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RESUMO

Os narvais da Gronelandia Oriental estdo em declinio, com uma estimativa de cerca de 1000
individuos, encontram-se dispersos e sdo especialmente sensiveis as alteracdes climaticas. Desta forma,
a capacidade de adaptagéo dos narvais a mudancas que ocorram no seu habitat e na distribuigéo das suas
presas encontra-se limitada. Ainda ndo ha conhecimento acerca do nimero de subpopulagdes que
poderdo existir na Gronelandia Oriental, mas sabe-se que estas se encontram isoladas das subpopulactes
presentes na Gronelandia Ocidental. Adicionalmente, os narvais encontram-se no apéndice Il da
Convencdo sobre o Comércio Internacional das Espécies Silvestres Ameagadas de Extin¢do. Por todas
estas razdes, é compreensivel a necessidade e importancia de se obterem estimativas das densidades
para as subpopulacdes de narvais ao longo dos anos, 0 que permitird observar as suas tendéncias
populacionais. A estimativa da densidade é fundamental para a gestdo e conservagdo dos narvais. E
necessario haver um conhecimento prévio sobre o comportamento acUstico da espécie quando a
monitorizacdo acustica passiva é usada na estimativa de densidades. A monitorizagdo acustica passiva
nunca foi considerada na estimacao da densidade de narvais, porém este método é confiavel e permite a
obtencdo de estimativas de densidade precisas devido ao facto de ser um método que ndo é influenciado
por condigBes climaticas extremas e funcionar corretamente em locais remotos, como o Artico. A
colocacdo de marcas acusticas (acoustic tags) que gravam os sons produzidos pelos narvais permite a
detecdo e contagem dos sons de ecolocalizagdo. Estes dados sdo fundamentais na obtencdo de uma
estimativa média das taxas de cliques, e esta permite converter uma densidade de sons numa densidade
de individuos. Além disto, a variabilidade das taxas de cliques obtidas entre os individuos da populacdo
deve ser baixa, permitindo uma estimativa da densidade populacional confiavel. Assim, o objetivo desta
dissertacdo € a obtencdo, pela primeira vez, de uma taxa média de cliques de ecolocalizagao produzidos
por cada individuo e por unidade de tempo para a subpopulacéo de narvais de Scoresby Sound, o que
permitira no futuro estimar a sua densidade através do método de contagem de indicios (cue counting).

Os dados fornecidos pelas marcas acusticas sdo um dos métodos mais apropriados para estudar 0s
narvais devido a distribuicdo remota e comportamento vocal ativo destes. Nesta dissertacdo, os dados
das marcas acusticas foram usados na obten¢do de uma estimativa média das taxas de cliques a partir de
oito individuos marcados, dois machos e seis fémeas. A partir do som gravado foram anotados 0s
periodos de ocorréncia de cliques, onde os narvais podiam produzir varios cliques por segundo ou
nenhum clique em cada segundo, e em periodos sem ocorréncia de cliques, onde foi assumido que
nenhum clique era produzido em cada segundo, porém o nimero exato do nimero de cliques produzidos
por unidade de tempo durante o periodo de cliques ndo estava disponivel. Assim, desenvolveu-se um
esquema de amostragem para os segundos presentes nos periodos de ocorréncia de cliques de cada
marca, onde se teve em conta as diferentes duragdes de cada gravagdo na escolha do tamanho da amostra.
Apos isto, os cliques de ecolocaliza¢do foram contados para cada segundo presente nas amostras a partir
do Software MT Viewer. Antes de se estimarem as taxas de cliques de ecolocalizagdo para os dados de
cada marca, foram removidos os periodos onde os dados acusticos ndo estavam disponiveis e aqueles
que, na sequéncia direta da colocacdo das marcas acusticas e da perturbacdo que este processo
representa, se verificaram ndo ser representativos da atividade vocal das baleias ap6s a observacdo dos
dados.

Com base nos dados fornecidos, cinco hipdteses foram testadas: 1) A probabilidade de producéo de
cliques ndo depende da profundidade; 2) O numero de cliques produzidos durante o periodo de
ocorréncia de cliques nédo varia ao longo do tempo; 3) O nimero de cliques produzidos durante o periodo
de ocorréncia de cliques ndo varia com a profundidade; 4) O sexo dos narvais ndo influenciam as suas
taxas de cliques de ecolocalizagdo; e 5) O comprimento dos narvais ndo influencia as taxas de cliques
de ecolocalizagéo.



Apos serem modelados todos os dados no R, observou-se que a captura e marcacdao dos narvais
levou a uma abstencao na producao de sons por um longo periodo de tempo, sendo que cada individuo
apresentou uma resposta comportamental diferente. Também foi verificado que a producédo de sons de
ecolocalizacdo foram frequentes a partir de profundidades superiores a 400m. O tamanho da amostra
escolhida para as amostragens realizadas verificou-se suficiente e confiavel para a obtencédo de taxas de
cliques por segundo, ja que os coeficientes de variacdo destas foram inferiores a 10% para cada baleia.
Com os dados das amostragens realizadas, foi verificado que os narvais ecolocalizaram regularmente
ao longo do tempo e que houve uma maior produgéo de cliques com o aumento da profundidade durante
0s seus periodos de ocorréncia de cliques. Para os dados de cada marca, foram estimadas taxas de cliques
de ecolocalizacdo e o valor obtido para a média ndo ponderada destas taxas foi de 1.40 cliques/s com
um coeficiente de variacdo igual a 11.41% e o valor obtido para a média ponderada (com a ponderagdo
a ser a duracdo de cada marca) foi de 1.27 cliques/s com um coeficiente de variagdo igual a 10.20%. As
médias das taxas de cliques mostraram-se ser fidedignas e poderdo, no futuro, tornar possivel a
estimacdo da densidade a partir da monitorizacdo acUstica passiva. Recomendamos que a média a usar
no calculo da densidade deva ser a média ponderada, ja que esta tem em conta a variabilidade das
diferentes duracdes das marcas. N&o foi possivel inferir se as taxas de cliques variaram com 0 Sexo ou
tamanho dos narvais. No entanto, é necessario verificar se estas taxas ndo apresentam realmente
diferencas entre machos e fémeas usando um maior nimero de individuos, visto que no total apenas
tinhamos oito individuos, entre os quais apenas dois machos. Foi ainda possivel obter uma taxa de
cliques para a segunda metade dos dados de um dos nossos machos, cujos sons ainda nao tinham sido
processados, ou seja, tendo apenas disponiveis as profundidades sem a parte acustica. Este resultado
mostra algo que ha partida poderia ndo ser 6bvio: mesmo marcas sem acUstica podem conter informacéo
relevante para estimar as taxas de produgdo de sons, em particular nestes animais cuja profundidade
reflete de forma clara o seu estado comportamental. Adicionalmente, no futuro, seria interessante
perceber quais os fatores que poderdo influenciar as taxas de cliques, nomeadamente a distribuicdo das
presas dos narvais, e perceber se as médias das taxas de cliques obtidas nesta dissertacdo poderao, ou
ndo, ser generalizadas para outras areas. Também seria importante confirmar ou refutar a capacidade de
adaptacdo dos narvais perante alteragdes no seu habitat e distribuicdo das suas presas durante a sua
atividade de alimentacdo, ja que cada populacao apresenta diferentes dietas, e consequentemente, podera
haver um maior leque de opgdes na escolha das presas, assim como nas preferéncias de profundidades
para a captura destas. Com base nos resultados desta dissertacdo, estamos bastante mais préximos de
conseguir obter uma estimativa da densidade para a subpopulacdo de narvais de Scoresby Sound por
contagem de sons via acustica passiva. O que fica por estimar é essencialmente a probabilidade de
detencdo dos sons e a realizacdo de uma amostragem de monitorizacdo acustica passiva.

Palavras-chave: Gronelandia Oriental, marcas acUsticas, taxa de cliques, comportamento acustico,
estimativa de densidade

ABSTRACT

Narwhals in East Greenland are dispersed, declining, and are particularly sensitive to climate change
making their responses limited to adjust to changes in their habitat and prey resources. Density
estimation is fundamental for narwhal’s management and conservation. If passive acoustic approaches
are to be considered, knowledge about the species acoustic behavior is fundamental. Consequently, it is
important to obtain a mean cue rate estimate that could be used for converting a density of cues into a
population density.



Animal borne tags are one of the best approaches to study narwhals given their remote distribution
and active vocal behavior. In this thesis, tag data were used to obtain a mean click rate estimate based
on eight tags from two males and six females. The sound had already been processed for clicking and
non-clicking periods, but the exact number of clicks per time unit during clicking periods was not
available. We therefore developed a sampling scheme and counted the number of echolocation clicks
per second with the help of the Software MT Viewer. These data were then further processed in R.

Tag data showed that narwhals were affected by their capture and tagging. It was also verified that
narwhals were regularly echolocating, both buzzing and clicking, at depths deeper than 400m. With
sampling data, it was verified that narwhals echolocate regularly over time and that there was a tendency
to make more clicks with deeper depths during their clicking time. For each tag record, echolocation
click rates were estimated. Even if based on a small sample size, a key result is an overall cue rate
estimate for the species. The estimated cue rate was 1.40 clicks/s with a coefficient of variation of
11.41% and 1.27 clicks/s with a coefficient of variation of 10.20%, based on unweighted and weighted
averages, respectively, where record lengths were the considered weights. Finally it was not possible to
show whether click rates vary with narwhals' sex and length. However, it is necessary to confirm these
results with a larger sample size, since our data only had eight individuals with just two males.
Furthermore, in the future, it would be interesting to know whether click rates are influenced by
narwhals' prey distribution.

Keywords: East Greenland, tags, cue rate, acoustic behavior, density estimation
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1 INTRODUCTION

1.1 Cue rate and density estimates with PAM and tag data

Sounds produced by cetaceans are essential to their survival because these marine mammals depend
on them to interact with the environment, to forage, communicate, escape from dangers, orientate, and
navigate (Weilgart 2017). Therefore, cetacean sounds (e.g., echolocation clicks, burst pulses,
whistles,...) reflect their behavioral state and are important to conservation since they can be analyzed
using PAM (Passive Acoustic Monitoring) to inform about ecology and even to produce population
density estimates (Marques et al. 2009; Nowacek et al. 2016; Blackwell et al. 2018). PAM data are
collected through recorders deployed on the seafloor or behind a vessel, giving information about the
sound present in a habitat (Merchant et al. 2015). Density estimates over time allow the detection of
population trends, of anthropogenic detrimental effects, and of the impacts of oceanographic and climate
changes (Marques et al. 2013).

Many cetacean species are perfectly suited for PAM methods since they spend most of their time
underwater, produce species specific sounds that can be readily detected, and occur over wide areas at
low densities, which make visual survey methods difficult to implement (Marques et al. 2009). Contrary
to visual surveys, PAM has the advantage of operating at any time of the day, with oceanographic and
weather conditions having less influence on data collection (Marques et al. 2013). In addition, PAM
allows working in remote locations, like the Arctic, where extreme weather conditions along the year
make human labor highly challenging and at times impossible (Marques et al. 2013). Acoustic
monitoring can occur over longer time scales, leading to an automated way of gathering and processing
data (Marques et al. 2013).

Cues produced by cetaceans, like echolocation clicks, calls, and songs can be used in a type of
distance sampling method, referred to as cue counting, where the cues are detected and counted allowing
a cue density estimation (Hiby & Ward 1986; Marques et al. 2013). Cue rates obtained with this method
are fundamental to obtain a cue density estimate, because we need a cue rate to convert a density of
sounds into a density of animals (Marques et al. 2013).

The collection of acoustic data can be done with acoustic tags attached to the back of cetaceans
(Marques et al. 2013). Acoustic tags are mobile platforms that record sound for several days and can
record additional information, like tracking the movement of the tagged individual (Burgess et al. 1998;
Johnson & Tyack 2003). These tags can be used for cue rate estimation, in addition to potentially
revealing other relevant information, namely the link between cetacean movement and vocal behavior,
which is important for conservation as well (Marques et al. 2013). In this case, a tag can provide a direct
cue rate estimate for the tagged animal, and provided a representative sample of animals is obtained, we
can turn those into a population average cue production rate, which in turn can be used to convert a
density of cues into a population density (Marques et al. 2013). To get a density estimate, it is necessary
to associate the tag data with data collected with, for example, fixed acoustic sensors over a given time
and, hopefully, with a reasonable design over the space for which one would like to produce density
estimates (Marques et al. 2013).

Factors that hamper PAM density estimates are low population densities, a wide variation in cue
rates, and a low cue duty cycle (little amount of vocalization) because these will lower the odds of
detecting cues on recorders, and hence there will be higher variability and lower samples sizes (Marques
et al. 2013; Blackwell et al. 2018; Scheidat et al. 2019). In addition, a reliable and adequate—in the
sense of being valid for the time and place the survey is conducted in—mean cue rate estimate required
for the density estimate is also hard to obtain since it might be dependent on behavior, and on differences
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between individuals like their reproductive status, age, sex, etc (Thomas & Marques 2012). Therefore,
for reliable density estimation using PAM, it is essential to have good knowledge of the species’ acoustic
ecology and behavior, as well as understanding its biosonar properties, such as the beamwidth and
frequency composition of the sounds used for cue counting (Macaulay 2020).

1.2 Narwhals characteristics and threats to their populations

Narwhals (Monodon monoceros) are toothed whales belonging to the Monodontidae family (Heide-
Jorgensen 2018). The majority of males present a tusk, a tooth that grows on the left side of the maxillary
bones (Porsild 1922; Hay 1984; Graham et al. 2020). The tusk can reach 3 m and occurs uncommonly
in females (Porsild 1922; Hay 1984; Graham et al. 2020). There is some evidence that tusks might be
used during male contests and to attract females (Graham et al. 2020). However, this is not totally clear
since tusks could possess other functions (Graham et al. 2020). Narwhals are long-lived, with maximum
estimated ages of over 115+10 years (Garde et al. 2007). Males have a mean body length of about 4.5
m, and reach maturity at 12-20 years old (Garde et al. 2015; Heide-Jgrgensen 2018). The maturity for
females starts at between 8 and 9 years old, and their mean body length is around 4 m (Garde et al. 2015;
Heide-Jgrgensen 2018). Narwhals are arranged in big herds that present small clusters with 5 to 10
individuals (Heide-Jargensen 2018). Generally, clusters are composed of individuals of the same sex
(Marcoux et al. 2009).

It is thought that around 12 subpopulations or stocks of narwhals exist in the world, but some parts
of the whales’ distribution would require more sampling to confirm this assertion (Figure 1.1) (Lowry
et al. 2017). Narwhal stocks are defined by fjords and bays where narwhals spend the summer (Lowry
et al. 2017). In Canada and Greenland, there are 17 coastal areas used during summer by narwhals
(Figure 1.2) (Chambault et al. 2020). Narwhal stocks are separated during summer since, in late spring,
when the mating season occurs, there is a matrilineal site fidelity leading each stock to a different
summer ground (Heide-Jargensen 2018). The birth season occurs between June and August, and the
gestation lasts about 11 to 15 months (Heide-Jargensen & Garde 2011).
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Figure 1.1: Representation of 11 narwhal stocks and distribution of their summer and winter grounds by Louis et al. (2020).
The numbers after the name of the stock are the number of samples used in the Louis et al. (2020) study.
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Figure 1.2: Representation of the 17 coastal areas where narwhals spend summer in Canada and Greenland by Chambault et
al. (2020).

Over time, narwhal subpopulations have slowly decreased in genetic diversity, and if this decline
continues, the survival of the species could be threatened (Westbury et al. 2019). Narwhals present
distinct physiological adaptations that make them have a slow endurance swimming and prolonged
diving, in comparison to other odontocetes and pinnipeds (Laidre et al. 2008; Williams et al. 2011).
This means that their ability to adjust to changes in habitat and prey resources are limited by the lack of
physiological flexibility (Laidre et al. 2008; Williams et al. 2011). There are differences in foraging
behavior and prey preferences among the different narwhal populations, which may indicate that
narwhals have a higher adaptability in their foraging behavior than previously thought (Watt et al. 2013;
Watt et al. 2015).

Before the last glaciation, narwhals were distributed in the North Atlantic however, after retreat of
the ice, the distribution of narwhals widened to the Arctic Ocean between Svalbard and Franz Josef
Land, to northern Hudson Bay, Baffin Bay, the Eastern Canadian High Arctic Archipelago, Davis Strait,
and to the Greenland Sea (Heide-Jgrgensen 2018). Narwhals are particularly sensitive to climate change
due to their constrained distribution in the Arctic and marked loyalty to their pack-ice habitat, which
plays an important role during winter feeding (Laidre et al. 2008; Williams et al. 2011). Climate change
is leading to rises in temperature and ice melting, which will have consequences on narwhal habitats,
especially because changes in their endemic habitat are occurring faster than in other earth regions, and
will lead to the disappearance of summer ice in the Arctic Sea (Stocker et al. 2013; Louis et al. 2020).
Thus, the availability of some narwhal prey, like cod and benthic species, may decrease, while other
prey, like capelin (Mallotus villosus), may increase (Watt et al. 2013). While biophysical changes will
diminish the narwhal’s habitat, the lack of ice will give more opportunities for human exploitation in
areas that were inaccessible before (Grebmeier 2012; Brown et al. 2018; Hauser et al. 2018). The



decrease in summer ice coverage has also given killer whales (Orcinus orca) access to narwhals (Breed
etal. 2017).

Furthermore, noise pollution from seismic surveys, offshore drilling and artificial island
construction may also increasingly affect their survival (Finley et al. 1990; Cosens & Dueck 1993;
Heide-Jargensen et al. 2013b; Reeves et al. 2014; Simmonds 2017). There is evidence that ship presence
and airgun pulses disturb narwhals since they show alterations in their behavior, such as moving closer
to the shore and remaining there to avoid the anthropogenic sound (Heide-Jgrgensen et al. 2021). In
addition, narwhals trapped in a closed bay move faster when they are exposed to ships, but when closely
exposed to airgun noise they move slower (Heide-Jargensen et al. 2021). These non-normal behaviors
occur in the presence of killer whales as well (Laidre et al. 2006). It is thought that narwhals remain in
silence when they are being disturbed (Podolskiy & Sugiyama 2020). If noise pollution becomes
persistent, it could interfere with narwhals’ echolocation activity, and the whales may modify their
migration patterns and abandon their summering areas (Heide-Jgrgensen et al. 2013a).

1.3 The acoustics of narwhals and diving behavior

The narwhal is one of the least studied Artic species regarding behavioral acoustics (Ahonen et al.
2019). Narwhal sounds cover a wide breadth of frequencies and include pulsed signals, tonal signals,
and whistles, that have communication purposes, and regular echolocation clicks (click trains) and
buzzes (lower amplitude bursts of clicks) which serve for prey location and capture, as well as navigation
(Blackwell et al. 2018; Ahonen et al. 2019). Whistles are pure-tone signals that are continuous, present
overtones, and occur infrequently (Watkins et al. 1971; Ford & Fisher 1978).

Click trains occur when narwhals dive, and sometimes, they can also happen on the surface
(Blackwell et al. 2018). The high-frequency clicks allow narwhals to determine a more precise position
of their prey (Rasmussen et al. 2015). High-frequency narwhal clicks can be produced up to 200 kHz,
and the lower frequency click peaks observed are between 3.5 kHz and 5 kHz (Stafford et al. 2012;
Rasmussen et al. 2015).

Click trains can transit to buzzes in less than half a second, or rarely, take a few seconds, lowering
the amplitudes and turning inter-click intervals from 80-250 ms to between 2 ms and 8 ms (Blackwell
et al. 2018). Buzzes are used just before prey capture as they provide a more precise position of the
intended target (Johnson et al. 2004; Miller et al. 2004; DeRuiter et al. 2009; Wisniewska et al. 2014).
Reported buzzing rates present a mean between 16-47 buzzes per hour and a maximum of 72-250 buzzes
per hour (Blackwell et al. 2018). Also, buzzes have a mean duration between 1 s and 3 s, but some
longer buzzes lasting 10 s or more can occur (Blackwell et al. 2018). Given their lower amplitude, buzz
clicks are much less likely to be detected by acoustic sensors and hence typically they are not considered
for cue rate estimates (Blackwell et al. 2018).

The sonar beam of narwhals is narrow and very directional, which implies a greater intensity of
clicks emitted to the forward direction and may reduce echoes from the water surface or pack ice, which
is also achieved with the asymmetry of the beam (Koblitz et al. 2016). The higher the directionality, the
longer the distance at which narwhals can locate their prey (Koblitz et al. 2016). A higher directionality
is possible to obtain when higher frequencies are produced, and larger narwhals can obtain the same
directionality with lower frequencies emitted in comparison to smaller narwhals (Kaoblitz et al. 2016).
When narwhals lower the frequency of clicks, they allow their beam to be wider, which is advantageous
during foraging activities (Madsen et al. 2004; Tervo et al. 2021). Similarly, spinning behavior also
expands the echolocation beam as a larger area is covered when the body rotates, which helps narwhals
forage (Tervo et al. 2021).



When narwhals are foraging, they have a higher probability of doing a spinning behavior, and the
dive phase where this behavior occurs is always the descent phase (Tervo et al. 2021). Another behavior
present in this phase is gliding, whose probability of occurrence increases with depth (Tervo et al. 2021).
In contrast, fast stroking behavior (stroking with caudal fin) is less likely at deeper depths during the
descent phase, since this behavior consumes more oxygen, which limits the time submerged (Tervo et
al. 2021). During the ascent phase it is common to observe a fast stroking behavior with little gliding
(Tervo et al. 2021). In the final ascent phase, where oxygen reserves are at their minimum, narwhals
also behave with a fast stroking behavior, which means they do not need to glide to compensate for the
lack of oxygen (Kooyman 2009; Tervo et al. 2021). Adult narwhals have a minimum oxygen reserve
which allows for 21-24 min of dive duration, and it is unsustainable to maintain a vertical speed of more
than 1.5-2.5 m/s because of narwhal’s slow endurance swimming, which narrows its speed range
(Williams et al. 2011; Tervo et al. 2021). Narwhals increase their speed in the descent phase and spend
more time gliding when they plan to dive into deeper depths (Tervo et al. 2021). Diving activity may be
influenced by the physiology, reproductive state, and environmental conditions present at the moment
(Ngb et al. 2019).

Foraging behavior can be observed on tagged narwhals with surprisingly low sampling rates (25.8
kHz) when tags are attached using suction cups, because of sound transmission from the whales’ bodies
through the suction cups to the tag (Blackwell et al. 2018). The clicks of the tag bearer have generally
higher amplitudes and more low-frequency content than clicks produced by the other (untagged) whales,
but from time to time, tagged narwhals may have lower amplitudes, so it is necessary to be careful when
listening the records (Johnson et al. 2009; Walmsley et al. 2020).

1.4 Narwhals from East Greenland

In East Greenland, narwhals are dispersed and declining with an estimated number of individuals of
fewer than 1000, listed in Appendix Il of Convention on International Trade in Endangered Species of
Wild Fauna and Flora (CITES) (Heide-Jgrgensen et al. 2010; North Atlantic Marine Mammal
Commission (NAMMCO) 2017). Narwhals from East Greenland are isolated from the West Greenland
narwhal subpopulations, and it is not known how many narwhal stocks there are in East Greenland
(Heide-Jargensen et al. 2015; Ahonen et al. 2019). Therefore, the importance of having new density
estimates for the management and conservation of the East Greenland subpopulations is understandable
(North Atlantic Marine Mammal Commission (NAMMCO) 2019). To do that, PAM and acoustic tags
are the most appropriate methods to study narwhals because of the whales’ remote location and active
vocal behavior (Watt et al. 2015; Ahonen et al. 2019).

One of the narwhal stocks from East Greenland spends the summer in fjords and inlets of Scoresby
Sound, where the tag data used in this thesis came from (Figure 1.3) (Watt et al. 2015). After spending
the winter offshore, where they dive deeper, the narwhals from the Scoresby Sound stock migrate to
coastal areas, where they spend the summer, show site fidelity, and generally dive to shallower depths
(Heide-Jgrgensen et al. 2001; Heide-Jgrgensen et al. 2002; Laidre et al. 2002; Ahonen et al. 2019). In
spring and winter, time spent at the surface is greater than in summer, and during these three seasons,
identical time is spent in the mid-surface zone, where the pelagic prey of the Scoresby Sound narwhals
are found (Watt et al. 2013; Watt et al. 2015). At depths of less than 50m, where the whales spend longer
times and where encounters with other individuals are more likely to happen, there is acoustic
communication between individuals (Blackwell et al. 2018).
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Figure 1.3: Representation of the study area of this thesis. Map of Scoresby Sound fjords and inlets made by Blackwell et al.
(2018). The thick red lines delimit the four areas represented in the map (Blackwell et al. 2018).

Narwhals migrate and make more horizontal movements in spring since deep dives rarely occur
during that season (Watt et al. 2015). During summer and when there is shallow bathymetry, the
narwhals dive to the bottom more frequently, and the time spent at the bottom is greater than in winter
(Watt et al. 2015). Narwhals summer dives have other purposes than foraging, as only 56.4% of summer
dives are spent searching for prey, and summer foraging rates are lower than in winter (Laidre et al.
2003; Laidre & Heide-Jgrgensen 2005; Tervo et al. 2021). Dives into the pelagic zone are the most
frequent for the Scoresby Sound narwhal subpopulation, where their preferred prey, prey from the mid-
surface region, is present (Watt et al. 2013; Watt et al. 2015). This subpopulation has a foraging
preference for capelin (Mallotus villosus) (Watt et al. 2013). There are different strategies that narwhals
use in East Greenland to capture prey, e.g., “transiting foraging” used to capture benthic and solitary
prey, and “stationary foraging” used to capture prey present in a school and near the surface (Tervo et
al. 2021). Narwhals may also forage at the bottom since they spend some time there (Watt et al. 2015).

1.5 Thesis aim and hypotheses

This thesis aims to lay the groundwork required to estimate narwhal density from PAM, namely,
estimating the rate of echolocation clicks that will be required to turn an estimate of echolocation click
density into an estimate of animals density (Marques et al. 2013). Hence, the specific objective is to
obtain a cue production rate, the average number of echolocation clicks produced per animal per unit of
time as well as its precision. To do so, we will use data collected from acoustic tags (Acousonde™-—
http://www.acousonde.com/) on eight narwhals in Scoresby Sound.
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The first hypothesis that we tested was whether the probability of producing echolocation sounds is
depth dependent. Blackwell et al. (2018) showed that the majority of buzzes are made below 250m
depth, and so we expected this to be the case. The mean cue rate will be more reliable if we can show
that echolocation clicks do not vary much with external and internal factors (Thomas & Marques 2012).
Hence, in the second and third hypotheses we tested whether clicking rates, during clicking periods,
vary over time and depth, respectively. Blackwell et al. (2018) showed that females foraged mainly at
night, whereas the single male of the study foraged at the end of the afternoon, but it is still unclear if
these differences were real, leading to our final objective, to evaluate whether echolocation click rates
are influenced by narwhal sex and length, respectively.

2 METHODS

2.1 Study area

Data were recorded in Scoresby Sound, East Greenland (Figure 1.3) (Blackwell et al. 2018), an
important fjord system during summer for the local narwhal subpopulation (Heide-Jgrgensen et al.
2020). This system is fed by 12 glaciers strengthened in the north entrance with the cold East Greenland
current input, whose way out is in the south entrance (Digby 1953; Heide-Jargensen et al. 2020). The
length of Scoresby Sound is about 350 km with shorter ramifications around Milne Land island (Heide-
Jorgensen et al. 2020). The majority of the fjords' depths reach 1000 m or more, and there are shallow
depths in northwestern Jameson Land (Digby 1953; Heide-Jargensen et al. 2020).

The formation of sea ice starts in October and is completed by December (Heide-Jgrgensen et al.
2020). From December until June the sea ice remains, but during winter at the Scoresby Sound opening,
there is polynya (Heide-Jgrgensen et al. 2020).

2.2 Acoustic data

2.2.1 Tag data collection

The fieldwork was based at the Hjgrnedal field camp, at the southwest of Milne Land (Figure 1.3)
(Blackwell et al. 2018). Orientation and acoustic tags (Acousonde™- http://www.acousonde.com/)
were attached with suction cups to the back of eight narwhals, two males and six females during the
August months of the years 2013 to 2016, and in August 2019 (Table 1.1) (Blackwell et al. 2018).
Tagging was done near shore by live-capturing the whales with set nets and the help of local Inuit hunters
(Blackwell et al. 2018). Attached tags were held with magnesium corrodible links guaranteeing their
release after three to eight days, while their position was accessible by Argos transmitter (Blackwell et
al. 2018).

The two channels of the Acousonde that record low and high-frequency sounds (sampling rates
25,811 Hz and 154,868 Hz, respectively) were alternately used in Freya, Thora, Méra, and Eistla
(Blackwell et al. 2018). For Mutti, Balder, Jonas and Frida only low-frequency sampling was used
(Blackwell et al. 2018). These choices were made due to data storage and battery considerations, which
last longer with lower frequencies, and consequently, will allow longer recordings hence facilitating an
understanding of narwhals’ behavior over longer time frames (Blackwell et al. 2018).
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Table 1.1: Characteristics of the individual narwhals considered in this study

Whale Sex Length  Year Samples Total Record

Thora | Female 341 2014 150 3.83
Eistla | Female 360 2016 150 3.46
Frida @ Female 380 2015 149 2.32
Maéara | Female 390 2014 10 0.04
Freya | Female 420 2013 200 1.31
Mutti | Female 465 2019 150 3.03
Balder = Male 372 2016 200 4.35
Jonas Male 510 2019 200 6.10

Whale — name; Sex — sex; Length — length in centimeters excluding the tusk; Year — the year of tagging; Samples — number
of samples selected (see section 2.2.4); Total Record — Number of days of each record. Days where acoustic information was
not available or processed and the initial silence after narwhals capture and tagging were discarded from the tag duration.

2.2.2 Description of tag data

As part of other studies (Blackwell et al. (2018) and ongoing projects), each record was annotated
for clicking and non-clicking periods. Clicking periods were considered continuous when silent breaks
lasting no more than 10 seconds were present (Blackwell et al. 2018). The key issue is therefore that
while we can safely assume that no clicks were produced during non-clicking periods, during clicking
periods the animal might produce multiple clicks per second or no clicks at all in each second. To
calculate a click production rate we therefore need to know the mean number of clicks produced during
a second belonging to a clicking period.

The data set provided by SBB consisted of time-depth profiles at one-second resolution. For each
second, information was provided on whether the whale was in a clicking period or not at that
corresponding depth and time.

2.2.3 Estimation of density via cue counting

Consider a passive acoustic density estimation exercise. Assuming we have a random sample of
Sensors over a given area one wants to make inferences for the number of sounds counted over a given
time can be converted into an animal density for said time and space by the following formula (Marques
et al. 2013),

. n(1-/)
D = N A
par
Equation 1.1: General formula to estimate animal density

where D is the estimated animal density, n is the number of sounds detected, f is the false positive rate
(sounds from other sources, not the sound of interest), p is the probability of sounds being detected by
the sensors, a is the area covered by the sensors and # are multipliers (including naturally sound
production rate) responsible for turning sound density to an animal density (Marques et al. 2013).

In particular, for a cue counting approach, the following formula is used,
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Equation 1.2: Formula to estimate animal density from a cue counting approach
where, n is the clicks that were detected during T time units, £ is the false positives proportion, p is the
probability of a click being detected in the area size where the sounds occurred (a), and # is the cue rate

(mean number of clicks per whale per time unit) estimated (Marques et al. 2013). In this thesis we use
seconds as time unit.

After estimating the click rates, the most important missing variable that would be required to
calculate the density is the detection probability in a given area around a sensor. Therefore, in this thesis,
only the mean cue rate is calculated, as a stepping stone for obtaining density estimates.

2.2.4 Sample selection

It would be too time-consuming to count the number of clicks present in each second for all the data
provided because each whale had more than 1500 seconds belonging to clicking periods. Nonetheless,
we need to be able to estimate the mean number of clicks produced per second during these clicking
periods, which is a fundamental piece of information to estimate the cue rate. Therefore, a random
sample of seconds was selected.

First, the seconds present in the non-clicking periods were deleted, leaving only data from clicking
periods. The first and last seconds of each clicking period were also deleted, since these seconds were
those during which clicking started or stopped, and were therefore incomplete seconds of clicking
information.

To select the samples for analysis, we simply divided the number of available seconds of data from
clicking periods (for example, 2500) by the number of samples desired (for example, 150). In this case,
2500/ 150 = 16.7, rounded down to 16, so we selected every 16" second from clicking periods for more
detailed analyses (see below), until the desired number of samples was obtained. The sample size
selected for each record was chosen according to each record’s length.

For each sample selected as described above, we counted the number of clicks produced by the
whale (using software MT Viewer) and used these counts to estimate how the average number of clicks,
their variances, and their coefficients of variations change with different sample sizes (Figure 1.7, 1.8
and 1.9). Given her short record duration, we did not consider Méara in this analysis.

To evaluate the potential variability associated with a given random start we sampled Freya’s dataset
with a second random sample of 100 seconds, with a different random start. In this way, two different
sampling schemes were implemented (Freyal and Freya2). To evaluate their sensitivity, we investigated
if there was a big difference in the number of echolocation clicks, with a high coefficient of variation,
between each sampling, and comparing each sampling per se with the two samplings together (with a
total of 200 samples). In addition, it was verified if the variance in the average for Freyal and Freya2
datasets would explain the differences between each mean value obtained for each sampling (Figure
1.10).

2.2.5 Click counting method

Echolocation clicks in each sample selected were counted with the help of MT Viewer, a custom-
written program for analysis of Acousonde data (W.C. Burgess, pers. comm.) that displays the data in
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the time domain (time in seconds on the x-axis and the sound pressure in Pascal on the y-axis). To allow
a clearer view of the clicks and decrease the amount of flow noise, the data collected during low-
frequency sampling were high-pass filtered at 1.5 kHz before click counting (Blackwell et al. 2018).

Each second evaluated for clicks is referred to as a sample. Samples with buzzes (more than 20
clicks per second) were recorded as zero clicks per second because buzz click amplitudes are much
smaller than regular clicks, making them essentially undetected on PAM recorders that are not animal-
borne (Blackwell et al. 2018). An indicator variable was used to distinguish a true zero (no clicks) from
a zero given buzz clicks were present.

New samples, adjacent to those initially selected, were evaluated if there was a noisy background in
the original sample and it was impossible to count the clicks. The same happened if the selected sample
occurred when Acousonde was switching its sampling between the low and high-frequency
hydrophones. We assume these are periods missing at random with respect to click rates and hence do
not have an impact on the reported cue production rates. For some surface samples (at depths less than
10 meters), it became difficult to distinguish whether the sounds were made by the tagged whale or by
other whales around, because near the surface there is more communication between whales and
pressure release effects at the surface lead to poor signal-to-noise ratios (SNR) when tags are outside of
the water (Blackwell et al. 2018). Therefore, it was taken note of the uncertain samples, and a new
sample was not chosen, in this case, since there were only a hand full of uncertain surface samples.
Hence, these few uncertain samples will not have a significant impact on the mean number of clicks,
and if surface samples would be excluded the results would not show the real behavior of the whale.
Only when it was really impossible to know how many clicks there were, the surface sample was
classified as unavailable. This happened to one sample from Frida’s record, and hence that sample had
to be deleted for the analysis. As a result, Frida’s sampling continued with 149 samples instead of 150.

The raw data for further analysis was the number of clicks counted per sample in each of the tags.

2.2.6  Estimation of echolocation click rate

With tag data from this thesis we estimate the echolocation click rate (#) from equation 1.2 (Marques
et al. 2013). For tag i, we estimated the corresponding cue production rate (ri) by,

ri during clicking X clicking duration + ri during silence X silence duration

Averageri =
g Total recording time

ri during clicking X clicking duration + 0 X silence duration

Total recording time
__ riduring clicking X clicking duration

Total recording time

Leading to,
n; X Ci
T, = —
l Tl

Equation 1.3: Formula to estimate echolocation click rate

where n; is the number of seconds initially recorded as clicking periods in tag i, c; is the mean number
of clicks per second in sampling data i and T; is the total number of seconds of acoustic recording
considered in tag i. Note that c; is the sum of the c;;, where c;; is the number of clicks in second j
sampled from whale i, as represented by the following equation,
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Equation 1.4: Formula to estimate the mean number of clicks per second in tag i

where J; is the number of samples selected for tag i and c;; is the number of clicks in sample j for tag

i. For a better understanding, Figure 1.4 shows a simplified example of how the cue rates can be
calculated.
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Figure 1.4: Simplified schematic figure that represents how the clicks and silence are present in MT Viewer and how a cue
rate can be calculated.

Furthermore, we also estimated the cue rate variance, var(r;), for each click rate using the delta
method (Powell 2007) and taking into account the variability from the sampling process, meaning that
a finite sampling correction was incorporated, as represented by the following formula,

vartr) = (?"_) T =

Equation 1.5: Formula to estimate variance of echolocation click rate

X var(c;) X

where, n; is the number of seconds recorded as clicking in tag i, c; is the mean number of clicks per
second in sampling data i, T; is the total number of seconds in tag i, and J; is the sample size used from
tag i. For an easier interpretation, it was estimated the cue rate coefficient of variation in percentage,

cv(ry), by (Abdi 2010),
var(ri
VPard o0
ri

Equation 1.6: Formula to estimate coefficient of variation of echolocation click rate in percentage

CU(T'L') =

where, \/var(ri) is the standard deviation of ri.

Generally, the variability in a population cue rate depends only on the variability across tags. In this
case, the mean cue rate depends on the variability across tags and induced from the sampling procedure.

It was estimated a simple average cue rate (unweighted average) for the subpopulation by,
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Equation 1.7: Formula to estimate a simple average cue rate (unweighted average)

r(unweighted) =

where, N is the total number of tags which, in this case, were 8 tags.

We could consider that tags with longer durations would lead to a cue rate with higher accuracy
(Marques et al. 2009). Therefore, another estimate was produced for the subpopulation, considering a
weighted average, where the weights are the different tags durations, as represented by the following
equation (Marques et al. 2009),

r(weighted) = 20X )

x(T)

Equation 1.8: Formula to estimate a weighted average cue rate, where the weights are the different tags durations

where Y (n; X c;) is the total number of clicks counted in all tags, and Y:(T;) is the total number of
seconds present in all tags.

A table with the values obtained for each sampling data was created (Table 1.2). Since Freya’s
dataset had two different samplings, we considered the combined sampling scheme for further analysis
(Freyal+2).

To estimate the variance of the unweighted and weighted average cue rates, a bootstrap resampling
approach was considered. The values present in table 1.2 were resampled 999 times by bootstrapping
the tags and the variance and standard deviation were computed. Then, the coefficient of variation was
calculated by equation 1.6.

2.3 Statistical analysis

All data analysis were implemented in R (R Core Team 2020).

2.3.1 Analysis of presence and absence of sounds production

All tag data provided were modeled to analyze the probability of foraging sounds being produced
as a function of depth. The non-clicking periods represented the absence of foraging sounds, and the
clicking periods represented the presence of foraging sounds.

Narwhals were typically initially silent because of their capture and tagging. To avoid artificially
lowering presumed natural cue rates given this effect of tagging, we removed those silent periods
(Blackwell et al. 2018). To do so, plots for each narwhal were created to select the seconds where the
foraging behavior started without those unusual gaps of silence. We considered that normal acoustic
behavior was initiated from the first dive, where sounds were being produced regularly over time. To
distinguish between the absence and presence of sounds over time and depth, each point was colored
differently depending on clicking state (Figure 1.5).
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Figure 1.5: Presence (in color blue), absence (in color pink) and unknown (in color black) of echolocation behavior by each
narwhal as a function of depth and days since capture and tagging. Black lines represent the days from which narwhals start
their foraging behavior. After the red line, in Balder’s dataset, acoustic information was not available, and in the second part
of Jonas’ dataset (after the dark blue line) sound was available but not processed.

After knowing the time at which the foraging behavior started for each whale, the samples between
long periods of silence were deleted (Figure 1.6). The firsts 23 s of sounds produced in Balder’s record
after about 12 h of silence were ignored and removed since Balder then remained silent for nearly 24 h
more with unusually short clicking times framed by big gaps of silence (Blackwell et al. 2018). In
addition, the samples after about seven days until the end of Balder's record had to be removed since his
acoustic information was no longer available because the acoustic channel stopped recording when the
Acousonde's battery got depleted (after the red line in Figure 1.5). For the second part of Jonas’ dataset
(after the dark blue line in Figure 1.5), which periods correspond to clicking and non-clicking periods
were not available, and therefore this period was ignored for sampling (Figure 1.6).
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Figure 1.6: Presence (in color blue) and absence (in color pink) of echolocation behavior by each narwhal as function of depth
and days since capture and tagging. These data were corrected by deleting long periods of silence as well as periods in which
acoustic information was not available or processed.

We then modelled the probability of a given second being in a clicking period (response variable)
as a function of depth (explanatory variable), using a binomial generalized additive model (GAM).
Narwhal ID was considered a fixed factor in the model. In this way, the probability of foraging sounds
being produced was estimated as a function of depth, per whale, by making predictions from the GAM
(Figure 1.11). For computational efficiency, the data were subsampled considering a systematic
sampling with random start, selecting only one out of every 10 samples in the original data.

2.3.2 Trends of the number of clicks over time and depth

To verify if there was a trend in the number of clicks over time and depth during the clicking periods,
sampling data were modeled. The selection of the best model was made through observation and
interpretation of the residuals, and the Akaike information criterion (AIC) values. The number of clicks
counted in the samples selected was used as the response variable, and the explanatory variable was the
time differences in minutes to see the trend over time, and the depth in meters to see the trend over
depth. It was considered time since the first sample selected started by making the differences in minutes
between the first selected sample and each other samples selected. The selection of the best model was
made through interpretation of the AIC values of generalized linear models (GLMs) and GAMs of the
negative binomial and Poisson families. As a result, the model selected to observe each trend, over time
and depth, was a GLM of the negative binomial family with all the sampling data together and with
narwhal 1D as a fixed factor (Figure 1.12 and 1.13).
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2.3.3 Test for the influence of narwhals sex and length in echolocation click rates

With the cue rates estimates obtained for each whale, we tested whether there was an influence of
narwhals' sex and length on echolocation clicking rates. A boxplot of the click rates for females and
males was done for data visualization (Figure 1.15). Click rate estimates of the eight whales were used
as the response variable, and the length in centimeters and sex for each whale were used as the
explanatory variables. The selection of the best model was made through observation and interpretation
of the residuals, and the AIC values of GLMs and GAMs of the Gaussian and Gamma families. Models
with the Gamma and Gaussian families were done because our outcome (click rates) is a hon-negative
continuous variable. As a result, a GLM of the Gaussian family with a log link was implemented since
it had a lower AIC value (Figure 1.14).

2.3.4 Estimation of the cue rate in the second part of Jonas’ dataset

To illustrate how one might be able to estimate acoustic cue rates based on tags without acoustic
data we estimated the click rate for the last part of Jonas’ tag, since after about six days until the end of
Jonas' record the data from the acoustic tag was not originally processed. We used the above GAM
model to predict the number of clicks Jonas would produce in each second as a function of depth. To
predict the sound production without acoustics, we multiplied the probability of foraging sounds being
produced as a function of depth by the mean number of sounds produced as a function of depth.
Summing all these values and dividing by the length of recording without acoustics, we obtained a
model-based estimated cue rate.

3 RESULTS

3.1 Effects of tagging

During the analysis of presence and absence of sounds produced, it was verified that narwhals were
stressed after their capture and tagging because they were silent for a long period after their release,
which is not a natural behavior (Figure 1.5). It was also observed that each individual had a different
reaction to the capture and tagging since the time it took them to recover was different (Figure 1.5).

3.2 Sample size effect on cue rate estimates

During the sample selection analysis, it was concluded that 100 samples were enough to obtain a
good estimate of cue rates in Freya’s record (Figure 1.7 and 1.8). Moreover, there was not a big
difference in the mean values with 100 or 200 samples selected (Figure 1.9). In addition, it was verified
that the mean number of clicks per second obtained for the Freyal dataset was within the variance of
the mean obtained for the Freya2 dataset and vice-versa (Figure 1.10). The mean values obtained for
Freyal, Freya2, and Freyal+2 datasets were 3.96, 4.92, and 4.44, respectively.
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Figure 1.7: Plots showing how the increasing sample sizes change the estimate of the mean obtained and how the variances of
the mean and their coefficients of variation change with increasing sample sizes for Freyal dataset (first sampling made from
Freya’s record). The green line represents the mean obtained for Freyal dataset.
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Figure 1.8: Plots showing how the increasing sample sizes change the estimate of the mean obtained and how the variances of
the mean and their coefficients of variation change with increasing sample sizes for the Freya2 dataset (second sampling made
from Freya’s record). The green line represents the mean obtained for Freya2 dataset.
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Figure 1.10: Plot showing how the increasing sample sizes change the estimate of the average obtained by a sub-sample of k
samples out of 100 that were selected for the Freyal and Freya2 datasets, the first and second samplings made from Freya’s
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18



3.3 Relationship between depth and probability of foraging sounds produced

The presence vs absence analysis showed that the probability of clicking and buzzing occurrence
increased significantly with increasing depth for each narwhal (Figure 1.11). The whales were buzzing
and clicking regularly at depths deeper than 400m (Figure 1.11). The biggest difference in the
probability of clicking as a function of depth was between Frida and Balder (Figure 1.11). Mara’s dataset
had only 1h of recording, so the reliability of her prediction is likely poor. The wiggliness of the
estimated function probably reflects that uncertainty (Figure 1.11).
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Figure 1.11: Plot showing the probability of echolocation clicks produced by narwhals (“Prob.Clicking”) with whale variable
as a factor along with the depth (in meters). Each narwhal is represented by a different color.

3.4 Trends of the number of clicks over time and depth
It was verified that there was not a trend in the number of echolocation clicks per second present in
the clicking period over time (p-value = 0.12332), but there was a significant tendency with deeper

depths during this period (p-value = 6.06e-06), where the number of clicks increased with depth for the
Scoresby Sound's narwhals stock (Figure 1.12 and 1.13).
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Figure 1.12: Plot showing the trend of the number of clicks during the clicking period over time. The time variable is the time
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Figure 1.13: Plot showing the trend of the number of clicks during the clicking period with deeper depths in meters. Each
narwhal is represented by a different color.
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3.5 Click rate estimates

The values obtained for each sampling data are shown in Table 1.2, where click rate estimates are
present in decreasing order. It can be observed that the click rate coefficients of variation values obtained
for each individual were always less than 10% (Table 1.2).

The unweighted and weighted mean click rate obtained from all the samplings was 1.40 clicks/s
with a coefficient of variation equal to 11.41% and 1.27 clicks/s with a coefficient of variation equal to
10.20%, respectively.

Table 1.2: Table with respective values for each sampling data
Whale Silence Clicking Mean cr crvar crcv
Mara 0.02 0.02 5.00 212 | 252E-02| 7.47
Mutti 1.60 1.43 4.20 1.98 8.79E-05 0.47
Eistla 2.19 1.27 4.15 1.53 5.51E-05 0.49
Freya 0.88 0.43 4.44 146 |1.91E-05 0.30
Thora 2.77 1.06 4.33 1.20 |5.02E-05| 0.59
Jonas 4.37 1.73 4.01 1.16 | 1.64E-05| 0.35
Balder 3.39 0.96 4.70 1.04 |216E-05| 0.45
Frida 1.88 0.44 3.81 0.72 | 1.75E-05| 0.58

Whale — name; Silence — number of days spent in silence; Clicking - number of days spent clicking; Mean - mean number of
echolocation clicks of each sampling data; cr - click rate estimates; crvar — variances of each cr; crcv - coefficients of variations
of each cr in percentage

3.6 Test for the influence of narwhals sex and length in echolocation click rates
There was no evidence to suggest that significant differences in mean click rates between males and
females (p-value = 0.2107) might be present, nor that narwhals’ length influenced echolocation click

rates (p-value = 0.3133) (Figure 1.14). Our low sample size, with only two males, makes it more difficult
to obtain significant differences. Therefore, these results should be interpreted carefully (Figure 1.15).
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Figure 1.15: Boxplot of the click rates for females and males. The black line (highlighted) represents the click rate medians
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at the lower extreme) and the third quartile is the line before the maximum click rate (present at the upper extreme). In the
males' boxplot, the minimum and maximum have the same values as the first and third quartile, respectively, because our data
have only two males.
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3.7 Click rate for the last part of Jonas’ tag

The click rate obtained for the last part of Jonas’ tag, without acoustics processed, was 1.43 clicks/s,
which was slightly higher than the click rate obtained for the first part (1.16 clicks/s). During the last
part, Jonas dove more frequently to deeper depths, with a mean depth greater (138.36 m) than the mean
depth obtained for the first part of Jonas’ tag (110.79 m).

4 DISCUSSION

We performed a sample selection for each individual record, counted the echolocation clicks in each
sample selected, and estimated the mean cue rate of eight narwhals in Scoresby Sound. We evaluated
the relationship between depth and the probability of regular clicks being produced, the trend between
the number of clicks with depth and over time, and tried to assess the influence of sex and length in
echolocation click rates.

In this thesis, it was shown that narwhals from Scoresby Sound produce regular clicks, used during
foraging, with a higher probability of occurrence at depths deeper than 400m. We also showed that,
during their foraging activity, they echolocate regularly without predictable changes over time, but there
was a significant tendency to produce more clicks per second at deeper depths. With these models, we
estimated a model-based cue rate for one of our males, where only time-depth profiles were available
without the acoustics processed. It was not possible to show whether narwhals click rates were
influenced by sex and length. The small sample size would provide very low power to detect any real
effects that might exist. Click rate estimates obtained had low coefficient of variations, and therefore,
we anticipate these might provide the basis to establish accurate density estimates with PAM in the
future (Gomez & Gomez 1984). If that is the case, then we will have achieved our goal which was to
provide a stepping stone to promote a way to assess narwhal populations, and hence to help monitor and
manage their population.

We did not find differences in cue rates between males and females, but this might be essentially
lack of power given a small sample size. Further studies, with more individuals, are needed to confirm,
or to disprove these results. It was thought that larger animals might have a higher cue rate, but this was
not shown probably for the same reasons. In the future, it might be important to see whether bottom
depth or the available prey for narwhals in Scoresby Sound might be responsible for specific cue rates
(Tervo etal. 2021). If that is the case, then cue rates would be harder to transfer across sites with different
prey distributions.

4.1 Effects of tagging

As described by Blackwell et al. (2018), capture and tagging caused a strong reaction by narwhals,
leading some individuals to be silent for almost two days (Figure 1.5). The mean length of the post-
release silence was 23h (Blackwell et al. 2018). This initial long period of silence is not considered a
normal behavior, but happens to be the same reaction narwhals show in response to noise pollution and
their predator, the killer whale (Finley et al. 1990; Blackwell et al. 2018).

In addition, the length of the post-release silence differed between whales (Figure 1.5). Blackwell
et al. (2018) reported no correlation between the length of the post-release silence and the duration of
capture and tagging, which ranged between 30 and 90 minutes. Hence, Blackwell et al. (2018) suggest
that the first location where whales went after release, in Fgnfjord, may not be an area with narwhals’
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preferred prey since buzzing rates for the majority of narwhals were lower in this area. Shuert et al.
(2021) showed that the handling duration had an impact on narwhals’ swimming behavior and activity,
which were intensified when more than 40 minutes of handling were required. They reported that
narwhals did shallower dives and spent most of their time at shallow depths after their release, but more
investigation about the effects of narwhals capturing and tagging is still required (Shuert et al. 2021). In
addition, the mitigation of these effects should also be studied (Hawkins 2004; Casper 2009). We could
have much more data available for this thesis if the responses of narwhals to their tagging and capture
were mitigated.

Blackwell et al. (2018) had to use long-term deployments on narwhals to satisfy the long-term goals
of the project, i.e., to study the effects of airgun pulses from seismic exploration on narwhal behavior
(Heide-Jgrgensen et al. 2021). Given the impossibility of tagging narwhals at sea because of their
shyness and skittish nature, capture of the animals was required (Blackwell et al. 2018).

4.2 Sample size effect on cue rate estimates

To obtain a reliable cue rate estimate, 100 samples selected from Freya’s record were apparently a
good compromise since the coefficient of variation of the average number of clicks was less than 20%
(Figure 1.7 and 1.8) (Gomez & Gomez 1984). Furthermore, selecting 100 or 200 samples from that
dataset resulted in a similar mean number of clicks with very little variation (Figure 1.9). It was observed
that the differences in the mean number of clicks between the two samplings done for Freya’s dataset
were consistent with the variance in the mean values obtained, as well (Figure 1.10). In other words, the
mean values with 100 or 200 samples selected were similar.

These initial results provided us with the knowledge of how many samples would be necessary for
each of the other whales, where the record duration and sample size selected for Freya’s dataset were
used as a benchmark.

4.3 Relationship between depth and probability of foraging sounds produced

The probability of making clicks and buzzes was strongly dependent on depth values in Scoresby
Sound (Figure 1.11). Narwhals had the highest probability of producing foraging sounds at depths
deeper than 400m, which supports one of the hypotheses of this study (Figure 1.11). This result is
explained by the fact that at depths shallower than 100m narwhals socialize and hence regular clicks
and buzzes used during foraging activity are uncommon to occur (Blackwell et al. 2018). On the
contrary, where foraging activity mostly occurs, communication between individuals is rare (Blackwell
et al. 2018). Our results are in accordance with Blackwell et al. (2018), which showed that buzzes are
mainly made between 350 m and 650 m depth and with other studies that found that narwhals in East
Greenland dive most frequently to the mid-surface region, which presents their preferred prey, capelin
(Mallotus villosus) (Watt et al. 2013; Watt et al. 2015; Blackwell et al. 2018). Blackwell et al. (2018)
showed that higher buzzing rates occurred in one of Scoresby Sound’s preferred summer areas, the
Gasefjord complex. In addition, Heide-Jargensen et al. (2020) showed that during summer and at depths
in the range 300-650m, there is a niche selection by narwhals because a temperature lower than 2°C is
present. Narwhals may prefer this niche since they would prey more easily at that temperature because
of their slow endurance swimming (Williams et al. 2011; Heide-Jargensen et al. 2020).

Also, a big difference between Frida and Balder’s foraging activity was shown here, which
Blackwell et al. (2018) also described. Blackwell et al. (2018) showed that 55% of buzzing was made

24



by Frida at depths of less than 150 m, closer to the surface and for a longer time than Balder who had
only 1% of his buzzing activity in that depth range. These results may suggest that males and females
have different acoustic behaviors, but a greater number of individuals is needed to be certain about these
differences. The niche selection and the strong site fidelity that narwhals present show their sensitivity
to changes in their habitat, so understanding how they will respond and cope with disturbances in their
optimal habitat is crucial (Laidre et al. 2008; Heide-Jgrgensen et al. 2020).

4.4 Trends of the number of clicks over time and depth

The number of echolocation clicks per second present in the clicking period did not show a trend
over time, but with deeper depths, during this period, narwhals from Scoresby Sound produced more
clicks per second (Figure 1.12 and 1.13). Therefore, when narwhals are making echolocation clicks,
mainly at depths deeper than 400m, they echolocate regularly regardless of the time present in the
moment but tend to echolocate more frequently with increasing depths.

Blackwell et al. (2018) analyzed six tags that were also used in this thesis and showed that narwhals
in Scoreshy Sound presented a short duty cycle of echolocation, where 27% of the time narwhals were
clicking, and had a mean clicking bout duration in the range 5.5-10 min. Although this low percentage
of time spent clicking makes echolocation clicks difficult to detect on PAM recorders, our results
showed that during echolocation narwhals did not show variability in their echolocation activity over
time (Blackwell et al. 2018). Thus, constant echolocation clicks over time are suitable for density
estimates by PAM.

With our models, we were able to obtain a click rate for the second part of Jonas’ tag, without having
his clicking periods processed for the sound data, by combining the probability of foraging sounds as a
function of depth with the number of clicks per second, while clicking, as a function of depth since with
increasing depths, during clicking time, echolocation is more frequent. This is interesting as it illustrates
how one might use historical time-depth data to estimate cue production rates from tags without the
acoustic sensor. This may work particularly well in deep-diving species such as narwhals, for which
depth is presumably a good predictor of clicking state.

4.5 Click rate estimates

There was not great dispersion around the click rate values for each whale since their coefficients
of variation were less than 10%, and therefore click rates were precise (Table 1.2) (Gomez & Gomez
1984). The unweighted and weighted mean click rates obtained from all the samplings had coefficients
of variation below 12%, suggesting that this amount of sampling is reliable when used in the future for
density estimates with PAM for the Scoresby Sound subpopulation of narwhals (Gomez & Gomez
1984). The estimates made by bootstrap ignore the variance between each tag, but as we saw in our
results, the variability of this variance is small. The unweighted and weighted mean click rate values
obtained were identical, but the weighted mean click rate may be the best to use for the density estimate
with PAM since the variability from the different record durations is taken into account.

However, it should be noted that a far preferable approach that would remove the need to implement
the sampling procedure would be to have these tags automatically processed for clicks. That would
remove the sampling requirement and would lead to a cue rate without the sampling-induced variability
associated with each whale. Of course that ignores the variability over the time the whale was not being
sampled, that is, the cue rate is only valid for the time the recording lasted. To account for such additional
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variability, one would have to make assumptions about the number of cues produced over time outside
the sampling period. For that a model for sound production over time would be required, and that is
beyond the scope of our study.

In the future, it should be evaluated whether the cue production rates obtained here could be
generalized to other areas since we showed that cue rates depend on depths. The three narwhal
populations—in East Greenland, West Greenland and Northern Hudson Bay—present different dive
behaviors in distinct seasons, have different diets, and use different depth categories along the water
column with diverse purposes, which may result in notorious differences between the sounds produced
in distinct clusters or even between individuals (Marcoux et al. 2012; Watt et al. 2015). It is hard to
extrapolate our cue production rates to areas where narwhals have different depth preferences, hence,
cue productions rates might have to be estimated separately for each population.

4.6 Test for the influence of narwhals sex and length in echolocation click rates

We could not show that the sex and size (length) of narwhals from Scoresby Sound influence their
click rates (Figure 1.14). This is not surprising given our sample size. We only had eight tags to consider
in this analysis, making it more difficult to detect differences, in particular to see differences between
females and males since our dataset only had two males (Figure 1.15). Thus, to confirm whether acoustic
behavior differs between male and female narwhals in the future, we would need data from a greater
number of individuals, particularly males.

Tervo et al. (2021) showed that there was no influence of narwhals’ sex and size on their dive
duration and depth, however, the ability to store more oxygen is related to larger body size, allowing
longer and deeper dives (Schreer & Kovacs 1997; Kooyman 2009; Tervo et al. 2021). In addition, there
seems to be a tendency for males in East Greenland to have a larger body size than narwhal females
(Garde et al. 2015). Moreover, Watt et al. (2013) observed that males have a richer diet on benthic prey
in comparison to females. Therefore, this may be a sign of a dive depth difference between males and
females in East Greenland, especially in winter, when narwhals can dive below 1500m depth (Heide-
Jargensen et al. 2015). However, Watt et al. (2015) showed that females from East Greenland spend
more time at deep depths than males, which may be due to males being less selective in choosing their
prey or having a more efficient foraging activity because of their larger size (Beck et al. 2003; Dietz et
al. 2007; Watt et al. 2015). If click rates turn out to be different between females and males, and even
between different lengths in the future, density estimates for narwhals might not be reliable since a wide
variation in cue rates makes it difficult to turn a density of cues into a population density (Marques et
al. 2013).

Narwhal’s dives in Scoresby Sound are mostly V-dives (i.e., shaped as a V), where the duration of
time at the bottom is short (Tervo et al. 2021). The duration of V-dives is not related to different narwhal
sizes, but it is likely that prey distribution has an effect on dive duration since buzzing rates start during
the descent phase and remain until the ascent phase (Tervo et al. 2021). As a result, the distribution of
narwhals prey seems to be scattered along the water column, and also a spatial patchy prey distribution
is present (Tervo et al. 2021). During transiting foraging, buzzing rates are much lower, and narwhals
dive deeper and faster than during stationary foraging (Tervo et al. 2021). Additionally, dives with
horizontal straight movements are mostly present during transiting foraging, and in contrast, the majority
of horizontal movements in stationary foraging are tortuous (Tervo et al. 2021). If in the future, prey
distribution will have an effect on narwhals click rates, the density estimates will have to be calculated
separately for each narwhal population since each population has a different diet (Watt et al. 2013; Watt
et al. 2015).
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4.7 Click rate for the last part of Jonas’ tag

The click rate obtained for the last part (without acoustics) of Jonas’ tag was slightly higher than the
click rate obtained for the first part (with acoustics). During the last part, Jonas dove more frequently to
deeper depths, with a mean depth greater than the mean depth obtained for the first part, which may
indicate that our models made good predictions to estimate the click rate without acoustics. Therefore,
the mean cue rate for the subpopulation might be more reliable using the cue rates for the entire record
duration of each tag, including the part where the acoustics were not available.

In the future, it should be confirmed whether it is better, i.e. if we could achieve greater precision,
by using the click rates for the entire tag duration, including the model information, or by just using the
parts where tags provide us the acoustics. This could be evaluated by comparing the real cue rate value,
which would be estimated after counting all the clicks in MT Viewer for the full tag, with a model-based
estimated cue rate, and with a cue rate estimated using the sampling data, which would require to have
a sampling for the last part of Jonas’ tag, where the acoustics were available but not processed. Also,
the coefficients of variation values should be interpreted for these cue rates.

4.8 Final considerations

The results from this thesis are relevant for the future of narwhals in East Greenland since the cue
rates obtained will improve our knowledge about narwhal behavior and thereby help understand the
effects of anthropogenic sounds, climate change, and other threats in the near future (Blackwell et al.
2018). Moreover, an accurate density estimate based on PAM, needed to carry out narwhals
management and conservation is only possible with knowledge of the species’ acoustic behavior
(Macaulay 2020). The data collected for this thesis happened presumably before anthropogenic sounds
in the artic were a widespread and considerable threat to narwhals (Podolskiy & Sugiyama 2020). With
climate change and the increasing threats, the importance of monitoring the state of narwhals from
Scoresby Sound over the years should not be understated (Podolskiy & Sugiyama 2020). It is also
necessary to have a greater knowledge about the consequences of narwhals capture and tagging as well
as an understanding of how to mitigate these effects on narwhals (Hawkins 2004; Casper 2009; Shuert
et al. 2021).

Narwhals spend most of their time underwater and occur over a wide area at low densities, and
traditional visual survey methods (Marques et al. 2009) are difficult to carry out in narwhal habitats. As
a result, PAM methods sound promising and could be highly effective (Marques et al. 2009). PAM has
never been used for the estimation of narwhal density, and the mean click rate obtained in this thesis
gets us one step closer, allowing a PAM density estimate for the subpopulation of narwhals from
Scoreshy Sound (Marques et al. 2013). The missing steppingstone would be the effective detection area,
or equivalently, the probability of detection in a given area around a sensor. This could be obtained in a
number of ways, including distance sampling, spatially explicit capture recapture, with trial based
methods (Marques et al. 2009) or based on acoustic propagation methods (Kusel et al. 2011).

Furthermore, it is also important to know whether cue rates are influenced by narwhals' prey
distribution, whether they differ between females and males, and have a greater knowledge about prey
abundance, how they will be affected by climate change, and confirm whether and to what extent cue
production rates obtained in this thesis can be generalized to other areas (Watt et al. 2013).
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6 APPENDIX

All the code required to implement the analyses in this thesis is presented below.
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Introduction

In this document, the analysis of the narwhal click rates is described.

In section Reading Data, original tag data and sampling for this tag data will be imported to R. Hereinafter,
original tag data will be analyzed in the topic Analysis of presence and absence of sounds production, where
will be observed the relationship between depth and probability of foraging sounds produced. Then, in Click
sampling by whale it will be seen for each sampling of tag data how increasing the sample size changes the
estimates, will be done the data exploration and will be observed if there is any trend between the number
of clicks with depth and over time. In the section Estimating Click Rates will be created a new table with
respective values for each whale to test the influence of sex and length in echolocation clicks rates. In the
section Estimation of the cue rate in the second part of Jonas data will be estimated the cue rate on the part
of the Jonas data where acoustic information was available but not processed.

Reading data

It was done two samplings for the Freya data (Freyal and Freya2) because it will be seen if there is a big
difference in the mean of echolocation clicks, with a high coefficient of variation, between each sampling,
and comparing each sampling separated with the two samplings together. This will be done to have certainty
about the sample size that can be chosen for each narwhal regarding the results that will be obtained for
Freya.

originaldata <- read.delim("originaldata.txt", sep ="")
sampledata <- read.delim("sampledata.txt", sep ="")

# Freya
FreyaO <- subset(originaldata, whale == "Freya") #Original data

Freyal <- subset(sampledata[1:100, ], whale == "Freya") #100 samples for Freyal
Freya2 <- subset(sampledata[101:200, ], whale == "Freya") #100 samples for Freya?2
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# limit of clicks that are counted in a second
clim <-20

FreyalT <- Freyal
Freya2T <- Freya2

Freyal has 6 seconds with more than 20 clicks.
sum(Freyal T$clicks > clim)

##[1]6

Freya2 has 3 seconds with more than 20 clicks.
sum(Freya2T$clicks > clim)

#[1]3

More than 20 clicks/s changed to O clicks/s because they are not detected on PAM recorders given their low
amplitude. This was done in R only for Freya since the counting of clicks in MT Viewer included also the
buzzes (more than 20 clicks/s).

Freyal T$clicks[FreyalT$clicks > clim] <- 0
Freya2T$clicks[Freya2T$clicks > clim] <- 0

For the other whales, it was not necessary to make this change in R because it was put O clicks/s when there
were more than 20 clicks/s during the counting of clicks in MT Viewer. The sample size chosen for the
other whales was selected according to each record duration and comparing with the sample size and record
duration obtained for Freya, so only one sampling was done for each other whale.

# Balder
BalderO <- subset(originaldata, whale == "Balder") #Original data

Balder1 <- subset(sampledata, whale == "Balder") #200 samples for Balder

# Eistla
EistlaO <- subset(originaldata, whale == "Eistla") #Original data

Eistlal <- subset(sampledata, whale == "Eistla") #/50 samples for Eistla

# Mutti
MuttiO <- subset(originaldata, whale == "Mutti") #Original data

Muttil <- subset(sampledata, whale == "Mutti") #/50 samples for Mutti

# Thora
ThoraO <- subset(originaldata, whale == "Thora") #Original data
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Thoral <- subset(sampledata, whale == "Thora") #/50 samples for Thora

# Frida
FridaO <- subset(originaldata, whale == "Frida") #Original data

Frida150 <- subset(sampledata, whale == "Frida") #/50 samples for Frida

Frida149 <- Fridal50[-144, | #149 samples for Frida
## We had to delete the sample 144 because to do the
## analysis I can not have any NA

# Jonas
JonasO <- subset(originaldata, whale == "Jonas") #Original Jonas data

JonasO$row <- (1:nrow(JonasO))
JonasO1 <- JonasO[1:551015, ] #first part of Jonas data processed for sounds

JonasO2 <- JonasO[551016:807030, | #second part of Jonas data not processed for sounds
Jonas <- subset(sampledata, whale == "Jonas") #200 samples for Jonas

# Mara
MaraO <- subset(originaldata, whale == "Mara") #Original data

Maral <- subset(sampledata, whale == "Mara") #10 samples for Mara

Analysis of presence and absence of sounds production

Here are plots for each narwhal done in the ggplot tool where can be seen the depths when the sounds are
present (in color blue) and the duration in days of each recording. In order to see how long it took the whales
to start their foraging behavior, the days that appear on the x values are the days since the capture and
tagging. Black lines represent the days from which narwhals start their foraging behavior. After the red line,
in Balder data, acoustic information is not available, and in the second part of Jonas data (after the blue line)
sound was available but not processed. We can also see that the record’s durations were different for each
whale. Mdra data had a power reset on her record, which led to just one hour of clicking and buzzing
(Blackwell et al. (2018)). To be able to make the plot, the maximum value of obtainable memory in R was
increased to 8000000MB.

BalderOW <- BalderO
EistlaOW <- EistlaO
FreyaOW <- FreyaO
FridaOW <- FridaO
MuttiOW <- MuttiO
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ThoraOW <- ThoraO
MaraOW <- MaraO
JonasOW <- JonasO

# Creation of a data frame called whales

FreyaOW$row <- (1:nrow(FreyaOW))

BalderOW $row <- (1:nrow(BalderOW))

EistlaOW$row <- (1:nrow(EistlaOW))

FridaOW$row <- (1:nrow(FridaOW))

MaraOW$row <- (1:nrow(MaraOW))

MuttiOW$row <- (1:nrow(MuttiOW))

ThoraOW$row <- (1:nrow(ThoraOW))

## Adding the number of rows/seconds since the recorded
## started and the names of the whales

Whales <- rbind(BalderOW, EistlaOW, FreyaOW, FridaOW, MuttiOW,
ThoraOW, MaraOW, JonasOW)

Whales1 <- Whales

Whales1[is.na(Whalesl)] <- 0 # transformation of NaN to 0 (absence of sounds)
Whalesl[, -¢(1, 2, 4, 5, 6)] = (Whalesl1[, -¢(1, 2, 4, 5, 6)] =
0) * 1 # values different from zero are equal to I (presence of sounds)

Whales1$Clicking <- as.factor(Whales1$Clicking)
### so that clicking is a factor (with only 0 and 1 values)
### and not continuous

memory.limit(size = 8e+06) ##maximum value of obtainable memory in R
## [1] 8e+06

# Observation where the animals were clicking
Whales1$Clicking2 <- Whales1$Clicking
Whales1$Clicking2 <- factor(Whales1$Clicking, levels = 0:2)
Whales1$Clicking2[Whales1$whale == "Jonas" & Whales1$row >= 551016] <- 2
Whales1$Clicking2[Whales1$whale == "Balder" & Whales1$row >=

601441] <-2

Whales1$Clicking2 <- factor(Whales1$Clicking2, levels = ¢("0",
"1, "2"), labels = ¢("Silent", "Clicking", "Unknown"))

ggplot(data = Whales1, aes(x = (row/(60 * 60 * 24)), y = -Depth,

colour = Clicking2)) + geom_point(shape = ".") + scale_color_manual(values = ¢(Silent =
"indianred1",

37



Clicking = "skybluel", Unknown = "gray24"), name = "Clicking status") +

facet_wrap(~whale, ncol = 4, scales = "free_x") + xlab("Days since start") +

guides(colour = guide_legend(override.aes = list(size = 2,
shape = 19))) + geom_vline(data = filter(Whales1, whale ==

"Balder"), aes(xintercept = 225750/86400), colour = "black") +

geom_vline(data = filter(Whales1, whale == "Balder"), aes(xintercept = 601441/86400),
colour = "red") + geom_vline(data = filter(Whales1, whale ==

"Eistla"), aes(xintercept = 64412.5/86400), colour = "black") +

geom_vline(data = filter(Whales1, whale == "Freya"), aes(xintercept = 132410/86400),
colour = "black") + geom_vline(data = filter(Whales1,

whale == "Frida"), aes(xintercept = 97114/86400), colour = "black") +

geom_vline(data = filter(Whales1, whale == "Mara"), aes(xintercept = 32330/86400),
colour = "black") + geom_vline(data = filter(Whales],

whale == "Mutti"), aes(xintercept = 104275/86400), colour = "black") +

geom_vline(data = filter(Whales1, whale == "Thora"), aes(xintercept = 33870/86400),
colour = "black") + geom_vline(data = filter(Whales1,

whale == "Jonas"), aes(xintercept = 551016/86400), colour = "blue") +

geom_vline(data = filter(Whales1, whale == "Jonas"), aes(xintercept = 23910/86400),
colour = "black")
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In Balder data, the firsts 23s of sounds produced after about 12h of silence were ignored and removed since
Balder remained silent for nearly 24h between those 23s, which were unusually short clicking times framed
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by big gaps of silence (Blackwell et al. (2018)). Also, 68s of clicking after those 23s were deleted to have a
consistent clicking during the foraging behavior. All other whales were silent for the entire period before
the black line. The samples from red and blue lines to the end of the records had to be deleted too.

Before the foraging behavior started, narwhals had long periods of silence because of their capture and
tagging, so these periods (before the black line) had to be removed, as they are not representative of
narwhals’ foraging behavior (Blackwell et al. (2018)). To do so, plots for each narwhal were created to
select the seconds where the foraging behavior started without those unusual gaps of silence. We considered
that the foraging behavior was initiated from the first dive, where sounds were being produced regularly
over time. The next plots show the same as above, but for a better visualization, it is only represented the
first dive where the sounds were being produced regularly over time for each whale.

First dive considered for Eistla tag

goplot(data = Whales1[Whales1$whale %in% "Eistla", ], aes(x = (row),

y = -Depth, colour = Clicking)) + geom_point(shape = ".") +
facet_wrap(~whale, ncol = 4, scales = "free_x") + xlab("Seconds since start") +
guides(colour = guide_legend(override.aes = list(size = 2,

shape = 19))) + xlim(64000, 65000) + ylim(-500, 0) +
geom_vline(data = filter(Whales1, whale == "Eistla"), aes(xintercept = 64412.5),

colour = "black")

## Warning: Removed 362479 rows containing missing values (geom_point).
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First dive considered for Freya tag

geplot(data = Whales1[Whales1$whale %in% "Freya", ], aes(x = (row),
y = -Depth, colour = Clicking)) + geom_point(shape = ".") +

facet_wrap(~whale, ncol = 4, scales = "free_x") + xlab("Seconds since start") +
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guides(colour = guide_legend(override.aes = list(size = 2,
shape = 19))) + xlim(132000, 133500) + ylim(-500, 0) +

geom_vline(data = filter(Whales1, whale == "Freya"), aes(xintercept = 132410),
colour = "black")

## Warning: Removed 244100 rows containing missing values (geom_point).
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ggplot(data = Whales1[Whales1$whale %in% "Frida", ], aes(x = (row),
y = -Depth, colour = Clicking)) + geom_point(shape = ".") +
facet_wrap(~whale, ncol = 4, scales = "free_x") + xlab("Seconds since start") +
guides(colour = guide_legend(override.aes = list(size = 2,
shape = 19))) + xlim(97000, 97500) + ylim(-500, 0) +
geom_vline(data = filter(Whales1, whale == "Frida"), aes(xintercept = 97114),
colour = "black")

## Warning: Removed 297130 rows containing missing values (geom_point).
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ggplot(data = Whales1[Whales1$whale %in% "Mara", ], aes(x = (row),
y = -Depth, colour = Clicking)) + geom_point(shape =".") +
facet_wrap(~whale, ncol = 4, scales = "free_x") + xlab("Seconds since start") +
guides(colour = guide_legend(override.aes = list(size = 2,
shape = 19))) + xlim(32250, 33000) + ylim(-500, 0) +
geom_vline(data = filter(Whales1, whale == "Mara"), aes(xintercept = 32330),
colour = "black")

## Warning: Removed 35244 rows containing missing values (geom_point).
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ggplot(data = Whales1[Whales1$whale %in% "Mutti", ], aes(x = (row),
y = -Depth, colour = Clicking)) + geom_point(shape =".") +
facet_wrap(~whale, ncol = 4, scales = "free_x") + xlab("Seconds since start") +
guides(colour = guide_legend(override.aes = list(size = 2,
shape = 19))) + xlim(104000, 105000) + ylim(-500, 0) +
geom_vline(data = filter(Whales1, whale == "Mutti"), aes(xintercept = 104275),
colour = "black")

## Warning: Removed 364824 rows containing missing values (geom_point).
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geplot(data = Whales1[Whales1$whale %in% "Thora", ], aes(x = (row),
y = -Depth, colour = Clicking)) + geom_point(shape =".") +
facet_wrap(~whale, ncol = 4, scales = "free_x") + xlab("Seconds since start") +
guides(colour = guide_legend(override.aes = list(size = 2,
shape = 19))) + xlim(33700, 34500) + ylim(-500, 0) +
geom_vline(data = filter(Whales1, whale == "Thora"), aes(xintercept = 33870),
colour = "black")

## Warning: Removed 364266 rows containing missing values (geom_point).
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ggplot(data = Whales1[Whales1$whale %in% "Jonas", ], aes(x = (row),
y = -Depth, colour = Clicking)) + geom_point(shape =".") +
facet_wrap(~whale, ncol = 4, scales = "free_x") + xlab("Seconds since start") +
guides(colour = guide_legend(override.aes = list(size = 2,
shape = 19))) + xlim(23875, 24250) + ylim(-500, 0) +
geom_vline(data = filter(Whales1, whale == "Jonas"), aes(xintercept = 23910),
colour = "black")

## Warning: Removed 806654 rows containing missing values (geom_point).
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ggplot(data = Whales1[Whales1$whale %in% "Balder", ], aes(x = (row),
y = -Depth, colour = Clicking)) + geom_point(shape =".") +
facet_wrap(~whale, ncol = 4, scales = "free_x") + xlab("Seconds since start") +
guides(colour = guide_legend(override.aes = list(size = 2,
shape = 19))) + xlim(225500, 227000) + ylim(-500, 0) +
geom_vline(data = filter(Whales1, whale == "Balder"), aes(xintercept = 225750),
colour = "black")

## Warning: Removed 751201 rows containing missing values (geom_point).
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The next plots for each narwhal done in the ggplot tool, where can be seen the depths when the sounds are
present (in color blue) and the duration in days of each recording, have the data for each narwhal corrected.
As we can see, after taking out the values on each data set, we get a much nicer plot for each whale.

# Taking out the rows/seconds where the whales are not in
# their foraging behavior consistently

BalderW <- BalderOW[-¢(1:225750, 601441:752702), ]
EistlaW <- EistlaOW[-c(1:64412.5), ]

FreyaW <- FreyaOW[-c(1:132410), ]

FridaW <- FridaOW[-¢(1:97114), ]

MaraW <- MaraOW[-¢(1:32330), ]

MuttiW <- MuttiOW[-¢(1:104275), ]

ThoraW <- ThoraOW/[-¢(1:33870), |

JonasW <- JonasOW[-¢(1:23910, 551016:807030), ]

# Merging again
whale <- rbind(FreyaW, BalderW, EistlaW, FridaW, MuttiW, ThoraW,
MaraW, JonasW)

# Again, putting 0 instead of NA, and put 1 where there was
# a sound
whales11 <- whale

whales11[is.na(whales11)] <- 0

whales11[, -c(1, 2, 4, 5, 6)] = (whales11[, -c(1, 2, 4,5, 6)] !=
0) * 1
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whales11$Clicking <- as.factor(whales11$Clicking)
### so that clicking is a factor (with only 0 and 1 values)
### and not continuous

# Observation where the narwhals were clicking, now with
# the data corrected

whales11$Clicking <- factor(whales11$Clicking, levels = ¢("0",
"1"), labels = ¢("Silent", "Clicking"))

ggplot(data = whales11, aes(x = (row/(60 * 60 * 24)), y = -Depth,
colour = Clicking)) + geom_point(shape = ".") + scale_color_manual(values = ¢(Silent =
"indianred1",
Clicking = "skybluel"), name = "Clicking status") + facet_wrap(~whale,
ncol = 4, scales = "free_x") + xlab("Days since start") +
guides(colour = guide_legend(override.aes = list(size = 2,
shape = 19)))
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Calculation of the probability of foraging sounds produced - GAM model

Plot representing the relationship between depth and probability of foraging sounds produced for all the
whales with whale as a factor (so it is not ignored the behavior differences between each whale). For
computational efficiency, the data was subsampled considering a systematic sampling with random start,

selecting only one out of every 10 samples in the original data.

# Plot for the probability obtained by the function gam()
# for all the whales (with whale as a factor)

gamwhales <- gam(Clicking ~ s(Depth, by = as.factor(whale)) +
whale, family = "binomial", data = whales11[seq(1, nrow(whales11),
by =10), ¢(2, 3, 5)])

depthall = seq(0, 900, by = 1)

predallBalder <- predict(gamwhales, newdata = data.frame(Depth = depthall,
whale = "Balder"), type = "response")

plot(depthall, predallBalder, xlab = "Depth (m)", ylab = "Probability of clicking",
col = "dodgerbluel", pch = 20)

predallEistla <- predict(gamwhales, newdata = data.frame(Depth = depthall,
whale = "Eistla"), type = "response")

points(depthall, predallFEistla, col = "mediumblue”, pch = 20)

predallFreya <- predict(gamwhales, newdata = data.frame(Depth = depthall,
whale = "Freya"), type = "response")

points(depthall, predallFreya, col = "turquoise4", pch = 20)

predallFrida <- predict(gamwhales, newdata = data.frame(Depth = depthall,
whale = "Frida"), type = "response")

points(depthall, predallFrida, col = "red", pch = 20)

predallMara <- predict(gamwhales, newdata = data.frame(Depth = depthall,
whale = "Mara"), type = "response")

points(depthall, predallMara, col = "coral4", pch = 20)

predallMutti <- predict(gamwhales, newdata = data.frame(Depth = depthall,
whale = "Mutti"), type = "response")

points(depthall, predallMutti, col = "orange", pch = 20)

predallThora <- predict(gamwhales, newdata = data.frame(Depth = depthall,
whale = "Thora"), type = "response")

points(depthall, predallThora, col = "lightblue”, pch = 20)

predallJonas <- predict(gamwhales, newdata = data.frame(Depth = depthall,
whale = "Jonas"), type = "response")

points(depthall, predallJonas, col = "deeppink3", pch = 20)

legend("bottomright", legend = ¢("Balder", "Eistla", "Freya",
"Frida", "Jonas", "Mara", "Mutti", "Thora"), col = ¢("dodgerbluel",
"mediumblue", "turquoise4", "red", "deeppink3", "coral4",
"orange", "lightblue"), cex = 1, pch = 20)
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Summary GAM for all the data. The probability of foraging sounds produced increased significantly (p-

value < 0.05) with increasing depth values for each narwhal. Narwhals were buzzing and clicking regularly

at depths deeper than 400m. It was noticeable that there was a big foraging activity difference between Frida
and Balder. Mara’s data (in color brown) had only 1h of recording, leading to a less reliable GAM (data is
explained more precisely from models with bigger sample sizes).

summary(gamwhales)

#H#

## Family: binomial

## Link function: logit

##

## Formula:

## Clicking ~ s(Depth, by = as.factor(whale)) + whale

##

## Parametric coefficients:

##t Estimate Std. Error z value Pr(>|z|)

## (Intercept) -4.9232  (0.2646 -18.606 < 2e-16 ***
## whaleEistla 3.3451 0.2708  12.352 <2e-16 ***
## whaleFreya 356.5524 160.4293 2.222 0.026250 *
## whaleFrida 2503.3397 719.5008 3.479 0.000503 ***
## whaleJonas 13.9137 7.6849 1.811 0.070214.
## whaleMara  3.1354 1.3673 2.293 0.021840 *
## whaleMutti 91.9415 46.4457 1.980 0.047754 *
## whaleThora 191.1969 27.9163 6.849 7.44e-12 ***
HH# -

## Signif. codes: 0 ***'(0.001 **'0.01 *'0.05".'0.1"'"1
Hi
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## Approximate significance of smooth terms:

H## edf Ref.df Chi.sq p-value
## s(Depth):as.factor(whale)Balder 6.735 7.014 3766.29 < 2e-16 ***
## s(Depth):as.factor(whale)Eistla 8.794 8.963 6753.73 < 2e-16 ***
## s(Depth):as.factor(whale)Freya 8.664 8.887 2177.16 < 2e-16 ***
## s(Depth):as.factor(whale)Frida 8.932 8.995 4930.77 < 2e-16 ***
## s(Depth):as.factor(whale)Jonas 8.228 8.501 6923.10 < 2e-16 ***
## s(Depth):as.factor(whale)Mara 6.823 6.992 37.71 6.81e-06 ***
## s(Depth):as.factor(whale)Mutti 8.715 8.920 3712.52 < 2e-16 ***
## s(Depth):as.factor(whale)Thora 8.975 8.999 8054.79 < 2e-16 ***
#i# -

## Signif. codes: 0 "***'(0.001 **'(0.01 *'0.05"'.'0.1"'"1

#H#

## R-sq.(adj) = 0.753 Deviance explained = 72.1%

## UBRE = -0.66019 Scale est. =1 n=211199

Click sampling by whale

To make predictions from the models, it was considered time since the first sample selected started by
making the differences between the first selected sample and each other selected samples using difftime
function with the unit minutes, and, then converted in numeric format for all narwhals data because it was
not possible to predict with month-day-year hour:min:sec format.

# Freya

# converting the date and time column in format
# month-day-year hour:min:sec using the functions from both
# base R and the lubridate package:

# convert date/time in format month-day-year hour:min:sec

Freyal T$time <- as.POSIXct(Freyal T$time, format = "%m/%d/%y %H:%M:%S",
tz = "America/Tijuana")

Freya2T$time <- as.POSIXct(Freya2T$time, format = "%m/%d/%y %H:%M:%S",
tz = "America/Tijuana")

# Considering time since the first sample selected started

Freyal T$mins <- difftime(timel = Freyal T$time, time2 = Freyal T$time[1],
units = "mins")

Freya2T$mins <- difftime(timel = Freya2T$time, time2 = Freya2T$time[1],
units = "mins")

# Convert time differences (mins) in numeric format

Freyal T$mins = as.numeric(Freyal T$mins)
Freya2T$mins = as.numeric(Freya2 T$mins)
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# Balder

# convert date/time in format month-day-year hour:min:sec
Balder1$time <- as.POSIXct(Balderl$time, format = "%m/%d/%y %H:%M:%S",
tz = "America/Tijuana")

# Considering time since the first sample selected started

Balder1$mins <- difftime(timel = Balder1$time, time2 = Balder1$time[1],
units = "mins"

# Convert time differences (mins) in numeric format
Balder1$mins = as.numeric(Balderl$mins)

# Eistla

# convert date/time in format month-day-year hour:min:sec
Eistlal$time <- as.POSIXct(Eistlal$time, format = "%m/%d/%y %H:%M:%S",
tz = "America/Tijuana")

# Considering time since the first sample selected started
Eistlal$mins <- difftime(timel = Eistlal$time, time2 = Eistlal $time[1],

units = "mins")

# Convert time differences (mins) in numeric format
Eistlal$mins = as.numeric(Eistlal$mins)

# Mutti

# convert date/time in format month-day-year hour:min:sec

Muttil$time <- as.POSIXct(Muttil$time, format = "%m/%d/%y %H:%M:%S",
tz = "America/Tijuana")

# Considering time since the first sample selected started

Muttil$mins <- difftime(timel = Muttil$time, time2 = Muttil$time[1],

units = "mins")

# Convert time differences (mins) in numeric format
Muttil$mins = as.numeric(Muttil$mins)

# Thora

# convert date/time in format month-day-year hour:min:sec
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Thoral$time <- as.POSIXct(Thoral$time, format = "%m/%d/%y %H:%M:%S",
tz = "America/Tijuana")

# Considering time since the first sample selected started
Thoral$mins <- difftime(timel = Thoral $time, time2 = Thoral $time[1],
units = "mins"

# Convert time differences (mins) in numeric format
Thoral $mins = as.numeric(Thoral $mins)

# Frida

# convert date/time in format month-day-year hour:min:sec
Frida149$time <- as.POSIXct(Fridal49$time, format = "%m/%d/%y %H:%M:%S",
tz = "America/Tijuana")

# Considering time since the first sample selected started
Frida149$mins <- difftime(timel = Fridal49$time, time2 = Frida149$time[1],
units = "mins")

# Convert time differences (mins) in numeric format
Frida149$mins = as.numeric(Frida149$mins)

# Jonas

# convert date/time in format month-day-year hour:min:sec
Jonas$time <- as.POSTXct(Jonas$time, format = "%m/%d/%y %H:%M:%S",
tz = "America/Tijuana")

# Considering time since the first sample selected started
Jonas$mins <- difftime(timel = Jonas$time, time2 = Jonas$time[1],
units = "mins")

# Convert time differences (mins) in numeric format
Jonas$mins = as.numeric(Jonas$mins)

# Mara
# convert date/time in format month-day-year hour:min:sec
Maral $time <- as.POSIXct(Maral $time, format = "%m/%d/%y %H:%M:%S",

tz = "America/Tijuana")

# Considering time since the first sample selected started
Maral$mins <- difftime(timel = Maral$time, time2 = Maral $time[1],



units = "mins"

# Convert time differences (mins) in numeric format
Maral$mins = as.numeric(Maral $mins)

Freya

To evaluate sensitivity to the sample selected it was done two samplings only for Freya data. For the other
whales, only one sampling was done for each since the chosen sample size and record duration for Freya
were used as a comparison.

Seeing how increasing the sample size changes the estimates

The average number of sounds per second for clicks present in the clicking period was calculated for Freyal
(first sampling made for Freya data) data (with 100 samples), and the value obtained was 3.96.

The next plots show for each sample size, a sub-sample of k samples out of 100 that were selected, between
sample sizes of xmin and xmax, and the average was computed. To have a reliable mean of the number of
clicks per second, it will be evaluated in the plots below how the increasing sample sizes change the estimate
of the mean obtained and how the variances of the mean and their coefficients of variation change with
increasing sample sizes. Given the short tag duration, we did not consider Mara in this analysis.

Seeing how increasing the sample size changes the estimates for Freyal. 100 samples seem to be enough to
have a good estimate of narwhal cue rates and density since the coefficient of variation of the average
number of clicks is less than 20% (Gomez & Gomez (1984)).

nobsF1 <- length(Freyal T$clicks)

# Different sample sizes

limitF1 <- 5

nevalF1 <- limitF1:(nobsF1 - limitF1)

# Number of repetitions for each sample size

nrepsF1 <- 1000

# Object to store the averages

resultadosF1 <- matrix(NA, ncol = length(nevalF1), nrow = nrepsF1)

# For each sample size
for (i in 1:length(nevalF1)) {
# For each repetition
for (j in 1:nrepsF1) {
amostraF1 <- sample(FreyalT$clicks, size = nevalF1[i],
replace = TRUE)
resultadosF1[j, i] <- mean(amostraF1)
}

}
par(mfrow = ¢(2, 2))

plot(x = ¢(5, 95), y = ¢(0, 10), xlab = "Different sample sizes",
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ylab = "Average of each sampling”, main = list("Freyal"),
type = "n")

for (i in 1:length(nevalF1)) {
points(rep(nevalF1[i], nrepsF1), resultadosF1[, i])

}
abline(h = mean(Freyal T$clicks), col = 3, Iwd = 3)

plot(nevalF1, apply(resultadosF1, 2, var), xlim = ¢(0, 100),
xlab = "Different sample sizes", ylab = "Variance in the average",
main = list("Freyal"))

# looking at the CV (coefficient of variation)
plot(nevalF1, apply(resultadosF1, 2, sd)/apply(resultadosF1,
2, mean), ylab = "Coefficient of variation in the average",
xlab = "Different sample sizes", ylim = ¢(0.05, 0.32), xlim = ¢(0,
100), main = list("Freyal"))
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The average number of sounds per second for clicks present in the clicking period was calculated for Freya2
(second sampling made for Freya data) data (with 100 samples), and the value obtained was 4.92.

Seeing how increasing the sample size changes the estimates for Freya2. 100 samples seem to be enough to
have a good estimate of narwhal cue rates and density since the coefficient of variation of the average
number of clicks is less than 20% (Gomez & Gomez (1984)).

nobsF2 <- length(Freya2T$clicks)

# Different sample sizes

limitF2 <- 5

nevalF2 <- limitF2:(nobsF2 - limitF2)

# Number of repetitions for each sample size
nrepsF2 <- 1000

# Object to store the averages
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resultadosF2 <- matrix(NA, ncol = length(nevalF2), nrow = nrepsF2)

# For each sample size
for (i in 1:length(nevalF2)) {
# For each repetition
for (j in 1:nrepsF2) {
amostraF2 <- sample(Freya2T$clicks, size = nevalF2[i],
replace = TRUE)
resultadosF2[j, i] <- mean(amostraF2)
}

}
par(mfrow = ¢(2, 2))

plot(x = ¢(5, 95), y = ¢(0, 10), xlab = "Different sample sizes",
ylab = "Average of each sampling", main = list("Freya2"),
type = "n")

for (i in 1:length(nevalF2)) {
points(rep(nevalF2[i], nrepsF2), resultadosF2[, i])

}

abline(h = mean(Freya2T$clicks), col = 3, Iwd = 3)

plot(nevalF2, apply(resultadosF2, 2, var), xlim = ¢(0, 100),
xlab = "Different sample sizes", ylab = "Variance in the average",
main = list("Freya2"))

# looking at the CV (coefficient of variation)
plot(nevalF2, apply(resultadosF2, 2, sd)/apply(resultadosF2,
2, mean), ylab = "Coefficient of variation in the average",
xlab = "Different sample sizes", ylim = ¢(0.05, 0.23), xlim = ¢(0,
100), main = list("Freya2"))

Freyal2 <- rbind(FreyalT, Freya2T)
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The average number of sounds per second for clicks present in the clicking period was calculated for Freyal
and Freya?2 data (with a total of 200 samples), and the value obtained was 4.44.

Seeing how increasing the sample size changes the estimates for Freyal+2 (the two samplings made for
Freya data were joined). There is not a big difference in having 100 or 200 samples since with 100 or more
samples the mean will be identical and their variation very little.

Freyal2 <- rbind(FreyalT, Freya2T)

nobsF12 <- length(Freyal2$clicks)

# Different sample sizes

limitF12 <- 5

nevalF12 <- limitF12:(nobsF12 - limitF12)

# Number of repetitions for each sample size

nrepsF12 <- 1000

# Object to store the averages

resultadosF12 <- matrix(NA, ncol = length(nevalF12), nrow = nrepsF12)

# For each sample size
for (i in 1:length(nevalF12)) {
# For each repetition
for (j in 1:nrepsF12) {
amostraF12 <- sample(Freyal2$clicks, size = nevalF12[i],
replace = TRUE)
resultadosF12[j, i] <- mean(amostraF12)
}

}
par(mfrow = ¢(2, 2))

plot(x = ¢(5, 195), y = ¢(0, 10), xlab = "Different sample sizes",
ylab = "Average of each sampling”, main = list("Freyal+2"),
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type ="n")
for (i in 1:length(nevalF12)) {
points(rep(nevalF12[i], nrepsF12), resultadosF12[, i])

}
abline(h = mean(Freyal2$clicks), col = 3, lwd = 3)

plot(nevalF12, apply(resultadosF12, 2, var), xlim = ¢(0, 200),
xlab = "Different sample sizes", ylab = "Variance in the average",
main = list("Freyal+2"))

# looking at the CV (coefficient of variation)
plot(nevalF12, apply(resultadosF12, 2, sd)/apply(resultadosF12,
2, mean), ylab = "Coefficient of variation in the average",
xlab = "Different sample sizes", ylim = ¢(0, 0.3), xlim = ¢(0,
200), main = list("Freyal+2"))
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Seeing if the variance in the average explains the differences between the means obtained for Freyal
and Freya2

In the next plot, it can be observed a blue line representing the mean obtained for Freyal (first sampling
made for Freya data), and a red line representing the mean obtained for Freya2 (second sampling made for
Freya data). The color points are the average values obtained by a sub-sample of k samples out of 100 that
were selected, between sample sizes of xmin and xmax. The blue and red points are the average values
obtained for Freyal and Freya2 sub-samples, respectively. The grey points are the average values for Freyal
and Freya2 sub-samples that were overlapped.

par(mfrow = ¢(1, 1))
plot(x = ¢(5, 95), y = ¢(0, 10), xlab = "Different sample sizes",
ylab = "Average of each sampling", type = "n")
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for (i in 1:length(nevalF2)) {
points(rep(nevalF2[i], nrepsF2), resultadosF2], i], col = alpha("indianred1",
0.05), pch =19, cex =2)
}
for (i in 1:length(nevalF1)) {
points(rep(nevalF1[i], nrepsF1), resultadosF1[, i], col = alpha("lightblue",
0.025), pch =19, cex = 2)
}
abline(h = mean(Freya2T$clicks), col = "red", Iwd = 2)
abline(h = mean(Freyal T$clicks), col = "blue", lwd = 2)
legend("topright", legend = c¢("Freyal", "Freya2", "Freyal +Freya2"),
col = ¢("lightblue", "indianred1", "grey"), pch = 19, cex = 1)
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It can be concluded that the means obtained for Freyal and Freya2 data (represented by color lines) are
within the interval of the average of each sampling from the other data. Hence, the variance in the average
explains the differences between the means obtained for Freyal and Freya2.

Data exploration
Graph and table of frequencies of the number of clicks counted in Freyal data.

maxnF1 <- max(Freyal T$clicks)

tempF1 <- factor(Freyal T$clicks[Freyal T$clicks <= maxnF1], levels = 0:maxnF1,
labels = O:maxnF1)

barplot(table(tempF1), xlab = "Number of clicks per second",
ylab = "Frequency", main = list("Freyal"), ylim = ¢(0, 25))
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table(tempF1)

## tempF1
# 01234567 8910111213141516
##20 1314221315523 1000001

## In FreyalT, 4 clicks/s were the most frequent count and
## 0 clicks/s were counted 20 times.

Graph and table of frequencies of the number of clicks counted in Freya2 data.

par(mfrow = ¢(1, 1))

maxnF2 <- max(Freya2T$clicks)

tempF2 <- factor(Freya2T$clicks[Freya2T$clicks <= maxnF2], levels = 0:maxnF2,
labels = O:maxnF2)

barplot(table(tempF2), xlab = "Number of clicks per second",
ylab = "Frequency", main = list("Freya2"), ylim = ¢(0, 35))
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table(tempF2)

## tempF2
# 01234567 891011121314151617
## 71 2111731121051 01100001

## In Freya2T, 5 clicks/s were the most frequent count and
## 0 clicks/s were counted 7 times.

Trends of the number of clicks over time

The number of clicks counted in 100 samples was used as the response variable, and the time differences in
minutes between samples was the explanatory variable. To know which model would best fit my data, it
was seen the residuals, presence of overdispersion, and the AIC values in the LMs (linear models), GLMs
(generalized linear models), and GAMs (generalized additive models). It was chosen first the Poisson family
since the number of clicks is a count data, but most of the time, overdispersion was present, so to solve this
problem, quasipoisson and negative binomial families were used instead. The models with quasipoisson
family do not show AIC values, so these models were ignored in the end because the best model was chosen
based on the lowest AIC value. In this R document, only Freyal data shows how the final model was
selected. For the other whales, it was only showed the model selected since it was done the same that it is
showed for Freyal data.

The plots below represent the residuals of an LM done for Freyal data. In general, the residuals of the LM
do not seem to be good, because the plot “Scale-Location” suggest that the variance of residuals is not
constant, so there is heteroscedasticity, and the plot “Normal Q-Q” shows a non normal residuals
distribution. This is expected since the data is a count data. Because the assumptions of Homoscedasticity
and normality of the model’s residuals are violated, the LMs will not be used to see the trend of the number
of clicks over time.
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ImFreyal = Im(FreyalT$clicks ~ Freyal T$mins)
par(mfrow = ¢(2, 2))

plot(ImFreyal)
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Summary of the LM
summary(lmFreyal)
##
## Call:
## Im(formula = Freyal T$clicks ~ Freyal T$mins)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6536 -1.1862 0.1511 1.6416 11.4053
##
## Coefficients:
#it Estimate Std. Error tvalue Pr(>|t|)

## (Intercept) 4.6578652 0.6031932 7.722 9.89e-12 ***

## Freyal T$mins -0.0006983 0.0005366 -1.301 0.196

H# ---

## Signif. codes: 0 "***'(0.001 **' 0.01 *'0.05"'0.1""'1

Hit

## Residual standard error: 2.761 on 98 degrees of freedom

## Multiple R-squared: 0.01698, Adjusted R-squared: 0.006954
## F-statistic: 1.693 on 1 and 98 DF, p-value: 0.1962
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Residuals for the Poisson GLM done for Freyal data. The plot “Residuals vs Leverage” of GLM shows one
outlier in Freyal that will influence the regression results and the residual deviance of the summary in
Freyal is high and not close to the degrees of freedom, so this model is not well-fitted. Also, Freyal has
some presence of patterns and the line that crosses them has a small curvature in the points within residual

plots.

glmFreyal = glm(Freyal T$clicks ~ Freyal T$mins, family =

par(mfrow = ¢(2, 2))
plot(glmFreyal)
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Summary of the Poisson GLM
summary(glmFreyal)

#i
## Call:

## glm(formula = Freyal T$clicks ~ Freyal T$mins, family =

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -3.0599 -0.6039 0.0824 0.8107 4.1255

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.545e+00 1.041e-01 14.843 <2e-16 ***
## Freyal T$mins -1.726e-04 9.566e-05 -1.804 0.0712.
#i# ---

## Signif. codes: 0 ***'(0.001 **'0.01 *'0.05".'0.1"'"1

poisson(link = "log"))
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poisson(link = "log"))
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## (Dispersion parameter for poisson family taken to be 1)
Hit

##  Null deviance: 242.53 on 99 degrees of freedom
## Residual deviance: 239.32 on 98 degrees of freedom
## AIC: 514.85

Hit

## Number of Fisher Scoring iterations: 5

The Pearson estimate should be close to 1. Here we see overdispersion (Pearson estimate>1) in the Poisson
GLM. To solve this problem it will be used a quasipoisson and a negative-binomial regression model.

sum(residuals(glmFreyal, type = "pearson”)”2)/df.residual(glmFreyal)
## [1] 1.846601
Summary of the quasipoisson GLM

glmQPFreyal = glm(Freyal T$clicks ~ Freyal T$mins, family = quasipoisson)
par(mfrow = ¢(1, 2))

summary(glmQPFreyal)

i

## Call:

## glm(formula = Freyal T$clicks ~ Freyal T$mins, family = quasipoisson)
H#

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -3.0599 -0.6039 0.0824 0.8107 4.1255

##

## Coefficients:

iaid Estimate Std. Error tvalue Pr(>[t))
## (Intercept) 1.5447013 0.1414227 10.923 <2e-16 ***
## Freyal T$mins -0.0001726 0.0001300 -1.328 0.187

H## -

## Signif. codes: 0 ***'(0.001 **'0.01 *'0.05".'0.1""'1

it

## (Dispersion parameter for quasipoisson family taken to be 1.846602)
H

## Null deviance: 242.53 on 99 degrees of freedom
## Residual deviance: 239.32 on 98 degrees of freedom
## AIC: NA

Hit

## Number of Fisher Scoring iterations: 5

Calculation of the theta value required for the negative binomial GLM
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Freyal.nb <- glm.nb(FreyalT$clicks ~ Freyal T$mins”4, link = log)
c(theta = Freyal.nb$theta, SE = Freyal .nb$SE)

## theta SE
## 3.051961 0.944656

Summary of the negative binomial GLM

glmNBFreyal = glm.nb(FreyalT$clicks ~ Freyal T$mins, link = log,
init.theta = 3.051961)
summary(glmNBFreyal)

H#Hi

## Call:

## glm.nb(formula = Freyal T$clicks ~ Freyal T$mins, init.theta = 3.051960514,
## link = log)

i

## Deviance Residuals:

##  Min 1Q Median 3Q Max

##-2.38410 -0.40549 0.05522 0.53169 2.25466

i

## Coefficients:

i Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.5470404 0.1627827 9.504 <2e-16 ***
## Freyal T$mins -0.0001750 0.0001469 -1.191 0.234
H# ---

## Signif. codes: 0 "***'(0.001 ** 0.01 *'0.05"'0.1""'1
Hi

## (Dispersion parameter for Negative Binomial(3.052) family taken to be 1)
i

## Null deviance: 133.56 on 99 degrees of freedom

## Residual deviance: 132.15 on 98 degrees of freedom
## AIC: 486.94

i

## Number of Fisher Scoring iterations: 1

i

it

HH# Theta: 3.052

H# Std. Err.: 0.945

it

## 2 x log-likelihood: -480.939

Pearson estimate for the negative binomial GLM
sum(residuals(glmNBFreyal, type = "pearson")”2)/df.residual(glmNBFreyal)

## [1] 0.7870001
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Residuals of the Poisson GAM

gamFreyal = gam(Freyal T$clicks ~ s(Freyal T$mins), family = poisson,

link = "log")
par(mfrow = ¢(1, 1))
plot(gamFreyal)
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## Method: UBRE Optimizer: outer newton

## full convergence after 10 iterations.

## Gradient range [-1.011969e-06,-1.011969¢-06]
## (score 1.433166 & scale 1).

## Hessian positive definite, eigenvalue range [1.011816e-06,1.011816e-06].

## Model rank = 10/ 10

Hit

## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.

Hit

## k' edf k-index p-value

## s(Freyal T$mins) 9 1 1.23 0.99

Summary of the Poisson GAM
summary(gamFreyal)

#H#

## Family: poisson

## Link function: log

i

## Formula:

## Freyal T$clicks ~ s(Freyal T$mins)

i

## Parametric coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.37225 0.05045 27.2 <2e-16 ***
-

## Signif. codes: 0 '***'(0.001 *#*'0.01 '*'0.05".'0.1"'"1
#Hi#

## Approximate significance of smooth terms:

## edf Ref.df Chi.sq p-value
## s(FreyalT$mins) 1 1 3.254 0.0713.
## -

## Signif. codes: 0 "***'(0.001 **'0.01 *'0.05".'0.1"'"1
i

## R-sq.(adj) = 0.00661 Deviance explained = 1.32%
## UBRE = 1.4332 Scale est. = 1 n=100

Pearson estimate for the Poisson GAM
sum(residuals(gamFreyal, type = "pearson")”2)/df.residual(gamFreyal)
## [1] 1.846602

Summary of quasi Poisson GAM
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gamQPFreyal = gam(Freyal T$clicks ~ s(Freyal T$mins), family = quasipoisson)
summary(gamQPFreyal)

Hi
## Family: quasipoisson
## Link function: log

it

## Formula:

## Freyal T$clicks ~ s(Freyal T$mins)

i

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.37225 0.06856 20.02 <2e-16 ***
i ---

## Signif. codes: 0 "***'(0.001 **' 0.01 *'0.05"'0.1""'1
#Hi#

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(FreyalT$mins) 1 11.762 0.187

i

## R-sq.(adj) = 0.00661 Deviance explained = 1.32%
## GCV =2.4918 Scale est. = 1.8468 n =100

Summary of negative binomial GAM

gamNBFreyal = gam(Freyal T$clicks ~ s(Freyal T$mins), family = nb())
summary(gamNBFreyal)

Hit
## Family: Negative Binomial(2.889)
## Link function: log

Hit

## Formula:

## Freyal T$clicks ~ s(Freyal T$mins)

#HHt

## Parametric coefficients:

i Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.3722 0.0775 17.7 <2e-16 ***
H# -

## Signif. codes: 0 "***'(0.001 **'0.01 *'0.05".'0.1"'"1
#HHt

## Approximate significance of smooth terms:

H#i# edf Ref.df Chi.sq p-value

## s(FreyalT$Smins) 1 1 1.376 0.241
##



## R-sq.(adj) = 0.0066 Deviance explained = 1.04%
## -REML = 243.77 Scale est. = 1 n =100

Pearson estimate for the negative binomial GAM
sum(residuals(gamNBFreyal, type = "pearson")”2)/df.residual(gamNBFreyal)
##[1] 0.7624112

The glmNBFreyal (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to
see the Trend of the number of clicks over time for Freyal data.

# Best AIC for Freyal
AIC(ImFreyal, glmFreyal, gamFreyal, glmQPFreyal, glmNBFreyal,
gamQPFreyal, gamNBFreyal)

i df AIC

## lmFreyal  3.000000 490.8684
## glmFreyal 2.000000 514.8517
## gamFreyal 2.000079 514.8518
## glmQPFreyal 2.000000 NA
## glmNBFreyal 3.000000 486.9386
## gamQPFreyal 3.000049 NA
## gamNBFreyal 3.000325 486.9711

Calculation of the theta value required for the negative binomial GLM for Freyal data.

# plot(Freyal T$clicks~Freyal T$mins)
Freyal.nb <- glm.nb(Freyal T$clicks ~ Freyal T$mins”4, link = log)
c(theta = Freyal.nb$theta, SE = Freyal .nb$SE)

## theta SE
## 3.051961 0.944656

The results from the negative binomial GLM show that the number of clicks decreases non significantly
over time for Freyal data. In conclusion, there is not a trend in the number of clicks over time for Freyal
data.

glmNBFreyal = glm.nb(clicks ~ mins, link = log, init.theta = 3.051961,
data = FreyalT)

DateTimel = seq(0, 2000, by = 1)

predglmNBFreyal <- predict(glmNBFreyal, newdata = data.frame(mins = DateTimel),
type = "response")

plot(Freyal T$mins, FreyalT$clicks, xlab = "Time differences in mins",
ylab = "Number of clicks", main = list("Freyal"))

lines(DateTimel, predglmNBFreyal)
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Summary of negative binomial GLM for Freyal
summary(glmNBFreyal)

i

## Call:

## glm.nb(formula = clicks ~ mins, data = FreyalT, init.theta = 3.051960514,
## link = log)

i

## Deviance Residuals:

##  Min 1Q Median 3Q Max
##-2.38410 -0.40549 0.05522 0.53169 2.25466

Hit

## Coefficients:

#a Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.5470404 0.1627827 9.504 <2e-16 ***
## mins -0.0001750 0.0001469 -1.191 0.234

## -

## Signif. codes: 0 "***'(0.001 **'(0.01 *'0.05".'0.1"'"1
Hit

## (Dispersion parameter for Negative Binomial(3.052) family taken to be 1)
#Hit

## Null deviance: 133.56 on 99 degrees of freedom
## Residual deviance: 132.15 on 98 degrees of freedom
## AIC: 486.94

i

## Number of Fisher Scoring iterations: 1

Hit
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##

#t Theta: 3.052
## Std. Err.: 0.945
#H#

## 2 x log-likelihood: -480.939
From here, it will be only showed the models chosen.

The glmNBFreya2 (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to
see the Trend of the number of clicks over time for Freya2 data.

Calculation of the theta value required for the negative binomial GLM for Freya2 data.

# plot(Freya2T3clicks~Freya2T$mins)
Freya2.nb <- glm.nb(Freya2TS$clicks ~ Freya2T$mins”4, link = log)
c(theta = Freya2.nb$theta, SE = Freya2.nb$SE)

## theta SE
## 23.51501 19.38791

The number of clicks decreases non significantly over time for Freya2 data. In conclusion, there is not any
clear pattern over time for Freya2 data.

glmNBFreya2 = glm.nb(clicks ~ mins, link = log, init.theta = 23.51501,
data = Freya2T)

DateTimel = seq(0, 2000, by = 1)

predglmNBFreya2 <- predict(glmNBFreya2, newdata = data.frame(mins = DateTimel),
type = "response")

plot(Freya2T$mins, Freya2T$clicks, xlab = "Time differences in mins",
ylab = "Number of clicks", main = list("Freya2"))

lines(DateTimel, predglmNBFreya2)
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Summary of negative binomial GLM for Freya2
summary(glmNBFreya2)

i

## Call:

## glm.nb(formula = clicks ~ mins, data = Freya2T, init.theta = 23.51501017,
## link = log)

i

## Deviance Residuals:

## Min 1Q Median 3Q Max

##-3.1286 -0.4155 0.0565 0.3469 3.6314

Hit

## Coefficients:

#a Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.696e+00 1.063e-01 15.953 <2e-16 ***
## mins -1.035e-04 9.592e-05 -1.079 0.28

## -

## Signif. codes: 0 "***'(0.001 **'(0.01 *'0.05".'0.1"'"1
Hit

## (Dispersion parameter for Negative Binomial(23.515) family taken to be 1)
#Hit

## Null deviance: 121.75 on 99 degrees of freedom
## Residual deviance: 120.58 on 98 degrees of freedom
## AIC: 467.86

i

## Number of Fisher Scoring iterations: 1

Hit
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##

#t Theta: 23.5
## Std. Err.: 194
#H#

## 2 x log-likelihood: -461.862
Relationship between the number of clicks with depth

The number of clicks counted in 100 samples was used as the response variable, and the depth in meters for
each sample was the explanatory variable. To know which model would best fit my data, it was seen the
residuals, presence of overdispersion, and the AIC values in the LMs (linear models), GLMs (generalized
linear models), and GAMs (generalized additive models). It was chosen first the Poisson family since the
number of clicks is a count data, but most of the time, overdispersion was present, so to solve this problem,
quasipoisson and negative binomial families were used instead. The models with quasipoisson family do
not show AIC values, so these models were ignored in the end because the best model was chosen based on
the lowest AIC value. In this R document, only Freyal data shows how the final model was selected. For
the other whales, it was only showed the model selected since it was done the same that it is showed for
Freyal data.

Residuals of the LM. Because the assumptions of Homoscedasticity and normality of the model’s residuals
are violated, the LMs will not be used to see the relationship between the number of clicks with depth.

ImdepthF1 = Im(Freyal T$clicks ~ Freyal T$depth)
par(mfrow = ¢(2, 2))

plot(ImdepthF1)
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Summary of the LM
summary(IlmdepthF1)
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##

## Call:

## Im(formula = Freyal T$clicks ~ Freyal T$depth)
H#i#

## Residuals:

# Min 1Q Median 3Q Max

## -4.9079 -1.1999 -0.0157 1.6444 12.4642

#it
## Coefficients:
#H Estimate Std. Error t value Pr(>|t])

## (Intercept) 3.041441 0.549163 5.538 2.56e-07 ***

## Freyal T$depth 0.003518 0.001824 1.928 0.0567 .

i ---

## Signif. codes: 0 "#**'(0.001 **'0.01 *'0.05".'0.1"'"1

i

## Residual standard error: 2.733 on 98 degrees of freedom

## Multiple R-squared: 0.03656, Adjusted R-squared: 0.02673
## F-statistic: 3.719 on 1 and 98 DF, p-value: 0.05669

Residuals of the Poisson GLM

glmdepthF1 = glm(Freyal T$clicks ~ Freyal T$depth, family = poisson(link = "log"))
par(mfrow = ¢(2, 2))
plot(glmdepthF1)
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Summary of the Poisson GLM. The residual deviance of the summary in Freyal are high and not close to
the degrees of freedom, so this model is not well-fitted.
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summary(glmdepthF1)

#H#

## Call:

## glm(formula = Freyal T$clicks ~ Freyal T$depth, family = poisson(link = "log"))
i

## Deviance Residuals:

## Min 1Q Median 3Q Max

##-3.1526 -0.7271 0.0098 0.7418 4.8376

i

## Coefficients:

#t Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.1391250 0.1056574 10.781 < 2e-16 ***
## Freyal T$depth 0.0008750 0.0003307 2.646 0.00816 **

i ---

## Signif. codes: 0 "***' (0.001 *#*'0.01 '*'0.05".'0.1"'"1
i

## (Dispersion parameter for poisson family taken to be 1)
Hit

## Null deviance: 242.53 on 99 degrees of freedom
## Residual deviance: 235.59 on 98 degrees of freedom
## AIC: 511.12

it

## Number of Fisher Scoring iterations: 5

Pearson estimate for the Poisson GLM. Here we see overdispersion (Pearson estimate>1) in the Poisson
GLM. To solve this problem it will be used a quasipoisson and a negative-binomial regression model.

sum(residuals(glmdepthF1, type = "pearson")”2)/df.residual(glmdepthF1)
##[1] 1.948371
Summary of the quasipoisson GLM

glmQPdepthF1 = glm(Freyal T$clicks ~ Freyal T$depth, family = quasipoisson)
summary(glmQPdepthF1)

Hit

## Call:

## glm(formula = Freyal T$clicks ~ Freyal T$depth, family = quasipoisson)
i

## Deviance Residuals:

## Min 1Q Median 3Q Max

##-3.1526 -0.7271 0.0098 0.7418 4.8376

#i#
## Coefficients:
#a Estimate Std. Error t value Pr(>|t|)
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## (Intercept) 1.1391250 0.1474809 7.724 9.8e-12 ***
## Freyal T$depth 0.0008750 0.0004616 1.895 0.061 .
it -

## Signif. codes: 0 "***'(0.001 **'0.01 *'0.05".'0.1"'"1
H#

## (Dispersion parameter for quasipoisson family taken to be 1.948372)
Hit

## Null deviance: 242.53 on 99 degrees of freedom
## Residual deviance: 235.59 on 98 degrees of freedom
## AIC: NA

Hit

## Number of Fisher Scoring iterations: 5

Calculation of the theta value required for the negative binomial GLM for Freyal data.

depth1.nbF1 <- glm.nb(Freyal T$clicks ~ Freyal T$depth”4, link = log)
c(theta = depthl.nbF1$theta, SE = depth1.nbF1$SE)

## theta SE
## 3.194483 1.010274

Summary of the negative binomial GLM

glmNBdepthF1 = glm.nb(Freyal T$clicks ~ Freyal T$depth, link = log,
init.theta = 3.194483)
summary(glmNBdepthF1)

#Hit

## Call:

## glm.nb(formula = Freyal T$clicks ~ Freyal T$depth, init.theta = 3.194483277,
## link = log)

#Hi#

## Deviance Residuals:

##  Min 1Q Median 3Q Max

##-2.46313 -0.51311 0.00594 0.46509 2.86318

i

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.1198104 0.1548947 7.229 4.85e-13 ***
## Freyal T$depth 0.0009463 0.0005001 1.892 0.0585 .

-
## Signif. codes: 0 "***'0.001 **'0.01 *'0.05".'0.1""1

#H#

## (Dispersion parameter for Negative Binomial(3.1945) family taken to be 1)
##

## Null deviance: 135.93 on 99 degrees of freedom
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## Residual deviance: 132.60 on 98 degrees of freedom
## AIC: 485.07

Hit

## Number of Fisher Scoring iterations: 1

H#

Hit

H#i# Theta: 3.19

#i# Std. Err.: 1.01

Hit

## 2 x log-likelihood: -479.073

Pearson estimate for the negative binomial GLM

sum(residuals(glmNBdepthF1, type = "pearson")”2)/df.residual(glmNBdepthF1)
## [1] 0.8924479

Residuals of the Poisson GAM

gamdepthF1 = gam(Freyal T$clicks ~ s(Freyal T$depth), family = poisson,
link = "log")

par(mfrow = ¢(1, 1))

plot(gamdepthF1)
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Residuals of the Poisson GAM

par(mfrow = ¢(2, 2))
gam.check(gamdepthF1)
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Hit

## Method: UBRE Optimizer: outer newton

## full convergence after 3 iterations.

## Gradient range [1.038807e-07,1.038807e-07]

## (score 1.261061 & scale 1).

## Hessian positive definite, eigenvalue range [0.01133146,0.01133146].
## Model rank = 10/ 10

i

## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.

H

## k' edf k-index p-value

## s(Freyal T$depth) 9.00 6.43 0.99 0.52

Summary of the Poisson GAM
summary(gamdepthF1)

i
## Family: poisson
## Link function: log

##

## Formula:

## Freyal T$clicks ~ s(Freyal T$depth)

##

## Parametric coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.33633 0.05258 25.41 <2e-16 ***
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## -
## Signif. codes: 0 "*#*'0.001 **'0.01 "*'0.05".'0.1"" 1

i

## Approximate significance of smooth terms:

H## edf Ref.df Chi.sq p-value

## s(Freyal T$depth) 6.434 7.575 22.09 0.00375 **

H ---

## Signif. codes: 0 "***'(0.001 **'0.01 *'0.05".'0.1"'"1
Hi

## R-sq.(adj) = 0.0705 Deviance explained = 12.9%
## UBRE = 1.2611 Scale est. = 1 n=100

Pearson estimate for the Poisson GAM

sum(residuals(gamdepthF1, type = "pearson")”2)/df.residual(gamdepthF1)
##[1] 1.826964

Summary of the quasipoisson GAM

gamQPdepthF1 = gam(FreyalT$clicks ~ s(Freyal T$depth), family = quasipoisson)
summary(gamQPdepthF1)

i
## Family: quasipoisson
## Link function: log

H#

## Formula:

## Freyal T$clicks ~ s(Freyal T$depth)

Hit

## Parametric coefficients:

iaid Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.36218 0.07075 19.25 <2e-16 ***
Hi# -

## Signif. codes: 0 "***'(0.001 **'0.01 *'0.05"'.'0.1"'"1
i

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(Freyal T$depth) 2.157 2.6952.35 0.113

Hit

## R-sq.(adj) = 0.0457 Deviance explained = 6.1%
## GCV =2.4281 Scale est. =1.9308 n =100

Summary of the negative binomial GAM

gamNBdepthF1 = gam(Freyal T$clicks ~ s(Freyal T$depth), family = nb())
summary(gamNBdepthF1)



i
## Family: Negative Binomial(3.265)
## Link function: log

i

## Formula:

## Freyal T$clicks ~ s(Freyal T$depth)

i

## Parametric coefficients:

#t Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.3565 0.0754 17.99 <2e-16 ***

i ---

## Signif. codes: 0 '***'(0.001 *#*'0.01 '*'0.05"'0.1"'"1
i

## Approximate significance of smooth terms:

## edf Ref.df Chi.sq p-value

## s(Freyal T$depth) 2.323 2.9 7.266 0.0781 .

-

## Signif. codes: 0 '***'(0.001 *#*'0.01 '*'0.05"'0.1"'"1
it

## R-sq.(adj) = 0.048 Deviance explained = 5.83%
## -REML = 242.26 Scale est. =1 n=100

Pearson estimate for the negative binomial GAM
sum(residuals(gamNBdepthF1, type = "pearson")”2)/df.residual(gamNBdepthF1)
## [1] 0.8930996

For Freyal, it will be chosen gamNBdepthF1 (negative binomial GAM) to see the relationship between the
number of clicks with depth because it had the lowest AIC.

# Best AIC for Freyal
AIC(ImdepthF1, glmdepthF1, gamdepthF1, glmQPdepthF1, glmNBdepthF1,
gamQPdepthF1, gamNBdepthF1)

i df AIC

## ImdepthF1  3.000000 488.8569
## glmdepthF1 2.000000 511.1218
## gamdepthF1 7.433657 497.6413
## glmQPdepthF1 2.000000  NA
## glmNBdepthF1 3.000000 485.0732
## gamQPdepthF1 4.156671 NA
## gamNBdepthF1 4.900158 484.2576

The results from the negative binomial GAM show that the number of clicks increases non significantly
with increasing depth for Freyal data. In conclusion, there is not a relationship between the number of clicks
with depth for Freyal data.
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gamNBdepthF1 = gam(clicks ~ s(depth), family = nb(), data = FreyalT)

depthFreyal = seq(10, 700, by = 10)

predgamNBdepthF1 <- predict(gamNBdepthF1, newdata = data.frame(depth = depthFreyal),
type = "response")

plot(Freyal T$depth, Freyal T$clicks, xlab = "Depth in meters",
ylab = "Number of clicks", main = list("Freyal"))

lines(depthFreyal, predgamNBdepthF1)
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Summary of the negative binomial GAM for Freyal data
summary(gamNBdepthF1)

i
## Family: Negative Binomial(3.265)
## Link function: log

i

## Formula:

## clicks ~ s(depth)

i

## Parametric coefficients:

i Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.3565 0.0754 17.99 <2e-16 ***
H# ---

## Signif. codes: 0 '***'(0.001 *#*'0.01 *'0.05".'0.1""1
Hi

## Approximate significance of smooth terms:

## edf Ref.df Chi.sq p-value

## s(depth) 2.323 2.9 7.266 0.0781 .
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it ---

## Signif. codes: 0 '***'(0.001 *#*'0.01 '*'0.05"'0.1"'"1
i

## R-sq.(adj) = 0.048 Deviance explained = 5.83%

## -REML = 242.26 Scaleest. =1 n =100

From here, it will be only showed the models chosen.

For Freya2, it will be chosen glmNBdepthF2 (negative binomial GLM) to see the relationship between the
number of clicks with depth because it had the lowest AIC.

Calculation of the theta value required for the negative binomial GLM for Freya2 data.

depth2.nbF2 <- glm.nb(Freya2T$clicks ~ Freya2T$depth”4, link = log)
c(theta = depth2.nbF2$theta, SE = depth2.nbF2$SE)

## theta SE
## 23.18059 18.89555

The results from the negative binomial GLM show that the number of clicks increases non significantly
with increasing depth for Freya2 data. In conclusion, there is not a relationship between the number of clicks
with depth for Freya2 data.

glmNBdepthF2 = glm.nb(clicks ~ depth, link = log, init.theta = 23.18059,
data = Freya2T)

depthFreya2 = seq(0, 600, by = 10)

predglmNBdepthF2 <- predict(glmNBdepthF2, newdata = data.frame(depth = depthFreya2),
type = "response")

plot(Freya2T$depth, Freya2T$clicks, xlab = "Depth in meters",
ylab = "Number of clicks", main = list("Freya2"))

lines(depthFreya2, predglmNBdepthF2)
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Summary of the negative binomial GLM for Freya2 data
summary(glmNBdepthF2)

i

## Call:

## glm.nb(formula = clicks ~ depth, data = Freya2T, init.theta = 23.18059171,
## link = log)

i

## Deviance Residuals:

## Min 1Q Median 3Q Max

##-3.0716 -0.4334 -0.0190 0.3915 3.5186

#Hit

## Coefficients:

#a Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.5037724 0.1043124 14.416 <2e-16 ***
##depth  0.0003306 0.0003359 0.984 0.325

i ---

## Signif. codes: 0 '***'(0.001 *#*'0.01 '*'0.05"'0.1"'"1
H#Hi

## (Dispersion parameter for Negative Binomial(23.1806) family taken to be 1)
#H#

## Null deviance: 121.50 on 99 degrees of freedom
## Residual deviance: 120.53 on 98 degrees of freedom
## AIC: 468.06

i

## Number of Fisher Scoring iterations: 1

Hi
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##

#4# Theta: 23.2
## Std. Err.: 18.9
##

## 2 x log-likelihood: -462.06
Balder
Seeing how increasing the sample size changes the estimates

The average number of sounds per second for clicks present in the clicking period was calculated for Balder
data (with 200 samples), and the value obtained was 4.7.

The next plots show for each sample size, a sub-sample of k samples out of 200 that were selected, between
sample sizes of xmin and xmax, and the average was computed.

Seeing how increasing the sample size changes the estimates for Balder. 200 samples seem to be enough to
have a good estimate of narwhal cue rates and density since the coefficient of variation of the averages
number of clicks is less than 20% (Gomez & Gomez (1984)).

nobsB <- length(Balder1$clicks)

# Different sample sizes

limitB <- 5

nevalB <- limitB:(nobsB - limitB)

# Number of repetitions for each sample size

nrepsB <- 1000

# Object to store the averages

resultadosB <- matrix(NA, ncol = length(nevalB), nrow = nrepsB)

# For each sample size
for (i in 1:length(nevalB)) {
# For each repetition
for (j in 1:nrepsB) {
amostraB <- sample(Balder1$clicks, size = nevalB[i],
replace = TRUE)
resultadosB[j, i] <- mean(amostraB)
}

}
par(mfrow = ¢(2, 2))

plot(nevalB, apply(resultadosB, 2, var), xlim = ¢(0, 200), ylim = ¢(0,
1.5), xlab = "Different sample sizes", ylab = "Variance in the average",

main = list("Balder"))

plot(x = ¢(5, 195), y = ¢(0, 10), xlab = "Different sample sizes",
ylab = "Averages of each sampling", main = list("Balder"),
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type = "n’)
for (i in 1:length(nevalB)) {
points(rep(nevalB[i], nrepsB), resultadosB[, i])

}
abline(h = mean(Balder1$clicks), col = 3, lwd = 3)

# looking at the CV (coefficient of variation)
plot(nevalB, apply(resultadosB, 2, sd)/apply(resultadosB, 2,
mean), ylab = "Coefficient of variation in the average",
xlab = "Different sample sizes", xlim = ¢(0, 200), main = list("Balder"))
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Data exploration
Graph and table of frequencies of the number of clicks counted in Balder data.

maxnB1 <- max(Balder]l$clicks)

tempB1 <- factor(Balder1$clicks[Balderl$clicks <= maxnB1], levels = 0:maxnB1,
labels = O:maxnB1)

barplot(table(tempB1), xlab = "Number of clicks per second",
ylab = "Frequency", main = list("Balder"), ylim = ¢(0, 70),
xlim = ¢(0, 25))
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Balder
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table(tempB1)

## tempB1
## 01234567 89101112131415161718
##62 2 714131518181412 973 0021 2 1

## In Balderl, O clicks/s were the most frequent count (62
## times counted) followed by 6 and 7 clicks/s (18 times
## counted).

Clicks counted in 47 seconds were turned into O clicks/s because more than 20 Clicks/s are not detected on
PAM recorders given its low amplitude.

Trends of the number of clicks over time

The number of clicks counted in 200 samples was used as the response variable, and the time differences in
minutes between samples was the explanatory variable. To know which model would best fit my data, it
was done the same process that was done and showed previously for Freyal data. Therefore, it will only be
shown the model selected.

The glmNBBI1 (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to see the
Trend of the number of clicks over time for Balder data.

Calculation of the theta value required for the negative binomial GLM for Balder data.

# plot(Balder1$clicks~Balder 1 $mins)

par(mfrow = ¢(1, 1))

Balderl1.nb <- glm.nb(Balder1$clicks ~ Balder1$mins”4, link = log)
c(theta = Balder1.nb$theta, SE = Balder1.nb$SE)
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##  theta SE
## 0.8487441 0.1230611

The results from the negative binomial GLM show that the number of clicks decreases (negative estimate)
non significantly over time for Balder data. In conclusion, there is not any clear pattern over time for Balder
data.

glmNBB1 = glm.nb(clicks ~ mins, link = log, init.theta = 0.8487441,
data = Balderl)

DateTimeB1 = seq(0, 10000, by = 1)

predglmNBB1 <- predict(glmNBB1, newdata = data.frame(mins = DateTimeB1),
type = "response")

plot(Balder1$mins, Balder1$clicks, xlab = "Time differences in mins",
ylab = "Number of clicks", main = list("Balder"))

lines(DateTimeB1, predglmNBB1)
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Summary of the negative binomial GLM for Balder data
summary(glmNBB1)

##

## Call:

## glm.nb(formula = clicks ~ mins, data = Balder1, init.theta = 0.8487440652,
## link =log)

#i#

## Deviance Residuals:

##  Min 1Q Median 3Q Max

## -1.87853 -1.71726 -0.09517 0.46207 1.61995

##
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## Coefficients:

i Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.782e+00 1.875e-01 9.506 <2e-16 ***
## mins -5.716e-05 4.009e-05 -1.426 0.154

i ---

## Signif. codes: 0 "***'(0.001 *#*'0.01 *'0.05"'.'0.1""1

i

## (Dispersion parameter for Negative Binomial(0.8487) family taken to be 1)
Hi

##  Null deviance: 239.60 on 199 degrees of freedom
## Residual deviance: 237.65 on 198 degrees of freedom
## AIC: 1061.3

i

## Number of Fisher Scoring iterations: 1

i

i

H## Theta: 0.849

## Std. Err.: 0.123

it

## 2 x log-likelihood: -1055.340

Relationship between the number of clicks with depth

The number of clicks counted in 200 samples was used as the response variable, and the depth in meters for
each sample was the explanatory variable. To know which model would best fit my data, it was done the
same process that was done and showed previously for Freyal data. Therefore, it will only be shown the
model selected.

The glmNBB2 (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to see the
relationship between the number of clicks with depth for Balder data.

Calculation of the theta value required for the negative binomial GLM for Balder data.

Balderl.nbl <- glm.nb(Balder1$clicks ~ Balder1$depth”4, link = log)
c(theta = Balder1.nb1$theta, SE = Balder1.nb1$SE)

##  theta SE
## 0.8365472 0.1206131

The results from the negative binomial GLM show that the number of clicks increases (positive estimate)
non significantly with increasing depth for Balder data. In conclusion, there is not a relationship between
the number of clicks with depth for Balder data.

glmNBB2 = glm.nb(clicks ~ depth, link = log, init.theta = 0.8365472,
data = Balderl)
depthBalder = seq(0, 900, by = 1)
predglmNBB2 <- predict(glmNBB2, newdata = data.frame(depth = depthBalder),
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type = "response")
plot(Balder1$depth, Balderl$clicks, xlab = "Depth in meters",
ylab = "Number of clicks", main = list("Balder"))
lines(depthBalder, predglmNBB2)
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Summary of the negative binomial GLM for Balder data
summary(glmNBB2)

Hit

## Call:

## glm.nb(formula = clicks ~ depth, data = Balder1, init.theta = 0.8365471475,
## link = log)

Hit

## Deviance Residuals:

##  Min 1Q Median 3Q Max

##-1.81464 -1.76593 0.02672 0.41884 1.48742

H

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.4117966 0.2651949 5.324 1.02e-07 ***

## depth  0.0003743 0.0006972 0.537 0.591

Hi# -

## Signif. codes: 0 "***'(0.001 **'0.01 *' 0.05".'0.1"'"1

Hit

## (Dispersion parameter for Negative Binomial(0.8365) family taken to be 1)
Hit

##  Null deviance: 237.51 on 199 degrees of freedom

88



## Residual deviance: 237.23 on 198 degrees of freedom

## AIC: 1063

Hit

## Number of Fisher Scoring iterations: 1
H#

Hit

Hit Theta: 0.837

#i# Std. Err.: 0.121

Hit

## 2 x log-likelihood: -1056.990
Eistla
Seeing how increasing the sample size changes the estimates

The average number of sounds per second for clicks present in the clicking period was calculated for Eistla
data (with 150 samples), and the value obtained was 4.7.

The next plots show for each sample size, a sub-sample of k samples out of 150 that were selected, between
sample sizes of xmin and xmax, and the average was computed.

Seeing how increasing the sample size changes the estimates for Eistla. 150 samples seem to be enough to
have a good estimate of narwhal cue rates and density since the coefficient of variation of the averages
number of clicks is less than 20% (Gomez & Gomez (1984)).

nobsE <- length(Eistlal$clicks)

# Different sample sizes

limitE <- 5

nevalE <- limitE:(nobsE - limitE)

# Number of repetitions for each sample size

nrepsE <- 1000

# Object to store the averages

resultadosE <- matrix(NA, ncol = length(nevalE), nrow = nrepsE)

# For each sample size
for (i in 1:length(nevalE)) {
# For each repetition
for (j in 1:nrepsE) {
amostraE <- sample(Eistlal$clicks, size = nevalE[i],
replace = TRUE)
resultadosE[j, 1] <- mean(amostraE)
}

}
par(mfrow = ¢(2, 2))

plot(nevalE, apply(resultadosE, 2, var), xlim = ¢(0, 150), xlab = "Different sample sizes",
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ylab = "Variance in the average", main = list("Eistla"))

plot(x = ¢(5, 145), y = ¢(0, 10), xlab = "Different sample sizes",
ylab = "Average of each sampling”, main = list("Eistla"),
type ="n")

for (i in 1:length(nevalE)) {
points(rep(nevalE[i], nrepsE), resultadosE[, i])

}
abline(h = mean(Eistlal $clicks), col = 3, lwd = 3)

# looking at the CV (coefficient of variation)
plot(nevalE, apply(resultadosE, 2, sd)/apply(resultadosE, 2,
mean), ylab = "Coefficient of variation in the average",
xlab = "Different sample sizes", xlim = ¢(0, 150), main = list("Eistla"))
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Data exploration
Graph and table of frequencies of the number of clicks counted in Eistla data.

maxnE1 <- max(Eistlal$clicks)

tempE1 <- factor(Eistlal$clicks[Eistlal$clicks <= maxnE1], levels = 0:maxnEl,
labels = O:maxnE1)

barplot(table(tempE1), xlab = "Number of clicks per second",
ylab = "Frequency", main = list("Eistla"), ylim = ¢(0, 25),
xlim = ¢(0, 22))
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table(tempE1)

## tempE1
## 01234567 89101112131415161718
##25 1162022251613 51010400001

# In Eistlal, 0 and 5 clicks/s were the most frequent count
# (25 times counted) followed by 4 clicks/s (22 times
# counted).

Clicks counted in 14 seconds were turned into O clicks/s because more than 20 Clicks/s are not detected on
PAM recorders given its low amplitude.

Trends of the number of clicks over time

The number of clicks counted in 150 samples was used as the response variable, and the time differences in
minutes between samples was the explanatory variable. To know which model would best fit my data, it
was done the same process that was done and showed previously for Freyal data. Therefore, it will only be
shown the model selected.

The gImNBE]1 (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to see the
Trend of the number of clicks over time for Eistla data.

Calculation of the theta value required for the negative binomial GLM for Eistla data.

# plot(Eistlal $clicks~Eistlal $mins)

par(mfrow = ¢(1, 1))

Eistlal.nb <- glm.nb(Eistlal$clicks ~ Eistlal$mins”4, link = log)
c(theta = Eistlal.nb$theta, SE = Eistlal.nb$SE)
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## theta SE
## 2.861314 0.646925

The results from the negative binomial GLM show that the number of clicks decreases (negative estimate)
non significantly over time for Eistla data. In conclusion, there is not any clear pattern over time for Eistla

data.

glmNBE1 = glm.nb(clicks ~ mins, link = log, init.theta = 2.861314,
data = Eistlal)
DateTimeE1 = seq(0, 6000, by = 1)

predglmNBE]1 <- predict(glmNBE1, newdata = data.frame(mins = DateTimeE1),

type = "response")
plot(Eistlal $mins, Eistlal$clicks, xlab = "Time differences in mins",
ylab = "Number of clicks", main = list("Eistla"))
lines(DateTimeE1, predglmNBE1)
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Summary of the negative binomial GLM for Eistla data
summary(glmNBE1)

##

## Call:

## glm.nb(formula = clicks ~ mins, data = Fistlal, init.theta = 2.861313613,
## link =log)

#i#

## Deviance Residuals:

##  Min 1Q Median 3Q Max

## -2.28679 -0.78546 -0.03119 0.51197 2.64610

##
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## Coefficients:

#H# Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.461e+00 1.368e-01 10.683 <2e-16 ***
## mins -1.418e-05 4.604e-05 -0.308 0.758

i ---

## Signif. codes: 0 ***'(0.001 *#*'0.01 '*'0.05".'0.1"'"1

i

## (Dispersion parameter for Negative Binomial(2.8613) family taken to be 1)
Hi

## Null deviance: 188.5 on 149 degrees of freedom
## Residual deviance: 188.4 on 148 degrees of freedom

## AIC: 740

i

## Number of Fisher Scoring iterations: 1
i

i

#H# Theta: 2.861

#H# Std. Err.: 0.647

it

## 2 x log-likelihood: -733.998

Relationship between the number of clicks with depth

The number of clicks counted in 150 samples was used as the response variable, and the depth in meters for
each sample was the explanatory variable. To know which model would best fit my data, it was done the
same process that was done and showed previously for Freyal data. Therefore, it will only be shown the
model selected.

The glImNBE2 (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to see the
relationship between the number of clicks with depth for Eistla data.

Calculation of the theta value required for the negative binomial GLM for Eistla data.

# plot(Eistlal $clicks~Eistlal $depth)
Eistlal.nb1 <- glm.nb(Eistlal$clicks ~ Eistlal $depth”4, link = log)
c(theta = Eistlal.nb1$theta, SE = Eistlal.nb1$SE)

## theta SE
## 3.0098693 0.6964728

The results from the negative binomial GLM show that the number of clicks increases (positive estimate)
significantly (p-value < 0.05) with increasing depth for Eistla data. In conclusion, there is a relationship
between the number of clicks with depth for Eistla data.

glmNBE2 = glm.nb(clicks ~ depth, link = log, init.theta = 3.0098693,
data = Eistlal)
depthEistla = seq(0, 900, by = 1)
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predglmNBE2 <- predict(glmNBE2, newdata = data.frame(depth = depthEistla),
type = "response")

plot(Eistlal $depth, Eistlal$clicks, xlab = "Depth in meters",
ylab = "Number of clicks", main = list("Eistla"))

lines(depthFEistla, predglmNBE?2)

Eistla
&
w
m h
= o o o o
o
5 2 - ¢
=
el o}
o o o o © o
o foX e’ [eefeXcrels} o @
e o@D O 00 W@ o o0 0
S 0 — o o O 0QOMm O D
=z o oo o oo @
W oo oo Cco @ o
O CODOma o O ¢! ¢!
o
o oo o e > elcr Je varleco] @ o o 0
I I I I
0 200 400 600

Depth in meters

Summary of the negative binomial GLM for Eistla data
summary(glmNBE2)

Hi

## Call:

## glm.nb(formula = clicks ~ depth, data = Eistlal, init.theta = 3.00986919,
## link = log)

Hit

## Deviance Residuals:

##  Min 1Q Median 3Q Max

##-2.49433 -0.62070 -0.00381 0.38850 2.79987

i

## Coefficients:

i Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.1897491 0.1334152 8.918 <2e-16 ***

## depth  0.0006944 0.0003515 1.976 0.0482 *

-

## Signif. codes: 0 "***'(0.001 **'0.01 *'0.05".'0.1""1

i

## (Dispersion parameter for Negative Binomial(3.0099) family taken to be 1)
i
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## Null deviance: 192.61 on 149 degrees of freedom
## Residual deviance: 188.97 on 148 degrees of freedom
## AIC: 736.51

Hit

## Number of Fisher Scoring iterations: 1

Hit

Hit

Hit Theta: 3.010

#i# Std. Err.: 0.696

Hit

## 2 x log-likelihood: -730.505

Mutti
Seeing how increasing the sample size changes the estimates

The average number of sounds per second for clicks present in the clicking period was calculated for Mutti
data (with 150 samples), and the value obtained was 4.2.

The next plots show for each sample size, a sub-sample of k samples out of 150 that were selected, between
sample sizes of xmin and xmax, and the average was computed.

Seeing how increasing the sample size changes the estimates for Mutti. 150 samples seem to be enough to
have a good estimate of narwhal cue rates and density since the coefficient of variation of the averages
number of clicks is less than 20% (Gomez & Gomez (1984)).

nobsM <- length(Muttil$clicks)

# Different sample sizes

limitM <- 5

nevalM <- limitM:(nobsM - limitM)

# Number of repetitions for each sample size

nrepsM <- 1000

# Object to store the averages

resultadosM <- matrix(NA, ncol = length(nevalM), nrow = nrepsM)

# For each sample size
for (i in 1:length(nevalM)) {
# For each repetition
for (j in 1:nrepsM) {
amostraM <- sample(Muttil$clicks, size = nevalM[i], replace = TRUE)
resultadosM[j, i] <- mean(amostraM)
}

}
par(mfrow = ¢(2, 2))

plot(nevalM, apply(resultadosM, 2, var), xlim = ¢(0, 150), xlab = "Different sample sizes",
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ylab = "Variance in the average", main = list("Mutti"))

plot(x = ¢(5, 145), y = ¢(0, 10), xlab = "Different sample sizes",
ylab = "Average of each sampling”, main = list("Mutti"),
type ="n")

for (i in 1:length(nevalM)) {
points(rep(nevalM[i], nrepsM), resultadosM], i])

}
abline(h = mean(Muttil$clicks), col = 3, lwd = 3)

# looking at the CV (coefficient of variation)
plot(nevalM, apply(resultadosM, 2, sd)/apply(resultadosM, 2,
mean), ylab = "Coefficient of variation in the average",
xlab = "Different sample sizes", xlim = ¢(0, 150), main = list("Mutti"))
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Data exploration
Graph and table of frequencies of the number of clicks counted in Mutti data.

maxnM1 <- max(Muttil$clicks)

tempM1 <- factor(MuttilS$clicks[Muttil$clicks <= maxnM1], levels = 0:maxnMI1,
labels = O:maxnM1)

barplot(table(tempM1), xlab = "Number of clicks per second",
ylab = "Frequency", main = list("Mutti"), ylim = ¢(0, 30),
xlim = ¢(0, 25))
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table(tempM1)

## tempM 1
## 01234567 891011121314151617181920
##25 4 720252917784 11000100001

# In Muttil, 5 clicks/s was the most frequent count (29
# times counted) followed by 0 and 4 clicks/s (both were 25

# times counted).

Clicks counted in 14 seconds were turned into O clicks/s because more than 20 Clicks/s are not detected on
PAM recorders given its low amplitude.

Trends of the number of clicks over time

The number of clicks counted in 150 samples was used as the response variable, and the time differences in
minutes between samples was the explanatory variable. To know which model would best fit my data, it
was done the same process that was done and showed previously for Freyal data. Therefore, it will only be
shown the model selected.

The glmNBM1 (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to see
the Trend of the number of clicks over time for Mutti data.

Calculation of the theta value required for the negative binomial GLM for Mutti data.

# plot(Muttil $clicks~Muttil $mins)

par(mfrow = ¢(1, 1))

Muttil.nb <- glm.nb(Muttil$clicks ~ Mutti1$mins”4, link = log)
c(theta = Muttil.nb$theta, SE = Muttil.nb$SE)
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##  theta SE
## 3.0709747 0.7228199

The results from the negative binomial GLM show that the number of clicks increases (positive estimate)
non significantly over time for Mutti data. In conclusion, there is not any clear pattern over time for Mutti
data.

glmNBM1 = glm.nb(clicks ~ mins, link = log, init.theta = 3.0709747,
data = Muttil)

DateTimeM1 = seq(0, 6000, by = 1)

predglmNBM1 <- predict(glmNBM]1, newdata = data.frame(mins = DateTimeM1),
type = "response")

plot(Mutti1$mins, Muttil$clicks, xlab = "Time differences in mins",
ylab = "Number of clicks", main = list("Mutti"))

lines(DateTimeM 1, predglmNBM1)
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Summary of the negative binomial GLM for Mutti data
summary(glmNBM1)

##

## Call:

## glm.nb(formula = clicks ~ mins, data = Muttil, init.theta = 3.070974677,
## link =log)

#i#

## Deviance Residuals:

##  Min 1Q Median 3Q Max

## -2.31970 -0.43826 -0.05062 0.49057 2.99439

##
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## Coefficients:

i Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.411e+00 1.203e-01 11.730 <2e-16 ***
## mins 1.126e-05 4.778e-05 0.236 0.814

i ---

## Signif. codes: 0 ***'(0.001 *#*'0.01 '*'0.05".'0.1"'"1

i

## (Dispersion parameter for Negative Binomial(3.071) family taken to be 1)
Hi

## Null deviance: 191.44 on 149 degrees of freedom
## Residual deviance: 191.38 on 148 degrees of freedom

## AIC: 740.8

i

## Number of Fisher Scoring iterations: 1
i

i

#H# Theta: 3.071

#H# Std. Err.: 0.723

it

## 2 x log-likelihood: -734.801

Relationship between the number of clicks with depth

The number of clicks counted in 150 samples was used as the response variable, and the depth in meters for
each sample was the explanatory variable. To know which model would best fit my data, it was done the
same process that was done and showed previously for Freyal data. Therefore, it will only be shown the
model selected.

The gImNBM2 (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to see
the relationship between the number of clicks with depth for Mutti data.

Calculation of the theta value required for the negative binomial GLM for Mutti data.

# plot(Muttil $clicks~Muttil $depth)
Muttil.nbl <- glm.nb(Muttil$clicks ~ Mutti1$depth”4, link = log)
c(theta = Muttil.nb1$theta, SE = Muttil.nb1$SE)

## theta SE
## 3.6338546 0.9313743

The results from the negative binomial GLM show that the number of clicks increases (positive estimate)
significantly (p-value < 0.05) with increasing depth for Mutti data. In conclusion, there is a relationship
between the number of clicks with depth for Mutti data.

glmNBM2 = glm.nb(clicks ~ depth, link = log, init.theta = 3.6338546,
data = Muttil)
depthMutti = seq(0, 900, by = 1)
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predglmNBM2 <- predict(glmNBM?2, newdata = data.frame(depth = depthMutti),
type = "response")

plot(Mutti1$depth, Muttil$clicks, xlab = "Depth in meters", ylab = "Number of clicks",

main = list("Mutti"))
lines(depthMutti, predglmNBM?2)
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Summary of the negative binomial GLM for Mutti data
summary(glmNBM?2)

#it

## Call:

## glm.nb(formula = clicks ~ depth, data = Muttil, init.theta = 3.633854578,
## link = log)

#it

## Deviance Residuals:

## Min 1Q Median 3Q Max

##-2.5656 -0.4910 0.0630 0.4134 3.2779

##
## Coefficients:
i Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.8994850 0.1740695 5.167 2.37e-07 ***

##depth  0.0014399 0.0004412 3.264 0.0011 **

-

## Signif. codes: 0 ***'(0.001 *#*'0.01 '*'0.05".'0.1"'"1

i

## (Dispersion parameter for Negative Binomial(3.6339) family taken to be 1)
i
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## Null deviance: 204.78 on 149 degrees of freedom
## Residual deviance: 194.06 on 148 degrees of freedom
## AIC: 730.63

Hit

## Number of Fisher Scoring iterations: 1

Hit

Hit

#i# Theta: 3.634

#i# Std. Err.: 0.931

Hit

## 2 x log-likelihood: -724.625

Thora
Seeing how increasing the sample size changes the estimates

The average number of sounds per second for clicks present in the clicking period was calculated for Thora
data (with 150 samples), and the value obtained was 4.3333333.

The next plots show for each sample size, a sub-sample of k samples out of 150 that were selected, between
sample sizes of xmin and xmax, and the average was computed.

Seeing how increasing the sample size changes the estimates for Thora. 150 samples seem to be enough to
have a good estimate of narwhal cue rates and density since the coefficient of variation of the averages
number of clicks is less than 20% (Gomez & Gomez (1984)).

nobsT <- length(Thoral$clicks)

# Different sample sizes

limitT <- 5

nevalT <- limitT:(nobsT - limitT)

# Number of repetitions for each sample size

nrepsT <- 1000

# Object to store the averages

resultadosT <- matrix(NA, ncol = length(nevalT), nrow = nrepsT)

# For each sample size
for (i in 1:length(nevalT)) {
# For each repetition
for (j in 1:nrepsT) {
amostraT <- sample(Thoral$clicks, size = nevalT[i], replace = TRUE)
resultadosT][j, i] <- mean(amostraT)
}

}
par(mfrow = ¢(2, 2))

plot(nevalT, apply(resultadosT, 2, var), xlim = ¢(0, 150), xlab = "Different sample sizes",
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ylab = "Variance in the average", main = list("Thora"))

plot(x = ¢(5, 145), y = ¢(0, 10), xlab = "Different sample sizes",
ylab = "Average of each sampling”, main = list("Thora"),
type ="n")

for (i in 1:length(nevalT)) {
points(rep(nevalT[i], nrepsT), resultadosT[, i])

}
abline(h = mean(Thoral$clicks), col = 3, lwd = 3)

# looking at the CV (coefficient of variation)
plot(nevalT, apply(resultadosT, 2, sd)/apply(resultadosT, 2,
mean), ylab = "Coefficient of variation in the average",
xlab = "Different sample sizes", xlim = ¢(0, 150), main = list("Thora"))
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Data exploration
Graph and table of frequencies of the number of clicks counted in Thora data.

maxnT1 <- max(Thoral$clicks)

tempT1 <- factor(Thoral$clicks[Thoral $clicks <= maxnT1], levels = O:maxnT1,
labels = O:maxnT1)

barplot(table(tempT1), xlab = "Number of clicks per second",
ylab = "Frequency", main = list("Thora"), ylim = ¢(0, 40),
xlim = ¢(0, 25))
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table(tempT1)

## tempT1
## 01234567 891011121314151617181920
##35 11021211911105154110211001

# In Thoral, O clicks/s was the most frequent count (35
# times counted) followed by 3 and 4 clicks/s (both were 21
# times counted).

Clicks counted in 14 seconds were turned into O clicks/s because more than 20 Clicks/s are not detected on
PAM recorders given its low amplitude.

Trends of the number of clicks over time

The number of clicks counted in 150 samples was used as the response variable, and the time differences in
minutes between samples was the explanatory variable. To know which model would best fit my data, it
was done the same process that was done and showed previously for Freyal data. Therefore, it will only be
shown the model selected.

The gImNBT1 (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to see the
Trend of the number of clicks over time for Thora data.

Calculation of the theta value required for the negative binomial GLM for Thora data.

# plot(Thoral $clicks~Thoral $mins)

par(mfrow = ¢(1, 1))

Thoral.nb <- glm.nb(Thoral$clicks ~ Thoral $mins”4, link = log)
c(theta = Thoral .nb$theta, SE = Thoral .nb$SE)

103



## theta SE
## 1.361199 0.242646

The results from the negative binomial GLM show that the number of clicks increases (positive estimate)
non significantly over time for Thora data. In conclusion, there is not any clear pattern over time for Thora
data.

glmNBT1 = glm.nb(clicks ~ mins, link = log, init.theta = 1.361199,
data = Thoral)

DateTimeT1 = seq(0, 6000, by = 1)

predglmNBT1 <- predict(glmNBT1, newdata = data.frame(mins = DateTimeT1),
type = "response")

plot(Thoral$mins, Thoral$clicks, xlab = "Time differences in mins",
ylab = "Number of clicks", main = list("Thoral"))

lines(DateTimeT1, predglmNBT1)

Thora1
(e ]
I o]
o o]
0 wn
é - ¢! ]
© o o
—
5] o oo o o
s = @ 8 o0
O o] o0 s3]
E [o] o] L8] [e 8] [e e
5 o0 o] o} o} 00
= uw — o] O oo @ Jon g le] 4. b I
s Al ey (S E] [o )
o] L0 I ) (1 )10 [e1)] o} o O
o] o] [E I+ B O RN o o] [#]
o O oo KR oo O DO Ons O O

0 1000 2000 3000 4000 5000

Time differences in mins

Summary of the negative binomial GLM for Thora data
summary(glmNBT1)

##

## Call:

## glm.nb(formula = clicks ~ mins, data = Thoral, init.theta = 1.361198685,
## link =log)

#i#

## Deviance Residuals:

## Min 1Q Median 3Q Max

##-2.0175 -0.6804 -0.0827 0.3617 2.2663

##
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## Coefficients:

i Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.343e+00 1.901e-01 7.065 1.61e-12 ***
## mins 3.919¢e-05 5.502e-05 0.712 0.476

i ---

## Signif. codes: 0 ***'(0.001 *#*'0.01 '*'0.05".'0.1"'"1

i

## (Dispersion parameter for Negative Binomial(1.3612) family taken to be 1)
Hi

## Null deviance: 183.59 on 149 degrees of freedom
## Residual deviance: 183.04 on 148 degrees of freedom
## AIC: 774.62

i

## Number of Fisher Scoring iterations: 1

i

i

#H# Theta: 1.361

i Std. Err.: 0.243

it

## 2 x log-likelihood: -768.618

Relationship between the number of clicks with depth

The number of clicks counted in 150 samples was used as the response variable, and the depth in meters for
each sample was the explanatory variable. To know which model would best fit my data, it was done the
same process that was done and showed previously for Freyal data. Therefore, it will only be shown the
model selected.

The glmNBT?2 (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to see the
relationship between the number of clicks with depth for Thora data.

Calculation of the theta value required for the negative binomial GLM for Thora data.

# plot(Thoral $clicks~Thoral $depth)
Thoral.nbl <- glm.nb(Thoral$clicks ~ Thoral $depth”4, link = log)
c(theta = Thoral.nb1$theta, SE = Thoral.nb1$SE)

## theta SE
## 1.3578225 0.2417603

The results from the negative binomial GLM show that the number of clicks increases (positive estimate)
non significantly with increasing depth for Thora data. In conclusion, there is not a relationship between the
number of clicks with depth for Thora data.

glmNBT2 = glm.nb(clicks ~ depth, link = log, init.theta = 1.3578225,
data = Thoral)
depthThora = seq(0, 900, by = 1)
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predglmNBT2 <- predict(glmNBT2, newdata = data.frame(depth = depthThora),
type = "response")

plot(Thoral$depth, Thoral$clicks, xlab = "Depth in meters", ylab = "Number of clicks",

main = list("Thoral"))
lines(depthThora, predglmNBT2)
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Summary of the negative binomial GLM for Thora data
summary(glmNBT?2)

#it

## Call:

## glm.nb(formula = clicks ~ depth, data = Thoral, init.theta = 1.357822455,
## link = log)

#it

## Deviance Residuals:

## Min 1Q Median 3Q Max

##-2.0153 -0.6560 -0.1027 0.3311 2.2184

##
## Coefficients:
i Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.3941534 0.1452765 9.597 <2e-16 ***

##depth  0.0002782 0.0004707 0.591 0.554

-

## Signif. codes: 0 ***'(0.001 *#*'0.01 '*'0.05".'0.1"'"1

i

## (Dispersion parameter for Negative Binomial(1.3578) family taken to be 1)
i
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## Null deviance: 183.34 on 149 degrees of freedom
## Residual deviance: 182.98 on 148 degrees of freedom
## AIC: 774.81

Hit

## Number of Fisher Scoring iterations: 1

Hit

Hit

#i# Theta: 1.358

H# Std. Err.: 0.242

Hit

## 2 x log-likelihood: -768.812

Frida

Seeing how increasing the sample size changes the estimates

The average number of sounds per second for clicks present in the clicking period was calculated for Frida

data (with 149 samples), and the value obtained was 3.8120805.

The next plots show for each sample size, a sub-sample of k samples out of 149 that were selected, between

sample sizes of xmin and xmax, and the average was computed.

Seeing how increasing the sample size changes the estimates for Frida. 149 samples seem to be enough to
have a good estimate of narwhal cue rates and density since the coefficient of variation of the averages

number of clicks is less than 20% (Gomez & Gomez (1984)).

nobsF <- length(Fridal149$clicks)

# Different sample sizes

limitF <-5

nevalF <- limitF:(nobsF - limitF)

# Number of repetitions for each sample size

nrepsF <- 1000

# Object to store the averages

resultadosF <- matrix(NA, ncol = length(nevalF), nrow = nrepsF)

# For each sample size
for (i in 1:length(nevalF)) {
# For each repetition
for (j in 1:nrepsF) {
amostraF <- sample(Frida149$clicks, size = nevalF[i],
replace = TRUE)
resultadosF[j, i] <- mean(amostraF)
}

}
par(mfrow = ¢(2, 2))
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plot(nevalF, apply(resultadosF, 2, var), xlim = ¢(0, 149), xlab = "Different sample sizes",

ylab = "Variance in the average", main = list("Frida"))

plot(x = ¢(5, 144), y = ¢(0, 10), xlab = "Different sample sizes",
ylab = "Average of each sampling", main = list("Frida"),
type ="n")

for (i in 1:length(nevalF)) {
points(rep(nevalF[i], nrepsF), resultadosF[, i])

}
abline(h = mean(Fridal149$clicks), col = 3, lwd = 3)

# looking at the CV (coefficient of variation)
plot(nevalF, apply(resultadosF, 2, sd)/apply(resultadosF, 2,
mean), ylab = "Coefficient of variation in the average",
xlab = "Different sample sizes", xlim = ¢(0, 149), main = list("Frida"))
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Data exploration
Graph and table of frequencies of the number of clicks counted in Frida data.

maxnF <- max(Fridal49$clicks)

tempF <- factor(Fridal149%clicks[Fridal49%clicks <= maxnF], levels = 0:maxnF,
labels = O:maxnF)

barplot(table(tempF), xlab = "Number of clicks per second", ylab = "Frequency",
main = list("Frida"), ylim = ¢(0, 40), xlim = ¢(0, 25))
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table(tempF)

## tempF
# 01234567891011121314151617181920
##38 313131528199421001020000°1

# In Frida, O clicks/s was the most frequent count (38
# times counted) followed by 5 clicks/s (28 times counted).

Clicks counted in 18 seconds were turned into O clicks/s because more than 20 Clicks/s are not detected on
PAM recorders given its low amplitude.

Trends of the number of clicks over time

The number of clicks counted in 149 samples was used as the response variable, and the time differences in
minutes between samples was the explanatory variable. To know which model would best fit my data, it
was done the same process that was done and showed previously for Freyal data. Therefore, it will only be
shown the model selected.

The gImNBF (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to see the
Trend of the number of clicks over time for Frida data.

Calculation of the theta value required for the negative binomial GLM for Frida data.

# plot(Fridal498clicks~Fridal49$mins)

par(mfrow = ¢(1, 1))

Frida.nb <- glm.nb(Frida149$clicks ~ Frida149$mins”4, link = log)
c(theta = Frida.nb$theta, SE = Frida.nb$SE)
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##  theta SE
## 1.5583435 0.3136075

The results from the negative binomial GLM show that the number of clicks decreases significantly (p-value
< 0.05) over time for Frida data. In conclusion, there seems to be a pattern over time for Frida data.

glmNBF = glm.nb(clicks ~ mins, link = log, init.theta = 1.5583435,
data = Frida149)

DateTimeF = seq(0, 4000, by = 1)

predglmNBF <- predict(glmNBF, newdata = data.frame(mins = DateTimeF),
type = "response")

plot(Frida149$mins, Fridal49$clicks, xlab = "Time differences in mins",
ylab = "Number of clicks", main = list("Frida"))

lines(DateTimeF, predglmNBF)
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Summary of the negative binomial GLM for Frida data.
summary(glmNBF)

#i#

## Call:

## glm.nb(formula = clicks ~ mins, data = Frida149, init.theta = 1.558343652,
## link = log)

##

## Deviance Residuals:

##  Min 1Q Median 3Q Max

## -2.22018 -1.82816 0.00093 0.42688 2.29891

#it

## Coefficients:
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## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.802e+00 1.972e-01 9.14 < 2e-16 ***
## mins -2.115e-04 8.105e-05 -2.61 0.00906 **

H ---

## Signif. codes: 0 "***'(0.001 *#*'0.01 '*'0.05"'0.1"'"1

Hi

## (Dispersion parameter for Negative Binomial(1.5583) family taken to be 1)
i

##  Null deviance: 191.98 on 148 degrees of freedom
## Residual deviance: 185.49 on 147 degrees of freedom
## AIC: 728.98

it

## Number of Fisher Scoring iterations: 1

Hit

i

#HH# Theta: 1.558

## Std. Err.: 0.314

it

## 2 x log-likelihood: -722.981

Relationship between the number of clicks with depth

The number of clicks counted in 149 samples was used as the response variable, and the depth in meters for
each sample was the explanatory variable. To know which model would best fit my data, it was done the
same process that was done and showed previously for Freyal data. Therefore, it will only be shown the
model selected.

The glmNBFrida (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to see
the relationship between the number of clicks with depth for Frida data.

Calculation of the theta value required for the negative binomial GLM for Frida data.

# plot(Fridal49%clicks~Fridal49%depth)
Frida.nb1 <- glm.nb(Frida149$clicks ~ Frida149%depth”4, link = log)
c(theta = Frida.nb1$theta, SE = Frida.nb1$SE)

##  theta SE
## 1.5688881 0.3172617

The results from the negative binomial GLM show that the number of clicks increases (positive estimate)
significantly (p-value < 0.05) with increasing depth for Frida data. In conclusion, there is a relationship
between the number of clicks with depth for Frida data.

glmNBFrida = glm.nb(clicks ~ depth, link = log, init.theta = 1.5688881,
data = Frida149)
depthFrida = seq(0, 600, by = 1)
predglmNBFrida <- predict(glmNBFrida, newdata = data.frame(depth = depthFrida),
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type = "response")

plot(Frida149%depth, Frida149$clicks, xlab = "Depth in meters",

ylab = "Number of clicks", main = list("Frida"))
lines(depthFrida, predglmNBFrida)
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Summary of the negative binomial GLM for Frida data

summary(glmNBFrida)

H#it
## Call:

## glm.nb(formula = clicks ~ depth, data = Frida149, init.theta = 1.568888077,

## link = log)

##

## Deviance Residuals:

##  Min 1Q Median 3Q Max

## -2.20661 -1.83245 -0.00993 0.40684 2.28798
#i#

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.1004968 0.1180429 9.323 < 2e-

16 ***

## depth  0.0015852 0.0006146 2.579 0.00991 **

T

## Signif. codes: 0 "***'(0.001 **'0.01 *'0.05".'0.1""'1

##

## (Dispersion parameter for Negative Binomial(1.5689) family taken to be 1)

##

##  Null deviance: 192.63 on 148 degrees of freedom
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## Residual deviance: 185.80 on 147 degrees of freedom
## AIC: 728.67

Hit

## Number of Fisher Scoring iterations: 1

H#

Hit

H#i# Theta: 1.569

Hit Std. Err.: 0.317

Hit

## 2 x log-likelihood: -722.675

Jonas
Seeing how increasing the sample size changes the estimates

The average number of sounds per second for clicks present in the clicking period was calculated for Jonas
data (with 200 samples), and the value obtained was 4.095.

The next plots show for each sample size, a sub-sample of k samples out of 200 that were selected, between
sample sizes of xmin and xmax, and the average was computed.

Seeing how increasing the sample size changes the estimates for Jonas. 200 samples seem to be enough to
have a good estimate of narwhal cue rates and density since the coefficient of variation of the averages
number of clicks is less than 20% (Gomez & Gomez (1984)).

nobsJ <- length(Jonas$clicks)

# Different sample sizes

limitJ <- 5

nevall <- limitJ:(nobsJ - limitJ)

# Number of repetitions for each sample size

nrepsJ <- 1000

# Object to store the averages

resultados] <- matrix(NA, ncol = length(nevall), nrow = nrepsJ)

# For each sample size
for (i in 1:length(neval))) {
# For each repetition
for (j in 1:nreps)) {
amostral <- sample(Jonas$clicks, size = nevall[i], replace = TRUE)
resultados][j, i] <- mean(amostral)
}

}
par(mfrow = ¢(2, 2))

plot(nevall, apply(resultados], 2, var), xlim = ¢(0, 200), xlab = "Different sample sizes",
ylab = "Variance in the average", main = list("Jonas"))

113



plot(x = ¢(5, 195), y = ¢(0, 10), xlab = "Different sample sizes",
ylab = "Average of each sampling”, main = list("Jonas"),
type ="n")

for (i in 1:length(neval))) {
points(rep(nevall[i], nreps)), resultadosJ|, i])

}

abline(h = mean(Jonas$clicks), col = 3, lwd = 3)

# looking at the CV (coefficient of variation)
plot(nevall, apply(resultados], 2, sd)/apply(resultados], 2,
mean), ylab = "Coefficient of variation in the average",
xlab = "Different sample sizes", xlim = ¢(0, 200), main = list("Jonas"))
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Data exploration
Graph and table of frequencies of the number of clicks counted in Jonas data.

maxnJ <- max(Jonas$clicks)

templJ <- factor(Jonas$clicks[Jonas$clicks <= maxnJ], levels = O:maxn],
labels = O:maxnlJ)

barplot(table(tempJ), xlab = "Number of clicks per second", ylab = "Frequency",
main = list("Jonas"), ylim = ¢(0, 50))
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table(templJ)

## templJ
# 012345678910111213141516
##36 4122041401710 6 6 3300101

# In Jonas data, 4 and 5 clicks/s were the most frequent
# count (41 and 40 times counted, respectively) followed by
# 0 clicks/s (36 times counted).

Clicks counted in 23 seconds were turned into O clicks/s because more than 20 Clicks/s are not detected on
PAM recorders given its low amplitude.

Trends of the number of clicks over time

The number of clicks counted in 200 samples was used as the response variable, and the time differences in
minutes between samples was the explanatory variable. To know which model would best fit my data, it
was done the same process that was done and showed previously for Freyal data. Therefore, it will only be
shown the model selected.

The glmNBJ (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to see the
Trend of the number of clicks over time for Jonas data.

Calculation of the theta value required for the negative binomial GLM for Jonas data.

Jonas.nb <- glm.nb(Jonas$clicks ~ Jonas$mins”4, link = log)
c(theta = Jonas.nb$theta, SE = Jonas.nb$SE)

## theta SE
##2.9701185 0.6159317
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The results from the negative binomial GLM show that the number of clicks decreases (negative estimate)
non significantly over time for Jonas data. In conclusion, there is not any clear pattern over time for Jonas
data.

# plot(Jonas$clicks~Jonas$mins)
par(mfrow = ¢(1, 1))

glmNBJ = glm.nb(clicks ~ mins, link = log, init.theta = 2.9701185,
data = Jonas)

DateTimeJ = seq(0, 9000, by = 1)

predglmNBJ <- predict(glmNBJ, newdata = data.frame(mins = DateTimel),
type = "response")

plot(Jonas$mins, Jonas$clicks, xlab = "Time differences in mins",
ylab = "Number of clicks", main = list("Jonas"))

lines(DateTimel, predglmNBJ)
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Summary of the negative binomial GLM for Jonas data
summary(glmNBJ)

##

## Call:

## glm.nb(formula = clicks ~ mins, data = Jonas, init.theta = 2.970118456,
## link =log)

##

## Deviance Residuals:

##  Min 1Q Median 3Q Max

## -2.27874 -0.78587 -0.02994 0.28627 2.46104
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##

## Coefficients:

# Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.423e+00 1.081e-01 13.162 <2e-16 ***
## mins -2.950e-06 2.118e-05 -0.139 0.889

H ---

## Signif. codes: 0 ***'(0.001 *#*'0.01 '*'0.05".'0.1"'"1

i

## (Dispersion parameter for Negative Binomial(2.9701) family taken to be 1)
Hit

##  Null deviance: 258.19 on 199 degrees of freedom
## Residual deviance: 258.17 on 198 degrees of freedom
## AIC: 980.03

i

## Number of Fisher Scoring iterations: 1

i

Hit

#H# Theta: 2.970

#H# Std. Err.: 0.616

#Hit

## 2 x log-likelihood: -974.031

Relationship between the number of clicks with depth

The number of clicks counted in 200 samples was used as the response variable, and the depth in meters for
each sample was the explanatory variable. To know which model would best fit my data, it was done the
same process that was done and showed previously for Freyal data. Therefore, it will only be shown the
model selected.

The glmNBJ1 (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to see the
relationship between the number of clicks with depth for Jonas data.

Calculation of the theta value required for the negative binomial GLM for Jonas data.

Jonas.nbl <- glm.nb(Jonas$clicks ~ Jonas$depth”4, link = log)
c(theta = Jonas.nb1$theta, SE = Jonas.nb1$SE)

## theta SE
## 3.1720641 0.6804949

The results from the negative binomial GLM show that the number of clicks increases (positive estimate)
significantly (p-value < 0.05) with increasing depth for Jonas data. In conclusion, there is a relationship
between the number of clicks with depth for Jonas data.

# plot(Jonas$clicks~Jonas$depth)
glmNBJ1 = glm.nb(clicks ~ depth, link = log, init.theta = 3.1720641,
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data = Jonas)

depthJonas = seq(0, 900, by = 1)

predglmNBJ1 <- predict(glmNBJ1, newdata = data.frame(depth = depthJonas),
type = "response")

plot(Jonas$depth, Jonas$clicks, xlab = "Depth in meters", ylab = "Number of clicks",

main = list("Jonas"))
lines(depthJonas, predglmNBJ1)
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Summary of the negative binomial GLM for Jonas data
summary(glmNBJ1)

i

## Call:

## glm.nb(formula = clicks ~ depth, data = Jonas, init.theta = 3.172063833,
## link = log)

i

## Deviance Residuals:

##  Min 1Q Median 3Q Max
##-2.50748 -0.60817 -0.00985 0.40327 2.41066

it

## Coefficients:

#it Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.1331436 0.1289260 8.789 <2e-16 ***
##depth  0.0008245 0.0003514 2.346 0.019 *

Hi

## Signif. codes: 0 "***'(0.001 **'0.01 *'0.05".'0.1"'"1
i
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## (Dispersion parameter for Negative Binomial(3.1721) family taken to be 1)
H#

##  Null deviance: 265.14 on 199 degrees of freedom
## Residual deviance: 259.74 on 198 degrees of freedom
## AIC: 974.75

Hit

## Number of Fisher Scoring iterations: 1

Hit

Hit

## Theta: 3.172

Hit Std. Err.: 0.680

it

## 2 x log-likelihood: -968.751

Mara

The average number of sounds per second for clicks present in the clicking period was calculated for Mara
data (with 10 samples), and the value obtained was 5.

A power reset on Mara record lead to just 1h of clicking and buzzing recorded (Blackwell ef al. (2018)), so
only 10 samples were selected for Mara data. Because of her small sample size, the analysis where it is seen
how increasing the sample size changes the estimates were not done.

Data exploration
Graph and table of frequencies of the number of clicks counted in Mara data.

maxnMa <- max(Maral $clicks)

tempMa <- factor(Maral $clicks[Maral$clicks <= maxnM1], levels = O:maxnMI1,
labels = O:maxnM1)

barplot(table(tempMa), ylim = ¢(0, 5), xlim = ¢(0, 16), xlab = "Number of clicks per second",
ylab = "Frequency", main = list("Mara"))
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table(tempMa)

## tempMa
# 01234567891011121314151617181920
#110023200000001000000

#In Maral, 5 clicks/s was the most frequent count (3 times
# counted) followed by 4 and 6 clicks/s (both were 2 times
# counted).

Since Mara did not have samples with more than 20 Clicks/s, it was not necessary to turn any selected
seconds into O clicks/s.

Trends of the number of clicks over time

The number of clicks counted in 10 samples was used as the response variable, and the time differences in
minutes between samples was the explanatory variable. To know which model would best fit my data, it
was done the same process that was done and showed previously for Freyal data. Therefore, it will only be
shown the model selected.

The gamMara (poisson GAM) had a smaller AIC value, so it will be chosen this model to see the Trend of
the number of clicks over time for Mara data.

The results from the poisson GAM show that the number of clicks increases and then decreases significantly
(p-value < 0.05) over time for Mara data. In conclusion, there seems to be a pattern over time for Mara data.

gamMara = gam(clicks ~ s(mins), family = poisson, link = "log",
data = Maral)
DateTimeMara = seq(0, 60, by = 1)
predgamMara <- predict(gamMara, newdata = data.frame(mins = DateTimeMara),
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type = "response")
plot(Maral$mins, Maral$clicks, xlab = "Time differences in mins",
ylab = "Number of clicks", main = list("Mara"))
lines(DateTimeMara, predgamMara)

Mara
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Summary of the poisson GAM for Mara data
summary(gamMara)

#Hit
## Family: poisson
## Link function: log

##

## Formula:

## clicks ~ s(mins)

##

## Parametric coefficients:

#it Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.3459 0.2041 6.594 4.29¢e-11 ***

#i# ---

## Signif. codes: 0 "***'(0.001 "**'0.01 *'0.05"'.'0.1""'1
##

## Approximate significance of smooth terms:

H## edf Ref.df Chi.sq p-value

## s(mins) 5.626 6.663 16.87 0.0144 *

Hi

## Signif. codes: 0 "***'(0.001 **'0.01 *'0.05".'0.1"'"1
i

121



## R-sq.(adj) = 0.851 Deviance explained = 90%
## UBRE = 0.58986 Scale est. =1 n=10

Relationship between the number of clicks with depth

The number of clicks counted in 10 samples was used as the response variable, and the depth in meters for
each sample was the explanatory variable. To know which model would best fit my data, it was done the
same process that was done and showed previously for Freyal data. Therefore, it will only be shown the
model selected.

The glmNBMara (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to see
the relationship between the number of clicks with depth for Mara data.

Calculation of the theta value required for the negative binomial GLM for Mara data.

Mara.nbl <- glm.nb(Maral$clicks ~ Maral$depth”4, link = log)
c(theta = Mara.nb1$theta, SE = Mara.nb1$SE)

## theta SE
## 3.171334 2.551907

The results from the negative binomial GLM show that the number of clicks increases (positive estimate)
non significantly with increasing depth for Mara data. In conclusion, there is not a relationship between the
number of clicks with depth for Mara data.

glmNBMara = glm.nb(clicks ~ depth, link = log, init.theta = 3.171334,
data = Maral)

depthMara = seq(0, 600, by = 1)

predglmNBMara <- predict(glmNBMara, newdata = data.frame(depth = depthMara),
type = "response")

plot(Maral$depth, Maral$clicks, xlab = "Depth in meters”, ylab = "Number of clicks",
main = list("Mara"))

lines(depthMara, predglmNBMara)
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Summary of the negative binomial GLM for Mara data
summary(glmNBMara)

##

## Call:

## glm.nb(formula = clicks ~ depth, data = Maral, init.theta = 3.171334653,
## link = log)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.4017 -0.3473 -0.1379 0.1932 1.9203

##

## Coefficients:

#a Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.4421086 0.5609124 2.571 0.0101 *
## depth 0.0005535 0.0017001 0.326 0.7448

i ---

## Signif. codes: 0 '***'(0.001 *#*'0.01 '*'0.05"'0.1"'"1

H#Hi

## (Dispersion parameter for Negative Binomial(3.1713) family taken to be 1)
#H#

## Null deviance: 12.035 on 9 degrees of freedom
## Residual deviance: 11.939 on 8 degrees of freedom
## AIC: 57.552

i

## Number of Fisher Scoring iterations: 1

Hit
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##

#4# Theta: 3.17
## Std. Err.: 2.55
##

## 2 x log-likelihood: -51.552
Models with all the whales

Here it was done the same as above, we observed the trends of the number of clicks over time and depth,
but with all the sampling data together with narwhal ID as a fixed factor

Freyal2 <- rbind(Freyal T, Freya2T)
# Freyal2<-Freyal2[,-c(9)]

# convert date/time in format month-day-year hour:min:sec
Freyal2$time <- as.POSTXct(Freyal2$time, format = "%m/%d/%y %H:%M:%S",
tz = "America/Tijuana")

# Considering time since the first sample selected started
Freyal2$mins <- difftime(timel = Freyal2$time, time2 = Freyal2$time[1],
units = "mins")

# Convert time differences (mins) in numeric format
Freyal2$mins = as.numeric(Freyal2$mins)

# convert date/time in format month-day-year hour:min:sec
Frida150%$time <- as.POSIXct(Fridal50$time, format = "%m/%d/%y %H:%M:%S",
tz = "America/Tijuana")

# Considering time since the first sample selected started
Fridal150$mins <- difftime(timel = Fridal50$time, time2 = Fridal150$time[1],
units = "mins"

allwhales <- rbind(Freyal2, Balderl, Eistlal, Muttil, Thoral,
Frida150, Maral, Jonas)

allwhales2 <- allwhales[-994, | #149 samples for Frida (I had to delete the sample 144 for Fridal50 data
because to do the analysis I can not have any NA)

Trends of the number of clicks over time

The number of clicks counted in sampling data was used as the response variable, and the time differences
in minutes between samples was the explanatory variable. To know which model would best fit my data, it
was seen the AIC values for GLMs and GAMs with negative binomial and poisson families.
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glmNBallwhales2 = glm.nb(clicks ~ mins + whale, link = log, data = allwhales2)
glmallwhalesP2 = glm(clicks ~ mins + whale, family = poisson(link = "log"),
data = allwhales2)
gamallwhalesP2 = gam(clicks ~ mins + whale, family = poisson,
link = "log", data = allwhales2)
gamNBallwhales2 = gam(clicks ~ mins + whale, family = nb(), data = allwhales2)

The glmNBallwhales2 (negative binomial GLM) had a smaller AIC value, so it will be chosen this model
to see the Trend of the number of clicks over time for all the sampling data.

AIC(glmNBallwhales2, glmallwhalesP2, gamallwhalesP2, gamNBallwhales2)

H#i# df AIC
## glmNBallwhales2 10 6107.529
## glmallwhalesP2 9 6910.081
## gamallwhalesP2 9 6910.081
## gamNBallwhales2 10 6107.577

Residuals of the negative binomial GLM. In the plot “Residuals vs Leverage” there is some outliers that
could influence the regression results

par(mfrow = ¢(2, 2))

plot(glmNBallwhales2)
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The results from the negative binomial GLM show that the number of clicks decreases non significantly (p-
value = 0.12332) over time for all the sampling data. In conclusion, there is not a pattern over time for all
the sampling data.
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par(mfrow = ¢(1, 1))

glmNBallwhales2 = glm.nb(clicks ~ mins + whale, link = log, data = allwhales2)

DateTimeallwhales = seq(0, 9000, by = 1)

predglmNBallBalder2 <- predict(glmNBallwhales2, newdata = data.frame(mins = DateTimeallwhales,
whale = "Balder"), type = "response")

plot(DateTimeallwhales, predglmNBallBalder2, xlab = "Time differences in mins",
ylab = "Number of clicks per second", col = "dodgerbluel", pch = 20,
ylim = ¢(2, 8))

predglmNBallEistla2 <- predict(glmNBallwhales2, newdata = data.frame(mins = DateTimeallwhales,
whale = "Eistla"), type = "response")

points(DateTimeallwhales, predglmNBallEistla2, col = "mediumblue”,
pch = 20)

predglmNBallFreya2 <- predict(glmNBallwhales2, newdata = data.frame(mins = DateTimeallwhales,
whale = "Freya"), type = "response")

points(DateTimeallwhales, predglmNBallFreya2, col = "turquoise4",
pch =20)

predglmNBallFrida2 <- predict(glmNBallwhales2, newdata = data.frame(mins = DateTimeallwhales,
whale = "Frida"), type = "response")

points(DateTimeallwhales, predglmNBallFrida2, col = "red", pch = 20)

predglmNBallJonas2 <- predict(glmNBallwhales2, newdata = data.frame(mins = DateTimeallwhales,
whale = "Jonas"), type = "response")

points(DateTimeallwhales, predglmNBallJonas2, col = "deeppink3",
pch =20)

predglmNBallMara2 <- predict(glmNBallwhales2, newdata = data.frame(mins = DateTimeallwhales,
whale = "Mara"), type = "response")

points(DateTimeallwhales, predglmNBallMara2, col = "coral4",
pch =20)

predglmNBallMutti2 <- predict(glmNBallwhales2, newdata = data.frame(mins = DateTimeallwhales,
whale = "Mutti"), type = "response")

points(DateTimeallwhales, predglmNBallMutti2, col = "orange",
pch = 20)

predglmNBallThora2 <- predict(glmNBallwhales2, newdata = data.frame(mins = DateTimeallwhales,
whale = "Thora"), type = "response")

points(DateTimeallwhales, predglmNBallThora2, col = "lightblue",
pch = 20)

legend("topright", legend = c¢("Balder", "Eistla", "Freya", "Frida",
"Jonas", "Mara", "Mutti", "Thora"), col = ¢("dodgerbluel",
"mediumblue", "turquoise4", "red", "deeppink3", "coral4",
"orange", "lightblue"), cex = 1, pch = 20)
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Summary of the negative binomial GLM for all the sampling data
summary(glmNBallwhales2)

#i#

## Call:

## glm.nb(formula = clicks ~ mins + whale, data = allwhales2, link = log,
## init.theta = 1.973431811)

##

## Deviance Residuals:

##  Min 1Q Median 3Q Max

## -2.25327 -0.74812 -0.03072 0.39261 2.68022

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.643e+00 8.765e-02 18.747 < 2e-16 ***
## mins -2.346e-05 1.523e-05 -1.541 0.12332

## whaleEistla -1.574e-01 9.565e-02 -1.646 0.09986 .
## whaleFreya -1.296e-01 9.813e-02 -1.321 0.18644
## whaleFrida -2.543e-01 9.808e-02 -2.593 0.00952 **
## whaleJonas -1.292e-01 8.582e-02 -1.505 0.13225
## whaleMara -3.320e-02 2.798e-01 -0.119 0.90556
## whaleMutti -1.571e-01 9.768e-02 -1.609 0.10770
## whaleThora -1.022¢-01 9.379e-02 -1.090 0.27571
## -

## Signif. codes: 0 ***'(0.001 **'0.01 *'0.05"'.'0.1"'"1
##

## (Dispersion parameter for Negative Binomial(1.9734) family taken to be 1)
##
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## Null deviance: 1534.7 on 1208 degrees of freedom
## Residual deviance: 1525.8 on 1200 degrees of freedom
## AIC: 6107.5

Hit

## Number of Fisher Scoring iterations: 1

Hit

Hit

Hit Theta: 1.973

H# Std. Err.: 0.141

Hit

## 2 x log-likelihood: -6087.529

Relationship between the number of clicks with depth

The number of clicks counted in sampling data was used as the response variable, and the depth in meters
for each sample was the explanatory variable. To know which model would best fit my data, it was seen the
AIC values for GLMs and GAMs with negative binomial and poisson families.

glmNBallwhales = glm.nb(clicks ~ depth + whale, link = log, data = allwhales2)
glmallwhalesP = glm(clicks ~ depth + whale, family = poisson(link = "log"),
data = allwhales2)
gamallwhalesP = gam(clicks ~ depth + whale, family = poisson,
link = "log", data = allwhales2)
gamNBallwhales = gam(clicks ~ depth + whale, family = nb(), data = allwhales2)

The glmNBallwhales (negative binomial GLM) had a smaller AIC value, so it will be chosen this model to
see the relationship between the number of clicks with depth for all the sampling data.

AIC(glmNBallwhales, glmallwhalesP, gamallwhalesP, gamNBallwhales)

i df AIC
## glmNBallwhales 10 6090.036
## glmallwhalesP 9 6858.487
## gamallwhalesP 9 6858.487
## gamNBallwhales 10 6090.085

Residuals of the negative binomial GLM. In the plot “Residuals vs Leverage” there is some outliers that
could influence the regression results

par(mfrow = ¢(2, 2))
plot(glmNBallwhales)
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The results from the negative binomial GLM show that the number of clicks increases (positive estimate)
significantly (p-value = 6.05e-06) with increasing depth for the sampling data. In conclusion, there is a
relationship between the number of clicks with depth for all the sampling data.

par(mfrow = ¢(1, 1))

glmNBallwhales = glm.nb(clicks ~ depth + whale, link = log, data = allwhales?2)

depthallJonas = seq(0, 820, by = 1)

predglmNBallJonas <- predict(glmNBallwhales, newdata = data.frame(depth = depthallJonas,
whale = "Jonas"), type = "response")

plot(depthallJonas, predglmNBallJonas, xlab = "Depth (m)", ylab = "Number of clicks per second",
col = "deeppink3", pch = 20, ylim = ¢(2, 7))

depthallBalder = seq(0, 800, by = 1)

predglmNBallBalder <- predict(glmNBallwhales, newdata = data.frame(depth = depthallBalder,
whale = "Balder"), type = "response")

points(depthallBalder, predglmNBallBalder, col = "dodgerbluel",
pch =20)

depthallEistla = seq(0, 730, by = 1)

predglmNBallEistla <- predict(glmNBallwhales, newdata = data.frame(depth = depthallFEistla,
whale = "Eistla"), type = "response")

points(depthallFistla, predglmNBallEistla, col = "mediumblue",
pch = 20)

depthallFreya = seq(0, 620, by = 1)

predglmNBallFreya <- predict(glmNBallwhales, newdata = data.frame(depth = depthallFreya,
whale = "Freya"), type = "response")

points(depthallFreya, predglmNBallFreya, col = "turquoise4"”,
pch =20)
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depthallFrida = seq(0, 540, by = 1)

predglmNBallFrida <- predict(glmNBallwhales, newdata = data.frame(depth = depthallFrida,
whale = "Frida"), type = "response")

points(depthallFrida, predglmNBallFrida, col = "red", pch = 20)

depthallMara = seq(0, 570, by = 1)

predglmNBallMara <- predict(glmNBallwhales, newdata = data.frame(depth = depthallMara,
whale = "Mara"), type = "response")

points(depthallMara, predglmNBallMara, col = "coral4", pch = 20)

depthallMutti = seq(0, 700, by = 1)

predglmNBallMutti <- predict(glmNBallwhales, newdata = data.frame(depth = depthallMutti,
whale = "Mutti"), type = "response")

points(depthallMutti, predglmNBallMutti, col = "orange", pch = 20)

depthallThora = seq(0, 780, by = 1)

predglmNBallThora <- predict(glmNBallwhales, newdata = data.frame(depth = depthallThora,
whale = "Thora"), type = "response")

points(depthallThora, predglmNBallThora, col = "lightblue", pch = 20)

legend("bottomright", legend = ¢("Balder", "Eistla", "Freya",
"Frida", "Jonas", "Mara", "Mutti", "Thora"), col = ¢("dodgerbluel",
"mediumblue", "turquoise4", "red", "deeppink3", "coral4",
"orange", "lightblue"), cex = 1, pch = 20)
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Summary of the negative binomial GLM for all the sampling data

summary(glmNBallwhales)

##

## Call:

## glm.nb(formula = clicks ~ depth + whale, data = allwhales, link = log,
## init.theta = 2.032733003)

#i#

## Deviance Residuals:
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##  Min 1Q Median 3Q Max

##-2.32599 -0.64534 -0.01847 0.38772 2.70703

Hit

## Coefficients:

#a Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.2744715 0.0848762 15.016 < 2e-16 ***
## depth 0.0007552 0.0001669 4.524 6.06e-06 ***
## whaleEistla -0.1050543 0.0919270 -1.143 0.253

## whaleFreya 0.0121240 0.0858258 0.141 0.888

## whaleFrida -0.0512702 0.0999345 -0.513 0.608

## whaleJonas -0.1182877 0.0851233 -1.390 0.165

## whaleMara 0.1071330 0.2700504 0.397 0.692

## whaleMutti -0.1218287 0.0917302 -1.328 0.184

## whaleThora -0.0021025 0.0929279 -0.023 0.982

H## -

## Signif. codes: 0 "***'(0.001 **'(0.01 *'0.05".'0.1"'"1
Hit

## (Dispersion parameter for Negative Binomial(2.0327) family taken to be 1)
H#

##  Null deviance: 1556.9 on 1208 degrees of freedom
## Residual deviance: 1530.1 on 1200 degrees of freedom
## (1 observation deleted due to missingness)

## AIC: 6090

#Hi#

## Number of Fisher Scoring iterations: 1
i

H#

#i# Theta: 2.033

i Std. Err.: 0.147

i

## 2 x log-likelihood: -6070.036

Estimating Click Rates

In this section, it will be estimated the echolocation clicks rate for each tag data, their variance, and the
coefficient of variation of these rates. In addition, the number of seconds that were spent clicking and in
silence will also be calculated for each tag data.

FreyaW <- FreyaW][, -¢(2, 4)]
BalderW <- BalderW[, -¢(2, 4)]
EistlaW <- EistlaW[, -¢(2, 4)]
MuttiW <- MuttiW[, -c¢(2, 4)]
ThoraW <- ThoraW[, -¢(2, 4)]
FridaW <- FridaW][, -¢(2, 4)]
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MaraW <- MaraW][, -¢(2, 4)]
JonasW <- JonasW[, -¢(2, 4)]
## The columns Depth and Buzzing were removed

FreyaO2 <- na.omit(FreyaW)

BalderO2 <- na.omit(BalderW)

EistlaO2 <- na.omit(EistlaW)

MuttiO2 <- na.omit(MuttiW)

ThoraO2 <- na.omit(ThoraW)

FridaO2 <- na.omit(FridaW)

MaraO2 <- na.omit(MaraW)

JonasO112 <- na.omit(JonasW)

## All NaN values were removed from the original data, so
## we can have only the number of seconds spent clicking.

SilenceF1 = nrow(FreyaW) - nrow(FreyaO2)
SilenceF2 = nrow(FreyaW) - nrow(FreyaO2)
SilenceF12 = nrow(FreyaW) - nrow(FreyaO2)
SilenceB = nrow(BalderW) - nrow(BalderO2)
SilenceE = nrow(EistlaW) - nrow(Eistla02)
SilenceM = nrow(MuttiW) - nrow(MuttiO2)
SilenceT = nrow(ThoraW) - nrow(ThoraO2)
SilenceF = nrow(FridaW) - nrow(FridaO2)
Silence] = nrow(JonasW) - nrow(JonasO112)
SilenceMa = nrow(MaraW) - nrow(MaraO2)
## Calculation of the number of seconds spent in silence
## for each tag data.

ClickrateF1 = (nrow(FreyaO2) * mean(Freyal T$clicks))/nrow(FreyaW)
ClickrateF2 = (nrow(FreyaO2) * mean(Freya2T$clicks))/nrow(FreyaW)
ClickrateF12 = (nrow(FreyaO2) * mean(Freyal2$clicks))/nrow(FreyaW)
ClickrateB = (nrow(BalderO2) * mean(Balder1$clicks))/mrow(BalderW)
ClickrateE = (nrow(EistlaO2) * mean(Eistlal$clicks))/nrow(EistlaW)
ClickrateM = (nrow(MuttiO2) * mean(Muttil$clicks))/nrow(MuttiW)
ClickrateT = (nrow(ThoraO2) * mean(Thoral $clicks))/nrow(ThoraW)
ClickrateF = (nrow(FridaO2) * mean(Fridal49%$clicks))/nrow(FridaW)
Clickrate] = (nrow(JonasO112) * mean(Jonas$clicks))/nrow(JonasW)
ClickrateMa = (nrow(MaraO2) * mean(Maral $clicks))/nrow(MaraW)
## Calculation of Echolocation Clicks rate for each tag

## data.

varcrF1 = (((nrow(FreyaO2)/mrow(FreyaW))”2) * (1/((nrow(FreyalT))"2)) *

var(Freyal T$clicks) * ((nrow(FreyaW) - nrow(FreyalT))/(nrow(FreyaW) -
D))
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varcrF2 = (((nrow(FreyaO2)/nrow(FreyaW))”2) * (1/((nrow(Freya2T))"2)) *
var(Freya2TS$clicks) * ((nrow(FreyaW) - nrow(Freya2T))/(nrow(FreyaW) -
1))

varcrF12 = ((nrow(FreyaO2)/nrow(FreyaW))”2) * (1/((nrow(Freyal2))"2)) *
var(Freyal2$clicks) * ((nrow(FreyaW) - nrow(Freyal2))/(nrow(FreyaW) -
1))

varcrB = (((nrow(BalderO2)/mrow(BalderW))”2) * (1/((nrow(Balder1))"2)) *
var(Balder1$clicks) * ((nrow(BalderW) - nrow(Balderl))/(nrow(BalderW) -
1))

varcrE = (((nrow(EistlaO2)/mrow(EistlaW))”2) * (1/((nrow(Eistlal1))"2)) *
var(Eistlal$clicks) * ((nrow(EistlaW) - nrow(Eistlal))/(nrow(EistlaW) -
1))

varcrM = (((nrow(MuttiO2)/mrow(Muttiw))”2) * (1/((nrow(Muttil))"2)) *
var(Muttil$clicks) * ((nrow(MuttiW) - nrow(Muttil))/(nrow(MuttiW) -
1))

varcrT = (((nrow(ThoraO2)/mrow(ThoraW))”2) * (1/((nrow(Thoral))”2)) *
var(Thoral$clicks) * ((nrow(ThoraW) - nrow(Thoral))/(nrow(ThoraW) -
1))

varcrF = ((mrow(FridaO2)/mrow(FridaW))”2) * (1/((nrow(Frida149))"2)) *
var(Fridal49$clicks) * ((nrow(FridaW) - nrow(Frida149))/(nrow(FridaW) -
1))

varcr] = ((nrow(JonasO112)/nrow(JonasW))”2) * (1/((nrow(Jonas))"2)) *
var(Jonas$clicks) * ((nrow(JonasW) - nrow(Jonas))/(nrow(JonasW) -

1))

varcrMa = (((nrow(MaraO2)/mrow(MaraW))”2) * (1/((nrow(Maral))"2)) *
var(Maral$clicks) * ((nrow(MaraW) - nrow(Maral))/(nrow(MaraW) -
1))

## Calculation of Echolocation Clicks rate variance for

## each tag data.

cvF1 = (sqrt(varcrF1)/ClickrateF1) * 100
cvF2 = (sqrt(varcrF2)/ClickrateF2) * 100
cvF12 = (sqrt(varcrF12)/ClickrateF12) * 100
cvB = (sqrt(varcrB)/ClickrateB) * 100

cvE = (sqrt(varcrE)/ClickrateE) * 100

cvM = (sqrt(varcrM)/ClickrateM) * 100

cvT = (sqrt(varcrT)/ClickrateT) * 100

cvF = (sqrt(varcrF)/ClickrateF) * 100

cvl] = (sqrt(varcr])/Clickratel) * 100

cvMa = (sqrt(varcrMa)/ClickrateMa) * 100
## Calculation of coefficient of variation for each tag
## data.
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Table with respective values for each whale (clickrates table)
clickrates <- data.frame(whaleID = 1:10, whale = NA, sex = NA,
length = NA, samples = NA, totalrecord = NA, silence = NA,
clicking = NA, mean = NA, cr = NA, crvar = NA, crcv = NA)

clickrates$whale[4] <- "Freyal"
clickrates$sex[4] <- "Female"
clickrates$length[4] <- 420
clickrates$samples[4] <- nrow(FreyalT)
clickrates$totalrecord[4] <- nrow(FreyaW)
clickrates$silence[4] <- SilenceF1
clickrates$clicking[4] <- nrow(FreyaO2)
clickrates$mean[4] <- mean(Freyal T$clicks)
clickrates$cr[4] <- ClickrateF1
clickrates$crvar[4] <- varcrF1
clickrates$crcv[4] <- cvF1
clickrates$whale[5] <- "Freya2"
clickrates$sex[5] <- "Female"
clickrates$length[5] <- 420
clickrates$samples[5] <- nrow(Freya2T)
clickrates$totalrecord[5] <- nrow(FreyaW)
clickrates$silence[5] <- SilenceF2
clickrates$clicking[5] <- nrow(FreyaO2)
clickrates$mean([5] <- mean(Freya2T$clicks)
clickrates$cr[5] <- ClickrateF2
clickrates$crvar[5] <- varcrF2
clickrates$crcv[5] <- cvF2
clickrates$whale[6] <- "Freyal+2"
clickrates$sex[6] <- "Female"
clickrates$length[6] <- 420
clickrates$samples[6] <- nrow(Freyal2)
clickrates$totalrecord[6] <- nrow(FreyaW)
clickrates$silence[6] <- SilenceF12
clickrates$clicking[6] <- nrow(FreyaO2)
clickrates$mean([6] <- mean(Freyal2$clicks)
clickrates$cr[6] <- ClickrateF12
clickrates$crvar[6] <- varcrF12
clickrates$crev[6] <- cvF12
clickrates$whale[9] <- "Balder"
clickrates$sex[9] <- "Male"
clickrates$length[9] <- 372
clickrates$samples[9] <- nrow(Balderl)
clickrates$totalrecord[9] <- nrow(BalderW)
clickrates$silence[9] <- SilenceB
clickrates$clicking[9] <- nrow(BalderO2)
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clickrates$mean[9] <- mean(Balder1$clicks)
clickrates$cr[9] <- ClickrateB
clickrates$crvar[9] <- varcrB
clickrates$crcv[9] <- cvB
clickrates$whale[3] <- "Eistla"
clickrates$sex[3] <- "Female"
clickrates$length[3] <- 360
clickrates$samples[3] <- nrow(Eistlal)
clickrates$totalrecord[3] <- nrow(EistlaW)
clickrates$silence[3] <- SilenceE
clickrates$clicking[3] <- nrow(EistlaO2)
clickrates$mean[3] <- mean(Eistlal$clicks)
clickrates$cr[3] <- ClickrateE
clickrates$crvar[3] <- varcrE
clickrates$crev[3] <- cvE
clickrates$whale[2] <- "Mutti"
clickrates$sex[2] <- "Female"
clickrates$length[2] <- 465
clickrates$totalrecord[2] <- nrow(MuttiW)
clickrates$silence[2] <- SilenceM
clickrates$clicking[2] <- nrow(MuttiO2)
clickrates$mean[2] <- mean(Muttil$clicks)
clickrates$cr[2] <- ClickrateM
clickrates$crvar[2] <- varcrtM
clickrates$crcv[2] <- cvM
clickrates$samples[2] <- nrow(Muttil)
clickrates$whale[7] <- "Thora"
clickrates$sex[7] <- "Female"
clickrates$length[7] <- 341
clickrates$samples[7] <- nrow(Thoral)
clickrates$totalrecord[7] <- nrow(ThoraW)
clickrates$silence[7] <- SilenceT
clickrates$clicking[7] <- nrow(ThoraO2)
clickrates$mean[7] <- mean(Thoral$clicks)
clickrates$cr[7] <- ClickrateT
clickrates$crvar[7] <- varcrT
clickrates$crcv[7] <- cvT
clickrates$whale[10] <- "Frida"
clickrates$sex[10] <- "Female"
clickrates$length[10] <- 380
clickrates$samples[10] <- nrow(Frida149)
clickrates$totalrecord[10] <- nrow(FridaW)
clickrates$silence[10] <- SilenceF
clickrates$clicking[10] <- nrow(FridaO2)
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clickrates$mean[10] <- mean(Frida149$clicks)
clickrates$cr[10] <- ClickrateF
clickrates$crvar[10] <- varcrF
clickrates$crev[10] <- cvF
clickrates$whale[8] <- "Jonas"
clickrates$sex[8] <- "Male"
clickrates$length[8] <- 510
clickrates$samples[8] <- nrow(Jonas)
clickrates$totalrecord[8] <- nrow(JonasW)
clickrates$silence[8] <- Silence]
clickrates$clicking[8] <- nrow(JonasO112)
clickrates$mean[8] <- mean(Jonas$clicks)
clickrates$cr[8] <- Clickrate]
clickrates$crvar[8] <- varcr]J
clickrates$crev[8] <- cv]
clickrates$whale[1] <- "Mara"
clickrates$sex[1] <- "Female"
clickrates$length[1] <- 390
clickrates$samples[1] <- nrow(Maral)
clickrates$totalrecord[1] <- nrow(MaraW)
clickrates$silence[1] <- SilenceMa
clickrates$clicking[1] <- nrow(MaraO?2)
clickrates$mean[1] <- mean(Maral$clicks)
clickrates$cr[1] <- ClickrateMa
clickrates$crvar[1] <- varcrMa
clickrates$crcv[1] <- cvMa

View(clickrates)
clickrates

## whaleID whale sex length samples totalrecord silence clicking mean
## 1 1 Mara  Female 390 10 3665 2109 1556  5.000000

## 2 2 Mutti  Female 465 150 261550 138304 123246 4.200000
##3 3 Eistla ~ Female 360 150 299068 189211 109857 4.153333
## 4 4 Freyal Female 420 100 113191 76064 37127 3.960000
##5 5 Freya2 Female 420 100 113191 76064 37127 4.920000
## 6 6 Freyal+2 Female 420 200 113191 76064 37127 4.440000
##7 7 Thora  Female 341 150 331197 239682 91515 4.333333
## 8 8 Jonas Male 510 200 527105 377438 149667 4.095000
##9 9 Balder Male 372 200 375690 292497 83193 4.700000
#10 10 Frida Female 380 149 200517 162606 37911 3.812081

#Ht cr crvar crev

## 1 2.1227831 2.517278e-02 7.4741184
##2 1.9790985 8.790590e-05 0.4737417
## 3 1.5256488 5.509142¢-05 0.4865051
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## 4 1.2988923 8.250169e-05 0.6992916
##5 1.6137753 6.638007e-05 0.5048656
## 6 1.4563338 1.912204e-05 0.3002660
##7 1.1973689 5.015656¢-05 0.5914743
## 8 1.1627406 1.641406e-05 0.3484377
##9 1.0407706 2.158654e-05 0.4464127
## 10 0.7207358 1.748874e-05 0.5802340

A new table (clickrates2) was created because Freya data had 2 different samplings, so it was decided to use
the values obtained from the two samplings together (Freyal+2). The next table is Without Freyal and
Freya2 data.

clickrates2 <- clickrates[-c(4, 5), ]
View(clickrates2)
clickrates2

## whaleID whale sex length samples totalrecord silence clicking mean
## 1 1 Mara  Female 390 10 3665 2109 1556  5.000000

## 2 Mutti  Female 465 150 261550 138304 123246 4.200000
##3 Eistla ~ Female 360 150 299068 189211 109857 4.153333
## 6 Freyal+2 Female 420 200 113191 76064 37127  4.440000

## 8 Jonas Male 510 200 527105 377438 149667 4.095000
##9 Balder Male 372 200 375690 292497 83193 4.700000
##10 10 Frida Female 380 149 200517 162606 37911 3.812081
#Ht cr crvar crev

## 1 2.1227831 2.517278e-02 7.4741184

##2 1.9790985 8.790590e-05 0.4737417

## 3 1.5256488 5.509142¢-05 0.4865051

##6 1.4563338 1.912204e-05 0.3002660

##7 1.1973689 5.015656e-05 0.5914743

## 8 1.1627406 1.641406e-05 0.3484377

##9 1.0407706 2.158654¢-05 0.4464127

## 10 0.7207358 1.748874e-05 0.5802340

2
3
6
##7 7 Thora  Female 341 150 331197 239682 91515 4.333333
8
9

Mean cue rate (unweighted mean): 1.400685 clicks/s for clickrates2 table
mean(clickrates2$cr)

## [1] 1.400685

To obtain the variability of the unweighted mean cue rate, a resampling methodology of the values obtained
for the 8 whales (in clickrates2 table) was carried out using a bootstrap data frame. The values were
resampled 999 times by bootstrapping the tags.

df <- clickrates2
# fix randomization seed, make sample() reproducible
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set.seed(1)
# take a random sample of rows from clickrates?2
sampleSize <- nrow(df)

# do many bootstrap replications
bSamples <- 999

# make container for results
bResults <- rep(NA, bSamples)

# loop over bootstraps
for (b in seq_len(bSamples)) {
# A data.frame of bootstrap
bData <- df[sample(x = 1:sampleSize, size = sampleSize, replace = TRUE),
]
# compute your statistic of interest (unweighted mean
# cue rate)
bValue <- mean(bData[["cr"]])
# store results in container
bResults[[b]] <- bValue

}

# show what we computed

# compute the variance of the unweighted mean cue rate
var(bResults)

##[1] 0.02551547
Variance of the unweighted mean cue rate: 0.0255155 for clickrates?2 table

# Calculation of the coefficient of variation for the
# unweighted mean cue rate
cvmean?2 = 100 * (sd(bResults)/mean(bResults))

Coefficient of variation of the unweighted mean cue rate: 11.4146734% for clickrates2 table
crmeanW?2 = (sum(clickrates2$clicking * clickrates2$mean)/sum(clickrates2$totalrecord))
Mean cue rate (weighted mean): 1.2743985 clicks/s for clickrates2 table

To obtain the variability of the weighted mean cue rate, a resampling methodology of the values obtained
for the 8 whales (in clickrates2 table) was carried out using a bootstrap data frame. The values were
resampled 999 times by bootstrapping the tags.

df <- clickrates2

# fix randomization seed, make sample() reproducible
set.seed(1)

# take a random sample of rows from clickrates?2
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sampleSize <- nrow(df)

# do many bootstrap replications
b2Samples <- 999

# make container for results
b2Results <- rep(NA, b2Samples)

# loop over bootstraps
for (b2 in seq_len(b2Samples)) {
# A data.frame of bootstrap
b2Data <- df[sample(x = 1:sampleSize, size = sampleSize,
replace = TRUE), ]
# compute your statistic of interest (weighted mean cue
# rate)
b2Value <- (sum(b2Data[["clicking"]] * b2Data[["mean"]]))/sum(b2Datal[["totalrecord"]])
# store results in container
b2Results[[b2]] <- b2Value

}

# show what we computed

# compute the variance of the weighted mean cue rate
var(b2Results)

##[1] 0.01704149
Variance of the weighted mean cue rate: 0.0170415 for clickrates2 table

# Calculation of the coefficient of variation for the

# weighted mean cue rate
cvmean22 = 100 * (sd(b2Results)/mean(b2Results))

Coefficient of variation of the weighted mean cue rate: 10.2041764% for clickrates2 table
Test for the influence of narwhals sex and length in echolocation clicks rates

The click rates of the eight whales were used as the response variable, and the length in centimeters and sex
for each whale were the explanatory variables. To know which model would fit best my data, it was seen
the residuals and the AIC values in the GLMs (generalized linear models), and GAMs (generalized additive
models). The AIC values were seen for the models with families Gaussian with log link and Gamma with
log, and identity link.

clickrates2 <- clickrates[-c(4, 5), | #Without Freyal and Freya2 data

Residuals of the Gaussian GLM with identity link. Because the assumptions of Homoscedasticity and
normality of the model’s residuals are violated, gaussian models with the identity link will not be used.
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glmGLS2 = glm(cr ~ length + sex, family = gaussian(link = "identity"),
data = clickrates2)

par(mfrow = ¢(2, 2))

plot(glmGLS2)
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It was done GLMs and GAMs with a family that considers the outcome (click rates) a non-negative
continuous variable: Gamma family with log, and identity link. It was also done a GAM and a GLM of the
Gaussian family with a log link since this way there is no assumption of the normality of residuals, and
because this family considers the outcome a continuous decimal data. It will be seen from all these models
which one will have the lowest AIC value.

glmGammalLS = glm(cr ~ length + sex, family = Gamma(link = "log"),
data = clickrates2)

glmGamma2LS = glm(cr ~ length + sex, family = Gamma(link = "identity"),
data = clickrates2)

glmGLS = glm(cr ~ length + sex, family = gaussian(link = "log"),
data = clickrates2)

gamGammalLS = gam(cr ~ s(length, k = 7) + sex, family = Gamma(link = "log"),
data = clickrates2)

gamGamma2L.S = gam(cr ~ s(length, k = 7) + sex, family = Gamma(link = "identity"),
data = clickrates2)

gamGLS = gam(cr ~ s(length, k = 7) + sex, family = gaussian(link = "log"),
data = clickrates2)

The glmGLS (Gaussian GLM with log link) had the smaller AIC value, so it will be chosen this models to
observe if there is an influence of narwhals length and sex in echolocation clicks rates.

140



# Best AIC
AIC(glmGLS, gamGLS, glmGammalLS, glimGamma2LS, gamGammalLS, gamGamma2LS)

## df AIC
## glmGLS 4.000000 14.49395
## gamGLS 4.000001 14.49396

## glmGammalLS 4.000000 14.62793
## glmGamma2LS 4.000000 14.89602
## gamGammalLS 4.000001 14.62793
## gamGamma2L.S 4.000002 14.89603

Residuals of the Gaussian GLM with log link

par(mfrow = ¢(2, 2))
plot(glmGLS)
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The results from the Gaussian GLM with log link show that the click rates increases non significantly with
increasing length. It seems that there is not an influence of narwhals length in echolocation clicks rates.

par(mfrow = ¢(1, 1))
glmGLS = glm(cr ~ length + sex, family = gaussian(link = "log"),
data = clickrates2)
LSM = seq(360, 530, by = 1)
LSF =seq(310, 470, by = 1)
predglmGLSFemale <- predict(glmGLS, newdata = data.frame(length = LSF,
sex = "Female"), type = "response")
plot(LSF, predglmGLSFemale, ylim = ¢(0, 2.5), xlim = ¢(300, 550),
xlab = "Length in cm", ylab = "Click rates", col = "deeppink3",
pch =19)
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predglmGLSMale <- predict(glmGLS, newdata = data.frame(length = LSM,
sex = "Male"), type = "response")

points(LSM, predglmGLSMale, col = "dodgerblue4”, pch = 19)

legend("bottomright", legend = ¢("Female", "Male"), col = ¢("deeppink3",
"dodgerblue4"), cex = 1, pch = 19)

points(cr ~ length, data = clickrates2, pch = 19, col = ¢("deeppink3",
"dodgerblue4")[as.factor(clickrates2$sex)])
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Summary of the Gaussian GLM with log link. The p-value for the dummy variable (sexMale) is not
significant. Therefore, there is not a significant difference in the means cue rates between males and females,
but more males are needed to confirm these results in the future!

summary(glmGLS)

i

## Call:

## glm(formula = cr ~ length + sex, family = gaussian(link = "log"),
##  data = clickrates2)

##
## Deviance Residuals:
## 1 2 3 6 7 8 9 10

## 0.63778 0.13920 0.16263 -0.16157 -0.09363 -0.11908 0.17663 -0.72244
#H#

## Coefficients:

#t Estimate Std. Error tvalue Pr(>[t)

## (Intercept) -0.718903 0.998060 -0.720 0.504

## length 0.002857 0.002460 1.162 0.298

## sexMale -0.490003 0.358511 -1.367 0.230
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i

## (Dispersion parameter for gaussian family taken to be 0.2109525)
Hit

## Null deviance: 1.5645 on 7 degrees of freedom

## Residual deviance: 1.0548 on 5 degrees of freedom

## AIC: 14.494

Hit

## Number of Fisher Scoring iterations: 5

Boxplot of click rates for females and males. It is necessary to verify if click rates really do not have
differences between males and females using a greater number of individuals since our data only had eight
individuals with just two males.

res <- boxplot(cr ~ sex, data = clickrates2, ylab = "Cue rates",
xlab = "Sex", col = ¢("pink", "skyblue"))
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Quartile summaries of the boxes. Here is present the values for the minimum, first quartile (Q1), median,
third quartile (Q3), and maximum click rates for each sex

colnames(res$stats) <- res$names

rownames(res$stats) <- ¢("min", "lower quartile", "median", "upper quartile",

"max")

res$stats

i Female Male
## min 0.7207358 1.040771
## lower quartile 1.1973689 1.040771
## median 1.4909913 1.101756
## upper quartile 1.9790985 1.162741
## max 2.1227831 1.162741
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Estimation of the cue rate in the second part of Jonas data

With our results, it is possible to obtain a click rate for the entire duration of the Jonas’ tag, without having
the second part of his clicking periods processed for the sound data, by combining the probability of foraging
sounds as a function of depth with the number of clicks per second, while clicking, as a function of depth
since with increasing depths, during clicking time, echolocation is more frequent.

Here we predicted the probability of sounds for the depths presented in the second part of the Jonas data
since we want a cue rate where the acoustics were not processed. We used the same binomial GAM where
we predicted the probability of sounds as a function of depth for all the whales.

JonasO2 <- JonasO[551016:807030, ]| #second part of Jonas data not processed for sounds

gamwhalesJJ <- gam(Clicking ~ s(Depth), family = "binomial",
data = whales11[whales11$whale %in% "Jonas", ])

depth]J = JonasO2$Depth

predallJonas]J <- predict(gamwhales]J, newdata = data.frame(Depth = depthlJ,
whale = "Jonas"), type = "response")

plot(depthlJ, predallJonas]J, xlab = "Depth (m)", ylab = "Probability of clicking",
col = "deeppink3", pch = 20)

legend("bottomright", legend = ¢("Jonas"), col = ¢("deeppink3"),
cex =1, pch = 20)
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Here we predicted the number of sounds produced for the depths presented in the part of Jonas data without
acoustics. We used the same negative binomial GLM where we predicted the number of sounds as a function
of depth for all the whales.
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glmNBallwhalesJJ = glm.nb(clicks ~ depth, link = log, data = allwhales[allwhales$whale %in %
"Jonas", ])

depthJJ = JonasO2$Depth

predglmNBallJonasJJ <- predict(glmNBallwhalesJJ, newdata = data.frame(depth = depthlJ,
whale = "Jonas"), type = "response")

plot(depthlJ, predglmNBallJonasJJ, xlab = "Depth (m)", ylab = "Number of clicks",
col = "deeppink3", pch = 20, ylim = ¢(2, 8))

legend("bottomright", legend = ¢("Jonas"), col = ¢("deeppink3"),
cex =1, pch = 20)
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Prediction of the probability of sounds for the depths presented in the first (where the acoustics were
processed) vs second part (where the acoustics were not processed - as shown in the above plots) of Jonas
data

gamJonas12Parts <- gam(Clicking ~ s(Depth), family = "binomial",
data = whales11[whales11$whale %in% "Jonas", ])
depthJonas1Part = whales11[whales11$whale %in% "Jonas", ]$Depth
predgamJonas1Parts <- predict(gamJonas12Parts, newdata = data.frame(Depth = depthJonas1Part),
type = "response")
plot(depthJonas1Part, predgamJonas1Parts, xlab = "Depth (m)",
ylab = "Probability of clicking", col = "violet", pch = 20)
legend("bottomright", legend = ¢("First Part", "Second Part"),
col = ¢("violet", "deeppink3"), cex = 1, pch = 20)
depthJJ = JonasO2$Depth
predgamJonas2Parts <- predict(gamJonas12Parts, newdata = data.frame(Depth = depthlJJ),
type = "response")
points(depthl]J, predgamJonas2Parts, col = "deeppink3", pch = 20)
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Prediction of the number of sounds produced for the depths presented in the first (where the acoustics
were processed) vs second part (where the acoustics were not processed) of Jonas data

glmNBJonas12Parts = glm.nb(clicks ~ depth, link = log, data = allwhales2[allwhales2$whale %in %
"Jonas", ])

depthJonas1Part = whales11[whales11$whale %in% "Jonas", ]$Depth

predglmNBJonas1Parts <- predict(glmNBJonas12Parts, newdata = data.frame(depth = depthJonas1Part,
whale = "Jonas"), type = "response")

plot(depthJonas1Part, predglmNBJonas1Parts, xlab = "Depth (m)",
ylab = "Number of clicks per second", col = "violet", pch = 20,
ylim = ¢(2, 8))

legend("bottomright", legend = ¢("First Part", "Second Part"),
col = ¢("violet", "deeppink3"), cex = 1, pch = 20)

depth]J = JonasO2$Depth

predglmNBJonas2Parts <- predict(glmNBJonas12Parts, newdata = data.frame(depth = depthJJ,
whale = "Jonas"), type = "response")

points(depth]J, predglmNBJonas2Parts, col = "deeppink3", pch = 20)
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predJonasJJ <- sum(predglmNBallJonasJJ * predallJonaslJ)

predJonasJJ/nrow(JonasO2)
## 1] 1.426719

Cue rate for the second part of Jonas data: 1.426719 clicks/s
The click rate for the last part of the data was slightly higher than the first part (23%)

((predJonasJJ/nrow(JonasO2)) - (Clickratel))/(Clickratel)
## 1] 0.2270312

Histogram of depths for the second part of Jonas data with absolute frequencies. Jonas dove more frequently
to deeper depths during his second part of the data

maxnJ2 <- max(JonasO2$Depth)

tempJ2 <- factor(JonasO2$Depth[JonasO2$Depth <= maxnJ2], levels = 0:maxnJ2,
labels = 0:maxnJ2)

barplot(table(tempJ2), xlab = "Depth in meters", ylab = "Frequency of dives",
main = list("Jonas - Second Part"), ylim = ¢(0, 100))
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Jonas - Second Part
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Mean depth where Jonas dove during his second part.

mean(JonasO2$Depth)
## 1] 138.3621

Histogram of depths for the first part of Jonas data with absolute frequencies

maxnJ <- max(whales11[whalesl1$whale %in% "Jonas", ]$Depth)

tempJ <- factor(whales11[whales11$whale %in% "Jonas", ]$Depth[whales11[whales11$whale %in%
"Jonas", ]$Depth <= maxnlJ], levels = 0:maxnJ, labels = 0:maxnJ)

barplot(table(tempJ), xlab = "Depth in meters", ylab = "Frequency of dives",
main = list("Jonas - First Part"), ylim = ¢(0, 100))
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Jonas - First Part
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Mean depth where Jonas dove during his first part

mean(whales11[whales11$whale %in% "Jonas", ]$Depth)
## 1] 110.7887

Histogram of depths for the first and second parts of Jonas data. Here the frequencies are in percentage and
the red lines represent the mean depth where Jonas dove during the first and second parts of the data

varl <- data.frame(whales11[whales11$whale %in% "Jonas", ]$Depth)
var2 <- data.frame(JonasO2$Depth)

names(varl)[names(varl) == "whales11.whales11.whale..in...Jonas.....Depth"] <- "Depth"
names(var2)[names(var2) == "JonasO2.Depth"] <- "Depth"

varl$part <- 1
var2$part <- 2

varl2 <- rbind(varl, var2)

ggplot(varl, aes(x = Depth)) + geom_histogram(aes(y = stat(count)/sum(count)),
bins = 8) + scale_y_continuous(labels = scales::percent) +
geom_vline(data = varl, aes(xintercept = 110.7887), colour = "red") +
xlab("Depth in meters") + ylab("Frequency of dives (%)") +
ggtitle("Jonas - First Part")

149



Jonas - First Part
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ggplot(var2, aes(x = Depth)) + geom_histogram(aes(y = stat(count)/sum(count)),
bins = 8) + scale_y_continuous(labels = scales::percent) +
geom_vline(data = var2, aes(xintercept = 138.3621), colour = "red") +
xlab("Depth in meters") + ylab("Frequency of dives (%)") +
ggtitle("Jonas - Second Part")

Jonas - Second Part
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