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Abstract17

Purpose: Microwave Imaging (MWI) has been studied as a complementary imaging18

modality to improve sensitivity and specificity of diagnosis of Axillary Lymph Nodes19

(ALNs), which can be metastasised by breast cancer. The feasibility of such a system20

is based on the dielectric contrast between healthy and metastasised ALNs. However,21

reliable information such as anatomically realistic numerical models and matching di-22

electric properties of the axillary region and ALNs, which are crucial to develop MWI23

systems, are still limited in the literature. The purpose of this work is to develop24

a methodology to infer dielectric properties of structures from Magnetic Resonance25

Imaging (MRI) images, in particular, ALNs. We further use this methodology, which26

is tailored for structures farther away from MR coils, to create MRI-based numerical27

models of the axillary region and share them with the scientific community, through28

an open-access repository.29

Methods: We use a dataset of breast MRI scans of 40 patients, 15 of them with30

metastasised ALNs. We apply image processing techniques to minimise the artefacts31

in MR images and segment the tissues of interest. The background, lung cavity, and32

skin are segmented using thresholding techniques and the remaining tissues are seg-33

mented using a K-Means clustering algorithm. The ALNs are segmented combining34

the clustering results of two MRI sequences. The performance of this methodology35

was evaluated using qualitative criteria. We then apply a piecewise linear interpola-36

tion between voxel signal intensities and known dielectric properties, which allow us to37
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create dielectric properties maps within a MRI and consequently infer ALNs proper-38

ties. Finally, we compare healthy and metastasised ALNs dielectric properties within39

and between patients, and we create an open-access repository of numerical axillary40

region numerical models which can be used for electromagnetic simulations.41

Results: The proposed methodology allowed creating anatomically realistic models42

of the axillary region, segmenting 80 ALNs and analysing the corresponding dielectric43

properties. The estimated relative permittivity of those ALNs ranged from 16.6 to44

49.3 at 5 GHz. We observe there is a high variability of dielectric properties of ALNs,45

which can be mainly related to the ALN size and, consequently, its composition. We46

verified an average dielectric contrast of 29% between healthy and metastasised ALNs.47

Our repository comprises 10 numerical models of the axillary region, from 5 patients,48

with variable number of metastasised ALNs and Body Mass Index.49

Conclusions: The observed contrast between healthy and metastasised ALNs is a50

good indicator for the feasibility of a MWI system aiming to diagnose ALNs. This51

paper presents new contributions regarding anatomical modelling and dielectric prop-52

erties characterisation, in particular for axillary region applications.53

54
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I. Introduction55

More than 0.5 million women per year have lymph nodes, such as the Axillary Lymph Nodes56

(ALNs), affected due to breast cancer metastasis1,2.57

The number of metastasised ALNs is one of the factors considered for breast cancer stag-58

ing and therefore affects treatment decisions3. Currently, in a first stage, ALNs diagnosis is59

performed using medical imaging techniques, such as Magnetic Resonance Imaging (MRI)60

and Ultrasound. However, sensitivity and specificity of imaging modalities are still unsat-61

isfactory, with a large range of 20%-90% and 40%-96%, respectively4,5. Biopsy is still the62

most accurate technique to identify metastasised ALNs, with 100% specificity and around63

90% sensitivity6,7, but it is an invasive and time-consuming procedure. Therefore, there is a64

need for alternative imaging modalities, and Microwave Imaging (MWI) may be one alter-65

native. MWI is a low-cost, low-power and non-invasive technique which has already yielded66

promising results for early breast cancer diagnosis8 and brain stroke detection9. MWI has67

been recently studied to work as a complementary diagnostic tool to detect metastasised68

ALNs10,11,12.69

Anatomically realistic models of the region of interest are crucial to accurately develop70

and validate MWI systems, and axillary region numerical models with these characteristics do71

not exist in the literature. Our group has presented two physical axillary region models11,12,72

one of them with realistic representations of muscle, lung and bone. However, the ALNs73

included in the models were an approximation of true ALN shapes and their positioning.74

Other models such as Virtual Population models13 also have limitations for MWI use, mainly75

because the positioning of the arm does not allow the use of a MWI device, which should76

have direct access to the axillary region. Also, these models do not detail the variability of77

ALN shapes and pathology status. Information regarding tissue dielectric properties and the78

dielectric contrast between tissues is also important when developing numerical or physical79

models. An international effort is under way to gather this type of information which is useful80

for the development of both electromagnetic diagnostic and therapeutic devices14. From a81

diagnostic point-of-view, a real representation of the dielectric behaviour is important to82

validate whether MWI algorithms are able to reconstruct images with identifiable targets in83

a clinical scenario15. At microwave frequencies, the most relevant dielectric properties are84

the relative permittivity (εr) and conductivity (σ), which mostly depend on water content85
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of tissues. Cancerous tissues have reportedly higher properties than healthy tissues due to86

increased vascularization16. The dielectric properties of tissues such as skin, bone, muscle87

and breast (fibroglandular and adipose) have been widely studied17,18. Nonetheless, the88

information regarding dielectric properties of ALNs is still limited.89

A few studies carried dielectric properties measurements of ALNs using the Open-Ended90

Coaxial-Probe (OECP) method11,16,19,20, both in animal and human ALNs. However, usually91

human ALNs samples have to remain intact due to clinical constraints and only their sur-92

face is measured. In general, the authors observed the complex permittivity results extracted93

from the measurements on the external surfaces are dominated by the fat layer surround-94

ing the ALNs at the time of excision, resulting in lower permittivity and conductivity. A95

large variability of dielectric property values was observed in all measurements (5 to 55 at96

4 GHz11,20). More recently, Yu et al.21 measured human intrathoracic LNs removed from97

lung cancer surgeries and verified metastasised LNs presented significantly higher dielectric98

properties than healthy LNs. However, the studied frequency range (1 MHz to 4 GHz) does99

not cover the entire frequency range of interest for MWI applications (typically comprised100

in the 0.5 to 10 GHz range), and the cancer and LNs in the thorax region may not be101

comparable with ALNs metastasised by breast cancer.102

Although these studies have presented relevant information to establish ALNs dielectric103

properties, there are some points that need to be further explored. Firstly, the heterogeneity104

of ALNs samples needs to be considered. As reported by the mentioned studies, ALNs are105

usually covered by a fat layer which hampers the results of the real dielectric properties of106

ALNs. Additionally, one also needs to consider that ALNs are heterogeneous organs. In fact,107

ALNs are composed by a capsule of collagen fibres and divided into lymphoid follicles, where108

the lymphocytes and macrophages are located. In the centre of the node there is a region109

called the hilum where the efferent lymphatic vessel carrying the lymph out of the node is110

connected22. The hilum is a fatty region, in contrast to the remaining ALN composition.111

These two aspects of the ALN composition can hamper OECP results, as this technique has112

known limitations associated to measuring heterogeneous structures23. Secondly, only a very113

limited number of metastasised ALNs was measured, which ranged from 1 to 12 metastasised114

ALNs in each study16,19,20. Those numbers are not sufficient to infer a dielectric contrast115

between healthy and metastasised ALNs with confidence, which would have been important116

to evaluate the feasibility of distinguishing these structures at microwave frequencies.117
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In this paper, we use MRI scans for two purposes: (i) the creation of numerical118

anatomically-realistic models of the axillary region with both healthy and metastasised119

ALNs; (ii) and estimation of dielectric properties of heterogeneous structures (e.g. ALNs)120

from MR images, which are difficult to measure with traditional techniques. We recently121

presented a brief description of our preliminary methodology and results of the estimation122

of ALN dielectric properties with only one patient24. In this paper, we present our im-123

proved methodology, which uses state-of-the-art dielectric properties information of other124

structures to infer ALN properties and validate it in a larger database of patients’ MRIs125

with both healthy and metastasised ALNs. We also present an open-access repository of126

axillary region numerical models, which can be used for electromagnetic simulations, and,127

we believe, is an important contribution to the community. Other authors have presented128

comparable methodologies regarding the creation of MRI-based numerical models, in partic-129

ular for breast models25,26,27,28. However, structures of the torso which are more challenging130

to segment were not included in such models. Also, lymph nodes segmentation was only ad-131

dressed in studies where the purpose was to detect and isolate them from other tissues29,30,31.132

The estimation of dielectric properties from MRI were not addressed by these studies. To133

that end, only MR-based Electrical Properties Tomography has been studied32,33, however134

this method is limited to the Larmor’s frequency (up to 300 MHz), which is low compared135

to the frequency range of interest for MWI. Our study is the first one using common MRI136

sequences data to infer unknown dielectric properties based on state-of-the-art properties,137

which can be used independently of the frequency of MRI acquisition. Although there is138

an inherent uncertainty in the estimated values, since MR images are not quantitative, and139

these values cannot be considered as absolute, a comparison between the observations is140

possible. This methodology can also be extended to other parts of the body which are not141

well-covered by dedicated MRI coils.142

In section II, we present the details of the MRI dataset used in this study and the143

methodology of the pre-processing pipeline and segmentation. In section III, we present the144

step-by-step results of our proposed methodology, the results of ALN dielectric properties145

estimation and the details regarding the open-access repository of axillary region numerical146

models. In section IV, we discuss the obtained results, and finally, in section V, we present147

the main conclusions of this study.148
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II. Materials and Methods149

In the following sections we present the MRI dataset used for this study, an analysis of the150

tissues of interest of the axillary region, and the image processing pipeline.151

II.A. Dataset152

Our dataset includes breast MRI exams from 40 female patients acquired with a 3.0T clin-153

ical MR system (Magnetom Vida, Siemens Healthineers) with an 18-channel dedicated154

breast coil, at Hospital da Luz Lisboa, during regular breast cancer screenings or follow-155

ups. This study was approved by the Scientific and Ethical Commission, under references156

CES/44/2019/ME and CES/34/2020/ME, and an informed consent was obtained from all157

patients. Only exams from patients with visible lymph nodes were included in the study.158

The patients are divided in two groups, patients with only healthy ALNs and patients with159

one or more metastasised ALNs. The demographic patient data is shown in Table 1.160

Following the clinical protocol, we use three different MRI sequences of the breast and161

upper torso: 1) Direct transversal three-dimensional (3D) T1-weighted (T1-w) Fast Low162

Angle Shot 3D (fl3D) Volumetric Interpolated Breath-hold Examination (VIBE) localisation163

image sequence; 2) Direct coronal two-dimensional (2D) T2-weighted (T2-w) Turbo Spin164

Echo (TSE) with short-time inversion recovery pulse (STIR) image sequence; and 3) Direct165

axial isotropic 3D T1-w fl3D VIBE Dixon image sequence (T1-w Dixon).166

The T1-w localisation image sequence is used to retrieve the overall shape of the axillary167

region and all contours of the upper torso. Due to its low acquisition time (approximately168

Table 1: Demographic data of the database of patients.

Healthy ALNs (n=25) Metastasised ALNs (n=15)

Mean SD Range Mean SD Range

Age 50 10 34 to 73 56 14 39 to 81

BMI 28 6 17 to 44 28 5 20 to 36

BMI: Body Mass Index; SD: Standard Deviation.
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9 seconds), we obtain this information avoiding a substantial increase of the duration of the169

MRI exam, at the expense of lower signal-to-noise ratio. The voxel size is 0.86 × 0.86 ×170

1.8 mm3 and, although it is not isotropic, it has enough resolution to allow for Multiplanar171

Reconstruction (MPR) at sagittal and coronal views, for a complete anatomical evaluation.172

The 2D T2-w STIR is acquired in the coronal plane and is the most used sequence by173

radiologists to detect ALNs, since ALNs are usually very well-defined in images reconstructed174

with this sequence. However, such image sequence has an overall spatial resolution of 4 ×175

0.75 × 0.75 mm3, resulting in low resolution in the transversal and sagittal planes, meaning176

an additional sequence must be used.177

The T1-w Dixon image sequence provides good contrast between internal tissues, such178

as muscle, adipose and fibroglandular tissues. The image is acquired in the coronal plane179

but the voxels are isotropic (0.99×0.99×1 mm3), allowing an MPR in all anatomical planes180

without major image artefacts. This image sequence provides four image sets with different181

contrasts. For the purpose of this study, we use the Water (W) and Fat (F) image contrasts.182

T1-w Dixon-W voxel signal intensities correspond directly to the amount of Hydrogen nuclei183

present in tissues, not only in free water. Nonetheless, in general, we can assume higher184

water content tissues are represented with higher signal intensity values in T1-w Dixon-W.185

Although MRI is not quantitative, a relationship between voxel signal intensities and water186

content (and consequently dielectric properties) can be assumed. However, this assumption187

needs to be carefully confirmed for each tissue type individually.188

In these MR images, 8 main type of tissues are imaged: adipose tissue, fibroglandular189

tissue, skin, lungs, muscles, bones, costal cartilage, and, finally, ALNs. Table 2 shows190

the relationship between signal intensities on T1-w Dixon-W, water content and reported191

dielectric properties of each tissue at 5 GHz. The water content of the lung is not shown192

since there are several factors affecting the water content measurement and the water content193

of the lung is usually reported depending on its individual structures34, which includes air,194

parenchyma and blood vessels. The accuracy of the voxel signal intensities is affected by195

the large distance to the coil which is not tailored to image the lung and its different sub-196

structures are not detected. Therefore, the relationship between voxel signal intensities,197

water content and dielectric properties cannot be easily inferred.198

Regarding the remaining tissues (namely: adipose, bone, fibroglandular, muscle, skin199
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Table 2: Tissue analysis by qualitative signal intensity of
T1-w Dixon-W images, water content and dielectric prop-
erties (at 5 GHz).

Tissue
Qualitative

signal intensity

Water

content (%)
εr

σ

(S/m)

Adipose Dark 6-3642 3.8-7.018 0.1-0.418

Lung Dark - 19.017 1.717

Bone Dark Gray 12-4034,42 10.017 1.017

Fibroglandular Dark/Light Gray 30-7334 33.7-48.518 2.7-4.718

Muscle Light Gray 70-7942,43 49.517 4.017

Skin Light Gray 58-7234,42 35.817 3.117

Costal cartilage Bright 60-7534,44 33.617 4.117

and costal cartilage), only skin and costal cartilage show different relationships between200

water content, dielectric properties and qualitative signal intensity. Skin presents similar201

signal intensities to muscle but has lower water content (and permittivity) when compared202

to muscle. This is explained by skin proximity to the coil placed around the breast, which203

inherently results in higher signal intensity values. Costal cartilage, in particular, is mainly204

composed by water and collagen which, due to its high number of Hydrogen atoms, results in205

increased signal intensities in T1-w Dixon-W images. However, this tissue is not relevant for206

the imaging of the axillary region and we can assume a direct relationship between dielectric207

properties, water content and signal intensity values for the remaining tissues.208

II.A.1. Axillary Region Features209

For the axillary region, skin, adipose tissue, ALNs and muscle are the most relevant tissues.210

In this region, bones and muscles are indistinguishable and the MRI contrast between them211

is very low so it is not possible to segment them separately. For the purpose of MWI, this212

does not pose a problem since the location of muscle in the axillary region is shallower than213

bone, and therefore bone MWI response will be much lower than muscle.214

Fig. 1 shows examples of a metastasised and a healthy ALNs in T1-w Dixon-W images.215



Axilla Models and Dielectric Properties page 7

Figure 1: Partial coronal slices with (a) a metastasised and (b) a
healthy ALN marked with a red dashed ellipse.

The larger axis of both ALNs is around 2 cm. The healthy ALN has a large hilum represented216

by dark signal intensities inside the marked red dashed ellipse. The thin semi-ellipse contour217

corresponds to the cortex and the remaining structures of the ALN. The metastasised ALN218

has no hilum and most of the structure is represented by light gray signal intensities.219

Fig. 2 presents a simplified flowchart of the main steps of our methodology, which is220

described in the following sections.221

II.B. Image pre-processing pipeline222

In this sub-section we describe the image pre-processing pipeline, which should be applied223

to ensure a correct segmentation of tissues.224

IMAGE SEGMENTATION

IMAGE PRE-PROCESSING

T2-w STIRT1-w Dixon-WT1-w Dixon-F

ESTIMATION OF AXILLARY
LYMPH NODES DIELECTRIC

PROPERTIES

CREATION OF AXILLARY 
REGION NUMERICAL MODELS

T1-w 
localisation

Figure 2: Simplified flowchart of the main steps of our methodology.
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II.B.1. Image registration225

T1-w localisation, T2-w STIR and T1-w Dixon image sequences have different spatial reso-226

lutions and dimensions. In order to be able to correctly superimpose them, they need to be227

spatially registered to the same spatial reference system.228

We use the ITK’s implementation35 of an affine registration with linear interpolation229

to register both T1-w localisation and T2-w STIR (moving images) to T1-w Dixon (static230

image). This combination of moving and static images is chosen since the latter has higher231

resolution and includes the more important information. The resulting images are trans-232

formed to the same referential system and have the same dimensions and resolution of the233

static image. In order to preserve the information in T1-w localisation image, before apply-234

ing the registration algorithm, we increase the image size of T1-w Dixon without changing235

its resolution.236

II.B.2. Bias field removal237

The bias field is an artefact produced during the MRI acquisition due to the magnetic field,238

the patient and coil positions, which creates an unrealistic variation of signal intensities239

within the tissues of the same type. This effect increases on the body parts that are farther240

away from the coil and when the body is not symmetrically positioned relative to the coil.241

In images of patients with higher Body Mass Index (BMI) this effect is even more evident.242

The T1-w Dixon sequence was chosen due to the reduced effect of bias field on this type of243

images, however it still needs to be removed. This step is essential for the remaining pipeline244

for two reasons:245

1. Improve segmentation: Most of segmentation algorithms are highly dependent on voxel246

signal intensities. Thus, the voxel signal intensities within each tissue should be similar247

in order to be correctly segmented.248

2. Ensure ALN dielectric properties reliability: The voxel signal intensities of all tissues249

will be important to infer ALN dielectric properties. Also, in order to compare different250

ALNs from both axillary regions, tissues with the same composition in both sides of251

the body should be equally represented in MR images.252



Axilla Models and Dielectric Properties page 9

Other authors use point-by-point bias field removal26 but this is not viable for such a large253

volume which includes both the breast and axillary regions. N4 (improved non-parametric254

non-uniform signal intensity normalisation) bias field removal has also shown promising255

results in removing bias field from breast MR images28. We apply ITK implementation36
256

of N4 bias field removal to T1-w localisation image and T1-w Dixon image sequences. The257

algorithm receives as input both the original image and the negative binary mask of adipose258

tissue obtained from an Otsu’s thresholding of the original image. Otsu’s method finds the259

optimal threshold through an iteration process where the intra-class variance is minimised.260

II.B.3. Selection of region of interest261

We select a region of interest on each image in order to avoid including regions of the body262

with little interest to the purpose of MWI which could compromise the performance of the263

algorithms. The selection of a region of interest is optional but an improvement of the results264

is observed when the selection is applied.265

T1-w localisation and T1-w Dixon-W image sequences should contain both breasts and266

axillary regions, while only the axillary region needs to be included in the T2-w image.267

II.B.4. Filters and Normalisation268

We apply a median filter to remove noise and to smooth the voxel signal intensity differences269

within each tissue, for both T1-w Dixon-W and T2-w STIR image sequences. A more270

powerful filter needs to be used for T1-w localisation image sequence, so we use a gaussian271

filter with σ = 1.272

Then, we apply a minimum-maximum normalisation to the voxel signal intensities of273

each image, which is important for step III.B.. The normalisation does not have an impact274

on the quality of the images.275

II.C. Image segmentation276

We apply five segmentations methods to the breast MR images, which are described in the277

following sub-sections. Fig. 3 summarises the steps of image segmentation, which comprises278

a novel methodology for ALN segmentation.279
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Otsu's
thresholding

Otsu's
thresholding

T1-w Dixon-WT1-w Dixon-FT1-w localisation

Manual
thresholding

Skin

Lung cavity

Internal
tissues

Background

T2-w STIR

K-Means K-Means

Creation of mask
from cluster with
higher intensities

Creation of mask
from clusters without

lower intensities

Opening + closing 
kernel 3x3

Median filter

Opening + closing 
kernel 3x3

Largest group of
connected-component

labelling

Erosion 
kernel 6x6

No

Healthy 
ALN?

Axillary Lymph
Nodes

 

Ellipsoid
approximation

Yes

Background 
anterior 

body

Background 
anterior 

body

Figure 3: Simplified flowchart of the image segmentation steps. Or-
ange triangles represent the final segmentation masks.

II.C.1. Background280

Contrary to previous studies25,26,27 where only the breast region was segmented, for the281

axillary region we also need to retrieve the lateral and posterior part of the body. Therefore,282

the background is segmented in two steps. Firstly, we segment the background of the anterior283

part of the body using both T1-w Dixon-W and T1-w Dixon-F image sequences, due to284

their high signal-to-noise ratio. The background is segmented from the binarisation of both285

images using Otsu’s thresholding37 and applying the union of both resulting binarised images286

(masks). Then, each axial slice of the resulting mask is scanned from the anterior to the287

posterior part, filling the empty space. The background mask is used to select the body288

on the T1-w Dixon-W to improve the results of the next segmentation step by removing289

artefacts.290

Finally, we generate the background of the posterior part of the body so this part of the291

body can be included in the axillary region models. This background is obtained using the292

T1-w localisation image sequence since it is the only sequence which contains the posterior293

part of the body. The background is segmented by applying a manual thresholding, followed294

by opening and closing operations with a kernel 3× 3 and a median filter. Then, both back-295

grounds of the anterior and posterior part of the body are combined. The final background296

can have some unexpected errors which can be corrected by using manual segmentation and297
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by applying a univariate smoothing spline in the sagittal plane.298

II.C.2. Internal tissues299

The internal tissues are segmented by applying the K-Means algorithm. This algorithm sep-300

arates the tissues into K clusters according to their signal intensities values38. We compare301

several values of K, from 3 to 10, and the best value is empirically found considering some302

qualitative criteria.303

The following criteria are followed for T1-w Dixon-W images: 1) There is a good dis-304

tinction between the following tissues: fibroglandular tissue, adipose tissue, and muscle; 2)305

Lymph nodes can be identified in more than one cluster but need to be isolated from the306

surrounding tissues; and 3) One single main tissue cannot be identified in more than three307

clusters. We use the same algorithm with T2-w STIR image sequence. There is only a308

difference regarding the chosen criteria: the criterion is that ALNs need to be segmented in309

one cluster.310

II.C.3. Lung cavity311

The lung cavity is usually segmented in the same cluster as adipose tissue, so an additional312

step is needed to segment this part of the torso. Even though this structure might have313

minimal importance to MWI applications since it is deep and located behind the axillary314

region muscles, it is included in the axillary region models to ensure a realistic anatomical315

representation.316

The segmentation of the lung cavity results from the intersection between the binarisa-317

tion using Otsu’s thresholding of both T1-w Dixon-W and T1-w Dixon-F image sequences.318

The resulting mask includes some voxel groups which do not belong to the lung cavity.319

Hence, we use opening and closing operations with a kernel 3 × 3 and apply a connected-320

component labelling method which assigns different labels to each group of connected voxels321

within the lung cavity mask. Then, we select the largest group which will indeed correspond322

to the lung cavity.323
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II.C.4. Skin324

The skin is often segmented in the same cluster as fibroglandular tissue or in more than one325

cluster, so an additional step is also needed to segment the skin. The algorithm consists326

in applying an erosion operation to each axial slice of the background mask. The kernel327

size is defined as twice the ideal skin thickness. For most cases, a kernel size of 6 × 6 is328

sufficient. The skin layer is obtained from the subtraction between the background mask329

and the resulting image after the erosion operation.330

II.C.5. Axillary Lymph Nodes331

Ideally, ALNs would be segmented with K-Means as only one tissue. But this is not always332

possible without compromising the segmentation of other tissues. Previous studies of breast333

or torso segmentation25,26,27,28 have not included ALNs. Other studies29,30,31 have addressed334

ALN segmentation but surrounding tissues were not segmented. The methods they presented335

are not appropriate for the purpose of our study, where a relationship between ALNs and the336

remaining tissues is needed. We segment ALNs by combining the resulting segmentations337

from K-Means of T1-w Dixon-W and T2-w STIR images. The ALNs mask is created from the338

intersection between the K − 3 highest-intensity clusters from T1-w Dixon-W segmentation339

and the highest-intensity cluster from T2-w STIR segmentation. As an example, if the best340

K value for T1-w Dixon-W segmentation is K = 5, the mask will be created considering the341

fourth and fifth clusters which correspond to tissues with higher signal intensities (ignoring342

adipose and intermediate tissues). For T2-w STIR segmentation, only the cluster with the343

highest signal intensities is selected, as it includes the ALNs. As explained in section II.A.1.,344

only the ALN cortex has high signal intensities and is included in the segmentation. Finally,345

for each detected healthy ALN, we use the resulting segmentation to estimate an ellipsoid346

which includes the hilum.347

The ellipsoid fitting method was adapted from an open-access code repository39. It348

applies a linear least squared algorithm40 considering the algebraic form of an ellipsoid and349

a constraint: Ax2+By2+Cz2+Dxy+Exz+Fyz+Gx+Hy+Iz+J = 0 and A+B+C = 3.350

After solving the equation system, we obtain the ellipsoid axes lengths (a, b and c), its351

center and orientation. These parameters are then used to create an ellipsoid mask in the352
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image which matches the true ALN shape.353

II.D. Estimation of Axillary Lymph Nodes Dielectric Properties354

Fig. 4 summarises the process for estimation of ALN dielectric properties. We first assign355

state-of-the-art dielectric properties of tissues (in particular, adipose and fibroglandular tis-356

sues) to MRI-based numerical models. To this end, we consider a similar approach other357

authors have used25,26. We consider six curves of dielectric properties (shown in Fig. 5) for358

permittivity and conductivity of the tissues of interest based on the paper of Lazebnik et359

al.18,25: two curves to limit both fibroglandular and adipose tissues, and one minimum and360

one maximum curve, which correspond to the minimum and maximum limits of their mea-361

surements, respectively. Nonetheless, as we are considering more than two tissues, we cannot362

use a Gaussian fitting as suggested by other authors25,26, and we tailored the methodology363

to use our segmented results.364

As shown in Fig. 6, each cluster obtained from the image segmentation is assigned365

to an interval between two curves. At each frequency, the minimum and maximum voxel366

signal intensities of each cluster are associated to the dielectric properties values of the367

chosen curves (Fig. 6a). The voxel signal intensities are then mapped to a value between368

the selected curves using a piecewise linear interpolation (Fig. 6b). If K = 5 in K-Means369

algorithm, each original cluster is assigned to an interval between the curves. For lower370

values of K, intermediate curves are neglected, while for higher values of K, clusters need to371

Min./Max.
voxel intensities
of each cluster

Axillary Lymph
Nodes 

 Selection of 
ALNs to compare

Internal
tissues

State-of-the-art
Dielectric 

Properties curves
 

Dielectric Properties
between two curves

at frequency f

Piece-wise linear interpolation

T1-w 
Dixon-W

ALN maskVoxelised 
dielectric 

properties maps 
of numerical 

models
Estimation of 

ALN dielectric 
properties

Figure 4: Simplified flowchart of the steps for estimation of dielectric
properties.
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Figure 5: Relative permittivity (top) and conductivity (bottom) curves
reported in the literature18,25.

be grouped. Following this procedure, we can create voxelised dielectric properties maps (i.e.372

each voxel has the signal intensity value matching each dielectric property), for frequencies373

from 1 to 20 GHz, with a step of 1 GHz. This procedure also ensures the variation of water374

content within the tissues and between patients is observed through the variation of dielectric375

properties.376

Finally, the properties of ALNs can be estimated by superimposing the ALNs mask377

with the resulting dielectric properties maps. For the purpose of this study, one ALN from378

each axillary region is selected for comparison. For patients with metastasised ALNs, one379

metastasised and one healthy ALNs are compared.380

We apply a connected-component labelling method, which allows to select a specific381

ALN when the coordinates of a point of the ALN are given. The dielectric properties of382

an ALN for each frequency are obtained by averaging the assigned dielectric properties to383

each voxel. We calculate the first, second and third quartile curves for each group of healthy384



Axilla Models and Dielectric Properties page 15

PM

Pfg2

Pfg1

Pa2 Pa1 Pm

5
th
cluster

4
th
cluster

3
rd
cluster

2
nd
cluster

1
st
cluster

Pa1
Pm

Figure 6: Interpolation between dielectric properties values and voxel
signal intensities at a specific frequency f . Example of reference points
of relative permittivity curves (top) and the piecewise linear interpola-
tion considering 5 clusters (bottom).

and metastasised ALNs and we obtain the corresponding Debye parameters by fitting a385

Debye model using the non-linear least squares method. Finally, we apply a Mann-Whitney386

statistical test to evaluate the difference of dielectric properties between both groups of387

healthy and metastasised ALNs. A p-value ≤ 0.05 is considered as statistically significant.388

II.E. Creation of Axillary Region Numerical Models389

The axillary region numerical models are created after adapting the segmented results from390

the image processing pipeline. In order to anatomically represent the tissues of interest,391

the obtained clusters from K-Means are grouped into two clusters: adipose and mus-392

cle/fibroglandular tissue. Multiple ALNs are included in the models after being selected393

following the connected-component labelling method described in section II.D. This method394

is also used to remove artefacts generated by vessel structures as it removes smaller sub-395

clusters within muscle/fibroglandular tissue cluster.396
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We then divide the model into two sections of each axillary region, using the nipples as397

the reference point for the limit in the sagittal direction and the bottom part of the breasts398

for the limit in the axial direction.399

III. Results400

In this section, we show some results of the image processing pipeline and the results from the401

estimation of ALN dielectric properties from MR images. Finally, we describe the content402

of the open-access repository.403

III.A. Image pre-processing and segmentation404

The following illustrative results are obtained from MR images of a patient with BMI of405

26 (AR 004 model in the repository), who is considered overweight, and with metastasised406

ALNs on the right axillary region.407

Fig. 7 shows the effect of applying a bias field removal algorithm for two axial slices,408

at the breast and at the axillary regions. In this particular case, the bias field affects more409

the internal region of the breast near the coil and the axillary regions are asymmetric. We410

observe the signal intensities are more homogeneous after applying the bias field removal.411

In particular, Fig. 7(d,h) shows the level of voxel intensities between the right and left side412

of the patient becomes similar after applying the bias field removal.413

Fig. 8 shows the main steps of the background segmentation. Otsu’s thresholding414

applied to both T1-w Dixon-W and T1-w Dixon-F result in complementary images which,415

when combined, generate a filled background mask. The T1-w localisation image has low416

contrast in the posterior part of the body but a mask can be generated using both manual417

thresholding and manual correction.418

The segmentation results of the internal tissues using K-Means and the skin separate419

segmentation are shown in Fig. 9. We observe that usually muscle and part of fibroglan-420

dular tissue are segmented in the same cluster since they have similar range of voxel signal421

intensities. Nonetheless, they are visually distinguishable.422

The segmentation results of the lung cavity are shown in Fig. 10, which show an423
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Figure 7: Bias field removal in inferior (left) and superior (right) axial
slices of a breast MR image. The images show the slices (a,b) before
and (c,d) after bias field removal is applied, (e,f) the computed bias
field, and (g,h) voxel intensities variation over the line represented in
(a,b). Blue and red colours in (g,h) represent a smaller and larger
inhomogeneity between voxel signal intensities, respectively.

acceptable segmentation.424

Fig. 11 shows the step-by-step results of ALNs segmentation, which results from the425

intersection between T1-w Dixon-W and T2-w STIR. In the represented coronal slice, only426

one matted metastasised ALN is segmented but each slice can include multiple ALNs. The427

resulting image from the intersection represents a more accurate representation of the lymph428

node shape and size, due to the higher resolution of T1-w Dixon-W. In Fig. 12, we show429

an example of a healthy ALN and the result of the ellipsoid estimation used to include the430

ALN hilum in the segmented ALN.431
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Figure 8: Background segmentation example of an axial slice of breast
MR images. The images show (a) T1-w Dixon-W, (c) T1-w Dixon-F
image sequences and the corresponding results of Otsu thresholding
in (b) and (d), respectively. The combination and processing of both
images (b, d) result in (e). T1-w localisation image is presented in (f)
and the resulting image of the background segmentation is presented
in (g). The final background is presented in (h).

Figure 9: Slices of segmentation results in the (a,b) axial and (c,d)
coronal planes. (a,c) shows the K = 6 clusters segmented by K-Means
and (b,d) the skin segmentation obtained from the background mask.

III.B. Axillary Lymph Nodes Dielectric Properties432

Our analysis resulted in estimating dielectric properties from 15 metastasised ALNs and 65433

healthy ALNs (2 ALNs from each of the 25 patients with only healthy ALNs and 1 ALN434

from the 15 patients with metastasised ALNs). Fig. 13 shows the results of the estimated435

dielectric properties for each ALN over frequency. The first, second and third quartile curves436

for both healthy and metastasised ALNs are also showed in the same figure. We observe437

that healthy ALNs have a large variability of dielectric properties values, ranging from 16.6438

to 41.1 of average relative permittivity at 5 GHz. The metastasised ALNs have higher439

dielectric properties and the variability is much lower than with the healthy ALNs, with440
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Figure 10: Coronal slices of lung cavity segmentation. The images
show (a) T1-w Dixon-W, (c) T1-w Dixon-F image sequences and the
corresponding results of Otsu thresholding in (b) and (d), respectively.
(e) shows the resulting intersection between (b) and (d), and (f) the
final result after the processing steps.

Figure 11: Coronal slices of segmentation of an axillary lymph node.
The images show (a) T1-w Dixon-W, (c) T2-w STIR image sequences
after selecting the region of interest and the corresponding K-means
segmentation results in (b) and (d), respectively. The masks generated
from (b) and (d) and their intersection are shown in (e), (f) and (g),
respectively.

average relative permittivity ranging from 40.5 to 49.3 at 5 GHz. The estimated dielectric441

properties of healthy and metastasised ALNs are statistically different with a p-value of 10−9442

for both relative permittivity and conductivity at 5 GHz. The contrast between the median443

of both healthy and metastasised groups is 29%. The parameters of the Debye model of444

the curves are presented in Table 3. The following analysis focus on relative permittivity445

values as they highlight absolute differences, but comparable conclusions can be drawn from446

conductivity results.447

One of the factors that might explain the variability of permittivity values for healthy448

ALNs is the variability of their size. Fig. 14 shows how average relative permittivity values449



page 20

Figure 12: Ellipsoid estimation of a healthy Axillary Lymph Node
(ALN). Coronal slice of original (a) T1-w Dixon-W image and (b) re-
sulting mask. (c) 3D segmented volume and (d) resulting 3D volume
from ellipsoid estimation. Voxels in red represent the ALN cortex and
voxels in blue represent the hilum.
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Figure 13: Relative permittivity (top) and conductivity (bottom)
of healthy (orange) and metastasised (blue) Axillary Lymph Nodes
(ALNs) estimated from MR images over frequency. The dashed, solid
and dotted lines represent the first, second and third quartile of both
healthy and metastasised ALNs, respectively.

change over the ALN larger axis length (i.e. the larger dimension of the ALN within the450

three image planes) or volume. We can observe a trend between relative permittivity and the451
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Table 3: Debye model parameters for healthy and metasta-
sised lymph nodes applied to 1 to 20 GHz frequency range.

Healthy ALNs Metastasised ALNs

Quartile Q1 Q2 Q3 Q1 Q2 Q3

ε∞ 9.22 11.05 11.93 14.17 14.40 15.06

σs (S/m) 0.40 0.49 0.54 0.70 0.74 0.84

∆ε 19.01 24.74 27.53 35.87 36.63 37.58

τ (ps) 13.00 13.00 13.00 13.00 13.00 13.00
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Figure 14: Estimated relative permittivity at 5 GHz of each healthy
ALN over its larger axis length (left), and volume (right).

ALNs larger axis. However, this trend is more evident considering the total ALNs volume:452

smaller ALNs have higher relative permittivity values. This can be explained by the fact453

that smaller ALNs have a smaller hilum, hence the cortex is the ALN structure contributing454

more to the average dielectric properties of the ALNs.455

We can evaluate the robustness of our methodology analysing patient-specific results.456

Fig. 15 shows a comparison between the resulting average relative permittivity values of457

ALNs within the same patient. The values vary between patients but they are all within a458

comparable range of values. This indicates that our methodology does not result in distinct459

intervals per patient or neither the same interval across patients. We can also observe that460

the relative permittivity contrast between healthy and metastasised ALNs within the same461

patient is larger (on average 33%) than between healthy ALNs (on average 16%).462
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Figure 15: Comparison of estimated relative permittivity within each
patient for 5 GHz. Comparison between healthy ALNs (top) and be-
tween healthy and metastasised ALNs (bottom).
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Figure 16: Estimated relative permittivity at 5 GHz of each ALN
over the patient’s BMI. Healthy ALNs are represented in orange and
metastasised ALNs in blue.

Fig. 16 shows the relative permittivity change over the patients’ BMI. BMI could463

have an impact on bias field and its removal performance which would result in changes464

of voxel signal intensities and, consequently, in estimated dielectric properties. We observe465
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that average relative permittivity values change independently of BMI, for both healthy and466

metastasised ALNs, so our methodology is sufficiently robust for all patients’ BMI.467

III.C. Repository of Axillary Region Models468

The repository is available for download on GitHub41 and includes numerical models of 5469

patients, in order to provide variability of number of metastasised ALNs and BMI, as shown470

in Table 4. Fig. 17 also shows three examples of our models in 3D.471

Each patient folder includes two sub-folders with the corresponding left and right axillary472

region models. Each group of tissues is provided in a single file so the users can combine473

and create models with different levels of complexity. Each axillary region model includes474

a maximum of 6 tissue types: adipose tissue, muscle and partial fibroglandular tissue, skin,475

lung, healthy ALNs and metastasised ALNs.476

All files are provided in MAT, RAW and STL formats. Two additional files for adipose477

Table 4: Specifications of axillary region models.

Model
Patient

BMI
Side

Dimensions Resolution # H

ALNs

# M

ALNsA C S A C S

AR 001 21
Right 190 298 121

0.9965 0.9965 1
1 2 + 1 Matted

Left 190 298 126 3 0

AR 002 24
Right 204 297 144

0.9965 0.9965 1
0 6

Left 204 297 105 4 0

AR 003 26
Right 169 325 114

1.0764 1.0764 1
3 0

Left 169 325 111 1 1 Matted

AR 004 26
Right 213 360 144

0.9965 0.9965 1
1 2

Left 213 360 154 3 0

AR 005 31
Right 217 443 169

0.9965 0.9965 1
1 1

Left 217 443 138 2 0

BMI: Body Mass Index; ALNs: Axillary Lymph Nodes; A: Axial Direction;

C: Coronal Direction; S: Sagittal Direction; H: Healthy; M: Metastasised.
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Figure 17: 3D representation with a 2D view and corresponding MR
axial slice of (a,b) AR 001, (c,d) AR 003, and (e,f) AR 005 right ax-
illary region models. Light blue colour represents the skin layer, green
represents adipose tissue, purple represents muscle, black represents
lung cavity, yellow represents a healthy lymph node, and red represents
a metastasised lymph node.

and skin tissues without cavities are provided in STL format to allow the user to combine478

post-processing STL files. The models are numerical and no 3D-printing validation was479

performed. The dielectric properties can be assigned to the numerical models in two different480

ways. The first option consists in the implementation of the Debye models presented in Table481

3 and the ones reported in literature for skin, lung, muscle and adipose tissue17,18,25. The482

second option consists of associating a dielectric property map for each frequency which is483

obtained from the interpolation between MRI voxel signal intensities and dielectric properties484

described in Section III.B.. For this option, we provide 2 additional files in MAT and RAW485

formats for each axillary region model and explain the calculation of the dielectric properties486

in the repository documentation.487

IV. Discussion488

Our image processing pipeline is partly inspired by other authors’ work25,26,27,28 but we de-489

signed new methodologies specifically for the axillary region application, such as the seg-490

mentation of ALNs. The differences between our methodology and the state-of-the-art491

methodologies are summarised in Table S-1. We also used this methodology with a new492

objective: estimate dielectric properties of structures for which dielectric property informa-493

tion is still limited. As mentioned in section I., the assumptions behind our methodology494

limit the direct comparison of absolute dielectric properties values with state-of-the-art val-495

ues measured with traditional methods, such as OECP11,20. Also, a comparison with the496

patients included in our study is not possible since no follow-up of the patients was done.497
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Nonetheless, we can compare our results with the main conclusions drawn from those studies498

and highlight our contributions. The large range of the measured dielectric property values499

is common across studies. The range of the relative permittivity at 5 GHz we estimated from500

MRI was 16.6− 49.3 which is lower when compared to approximately 5− 50 measured with501

OECP. This happens because we impose minimum and maximum dielectric property curves502

obtained from measurements of breast tissues. Another reason lies on the fact that OECP503

measurements do not provide information on the heterogeneity of the samples, instead they504

provide a weighted average of the properties of the measured sensing volume of the ALN505

under measurement, and they may be hampered by the adipose layer covering the ALNs.506

Fig. 15 shows the variability of healthy ALNs within the same patient results in a contrast507

of 16% on average, which is lower than the verified contrast of 32% between healthy and508

metastasised ALNs. The contrast between the median values of healthy and metastasised509

ALNs of all patients is slightly lower (29%) (Fig. 13). This level of contrast is a good510

indicator for the feasibility of a MWI system aiming to diagnose ALNs.511

The axillary region models included in our repository were created from a selection512

of patients from a larger dataset of 40 patients, ensuring the representativeness of axillary513

regions with both healthy and metastasised ALNs (Table 4). When presenting numerical514

models of patients with different BMIs, we are ensuring variability of ALNs depth and po-515

sitioning relatively to the surrounding muscles. Different types of metastasised ALNs are516

also represented, such as single ALNs, multiple clearly separated ALNs or matted ALNs.517

The numerical models have the original resolution of the MRI scans, so users might need518

to use post-processing steps such as interpolation or smoothing filters to fit the electromag-519

netic simulation software requirements. This repository is an important contribution to the520

community and is a useful tool for the development and validation of dedicated algorithms521

for MWI systems aiming to diagnose ALNs.522

V. Conclusions523

We proposed a methodology to create MRI-based numerical models of body regions which are524

farther away from the MRI coil and to infer dielectric properties of biological tissues which525

are not well-reported in the literature. With this methodology, we performed a study of526

dielectric properties of both healthy and metastasised ALNs estimated from MR images and527
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created an open-access repository of anatomically realistic numerical models of the axillary528

region for electromagnetic applications. The methodology included novel steps towards the529

segmentation of ALNs and estimation of their dielectric properties. The results showed530

there is a 29% contrast between healthy and metastasised ALNs, which is a good indicator531

to pursue the development of ALN-MWI systems.532

In future work, we intend to use our models and their dielectric properties to validate533

a MWI system to diagnose ALNs.534

Data Availability Statement535

The data that support the findings of this study are openly available in ”Axillary Region536

Models Repository for Electromagnetic Application” at https://github.com/dmgodinho/537

axillary-region-models-repository, reference number 44.538
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