 

(Pineapple) 
DIMS 

9.4 T FT-ICR-MS (ESI source; 

CID) 
(Ogawa et al., 2018) 

Arabidopsis thaliana  

DIMS 
7 T FT-ICR-MS (ESI and APCI 

sources) 
(Hirai et al., 2004) 

DIMS 
FT-ICR-MS (ESI and APCI 

sources) 
(Tohge et al., 2005a) 

DIMS 
7 T FT-ICR-MS (ESI source; 

SORI-CID) 
(Oikawa et al., 2006) 

DIMS 
7 T FT-ICR-MS (ESI source; 

SORI-CID) 
(Ohta et al., 2007) 

DIMS LTQ-FT-ICR-MS (Giavalisco et al., 2008) 

UPLC LTQ-FT-ICR-MS (Giavalisco et al., 2009) 

DIMS 7 T FT-ICR-MS (ESI source) (Satou et al., 2014) 

DIMS 7 T FT-ICR-MS (ESI source) (Hansen et al., 2019) 

Bellis perennis UPLC LTQ-FT-ICR-MS (Scherling et al., 2010) 

Celtis iguanaea  DIMS 9.4 T FT-ICR-MS (ESI source) (Martins et al., 2014) 

Chrysanthellum americanum DIMS 12 T FT-ICR-MS (ESI source) (Cao-Ngoc et al., 2020) 

Crataegus (Hawthorn) DIMS 12 T FT-ICR-MS (ESI source) (Cao-Ngoc et al., 2020) 

Dimocarpus longan (Longan) DIMS 9.4 T FT-ICR-MS (ESI source) (Chen et al., 2014) 

Eugenia calycina (Red pitanga) DIMS 9.4 T FT-ICR-MS (ESI source) (Ferreira et al., 2014) 

Fragaria x ananassa, cv. Elsanta 

(Strawberry fruit) 
DIMS 

7 T FT-ICR-MS (ESI and APCI 

sources) 
(Aharoni et al., 2002) 

Knautia arvensis UPLC LTQ-FT-ICR-MS (Scherling et al., 2010) 

Leontodon autumnalis UPLC LTQ-FT-ICR-MS (Scherling et al., 2010) 

Lotus corniculatus UPLC LTQ-FT-ICR-MS (Scherling et al., 2010) 

Mangifera indica (Mango) DIMS 
9.4 T FT-ICR-MS (ESI source; 

CID) 
(Oliveira et al., 2016) 

Medicago truncatula LC FT-ICR MS (ESI source) (Pollier et al., 2013) 

Medicago x varia UPLC LTQ-FT-ICR-MS (Scherling et al., 2010) 

Nicotiana tabacum (Tobacco)  DIMS 
7 T FT-ICR-MS (ESI and APCI 

sources) 
(Aharoni et al., 2002) 
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DIMS 
7 T FT-ICR-MS (ESI and APCI 

sources) 
(Mungur et al., 2005) 

Ophiorrhiza pumila (Rubiaceae 

species) 
DIMS 

FT-ICR-MS (ESI and APCI 

sources) 
(Yamazaki et al., 2013) 

Panax ginseng (Korean ginseng) 

DIMS 15 T FT-ICR-MS (ESI source);  

15 T FT-ICR-MS (ESI source; 

CID) 

(Park et al., 2013) 
HPLC 

Populus x canescens (Poplar) 

DIMS 12 T FT-ICR-MS (ESI source) (Behnke et al., 2010) 

 12 T FT-ICR-MS (ESI source) (Way et al., 2013) 

DIMS 12 T FT-ICR-MS (ESI source) (Janz et al., 2010) 

Populus euphratica (Poplar species) DIMS 12 T FT-ICR-MS (ESI source) (Janz et al., 2010) 

Populus × canescens syn. P. alba × P. 

tremula (Poplar species) 
DIMS 12 T FT-ICR-MS (ESI source) (Kaling et al., 2015) 

Ribes nigrum (blackcurrant) DIMS 12 T FT-ICR-MS (ESI source) (Cao-Ngoc et al., 2020) 

Solanum lycopersicum cultivars 

(Tomato) 
DIMS 

4.7 T FT-ICR-MS (ESI source; 

CID);  

7 T FT-ICR-MS (ESI source) 

(Ingallina et al., 2020) 

Solanum tuberosum, var. Kennebek 

(Potato) 
DIMS 7 T FT-ICR-MS (ESI source) 

(Aliferis and Jabaji, 

2012) 

Thymus vulgaris (Thyme) DIMS 7 T FT-ICR-MS (ESI source) (Shahbazy et al., 2020) 

Vitis vinifera (Grapevine) 

DIMS 
9.4 T FT-ICR-MS (ESI source; 

SORI-CID) 
(Becker et al., 2013) 

DIMS 7 T FT-ICR-MS (ESI source) (Maia et al., 2016) 

DIMS 12 T FT-ICR-MS (ESI source) (Adrian et al., 2017) 

DIMS 7 T FT-ICR-MS (ESI source) (Maia et al., 2018) 

DIMS 7 T FT-ICR-MS (ESI source) 
(Marisa Maia et al., 

2019a) 

DIMS 7 T FT-ICR-MS (ESI source) 
(Marisa Maia et al., 

2019b) 

DIMS 7 T FT-ICR-MS (ESI source) (Nascimento et al., 2019) 

Vitis vinifera (Grapevine) and  

Vitis species 

DIMS 7 T FT-ICR-MS (ESI source) (Maia et al., 2020) 

DIMS 7 T FT-ICR-MS (ESI source) (Maia et al., 2021a) 

Zea mays (Maize varieties: Aristis, 

Tietar and PR33P66) 
DIMS 12 T FT-ICR-MS (ESI source) (Leon et al., 2009) 

 

The beginning of untargeted plant metabolomics studies by FT-ICR-MS dates back to 

2002 with Aharoni and co-workers applying a high-throughput FT-ICR-MS-based method to 

detect metabolic modulation in strawberry fruit development and tobacco flowers 

overexpressing a strawberry MYB transcription factor (Aharoni et al., 2002). Methanol and 

acetonitrile extracts were used and over 1000 m/z values were detected in those extracts, using 

a direct infusion of the sample in the FT-ICR-MS. Results have shown not only changes in 

the levels of a large range of m/z values corresponding to known fruit metabolites, but also 

revealed novel information on the metabolic transition from immature to ripe fruit. Also, 
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specific m/z values discriminated between transgenic and control plants, among which the 

cyanidin-3-rhamnoglucoside seemed to have a particular role (Aharoni et al., 2002). 

Aharoni and co-workers’ pioneer work demonstrated the feasibility and utility of FT-

ICR-MS approaches for an untargeted and rapid metabolic plant “fingerprinting”, starting a 

new era for plant metabolomics.  

Since then, several FT-ICR-MS based plant studies have emerged in which different 

plants, plant tissues and plant cell compartments were analyzed, metabolite extractions were 

optimized, and even FT-ICR-MS metabolomics were combined with other OMICs 

approaches to better reveal gene-to-metabolite networks (Table 1.1). 

One of the main plants analyzed using FT-ICR-MS, with an untargeted approach, has 

been Arabidopsis thaliana (Giavalisco et al., 2009, 2008; Hansen et al., 2019; Hirai et al., 2004; 

Ohta et al., 2007; Oikawa et al., 2006; Tohge et al., 2005). This model plant organism was one 

of the first to have its genome sequenced (Arabidopsis Genome Initiative, 2000) and is now 

one of the best model plants to study gene-to-metabolite correlation through the integrated 

analysis of gene expression (transcriptomics) and metabolite accumulation (metabolomics), 

(Fiehn, 2002; Sumner et al., 2003; Bino et al., 2004; Kopka et al., 2004; Scherling et al., 2010).  

Hirai and co-workers were the first to study the Arabidopsis thaliana metabolome 

using FT-ICR-MS (Hirai et al., 2004). In their work, transcriptomics was combined with FT-

ICR-MS metabolomics to investigate the gene-to-metabolite networks controlling nitrogen 

and sulfur, and secondary metabolism. They explored the plant whole-cellular processes 

under sulfur and nitrogen deficiency and understood that plants adapted to nutrient 

deficiency had a steady-state transcriptome and metabolome. The study opened new insights 

for a more precise investigation of gene-to-metabolite networks, aiming for functional 

genomics and better biotechnological application (Hirai et al., 2004). FT-ICR-MS was also 

applied to study A. thaliana metabolites and metabolic pathways after exposure to different 

concentrations of glyphosate (Ohta et al., 2007) and herbicidal chemical classes (Oikawa et 

al., 2006), as well as to study the light/dark regulation (Nakamura et al., 2007) and clarify the 

cytochrome P450 functions (Kai et al., 2009) in cell cultures.  

Also, metabolomics studies in transgenic A. thaliana plants over-expressing or with 

loss of function of genes, helped to elucidate and correlate the impact of select genes with the 

overall metabolism. The combination of FT-ICR-MS metabolomics analysis with other 

OMICs was also used in Arabidopsis thaliana mutants, to identify key metabolites involved in 

signaling pathways and to understand their biological roles (Hansen et al., 2019; Tohge et al., 

2005). A recent study in A. thaliana wild-type and loss-of-function mutant of FER (feronia) 

identified a total of 68 and 52 compounds in positive and negative mode, respectively, with 
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significant differences between wild-type and mutant plants. Arabidopsides (oxylipins) were 

found to be significantly enriched in the mutant (Hansen et al., 2019).  

FT-ICR-MS has also been applied to study the metabolism of other model plants, such 

as Nicotiana tabacum and Medicago truncatula, and of different economically important crops 

and fruits, to gain deeper insights into the physiological responses of plant species (Table 

1.1).  

The biological activity of plant metabolic extracts towards several bacterial and fungal 

strains, their antioxidant effects and use in the treatment of specific medical conditions was 

also evaluated by FT-ICR-MS (Chen et al., 2014; Ferreira et al., 2014; Martins et al., 2014). FT-

ICR-MS metabolomics studies were also applied to valorize several plants as a source of health 

and nutritional bioactive components (Maccelli et al., 2020; Marisa Maia et al., 2019a). As an 

example, the chemical diversity of eight different hydroalcoholic extracts of white and red 

crop A. sativum and wild Allium triquetrum, A. roseum, and A. ampeloprasum, all originating 

from the Mediterranean Basin, were evaluated by FT-ICR-MS and 850 and 450 m/z values 

were detected, respectively, by ESI+ and ESI-. The annotation of all these m/z values covered 

all of the main classes of primary and secondary metabolites, including amino acids, alkaloids, 

organic and fatty acids, nucleotides, vitamins, organosulfur compounds, and flavonoids 

(Maccelli et al., 2020). In grapevine, FT-ICR-MS allowed the characterization of the leaves of 

Vitis vinifera cv. Pinot noir and their valorization as a source of diverse biologically active 

phytochemical compounds (Marisa Maia et al., 2019a) 

One of the major applications of metabolomics studies is the study of plant metabolite 

responses to different stimuli in vitro that mimics the overall stresses that plants are exposed 

to every day in the field. Exposure to these environmental stresses reduces and limits the 

productivity of any plant. Abiotic constraints include radiation, salinity, flood, drought, 

extremes in temperature, heavy metals, among others. Biotic stressors account for attacks by 

various pathogens such as fungi, bacteria, oomycetes, nematodes and herbivores. Plants have 

developed various mechanisms to overcome these stresses.  Signaling metabolic pathways 

play an important role and act as a connecting link between sensing the stress and generating 

an appropriate biochemical and physiological response (Gull et al., 2019). Several reviews 

have been published regarding plant metabolism in response to biotic and abiotic stresses 

(Arbona and Gómez-Cadenas, 2016; Genga et al., 2011; Jorge et al., 2015; Piasecka et al., 2019) 

and considering the application of FT-ICR-MS, several works have also been published 

(Adrian et al., 2017; Kaling et al., 2015; Maia et al., 2020; Nascimento et al., 2019; Shahbazy 

et al., 2020), (Table 1.1). 

Shahbazya and co-workers studied the distinctive metabolites and metabolic 

pathways of thyme (Thymus vulgaris) plants, responding to drought stress, and highlighted a 
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possible correlation for the accumulation of carbohydrates and amino acids with osmotic 

protection as an adaptive stress response mechanism. In this work, it was demonstrated that 

galactose metabolism is the most significant in thyme (Shahbazy et al., 2020). Janz and co-

workers studied the metabolomics changes of two poplar species [Populus euphratica 

(tolerant) and Populus × canescens (sensitive)] in response to salinity stress (Janz et al., 2010) 

and, in the same plant, Kaling and co-workers elucidated the influence of UV-B radiation on 

overall metabolite patterns in transgenic poplar plants (Kaling et al., 2015). In both studies, 

hundreds of m/z values were found to be discriminant and revealed an up or down-regulation 

of various metabolic pathways, depending on the experimental conditions, such as, 

flavonoids, anthocyanins, osmotic adjustment, reactive oxygen species and others.  

The study of the effects of Rhizoctonia solani, the causal agent of Rhizoctonia disease, 

was studied by FT-ICR-MS on the global metabolic network of potato sprouts (Solanum 

tuberosum, var. Kennebek) by Aliferis and Jabaji (Aliferis and Jabaji, 2012). An up-regulation 

of mevalonic acid and deoxy-xylulose pathways leading to the biosynthesis of sesquiterpene 

alkaloids was reported. Fluctuations on the content of amino, carboxylic and fatty acids in 

infected potato sprouts were also detected (Aliferis and Jabaji, 2012).  

Grapevine metabolomics has also been widely explored by FT-ICR-MS. The first study 

was performed on a grapevine population, obtained by different crosses, to investigate the 

metabolism of infected and non-infected leaves with Plasmopara viticola, the causal agent of 

downy mildew disease (Becker et al., 2013). The comparison of MS profiles obtained from 

control and infected leaves of different levels of resistant grapevines highlighted several classes 

of metabolites involved in the discrimination between infected and non-infected leaves. 

Moreover, the high mass accuracy provided by FT-ICR-MS, allowed a precise analysis and 

critical discrimination between all signals which led to the identification of 19 possible 

markers between inoculated and healthy samples. Several studies have followed, the chemical 

diversity of different Vitis species, including grapevine (Vitis vinifera) was explored, and the 

metabolites present in grapevine with and without pathogen interaction were identified 

(Adrian et al., 2017; Maia et al., 2021, 2020; Marisa Maia et al., 2019b; M. Maia et al., 2019; 

Nascimento et al., 2019). 

Plant development associated metabolism is another focus of untargeted FT-ICR-MS 

studies (Aharoni et al., 2002; Ogawa et al., 2018; Oliveira et al., 2016). Pineapple (Ananas 

comosus var. comosus) and mango (Mangifera indica) are some of the most cultivated plants in 

tropical areas and highly exported to other countries. The maturation of these fruits indicates 

the best stage for harvesting and determines the correct time for fruit consumption.  In both 

works, the metabolism of different maturation stages of these plants was studied, and the 

results pointed to primary (mainly sugars) and secondary (mainly phenolic compounds) 

metabolites as the most abundant in the third stage of maturation (Ogawa et al., 2018; 
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Oliveira et al., 2016). More recently, Ingallina and co-workers thoroughly analyzed and 

compared the metabolic profile of two tomato cultivars (Torpedino di Fondi and San 

Marzano) in different ripening stages by FT-ICR-MS untargeted analysis combined with 

NMR spectroscopy (Ingallina et al., 2020). The different tomato extracts were analyzed in 

both positive and negative ionization modes, detecting up to 1646 different molecular 

formulas in only one extract. Some metabolites were shared by all extracts and others were 

found to possibly be considered marker compounds, being detected only in one extract 

(Ingallina et al., 2020). In grapevine leaves direct infusion FT-ICR metabolomics was done 

with the focus to improve metabolome coverage, through the use of different solvents in 

sequential elutions from the solid phase extraction, allowed the extraction of polar and non-

polar compounds, covering all major metabolic classes in plants (Maia et al., 2016).  

To cope with the increase in metabolomics biological studies, there is an ever-growing 

need for faster and more comprehensive analysis methods. As metabolites vary widely in both 

concentration and chemical behavior, there is still no single analytical procedure allowing 

the unbiased and comprehensive structural elucidation and determination of all metabolites 

present in a given biological system (Kueger et al., 2012). But the ever-increasing resolving 

power and the improved mass accuracy by commercially available FT-ICR-MS, significantly 

boosts untargeted metabolomics studies. Moreover, the capability of having a higher 

metabolome coverage, using direct infusion, metabolites are analyzed in a high-throughput 

way, providing a rapid analysis of complex metabolite samples, eliminating the time-

consuming separation approaches.  

 

1.5 TARGETING METABOLIC PLANT COMPOUNDS BY FT-ICR-MS 

Targeted metabolomics can be described as the measurement of defined groups of 

chemically characterized and biochemically annotated metabolites with established 

biological importance at the start of the study before data acquisition is performed. Targeted 

methods have a greater selectivity and sensitivity than untargeted methods, but targeted 

studies can only be performed if an authentic chemical standard of the metabolite is available 

or if the fragmentation pattern of the compound is known (Roberts et al., 2012).  

Most FT-ICR-MS-targeted-based plant metabolomics studies are related to the 

detection of plant compounds or classes with nutritional, medicinal or pharmaceutical value, 

identification and characterization of plant compounds already known to have interesting 

health properties and for cultivation improvement and marketing (Table 1.2). 
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Table 1.2 - Targeted FT-ICR-MS plant metabolomics studies (alphabetical order by plant species 

name). Tesla (T); Direct-infusion mass spectrometry (DIMS); Electrospray ionization (ESI); Sustained 

off-resonance irradiation (SORI); Collision-induced dissociation (CID); Infrared multiple photon 

dissociation (IRMPD); Ultra Performance Liquid Chromatography (UPLC); High-performance liquid 

chromatography (HPLC); liquid chromatography (LC); Linear Trap Quadrupole (LTQ); ultraviolet 

detection (UV); matrix-assisted laser desorption/ionization (MALDI). 

Plant (species) Experimental conditions Reference 

Acanthopanax senticosus Harms DIMS 
7T FT-ICR-MS (ESI 

source; SORI-CID) 
(Zhou et al., 2012) 

Allium cepa (Onion) 

LC 
7 T FT-ICR-MS (ESI 

source) 
(Nakabayashi et al., 2013) 

LC 
7 T FT-ICR-MS (ESI 

source) 
(Nakabayashi et al., 2016) 

Allium fistulosum (Green onion) LC 
7 T FT-ICR-MS (ESI 

source) 
(Nakabayashi et al., 2016) 

Allium sativum (Garlic) LC 
7 T FT-ICR-MS (ESI 

source) 
(Nakabayashi et al., 2016) 

Arabidopsis thaliana plants DIMS 
9.4 T FT-ICR-MS (ESI 

source) 
(Qin et al., 2011) 

Artocarpus altilis  FT-ICR-MS (ESI source) (Huong et al., 2012) 

Asparagus officinalis cv. Purple 

Passion 
DIMS 

9.4 T FT-ICR-MS (ESI 

source) 
(Sakaguchi et al., 2008) 

Camellia sinensis (Black tea) DIMS 
9.4 T FT-ICR-MS (ESI 

source) 
(Kuhnert et al., 2010) 

Cerbera manghas  DIMS FT-ICR-MS (ESI source) (Zhang et al., 2010) 

Fallopia convolvulus DIMS FT-ICR-MS (ESI source) (Brennan et al., 2013) 

Ginkgo biloba  DIMS 
HPLC-LTQ-FT-ICR-MS 

(ESI source; CID) 
(Beck and Stengel, 2016) 

Ibervillea sonorae  DIMS FT-ICR-MS (Vidal-Gutiérrez et al., 2021) 

Medicago truncatula UPLC 
FT-ICR-MS (ESI source; 

CID) 
(Pollier et al., 2011) 

Morus alba (Mulberries) 

DIMS 
15 T FT-ICR-MS (ESI 

source) 
(Park et al., 2017) 

DIMS 
7T FT-ICR-MS (ESI 

source; CID) 
(Xiao et al., 2017) 

Panax ginseng (Red ginseng) DIMS 
7T FT-ICR-MS (ESI 

source; CID) 
(Du et al., 2012) 

Piper methysticum (Kava) DIMS 

4.7 T FT-ICR-MS (ESI 

source; SORI-CID; 

IRMPD) 

(Warburton and Bristow, 

2006) 

Polygonum multiflorum HPLC 
LTQ-(7 T)-FT-ICR-MS 

(ESI source; CID) 
(Yang et al., 2019) 

Salvia miltiorrhiza Bunge (Tanshen) DIMS 
7T FT-ICR-MS (ESI 

source; SORI-CID) 
(Li et al., 2008) 
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Schisandra chinensis  

DIMS 
7T FT-ICR-MS (ESI 

source; CID) 
(Huang et al., 2007) 

DIMS 
7T FT-ICR-MS (ESI 

source; CID) 
(Huang et al., 2008) 

Schisandra sphenanthera (Fruits) DIMS 
7T FT-ICR-MS (ESI 

source; CID) 
(Huang et al., 2008) 

Solanum lycopersicum cultivars 

(Tomato) 
HPLC 

LTQ-FT-ICR-MS (ESI 

source; CID) 
(Iijima et al., 2013) 

Sorghum bicolor and Neptunia lutea DIMS 

15 T FT-ICR-MS (ESI 

source);  

15 T FT-ICR-MS 

(MALDI source) 

(Reeves et al., 2020) 

Stemona tuberosa    7T FT-ICR-MS  (Khamko et al., 2013) 

Vaccinium myrtillus (Bilberries) DIMS 
7T FT-ICR-MS (ESI 

source; CID) 
(Xiao et al., 2017) 

Vaccinium oxycoccos (Cranberries) DIMS 
7T FT-ICR-MS (ESI 

source; CID) 
(Xiao et al., 2017) 

Vaccinium uliginosum (Blueberries)  DIMS 
7T FT-ICR-MS (ESI 

source; CID) 
(Xiao et al., 2017) 

 

The significance of plants, in particular medicinal plants, in human health cannot be 

overlooked. Plants have been used since ancient times as resources of molecules with 

medicinal properties, due to the presence of naturally occurring compounds, and today many 

of the modern pharmaceuticals are still produced indirectly from plant extracts or from 

specific plant compounds. Hence, there is an urge to further investigate the “black box” of 

plant metabolites with medicinal potential to uncover which compounds possess the desired 

properties and biological activities for human body.  

The FT-ICR-MS was first used to specifically characterize plant compounds with 

health beneficial properties by Warburton and Bristow (Warburton and Bristow, 2006). Six 

kavalactones present in kava (Piper methysticum) roots were investigated by FT-ICR-MS 

(Warburton and Bristow, 2006). This plant is known for its relaxing and calming properties 

and its extracts have been used in herbal medicine over the last 2000 years, with preparations 

of kava being commercialized as capsules and fluid extracts. However, some reports of liver 

toxicity have questioned the safety of kava-containing products and extracts. The utilization 

of FT-ICR-MS in kava root extracts allowed the determination of their elemental formula and 

structural confirmation, leading to the identification of kavalactones with high certainty.  

Further studies with FT-ICR-MS have followed with the aim of, not only 

characterizing plant bioactive compounds, but also to improve the detection methods of these 

compounds (Table 1.2). Xin Huang and co-workers developed a method for Schisandra 

chinensis, whose ripe fruits are a famous tonic in traditional Chinese medicine, to detect and 
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analyze its lignan constituents, the major bioactive compounds present in this plant with anti-

hepatotoxic, anti-asthmatic and central nervous system protecting properties (Huang et al., 

2008, 2007). Some plant compounds with decreased incidence or treatment of some diseases 

have also been investigated by FT-ICR-MS. Acanthopanax senticosus leaves were screened to 

identify α-glucosidase inhibitors which have potential anti-diabetic applications (Zhou et al., 

2012), and Fallopia convolvulus was analyzed to identify compounds responsible for estrogenic 

activity (Brennan et al., 2013). Two compounds, emodin and rhodoeosein, were identified as 

being responsible for estrogenic activity (Brennan et al., 2013).  

More recently, Vidal-Gutiérrez and co-workers identified and quantified by FT-ICR-

MS cucurbitacins, the main group of compounds found in Ibervillea sonorae, which have 

demonstrated apoptotic and anti-tumoral activities in cervical cancer cells. One new 

cucurbitacin was also identified in this work (Vidal-Gutiérrez et al., 2021).  

Other similar studies applied FT-ICR-MS for the detection of phenolic compounds, 

oligosaccharides, anthocyanidins and others (Huong et al., 2012; Iijima et al., 2013; Khamko 

et al., 2013; Kuhnert, 2010; Li et al., 2008; Y. J. Park et al., 2017; Pollier et al., 2011; Reeves et 

al., 2020; Sakaguchi et al., 2008; Xiao et al., 2017; Yang et al., 2019; Zhang et al., 2010), (Table 

1.2). 

Besides therapeutically active substances, plants also play a great role in supplying food 

for personal care of mankind. Hence, a detailed knowledge of their metabolites is crucial to 

understanding the relation between food composition and health properties to attract more 

customers which will increase plants market value. Also, marketable plants are subject to 

phytosanitary treatments, thus the study of the presence of these compounds in plants ready 

to consume is a must for food safety controls. Several studies focused on the evaluation of 

plants and crops for human consumption to enhance their value and/or attract more 

consumers (Kuhnert, 2010; Y. J. Park et al., 2017; Pollier et al., 2011; Reeves et al., 2020; 

Sakaguchi et al., 2008; Xiao et al., 2017). As an example, Ting Xiao and co-workers evaluated 

the polyphenolic profiles of different berries (blueberry, bilberry, mulberry and cranberry) 

by FT-ICR-MS (Xiao et al., 2017). The study revealed thirty-nine polyphenols including: 26 

anthocyanins, 9 flavonoids and 4 phenolic acids were identified accurately. Their results 

provided not only a basis for further research on berries but also for the selection of certain 

berries as potential sources of anthocyanins. 
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1.6 DISCOVERING VALUE-ADDED PLANT PRODUCTS THROUGH 

FT-ICR-MS    

Plants produce a diverse repertoire of complex small-molecule compounds which can 

be used in    pharmaceutical and industrial products (Fischer et al., 2015). But to move from 

proof-of-concept experiments to commercial production, it is important to shift the focus 

from the untargeted and target identification of molecules, and start building-up reliable 

plant products reference databases, useful to guarantee food authenticity and freshness, and 

to support consumers, further nutraceutical evaluations and industries. This will ensure 

quality, purity and yield aspects that determine commercial feasibility. Some plant products 

with important industrial value are, for example, wood and cork, fibers, fatty oils, vegetable 

fats and essential oils, sugars and starches, papers, resins, among others. 

Recently, interesting studies have been published in the metabolic profiling of plant 

products using FT-ICR-MS (Table 1.3). 

 

Table 1.3 - FT-ICR-MS plant products metabolomics studies (alphabetical order by plant species 

name). Tesla (T); Direct-infusion mass spectrometry (DIMS); Electrospray ionization (ESI); 

Atmospheric pressure chemical ionization (APCI); Linear Trap Quadrupole (LTQ); Collision-induced 

dissociation (CID). 

Plant (species) Product Experimental conditions Reference 

Acer (Maple) and  

Quercus alba (White oak) 
Veneers DIMS 

12 T FT-ICR-MS (ESI 

source) 
(He et al., 2019) 

Coffea arabica (Arabica) 

and Coffea canephora var. 

robusta (Robusta) 

Coffee DIMS 
LTQ-(7.2 T)FT-ICR-

MS (ESI source) 
(Garrett et al., 2012) 

Cocos nucifera (Coconut) Water DIMS 
9.4 T FT-ICR-MS (ESI 

source) 
(Costa et al., 2015) 

Medicago sativa (Alfalfa), 

Phaseolus vulgaris (Bean), 

Hordeum vulgare (Barley), 

Zea mays (Maize), Triticum 

aestivum (Wheat), Lolium 

perenne (Ryegrass) and 

Cucurbita maxima 

(Pumpkin) 

Root 

exudates 
DIMS 

15 T FT-ICR-MS (ESI 

source) 
(Miao et al., 2020) 

Quercus (Oak barrel), grain 

varieties and Saccharum 

officinarum (Sugarcane) 

Whisky, 

Rum and 

wood barrel 

samples 

DIMS 
12 T FT-ICR-MS (ESI 

source) 
(Roullier-Gall et al., 2018) 
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Satureja montana Essential oil DIMS 

4.7 T FT-ICR-MS (ESI 

and APCI sources; 

CID) 

(Vitanza et al., 2019) 

Triticum aestivum (Hard 

white wheat) 

Bran 

samples 
DIMS 

FT-ICR-MS (ESI and 

APCI sources) 
(Matus-Cádiz et al., 2008) 

Vitis species 

Red and 

white wines 
DIMS 

12 T FT-ICR-MS (ESI 

source) 
(Gougeon et al., 2009) 

Red and 

white wines 
DIMS 

12 T FT-ICR-MS (ESI 

source) 
(Roullier-Gall et al., 2014) 

White wines DIMS FT-ICR-MS (Romanet et al., 2021a) 

 

From the different studies published, it can be highlighted the utilization of FT-ICR-

MS, to detect and quantify Arabica (Coffea arabica) coffee adulterations by Robusta (Coffea 

canephora var. robusta) coffee (Garrett et al., 2012). The admixture of Robusta coffee is illegal 

into high-quality Arabica coffee; thus, it is crucial for the coffee industry to investigate the 

coffee’s quality in a fast and precise manner. Rafael Garrett and co-workers developed a 

method to quantify blends of Robusta and Arabica coffee as well as to investigate the identity 

of the major compounds responsible for the distinction between the coffee varieties using FT-

ICR-MS together with other mass spectrometry techniques (Garrett et al., 2012).   

As already mentioned, FT-ICR-MS was also used to characterize the metabolome of 

V. vinifera cv. Pinot noir’s leaves to assess their potential as a source of bioactive nutraceutical 

compounds (Marisa Maia et al., 2019a). 

The chemical composition of wine has mostly been studied using targeted analyses of 

selected metabolites (Bi et al., 2018; Flamini and De Rosso, 2006; Pinu, 2018). However, the 

chemical diversity of wine composition can be unraveled through an untargeted approach if 

using an ultra-high-resolution mass spectrometry, like FT-ICR-MS, providing an 

instantaneous image of complex interacting processes. The analysis of barrel-aged wines by 

an untargeted metabolomics approach by FT-ICR-MS, revealed that 10-year-old wines still 

show a geographic metabolic signature of the forest location where oaks of the barrel in which 

they were aged have grew (Gougeon et al., 2009). Most recently, Romanet and co-workers 

applied FT-ICR-MS to explore the chemical diversity associated with the antioxidant capacity 

of white wines (Romanet et al., 2021).  More than 350 molecular markers were found to be 

correlated with wines with higher antioxidant capacity (Romanet et al., 2021). Bottled white 

and red wines from different appellations in Burgundy were also analyzed by FT-ICR-MS to 

characterize wine complexity and identify markers that can separate wines (Roullier-Gall et 

al., 2014). Roullier-Gall and co-workers also analyzed 150 whisky samples from 49 different 

distilleries in 7 countries, ranging from 1-day new made spirit to 43 years of maturation with 

different types of barrel (Roullier-Gall et al., 2018). FT-ICR-MS analysis revealed some 
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interesting results: the impact of the wood history on the distillate’s composition during 

barrel aging. Whiskies could be differentiated according to the history of the barrel used for 

the maturation, regardless of the cereal source. Also, the comparison of barrel aged rums and 

whiskies revealed specific metabolic signatures (Roullier-Gall et al., 2018). 

Coconut water was also analyzed by FT-ICR-MS to verify its quality after storage and 

characterize the chemical compounds produced during natural ageing (Costa et al., 2015).  

The study of anti-microbial activities of marketable products are also extremely 

important for food security.  Vitanza and co-workers characterized the metabolite profile of 

commercial essential oil of Satureja montana to evaluate its antimicrobial properties, both 

alone and combined with gentamicin towards gram-negative and gram-positive bacterial 

strains, through the combination of FT-ICR-MS and antibacterial activity experiments 

(Vitanza et al., 2019).  

 

1.7 A DEEPER ANALYSIS OF PLANT CELLS AND CELL 

COMPARTMENTS’ METABOLITES BY FT-ICR-MS 

Plants sense all the external stresses present in the environment, get stimulated and 

then generate appropriate cellular responses. The stimuli received from the sensors located 

on the cell surface or cytoplasm are transferred to the transcriptional machinery situated in 

the nucleus, with the help of various signal transduction pathways (Gull et al., 2019). This 

leads to major differential metabolic changes making the plant tolerant/prepared against the 

stress. Hence, studying plant cells and different cellular compartments allows a broader 

understanding of cell dynamics (Table 1.4). 

 

Table 1.4 - FT-ICR-MS plant cells and cell compartments metabolomics studies. Tesla (T); Direct-

infusion mass spectrometry (DIMS); Electrospray ionization (ESI); Sustained off-resonance irradiation 

(SORI); Collision-induced dissociation (CID). 

Plant (species) 
Cell / Cell 

compartment 
Experimental conditions Reference 

Arabidopsis 

thaliana 

Cells DIMS 7T FT-ICR-MS (ESI source) (Kai et al., 2009) 

Cells DIMS 
7T FT-ICR-MS (ESI source; 

SORI-CID) 

(Nakamura et al., 

2007) 

Intact vacuoles DIMS 12 T FT-ICR-MS (ESI source) (Ohnishi et al., 2018) 

Vitis vinifera  

(Grapevine) 
Apoplast DIMS 7 T FT-ICR-MS (ESI source) 

(Figueiredo et al., 

2021) 
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FT-ICR-MS was applied to profile the metabolome of A. thaliana cell cultures, 

overexpressing P450-genes to identify and characterize its pathway (Kai et al., 2009). 

Cytochromes P450 of higher plants play crucial roles in both primary and secondary 

metabolism processes, such as catalysis and synthesis of structurally diverse specialized 

metabolites important in essential ecological roles and constitute a valuable resource for the 

development of new drugs (Shang and Huang, 2019). An FT-ICR-MS based metabolomics 

scheme was successfully implemented to clarify the P450 functions and fatty acid 

hydroxylation activity of A. thaliana CYP78A7 gene was reported (Kai et al., 2009). Also in A. 

thaliana cell cultures, metabolites behind light/dark regulation were investigated, leading to 

the identification of 40 and 8 ions, respectively in negative and positive ionization modes, to 

growth conditions (Nakamura et al., 2007). Moreover, it was suggested that accumulations of 

several phenylpropanoids, a disaccharide and a trisaccharide were prominent in the light 

condition (Nakamura et al., 2007). 

Both these studies opened new insights, not only for the use of plant cell cultures to 

similar studies, but also to explore their compartments. 

This approach was also applied to plant compartments such as the vacuoles and the 

extracellular space (i.e., apoplast). Non-target analysis with FT-ICR-MS of A. thaliana culture-

suspension cells identified 1106 m/z signals only present in vacuoles (Ohnishi et al., 2018). 

The apoplastic fluid of grapevine leaves was also evaluated by FT-ICR-MS. A total of 1100 and 

1657 putative metabolites were annotated for V. vinifera cv. Trincadeira and V. vinifera cv. 

Regent, being 514 common to both grapevine genotypes (Figueiredo et al., 2021).  

Although there is still much to be discovered about metabolic functions and pathways 

in cells and cell compartments, these studies demonstrate the advantage of using an ultra-

high-resolution and mass accuracy technique. The exact identification of metabolites and its 

correlation is a step forward in the comprehension of cellular mechanisms.   

 

1.8 MALDI-FT-ICR-MS: SPATIAL DISTRIBUTION OF PLANT 

METABOLITES  

Besides the identification of metabolites in the overall system or in specific plant 

compartments, it is also important to understand the spatial distribution of metabolites and 

their respective accumulation pattern. Mass spectrometry imaging (MSI) has proven to be a 

very powerful tool, with several advantages, being the most important the ability to 

simultaneously determine the exact location and distribution of specific or multiple 

metabolites in a single experiment in a complex biological material, typically plant tissue 

sections (Bjarnholt et al., 2014; Boughton et al., 2016).  
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There are several Laser Desorption Ionization (LDI) techniques available nowadays 

(Boughton et al., 2016), being the Matrix Assisted Laser Desorption Ionization (MALDI) mass 

spectrometry, by far the most commonly used form of LDI. In MALDI the analyte/tissue is 

co-crystallized with a chemical matrix, which absorbs the laser energy and releases the 

analytes into the gas-phase in a process leading to ionization (Bjarnholt et al., 2014; Boughton 

et al., 2016). The addition of the matrix has several advantages. Not only does it allow to 

specify the type of compounds to analyze but also, since the energy of the laser light is 

absorbed by the matrix and not directly by the analytes, MALDI is considered a soft ionization 

as well as ESI, enabling researchers to detect very small levels of detectable biological analytes, 

making it an excellent technique for metabolomics studies. 

In a MSI experiment, pixels are established by virtually defining an array of discrete 

spots over the sample area. The laser is fired several times in each pixel before moving to the 

next spot. For each coordinate individual mass spectra are collected representing all the 

ionizable molecules on that spot. The combination of all spectra allows the reconstruction of 

an image with the intensity values of the ionized molecules, representing the spatial 

distribution of all molecules along the sample, which can be compared with an optical image 

of the sample (Barkauskas et al., 2009; Boughton et al., 2016). MALDI-MSI has been adopted 

for the direct visualization of plant tissues and the investigation of plant biology as well. The 

studies range from studying the mechanisms of plant responses to both abiotic and biotic 

stresses and symbiotic relationships, to fundamental ecophysiological important processes 

(reviewed by Qin et al., 2018). An important point to have in consideration when performing 

plant tissues analysis is sample preparation, which continues to be the major bottleneck of 

this technique. All the major concerns when performing MSI in plants have been reviewed 

in Bjarnholt et al., 2014; Bodzon-Kulakowska & Suder, 2016; Boughton et al., 2016; Grassl et 

al., 2011. A detailed characterization of complex plant tissues by MALDI-MSI requires an 

instrument that is capable of high mass resolving power, mass accuracy and dynamic range. 

FT-ICR-MS is the technique for such analysis as it offers the highest mass spectral 

performance for MALDI-MSI experiments (Bowman et al., 2020). Coupling of MALDI to FT-

ICR for MSI analysis, has several limitations. Mass spectrometry imaging experiments of large 

samples, at very high spatial resolutions, need higher measurement times, which are limited 

by the length of FT-ICR acquisition times (Buck et al., 2016). As it was previously mentioned, 

this subject can be addressed by increasing the magnetic field strength. Also, the complexity 

of the biological sample, due to a vast array of concentrations from different biomolecules 

with different chemistries and molecular sizes present, may generate an ion suppression 

effect, making the MSI analysis less sensitive (Boughton et al., 2016). The addition of matrix 

to a sample generates high-abundance low-weight ion species which leads to significant 

interfering signals, being also a limitation. Therefore, upon MSI experiments with high-

performance analyzers, such as FT-ICR, there is a significant balance between acquisition 
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speed, spatial resolution and sensitivity (Boughton et al., 2016; Buck et al., 2016). Although 

several plant metabolic studies appeared using MALDI-MSI (reviewed in Qin et al., 2018), 

few MSI studies combined MALDI and FT-ICR-MS (Alcantara et al., 2020; Gorzolka et al., 

2014; Sarabia et al., 2018; Takahashi et al., 2015), (Table 1.5). 

 

Table 1.5 - MALDI-FT-ICR-MS plant metabolomics studies (alphabetical order by plant species name). 

Tesla (T); matrix-assisted laser desorption/ionization (MALDI); laser desorption/ionization (LDI). 

Plant (species) Experimental conditions Reference 

Arabidopsis thaliana tissues 

(seedlings and roots) 

9.4 T FT-ICR-MS (MALDI and LDI 

sources) 
(Takahashi et al., 2015) 

Cannabis leaves and Jatropha 

curca 

9.4 T FT-ICR-MS (MALDI and LDI 

sources) 
(dos Santos et al., 2019) 

Erythroxylum coca leaves  FT-ICR-MS (MALDI source) (Dos Santos et al., 2021) 

Hordeum vulgare cv. Optic 

(Barley) seeds 
FT-ICR-MS (MALDI source) (Gorzolka et al., 2014) 

Hordeum vulgare cv. Hindmarsh 

(Uniform barley) 
7 T XR-FT-ICR-MS (MALDI source) (Sarabia et al., 2018) 

Manihot esculenta Crantz. 

(Cassava) 
7 T FT-ICR-MS (MALDI source) (Alcantara et al., 2020) 

 

MALDI-FT-ICR-MSI was applied to barley seeds and roots to study the spatial 

distribution and profiles of metabolites, their characterization and quantify their change 

(Gorzolka et al., 2014). Barley is one of the model organisms to investigate the cereal 

germination process that involves complex interactions between different organs that lead to 

the growth of the plant.  

MALDI-FT-ICR-MSI was applied to germinated barley seeds for the detailed 

localization of metabolites in longitudinal and transversal seed sections (Gorzolka et al., 

2014). Several compounds responsible for the prevention of pathogen infestation in seeds, as 

well as distinct localization patterns within seed organs were identified (Gorzolka et al., 2014). 

Also, the high-mass resolution of MALDI-FT-ICR-MSI was also used in barley roots to reveal 

the detailed spatial distribution of metabolites, such as lipids, in response to an abiotic stress, 

salinity stress (Sarabia et al., 2018).  

In another study, an improved method of MALDI-FT-ICR-MSI was developed to 

achieve a higher-resolution and higher mass accuracy and applied to analyze the distribution 

of small metabolites in A. thaliana roots (Takahashi et al., 2015). Most recently, Dos Santos 

and co-workers optimized and studied the spatial distribution of alkaloids in Erythroxylum 

coca leaves (Dos Santos et al., 2021). Three matrices were tested and 2,5-dihydroxybenzoic acid 



28 

(DHB) was selected as the best matrix. Different tissue thicknesses were also evaluated, to 

study the inner part of the leaf tissue, and alkaloids and flavonoid molecules were detected. 

MALDI-FT-ICR-MSI can also be used for industrial purposes. Heavy metal soil 

contaminations are very problematic and cause severe negative impacts on human health. 

Development of cost-effective methods of heavy metals extraction, such as Hg and Au, may 

offer significant benefits through remediation of contaminated land and extraction of 

valuable resources. In a recent study, Hg and Au localization in cassava roots were explored 

for these heavy metals phytoextraction. The results of Alcantara and co-workers using 

MALDI-FT-ICR-MSI indicated that exposure to Hg and Au did not disturb the plant tissues, 

being the plants healthy and alive at the time of harvest (Alcantara et al., 2020). 

All these studies open new insights for plant metabolomics studies. Also, it is 

anticipated that MALDI-FT-ICR-MSI approaches will bring a new level of understanding to 

metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites 

in descriptions of metabolic pathway regulation. 

 

1.9 TANDEM MS AND IN SILICO PREDICTION TOOLS IN PLANT 

METABOLOMICS 

In mass spectrometry experiments, the selection and isolation of specific ion species 

from the mixture and their fragmentation or ion–molecule reactions, allows their thorough 

characterization. This approach is denominated tandem mass spectrometry or MS/MS (Gross, 

2017). The output of MS/MS is a mass spectrum of all the fragments generated by the isolated 

and fragmented analyte. This approach, by the isolation of a single analyte precursor to obtain 

a mass spectrum containing only its fragments, provides MS metabolomics studies with 

structural information of the molecules under analysis, allowing an unequivocal 

identification of the compounds.  

Another important point to have in consideration in MS/MS, are the currently 

available chemical spectral libraries of raw and validated identified compounds in public 

databases (Tada et al., 2019). These platforms are essential to identify which metabolites are 

present in a sample. The fragmentation pattern of the unknown analytes present in the 

sample can be matched with tandem MS spectra of reference standards and other already 

identified compounds, allowing an accurate and unambiguous metabolite identification, 

which still remains the major bottleneck in metabolomics data interpretation (Ara et al., 

2021; Cao et al., 2021; Chaleckis et al., 2019; Guijas et al., 2018; Horai et al., 2010; Scheubert 

et al., 2017; Wang et al., 2016; Wohlgemuth et al., 2016).  
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One of the alternative approaches used to annotate an unknown fragmentation mass 

spectrum is using in silico predictions, one of the key focuses in computational mass 

spectrometry research (Agahi et al., 2020; Djoumbou-Feunang et al., 2019; Krettler and 

Thallinger, 2021; Ruttkies et al., 2016).  

Different studies have been published presenting new methods that facilitate the 

identification of small molecules from tandem MS experiments, even without spectral 

reference data or a large set of fragmentation rules (Dührkop et al., 2015; Hufsky et al., 2014; 

Krettler and Thallinger, 2021; Rogers et al., 2009; Ruttkies et al., 2016; Wolf et al., 2010). Also, 

web-based facilities have been created to help the analysis of raw or processed metabolomics 

mass spectrometric data, displaying the metabolites identified, changes in their experimental 

abundance and the metabolic pathways in which they occur (Leader et al., 2011). 

One of the challenges of in silico annotation remains the multiple candidate structures 

predicted for each fragmentation spectrum meaning that the user still must visually inspect 

the predictions from a candidate list. Thus, defining new algorithms with improved quality 

and annotation rates is crucial (Böcker, 2017; Li et al., 2013; Silva et al., 2018). 

Albeit recent technological equipment improvements, the complexity and diversity 

of plants surpasses these advances. The complete understanding of intricate metabolic 

pathways, step by step, is mainly incomplete to this diversity of specialized metabolites. To 

tackle this challenge, different approaches have been used through the years to study 

metabolites in plants, such as the identification of genes related to metabolites production 

and functions, utilization of protein sequences to predict enzymatic functions on specific 

points at the metabolic pathway and gene co-expression networks (Adio et al., 2011, 2011; 

Chae et al., 2014; Karp et al., 2011; Menikarachchi et al., 2013; Moore et al., 2020; Saito et al., 

2008; Schläpfer et al., 2017; Tohge et al., 2005; Wisecaver et al., 2017). Despite innovative 

experimental approaches, all the metabolites detected need to be identified. Thus, high 

precision mass spectrometry data needs to be annotated so that the results can be displayed 

in specific databases. These databases contain linked information of genomes, biological 

pathways, diseases, drugs and chemical substances, allowing the depth comprehension of the 

compounds analyzed (Booth et al., 2013; Misra, 2021).   

However, there is still a wide gap between the known and unknown as all these 

experimental approaches have high error rates and depend on the plant material and type of 

analysis. Thus, multiple network analysis tools have been developed to deal with these flaws 

and in silico metabolomics studies is appearing as an alternative approach (Desmet et al., 

2021). In the last few years, computational advances, and the availability of libraries with 

fragmentation patterns information, made it possible to perform classification and predict 

plant chemical structures based on computational methods (Cao et al., 2021; Moore et al., 
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2020; Peters et al., 2021; Ruttkies et al., 2016; Scheubert et al., 2017; Toubiana et al., 2019). 

As a result, several databases and tools have been established (Cottret et al., 2010; de Groot et 

al., 2009; Ellis et al., 2008; Li et al., 2013; Wicker et al., 2016; Yousofshahi et al., 2015). These 

platforms allow the prediction of the metabolism and creation of networks by 

computationally generating the enzymatic products of a particular compound (Desmet et al., 

2021). In silico algorithms also allow the creation of predicted compound databases, helping 

and guiding laboratory experiments (Zhu et al., 2016). 

A recent study by Toubiana and co-workers combined network analysis and machine 

learning, to predict metabolic pathways from tomato metabolomics data (Toubiana et al., 

2019). Also, with bryophytes, Peters and co-workers presented an automated in silico 

compound classification framework to annotate metabolites using an untargeted data from 

mass spectrometry experiments (Peters et al., 2021). 

Albeit these approaches seem to bring a new perspective for plant metabolomics 

studies, there are still some limitations. The majority of these in silico approaches were 

designed to perform analysis in model plants, e.g., A. thaliana, being unclear how these 

methods work in other species and, therefore, even though similarity-based approaches may 

be used to surpass the first problem, it is challenging to transfer annotation information 

across species without having high error rates (Moore et al., 2020; Yu et al., 2004). 

Nevertheless, a recent study employed machine learning strategies, where knowledge from 

A. thaliana was transferred to predict specialized metabolism genes functions of cultivated 

tomatoes (Moore et al., 2020). 

 

1.10 THE GRAPEVINE METABOLOME AS A CASE STUDY 

Grapevine (Vitis vinifera L.) accompanied the development of human culture and its 

history. Based on both archaeological and historical studies, it is clear that the cultivation and 

domestication of grapevines, the production of wine and commercialization of grapevine 

products has always been an important part of the human culture (Terral et al., 2010). Both 

wine and table grape made this crop global importance to increase and nowadays it is among 

the most important and cultivated fruit crops in the world.  

The Vitaceae family comprises the Vitis genus, with about 80 species (Organisation of 

Vine and Wine, 2019). The genus Vitis comprises two sub-genera: Muscadinia and EuVitis 

differing in morphological, anatomical and cytological characters. The Muscadinia sub-genera 

comprise three species, V. rontundifolia, V. rotundifoliavar. munsoniana and V. popenoii, while 

the EuVitis includes Vitis vinifera, with the subspecies V. vinifera ssp. sylvestris (wild vines) and 
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Vitis vinifera ssp. vinifera (or sativa), the domesticated one (Figure 1.3), (This et al., 2006; Wan 

et al., 2013).  

 

Figure 1.3 - Phylogenetic analysis of North American, Asian and European Vitis species (image from 

Wan et al., 2013).  

 

Within their native habitat in the temperate regions of the world, there are about 28 

wild Vitis species indigenous to North America and about 30 wild Vitis species indigenous to 

East Asia (Liang et al., 2019). Vitis vinifera ssp. sylvestris is the only wild Vitis native to Europe 

and Near East, and it is believed to be the wild progenitor for almost 10000 domesticated 

grapevine cultivars known today (Liang et al., 2019). Although there are over 80 Vitis species 

globally distributed (Organisation of Vine and Wine, 2019), the most cultivated is the Vitis 

vinifera ssp. vinifera. The cultivated Vitis vinifera comprises up to 5000 cultivars used for wine 

production and grapes’ commercialization (Liang et al., 2019).  

Grapevine plays a key role in many countries’ economy, with a global market size of 

30 billion euros (Organisation of Vine and Wine, 2020). As a result of its easy cultivation and 

numerous applications, in 2020, the current global vine area for fresh and dried table grapes, 

wine grapes and intermediate products was 7.3 mha (Organisation of Vine and Wine, 2020).  

In Portugal, 194 kha surface area is under vines, distributed into 14 main regions, for wine 

production: Península de Setúbal, Lisboa, Tejo, Bairrada, Vinho Verde, Dão, Távora-Varosa, Porto-

Douro, Trás-os-Montes, Beira interior, Alentejo, Algarve, Açores and Madeira (Figure 1.4) 
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(http://www.winesofportugal.info/). In 2020, Portugal produced 6.4 million hectolitres of 

wine, of which 3.1 were exported, making the country the 11th world wine producer and the 

5th in Europe. The total revenue of this industry was 846 million euros (International 

Organisation of Vine and Wine, 2020).  Portugal has nearly 250 autochthonous grapevine 

varieties, unique in the world, which enables the country to make unique wines with 

distinctive flavours (http://www.winesofportugal.info/). 

 

Figure 1.4 - Representation of the Portuguese wine producing regions (image from 

http://www.winesofportugal.info/). 

 

Although wine and grapes are the major commercialized grapevine products, in some 

countries such as Turkey, Saudi Arabia, Greece, Bulgaria, Romania and Vietnam, some 

grapevine varieties are especially grown for fresh and brined leaves consumption (Koşar et al., 

2007; Rizzuti et al., 2013; Sat et al., 2002). Some health benefits of grapevine leaves have been 

demonstrated in inflammatory disorders, pain, bleeding and high blood pressure treatments. 

Their anti-oxidant and regenerative properties have been described to protect and retard 

oxidative processes (Ali et al., 2010; Dani et al., 2010; Ledesma-Escobar and Luque de Castro, 

2015; Orhan et al., 2007; Pari and Suresh, 2008; Fleming, 2000) and some dermo-cosmetic 

industries are using grapevine leaves compounds in their dermo-cosmetic products (e.g., 

Caudalie). These properties, nutritional value, taste and quality are due to a diversity of 

secondary bioactive metabolites like phenolic compounds, organic acids, lipids and 
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carbohydrates and therefore, grapevine leaves are considered a healthy food (Lima et al., 

2016). However, the majority of these studies are focused in already known health related 

compounds. 

Another important topic to discuss is Vitis vinifera susceptibility towards pathogens. 

Vitis exhibit difference resistance and susceptibility degrees towards pathogens. Both 

American and Asian Vitis species possess high tolerance to pathogens while Vitis vinifera 

exhibits different levels of disease susceptibility and tolerance. The wild grapevines (ssp. 

sylvestris) exhibit tolerant traits with different levels of tolerance to pathogens and the 

cultivated grapevines (ssp. vinifera), although susceptible possess different degrees of 

susceptibility ranging from highly susceptible to less susceptible (http://www.vivc.de/).  

Among the most economically important grapevine diseases are downy mildew 

[caused by the oomycete Plasmopara viticola (Berk. & Curt.) Berl. & de Toni) Beri, et de Toni], 

powdery mildew [(caused by the fungus Erysiphe necator (Schweinf.) Burrill) and gray mold 

(caused by the fungus Botrytis cinerea Pers.), (Figure 1.5). 

Both P. viticola and E. necator are obligatory biotroph pathogens, as they retrieve 

nutrients from living tissues and develop structures to invade the cell and to obtain 

metabolism products, without killing the plant. This lifecycle contrasts with that of 

necrotrophic pathogens, B. cinerea, which actively kill the host tissues as it colonizes and 

thrive on the contents of dead or dying cells (Laluk and Mengiste, 2010). The mode of 

infection of these pathogens also differs. P. viticola invades the plant through the stomatal 

cavity on the abaxial side of the leaves (Gessler et al., 2011) and E. necator promote wounds in 

the tissue, by the secretion of lytic enzymes, from which it will enter the plant (Gadoury et 

al., 2012). B. cinerea enters the host through an infection at wound site (Figure 1.5), (Prins et 

al., 2000). 

 

Figure 1.5 – Disease-associated symptoms of (A) Plasmopara viticola, (B) Erysiphe necator and (C) Botrytis 

cinerea in grapevine. 
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With adequate climate conditions, these pathogens affect all the green parts of the 

plant, reducing berry quality and yield, with significant production losses, reaching up to 

75% of an entire crop. The preventive application of chemical products is winegrowers’ most 

used approach to control these pathogens (Figure 1.6). 

 

Figure 1.6 - Portuguese Bayer – Crop Science recommended treatments through grapevine season 

(image from https://cropscience.bayer.pt/). 

 

However, chemical products are not entirely efficient and in a climate change 

scenario, several pathogen outbreaks are being reported (Casagrande et al., 2011; Delmotte et 

al., 2014; Peressotti et al., 2010). In the last decade, there was an increasing demand for more 

sustainable agricultural practices. Guidelines from the European Union demand a reduction 

and sustainable use of pesticides (Directive 2009/128/EC and Goals of the 2030 Agenda for 

Sustainable Development). Hence winegrowers are forced to reduce the use of pesticides, 

becoming of higher importance the development of alternative strategies. Having this in 

mind, producers reinforce the need to create new varieties through breeding programs, that 

combine the effective and durable tolerances to these pathogens with good berry quality and 

preserve their unique properties for wine production (Gómez-Zeledón et al., 2013; 

Merdinoglu et al., 2010; Toffolatti et al., 2012). Tolerance to pathogens in hybrid plants is 

achieved by crossing suitable parent lines or cultivars and the subsequent selection in the 

offspring to identify desired combinations of traits. Since American and Asian Vitis species 

have high tolerance against pathogens, they are being used in cross breeding programs with 

V. vinifera towards the development of new cultivars (Alleweldt and Possingham, 1988; 

Gómez-Zeledón et al., 2013; Toffolatti et al., 2012). Successful examples of this breeding 

strategy are the cultivars V. vinifera Regent, Solaris and Bianca, which display a broad 

tolerance to P. viticola, E. necator and B. cinerea and have a good berry quality for wine 

production (Basler and Pfenninger, 2003; Buonassisi et al., 2017; Eibach and Töpher, 2003; 
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Ruehl et al., 2015). Resistance breeding requires several years to accomplish and the majority 

of the resulting hybrids did not succeed in the market since they are unsuitable for the 

production of high quality wines (Buonassisi et al., 2017; Toffolatti et al., 2012). Second, 

fungi/oomycetes can overcome grapevine defence mechanisms due to their short generation 

time, the fact that it is outnumbered compared to the host and, depending on the strain 

virulence, it can modulate the host defence responses (Casagrande et al., 2011; Peressotti et 

al., 2010; Toffolatti et al., 2012; Zhan et al., 2002). One example is the tolerant hybrid Bianca 

that, although exhibits different levels of tolerance to P. viticola, when it is in contact with a 

more virulent strain of P. viticola, the pathogen surpasses the hybrid defences and infect the 

plant (Toffolatti et al., 2012). 

In crop breeding programs, marker-assisted selection (MAS) is often employed to 

accelerate and enhance cultivar development, via selection during the juvenile phase and 

parental selection prior to crossing. Quantitative trait locus (QTL) mapping is currently the 

most commonly used approach to dissect the genetic factors underlying complex traits. Any 

new or advanced resulting selection method on the genomic or phenotypic level can bridge 

the gap between marker development and MAS implementation. 

The metabolomics field have a particularly important contribution in this area. Plant 

metabolites are the end point of cellular metabolism, generally the first to be affected by 

changing conditions, and are capable of acting as biomarkers for plant selection (Fiehn, 

2002). Hence, the combination of metabolomics with QTLs could reveal genomic regions 

associated to metabolic variations. In fact, some studies start to appear where metabolic QTLs 

are used as tools for assisting crops’ improvement (Abdelrahman et al., 2018; Carreno-

Quintero et al., 2012; Gong et al., 2013; Hill et al., 2015; Khan et al., 2012; Wen et al., 2015). 

However, the complexity of grapevine metabolism brings huge challenges to the 

analytical technologies employed in current metabolomics programs, and powerful analytical 

tools are required for the separation and characterization of this high compound diversity 

present in the biological sample. 

In grapevine research, several metabolomics studies focused on grape growth, 

development and ripening mainly due to the interest to understand the physiological and 

biochemical events that determine grape and wine quality (Cuadros-Inostroza et al., 2016; 

Smart et al., 2006). Also, the metabolome analysis of grapevine berries of a determined 

cultivar (Deluc et al., 2007; Fortes et al., 2011; Grimplet et al., 2009; Zamboni et al., 2010) or 

to a particular kind of stress condition (Ali et al., 2012; Batovska et al., 2009, 2008; Hong et 

al., 2012) was also investigated. All these were performed using Nuclear magnetic resonance 

(NMR) spectroscopy and based on the analysis of a single extract from leaves. In this case, 
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albeit using 1D and 2D NMR techniques, the number of metabolites identified was no more 

than 30 (Ali et al., 2009). The application of gas chromatography coupled to mass 

spectrometry (GC-MS) for grapevine leaves analysis allowed the detection of around 100 

metabolites (Batovska et al., 2008). When using mass spectrometry coupled to liquid 

chromatography (LC-MS), although the identification and quantification of grapevine 

metabolites was possible, there were only identified 135 primary metabolites (sugars, amino 

acids, organic acids and amines) in a 30-minutes hydrophilic interaction LC run (Gika et al., 

2012).  

To achieve higher sensitivity and maximum metabolome coverage, Fourier 

Transform Ion Cyclotron Resonance mass spectrometry (FT-ICR-MS) is a promising 

analytical technique to tackle such challenge. In fact, several studies have been published 

using FT-ICR-MS to uncover grapevine metabolism (Adrian et al., 2017; Becker et al., 2013; 

Maia et al., 2016; Nascimento et al., 2019). 

The majority of these works focused on the compatible and incompatible interaction 

of grapevine with P. viticola and the identification of possible resistance/susceptibility 

associated infection biomarkers. More grapevine studies, with and without pathogen 

infection, with FT-ICR-MS can shed light on the global changes occurring in grapevine 

metabolism which is fundamental to enhance plant fitness, increase stress tolerance, discover 

new natural pharmaceutical compounds applications and increase plant market value. 

The main goals of this PhD dissertation were: 

• Unravel through an untargeted metabolomics approach by FT-ICR-MS the metabolic 

composition of grapevine leaves; 

• Understand the constitutive associated metabolic traits that differentiate tolerant and 

susceptible grapevine genotypes;  

• Uncover grapevine main metabolic alterations after P. viticola inoculation through 

untargeted FT-ICR-MS analysis and MALDI-FT-ICR-MS imaging.  
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Vitis vinifera ‘Pinot noir’ leaves as a source of bioactive 

nutraceutical compounds 
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2 Vitis vinifera ‘Pinot noir’ leaves as a source of bioactive 

nutraceutical compounds 

2.1 ABSTRACT 

Agricultural by-products are often hidden sources of healthy plant ingredients. The 

investigation of the nutritional values of these by-products is essential towards sustainable 

agriculture and improved food systems. In the vine industry, grape leaves are a bulky side 

product which is strategically removed and treated as waste in the process of wine production. 

In this work we performed an untargeted metabolomic profiling of the methanol extract of 

the leaves of Vitis vinifera cultivar ‘Pinot noir’, analysed their fatty acid content, and estimated 

their antioxidative capacity, with the purpose of investigating its nutritional and medicinal 

value. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis 

identified the presence of numerous compounds which are known to possess diverse 

nutritional and pharmacological properties, particularly polyphenols and phenolic 

compounds (e.g. caffeic acid, catechin, kaempferol and quercetin), several phytosterols and 

fatty acids. Fatty acids were the most represented lipids’ secondary class, with the essential 

alpha-linolenic acid being the most abundant in ‘Pinot noir’ leaves, with a relative content of 

42%. Also, we have found that ‘Pinot noir’ leaves present a high antioxidant capacity, putting 

grapevine leaves at the top of the list of foods with the highest antioxidative activity. Our 

findings scientifically confirmed that ‘Pinot noir’ leaves have a high content and diversity of 

biologically active phytochemical compounds which make it of exceptional interest for 

pharmaceutical and food industries. 

 

2.2 INTRODUCTION 

Used since ancient times in traditional medicine, plants are a major source of natural 

bioactive compounds with a wide range of applications in the pharmaceutical, food and 

cosmetic industries (Cowan, 1999). However, the use of plants as a source of natural products 

faces quite a few challenges, mainly the availability of the compounds of interest, which can 

be very low, and the amount of the starting material, not always adequate for industrial 

extraction purposes (Atanasov et al., 2015). One strategy to overcome these issues is the 

selection of abundant plant material with high phytochemical content and nutritional value 

that is normally seen as agricultural waste and turn it into a valuable resource.  

Considering its importance in the wine industry, the grapevine (Vitis vinifera L.) is 

considered one of the most important fruit crops in the world, occupying over 7.5 mha of 
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global area (FAO and OIV, 2019). Currently, there are about 2000 different cultivars of V. 

vinifera used for grape production and grown all over the world (Lacombe et al., 2011). About 

50% of the world’s produced grape is destined to wine production, a highly strategic industry 

for the economy of several countries, with 30% being targeted for the commercialization of 

fresh grapes and the rest is dried or consumed as grape juice or musts (FAO and OIV, 2019). 

Grapes contain a great diversity of secondary bioactive metabolites, namely vitamins, 

anthocyanins, flavonoids, polyphenols and stilbenoids, and are already being used for the 

development of food supplements (Dávalos et al., 2003; Monagas et al., 2006; Nassiri-Asl and 

Hosseinzadeh, 2009) and in cosmetics (Barbulova et al., 2015). Grapevine’s bioactive 

compounds have been mostly studied at grape level, whereas the vegetative parts, particularly 

leaves, are still a disregarded by-product of this industry. Grapevine leaves are a very abundant 

plant material, contain a wide range of phenolic compounds and antioxidants, being already 

used in traditional medicine for the treatment of bleeding, inflammation, diarrhoea and 

diabetes-induced hepatic complications (Lacerda et al., 2016; Nassiri-Asl and Hosseinzadeh, 

2009). Additionally, vine leaves have already been included in the human diet in several 

countries of the Mediterranean Basin, both fresh and brined, and therefore are getting the 

attention from top European wine producers (Rizzuti et al., 2013). 

We performed an untargeted metabolomics approach to unfold the global view of 

the metabolic composition of leaves from V. vinifera ‘Pinot noir’. This cultivar is one of the 

world’s most planted grapevines, occupying the  12th position worldwide (the 10th position 

among the wine making cultivars) and representing around  112 kha of planted area 

(Organisation of Vine and Wine, 2019). Fourier Transform Ion Cyclotron Resonance mass 

spectrometry (FT-ICR-MS) was used for metabolite profiling, already successfully used in 

plant metabolomics due to its ultra-high-resolution and ultra-high-mass accuracy (Adrian et 

al., 2017; Ghaste et al., 2016; Han et al., 2008; Lei et al., 2011; Maia et al., 2016). These 

performance characteristics allow the assignment of putative metabolite formulae based 

solely on accurate mass, by exhaustive search and match with computed masses for given 

chemical series of compounds, in combination with metabolomic database search by accurate 

mass (Aharoni et al., 2002; Han et al., 2008). In our analysis, lipids, mostly fatty acids, and 

phytochemical compounds were the most prevalent metabolites. Hence, fatty acids were 

subsequently quantified and the antioxidant capacity of ‘Pinot noir’ leaves was determined to 

assess their potential as a source of nutra-pharmaceutical compounds. 
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2.3 MATERIALS AND METHODS 

2.3.1 Plant material 

V. vinifera ‘Pinot noir’ leaves were collected at the Portuguese Ampelographic 

Grapevine Collection (CAN, international code PRT051, established in 1988), at INIAV-Dois 

Portos, located at Quinta da Almoinha, 60 Km north of Lisbon. This vineyard is trained on a 

double-cordon system, selecting only four canes in each arm. Plants were grafted on SO4 

rootstock (Selection Oppenheim 4), in alluvial soil (pH 8.1 at 0-21 cm deep), in temperate 

oceanic climate (according to Koppen climate system). Sanitary status is controlled for viral 

diseases and maintained with preventive phytochemical application every 12 to 15 days in 

growing season. Since the beginning of the season (March 2015) till sampling time (May 

2015), mean temperature was 18 °C (T max: 24 °C; T min: 10 °C) and the precipitation had a 

mean value of 50 mm (reaching 100 mm in April), (data from the Instituto Português do Mar 

e da Atmosfera). The third to fifth leaves (from the shoot apex) were collected from 5 fully 

developed plants and were combined in 1 biological replicate, being collected 3 biological 

replicates for the analysis. Leaves were immediately frozen in liquid nitrogen and stored at -

80 °C until analysis. 

 

2.3.2 Metabolite profile analysis by FT-ICR-MS 

Metabolite extraction from V. vinifera ‘Pinot noir’ leaves was performed following a 

previously developed protocol compatible with direct infusion-FT-ICR-MS (Maia et al., 

2016). After extraction, the different obtained fractions (chloroform, water, methanol and 

acetonitrile) were analysed by direct infusion on a 7T-FT-ICR mass spectrometer (Brüker 

Daltonics), using positive (ESI+) and negative (ESI-) electrospray ionization modes, as 

previously reported (Maia et al., 2016). Spectra analysis, compound identification and 

annotation were also performed as previously described (Maia et al., 2016). Compound 

formulas, obtained from MassTRIX analysis, were used to plot H/C ratios against O/C ratios 

in a Van Krevelen diagram and build a frequency histogram of CHO, CHON, CHOS and 

CHONS elemental compositions. 

 

2.3.3 Fatty acid quantification 

Fatty acids’ methyl esters (FAME) were prepared by direct trans-methylation of fatty 

acids using ground leaves with a mixture of methanol:sulfuric acid (97.5:2.5, v/v), with 
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incubation at 70 °C for 1 h. Methyl esters were recovered in the organic phase after addition 

of petroleum ether:ultrapure water (3:2, v/v). Quantitative analysis of fatty acids was achieved 

by gas chromatography (3900 Gas Chromatograph, Varian, Palo Alto, CA, USA) equipped 

with a flame ionization detector, using a fused silica capillary column (0.25 mm i.d. × 50 m, 

WCOT Fused Silica, CP-Sil 88 for FAME, Varian) at 210 °C. Heptadecanoic acid (C17:0) was 

used as internal standard. 

 

2.3.4 Indexes of lipid quality determination 

Lipid nutritional quality can be assessed through the determination of the indexes of 

atherogenicity (IA) and thrombogenicity (IT). IA is defined as the relationship between the 

sum of the main saturated fatty acids (proatherogenic) and the sum of the main classes of 

unsaturated fatty acids (antiatherogenic), while IT represents the relationship between C16:0 

(hexadecanoic acid) and C18:0 (octadecanoic acid; stearic acid), saturated fatty acids 

(prothrombogenetic) with monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids 

-n6 (PUFA-n6) and -n3 (PUFA-n3) (antithrombogenetic) (Garaffo et al., 2011). The following 

equations (Equation 2.1 and (Equation 2.2) were used for the IA and IT calculation: 

 

(Equation 2.1)                            𝐼𝐴 =
(𝐶16:0+𝐶18:0)

𝑀𝑈𝐹𝐴𝑠+𝑃𝑈𝐹𝐴𝑠𝑛3+𝑃𝑈𝐹𝐴𝑠𝑛6
           

 

(Equation 2.2)                      𝐼𝑇 =  
(𝐶16:0+𝐶18:0)

(0.5×𝑀𝑈𝐹𝐴𝑠+0.5×𝑃𝑈𝐹𝐴𝑠𝑛6+3×𝑃𝑈𝐹𝐴𝑠𝑛3+(
𝑃𝑈𝐹𝐴𝑠𝑛3
𝑃𝑈𝐹𝐴𝑠𝑛6

)
           

 

2.3.5 Antioxidant assay 

Total antioxidant capacity was determined in ‘Pinot noir’ leaves. Total antioxidant 

capacity was analysed by measuring the Trolox equivalent antioxidant capacity (TEAC), 

following the previously described protocol (Figueiredo et al., 2017). Briefly, 100 mg of frozen 

leaves were homogenized in 3 mL 50 mM potassium phosphate buffer pH 7.2, supplemented 

with 1% (w/v) of insoluble polyvinylpolypyrrolidone (PVPP 40000), at 4°C. After 

centrifugation at 16000 ɡ for 1 min, the supernatant was collected and used for the assay. 

Total antioxidant capacity was determined spectrophotometrically at 405 nm using the 

antioxidant assay kit and Trolox as standard (Sigma-Aldrich, ref. CS0790). The assay was 

performed in 3 biological replicates, each analysed twice. 
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2.4 RESULTS AND DISCUSSION 

2.4.1 V. vinifera ‘Pinot noir’ metabolic profile 

A total of 6348 ions (peaks) were identified in ESI+, while in ESI- 1105 peaks 

were detected in the metabolic profile of V. vinifera ‘Pinot noir’ leaves. Through the 

analysis of the four metabolite fractions, nearly 1000 metabolic entities (unique 

masses) were identified: 785 in positive ionization mode and 151 in negative ionization 

mode. To provide insight into metabolite diversity and elemental ratios, metabolite 

formulas were assigned to the detected masses (combining data from positive and 

negative ion modes), obtaining a total of 857 different formulas. Compound formulas 

were used to plot H/C ratios against O/C ratios in a Van Krevelen diagram and build 

a frequency histogram of CHO, CHON, CHOS and CHONS elemental compositions 

(Figure 2.1 – A and B). 

The highest density of formulas contains H/C ratios between 1 and 2 and O/C 

ratios between 0 and 0.5. This area corresponds mainly to lipids. Indeed, compound 

database match and compound taxonomical annotation revealed that within the major 

metabolic classes, the lipids’ class was the most prevalent, accounting for 67% of the 

total detected metabolome. 

Fatty acids (FAs) were the most represented lipids’ secondary class (48% of the 

total lipids, according to LipidMaps classification), followed by prenol lipids, 

polyketides and sterols (Figure 2.2). 
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Figure 2.1 - (A) Van Krevelen diagram of ‘Pinot noir’ leaves metabolic composition, built from 

857 different formulas. Representative elemental ratio areas for selected groups of compounds 

are highlighted: lipids in red, carbohydrates in green, and polyketides in purple. (B) Frequency 

histogram of CHO, CHON, CHOS and CHONS elemental compositions in the metabolite 

formulas displayed in (A). 

 

 

Figure 2.2 - Lipids secondary classes’ annotation of grapevine lipids detected by FT-ICR-MS, 

according to the LipidMaps classification. 
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2.4.2 Fatty acids 

Fatty acid quantification in ‘Pinot noir’ showed that alpha-linolenic acid (C18:3) was 

the most abundant FA in leaves (42% of the total quantified FAs). The second most abundant 

FAs were linoleic acid (C18:2) and palmitic acid (16:0), with 25% and 22% of the total FAs. 

The essential polyunsaturated fatty acids (PUFAs) C18:2 (omega-6) and C18:3 (omega-3) are 

not synthesized by human cells (Borsonelo and Galduróz, 2008; Ursin, 2003) but are required 

to produce long chain PUFAs such as arachidonic and eicosapentaenoic acids, respectively. 

Therefore, some PUFA have already been included in nutraceutical products (reviewed in 

Das et al., 2012). These two PUFAs, conserved signalling molecules involved in immune 

responses (reviewed in Walley et al., 2013), were putatively identified by MS ‘Pinot noir’ 

leaves (See Supplementary Table S2.1 online), most likely from a microbiological source. 

Less abundant, but also present in significant amounts and also identified by MS, were oleic 

acid (C18:1), trans-hexadecanoic acid (C16:1t) and stearic acid (C18:0) (See Supplementary 

Table S2.1 online). Other FAs identified by MS included docosanedioic acid, dodecanoic 

acid, eicosanedioic acid and octacosanoic acid (See Supplementary Table S2.1 online), in 

agreement with the FA composition recently described for other grapevine cultivars 

(Laureano et al., 2018). 

Grapevine leaves’ fatty acids profile was used to assess lipid nutritional quality, 

through the determination of atherogenicity (IA) and thrombogenicity (IT) health lipid 

indexes. These indexes are indicators of the effects of fatty acids in human health, mainly their 

contribution to the prevention of atheroma and thrombus formation. ‘Pinot noir’ leaves have 

low IA and IT levels, 0.32 and 0.17 respectively, meaning that they could be part of a healthy 

diet.  

 

2.4.3 Sterols 

Plant sterols (also named phytosterols) are another lipids’ secondary class already 

incorporated in several foods (Korpela et al., 2006) for their ability to interfere with 

cholesterol absorption. In ‘Pinot noir’ leaves, we detected several putative sterols, including 

22S-hydroxysitosterol, stylisterol B, 16α,17β-Estriol 17-(β-D-glucuronide), 1-hydroxyvitamin 

D3 3-D-glucopyranoside and several other vitamin D3 derivatives (See Supplementary Table 

S2.1 online). 

 



76 

2.4.4 Polyketides 

Within the polyketides’ subclass, flavonoids and phenolic lipids are the most relevant 

(reviewed in Brewer, 2011). A highly important antioxidative phenolic acid putatively found 

in V. vinifera ‘Pinot noir’ was caffeic acid, together with its 3-glucoside and phenethyl ester 

forms (See Supplementary Table S2.1 online). Within the phenolic diterpenes, carnosol was 

putatively identified in ‘Pinot noir’ leaves (See Supplementary Table S2.1 online). The 

extraction of several polyphenols was already optimized from grape seeds to be used in food, 

cosmetics and pharmaceutical industries (reviewed in Gil‐Chávez et al., 2013). Flavonoids 

were already found in all V. vinifera tissues and organs (Ali et al., 2010; Braidot et al., 2008; 

Hermosín-Gutiérrez et al., 2011; Schoedl et al., 2012). Putatively identified flavonoids in 

‘Pinot noir’ leaves included the most common glycosylated forms and isoforms of kaempferol 

and quercetin, particularly glucoside, galactoside and glucuronide conjugate forms, rutin, 

catechin (and/or epicatechin) and gallocatechin (and/or epigallocatechin), (See 

Supplementary Table S2.1 online). Plant catechins (flavan-3-ols) are particularly interesting 

and have been widely used by the pharmaceutical industry as nutraceutical products (Vuong 

et al., 2010). Together with caffeic acid, catechin and epicatechin were extracted from Uncaria 

sinensis to be used in the treatment of fevers and nervous disorders (reviewed in Gil‐Chávez 

et al., 2013). The dihydroflavonol astilbin, also present in grapes and wine (reviewed in Ali et 

al., 2010), was detected in ‘Pinot noir’ leaves. Resveratrol-derived flavonoids were also 

detected in ‘Pinot noir’ leaves, namely dihydroresveratrol, 4'-prenyloxyresveratrol and the 

resveratrol dimer ampelopsin (also named dihydromyrcetin) (See Supplementary Table S2.1 

online). Anthocyanins and anthocyanidins also have antioxidant activity and potential 

biologically therapeutic effects (reviewed in Brewer, 2011). Glucoside forms of the 

anthocyanins peonidin and cyanidin, delphinidin 3-O-rutinoside, leucocyanidin and 3-

deoxyleucocyanidin were detected in ‘Pinot noir’ leaves (See Supplementary Table S2.1 

online). An acylated anthocyanin, peonidin 3-(6''-acetylglucoside), was putatively identified 

for the first time in ‘Pinot noir’. These acylated pigments combine their potent antioxidant 

properties with an increased stability, being therefore more attractive for use as supplements 

in commercial food products (Giusti and Wrolstad, 2003). Other natural antioxidants 

putatively detected in ‘Pinot noir’ leaves included ascorbic and dehydroascorbic acid and 

alpha-tocopherol (See Supplementary Table S2.1 online). 

 

2.4.5 Antioxidant capacity of ‘Pinot noir’ leaves 

The presence of polyphenols and phenolic compounds in grapevine leaves suggests 

that they can be a potential source of antioxidants (reviewed in Lacerda et al., 2016). Indeed, 
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the metabolic profile of ‘Pinot noir’ leaves revealed several antioxidant compounds, hinting 

for a quite relevant antioxidant capacity. We measured the antioxidant activity in ‘Pinot noir’ 

leaves using the TEAC (Trolox Equivalents Antioxidant Capacity) method. ‘Pinot noir’ leaves 

have a high antioxidant capacity (2402±198 µmol TE/100 g fresh weight (Fw)), comparable 

to red cabbage (2591 µmol TE/100 g Fw), and higher than strawberries (1846 µmol TE/100 g 

Fw) or raspberries (1825 µmol TE/100 g Fw), usually considered at the top of the list of foods 

with significant highest antioxidant activity (Proteggente et al., 2002). Like grape seeds, skin 

and pomace, already recognized as a good source of antioxidants (Varzakas et al., 2016) 

grapevine leaves have thus an enormous potential as a source for the extraction of natural 

antioxidant compounds. 

 

2.5 CONCLUSIONS 

The grapevine associated industry is one of the biggest worldwide. Some premium 

cultivars as ‘Pinot noir’ are highly cultivated reaching plantation areas of 112 kha. Within this 

industry, leaves are strategically removed every season, to improve sunlight penetration, air 

circulation into the vine and grape quality and are considered a waste product. Here, we have 

shown that ‘Pinot noir’ leaves have high nutritional potential for human or animal 

consumption or to be used as a source of bioactive compounds. Grapevine leaves present a 

high content in fatty acids, with alpha-linolenic acid at the top of the most abundant FA. 

‘Pinot noir’ leaves also contain several antioxidant compounds, particularly phenolic 

compounds and polyphenols, like caffeic acid, catechin, kaempferol, quercetin and 

resveratrol-derived flavonoids, with a very interesting antioxidant activity, among other 

several metabolites with interesting properties in the context of the human health. 

Grapevine leaves’ potential as source of nutraceuticals has been overlooked. It is time 

to exploit this abundant natural product as a source of bioactive compounds. 
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3 Uncovering markers for downy mildew resistance in 

grapevine through mass spectrometry-based 

metabolomics 

3.1 ABSTRACT 

Downy mildew is a major threat to the wine industry and the development of hybrids 

between Vitis vinifera and wild resistant Vitis species is a promising strategy to cope with this 

disease. The discovery of metabolic markers associated with grapevine resistance is 

paramount. In this work we aim at speeding up the assignment of innate resistance to downy 

mildew in grapevine cultivars by applying high-resolution mass-spectrometry-based 

untargeted metabolomics as a profiling and resistance marker discovery method. We 

compared the susceptible cultivar ‘Trincadeira’ with the more resistant one ‘Regent’. Both 

cultivars could be easily discriminated based on their metabolic profile and we found several 

peak features exclusive of each variety. 

 

3.2 INTRODUCTION 

Vitis vinifera is one of the most important and cultivated fruit plants in the world, 

occupying a global area of 7.5 mha and with a global grape production of 7.8 mt in 2016 

(Organisation of Vine and Wine, 2017). Most of the produced grape is targeted for wine 

production, a highly strategic industry for the economy of several countries, Portugal 

included. With 14 wine producing regions and 190 kha of vineyards, Portugal is the eleventh 

world wine producer and the fifth in Europe, accounting for ~700 million euros per year of 

exports (Organisation of Vine and Wine, 2017). 

One major threat to the wine industry is downy mildew, caused by the biotrophic 

oomycete Plasmopara viticola (Berk. et Curt.) Berl. et de Toni, infecting all domesticated V. 

vinifera cultivars frequently used for wine production. This pathogen affects leaves, shoots, 

bunches and fruits, causing quality and yield reduction with significant production and 

financial losses (Gessler et al., 2011).  

Currently used strategies to cope with downy mildew include the intensive use of 

fungicides, applied soon after the first leaves appear. However, the general recommendations 

of the European agricultural policy encourage the reduction of pesticides towards 

environmental sustainability and consumer health. A promising approach is the creation of 

new cultivars through breeding programs, combining the high degree of resistance against 
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downy mildew from the wild Vitis spp., with the good berry quality of V. vinifera. One 

successful example already used in wine production is the interspecific hybrid ‘Regent’, 

developed from V. vinifera ‘Diana’ (Silvaner x Müller-Thurgau cross) and from the 

interspecific hybrid ‘Chambourcin’, possessing a higher resistance to downy mildew and 

other relevant fungal diseases (Gessler et al., 2011). 

The complete process of a new cultivar’s breeding, from plant crossing to market 

release, can take about 25 to 30 years. Since grapevine is a perennial crop, the selection process 

concerning pathogen resistance is only possible 2 to 3 years after plant crossing, after which 

the more resistant seedlings are kept (Eibach and Töpfer, 2015). Considering the high number 

of newly developed seedlings, shortening this time would represent a considerable financial 

benefit to the producers. Hence, any new or advanced selection methods of these new 

cultivars can lead to a more efficient breeding process. 

The discovery of mildew resistance-associated biomarkers in grapevine will allow a 

quick and accurate identification of the seedlings that inherited the resistant trait soon after 

germination. Disease-resistance genetic markers have been searched for the past 14 years and 

quantitative trait loci (QTLs) for resistance to downy mildew were identified (Gessler et al., 

2011). Among these, the Resistance to Plasmopara viticola (RPV) loci were identified in several 

Vitis species. These loci can be passed into the offspring in cross-breeding programs between 

V. vinifera and other Vitis species, but their presence in the cross-bred cultivars does not 

guarantee resistance to downy mildew (Peressotti et al., 2010). Hence, the resistance of the 

wild Vitis species to P. viticola most probably goes beyond the presence of these DNA markers 

in their genome. Metabolic biomarkers have proven their value to predict phenotypical traits 

before they are observed (Wolfender et al., 2013). In this area, metabolomics is a powerful 

tool, for its ability to simultaneously characterize and quantify multiple metabolites 

(Shepherd et al., 2011). Recently, biomarkers associated with the defence response to downy 

mildew were identified in a resistant cultivar after leaf inoculation with P. viticola (Chitarrini 

et al., 2017). While most of these studies in grapevine are focused in the metabolic profile of 

host-pathogen interactions, little is known about the constitutive differences of resistant and 

susceptible cultivars that could undoubtedly discriminate both groups. 

One of the first studies on the discrimination of downy mildew resistant and 

susceptible grapevine varieties followed a metabolic profiling approach using nuclear 

magnetic resonance (NMR) (Figueiredo et al., 2008). About 13 metabolites were identified 

and 7 were differentially accumulated in ‘Regent’ (more resistant to mildew) and 

‘Trincadeira’ (susceptible). To substantially increase metabolome coverage, in the present 

work we analysed the same cultivars by Fourier Transform Ion Cyclotron Resonance mass 

spectrometry (FT-ICR-MS). Due to its ultra-high-resolution and ultra-high-mass accuracy, this 



87 

technology is one of the best tools to fingerprint complex samples, allowing very high 

metabolome coverage (Maia et al., 2016). With this untargeted metabolomics analysis, we 

increased the number of features detected, significantly increased the ones exclusively present 

in ‘Trincadeira’ or ‘Regent’ and identified several metabolites that discriminate them. 

 

3.3 MATERIALS AND METHODS 

3.3.1 Plant material 

Vitis vinifera accessions ‘Trincadeira’ and ‘Regent’ were collected at the Portuguese 

Ampelographic Grapevine Collection (CAN, international code PRT051), INIAV-Dois 

Portos. For each accession, the third to fifth leaves (from the shoot apex) were harvested from 

5 fully developed plants and combined in 1 biological replicate, being collected 3 biological 

replicates for analysis.  

 

3.3.2 Metabolite extraction and FT-ICR-MS analysis 

Metabolite extraction was performed as previously reported (Maia, 2016). Only the 

methanol fraction was analysed by direct infusion on the 7T-FT-ICR mass spectrometer 

(Brüker Daltonics), in positive electrospray ionization (ESI+) mode. The internal standard 

leucine enkephalin (YGGFL, Sigma Aldrich Portugal) was added to all samples at a final 

concentration of 0.5 µg/mL, being considered a mass of [M+H]+ = 556.276575 Da for analysis 

by ESI+. Spectra were recorded between 100 and 1000 m/z. Spectra analysis and alignment 

were performed as previously reported (Maia et al., 2016). 

 

3.3.3 Multivariate analysis 

Multivariate analysis considering peak intensities (Principal Component Analysis 

(PCA) and Partial Least Squares - Discriminant Analysis (PLS-DA)) was performed using the 

program MetaboAnalyst (http://www.metaboanalyst.ca/, (Xia et al., 2015). Missing value 

imputation was done by substitution by half of the minimum positive value found within 

the data. Intensity data were normalized to the internal standard (leucine enkephalin), 

generalized log transformed, and Pareto scaled prior to multivariate methods. 
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3.3.4 Metabolite identification 

The search for candidate compounds among the peaks that clearly discriminate the 

‘Trincadeira’ and ‘Regent’ cultivars was performed in the MassTRIX database 

(http://masstrix3.helmholtz-muenchen.de/, (Suhre and Schmitt-Kopplin, 2008). Mass lists 

were searched in positive ionization mode, considering the adducts [M+H]+, [M+K]+ and 

[M+Na]+ and 2 ppm as maximum m/z deviation from theoretical mass. Vitis vinifera was the 

selected organism and the search was performed in the combined database of KEGG (Kyoto 

Encyclopedia of Genes and Genomes) / HMDB (Human Metabolome Data Base) / LIPID 

MAPS without isotopes. 

 

3.4 RESULTS AND DISCUSSION 

Metabolomics has been widely used to discriminate samples based on the natural 

variance in metabolite content (Becker et al., 2013; Gougeon et al., 2009; Plumb et al., 2006; 

Rhourrhi-Frih et al., 2012). In this approach, metabolite identification is not a requirement 

for sample discrimination (Becker et al., 2013; Plumb et al., 2006). We performed an 

untargeted metabolomics analysis by FT-ICR-MS to compare the metabolome between two 

V. vinifera cultivars presenting different degrees of resistance against downy mildew, 

‘Trincadeira’ and ‘Regent’. A total of 1912 peaks were detected in V. vinifera ‘Regent’ and 

1615 in ‘Trincadeira’. Of these, 665 were exclusive to ‘Regent’ and 368 to ‘Trincadeira’. When 

compared to NMR analysis of the same cultivars (Figueiredo et al., 2008), the metabolic 

profiling by FT-ICR-MS significantly increased metabolome coverage and the number of 

cultivar-specific features observed. PCA showed a clear separation between the two cultivars 

for the first two components (Figure 3.1 - A). This separation was confirmed by sample 

hierarchical clustering using the Euclidean distance for the most significantly different peaks 

(Figure 3.1 - B). Seeking the features most responsible for these differences, we obtained the 

top 15 of the most discriminatory peaks of a PLS-DA classification model using Variable 

Importance in Projection (VIP) scores (Figure 3.1 - C). Features with a higher VIP score 

(normally above 1) are regarded as significant in a given model. The top 15 most 

discriminatory peaks between ‘Regent’ and ‘Trincadeira’ present VIP scores between 2 and 3, 

being therefore highly important in this model. 

The search for candidate compounds among the peaks that clearly discriminate the two 

cultivars was performed in the MassTRIX database. For V. vinifera ‘Regent’, one of these 

compounds was identified as caffeic acid 3-glucoside. This result corroborated the previous 

finding using NMR (Figueiredo et al., 2008), which reported the presence of higher amounts 
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of caffeic acid in ‘Regent’ when compared to ‘Trincadeira’. Two other discriminatory 

compounds for ‘Regent’ were oleic acid (C18:1) and its methyl ester form. In Arabidopsis 

thaliana, oleic acid induces the activation of defence responses mediated by jasmonic acid 

(JA) and represses the salicylic acid (SA) signalling pathway (reviewed in Lim et al., 2017). 

Indeed, these signalling pathways are highly relevant for grapevine resistance, with the 

activation of the JA signalling pathway and the interaction between JA and SA being tailored 

in the defence response against P. viticola (Guerreiro et al., 2016). Another compound only 

identified in ‘Regent’, also associated with lipid signalling, was palmitoleic acid (C16:1). This 

fatty acid also plays a likely role in plant defence against fungal pathogens (reviewed in (Lim 

et al., 2017). 

 
Figure 3.1 - Metabolome difference and discrimination between ‘Trincadeira’ and ‘Regent’. (A) PCA 

scores with sample labels and 95% confidence regions shown. (B) Sample hierarchical clustering and 

heatmap using the top 50 most significant (t-test p-values) MS peaks. (C) Top discriminative peaks in 

a PLS-DA classification model, shown by decreasing scores of Variable Importance in Projection (VIP) 

over the first component. 
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3.5 CONCLUSIONS 

Grapevine breeding approaches offer forward-looking perspectives for an 

environmentally friendly and sustainable viticulture. The discovery of biomarkers will allow 

a quick and accurate identification of the plantlets that inherited the resistant characteristic 

soon after germination. Using an untargeted metabolomics approach, based on ultra-high 

resolution and high-mass accuracy mass spectrometry, we compared two V. vinifera cultivars 

with different degrees of resistance towards the downy mildew. The Portuguese ‘Trincadeira’ 

is susceptible to this disease, whereas the interspecific hybrid ‘Regent’ contains a high degree 

of resistance. We were able to clearly discriminate both cultivars (without pathogen infection) 

and identify the most discriminatory compounds. Additionally, we identified features that 

are exclusive to one or the other cultivar. With the present work, we were able to show the 

potential of the metabolomics based on ultra-high resolution and ultra-high mass accuracy 

(FT-ICR-MS). Our work will contribute, not only to grapevine variety discrimination, but 

also a deeper identification of compounds that participate in the grapevine resistance 

mechanisms. Moreover, this approach may also contribute for the development of efficient 

biomarker assays, based on resistance-associated metabolites, to help future breeding 

programs and introgression line analysis. 
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4 Comparison of the chemical diversity of Vitis rotundifolia 

and Vitis vinifera cv. ‘Cabernet sauvignon’ 

4.1 ABSTRACT 

Grapevine is one of the most important fruit plants in the world, mainly due to its 

grapes and related products, with a highly economic and cultural importance. Every year, 

vineyards are affected by several pathogen outbreaks and the only way to control them is 

through preventive applications of agrochemicals every 12 to 15 days. This approach is not 

sustainable and not always effective. The Vitis genus comprise different species that exhibit 

varying levels of resistance to pathogens, thus the understanding of the innate 

resistance/susceptibility mechanisms of these different Vitis species is crucial to cope with 

these threats. In this work, an untargeted metabolomics approach was followed, using Fourier 

transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS), to analyse the metabolic 

chemical diversity of two Vitis species: Vitis rotundifolia (resistant to pathogens) and V. vinifera 

cv. ‘Cabernet Sauvignon’ (susceptible to pathogens). Chemical formulas from both Vitis were 

used to build Van Krevelen diagrams and compositional space plots, which do not require 

full metabolite identification and provide an easy comparison method. Based only on these 

visualization tools, it was shown that the V. rotundifoliametabolome is more complex than 

the metabolome of V. vinifera cv. ‘Cabernet Sauvignon’. Moreover, the regions that present a 

higher density are associated to lipids, polyketides and carbohydrates. Also, V. 

rotundifoliametabolome presented a higher ratio O/C compounds. 

 

4.2 INTRODUCTION 

The history of the grapevine is long and extremely complex with different theories and 

is present in the human culture since ancient times. Geographical and archaeological studies 

show that cultivation and domestication of grapevine appear to have occurred between the 

7000 and the 4000 BC (García and Revilla, 2013; Fortes and Pais, 2016), with fermentation 

processes being developed since 6000 BC (Terral et al., 2010). Despite its importance, only 

one grapevine species was domesticated, while the others remain practically wild. 

The genus Vitis comprises two sub-genera: Muscadinia and EuVitis differing in 

morphological, anatomical and cytological characters. The Muscadinia sub-genera comprise 

three species, while the EuVitis includes Vitis vinifera, with the subspecies sylvestris (wild 

vines) and vinifera (or sativa), the domesticated one. A great majority of cultivars, now widely 
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cultivated for fruit, juice and mainly for wine belong to Vitis vinifera subsp. vinifera (Sefc et 

al., 2003; This et al., 2006).  

Due to its cultural and economic importance, V. vinifera is considered one of the most 

important fruit crops in the world, with a global market size of 31 billion euros (Organisation 

of Vine and Wine, 2019). However, it is highly susceptible to different pathogens, such as 

Plasmopara viticola (Berk. & Curt.) Berl. & de Toni) Beri, et de Toni, Erysiphe necator 

(Schweinf.) Burrill and Botrytis cinerea Pers., the causal agents of downy, powdery mildew 

and gray mold, respectively, requiring preventive applications of chemical products for 

disease control. On the other hand, Muscadinia species exhibit varying levels of resistance to 

the pathogens. Understanding the innate molecular basis resistance/susceptibility 

mechanisms of these different Vitis species became crucial for the development of new V. 

vinifera varieties, more resistant to pathogens. Recently, our group showed that the 

metabolome of V. vinifera cultivars is different from other Vitis species (Maia et al., 2020a) 

with different degrees of tolerance/susceptibility to fungal and oomycete related pathogens, 

highlighting the importance of chemical fingerprinting and its relevance in the identification 

of resistance/susceptibility-related biomarkers.  

The ultra-high-resolution and ultra-high-mass accuracy Fourier Transform Ion 

Cyclotron Resonance mass spectrometry (FT-ICR-MS) is considered to be superior to any 

other analytical technique and is one of the best approaches to perform untargeted analysis 

of complex samples (Kuhnert et al., 2020). Due to its characteristics, it allows the detection of 

a large number of analytes in a single experiment providing a chemical fingerprint of any 

given sample and a reliable information on the elemental composition of all analytes detected 

(Gougeon et al., 2009; Kuhnert et al., 2020; Wu et al., 2004). Such characteristics allow the 

characterization of different samples, e.g: wine (Roullier-Gall et al., 2018, 2017), black tea 

(Kuhnert et al., 2010), coffee (Jaiswal et al., 2012) and grapevine leaves (Adrian et al., 2017; 

Becker et al., 2013; Maia et al., 2020a, 2016). 

Untargeted analysis of complex samples generates very complex mass spectrum 

(Gutiérrez Sama et al., 2018), making the analysis challenging due to the difficulty to easily 

represent and visualize the data. Hence the validation of graphical methods supporting the 

interpretation and comparison of FT-ICR-MS complex data is very important. Two types of 

graphical representation were developed, allowing a comprehensive interpretation of 

complex mass spectrometry data from untargeted metabolomics approaches, both based only 

on the identified chemical formulas: two-dimensional van Krevelen (VK) diagrams displaying 

H/C (hydrogen/carbon) versus O/C (oxygen/carbon) ratios (Van Krevelen, 1950) and 

compositional space plots that use double-bond equivalents (DBE) values (Brockman et al., 

2018; Gutiérrez Sama et al., 2018; Kew et al., 2017; Mann et al., 2015; Wu et al., 2004). 
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Analyzing the elemental composition of the different samples allows the qualitative 

comparison between series of related samples in terms of their chemical complexity. Van 

Krevelen diagrams and compositional space plots convey simple, albeit qualitative 

information on the main molecular classes represented (Adrian et al., 2017; Gutiérrez Sama 

et al., 2018; Roullier-Gall et al., 2017, 2014; Tziotis et al., 2011). Moreover, in VK diagrams, 

the H/C ratio is related to the degree of separation, whereas the O/C ratio is related to 

oxidation (Wu et al., 2004). In plants, the degree of oxidation of certain compounds and their 

saturation are extremely important as they can be associated to defence  responses to biotic 

and abiotic stresses (Torres et al., 2006). This tool has been mainly used in organic matter 

samples but due to its easy application to the analysis of complex samples, VK diagrams have 

recently been used to discriminate samples of biological origin. So far, these plots have been 

used to study the volatile profile of varietal olive oils from Alentejo region (Martins et al., 

2020), satureja essential oils (Maccelli et al., 2020), bottle-aged Chardonnay wines (Roullier-

Gall et al., 2017) and for early detection of grapevine leaves’ infection (Maia et al., 2019).  

The present work aimed to compare the chemical diversity of two Vitis species (Vitis 

rotundifolia and V. vinifera cv. ‘Cabernet Sauvignon’), without any stress, with different 

resistance levels to pathogens, through an untargeted metabolomics approach. In this study, 

both van Krevelen (VK) diagrams and compositional space plots were applied to the 

comparison of Vitis rotundifolia and V. vinifera cv. ‘Cabernet Sauvignon’ metabolomes in 

order to identify visually differences between both metabolomes and associate their 

resistance/susceptibility to pathogens to these metabolic differences. Grapevine genotypes 

were selected according to their resistance/susceptibility towards pathogens and importance 

in the wine industry. V. rotundifolia, the best known Muscadinia species, originated in the 

south-eastern United States serves as a rootstock to cope with the high sensitivity of European 

grapevines to Phylloxera disease (Fortes and Pais, 2016). Also, V. rotundifoliais highly resistant 

to the different pathogens (https://www.vivc.de/). Vitis vinifera cv. ‘Cabernet Sauvignon’ is 

one of the most planted grapevine cultivar in the world, covering an area of 341000 ha, and 

one of the most widely distributed across the world, mainly grown in China, France, Chile, 

the United States, Australia, Spain, Argentina, Italy and South Africa (Organisation of Vine 

and Wine, 2017). This cultivar, widely cultivated worldwide, is highly susceptible to different 

pathogens. 
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4.3 MATERIALS AND METHODS 

4.3.1 Plant material 

Vitis vinifera cv. ‘Cabernet Sauvignon’ and Vitis rotundifolia leaves were collected in 

the spring (May) from field grown plants belonging to the Portuguese Ampelographic 

Grapevine Collection (CAN, international code PRT051, established in 1988), at INIAV- 

Estação Vitivinícola Nacional (Dois Portos). CAN occupy nearly 2 ha of area with 

homogeneous modern alluvial soils (lowlands) as well as well drained soil. For all accessions 

in the field, a unique cultivar rootstock was used - Selection Oppenheim 4 (SO4) and each 

accession come from one unique plant. The climate in this region is temperate with dry and 

mild summer. The degree of resistance of the genotypes was accessed through bibliographic 

searches following the classification of International Organisation of Vine and Wine (OIV) 

(https://www.oiv.int) and Vitis International Variety Catalogue (VIVC) 

(https://www.vivc.de/). For plant material collection, the best possible health status was 

guaranteed. The third to fifth leaves, from the shoot to apex, were collected from seven fully 

developed plants and immediately frozen in liquid nitrogen. Leaves were stored at −80 °C 

until analysis. Three biological replicates were considered for analysis. Plant material was 

ground in liquid nitrogen and used for metabolite extraction in the week after material 

collection. 

 

4.3.2 Metabolite extraction and FT-ICR-MS analysis 

Metabolite extraction from V. vinifera cv. ‘Cabernet Sauvignon’ and V. 

rotundifolialeaves was performed following a previously developed protocol (Maia et al., 

2016), with minor modifications (Maia et al., 2020a). Briefly, after metabolite extraction with 

different solvents, the methanol fraction collected was diluted 1000-fold in methanol and 

analysed by direct infusion on an Apex Qe 7-Tesla Fourier Transform Ion Cyclotron 

Resonance Mass Spectrometer (7T-FT-ICR-MS, Brüker Daltonics). Leucine enkephalin 

(YGGFL, Sigma Aldrich) was added to all replicates as internal standard ([M+H]+ = 

556.276575 Da or [M-H]- = 554.262022 Da). For positive ion mode analysis (ESI+), formic acid 

(Sigma Aldrich, MS grade) was added to all replicates at a final concentration of 0.1% (v/v). 

Spectra were acquired at both positive (ESI+) and negative (ESI-) electrospray ionization 

modes and recorded between 100 and 1000 m/z, as previously described (Maia et al., 2020a). 
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4.3.3 Data processing and chemical formula analysis 

For all mass spectra, single point calibration with leucine enkephalin was performed 

using Data Analysis 5.0 (Brüker Daltonics, Bremen, Germany). Peaks were considered at a 

minimum signal-to-noise ratio of 4. For each replicate of V. vinifera ‘Cabernet Sauvignon’ and 

V. rotundifolia, mass lists were extracted. The metabolomics data are available in figshare data 

repository (Maia et al., 2020b). Putative assigned formulas were calculated using Data 

Analysis 5.0 smart formula tool following the upper formula (C78H126O27P9S14N20) and lower 

formula (C1H1O0P0S0N0). Formulas were exported to build van Krevelen (VK) diagrams, for 

compositional space analysis and determination of the elemental composition. The H/C ratio 

versus the O/C ratio for every compound in the sample were calculated and plotted, double 

bond equivalents (DBE) values were calculated according to (Equation 4.1) based on the 

CcHhOoNnSn molecular formula of each compound and plotted as a function of the 

number of carbon atoms. For elemental composition analysis, putative assigned formulas 

from each replicate were firstly combined and formulas presented only in one replicate were 

excluded. Only formulas presented in 2/3 replicates were considered for the analysis. 

Chemical formulas detected in each Vitis were divided in seven classes (CHO, CHOS, CHON, 

CHONS, CHOP, CHONP, CHONSP, OTHER) according to the chemical elements present: 

carbon, hydrogen, oxygen, nitrogen, sulphur, phosphorus and other. 

(Equation 4.1)                           𝐷𝐵𝐸 = 𝐶 −
𝐻

2
+

𝑁

2
+ 1 

 

4.4 RESULTS AND DISCUSSION 

There is an increasing demand for more sustainable agricultural practices. In fact, since 

2009, guidelines from the European Union (Directive 2009/128/EC) demand a reduction and 

sustainable use of pesticides (Scoones, 2016). To cope with these demands, researchers have 

been trying to uncover the defence /resistance grapevine mechanisms through “omics” studies 

aiming to help producers and industries for a sustainable viticulture (Buonassisi et al., 2017; 

Li and Yan, 2020). Hence, the comparison of different Vitis genotypes with different 

resistance/susceptibility levels towards pathogens may allow a better understanding of these 

mechanisms. Since the metabolome is the first to be affected by changing conditions and 

provides information of current state of the organism, the study of different grapevine 

genotypes metabolomes, without stress, may highlight their innate resistance/susceptibility 

capabilities (Maia et al., 2020a). Having this in mind, the metabolome of two Vitis species, 

with different resistance levels to various pathogens was analysed in order to compare their 

chemical diversity and possibly relate their resistance or susceptibility to pathogens.  
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An untargeted metabolomics analysis using FT-ICR-MS was performed and the 

number of peaks detected in V. vinifera cv. ‘Cabernet Sauvignon’ in positive ionization mode 

was around 1600 peaks per replicate and in negative mode was around 750 (Table 4.1). In V. 

rotundifolia around 1100 peaks were detected in ESI+ and around 600 peaks were detected in 

ESI- (Table 4.1). Replicates results demonstrate a high analytical reproducibility of the data 

obtained, indicating that the analysis of the metabolome profile of each Vitis leaves appears 

to be sufficiently consistent to distinguish these two Vitis species with different resistance 

levels to various pathogens. To provide insight into metabolite diversity, chemical formulas 

were assigned to the detected masses of each Vitis. A total of 385 and 1227 different formulas 

were detected respectively in V. vinifera ‘‘Cabernet Sauvignon’’ and V. rotundifolia (Table 4.2). 

 

Table 4.1 - Number of peaks detected with ESI+ and ESI- in both Vitis genotypes 

Vitis Replicates 
Number of peaks detected 

ESI+ ESI- 

V. vinifera ‘Cabernet sauvignon’ 

CS 1 1642 768 

CS 2 1599 838 

CS 3 1631 710 

V. rotundifolia 

ROT 1 1162 649 

ROT 2 1091 558 

ROT 3 1092 607 

 

 

Table 4.2 - Number of elemental formulas detected in both Vitis according to their elemental 

composition: CHO, CHOS, CHON, CHONS, CHOP, CHONP, CHONSP and other. 

 Vitis 
V. vinifera  

‘Cabernet Sauvignon’ 
V. ‘Rotundifolia’ 

 Ionization mode ESI- ESI+ ESI- ESI+ 

N
u

m
b

er
 o

f 
el

em
en

ta
l 

fo
rm

u
la

s 

CHO 8 6 13 20 

CHOS 0 4 0 39 

CHON 9 38 29 121 

CHONS 3 33 2 140 

CHOP 3 14 15 55 

CHONP 23 111 88 232 

CHONSP 1 45 29 174 

Other 12 75 19 251 

Total by Ionization mode 59 326 195 1032 

Total 385 1227 
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Compositional space plots and VK diagrams were generated for both genotypes and 

ionization modes (Figure 4.1) highlighting a wide chemical diversity between the two Vitis 

genotypes under analysis. 

The positive ionization mode presented a higher number of peaks and consequently 

a higher number of chemical formulas (Table 4.1 and Table 4.2) in both species analysed. 

Empirical regions of metabolic classes of the chemical formulas detected were also created in 

each VK diagram. The regions that present a higher density are associated to lipids, 

polyketides and carbohydrates. The lipids class is one of the most represented in both Vitis 

genotypes analysed. V. rotundifolia presented a higher number of compounds in the 

carbohydrate and polyketides region (Figure 4.1). In fact, polyketides are secondary 

metabolites involved in plant defence against pathogens. Within polyketides, flavonoids can 

be highlighted, considered to be one group of aromatic polyketides. In grapevine, flavonoids 

have already been identified as been associated to grapevine defences against downy mildew 

(Buonassisi et al., 2017; Chitarrini et al., 2017; Nascimento et al., 2019). Recently, our group 

also associated these compounds to resistant/tolerant and susceptible cultivars discrimination 

in no stress conditions (Maia et al., 2020a). Concerning carbohydrates, these metabolites are 

important signalling molecules involved in biotic and abiotic stresses (Trouvelot et al., 2014). 

Moreover, by comparing both samples, it is clear that V. rotundifolia presents a higher number 

of compounds with a higher O/C value, suggesting the presence of a higher number of 

oxidized compounds. Since plants do not possess mobile defence cells, their innate immunity 

depends on an effective signal transduction between cells to activate defence responses. One 

of these signals is the production of reactive oxygen species (ROS) (Torres et al., 2006; 

Frederickson Matika and Loake, 2014; González-Bosch, 2018). The majority of the studies 

regarding oxygenated species in plants are performed upon plant challenge with a pathogen 

and not at a constitutive level (Doke et al., 1996; Figueiredo et al., 2017; Nascimento et al., 

2019). Hence, the significance of this accumulation of oxidized compounds observed in V. 

rotundifolia must not be discarded and should be investigated in future experiments.  

The DBE vs. the number of carbons were plotted for FT-ICR-MS data (Figure 4.2). 

Vitis rotundifolia, in both ionization modes, presented a larger number of compounds with a 

DBE value and with more carbon atoms in their structure. A recent study with Vitis vinifera 

cv. ‘Regent’ (a tolerant cultivar to pathogens) and Vitis vinifera cv. ‘Trincadeira’ (a susceptible 

cultivar to pathogens) infected with Plasmopara viticola, showed that, after infection the 

tolerant cultivar presented a higher content of unsaturated fatty acids which leads to a more 

fluid and permeable membrane and as a consequence to a better defence response to the 

pathogen (Laureano et al., 2018). The results obtained, although without pathogen challenge, 

are consistent with that study. To better understand and investigate this phenomenon, future 

studies should be performed.  
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Elemental formulas of each compound detected were also investigated for both 

genotypes (Figure 4.3). Significant differences between the two Vitis genotypes were 

observed, being CHON, CHONS, CHOP, CHONP and CHONSP the elemental formulas 

with the highest differences and more present in Vitis rotundifolia (Figure 4.3).  

 
Figure 4.1 - Van Krevelen diagrams of V. vinifera cv. ‘Cabernet Sauvignon’ (CS) and V. rotundifolia 

(ROT) in ESI- and ESI+. Areas with the highest point density are highlighted for the three most 

important major classes of metabolites: lipids, polyketides, carbohydrates. 
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Figure 4.2 - Compositional space plot of V. vinifera cv. ‘Cabernet Sauvignon’ (CS) and V. rotundifolia 

(ROT) in ESI- and ESI+. 

 

 
Figure 4.3 - Chemical histogram of V. vinifera cv. ‘Cabernet Sauvignon’ (CS) and V. rotundifolia (ROT) 

according to the elemental formulas detected: CHO, CHOS, CHON, CHONS, CHOP, CHONP, 

CHONSP and other. 
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4.5 CONCLUSIONS 

In this work, two different Vitis genotypes that present different resistance levels 

towards pathogens were compared at the constitutive metabolic level through different 

visualization approaches. The results showed that both compositional space plots and VK 

diagrams allowed a fast comparison of chemical diversity between both metabolomes. 

Through these visualization techniques, it was shown that V. rotundifolia metabolome 

presented higher complexity than the metabolome from V. vinifera ‘Cabernet Sauvignon’. 

Also, higher representation of compounds from the polyketides and carbohydrates groups 

was found in V. rotundifolia, which is in accordance with other studies. The presence of more 

oxidized compounds in the resistant Vitis at the constitutive level was also observed, and 

further studies should be conducted to better understand if their presence is associated to a 

higher capability to react upon pathogen challenge. These results open new insights into the 

study of constitutive compounds in grapevine through the analysis of complex untargeted 

data through visual tools. 
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5 Integrating metabolomics and targeted gene expression 

to uncover potential biomarkers of fungal/oomycetes-

associated disease susceptibility in grapevine 

5.1 ABSTRACT 

Vitis vinifera, one of the most cultivated fruit crops, is susceptible to several diseases 

particularly caused by fungus and oomycete pathogens. In contrast, other Vitis species 

(American, Asian) display different degrees of tolerance/resistance to these pathogens, being 

widely used in breeding programs to introgress resistance traits in elite V. vinifera cultivars. 

Secondary metabolites are important players in plant defence responses. Therefore, the 

characterization of the metabolic profiles associated with disease resistance and susceptibility 

traits in grapevine is a promising approach to identify trait-related biomarkers. In this work, 

the leaf metabolic composition of eleven Vitis genotypes was analysed using an untargeted 

metabolomics approach. A total of 190 putative metabolites were found to discriminate 

resistant/tolerant from susceptible genotypes. The biological relevance of discriminative 

compounds was assessed by pathway analysis. Several compounds were selected as promising 

biomarkers and the expression of genes coding for enzymes associated with their metabolic 

pathways was analysed. Reference genes for these grapevine genotypes were established for 

normalisation of candidate gene expression. The leucoanthocyanidin reductase 2 gene (LAR2) 

presented a significant increase of expression in susceptible genotypes, in accordance with 

catechin accumulation in this analysis group. Up to our knowledge this is the first time that 

metabolic constitutive biomarkers are proposed, opening new insights into plant selection 

on breeding programs. 

 

5.2 INTRODUCTION 

Grapevine (Vitis vinifera L.) is one of the most cultivated fruit plants in the world, with 

an important economic impact in wine and table grape industries. Of the 80 known and 

globally distributed Vitis species (Organisation of Vine and Wine, 2019a, 2019b), Vitis vinifera 

L. is the mostly used in viticulture. As a result of its easy cultivation, vineyards longevity and 

numerous applications, in 2018, the global surface area for grapevine production was 7.4 mha 

(Organisation of Vine and Wine, 2019b). Grapevine cultivation requires preventive 

applications of agrochemicals to control several diseases, such as downy mildew [Plasmopara 

viticola (Berk. & Curt.) Berl. & de Toni) Beri, et de Toni], powdery mildew [(Erysiphe necator 

syn. Uncinula necator (Schweinf.) Burrill), gray mold (Botrytis cinerea Pers.) and black rot 
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(Guignardia bidwellii (Ellis) Viala & Ravaz), that affect all the green parts of the plant and 

grapes (Micheloni, 2017). However, some chemical products are not entirely efficient, with 

major pathogen outbreaks being reported (Delmotte et al., 2014; Peressotti et al., 2010). 

Others are more efficient but have highly economic and environmental costs, besides the 

detrimental effects to human and animal health (Cabras and Angioni, 2000; Lamichhane et 

al., 2015). Over the last decade, there has been an increasing demand for environmentally 

friendly agricultural practices. With the general recommendations of the European 

agricultural policy encouraging the reduction of pesticides towards environmental 

sustainability and consumer health improvement, alternatives are needed. One possible 

approach is the creation of more resistant grapevine varieties through cross-breeding 

programs between wild Vitis sp. (resistant) and V. vinifera (susceptible), combining resistant 

traits with highly desired and unique grape properties. Several crossing lines inbreed with 

American Vitis species are currently commercialized as tolerant varieties to fungal pathogens, 

e.g. Regent, Calardis Blanc, Solaris (Bove and Rossi, 2020; Zini et al., 2019). 

In breeding programs, the selection for pathogen resistance traits is only possible 2 to 

3 years after plant crossing, after which the more resistant seedlings are kept (Eibach and 

Töpfer, 2015; Reynolds, 2015). Considering the high number of newly developed seedlings, 

the establishment of new and advanced selection methods that can shorten this selection time 

and lead to a more efficient breeding process is a much-needed requirement. Grapevine 

genotypes possess distinct degrees of resistance to different fungal pathogens 

(https://www.vivc.de/). Hence, the study of different grapevine genotypes metabolomes, 

without stress, will uncover the innate metabolic differences between them. The full 

comprehension of disease resistance or tolerance mechanisms allied with the discovery of 

fungal/oomycete pathogen resistance-associated biomarkers in grapevine, may allow a quick 

and accurate identification of the seedlings that inherited the resistant trait soon after 

germination. 

Secondary metabolites have been proven to play an important role in grapevine 

defences against pathogens. Several studies have been published in pathogen infection 

conditions which has allowed the metabolite profiling of some grapevine-pathogen 

interactions through various analytical instruments. Some of these metabolites have been 

highlighted as possible biomarkers (Ali et al., 2012; Batovska et al., 2009, 2008; Becker et al., 

2013; Chitarrini et al., 2017; Figueiredo et al., 2008; Malacarne et al., 2011; Nascimento et al., 

2019).  

For instance, the accumulation of inositol and caffeic acid are possibly related to the 

innate resistance (Ali et al., 2012; Figueiredo et al., 2008) and hexadecanoic and the 

monohydroxycarboxylic acids were associated to grapevine resistance (Batovska et al., 2009). 
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Moreover, stilbenoids were already reported as key defence compounds involved in grapevine 

resistance to Plasmopara viticola, Erysiphe necator and Botrytis cinerea (Malacarne et al., 2011; 

Viret et al., 2018). 

Metabolic biomarkers have proven their value to predict phenotypical traits before they 

are observed (Wolfender et al., 2013). In this area, metabolomics is a powerful tool due to its 

ability to simultaneously characterize and quantify multiple metabolites (Bennett and 

Wallsgrove, 1994; Fiehn, 2002; Shepherd et al., 2011). Due to its extreme resolution and ultra-

high mass accuracy, Fourier Transform Ion Cyclotron Resonance mass spectrometry (FT-ICR-

MS) is particularly powerful for an untargeted metabolome characterization, being 

successfully used in the study of grapevine chemical profile (Adrian et al., 2017; Maia et al., 

2019, 2016; Nascimento et al., 2019). Additionally, metabolomics can also be used to explore 

metabolic pathways, uncover key enzymes involved in the biosynthesis/catalysis of 

metabolites and therefore genes associated with a wide range of responses. Metabolomics 

together with metabolic quantitative trait loci (mQTL) mapping, are being used as tools for 

assisting crops’ improvement, representing  a breakthrough advance for the selection of 

offsprings with relevant traits and identification of trait-associated metabolic biomarkers 

(Shepherd et al., 2011). This approach has been applied to potato, rice, maize and tomato 

(Alseekh et al., 2015; Fang et al., 2019; Gong et al., 2013; Toubiana et al., 2012; Wang et al., 

2012). 

The present work aimed at identifying susceptibility and resistance/tolerance 

biomarkers through a combined approach based on untargeted metabolite profiling and 

targeted gene expression analysis. Eleven field grown Vitis genotypes (5 Vitis species and 6 

Vitis vinifera) with different resistance levels to fungal/oomycete pathogens were analysed. 

After an untargeted metabolomics analysis by FT-ICR-MS, the most relevant metabolites 

discriminating susceptible and resistant/tolerant genotypes were mapped for pathway 

analysis, allowing the selection of genes coding for pathway key enzymes. A targeted gene 

expression analysis was performed, preceded by reference gene establishment for this sample 

set. One candidate was identified as a possible susceptibility-associated biomarker.  
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5.3 MATERIALS AND METHODS 

5.3.1 Plant material 

Five wild Vitis species, one Vitis vinifera subsp. sylvestris (wild plants that grow into 

Portuguese river basins) and five Vitis vinifera cultivars were investigated (Table 5.1). 

The resistance of Vitis genotypes was accessed through bibliographic searches 

following the classification of Organisation Internationale de la Vigne et du Vin 

(http://www.oiv.int) and the phenotype behaviour observed in field conditions into the 

Portuguese Ampelographic Vitis Collection (CAN). CAN is property of INIAV- Estação 

Vitivinícola Nacional (Dois Portos), located at Quinta da Almoinha, 60 km north of Lisbon 

(9º11’19’’W; 39º02’31’’N; 75m above sea level). Established since 1988 and replicated to a new 

place in 2013 and 2014, according to maintenance conditions: established in homogeneous 

modern alluvial soils (lowlands) as well as well drained soil; rootstock of a unique variety 

(Selection Oppenheim 4 – SO4) was used for all accessions including other Vitis species and 

other rootstocks represented in the field; each accession comes from one unique plant. CAN 

occupy nearly 2 ha of area and the climate of this region is temperate with dry and mild 

summer, in almost all regions of the northern mountain system Montejunto-Estrela and the 

regions of the west coast of Alentejo and Algarve (Peel et al., 2007). 

For plant material collection, the best possible health status was guaranteed for all 

accessions was confirmed: plants were tested for the principal grapevine fungal/oomycetes 

diseases as well as grapevine viruses (healthy genotypes and synonym accessions were planted 

in continuous line for didactic proposes); same trailing system (bilateral cordon, Royat), 

canopy maintenance and agricultural management.  

Three leaves (third to fifth from the shoot to apex) were harvested in each one of 7 

plants of accession (biological replicate) and immediately frozen in liquid nitrogen and stored 

at −80 °C until analysis. All genotypes’ leaves were collected in the same day at the same time. 

Three biological replicates containing leaves from 2-3 different plants were analysed. In 

overall, four wild Vitis species, one Vitis vinifera subsp. sylvestris (wild plants that grow into 

Portuguese river basins) and five Vitis vinifera cultivars were used in this experiment (Table 

5.1).  

 



115 

Table 5.1 - Wild Vitis species, V. vinifera subsp. sylvestris and grapevine cultivars analysed. Species and cultivar names, type of accession, origin and response to fungi 

pathogens are indicated (information adapted from Dry et al., 2019 and http://www.vivc.de/). Classification of resistance: 1 - very low; 3 - low, 5 - medium, 7 - high, 9 - 

very high or total. R – Resistant; T – Tolerant; S – Susceptible. 

      Degree of resistance according to OIV descriptor 452  

Vitis Species 
Subspecies (subsp.) 

or Cultivar (cv.) 

VIVC 

variety 

number 

Abbreviation Type of Accession Origin 
Plasmopara 

viticola 

Erysiphe 

necator 

Botrytis 

cinerea 

Overall response to 

fungi/oomycete 

pathogens 

V. labrusca Isabella 5560 LAB Wild species 
United States of 

America 
7 9 unknown R/T 

V. rotundifolia 

Muscadinia 

Rotundifolia 

Michaux cv. 

Rotundifolia 

13586 ROT Wild species 
United States of 

America 
9 9 unknown R/T  

V. riparia 

Michaux 

Riparia Gloire de 

Montpellier 
4824 RIP Wild species 

United States of 

America 
9 9 unknown R/T 

V. candicans 

Engelmann 

Vitis Candicans 

Engelmann 
13508 CAN Wild species 

United States of 

America 
7 9 unknown R/T 

V. rupestris 

Scheele 
Rupestris du lot 10389 RU Wild species 

United States of 

America 
7 7 9 R/T 

V. vinifera 

subsp. sylvestris  SYL Wild plant Portugal 3 3 5 R/T 

subsp. sativa cv. 

Regent 
4572 REG 

Cultivated hybrid 

(Crossing V. vinifera cv. 

Diana X cv. Chambourcin) 

Germany 7 9  R/T 

subsp. sativa cv. 

Riesling Weiss 
10077 RL Cultivated grapevine Germany 3 3 1/3 S 

subsp. sativa cv. 

Pinot noir 
9279 PN Cultivated grapevine France 3 3 1/3 S 

subsp. sativa cv. 

Cabernet Sauvignon 
1929 CS Cultivated grapevine France 1/3 1/3 5 S 

subsp. sativa cv. 

Trincadeira 
15685 TRI Cultivated grapevine Portugal 1/3 1/3 1/3 S 
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5.3.2 Metabolite extraction and FT-ICR-MS analysis 

Metabolite extraction was performed as previously described (Maia et al., 2016). 

Briefly, 0.1 g of plant material was extracted with 1 mL of 40% methanol (LC-MS grade, 

Merck)/40% chloroform (Sigma Aldrich)/20% water (v/v/v). Samples were vortexed, kept in 

an orbital shaker at room temperature and centrifuged for phase separation. The 

aqueous/methanol layer was further processed by solid-phase extraction using Merck 

LiChrolut RP-18 columns, pre-equilibrated and extracted with methanol. The methanol 

fraction was evaporated under a nitrogen stream and reconstituted in 1 mL of methanol. For 

FT-ICR-MS analysis, samples were diluted 1000-fold in methanol and human leucine 

enkephalin (Sigma Aldrich) was added for internal calibration of each mass spectrum 

([M+H]+ =556.276575 Da or [M-H]- = 554.262022 Da). For positive ionization mode analysis 

(ESI+), formic acid (Sigma Aldrich, MS grade) was added to all samples at a final 

concentration of 0.1% (v/v). Samples were analysed by direct infusion on an Apex Qe 7-Tesla 

Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (7T-FT-ICR-MS, Brüker 

Daltonics). Spectra were acquired at both positive (ESI+) and negative (ESI-) electrospray 

ionization modes, in the mass range of 100 to 1000 m/z, with an accumulation of 250 scans 

for each spectrum. 

 

5.3.3 Data pre-processing and profiling by multivariate statistical analysis 

Data Analysis 5.0 (Brüker Daltonics, Bremen, Germany) was used to internally 

calibrate each mass spectrum using leucine enkephalin for single point calibration. Peaks 

were considered at a minimum signal-to-noise ratio of 4. The data matrix for statistical 

analysis was created by peak alignment at 1 ppm difference tolerance. Only peaks occurring 

in more than two thirds of the replicate samples for each cultivar were selected for further 

analysis. Missing values were imputed by half of the global minimum value of all spectra. 

Data was normalized by the signal of the standard leucine enkephalin in each sample, 

transformed using the generalized log-transformation and Pareto scaled. The transformation 

with generalized log has been shown to correct for heteroscedasticity and reduce the skewness  

(van den Berg et al., 2006). Two unsupervised methods were applied to investigate the 

metabolic profile similarities between Vitis samples. Sample Hierarchical Clustering 

(agglomerative) was performed, for each ionization mode, using Euclidian distance as the 

metric and Ward as the method for cluster aggregation. Principal Component Analysis (PCA) 

models for each ionization mode were also built, retaining a minimum number of principal 

components necessary to explain 95% of variance (12 components for ESI+ PCA and 15 

components for ESI- PCA). 
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Classifiers for resistant/tolerant (n = 21) vs susceptible (n = 12) genotypes were 

obtained by building Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) 

models. Two target groups were defined: a “resistant/tolerant” attributed to all the wild Vitis 

plus the domesticated V. vinifera ‘Regent’, and the “susceptible” group, attributed to all the 

remaining domesticated V. vinifera cultivars, for model training. Group labels were encoded 

as +1, -1, and the signs of the dependent-variable components of the partial least squares fitted 

models were used as decision rules for classification. Model accuracy, R2 and Q2 metrics were 

estimated by 7-fold stratified cross-validation. For each model, a permutation test was carried 

out to assess its significance, by sampling 1000 label permutations. All analysis were carried 

out using the package metabolinks (https://github.com/aeferreira/metabolinks), which uses 

packages scipy (Virtanen et al., 2020) and scikit-learn (Pedregosa et al., 2011). 

 

5.3.4 Univariate statistical analysis, metabolite annotation and pathway 

mapping 

The significance of variables in data matrices for ESI+ and ESI- was assessed by 

performing two-tail t-tests to compare variables in “resistant/tolerant” (n = 21) and 

“susceptible” (n = 12) groups. p-values were corrected for multiple testing by the Benjamini–

Hochberg procedure. An FDR-corrected p-value cut-off of 0.01 was used for further 

consideration of a variable in the analysis. Variables were then sorted according to the fold-

change defined as the ratio of the averages of “resistant/tolerant” / “susceptible”. A variation 

of at least |log2(FC)| ≥ 1 was required for a variable to be considered discriminatory. 

For metabolite annotation, the m/z values of discriminatory peaks were submitted to 

MassTRIX 3 server (Suhre and Schmitt-Kopplin, 2008) (http://masstrix.org, accessed in April 

2020), allowing for the presence of adducts [M+H]+, [M+K]+ and [M+Na]+ for positive scan 

mode and the adducts [M-H]+ and [M+Cl]− for negative mode. A maximum m/z deviation of 

2 ppm was accepted; “KEGG (Kyoto Encyclopaedia of Genes and Genomes)/HMDB (Human 

Metabolome Database)/LipidMaps without isotopes” was selected for database search; Vitis 

vinifera was selected as the organism. For compound taxonomical classification, each KeGG’s 

metabolite identifier obtained from the MassTRIX search was further annotated according to 

the relevant ontologies of KeGG’s BRITE hierarchies (Kanehisa et al., 2019), if any existed for 

the identifier. For the “lipids” ontology the LipidMaps lipid classification system (Fahy et al., 

2009) was used. Discriminatory compounds were mapped into metabolic pathways using 

Pathview (Luo and Brouwer, 2013) (http://pathview.uncc.edu), selecting the Vitis vinifera 

Flavonoid biosynthesis (“vvi00941”) and Flavone and Flavonol Biosynthesis (“vvi00944”) 

pathways. For visualization, log2(FC) values were colour coded within the boundaries of -5 
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(red, abundant in the “susceptible” group) and 5 (blue, abundant in “resistant/tolerant” 

group). 

 

5.3.5 Total RNA extraction and cDNA synthesis 

Total RNA was extracted from the leaves of the different Vitis samples using the 

Spectrum™ Plant Total RNA Kit (Sigma-Aldrich, USA), according to the manufacturer's 

instructions. Residual genomic DNA (gDNA) contamination was removed with On-Column 

DNase Digestion I Set (Sigma-Aldrich, USA), following the manufacturer's instructions. 

After extraction, all RNA samples were quantified, and the purity determined with the 

absorbance ratios at 260/280 and 260/230 nm using a NanoDrop-1000 spectrophotometer 

(Thermo Scientific). RNA integrity was verified by agarose gel electrophoresis. To confirm 

the absence of contaminating gDNA, a quantitative Real-time polymerase chain reaction 

(qPCR) analysis of a target on the crude of total RNA (Vandesompele et al., 2002b, 2002a) 

was performed using EF1α as target. Complementary DNA (cDNA) was synthesized from 2.5 

µg of total RNA using RevertAid®H Minus Reverse Transcriptase (Fermentas, Ontario, 

Canada) anchored with Oligo(dT)23 primer (Sigma-Aldrich, USA), as previously described 

(Monteiro et al., 2013a). For gene expression analysis, ‘Cabernet sauvignon’ was not included 

in the dataset due to the lack of sufficient plant material from the same collection used for 

metabolomics studies. 

 

5.3.6 Reference genes selection and expression analysis 

Ten candidate genes were selected based on their previous description as good qPCR 

reference genes for Arabidopsis thaliana (Czechowski et al., 2005) and grapevine (Monteiro et 

al., 2013b; Polesani et al., 2010; Reid et al., 2006) (Table 5.2). Nine of the selected genes were 

previously described as reference genes for grapevine: 60S ribosomal protein L18 (60S), small 

nuclear ribonucleoprotein SmD3 [currently annotated as Tetratricopeptide repeat protein 7B 

(TPR7B), elongation factor 1-alpha (EF1α), ubiquitin-conjugating enzyme (UBQ), SAND family 

protein (SAND), Actin (ACT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH),  alpha-

tubulin 3-chain (α-TUB) and beta-tubulin 1-chain (β-TUB) (Figueiredo et al., 2012; Gamm et al., 

2011; Reid et al., 2006; Selim et al., 2012; Trouvelot et al., 2008). The other gene was retrieved 

from NCBI (http://www.ncbi.nlm.nih.gov/) as being homologous to Arabidopsis adaptor 

protein-2 MU-adaptin (AP2M). 
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qPCR analysis was carried out in a StepOne™ Real-Time PCR system (Applied 

Biosystems, Sourceforge, USA), using Maxima™ SYBR Green qPCR Master Mix (2×) kit 

(Fermentas, Ontario, Canada), following supplier’s instructions. Thermal cycling analysis of 

all genes was performed under the following conditions: initial denaturation step at 95 °C for 

10 min; followed by 40 cycles of denaturation at 95 °C for 15 s plus annealing for 30 s 

(annealing temperatures for each primer pair were indicated at Table 5.2). Each set of 

reactions included a negative control without cDNA template. Non-specific PCR products 

were analysed by melting curves (see Appendix A - Supplementary Figure F5.1 - [A-J]). 

Three biological replicates and two technical replicates were used for each sample. To assess 

the amplification efficiency of each reference/candidate gene, a pool of all cDNA samples was 

diluted (1:4) and used to generate a five-point standard curve based on a ten-fold dilution 

series.  

 

Table 5.2 - Candidate reference genes for qPCR. Genes, gene accession numbers, primer sequences 

(Fw, forward; Rev, reverse), amplicon length (bp, base pairs) and qPCR annealing (Ta) and melting 

(Tm) temperatures are indicated. *Alternative splicing variant. 

Gene 

(NCBI Accession Number) 
Primer sequence (5’-3’) 

Amplicon 

length (bp) 

Ta 

(°C) 

Tm 

(°C) 

60S 

(XM_002270599.3) 

Fw: ATCTACCTCAAGCTCCTAGTC 

Rev: CAATCTTGTCCTCCTTTCCT 
165 60 79.6 

TTC7B 

(XM_002283371.4) 

Fw: GCTCTGTTGTTGAAGATGGG 

Rev: GGAAGCAGTTTGTAGCATCAG 
156 60 79.9 

EF1α 

(XM_002284888.3) 

Fw: GAACTGGGTGCTTGATAGGC 

Rev:  ACCAAAATATCCGGAGTAAAAGA 
164 60 79.7 

UBQ 

(XR_002030722.1) 

Fw: GCCCTGCACTTACCATCTTTAAG 

Rev:  GAGGGTCGTCAGGATTTGGA 
75 60 78.9 

SAND 

(XM_002285134.3) 

Fw: CAACATCCTTTACCCATTGACAGA 

Rev: GCATTTGATCCACTTGCAGATAAG 
76 60 79.2 

GAPDH 

(XM_002263109.3) 

Fw: TCAAGGTCAAGGACTCTAACACC 

Rev: CCAACAACGAACATAGGAGCA 
226 60 81.3 

ACTIN* 

(XM_019223591.1) 

Fw: ATTCCTCACCATCATCAGCA 

Rev: GACCCCCTCCTACTAAAACT 
89 55 77.5 

α-TUB 

(XM_002285685.4) 

Fw: CAGCCAGATCTTCACGAGCTT 

Rev: GTTCTCGCGCATTGACCATA 
119 60 78.8 

AP2M 

(XM_002281261.3) 

Fw: CCTCTCTGGAATGCCTGATTT 

Rev: CTTTAGCAGGACGGGATTTA 
89 55 75.0 

β-TUB 

(XM_002275270.3) 

Fw: TGAACCACTTGATCTCTGCGACTA 

Rev: CAGCTTGCGGAGGTCTGAGT 
86 60 82.3 
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5.3.7 Determination of reference gene stability 

To evaluate reference gene stability, all Vitis genotypes were analysed together and the 

three publicly available software tools GeNorm v. 3.5 (Vandesompele et al., 2002b), 

NormFinder (Andersen et al., 2004) and the BestKeeper tool (Pfaffl et al., 2004) were used.  

GeNorm is based on the pairwise variation of a single reference candidate gene 

relative to all other genes. GeNorm algorithm calculates a gene expression stability measure 

(M value) for each gene, based on the average pairwise expression ratio between a gene and 

each of the other genes being compared in the analysis. Accordingly, a gene displaying a low 

M value presents a low variance in its expression. NormFinder is based on a variance 

estimation approach, which calculates an expression stability value (SV) for each gene 

analysed. It enables estimation of the overall variation of the reference genes, considering 

intra and intergroup variations of the sample set. According to this algorithm, genes with 

lowest SV will be top ranked (Andersen et al., 2004). The BestKeeper tool calculates standard 

deviation (SD) based on quantification cycle (Cq) values of all candidate reference genes 

(Pfaffl et al., 2004). Moreover, BestKeeper compares each reference gene to the BestKeeper 

Index (BKI) and calculate a Pearson correlation coefficient (r). Higher r values suggest more 

stable expression. Genes with SD less than 1 and with the highest coefficient of correlation 

have the highest stability. A comprehensive ranking, was established by RefFinder, a tool that 

integrates GeNorm, Normfinder, BestKeeper, and the comparative ΔCt method, based on 

the rankings from each program, allows the assignment of an appropriate weight to an 

individual gene and calculates the geometric mean of their weights for the overall final 

ranking. 

A comprehensive ranking of the candidate reference genes was established by 

calculating the arithmetic mean of the ranking in each algorithm used, as reported previously 

(Wang et al., 2012). Each gene was ranked from 1 (most stable) to 11 (least stable). The 

definition of the optimal number of genes required for normalization was achieved by 

GeNorm pairwise variation analysis (Tunbridge et al., 2011). Additionally, RefFinder was 

used as a verification tool of our results (Xie et al., 2012) 

(https://www.heartcure.com.au/reffinder/). 

 

5.3.8 Selection and expression analysis of genes of interest  

Genes encoding for enzymes involved in biosynthetic or catabolic reactions of the 

discriminatory metabolites were selected based on the fold-change of discriminatory 

compounds and pathway mapping.  
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A total of 7 genes were selected for expression analysis, coding for the following 

enzymes: caffeic acid O-methyltransferase (COMT), leucoanthocyanidin reductase 2 (LAR2), 

anthocyanidin reductase (ANR); fatty acyl-ACP thioesterase B (FatB), myo-inositol 

monophosphatase (IMPL1), flavonoid 3',5'-hydroxylase (F3’5’H), and UDP-glucose:flavonoid 

3-O-glucosyltransferase (UFGT). The selection of the genes followed the criteria of the genes 

being functionally described as being involved in the biosynthesis/catalysis of the 

compounds.   

The sequences for the genes coding for the enzymes involved in catechin and 

epicatechin synthesis used in this study were previously described in Vitis (Bogs, 2005; Gagné 

et al., 2009) . The remaining genes were selected by comparison of Arabidopsis thaliana 

homologue genes in the Vitis vinifera genome coding genes using the Basic Local Alignment 

Search Tool (BLAST, https://blast.ncbi.nlm.nih.gov/Blast.cgi). When gene families existed for 

the selected genes, the choice of the gene was made based on information on the literature 

regarding its involvement in plant resistance/defence. 

Genes of interest selected for gene expression analysis were presented in Table 5.3. 

Non-specific PCR products were also analysed by melting curves (see Appendix A - 

Supplementary Figure F5.1 - [K-Q]). For each gene, both standard curve efficiency and SD 

were calculated by the Hellemans et al. equations (Hellemans et al., 2007) (Table 5.3). 

After qPCR analysis, the quantification cycle (Cq) values of the genes of interest in all 

Vitis samples, were extracted and normalized by the geometric mean of the Cqs of UBQ, 

SAND and EF1α, described in this work as the most stable genes for sample normalization. 

The ability for each possible gene to discriminate between resistant/tolerant and susceptible 

cultivars was assessed by testing the homocedasticity of groups with Bartlett’s test and by 

assessing significance of the differences between groups with a Wilcox-Mann-Whitney’s U 

test. All p-values were adjusted for false discovery rate using the Benjamini-Hochberg 

procedure. Results yielding an adjusted p-value ≤ 0.05 were considered statistically significant. 

Bartlett’s and Wilcox-Mann-Withney tests were performed in R (R Core Team, 2019), using 

the ‘bartlett.test’, ‘wilcox.test’ and ‘p.adjust’ functions, respectively. 
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Table 5.3 - Genes of interest and their encoding enzymes selected for gene expression analysis.  EC numbers, gene accession numbers, primer sequences (Fw, forward; 

Rev, reverse), amplicon length, qPCR annealing (Ta) and melting (Tm) temperatures and amplification efficiency are indicated. *Alternative splicing variants. 

†Alternative locus variants. 

 

Metabolites Enzyme Abbreviation EC number 

Gene 

NCBI Accession 

Number 

Primer sequence (5’-3’) 

Amplicon 

length 

(bp) 

Ta 

(°C) 

Tm 

(°C) 

Amplification 

efficiency 

Caffeic acid 
Caffeic acid 3-O-

methyltransferase 
COMT EC 2.1.1.68 XM_003634113.2 

Fw: GTATGACCCCAACAACTATC 
88 60 78.4 1.88±0.02 

Rev: GACCATGGGGAGAACTGA 

Catechin 
Leucoanthocyanidin 

reductase 2 
LAR2 EC 1.17.1.3 NM_001281160.1 

Fw: TGTAACCGTGGAAGAAGATGA 
92 60 80.6 1.88±0.02 

Rev: ATGAAGATGTCGTGAGTGAAG 

Epicatechin 
Anthocyanidin 

reductase 
ANR EC 1.3.1.77 NM_001280956.1 

Fw: ATCAAGCCAGCAATTCAAGGA 
93 60 76.2 1.88±0.006 

Rev: CAGCTGCAGAGGATGTCAAA 

Dodecanoic acid / 

Hexadecanoic acid 

Palmitoyl-acyl carrier 

protein thioesterase B 
FatB 

EC 3.1.2.21 / 

3.1.2.14 
XM_019223124.1 

Fw: TCGCAAACCCTAGAAACCAAT 
112 60 77.5 1.93±0.05 

Rev: AATGAGGGAAGGAGGAAAATG 

Myo inositol 
Myo-inositol 

monophosphatase* 
IMPL1 EC 3.1.3.25 XM_002276661.3 

Fw: ATCCCAAACGCTACCCAAAAA 
119 60 80.9 1.96±0.02 

Rev: TAACAGCTTCCATCACAACCT 

Quercetin / 

Dihydroquercetin 

Flavonoid 3',5'-

hydroxylase† 
F3'5'H EC 1.14.14.81 XM_003632164.3 

Fw: GTGGTGCCGGAGATGTTA 
173 56 80.1 1.83±0.05 

Rev: TGCGATGGACGGAATAAAAT 

Quercetin-3-O-

glucoside 

(Isoquercitrin) 

UDP-glucose:flavonoid 

3-O-glucosyltransferase 
UFGT EC 2.4.1.91 AF000372.1 

Fw: AGGGGATGGTAATGGCTGT 

Rev: ATGGGTGGAGAGTGAGTTAG 
151 60 84.7 1.97±0.01 
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5.4 RESULTS 

5.4.1 Metabolic differentiation of susceptible and resistant/tolerant Vitis 

Eleven Vitis genotypes with different tolerance to pathogens were analysed. Vitis 

species V. labrusca, V. rotundifolia, V. riparia, and V. candicans present a higher 

resistance/tolerance to both downy and powdery mildews and gray mold (Table 5.1). An 

untargeted metabolomics analysis using FT-ICR-MS, by direct infusion and using 

electrospray ionization in positive (ESI+) and negative (ESI-) ionization modes was followed. 

Two unsupervised approaches, principal component analysis (PCA) and hierarchical 

clustering, were applied to the untargeted metabolomics data to verify the analytical 

reproducibility and to infer inter-genotype metabolic profile similarities among the various 

Vitis samples (Figure 5.1).  

Data reproducibility, as seen from the clustering of replicates together, was very high, 

an indicating that metabolome profiling of Vitis leaves appears to be sufficiently sensitive to 

distinguish the different species and cultivars. Also, in both ionization modes, a trend of 

separation between wild Vitis and V. vinifera cultivars can be observed in the PCA score plots 

(Figure 5.1 – A, B). The dendrograms resulting from hierarchical clustering confirm this 

trend, since two major clusters were formed with these two sample groups (Figure 5.1 – C, 

D). The only exception to this overall trend is V. rupestris. It is also apparent that the 

metabolome profile variation among V. vinifera cultivars seems to be larger than variation 

among wild species’ samples (Figure 5.1 – A, B). The general trend of separation suggests 

that the multivariate metabolic phenotypes might be enough to discriminate and predict 

resistance or susceptibility characteristics. For that purpose, we used our metabolomics data 

to build classifiers for predicting the resistance or susceptibility of Vitis plants from their leaf 

metabolic profiles. We fitted Orthogonal Partial Least Squares Discriminant Analysis (OPLS-

DA) models on MS intensity data using as target the inclusion on either the resistant/tolerant 

group, defined by all the wild species and cultivar ‘Regent’, or the susceptible group, defined 

by all the remaining V. vinifera cultivars. Separation classifiers were built for either ESI+ or 

ESI- data. Both classifiers showed very good performance. Score plots indicate that the 

predictor component was able to discriminate between the two groups (Figure 5.2 – A, B) in 

both classifiers. Estimating model performance with 7-fold stratified cross-validation, the 

overall accuracy was grater that 0.98 and both R2
Y and Q2

Y metrics achieve top values with 

only a few orthogonal components (see Appendix B - Supplementary Figure F5. - A, B). 

Furthermore, by assessing the significance of the models by permutation tests, the accuracy 

of permuted target label models, estimated by 7-fold stratified cross-validation has a 

distribution well below the reference accuracy of the non-permuted models which 

correspond, in both classifiers, to p-values of 0.001 (Figure 5.2 – C, D).  
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Figure 5.1 - Principal component analysis (PCA) and hierarchical clustering analysis (HCA) of 

untargeted metabolomics obtained in positive (ESI+) and negative (ESI-) ionization modes. (A, B) PCA 

score plots. Squares represent wild Vitis, while circles represent domesticated V. vinifera; (C, D) HCA 

dendrograms. Vitis genotypes abbreviations are indicated in Table 5.1. Variance explained by each 

principal component is indicated in parenthesis. 
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Figure 5.2 - Orthogonal partial least squares discriminant analysis (PLS-DA) models for the 

classification into resistant/tolerant and susceptible groups using of untargeted metabolomics data 

obtained in positive (ESI+) and negative (ESI-) ion modes. (A, B) Score plots for the predictive and first 

orthogonal components. Squares represent wild Vitis, while circles represent domesticated V. vinifera. 

Confidence ellipses are drawn for the two classification groups: resistant/tolerant (blue) and susceptible 

(red); (C, D) Significance diagnostic showing the distribution of predictive accuracy in permutation 

tests and the p-value of the test for accuracy. 1000 permutations were randomly sampled. Vertical lines 

indicate the accuracy of model with labels non-permuted. Accuracy was estimated by 7-fold stratified 

cross-validation. Vitis genotypes abbreviations are indicated in Table 5.1. 

 

Univariate analysis based on the variable intensity changes between resistant/tolerant 

and susceptible groups allowed the identification of several spectral features with both 

significant and large variation between the two groups. Even at a significance level of 0.01 for 

FDR-corrected p-values, we found 2535 features with |log2 FC| ≥ 1, 1796 in ESI+ and 739 in 

ESI. A search of these features in MassTRIX (Suhre and Schmitt-Kopplin, 2008) provided a 

putative identification of some of these peaks. A total of 190 unique masses with significant 

and large variation between our comparison groups were putatively annotated (see 

Supplementary Table S5.1 online).  
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To understand the biological relevance of these discriminatory compounds in 

grapevine metabolism, the compounds with KEGG (Kyoto Encyclopaedia of Genes and 

Genomes) identifiers for database annotation were retrieved and mapped into selected 

pathogen defence related KEGG pathways using the R package Pathview (Figure 5.3). 

Pathway analysis of flavonoid biosynthesis and flavone and flavonol biosynthesis, mapped 17 

and 10 metabolites, respectively (Figure 5.3). Among the discriminative putatively identified 

metabolites, we highlight catechin or epicatechin, leucocyanidin, caffeic acid, hexadecanoid 

acid derivatives and dodecanoic acid as more abundant in the susceptible V. vinifera cultivars. 

Quercetin 3-O-glucoside (isoquercitrin) and dihydroquercetin, together with several other 

flavonol 3-O-glucosides, more abundant in the resistant/tolerant plants (see Supplementary 

Table S5.1 online). 
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Figure 5.3 - Flavonoid (A) and Flavone and flavonol (B) biosynthesis pathways from V. vinifera 

showing the discriminatory putative metabolites between resistant/tolerant and susceptible groups 

(FDR corrected p-value < 0.01). Metabolite’s KEGG identifiers were used in the R package Pathview, 

coloured in agreement with their |log2(FC)| values, between resistant/tolerant and susceptible plants: 

more accumulated in the resistance/tolerance group are blue, more accumulated in the susceptibility 

group are red and those unchanged are grey, setting the limits between -5 and 5. 
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5.4.2 Reference gene selection, stability determination and expression analysis  

As no reference genes were previously described for non-stressed grapevine genotypes, 

we selected ten candidate reference genes (RGs) based on their previous description as good 

qPCR control genes for Arabidopsis thaliana (Czechowski et al., 2005) and grapevine 

(Monteiro et al., 2013a; Polesani et al., 2010; Reid et al., 2006). Nine of the selected genes 

were formerly described as RGs for grapevine: 60S ribosomal protein L18 (60S), 

tetratricopeptide repeat protein 7B (TTC7B)], elongation factor 1-alpha (EF1α), ubiquitin-

conjugating enzyme (UBQ), SAND family protein (SAND), glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), alpha-tubulin 3-chain (α-TUB), beta-tubulin 1-chain (β-TUB) and 

actin (ACT). Adaptor protein-2 MU-adaptin (AP2M) was previously described for Arabidopsis 

(Czechowski et al., 2005) and sequence for its homologue in grapevine was retrieved from 

NCBI (http://www.ncbi.nlm.nih.gov/) (Table 5.2).  

Expression stability of the candidate RGs was evaluated by three statistical algorithms, 

GeNorm, Normfinder and Bestkeeper, and a final rank was established with the RefFinder 

tool (Castro et al., 2011; Remans et al., 2008). Ranking order of the most stable to the least 

stable genes is presented Table 5.4. In all the Vitis species and V. vinifera cultivars analysed, 

genes encoding for UBQ and SAND were ranked as the most stable genes presenting the 

lowest M value (M = 0.859), followed by GAPDH (M = 0.990) and EF1α (M = 1.027). For all 

Vitis samples analysed, UBQ was considered as the most stable gene with an expression 

stability value (SV) of 0.552 (Table 5.4), followed by AP2M (SV = 0.744), GAPDH (SV = 0.745) 

and β-TUB (SV = 0.766).   

In this study, BestKeeper analysis considered α-TUB and SAND as the most stable 

genes for all Vitis samples, with standard deviation (SD) values of 0.92 and 1.01, respectively 

(Table 5.4). 60S (SD = 1.07) was the third and EF1α (SD = 1.09) was the fourth most stable 

genes. Considering the 3 algorithms, a final rank was established by RefFinder (Wang et al., 

2012). The results revealed that, in grapevine leaves, the four most stable genes for 

normalization were UBQ, SAND, EF1α and AP2M (Table 5.4). 
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Table 5.4 - Candidate reference genes ranking for all Vitis samples calculated by GeNorm, NormFinder 

and BestKeeper. Genes are ordered by the final ranking. SV, Stability value; SD, Standard deviation of 

Cq value; 𝑟, Pearson coefficient of correlation; *p≤0.01. p-value associated with the Pearson coefficient 

of correlation; Ranking order is indicated in parenthesis. 

Reference gene 
GeNorm NormFinder BestKeeper 

Ranking mean Final ranking 
M value SV SD r 

UBQ 0.859 (1) 0.552 (1) 1.13 (5) 0.90* 2.33 1 

SAND 0.859 (1) 0.791 (6) 1.01 (2) 0.81* 3.00 2 

EF1α 1.027 (3) 0.767 (5) 1.09 (4) 0.85* 4.33 3 

AP2M 1.105 (4) 0.744 (2) 1.20 (6) 0.86* 4.33 3 

GADPH 0.990 (2) 0.745 (3) 1.31 (8) 0.90* 4.67 4 

α-TUB 1.181 (6) 1.122 (7) 0.92 (1) 0.59* 5.00 5 

β-TUB 1.132 (5) 0.766 (4) 1.21 (7) 0.84* 5.67 6 

60S 1.245 (7) 1.287 (8) 1.07 (3) 0.63* 6.33 7 

ACT 1.439 (8) 2.056 (10) 1.63 (9) 0.69* 9.33 8 

TTC7B 1.602 (9) 1.972 (9) 1.98 (10) 0.78* 10.00 9 

 

Based on the putatively identified metabolites, respective metabolic pathways and the 

existing knowledge regarding markers for pathogen resistance/susceptibility in grapevine, 

several genes coding for enzymes in the biosynthesis or catabolism of the most discriminating 

metabolites were selected, namely: quercetin 3-O-glucoside (isoquercitrin), dihydroquercetin, 

caffeic acid, leucocyanidin, dodecanoic acid, hexadecanoic acid, catechin, epicatechin and 

myo-inositol. A total of 7 genes were selected for expression analysis, coding for the following 

enzymes: caffeic acid O-methyltransferase (COMT), catalyses the conversion of caffeic acid to 

ferulic acid; leucoanthocyanidin reductase 2 (LAR2), catalyses the synthesis of catechin from 

leucocyanidin; anthocyanidin reductase (ANR), responsible for the synthesis of epicatechin 

from cyanidin; fatty acyl-ACP thioesterase B (FatB), responsible for the synthesis of 

hexadecanoic acid from hexadecanoyl-ACP and of dodecanoid acid from dodecanoyl-ACP; 

myo-inositol monophosphatase (IMPL1), catalyses the hydrolysis of myo-inositol phosphate 

into myo-inositol and phosphate; flavonoid 3',5'-hydroxylase (F3’5’H), involved in several 

reactions in the flavonoid biosynthesis pathway; and UDP-glucose:flavonoid 3-O-

glucosyltransferase (UFGT), catalyses the formation of flavonol 3-O-glucosides, using UDP-

glucose as sugar donor (Table 5.3). The quantification cycle (Cq) value of the genes of interest 

in all Vitis genotypes were extracted and normalized by the geometric mean of the 

quantification cycles of UBQ, SAND and EF1α, for data normalization. For each gene, 

Bartlett’s test was used to access homoscedasticity of our samples and the non-parametric 

Wilcox-Mann-Whitney U test was performed, identifying the discriminating genes between 
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our comparison groups. Only genes considered statistically significant in both tests (p-value 

< 0.05) were considered to be possible and reliable genetic biomarker (see Appendix C –

Supplementary Table S5.2). ANR, UFGT, F3’5’H and FatB genes were, therefore, excluded 

(Figure 5.4). On the other hand, COMT, LAR2 and IMPL1 are clearly significantly different 

between susceptible and resistant/tolerant groups, presenting lower Cq values on the 

susceptible groups (higher expression) (see Appendix C – Supplementary Table S5.2). 

Among these, the gene with most significance when its level is compared between groups is 

LAR2 (Figure 5.4, see Appendix C – Supplementary Table S5.2), which encodes for the 

enzyme leucoanthocyanidin reductase 2, responsible for the synthesis of catechin from 

leucocyanidin and has a higher expression in the group of susceptible plants. 
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Figure 5.4 - Boxplot of quantification cycles (Cq) values for the different genes of interest in susceptible 

(S) and tolerant/resistant (PR/R) genotypes. (A) FatB, (B) COMT, (C) ANR, (D) LAR2, (E) UFGT, (F) 

F3’5’H, (G) IMPL1 (gene names are indicated in Table 5.3). Cq values were normalized by the 

geometric mean of the Cq of UBQ, SAND and EF1α. Data for susceptible plants are represented in red 

and data for resistant/tolerant are in blue. 
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5.5 DISCUSSION 

Grapevine is affected by diverse pathogens, particularly fungi and oomycetes, which, if 

not controlled, can affect the entire vineyard and cause a drastically reduction of the 

production, berry quality and yield. Downy and powdery mildews, black rot and gray mold 

gained the European Union’s attention and were recently flagged as the grapevine diseases 

with higher impact in Europe (Micheloni, 2017). European Union is committed to “increase 

resilience of grape vines to pests and diseases and support the productivity of the sector in 

sustainable ways”, focusing on the breeding of new resistant varieties that maintain the grape 

qualities for wine production (Micheloni, 2017). Its success depends on the understanding of 

the innate resistance mechanisms against pathogens and the identification of 

resistance/susceptibility-related biomarkers towards the development of assays to assist future 

breeding programs and introgression line analysis. The development of new crossing hybrids 

by the combination of wild American and Asian Vitis, that present innate resistance towards 

different pathogens (Dry et al., 2019), with V. vinifera (susceptible) offer a promising 

alternative to the use of pesticides and contribute to an environmentally sustainable 

viticulture. Vitis riparia and V. labrusca, analysed in our study, exhibit resistant traits to P. 

viticola (Dry et al., 2019) (http://www.vivc.de/) and have been effectively used in for resistance 

introgression. A successful hybrid example is V. vinifera ‘Regent’, with a broad tolerance to 

the most significant pathogens (information from http://www.vivc.de/). In breeding 

programs, the expression of the resistant trait takes too long to be observable in the progeny. 

The identification of metabolic biomarkers may allow a fast and accurate identification of the 

seedlings that inherited the resistant traits soon after germination.   

The comparison of different Vitis metabolomes, without being submitted to any stress, 

will allow the detection of relevant metabolic variations between grapevine genotypes and 

uncover potentially innate defence compounds that could be used as biomarkers in breeding-

programs. 

For that purpose, we have conducted an untargeted metabolome characterization of 

eleven Vitis genotypes presenting different levels of resistance to downy and powdery mildews 

and black rot. Vitis vinifera cultivars Pinot noir, Riesling, Trincadeira and Cabernet sauvignon 

are susceptible, whereas the inter-specific hybrid V. vinifera Regent (that combines both Vitis 

vinifera and American Vitis genetic background) and the V. vinifera subspecies sylvestris 

present a higher tolerance towards these pathogens, when compared to the other genotypes. 

From our untargeted metabolomics data, two groups, V. vinifera cultivars and wild Vitis, were 

immediately defined and separated based on their metabolic profile. Vitis rupestris appears to 

be an exception to this overall separation trend. However, the metabolic profile of this wild 

Vitis is closer to the interspecific hybrid ‘Regent’ and cultivar ‘Trincadeira’. ‘Regent’ is 
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considered tolerant to downy and powdery mildews, harbouring one Resistance to 

Plasmopara viticola (RPV) and two Resistance to Erysiphe necator (REN) loci (Bove and Rossi, 

2020) (http://www.vivc.de/). On ‘Regent’ pedigree, backcrosses were made with V. vinifera, 

thus, it is expected that its metabolic profile clusters together with V. vinifera genotypes. 

Concerning the metabolome variation, it was observed to be larger in V. vinifera cultivars. 

This difference was somewhat expected, considering that domesticated grapevine cultivars 

present a genetic background tailored according to breeders most wanted characteristics, as 

the result of gene transfer during multiple crossings and selection (Bacilieri et al., 2013; 

Laucou et al., 2011). For the wild species, no agronomic selection events have been pursued 

and thus they maintain a closer metabolic profile background. 

Overall, our data predictor component was capable of discriminate between 

susceptible and resistant/tolerant grapevine groups. The performance of these predictors is 

very encouraging in the context of sustainable agricultural practices. The prediction of 

resistance or susceptibility from plant leaf extracts using extreme-resolution metabolic 

profiling has the potential to analyse and then select crossed plants in still early development 

stages of their development, prior to infection, decreasing preventive pesticide use. 

For the discriminant analysis, a resistant/tolerant and susceptible group were 

considered, and 190 metabolites allowed the discrimination between them. Of those, caffeic 

acid, catechin, epicatechin, leucocyanidin, quercetin-3-O-glucoside and derivatives, and 

dihydroquercetin, were found to have significant differences between the two groups. 

Dodecanoic acid and hexadecanoic and myo-inositol derivatives were also found to be 

discriminative. Some of the identified compounds were already reported as important in 

grapevine innate resistance (Batovska et al., 2009, 2008; Figueiredo et al., 2008) and others as 

possible infection-associated resistance/tolerance biomarkers (Chitarrini et al., 2017; Del Río 

et al., 2004; Kortekamp, 2006; Kortekamp and Zyprian, 2003; Viret et al., 2018). In 2008, 

Figueiredo and co-workers, compared the metabolic profiles of a tolerant and a susceptible 

grapevine cultivar (Figueiredo et al., 2008). The accumulation of some metabolites, such as 

inositol and caffeic acid, was observed and a possible relation to innate resistance towards 

downy mildew was suggested. Also, the analysis of the leaf surface compounds from different 

cultivars, displaying different degrees of resistance and susceptibility to P. viticola, was 

reported by Batovska et al. and co-workers (Batovska et al., 2009). In this study, 10 metabolites 

were highlighted as possible biomarkers for the prediction of downy mildew resistance and 

susceptibility, in which hexadecanoic acid was related to resistance in grapevine.  

Some compounds were also marked as discriminatory between Vitis genotypes and 

linked to higher resistance/susceptibility to pathogens (Becker et al., 2013; Chitarrini et al., 

2017; Nascimento et al., 2019). In a time-course infection assay of grapevine leaves with 
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downy mildew, different metabolites between inoculated and control samples were identified 

(Chitarrini et al., 2017). Within these metabolites we can highlight quercetin-3-o-glucoside, 

myo-inositol and hexadecanoic acid, also detected in our study. Moreover, recently, 

Nascimento and co-workers have identified several metabolic classes, such as flavonoids, 

associated to grapevine defences against downy mildew (Nascimento et al., 2019). Although 

stilbenoids are well known plant-derived defence compounds (Malacarne et al., 2011; Viret 

et al., 2018), no difference in resistant/tolerant and susceptible Vitis genotypes was observed 

at the constitutive level, which is not unexpected as stilbenoids mainly occur as phytoalexins, 

that are produced dynamically in response to biotic or abiotic stress (Niesen et al., 2013; Teh 

et al., 2019; Viret et al., 2018). 

Discriminative compounds between resistant/tolerant and susceptible Vitis 

genotypes, with KEGG ID were mapped into biochemical pathways, revealing an enrichment 

in the flavonoid biosynthesis pathway, already described as involved in pathogen response 

(Mathesius, 2018; Treutter, 2005). These results are in line with previous studies where 

phenolic compounds were proven to play an important role in biotic and abiotic stress 

resistance (Braidot et al., 2008; Mattivi et al., 2006; Park and Cha, 2003). Some of these 

discriminative compounds, that are end products of these pathways, were selected and genes 

coding for enzymes involved in their metabolic reactions were chosen, particularly from 

quercetin derivatives, caffeic acid, catechin/epicatechin metabolism, myo-inositol and 

dodecanoic acid were selected. The expression of these genes was analysed to assess their 

changes in resistant/tolerant and susceptible plants.  

Reference genes for our experimental conditions were defined and candidate gene 

expression was assessed. Three of the selected genes, COMT, LAR2 and IMPL1 allowed the 

discrimination between the susceptible and resistant/tolerant groups. Albeit all these genes 

showed expression differences between susceptible and resistant/tolerant Vitis, LAR2 

(catechin biosynthesis pathway) seems to present a higher discriminative potential. In fact, 

recent functional genomic studies in grapevine LAR enzymes confirmed that LAR2 is 

involved in the conversion of leucocyanidin into (+)-catechin and (-)-epicatechin (Yu et al., 

2019). Moreover, catechin is a naturally occurring flavonol with high antioxidant properties. 

It has been previously identified as being involved in grapevine defence mechanisms 

(Kortekamp, 2006). Also, catechin together with other phenolic compounds, were shown to 

inhibit the activity of enzymes that are essential for fungal propagation and sporulation of 

different fungi isolated from Petri-disease-infected grapevines (Del Río et al., 2004). On the 

other hand, catechin can be degraded by different fungi and used as carbon source for growth  

(Contreras-Dominguez et al., 2008; Noe et al., 2004; Sambandam and Mahadevan, 1993). 

Leaves from all susceptible V. vinifera cultivars had higher levels of catechin/epicatechin and 

an over-expression of LAR2 gene. We hypothesize that, instead of being part of an effective 
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defence mechanism for the plant, pathogens may be using catechin to develop and establish 

a successful infection.   

 

5.6 CONCLUSIONS 

With this work, we uncovered an important part of the metabolic map of the 

pathogen-resistance metabolism in grapevine, identifying key metabolic players. By assessing 

gene expression of key metabolic enzymes, we propose that both catechin/epicatechin and 

LAR2 may be putative biomarkers of susceptibility. Despite the fact that further studies have 

to be conducted with a larger dataset to validate our hypothesis, we consider that our results 

open new insights towards the development of assays for progeny selection in breeding 

programs. The study of constitutive expression and accumulation of compounds in grapevine 

is extremely important as it can uncovered differences associated to resistance/susceptibility 

to different fungal/oomycete pathogens.  

 

5.7 DATA AVAILABILITY 

The metabolomics data that support the findings of this study are available in figshare 

data repository with the identifier DOI: https://doi.org/10.6084/m9.figshare.12357314 (Maia 

et al., 2020). 

 

5.8 SUPPLEMENTARY INFORMATION 

Supplementary Table S.51 are available at DOI: https://doi.org/10.1038/s41598-020-

72781-2. For Supplementary Figure F5.1, Supplementary Figure F5. and Supplementary 

Table S5.2, consult the Appendices A, B and C, respectively.  
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6 Early detection of Plasmopara viticola infected leaves 

through FT-ICR-MS metabolic profiling 

6.1 ABSTRACT 

Grapevine (Vitis (V.) vinifera L.) is one of the most important crops in the world. The 

domesticated V. vinifera cultivars frequently used for wine production are highly susceptible 

to different diseases, including downy mildew, caused by Plasmopara viticola, one of the most 

destructive vineyard diseases. Downy mildew affects all the green parts of the vine, causing 

yield reduction and significant production losses. To cope with this threat, the application of 

chemical products is currently the mainly strategy, with severe environmental and economic 

costs. The development of alternative sustainable disease control strategies is crucial. Early 

detection of infected plants is not easy, since observable disease symptoms normally appear 

seven to ten days after pathogen inoculation. Thus, the development of early detection 

techniques is very important to control downy mildew spread.  

In the present work, we followed an untargeted metabolomics approach using Fourier 

Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) to analyse the 

chemical profile of infected and non-infected grapevine leaves. Chemical formulas were used 

to build Van Krevelen diagrams and Compositional Space plots, which do not require full 

metabolite identification and provide an easy screening method. Based only on the chemical 

profile and representation plots, we were able to discriminate between infected and non-

infected grapevine leaves as soon as 24 hours post-inoculation (hpi). Moreover, our results 

show that lipids, carbohydrates and polyketides are the most altered metabolite groups in P. 

viticola-infected plants when compared to control samples. 

 

6.2 INTRODUCTION 

Nowadays, there is an increasing social and political demand for sustainable 

productions. In viticulture, winegrowers are forced to reduce the use of pesticides. Thus, it is 

increasingly important to develop alternative strategies. However, the domesticated 

grapevine used for wine production, Vitis (V.) vinifera L., is highly susceptible to downy 

mildew, caused by the biotrophic oomycete Plasmopara (P.) viticola (Berk. et Curt.) Berl.et de 

Toni, one of the most destructive pathogens  (Gessler et al., 2011). It  may cause severe yield 

reduction and thus has serious negative economic impact for winegrowers (Figueiredo et al., 

2008; Gessler et al., 2011; Gómez-Zeledón et al., 2013; Toffolatti et al., 2012). 
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Detection of early infections with P. viticola in the vineyards is not easy. Normally, 

infections with this pathogen are only observable when the infection is already established 

and, with adequate climate conditions, it quickly spreads and affects not only all the 

susceptible green parts of the plant (leaves, shoots and bunches) but also propagates to 

surrounding plants (Buonassisi et al., 2017; Gessler et al., 2011). Hence, the development of 

new techniques that allow an early detection of this infection is extremely important.  

Metabolomics is a promising tool for the characterization of plant innate pathogen defence 

responses through the identification of metabolites produced upon plant infection (Arbona 

and Gómez-Cadenas, 2016). Mass spectrometry based on Fourier Transform Ion Cyclotron 

Resonance Mass Spectrometry (FT-ICR-MS) is one of the best strategies to perform high 

throughput untargeted analysis of complex samples (Lim et al., 2016; Marshall et al., 1998), 

since it is able to resolve thousands of different elemental compositions in a single complex 

organic mixture (Wu et al., 2004).  Recently, our group has developed an efficient metabolite 

extraction protocol for grapevine leaves compatible with FT-ICR-MS that allowed the 

identification of more than 800 metabolites (Maia et al., 2016). The high molecular 

complexity of metabolomics samples generates a very complex mass spectrum (Gutiérrez 

Sama et al., 2018). It is often difficult to find effective and easily apprehensible visual formats 

for the representation of these metabolomics data (Kim et al., 2003). To overcome these 

problems, there are two types of graphical representation that rely on the identified chemical 

formulas: (i) Van Krevelen (VK) diagrams by plotting H/C (hydrogen to carbon) and O/C 

(oxygen to carbon) ratios. This representations provide information on the major metabolic 

classes present on the analysed samples (Brockman et al., 2018; Kew et al., 2017; Mann et al., 

2015; Wu et al., 2004); (ii) compositional space plots that use the Double Bond Equivalents 

(DBE) values, being a good indicator of the molecular structure (Gutiérrez Sama et al., 2018). 

In this work, we have used this methodology to analyse the chemical composition of a 

grapevine cultivar upon infection with P. viticola and validate the use of the chemical profile, 

VK diagrams and DBE plots to quickly access and discriminate between infected and non-

infected grapevine leaves as soon as 24 hours post inoculation with the pathogen.   

 

6.3 MATERIALS AND METHODS 

6.3.1 Plasmopara viticola infection 

Sporangia of P. viticola were collected from infected leaves harvested at the Portuguese 

Ampelographic grapevine collection (CAN, international code PRT051), INIAV- Dois Portos. 

After an overnight incubation in the dark, at room temperature and high relative humidity, 

spores were collected and frozen at -25 °C until further use. P. viticola infections were 
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performed on greenhouse grown plant of Vitis vinifera Trincadeira, a susceptible Portuguese 

cultivar. The abaxial leaf surface was sprayed with a water suspension containing 104 

sporangia mL−1, while controls were made by spraying the leaves with distilled sterilized water 

(mock inoculations). Plants were kept for 8 h in a moist chamber and then under greenhouse 

conditions until symptoms could be observed. The third to fifth leaves (from the shoot apex) 

were collected at 24 hours post inoculation (hpi) and at least 3 plants were combined to make 

1 biological replicate. Leaves were frozen in liquid nitrogen and stored at - 80 °C.  

 

6.3.2 Metabolite extraction and FT-ICR-MS analysis 

Metabolite extraction was done as previously described in Maia et al., 2016 with minor 

changes. Leaves were ground in liquid nitrogen and used for metabolite extraction. Each 

biological sample was extracted in a mixture of water: methanol 1:1 (v/v) to obtain a 1 mg/mL 

solution. Samples were vortexed for 3 min, centrifuged at 1000 g for 5 min and diluted to 

1:10000 in methanol. Leucine enkephalin (YGGFL, Sigma Aldrich Portugal) was used as 

internal standard at a final concentration of 0.5 µg/mL and formic acid (Sigma Aldrich, MS 

grade) was added at a final concentration 0.1% (v/v). Extracted metabolites were analysed by 

direct infusion electrospray, in positive mode (ESI+), on an Apex Qe 7-Tesla Fourier 

Transform Ion Cyclotron Resonance Mass Spectrometer (7T-FT-ICR-MS, Brüker Daltonics). 

Spectra were recorded between 100 and 1000 m/z and 100 scans were acquired.  

For all mass spectra, internal calibration with Leucine enkephalin mass ([M+H]+ 

= 556.27657 Da) was used. Raw data for all samples were collected and analysed with the 

online software Metlin (https://metlin.scripps.edu, Guijas et al., 2018) for compound 

identification and formula assignment, considering the adducts H+, Na+ and K+, and a mass 

deviation below 3 ppm (peptides, drugs and toxicants were removed from search). Data from 

the 3 replicates were combined. Lists were then exported for van Krevelen (VK) diagram, 

compositional space analysis and frequency histogram of CHO, CHON, CHOS and CHONS 

elemental compositions. H/C ratio versus the O/C ratio for every compound in the sample 

were plotted and DBE values were calculated according to (Equation 6.1) based on the 

CcHhOoNnSn molecular formula of each compound and plotted as a function of the 

number of carbon atoms. 

(Equation 6.1)                               𝐷𝐵𝐸 = 𝐶 −
𝐻

2
+

𝑁

2
+ 1 
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6.4 RESULTS AND DISCUSSION 

Plasmopara viticola is a obligate biotrophic oomycete pathogen which causes 

devastating effects on grapevine plants (Armijo et al., 2016; Buonassisi et al., 2017; Gessler et 

al., 2011; Kamoun et al., 2015; Madden et al., 2000). Different techniques have been used to 

detect this threat, including molecular biology (Sanagala et al., 2017) and fluorescence 

analysis (Latouche et al., 2015). However, the detection of early infection is complicated since 

visible signs of infection only appear after a few days of inoculation and when detected, P. 

viticola has already propagated to other plants (Buonassisi et al., 2017; Gessler et al., 2011). 

Early detection of mildew infections would contribute for a rapid treatment of those plants 

and prevent the rapid spreading to the surrounding vines. We propose the use of an 

untargeted metabolomics approach for the early identification of infected grapevine plants. 

In this field of complex sample analysis, there are a number of analytical platforms available 

that allows a chemical profile analysis of different samples being FT-ICR-MS the best 

methodology. Moreover, using direct infusion of the sample, chromatographic separations 

are not necessary, saving time in each analysis and increase the metabolome coverage as a 

higher number of ionised metabolites can be detected. In this work, we analysed the chemical 

composition of ‘Trincadeira’ infected leaves with P. viticola at 24 hpi by FT-ICR-MS. We 

identified more than 3500 peaks in the spectra. FT-ICR-MS spectrum for metabolic samples 

are very complex and the analytical tools available mainly rely on databases, static online 

platforms and the combination of different analytical programs, which are time consuming. 

To provide insight into metabolite diversity and elemental ratios, chemical formulas were 

assigned to the detected masses, leading to a total of 650 different formulas. Van Krevelen 

diagrams and compositional space plots (Figure 6.1) were generated. Figure 6.1 - A shows 

the VK diagram of the control and inoculated samples after 24 hours post inoculation, in 

positive ionization mode. This representation allows a qualitative identification of the 

different chemical classes of the compounds present in the different samples. The O/C ratio 

separate the compounds according to oxidation whereas the H/C ratio allows the separation 

according to the degree of saturation (Wu et al., 2004). Moreover, VK diagrams are able to 

provide information about the different chemical classes of compounds that, according to 

their biochemical properties, can be associated to a specific region of the diagram (Brockman 

et al., 2018; Wu et al., 2004). Through the VK diagrams plotted for the FT-ICR-MS data of 

grapevine leaf discs infected with P. viticola (Figure 6.1 - A), significant differences between 

the control and inoculated samples are shown. The empirical map created for the main 

metabolic classes detected identifies the areas with the highest point density: lipids, 

polyketides and carbohydrates. Furthermore, it is important to highlight the differences in 

the side regions (0< H/C <1; 1.5< O/C <2.5). Comparing both samples, the inoculated sample 

has a decreased number of compounds in the lipid region. This result could be due to lipid 
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peroxidation that leads to a malonaldehyde (MDA) accumulation in response to this biotic 

stress. Indeed, our recent studies in ‘Trincadeira’, showed a significant MDA accumulation at 

24 hpi with P. viticola (Nascimento et al., submitted). This accumulation indicates a 

disruption of the cellular membrane causing a loss of cellular integrity leading to further 

reactive oxygen species (ROS) generation.  

Regarding compositional space plots, these can be used as a supplement of VK diagrams 

since DBE values vs the number of carbons for specific classes of compounds is a good 

indicator of the molecular structure. Figure 6.1 - B, shows the Double Bond Equivalents as a 

function of the number of Carbons, in control and inoculated samples 24 hours post 

inoculation. After infection, there is a higher amount of compound with superior DBE values 

and with more carbon atoms in their structure. Infection of grapevine with P. viticola results 

in a decrease in the number of compounds in the CHO series, mainly corresponding to 

carbohydrates. On the other hand, the diversity in CHON series seems to increase (Figure 

6.2). 

 

 
Figure 6.1 – (A) Van Krevelen diagram of ‘Trincadeira’ leaves in control and 24 hpi with P. viticola. X-

axis represents the O/C ration, and Y-axis the H/C ratio of all the chemical formulas obtained from all 

spectrum. Plot displays the areas of highest point density for the 3 most important major classes of 

metabolites: lipids, polyketides, carbohydrates. (B) Compositional space plot of ‘Trincadeira’ leaves in 

control and 24 hpi with P. viticola. X-axis represents the number of carbon atoms and Y-axis the double 

bond equivalent (DBE) values for the molecules identified.  
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Figure 6.2 - Absolute frequency of compounds in elemental composition series in control and infected 

‘Trincadeira’ grapevine leaves. 

 

6.5 CONCLUSIONS 

VK diagrams and compositional space plots are extremely valuable tools to visualize 

and compare complex data from extreme resolution mass spectrometry analysis, such as those 

generated by FT-ICR-MS. Also, compounds can be grouped according to their chemical class 

and specific regions of the VK diagrams can be associated to them. In or work, based on the 

chemical profile of control and infected samples, we were able to discriminate between 

infected and non-infected samples, as early as 24 hours after infection. 
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CHAPTER VII 
 

MALDI-FT-ICR-MS imaging metabolic snapshot of 

grapevine-Plasmopara viticola interaction 
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7 Grapevine leaf MALDI-FT-ICR-MS imaging reveals 

sucrose localisation patterns associated to P. viticola 

development 

7.1 ABSTRACT 

Grapevine (Vitis vinifera L.) is susceptible to the oomycete Plasmopara viticola, the 

causal agent of downy mildew disease. Upon infection, grapevine activates a series of 

signalling and metabolic pathways, involving secondary metabolites that play a key role in 

the defence response of the plant. Despite well-established pathways and metabolites involved 

in this interaction, valuable information on the first recognition-associated molecules on the 

leaf surface and, particularly, their localisation is still missing. To understand and localise the 

signalling molecules associated with the susceptibility to this pathogen, we applied Fourier 

transform-ion cyclotron resonance (FT-ICR) mass spectrometry imaging (MSI) to grapevine 

leaf discs infected with P. viticola. The plant material preparation was optimised, and different 

matrices and solvents were tested for FT-ICR-MSI analysis. Our data shows that the trichomes 

present in the abaxial side of the leaf topologically hampers matrix deposition and the ion 

signal. Preliminary results show that sucrose was more accumulated in leaf discs infected with 

P. viticola in comparison with control leaves. This metabolite presented a non-homogeneous 

distribution in the leaf disc infected with P. viticola. Sucrose was visually more accumulated 

on the veins of the infected leaves, leading to the hypothesis that sucrose metabolism is being 

manipulated by the development structures of P. viticola. Up to our knowledge this is the first 

time that sucrose localisation was correlated to P. viticola infection sites. 

 

7.2 INTRODUCTION 

The development of matrix-assisted laser desorption-ionisation (MALDI) mass 

spectrometry imaging (MSI) was first reported in 1994 and has been applied to visualise 

different biomolecules, since 1997 (Caprioli et al., 1997; Spengler et al., 1994). MALDI-MSI 

has the unique ability to analyse the sample surface directly by combining powerful raster-

scan of the sample surface with lasers shots with high mass resolution mass spectrometry 

(Bjarnholt et al., 2014; Boughton et al., 2016; Grassl et al., 2011). The prime advantage of 

MALDI-MSI, over other imaging techniques, is not only the ability to identify specific 

molecules, but also to reveal the distribution of a wide range of biological compounds across 

the sample section in a label-free and non-targeted mode. Considering that the complexity of 

biochemical processes occurring in cells, tissues, organs and whole systems is not only 
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determined by their timing, but also by the localisation of certain molecular events (Kaspar 

et al., 2011), MALDI-MSI has the advantage to provide high spatial resolution (Bjarnholt et 

al., 2014; Boughton et al., 2016; Grassl et al., 2011; Kaspar et al., 2011; Schulz et al., 2019). 

Moreover, MALDI-MSI is a very sensitive technique with the ability to analyse complex 

samples (Laugesen and Roepstorff, 2003). The analysis of compounds in MALDI-MSI ranges 

from large biomolecules, such as proteins and peptides, to small molecule compounds such 

as lipids, sugars, amino acids, phosphorylated compounds and pharmacological and chemical 

compounds (Alcantara et al., 2020; Carter et al., 2011; Francese et al., 2009; Goodwin et al., 

2010; Richard J A Goodwin et al., 2011; Richard J. A. Goodwin et al., 2011; Gorzolka et al., 

2014; Grassl et al., 2011; Kaspar et al., 2011; Puolitaival et al., 2008; Sarabia et al., 2018; Solon 

et al., 2010; Takahashi et al., 2015). MALDI-MSI is also a suitable analytical technique for 

both polar and nonpolar biomolecules (Rubakhin and Sweedler, 2010a).  

To date, the literature of MALDI-MSI in plants is limited when compared to animal 

studies (Bjarnholt et al., 2014; Boughton et al., 2016). MALDI-MSI has the potential to bring 

new insights into the molecular analysis of plants by providing high spatial resolution 

information about metabolic processes and potentially determine changes during plant 

development or induced by environmental variation. It will provide a means of identifying 

the localisation of metabolites associated with tissue types, development, disease, genetic 

variations or following genetic manipulation (Bjarnholt et al., 2014; Boughton et al., 2016). 

Some reports have used this technique to evaluate the surface distribution of sugars, 

metabolites and lipids in different plant tissues and organs (Bunch et al., 2004; Burrell et al., 

2007; Goto-Inoue et al., 2010; Li et al., 2008; Ng et al., 2007; R. Shroff et al., 2008). For 

instance, the distribution of epicuticular lipids, waxes and several secondary metabolites, such 

as flavonoids or alkanes, were measured at the surface of Arabidopsis thaliana flowers, leaves 

and roots (Cha et al., 2009, 2008; Grassl et al., 2011; Jun et al., 2010; Vrkoslav et al., 2010). 

Moreover, different studies have also used MSI to better understand plant biotic and abiotic 

stresses (Gorzolka et al., 2014; Hamm et al., 2010; R. Shroff et al., 2008; Shroff et al., 2015; 

Soares et al., 2015). As an example, this technique has been used to highlight the uneven 

distribution of specific biological compounds in wheat grains, sampled at various 

developmental stages and under temperature stress (Takáts et al., 2004). Moreover, it allowed 

to identify metabolites and other low molecular weight ions in tobacco (Nicotiana tabacum) 

leaves infected with Phytophtora nicotianae (Ibáñez et al., 2010). Also, with the increasing 

demands for a more sustainable agriculture practice, this technique has been used to identify 

specific agrochemical compounds that are present in the plant or in specific organs of the 

plant.  

In every mass spectrometry imaging-based analysis, the measurement of an analyte 

intensity is influenced by several factors including analyte extraction efficiency, ionisation 
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efficiency and consistency of co-crystallisation with the MALDI matrix (Schulz et al., 2019; 

Schwartz et al., 2003). Sample handling and preparation are crucial to obtain high quality 

MALDI mass spectra in a reproducible manner (Grassl et al., 2011; Laugesen and Roepstorff, 

2003; Schwartz et al., 2003). However, the selection of the MALDI matrix and the 

optimisation of the preparation protocol are still empirical procedures. The composition of 

the solvent in which the MALDI matrix is applied on the sample influences the desorption-

ionisation of molecules from the tissues. Also, the selection of the optimal matrix, including 

its crystallisation parameters, for the experiment depends on the type of biological molecules 

to be analysed. A homogeneous layer of matrix solution, followed by a fast drying of the 

matrix film should be preferred to avoid the formation of large matrix crystals, that are 

responsible for critical signal fluctuation in MALDI-MSI profile (known as the matrix effects) 

(Francese et al., 2009; Grassl et al., 2011; Kaspar et al., 2011; Rubakhin and Sweedler, 2010a). 

By its ultra-high mass resolving power, Fourier Transform Ion Cyclotron Resonance mass 

spectrometry (FT-ICR-MS) imaging analysis enables small molecule separation from the 

complex background of tissue constituents and matrix ions (Bjarnholt et al., 2014; Boughton 

et al., 2016), which is a very important asset when analysing complex samples such as plant 

tissues. 

Vitis vinifera L. (grapevine) is one of the most important and cultivated fruit plants in 

the world with a highly economic impact in several countries. Unfortunately, the 

domesticated V. vinifera cultivars frequently used for wine production are highly susceptible 

to fungal diseases, being the downy mildew, caused by the biotrophic oomycete Plasmopara 

viticola (Berk. et Curt.) Berl.et de Toni, one of the most destructive vineyard diseases. 

Plasmopara viticola is an obligatory biotrophic pathogen. It feeds on the living tissue 

(grapevine) and develops specific structures to invade the cell and to obtain metabolism 

products, without killing the plant (Gessler et al., 2011). So far, several potential metabolic 

biomarkers were identified by comparing the constitutive accumulation of specific 

metabolites not only in the leaf tissue of different Vitis genotypes (Maia et al., 2020), but also 

in grapevine-pathogen interaction (Adrian et al., 2017; Batovska et al., 2009, 2008; Becker et 

al., 2013; Nascimento et al., 2019). Their accumulation reflects however the all-leaf tissue 

metabolome composition/modulation and not the molecules that contribute for the first 

contact with pathogens at leaf surface. Some studies in grapevine leaves with imaging mass 

spectrometry are starting to appear to identify the main biological compounds in the leaf 

surface during the interaction with Plasmopara viticola (Becker et al., 2017, 2014; Hamm et 

al., 2010). However, these studies are only focused on the modulation of specific compounds 

after pathogen infection, e.g., resveratrol pterostilbene and viniferins. 

The present work aimed at analysing V. vinifera cv. Trincadeira leaf surface with and 

without P. viticola infection, using MALDI FT-ICR-MS imaging approach. Sample 
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preparation, including the choice of the MALDI matrix and the matrix deposition solvent, 

were optimised to uncover the main biological compounds present both constitutively and 

after pathogen infection. 

 

7.3 MATERIALS AND METHODS 

7.3.1 P. viticola propagation 

Plasmopara viticola spores were collected from infected plants from the vineyard at the 

Portuguese Ampelographic Grapevine Collection (CAN, international code PRT051, 

established in 1988) at INIAV-Estação Vitivinícola Nacional (Dois Portos), using a vacuum 

system and stored at -20 ⁰C. Inocula was propagated in susceptible V. vinifera leaves by 

spreading a sporangia solution on the abaxial surface of the leaf, with an undefined 

concentration of P. viticola sporangia. After infection, leaves were kept in the dark for the first 

8 to 12 hours and then at 25 ⁰C with natural light conditions, until sporulation appeared in 

all leaf surface. Spores were collected with a vacuum system and stored at -20 ⁰C until further 

use. 

 

7.3.2 Plant material harvesting and P. viticola infection assay 

The third to fifth fully expanded leaves, from shoot to apex, of Vitis vinifera cv. 

Trincadeira (VIVC variety number: 15685), susceptible to P. viticola, were collected at the 

Portuguese Ampelographic Grapevine Collection. CAN is located at Quinta da Almoinha, 60 

km north of Lisbon (9º 11′ 19″ W; 39º 02′ 31″ N; 75 m above sea level). It occupies nearly 2 

ha of area with homogeneous modern alluvial soils (lowlands) as well as drained soil. All 

accessions are grafted on a unique rootstock variety (Selection Oppenheim 4–SO4) and each 

accession come from one unique plant collected in the field. The climate of this region is 

temperate with dry and mild summer.  

For leaf infections, sporangia viability was confirmed by microscopic observations as 

described in Kortekamp and co-workers (Kortekamp et al., 2008), prior to inoculation. A 

suspension containing 50 000 spores/mL was used to infect the abaxial leaf surface. After 

inoculation, plants were kept for 8 to 12 hours in the dark and kept under natural light 

conditions at 25 ⁰C for 96 hours. Leaf discs were then cut and lyophilised at -50 ⁰C between 

2 glass plates, to obtain a planar surface once dried. Mock inoculations were performed by 

rinsing Vitis vinifera cv Trincadeira leaves with water, leaf discs were cut and lyophilised at -
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50 ⁰C. Infection control was accessed 8 days after inoculation with the appearance of typical 

disease symptoms (see Appendix D – Supplementary Figure F7.1). 

 

7.3.3 Matrix coating optimization 

MALDI matrices α-cyano-4-hydroxycinnamic acid (HCCA), 2,5-dihydroxybenzoic 

acid (DHB) and 9‐aminoacridine (9-AA) were purchased from Sigma-Aldrich (Overijse, 

Belgium). Trifluoracetic acid (TFA) was from Sigma-Aldrich, and LC-MS grade acetonitrile 

(ACN) and methanol (MeOH), were purchase from Biosolve (Valkenswaard, Netherlands). 

Indium tin oxide (ITO)-coated glass slides were purchased from Bruker Daltonics (Bremen, 

Germany). 

Lyophilised Vitis vinifera cv Trincadeira leaf discs were carefully removed from the 

plates and transferred to the target ITO-glass slide, previously covered with a double-sided 

adhesive copper tape (StructureProbe INC, West Chester, PA, USA), with the abaxial surface 

of the leaf facing up. For the analysis of trichome-free leaf discs, after mounting, trichomes 

were carefully removed using tweezers under a magnifying lens. ITO-glass slides were stored 

in a vacuum chamber until matrix deposition. Leaf discs were sprayed with the different 

matrices in different concentrations and solvents (Table 7.1). HCCA matrices of 5 mg/mL 

were prepared using 70:30 (v:v) ACN:H2O and 70:30 (v:v) MeOH:H2O with 0.1% (v/v) TFA. 

In total, 20 layers of this matrix solution were sprayed on the ITO slide using the SunCollect 

instrument (SunChrom, Friedrichsdorf, Germany). The first layer was sprayed at a flow rate 

of 10 μL/min. Flow rate was increased by 10 μL/min after each layer until reaching 60 μL/min. 

DHB matrix was prepared in 50:50 (v:v) ACN:H2O with 0.1% (v/v) TFA to reach a final 

concentration of 20 mg/mL according to Seaman and co-workers (Seaman et al., 2014) and 

fifty matrix layers were sprayed on the ITO slide, as previously described. Solution of 9-AA 

was prepared at 15 mg/mL in methanol with 0.1% (v/v) TFA according to Rohit Shroff and 

co-workers (Rohit Shroff et al., 2008). Leaves were spray-coated by using a commercial 

sprayer. The target plate was kept at around 45 ° angle and the sprayer held at a distance of 

20 cm from the plate. This insured that the cone of the spray reaching the target covered the 

entire leaf. Each spray was followed by 10 seconds of warm air drying. This process was 

typically carried out 15 times to give maximal signal strength.  
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Table 7.1 - Different matrices, concentrations and layers used in Vitis vinifera cv Trincadeira leaf discs 

 Matrix Concentration Solvent (% v/v) 
Matrix application 

method 
Number of layers 

(1) HCCA 5 mg/mL 

70% ACN 

30% H20 

0.1% TFA 

SunChrom 20 

(2) HCCA 5 mg/mL 

70% MeOH 

30% H20 

0.1% TFA 

SunChrom 20 

(3) DHB 20 mg/mL 

50% ACN 

50% H20 

0.1% TFA 

SunChrom 50 

(4) 9-AA 15 mg/mL 
100% MeOH 

0.1% TFA 
Commercial spray 15 

 

7.3.4 MALDI FT-ICR-MS imaging analysis 

Microscope images (obtained at the magnification 10 x with an Olympus BX40 

microscope) of leaf discs onto ITO-glass slides were acquired to better visualise and select 

areas of interest in the discs. Also, since the leaf surface is not entirely flat, only the flat areas 

of the microscopic images were selected for MSI analysis. Two to four small areas of each leaf 

disc were selected to be analysed (see Appendix E – Supplementary Figure F7.2). Analysis 

was performed using a SolariX XR 9.4T FT-ICR-MS (Bruker Daltonics, Bremen, Germany), 

fitted with the dual ESI/MALDI ion sources and SmartBeam laser. For each mass spectrum, 

the following laser parameters were used: 200 laser shots at a repetition rate of 1000 Hz, 60% 

of power. The raster step size was set at 200 µm. Mass spectrometry images were acquired in 

positive ionisation mode, in the mass range of 200 to 1000 m/z. Red phosphorus solution in 

pure acetone spotted directly onto the ITO Glass slide was used to calibrate the mass 

spectrometer before each analysis. 

 

7.3.5 Data analysis 

Data were analysed using the imaging mass spectrometry software SCiLSTM Lab 

2016b (Bruker Daltonics, Bremen, Germany) for unsupervised spatial identification of 

discriminative features between control, 96 hpi, and 96 hpi with visible sporulation of P. 

viticola spores. Data were normalised by the total ion count. MALDI FT-ICR-MS chemical 

images were generated from a colour scale, which represents the normalised intensity of 
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specific ions. Each pixel of the image is associated with the original mass spectrum that is 

acquired in a particular position. A spatial localisation of the analytes is provided as a function 

of the m/z values. For metabolite identification, selected m/z values were submitted to 

MassTRIX 3 (Suhre and Schmitt-Kopplin, 2008) server (http://masstrix.org, accessed in April 

2021) considering the following parameters: positive scan mode; the adducts [M+H]+, [M+K]+ 

and [M+Na]+ were considered; a maximum m/z deviation of 2 ppm was considered; the 

organism Vitis vinifera was selected; search was performed in the databases “KEGG (Kyoto 

Encyclopaedia of Genes and Genomes) /HMDB (Human Metabolome DataBase)/LipidMaps 

without isotopes”. 

 

7.4 RESULTS  

7.4.1 Preparation of grapevine leaves for analysis: the influence of trichomes 

Grapevine leaves have trichomes in the abaxial side (Konlechner and Sauer, 2016), 

which may hamper the analysis and influence the MSI results (Bjarnholt et al., 2014). Hence, 

we started by analysing the grapevine leaf discs with and without trichomes to understand if 

these structures influence the coating of the matrix and to select the leaf discs leading to the 

best matrix coating. For this analysis, α-cyano-4-hydroxycinnamic acid (HCCA) was the 

chosen as the matrix as it forms small crystals and hence produces a more homogeneous 

matrix coating. HCCA was prepared according to (1) in Table 7.1 (Materials and Methods 

section).  

V. vinifera cv. Trincadeira leaf discs’ areas analysed with and without trichomes are 

presented in Figure 7.1. In positive-ion mass spectrum, the global intensity of the peaks 

detected was higher in the leaf disc without trichomes and with a more homogenous intensity 

detection. These results demonstrate that the matrix was better distributed in the leaf disc 

without trichomes and consequently a better signal was detected. For further analyses, 

trichomes were removed from all leaf discs using a tweezer under a magnifying lens. 

Moreover, to avoid leaf topological interference with the laser, only flat areas of the 

microscopic images (i.e., corresponding to flat regions on the microscopic image) were 

selected for MSI analysis. 
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Figure 7.1 – V. vinifera cv. Trincadeira leaf discs analysed with and without trichomes; (A) Microscopy 

images of the leaf disc sections analysed; (B) MALDI-FT-ICR-MS images reconstructed from all the 

peaks detected in the leaf discs. Data was normalised by the total ion count. 

 

7.4.2 Different matrix analysis and metabolite detection 

After plant material preparation optimisation, and to detect molecules related to the 

grapevine-P. viticola interaction, we tested different matrices already described for MALDI 

FT-ICR MS imaging analysis of plant tissues (Table 7.1).  

Matrices α-cyano-4-hydroxycinnamic acid (HCCA), 2,5-dihydroxybenzoic acid 

(DHB) and 9-aminoacridine (9-AA) were prepared according to Table 7.1 and applied by 

spraying on the different V. vinifera cv. Trincadeira leaf discs: control (mock inoculated), 96 

hpi (hours post-inoculation) with P. viticola without visible sporulation and 96 hpi with P. 

viticola visible sporulation. HCCA was prepared into two different solvents: MeOH and ACN. 

HCCA is the most commonly used matrix for small-molecules and different MALDI imaging 

studies in plant tissues were reported using that matrix in both solvents (Becker et al., 2014; 

Costa et al., 2013; Seaman et al., 2014; Soares et al., 2015). Microscope images (10x) of leaf 

discs were taken for a better selection of the leaf discs areas to be analysed (see Appendix E – 

Supplementary Figure F7.2). Selected areas were analysed with an FT-ICR-MS and ion 
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images were reconstructed from the absolute intensities of the medium mass spectra, showing 

the exact location of ions on the extension of the leaf area analysed.  

The mass spectra of grapevine leaf discs areas obtained from HCCA matrix with 

MeOH and ACN as solvents were very similar (see Appendix F – Supplementary Figure 

F7.3). These results demonstrate that both solvents can be used for MALDI analysis of 

grapevine leaf discs. The main differences appeared to be with the matrices DHB and 9-AA. 

The intensity of the peaks, within the 800 to 900 m/z range, was lower (see Appendix F – 

Supplementary Figure F7.3). 

These results also demonstrate that removing the physical barrier from the grapevine 

leaves, trichomes, allows for a better MSI analysis independently of the matrix and solvents 

used.  

Preliminary reconstructed MS images by MS data of all matrices, demonstrated that 

the ion intensity at m/z 365.105 and 381.079 is higher in the leaf discs infected by P. viticola 

than in the control discs (Figure 7.2). The highest signals were observed with HCCA in 

MeOH and, to a lower extent with HCCA in ACN. For DHB and 9-AA, the signal was found 

much lower and less detectable than with the other matrices.  

In a recent study based on the accurate mass measurements by Taylor and co-workers 

(Taylor et al., 2021), these masses were also detected and correspond to different adducts of 

disaccharides, the ions at m/z 365.105 and 381.079 were putatively identified as the [M+Na]+ 

and [M+K]+ adducts of sucrose using the MassTRIX database. 

In a more detailed analysis, it was visible that the spatial distribution of putatively 

identified sucrose in the infected grapevine leaf discs is non-homogeneous, as observed in 

Figure 7.2. To evaluate this distribution, the accumulation of these ions was further 

investigated in the network of small veins and more precisely in the dense parenchyma tissue 

(Figure 7.3). Images of the 96 hpi without visible P. viticola sporulation and 96 hpi with 

visible P. viticola sporulation leaf discs were reconstructed from the identified sucrose m/z 

365.105 ([M+Na]+) as the distribution for m/z 381.079 ([M+K]+) was similar but less intense. 

Our results suggest that sucrose, m/z 365.105 ([M+Na]+) and m/z 381.079 ([M+K]+), are mainly 

located around the veins, which is an indicator of the correlation of sucrose at P. viticola 

infection sites (Figure 7.3). 
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Figure 7.2 – Reconstructed ion images of putatively identified sucrose, (A) (m/z 365.105, [M+Na]+) 

and (B) (m/z 381.079, [M+K]+) adducts, detected with MALDI–FT-ICR-MS imaging using HCCA 

matrix with MeOH and ACN, DHB matrix and 9-AA matrix. Leaf disc areas analysed from control 

(mock inoculated), 96 hpi without visible P. viticola sporulation and 96 hpi with visible P. viticola 

sporulation are presented. The colour scale of the leaf disc areas indicates the absolute intensity of each 

pixel (arbitrary units). 
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Figure 7.3 - Areas for MALDI-FT-ICR-MS analysis (left) and reconstructed ion images of putatively 

identified sucrose (m/z 365.105, [M+Na]+) (right) in 96 hpi without visible P. viticola sporulation and 

96 hpi with visible P. viticola sporulation. Leaf disc areas detected via MALDI–FT-ICR-MS imaging 

using HCCA matrix with MeOH and ACN, DHB matrix and 9-AA matrix. The colour scale indicates 

the absolute intensity of each pixel (arbitrary units). White arrows indicate the visible distribution of 

putatively identified sucrose along the leaf veins. 

 

 

7.5 DISCUSSION 

Mass spectrometry imaging has been applied to study several plant tissues. However, 

sample preparation of plant tissues is not easy and continuously seems to be the bottleneck 

of this technique. This topic has been the major area of interest with the goal to improve 

sensitivity, specificity and obtain good quality images in a reproducible manner (Schulz et 

al., 2019). 

Sample preparation is a particular challenge, because the visualisation of certain 

classes of compound relies on specific conditions for optimal ionisation. Careful sample 

treatment is essential for signal quality and the avoidance of lateral displacement of the 

analytes (Rubakhin and Sweedler, 2010b). Artefacts can arise at any stage between sample 

collection and MSI analysis (Rubakhin and Sweedler, 2010b). Although different 

methodologies have been published through the years to limit these issues, the optimisation 

of sample preparation is still sample dependent, because of inherent differences in the 

composition of plant tissues (Grassl et al., 2011; Kaspar et al., 2011). 

In plants, trichomes are essential epidermal outgrowths covering most aerial plant 

tissues and can be found in a very large number of plant species (Huchelmann et al., 2017), 

including grapevine (Konlechner and Sauer, 2016). Albeit one of the main functions of these 

structures is to protect the plant from, e.g., herbivorous, insects and fungi, the presence of 

trichomes in the leaf inhibits the deposition of a homogeneous coating of the matrix. This 

leads to an inaccurate ionisation of the ions present on the leaf and consequently a misleading 

detection/identification of the compounds (Bjarnholt et al., 2014). Having this in mind, and 

since grapevine leaves possess trichomes which could interfere with the analysis, our first 

approach was to analyse leaf discs with and without trichomes. Our results showed that leaf 

discs with no trichomes provide a more accurate analysis of the site-specific compounds. 

Another important point in sample preparation for MALDI imaging is the matrix. 

Despite numerous matrices are available to analyse a wide range of biological compounds, it 

is important to consider the compounds of interest to be analysed in the sample. Selection of 
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an appropriate matrix is a critical point to obtain a high quality MALDI imaging mass 

spectrum. For metabolomics analysis, the choice of matrices for metabolite analysis is even 

more complex, since matrix ions often crowd the low-mass range, limiting confident 

detection of low-molecular weight analyte ions. For the detection of low-weight molecules, 

α-cyano-4-hydroxycinnamic acid (HCCA), 2,5-dihydroxybenzoic acid (DHB) and 9‐

aminoacridine (9-AA) have been found to be the better suited (Calvano et al., 2018; Laugesen 

and Roepstorff, 2003; Leopold et al., 2018). Besides matrix itself, matrix application, solvent 

composition (typically methanol or acetonitrile) and mode of application, e.g., sprayer device, 

movement speed, solvent flow rate, distance between sample and target and/or nozzle 

temperature, influence the analysis of target molecules from the sample. These parameters 

are directly related to the size of the matrix crystals formed (Laugesen and Roepstorff, 2003; 

Leopold et al., 2018; Schulz et al., 2019). The crystallisation between the matrix and the 

analyte leads to co-crystals which should be as homogeneous as possible, to assure 

reproducibility and highest sensitivity. Hence, spray is currently the most widespread matrix 

application technique. Taking this information into account, in this work, HCCA, DHB and 

9-AA were tested with MeOH and ACN as solvents using different spraying systems. Our 

results demonstrate that both solvents can be used for grapevine leaf discs. Also, all matrices 

appear to be suitable for grapevine leaf disc analysis, within the range of analysis. However, 

it is important to consider that the intensity of the peaks may be altered according to the 

matrix used. The m/z 365.105 ([M+Na]+) and m/z 381.079 ([M+K]+), putatively assigned to 

sucrose, were commonly identified in all of the matrices and solvents tested presenting high 

levels of abundance in grapevine leaf discs infected with P. viticola when comparing with 

mock inoculated leaf discs.  

Plasmopara viticola infection occurs when the zoospores germinate and penetrate the 

stomatal cavity on the abaxial side of the leaf, forming a substomatal vesicle. This vesicle gives 

rise to the primary hyphae and mycelium, which grows through intercellular spaces, enclosed 

by the veins of the leaf (Fröbel and Zyprian, 2019). The haustorium penetrated the 

parenchyma cell walls, allowing the contact between the pathogen (P. viticola) and the host 

(grapevine leaves) (Gessler et al., 2011; Yin et al., 2017). Also, this structure may function as a 

site of molecular exchange of effectors and nutrients between the grapevine and P. viticola 

and block grapevine defence signalling pathways (Yin et al., 2017). In fact, our results 

demonstrate a correlation of sucrose and the development of P. viticola infection structures 

due to its higher intensity around the veins. There are different hypothesis regarding the roles 

of sugar transporters in pathogen defence (Bezrutczyk et al., 2018). 

Up to our knowledge, our results are the first evidence of sucrose translocation to 

infection site areas, which lead us to hypothesise that the pathogen, through mycelium 

development, has gained access to this plant resource, and it is using it to complete its lifecycle 
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(Aked and Hall, 1993; Bezrutczyk et al., 2018; Gebauer et al., 2017; Sutton et al., 1999). This 

accumulation is in accordance with our previously results on leaf metabolite profiling by 

NMR, where we reported higher accumulation of sucrose in V. vinifera cv. Trincadeira in the 

first 48 hours after inoculation with P. viticola (Ali et al., 2012). Also, in the all-leaf tissue 

analysis of Vitis vinifera L. ‘Marselan’, an increase of soluble sugars after 7 dpi (days post-

inoculation) was reported (Gamm et al., 2011). The specific location of sucrose needs to be 

better understood according to the involved biosynthesis pathways and their isomeric 

composition. Also, sucrose localisation in different Vitis genotypes, with different resistance 

degrees towards pathogens, should be further investigated to understand its role in grapevine 

defence against pathogens. 

The results presented in this article clearly demonstrate the potential of MALDI-FT-

ICR-MSI to gain more knowledge on the grapevine-P. viticola interaction particularly through 

the localisation and visual tracking of specific compounds in leaf tissue. Furthermore, our 

MSI results demonstrate that the analysis methodology works for complex samples, such as 

grapevine leaves, showing a great potential for application to other plant leaves. 

 

7.6 CONCLUSIONS 

Grapevine leaves are quite challenging in obtaining high quality MALDI mass spectra 

images, as leaves are not entirely flat and possess trichomes, influencing the detection of ions. 

In this work, we have shown that higher ion signal is achieved in leaf discs without trichomes. 

Three different matrices were selected (HCCA, DHB and 9-AA), whether dissolved in MeOH 

or ACN, for leaf discs coating and analysis. HCCA showed the highest signal intensity, 

independently of the solvent. Reconstructed images by MS allow us to identify sucrose in all 

the conditions tested. Sucrose ions were more abundant in the infected leaf discs, comparing 

to control discs. These results are in accordance with previous studies, which describe a 

variation of accumulation of sucrose in infected P. viticola plants. Up to our knowledge, our 

results are the first visual evidence of the localisation of sucrose translocation in grapevine 

leaves linked to the development of P. viticola infection structures.  

 

7.7 SUPPLEMENTARY INFORMATION 

For Supplementary Figure F7.1, Supplementary Figure F7.2 and Supplementary 

Figure F7.3, consult the Appendices D, E and F, respectively.  
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CONCLUDING REMARKS 

In the framework of this PhD dissertation, FT-ICR-MS was used to deepen the 

knowledge on the metabolome of grapevine, from nutritional value to pathogen resistance. 

The analysis of Vitis vinifera cv. Pinot noir leaves, with the purpose of investigating its 

nutritional and medicinal value, revealed that grapevine leaves present a high content in fatty 

acids and contain several antioxidant compounds. Also, ‘Pinot noir’ leaves presented a high 

antioxidant capacity, putting grapevine leaves at the top of the list of foods with the highest 

antioxidative activity.  

The metabolic composition of grapevine leaves was unravelled by an untargeted 

metabolomics approach and the constitutive associated metabolic traits that differentiate 

tolerant and susceptible grapevine genotypes were elucidated. First, the metabolomes of Vitis 

vinifera cv. Trincadeira (susceptible to pathogens) and Vitis vinifera cv. Regent (tolerant to 

pathogens) were investigated and the obtained results revealed a clear discrimination of both 

cultivars at the constitutive level. The most discriminatory compounds were identified. 

Second, through the application of visualization approaches (compositional space plots and 

van Krevelen diagrams), the metabolome of two different Vitis genotypes: V. rotundifolia 

(tolerant to pathogens) and V. vinifera ‘Cabernet Sauvignon’ (susceptible to pathogens); was 

compared and revealed that Vitis rotundifolia metabolome presented higher complexity than 

the metabolome from V. vinifera ‘Cabernet Sauvignon’.  

Since the analysis of untargeted metabolomic analysis allowed the discrimination of 

Vitis genotypes not only from different species but also from the same Vitis species. This 

approach was used to compare, at the constitutive level, the metabolome of 11 Vitis genotypes, 

with different tolerance degrees to pathogens to uncovered differences associated to 

resistance/susceptibility to different fungal/oomycete pathogens. Key differentiating 

metabolic players were identified. Combining a metabolomics approach with gene 

expression analysis, catechin/epicatechin and LAR2 were pointed out as putative biomarkers 

associated to susceptibility towards pathogens.  

The main metabolic alterations after P. viticola inoculation through untargeted FT-

ICR-MS analysis and MALDI-FT-ICR-MS imaging was uncovered. The chemical profile of 

control and Vitis vinifera cv. Trincadeira leaves with P. viticola was analysed. Visualization 

approaches allowed the discrimination of infected and non-infected samples, as early as 24 

hours after infection. The analysis of grapevine leaves using untargeted MALDI-FT-ICR-MS 

imaging revealed that putative sucrose ions were more abundant in the infected leaf discs and 

visually more abundant in P. viticola infection sites. 
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In sum, the results obtained show that FT-ICR-MS-based metabolomics is essential in 

grapevine research. This OMICs approach allowed grapevine discrimination and deepened 

our knowledge on the intricate metabolic networks of grapevine. Several compounds were 

highlighted as involved in grapevine resistance/susceptibility mechanisms. These results open 

new insights towards the development of efficient biomarker assays, to help future breeding 

programs in progeny selection, as well as plant screening on the field.   
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FUTURE PERSPECTIVES 

Grapevine (Vitis vinifera L.) has always been an important part of the development of 

human culture and nowadays is one of the most important cultivated fruit plants in the 

world, not only due to its food products, but also due to its major economical importance in 

the wine industry. However, its value goes beyond wine and grapes for consumption, since it 

contains innumerous secondary metabolites highly important for human health.    

The research results obtained during this PhD are transversal to many knowledge 

areas, from fundamental science to a more applied science and may be used to propose new 

approaches for a more sustainable viticulture.  

Considering a circular economy approach, viticulture is one of the main areas where 

production waste is undervalued. In Maia et al., (2019), we have underlined the nutritional 

value of grapevine leaves. Since, some wine producers, are expanding their business to 

enoturism and opening in the vineyards some specialized restaurants in enogastronomy, the 

investigation on the nutritional value of grapevine leaves will contribute to increase their use 

in the Mediterranean diet. Different cultivars should be analysed and compared and 

carbohydrates, fibres and pigments should be quantified in leaves to improve the knowledge 

on this by-product. This would trigger the creation of consumable products made with leaves 

and enhance their market value.  

In Maia et al., (2020), we have highlighted a new approach for the identification of 

constitutive metabolic biomarkers for pathogen tolerance/susceptibility traits. The 

identification of the accumulation of different compounds, particularly catechin and 

derivatives, as well as LAR2 gene expression, in susceptible Vitis, opened new doors towards 

biomarkers discovery. To further continue this study, a higher number of Vitis genotypes 

(>50) should be analysed to validate the identified compounds and the quantification of 

catechin and other compounds should be performed in all genotypes. In the future it might 

also be interesting to analyse these compounds in P. viticola, E. necator and B. cinerea infected 

grapevine leaves, to understand the behaviour of these metabolites upon different pathogen 

challenges. Each pathogen has a different infection mode and life cycle, hence further 

metabolomics studies on the interactions of grapevine with pathogens should also be 

performed to identify disease specific compounds.  

 Also, in Maia et al., (in preparation), we have highlighted the importance of the visual 

distribution of putatively identified sucrose in grapevine leaf discs infected with P. viticola. 

Although some studies have reported sucrose accumulation in infected P. viticola plants, 

further studies must be conducted to fully understand the correlation of sucrose and the mode 
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of propagation of P. viticola infection. A time-course analysis should be performed to 

investigate its accumulation throughout the infection. Also, the tissue localization of more 

compounds, that are related to P. viticola infection, should be investigated.    

The European Union is committed to “increase resilience of grape vines to pests and 

diseases and support the productivity of the sector in sustainable ways”, focusing on the breeding 

of new resistant varieties that maintain the grape qualities for wine production. Its success 

depends on the understanding of the innate resistance mechanisms against pathogens and 

the identification of resistance-related biomarkers towards the development of biomarker 

assays to assist future breeding programs and introgression line analysis. Future work built 

upon this thesis may contribute to the development of new selection methods leading to a 

more efficient breeding process, through early selection of the resistant seedlings, 

representing a considerable financial benefit to producers. 
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APPENDIX A 

 

 
Supplementary Figure F5.1 - Melting curves of reference (A-J) and target (K-Q) genes. (A) 60S; (B) 

TTC7B; (C) EF1α; (D) UBQ; (E) SAND; (F) GADPH; (G) Actin; (H) αTUB; (I) AP2M; (J) βTUB; (K) 

FatB; (L) COMT; (M) ANR; (N) LAR2; (O) UFGT; (P) F3’5’H; (Q) IMPL1. 
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APPENDIX B 

 

 
 

Supplementary Figure F5.2 - Model diagnostics showing fitting (R2) and prediction ability (Q2) 

metrics as a function of the number of components for the orthogonal partial least squares 

discriminant analysis (OPLS-DA) models for the classification into resistant/partial resistant and 

susceptible groups using of untargeted metabolomics data obtained in positive (A) and negative (B) 

ion modes. Q2 is calculated from stratified 7-fold cross-validation. 
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APPENDIX C  

Supplementary Table S 1 

Supplementary Table S5.2 - Gene expression analysis in the resistant/partial resistant and susceptible 

genotypes. Gene names' abbreviations are indicated (full gene names are indicated in Table 5.3). 

Results for Wilcox-Mann-Withney and Bartlett's tests are shown (p-value and adjusted p-value). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Wilcox-Mann-Withney's test Bartlett’s test p-value < 

0.05 in 

both tests 

Gene name 

abbreviation 
p-value Adjusted p-value p-value Adjusted p-value 

LAR2 2.50124490706687e-14 2.75136939777356e-13 8.27320583499119e-11 9.1005264184903e-10 * 

IMPL1 5.05270155526963e-07 1.38949292769915e-06 3.44493222111252e-09 1.89471272161188e-08 * 

COMT 1.52538570732167e-07 5.59308092684614e-07 0.000215009186384817 0.000473020210046597 * 

F3'5'H 0.0306640612463527 0.033730467370988 0.284805367322071 0.376956141272915  

FatB 0.0254846858024407 0.0311479493140942 0.120745701618498 0.189743245400497  

UFGT 0.0221037816153451 0.0303926997210995 0.408433132616659 0.408433132616659  

ANR 0.142746053595515 0.142746053595515 6.52974378169775e-08 2.39423938662251e-07  
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APPENDIX D  

Supplementary Table S 3 

 

Supplementary Figure F7.2 - V. vinifera cv Trincadeira phenotype leaves of non-infected (0 h) and 8 

days after inoculation (8 dpi) with P. viticola. 
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APPENDIX E  

 

 

Supplementary Figure F7.2 - Microscope images (10 x) of Vitis vinifera cv. Trincadeira. Areas marked 

with a black line were selected for MALDI-FT-ICR-MS analysis with different matrices and solvents. 
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APPENDIX F  

 

 

Supplementary Figure F7.3 - MALDI-FT-ICR-MS mean mass spectra of Vitis vinifera cv. Trincadeira 

leaf discs (control, 96 hpi without visible P. viticola sporulation and 96 hpi with visible sporulation) in 

positive ionisation mode. Data was normalised by the total ion count. 
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