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ABSTRACT

Gillespie, Levinson and Purbhoo recently introduced a crystal-like structure for shifted tableaux,
called the shifted tableau crystal. This structure may be regarded as a directed acyclic weighted
graph, with coloured double edges, having vertices the shifted semistandard tableaux. It de-
composes into connected components, each one having unique source vertex, whose weight is
a strict partition, and sink vertex, with reverse weight. The character of each connected compo-
nent is the Schur Q)-function indexed by the said strict partition. Following a similar approach
as Halacheva, for crystals of finite-dimensional representations of the quantized universal en-
veloping algebra of a finite-dimensional complex reductive Lie algebra, we exhibit a natural
internal action of the n-fruit cactus group on the shifted tableau crystal, realized by the restric-
tions of the shifted Schiitzenberger involution to all primed intervals of the underlying crystal
alphabet. This includes the shifted crystal reflection operators, which agree with the restrictions
of the shifted Schiitzenberger involution to single-coloured connected components, but unlike
the case for type A crystals, these do not need to satisfy the braid relations of the symmetric
group. In addition, we define a shifted version of the Berenstein—Kirillov group, by consider-
ing shifted Bender—Knuth involutions. Paralleling the works of Halacheva and Chmutov, Glick
and Pylyavskyy for type A semistandard tableaux of straight shape, we exhibit another occur-
rence of the cactus group action on shifted tableau crystals of straight shape via the action of
the shifted Berenstein—Kirillov group. We also conclude that the shifted Berenstein—Kirillov
group is isomorphic to a quotient of the cactus group. Not all known relations that hold in
the classic Berenstein—Kirillov group need to be satisfied by the shifted Bender—Knuth involu-
tions, but the ones implying the relations of the cactus group are verified, thus we have another
presentation for the cactus group in terms of shifted Bender—Knuth involutions. We also use
the shifted growth diagrams due to Thomas and Yong, together with the semistandardization
process of Pechenik and Yong, to provide an alternative proof concerning the mentioned cactus

group action.
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RESUMO ALARGADO

As funcgdes P e () de Schur sao fungdes simétricas que surgem no contexto da teoria de re-
presentacao projetiva de grupos simétricos. Estas fung¢des sdo indexadas por parti¢cdes com
partes distintas, chamadas parti¢cdes estritas. Ambas sdo especializagdes de fungdes simétricas
de Hall-Littlewood e sdo somas de monémios que admitem uma descri¢do combinatdria através
de certos tableaux desviados. Estes tableaux correspondem a diagramas desviados, associados
a parti¢oes estritas, semelhantes a diagramas de Ferrers, nos quais cada linha é desviada uma
unidade para a direita, relativamente a linha anterior, e sdo preenchidos num alfabeto marcado
[n] == {l'" <1< --- <n < n},satisfazendo certas condi¢des. A presente tese restringe-se
aos tableaux desviados que geram as funcdes () de Schur.

Gillespie, Levinson e Purbhoo (2017, 2020) introduziram recentemente uma estrutura de
cristal para estes tableaux desviados. Esta estrutura, denotada ShST(A/u,n), pode ser vista
como um grafo dirigido aciclico, com arestas duplas coloridas. O conjunto dos seus vértices,
no qual estd definida uma fun¢do de peso, é formado por tableaux desviados semistandard de
forma \/p preenchidos em [n)’, e as suas arestas sdo definidas usando os operadores de cristal
marcados e ndo-marcados, que comutam com o jeu de taquin.

Ao contrdrio da estrutura de cristal para tableaux de Young, motivada pela teoria de repre-
sentacdes finitas da dlgebra envolvente quantizada U, (gl,,) da dlgebra de Lie linear geral gl,,, e
que constitui um modelo para os cristais de tipo A,,_1, a estrutura de cristal em ShST(\/u, n)
tem a sua origem no cdlculo de Schubert em tipo B (ou tipo C'). No entanto, ndo é conhecido
se forma bases cristalinas para as representacoes de alguma algebra envolvente quantizada, ao
contrdrio de outras estruturas de cristal com tableaux desviados para a super-algebra de Lie
queer q(n), que tém as fung¢des P de Schur como cardteres.

A estrutura de cristal em ShST(\/pu, n) apresenta propriedades semelhantes as dos cristais
normais de tipo A, que podem ser inteiramente descritos em termos de tableaux de Young semis-

tandard. Com efeito, esta estrutura decompde-se em componentes conexas, que sdo isomorfas



por retificagdo a cristais de tableaux desviados de forma retificada,

ShST(A/p,n) == | |ShST (v, n)%iv,

onde :‘V denota um coeficiente de Littlewood—Richardson desviado. Cada componente conexa
possui um tnico vértice fonte, cujo peso € uma particdo estrita, € um tnico vértice sumidouro
cujo peso € o reverso dessa particio. O cardter de cada componente conexa é a fun¢io ()
de Schur indexada pela particdo estrita do vértice fonte. Assim, esta decomposi¢do permite

recuperar a regra de Littlewood—Richardson para fungdes () de Schur enviesadas,
Quul@) =D [1,Qu(@).

A involugdo de Schiitzenberger—Lusztig define-se nesta estrutura de cristal de modo seme-
lhante ao dos cristais de tableaux de Young. Trata-se da unica involucdo que reflete o grafo do
cristal através de um eixo horizontal, revertendo o sentido das arestas, as suas cores, € 0 peso de
cada vértice. Esta involug@o coincide com a operagdo reversal em tableaux desviados, e no caso
particular de formas retificadas, com a evacuacdo. A operacdo reversal define-se num tableau
através da intersecao de certas classes de equivaléncia dual e de Knuth, e admite uma descri¢do
explicita baseada no jeu de taquin.

Halacheva (2016, 2020) mostrou que existe uma acdo natural interna do grupo cactus J
em cristais das representacdes finitas de U,(g), onde g ¢ uma dlgebra de Lie complexa redu-
tiva de dimensdo finita, através de restricoes da involug¢do de Schiitzenberger aos subconjuntos
conexos nao-vazios formados por nés do diagrama de Dynkin de g. Em particular, para os cris-
tais de tipo A,_, onde Jy = J,, estas restri¢des correspondem aos subintervalos conexos de
[n — 1]. Seguindo uma abordagem semelhante, exibimos uma agdo natural interna do grupo
cactus J,, na estrutura de cristal em ShST(\/u, n), que é realizada pelas restri¢oes da involugdo
de Schiitzenberger a todos os subintervalos marcados de [n — 1]. Isto inclui, em particular, os
operadores de reflexdo do cristal o;, correspondendo as restrigdes da involugdo de Schiitzenber-
ger as componentes conexas de uma sé cor. Ao contrario do caso para os cristais de tipo A,,_1,
este operadores ndo satisfazem necessariamente as relacdes (a,-oiﬂ)?’ = 1, parai € [n — 2],
do grupo simétrico &,, (o grupo de Weyl de gl,,), pelo que a agdo ndo se fatoriza através das
relagdes correspondentes. E uma questido em aberto, tanto no tipo A como no caso desviado,
saber se os operadores de reflex@o do cristal satisfazem outras relacdes. Importa notar que existe
também uma ac¢ao externa do grupo cactus no produto tensorial de cristais normais, no entanto,

ndo € conhecido um produto tensorial para a estrutura de cristal de tableaux desviados.
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Adicionalmente, definimos uma versao desviada das involu¢des de Bender—Knuth t;, uti-
lizando o algoritmo de tableau switching para tableaux desviados, introduzido por Choi, Nam
e Oh (2017), ou, equivalentemente, a infusdo de tipo C' de Thomas e Yong (2009) em table-
aux desviados standard, juntamente com o processo de semistandardizacao de Pechenik e Yong
(2017). Utilizando os operadores t;, introduzimos uma versao em termos de tableaux desviados
do grupo de Berenstein—Kirillov B/C, que denotamos por SBX. O grupo BX foi introduzido
por Berenstein e Kirillov (1995), como o grupo livre gerado pelas involu¢des de Bender—Knuth,
sujeito as relacdes que estas satisfazem em tableaux de Young semistandard. O grupo BIC,, é
o subgrupo de BIC gerado pelas involugoes de Bender—Knuth ty, ..., t, ;. Este grupo atua na-
turalmente nos cristais de gl,, de tableaux de Young semistandard de forma retificada, e esta
acdo coincide com a ja referida acdo de J,,. Como consequéncia, o grupo BXC,, € isomorfo a um

quociente de J,,.

Os grupos de Berenstein—Kirillov desviados SBK e SBK,, sdo definidos de forma andloga,
através das involu¢des de Bender—Knuth desviadas. Em paralelo com os trabalhos de Halacheva
(2016, 2020) e Chmutov, Glick e Pylyavskyy (2016, 2020) para cristais do tipo A de tableaux de
Young semistandard de forma retificada, provamos que o grupo SBK,, atua também de forma
natural na estrutura de cristal em ShST(v,n), e que esta ag¢@o coincide com a do grupo cactus.
Como consequéncia, SBK,, é também isomorfo a um quociente do grupo cactus J,. No tipo
A, este quociente ndo € trivial, uma vez que existe pelo menos uma relagdo valida em B/C que
ndo é equivalente a nenhuma relagdo do grupo cactus. Com efeito, a relagdo (t115)% = 1 €
vélida em BK, sendo equivalente a relagdo (g;s;.1)® = 1, para qualquer i € [n — 2|, em que g;
denota o operador de reflexdo de um cristal de tipo A. Esta equivaléncia é também vélida para
os operadores desviados, contudo, as relacdes de trangca ndo sdo necessariamente satisfeitas.
Nao obstante, os operadores desviados t; satisfazem todas as relagdes que sdo equivalentes a
relacdes do grupo cactus, pelo que temos uma apresentacio alternativa para o grupo cactus,
através das involucdes de Bender—Knuth desviadas. E uma questiio em aberto saber se existem

outras relagdes, tanto em BK como em SBIC, que ndo sejam equivalentes as do grupo cactus.

A prova de que o grupo cactus atua no cristal de tableaux desviados através de restri¢des
da involugdo de Schiitzenberger utiliza a sua formulaciao enquanto tnica involucao satisfazendo
certas condi¢des em termos de operadores dos cristal ShST(\/u, n). Esta involugdo e as suas
restricdes coincidem com as involucdes reversal, pelo que podem ser descritas enquanto ope-

radores explicitos em tableaux desviados. Assim, € possivel utilizar diagramas de crescimento
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para tableaux desviados standard, introduzidos por Thomas e Yong (2016), que generalizam os
diagramas de crescimento de Fomin para tableaux de Young, juntamente com o processo de se-
mistandardizacdo, de Pechenik e Yong (2017), para obter uma prova alternativa de que o grupo

cactus J, atua em ShST(A/p, n) através de restricdes da involucao reversal.

Palavras-chave: Tableaux desviados, grafos de cristais, involu¢do de Schiitzenberger, grupo

cactus, grupo de Berenstein—Kirillov.
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CHAPTER 1

INTRODUCTION

Schur Y- and P-functions were firstly introduced by Schur [62], to study projective represen-
tations of symmetric groups. They are symmetric functions, indexed by strict partitions and
have a combinatorial description in terms of certain shifted tableaux [68]. These combinato-
rial objects carry many interesting parallels with the classical Young tableaux [58, 72]. There
are different definitions of shifted tableaux, resulting from considering different rules to fill
shifted diagrams (see, for instance, [11, 23, 66, 68]). The present thesis focus on the ones gen-
erating the Schur ()-functions. These tableaux may be organized into a crystal-like structure
[23] called a shifted tableau crystal, that in many aspects resembles the one for normal Kashi-
wara crystals of type A. This structure differs from other crystals on shifted decomposition
tableaux [25, 26] and on shifted tableaux for Schur P-functions [1, 24], which are crystals for
the quantum queer superalgebra U,(q(n)). It is not known whether the crystal-like structure
due to Gillespie-Levinson—Purbhoo forms crystal bases for the representations of some quan-
tized universal enveloping algebra. Unlike the case for crystals for gl,,, we do not have a natural
action of the symmetric group G,, on these shifted tableau crystals. However, analogous to crys-
tals for gl,,, we will show that there exists a natural internal action of the cactus group, which is
realized by the partial shifted Schiitzenberger involutions. This action has another occurrence

via generators of the shifted Berenstein—Kirillov group that we introduce.

Young tableaux and Schur functions

Schur functions are a well-known family of symmetric functions, appearing in many areas of
mathematics. More precisely, let A = Az denote the algebra of symmetric functions over
Z. As a set, it consists of the bounded-degree formal power series with coefficients in Z, in
countably many infinite variables ©x = {x, x5, ...}, that are invariant under any permutation

of the variables. This algebra has a natural grading A = € A", where A" denotes the Z-
neN



module of symmetric functions homogeneous of degree n. We also consider Ag and Ag to be
the corresponding Q-algebra and (Q-vector space.

A partition of a positive integer m is a sequence of positive integers A = (A; > -+ > \;)
displayed in weakly decreasing order and such that A\; 4+ --- + A\ = m. A partition A of m
is associated with a Young diagram (or Ferrers diagram), consisting of m boxes disposed in k
left-justified rows, such that i-th row has \; boxes (following the English or matrix notation).
Given p C A, the skew diagram \/pu is defined as the set of boxes of A that are not boxes
in u. A semistandard Young tableau is a filling of a Young diagram with a totally ordered
alphabet such that rows are weakly increasing and columns are strictly increasing. We denote by
SSYT(A/p, n) the set of semistandard Young tableaux of shape A/ filled in [n] := {1,...,n},
and by SSYT(\/pu) the (infinite) set of the ones filled in N. Given a set of countably many

infinite variables © = {1, x9,...} and a vector & = («ay, ag,...), such that o, = 0 for all

k > N, for some N € N, let 2% := x7"25* - - -. In particular, we associate to a semistandard
Young tableau T' the monomial z%*") = 2¢'...z% where wt(T) = (a,...,qy) is the

weight of T, i.e., the vector such that «; is equal to the number of i’s in 7.

Given n € N, there are many well-known linear bases for A7, and Af, indexed by partitions
of n. For the purpose of this thesis, we only need to recall the power sum symmetric functions
and Schur functions. For a more detailed introduction, we refer to [49, Chapter 1], [60, Chapter

4] and [67, Chapter 7]. The k-th power sum symmetric function py, for k > 1, is defined as
() = b +ah 4. (1.1)

and, given a partition A = (Ay,..., ), we have p) := py, ---py,. The Schur function [45]

corresponding to a partition A is given by

saz)= > v (1.2)

TESSYT(N)

Unlike the power sum symmetric functions, it is not entirely obvious from the definition that
the Schur functions are symmetric. One way to prove that they are symmetric functions is using
the Bender—Knuth involutions ¢; [4], which act on a semistandard Young tableau by swapping
the multiplicities of 7 and ¢ + 1.

The sets {p,} and {s,}, indexed by partitions A of n, are linear bases for Af, and the latter
is a linear basis for A7. The Littlewood—Richardson coefficients c;\“, [46] are the structure con-

stants that appear in the linear expansions of the product of Schur functions 5,5, and of the skew

2



Schur function s/, in the Z-basis of A of Schur functions. These coefficients are non-negative
integers and have a nice combinatorial description in terms of semistandard Young tableaux
with a certain rectification (for instance, see [60, Theorem 4.9.4] or [67, Theorem A1.3.3]).
The Schur functions play an important role in group representation theory of &,,. Namely, they
are the image under the Frobenius characteristic map of the irreducible representations of &,

(see, for instance, [60, Theorem 4.6.4]).

We now consider A,, to be the ring of symmetric polynomials in n variables, with coefficients
in Z. We may consider a specialization A — A,, taking a symmetric function f(zq,zs,...) in
A to a symmetric polynomial f(zy,...,z,) := f(z1,...,2,,0,0,...) in A, (see [67, Section
7.8]). In what follows, we consider the Schur polynomial sy(x1,. .., x,) to be a specialization
in A,, of the Schur function s, in A,,, for A a partition with at most n parts. The irreducible
polynomial representations ¢* of G L,,(C) are indexed by partitions with at most n parts, and
their characters are given by char(¢*)(X) = sy(x1,...,x,), where {z1,...,z,} is the set of

eigenvalues of X € GL,(C) [61].

The Schur polynomials are also present in the context of type A Schubert calculus. The
Grassmannian Gr(k,C") is the set of all k-dimensional subspaces of C”, and may be re-
garded as a projective algebraic variety via an embedding of Gr(k,C™) into the projective
space IP’(A"“(C”), where A*C" denotes the k-th exterior power of C", called the Pliicker embed-
ding (for details see [18, 19]). The Grassmannian has a cellular decomposition into Schubert
cells Q),, consisting of the subspaces in Gr(k, C™) whose associated row echelon form corre-
sponds to a partition ), fitting in an ambient rectangle k& x (n — k). The Schubert varieties X
are obtained by taking the closure, with respect to the topology inherited from P(A*C"), and
the Schubert classes o) are the fundamental classes of Schubert varieties in the cohomology
ring H*(Gr(k,C")). Schubert classes form a Z-basis for this cohomology ring. Moreover,
H*(Gr(k,C™)) is isomorphic, as a ring, to a quotient of A by the ideal generated by the Schur
polynomials indexed by partitions that do not fit the ambient rectangle & x (n — k). Thus, the
Schur polynomial s, is the representative of the Schubert class oy, for A C k x (n — k) [18,
Section 9.4]. The Littlewood—Richardson coefficients cfw also appear as structure constants of

the Schubert class o in the cup product 0,0, in H*(Gr(k,C")) (see, for instance, [18, 19]).
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Kashiwara crystals

Kashiwara [37, 38] and Lusztig [47] independently introduced crystal bases (or canonical
bases) to study representations of quantized universal enveloping algebras U,(g) of a Lie al-
gebra g. Informally speaking, crystal bases provide bases for U,(g)-modules at ¢ = 0. We may
associate to a crystal basis a unique directed, weighted, edge-coloured graph, called the crystal
graph, and its character coincides with the character of the representation. Moreover, crystal
graphs provide formulations for tensor product decomposition and branching rules.

Let E be an Euclidean space, with inner product (, ). Given a root system ® in V' with index
set I, let {ay, i € I} be the set of simple roots and {«,i € I} the set of simple coroots, and let
A be the weight lattice and A, the set of dominant weights. A Kashiwara crystal of type ® [9,
Definition 2.13] is a non-empty set B3 together with maps e;, f; : B — BU{@}, where & ¢ B,

g, i B—>Z,fori € I,and wt : B — A, satisfying the following:

1. For any b,c € B and any i € I, ¢;(b) = c if and only if f;(c) = b, and in such case,
wt(c) = wt(b) + ay, gi(c) = €;(b) — 1, and ;(c) = ¢;(b) + 1.

2. Forany b € Band any i € I, p;(b) — £;(b) = (wt(b), o).

(2

The maps e;, f; are called the Kashiwara or crystal operators, with e; being a raising oper-
ator and f; a lowering operator, the maps ¢;, ; are called the length maps, and the map wt is

called the weight map. A Kashiwara crystal is said seminormal if, for each7 € [ and b € B,

gi(b) = max{k : eF(b) # @}, ;(b) = max{k : fF(b) # @}.

To a Kashiwara crystal we associate a directed, acyclic weighted graph, called the crystal
graph, with vertices in B and edges labelled in /, in which there is a i-coloured directed edge
b — cif and only if fi(b) = ¢, or equivalently, e;(c) = b, for i € I. The i-coloured connected
components of a crystal graphs are called the ¢-strings. In particular, a crystal is seminormal
if the length maps ;(b) and ¢;(b) measure the distance of b to the ends of its i-string, for any
1 e I

A crystal B is called a highest weight crystal, with highest weight A € A, if there exists an
element b, € B such that wit(by) = A, e;(by) = &, forall i € I, and B is generated by the maps
fi acting on b,. Given a finite-dimensional complex reductive Lie algebra g with root system
®, each representation V = @ V* of g may be associated with a seminormal crystal of type

)\GA+
®, with I being the set of nodes of its Dynkin diagram. For a dominant weight A\ € A, let
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B, denote the connected crystal of the irreducible representation V* of g of highest weight ),
which is a highest weight crystal. The character of By coincides with the character of V. A
crystal is said to be normal if it is isomorphic to a disjoint union of B, for A € A,. Normal
crystals have nice properties, namely, the subcrystals 5; of a normal crystal B, obtained from
the crystal graph of B considering the edges labelled in a connected subset of nodes J C [, are
also normal.

In what follows, we will consider normal crystals of type A,_1, thatis g = gl,,, the general
linear Lie algebra. In this case we have A = Z" and [ = [n — 1], and for each i € I,
a; = o) = e; — e;41, where {ey, ..., e,} is the standard basis of R”, and the set of dominant
weights A, is the set of partitions having at most n parts. The set SSYT (), n), where A has
at most n parts, has the structure of normal type A,,_; crystal [41], and indeed, type A normal
crystals may be described entirely in terms of semistandard Young tableaux, where the crystal
operators e;, f; are coplactic, that is, they commute with the jeu de taquin [9, 43].

The crystal reflection operator g;, originally defined by Lascoux and Schiitzenberger [44]
for type A crystals, acts on a i-string by reflecting it through its middle axis. These operators
define an action of the symmetric group &,, (which is the Weyl group of gl,,) on those crystals,
as they satisfy the braid relations. For any normal crystal, Kashiwara defined the action of the
corresponding Weyl group [39, Theorem 7.2.2] [40, Theorem 11.1].

The Schiitzenberger involution [63] is an involution on semistandard Young tableaux, also
known as the evacuation on straight shapes or the reversal on skew-shapes [5, 28]. It realizes
the Lusztig involution [48] on normal crystals of type A, as a set map on B acting on the
graph structure by “flipping” it upside down, while reverting the orientation of the arrows and
its colours. More precisely, consider a normal crystal B of type A,_; and define the map
¢ . By — B,, on a connected component ), as the unique set of maps satisfying, for all

b e B,,
L e£(6) = Efui(b).
2. [iE(b) = Eeni(b),
3. wi(€(6)) = O - wi(b),

where 0, ,, denotes the longest permutation in &,,. In particular, the map ¢ takes the highest
weight by element to the lowest weight element b, which is the unique element in By such

that f;(b?") = @, for any i € I. The Schiitzenberger—Lusztig involution is defined on B by
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applying ¢ to each connected component of B. The crystal reflection operators g; correspond to

the restrictions of the Schiitzenberger—Lusztig involution to the i-strings.

The cactus group

The n-fruit cactus group J,, first appeared in the works of Devadoss [17] and Davis, Januszkiewicz
and Scott [16], as the fundamental group of the quotient orbifold of MSH(R), the Deligne—
Mumford moduli space of stable curves of genus 0 with n 4+ 1 marked points, by the action of
G, that permutes the first n of those points. We recall its definition as a free group subject to

certain relations, as presented by Henriques and Kamnitzer [32].

Definition 1.1 ([32, Section 3.1]). The n-fruit cactus group J, is the free group with generators

sij, for 1 <1 < 7 < n, subject to the relations:

2. SijSky = SkySi . for [1, 7] N [k, [] = @.
3. Si,jSkl = Sit+j—li+j—kSij» for [/f7 l] - [i7j]'

There is an epimorphism J,, — &,,, sending s; ; to the longest permutation of &j; ;, em-
bedded in G,,. The kernel of this epimorphism is known as the pure cactus group and denoted
by PJ, (see [32, Section 3.4]). Halacheva [29, 30] generalized the notion of cactus group by
J, for any finite-dimensional complex reductive Lie algebra g (see [29, Chapter 10]), where J,,
corresponds to Jy , and showed that there is an internal action of the cactus group J; in a nor-
mal g-crystal, via the partial Schiitzenberger involutions, which correpond to restrictions of the
Schiitzenberger—Lusztig involution to any non-empty connected subset of nodes of the Dynkin
diagram of g. For the type A crystal graph, these are the restrictions of the Schiitzenberger
involution to the subgraphs corresponding to the edges coloured in connected subintervals of
[n—1]. For the i-strings, the action of the cactus group agrees with the action of the correspond-
ing Weyl group generators, for all 7 € /. Indeed, the internal action of the cactus group factors
through the quotient of this group by the corresponding braid relations of the Weyl group [29,
30, 31]. For type A,,_; crystals, these are precisely the crystal reflection operators, and thus, the

action of the cactus group J,, factors through the quotient of the braid relations of G,,.
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Shifted tableaux and Schur P- and ()-functions

Schur P- and @Q-functions are symmetric functions indexed by partitions with different parts,
called strict partitions. They are specializations of Hall-Littlewood functions [49, Chapter III],
and form dual bases, with respect to a modified Hall scalar product, for the subalgebra of the
symmetric functions over (Q generated by the odd-degree power sum symmetric functions. They
have a combinatorial description as a sum of monomials arising from certain shifted semistan-
dard tableaux, which are fillings of shifted shapes (corresponding to strict partitions) in a primed
alphabet [n] :={1' <1 <--- <n’ <n}.

Let ShSTg(A/ e, n) be the set of shifted semistandard tableaux of shape A/, on the alphabet
[n]’ that are not required to be in canonical form (for a precise definition see Section 2.1), and
let ShST p(A/ 1, n) be the subset of ShST(A/p, n) of shifted tableaux without primed entries
on the main diagonal. We denote by ShST(A/x) and ShSTp(A/p) the (infinite) sets of the
corresponding tableaux filled in {1’ < 1 < ---}. As before, we associate to a shifted tableau T’
a monomial z"*7), where wt(T') = (wty, ..., wt,) is the weight of T, the vector in which wt;

is equal to the total number of 7 and ¢’ in 7.

Definition 1.2. Let 1 C ) be a strict partitions. The Schur Q)-function is defined as
Q/\/u(37> _ Z xwt(T)7
TeShSTo (M )
and the Schur P-function is defined as
Pyu(x) = Z 20,
TEeShST p(A/ 1)

It follows from the definition that Py, (z) = 2*M~*WQ,, (z). Both Schur Q- and P-
functions are symmetric functions, as they are specializations of Hall-Littlewood functions,
although there are combinatorial proofs in the same fashion as for the classical Schur functions
[68, Corollary 6.2].

Let Qg := (p1,ps, Ps, - - .) be the subalgebra of Ay generated by the odd-degree power sum
symmetric functions (1.1). This algebra also has a natural grading Qg = P €23, where 0 is
the set of functions of () that are homogeneous of degree n. Let 2 = QZH:EE g N Az denote
the subring of {2y with coefficients in Z, which also has a natural grading 2 = @ Q", with Q"
denoting the subset of functions of {2 homogeneous of degree n. "<

The sets {@Q,} and { P}, indexed by strict partitions A of n, are linear bases of {2". More-

over they are dual bases under a modified Hall scalar product [68, (5.2) and Corollary 6.2].
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The shifted Littlewood—Richardson coefficients lfy are the constants that appear in the linear
expansion of the skew Schur ()-functions in the basis of Schur ()-functions and in the prod-
uct of P-functions in the basis of Schur P-functions (a combinatorial definition is presented in

Section 2.2):

Qau=Y_faQv  BP,=> fiP (1.3)
v A

The Schur )-functions first appeared in the context of projective representations [35, 36] of
G, [62]. They provide information for the spin characters of &,,, which are indexed by strict
partitions, on certain non-trivial conjugacy classes [50, 59, 68]. The Schur P-functions also
appear in the representation theory of the queer Lie superalgebra q(n) [25, 26, 65], which is a
superalgebra generalization of gl,,.

Schur P-functions also appear in type B (or C') Schubert calculus [33, 53], as represen-
tatives for the cohomology classes of Schubert cycles in the odd orthogonal Grassmannian
OG(n,C*t1), which is the set of n-dimensional subspaces V of C*"! such that for any
u,v € V, (u,v) = 0, for a fixed non-degenerate symmetric bilinear form (, ). The Schubert
classes 7, form a basis for the cohomology ring H*(OG (n, C*"™1)), where now )\ is a strict
partition that fits in an ambient n x n triangle. The shifted Littlewood—Richardson coefficients

also appear as structure constants of the product of Schubert classes [19, 33, 53].

A shifted tableau crystal for Schur ()-functions

In [20], Gillespie and Levinson computed the topology of real Schubert curves in Gr(k,C"),
using the coplactic operators of type A crystals. Motivated by the same question in the con-
text of OG(n, C***1), Gillespie, Levinson and Purbhoo [23] and Gillespie and Levinson [21]
introduced coplactic operators on shifted tableaux, yielding a crystal-like structure on shifted
tableaux, having Schur )-functions as characters.

This is not the first crystal-like structure concerning shifted tableaux. Indeed, the represen-
tation theory for the queer Lie superalgebra q(n) motivated crystal structures for decomposition
tableaux [25, 26, 66] and shifted semistandard tableaux [1, 12, 24, 34]. These crystals form
canonical bases for the representations of U,(q(n)) and have the Schur P-functions as charac-
ters. The crystal-like structure in [23] has its origins in the Schubert calculus for type B [22], it

is non-isomorphic to the crystal for q(n), and it is not known whether it forms canonical bases
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for the representations of some known quantized enveloping algebra. We will henceforth refer
to it as a shifted tableau crystal, denoted ShST(\/u, n).

The shifted tableau crystal ShST(A/u, n) has vertices the skew shifted tableaux, for a given
shape A\/pu, on the primed alphabet [n)’, and double edges, corresponding to the action of the
primed and unprimed lowering and raising operators which commute with the shifted jeu de
taquin. This crystal-like structure has nice properties that parallel the ones for normal Kashi-
wara crystals of type A, _;. It decomposes into connected components (3.1), and each one has
an unique highest weight element, a shifted skew tableau where each primed and unprimed
raising operator F! and E; is equal to &, for any i € I = [n — 1]. This highest weight elements
is a Littlewood—Richardson—Stembridge (LRS) tableau of shape A/ [68] (see Definition 2.13).
Similarly, it has a unique lowest weight element, a shifted skew tableau such that each primed
and unprimed lowering operator F; and F; is equal to &, for each ¢ € I, which is the rever-
sal of the highest weight element. The existence and uniqueness of highest and lowest weight
elements is also valid for the subcrystals obtained from considering the subgraph with edges
labelled in connected subsets of .

In addition, the primed and unprimed operators considered separately yield a type A Kashi-
wara crystal, considering the total length functions ¢; and ¢; [23, Section 5.1] and the usual
weight function on shifted tableaux. However, these are not seminormal crystals, as the total
length functions do not measure the distance to the ends of a string of either F; or F operators,

but rather the total distance on the string of both.

The cactus group and shifted tableau crystals

A shifted version of the type A crystal reflection operators was introduced in [54, 55] (see
Definition 3.26), in terms of the shifted tableau crystal operators. In Theorem 3.30, we show
that, similarly to type A, they coincide with the partial Schiitzenberger involution restricted to
the primed alphabet of two adjacent letters {¢',4, (i + 1)',i + 1} C [n]’, for any i € I. They act
on the {7’ i}-coloured components of the shifted tableau crystal by a double reflection through
vertical and horizontal axes, rather than a simple reflection as in the Young tableau crystal.
Unlike type A crystals, they do not define a natural action of the symmetric group &,, on the
shifted tableau crystal, since the braid relations do not need to hold, as shown in Example 3.31.

Following a similar approach as Halacheva [29, 30], we then show in Theorem 4.1 [54,

Theorem 5.7] that the restrictions of the shifted Schiitzenberger involution on the primed subin-
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tervals of [n] yield an internal action of the cactus group .J,, (Definition 1.1) on that crystal. We
note that this internal action on the shifted tableau crystal, unlike the one on type A crystals,
does not factor through the braid relations of the symmetric group. When the shifted Schiitzen-
berger involution is restricted to primed subintervals of two adjacent letters, the cactus group
action agrees with the action of the shifted crystal reflection operators on the shifted crystal.
This means that both actions agree as permutations of the vertices within each {4’ i }-coloured
component of the shifted crystal.

It is expected, although we have not attempted to explore it, that this combinatorial internal
action of the cactus group on the shifted crystal carries some geometrical meaning, as this
crystal has its origin in the orthogonal Grassmannian [22]. Moreover, the tensor product of

shifted tableau crystals is not known, and consequently, nor an external action of the cactus

group.

The Berenstein—Kirillov group

The Bender—Knuth moves ¢; are well known involutions on semistandard Young tableaux [4],
that act on adjacent letters ¢ and 7 + 1 by interchanging their multiplicity, while leaving the other
letters unchanged. The tableau switching, introduced by Benkart, Sottile and Stroomer [5], is
an algorithm on pairs of semistandard Young tableaux (S, T"), with T extending .S, that moves
one through the other, obtaining a pair that is component-wise Knuth equivalent to (7', 5).
The tableau switching on horizontal border strips of two adjacent letters ¢ and ¢ + 1, together
with a swapping of the labels ¢ and 7 + 1, is known to coincide with the classical Bender—
Knuth involution ¢; [5, 51]. Berenstein and Kirillov [7] studied explicit relations satisfied by the
involutions ¢; [7, Corollary 1.1], and introduced the Berenstein—Kirillov group B/ (also known
as Gelfand-Tsetlin group), the free group generated by the classical Bender—Knuth involutions
t;, fori € Z-, subject to the relations they satisfy on semistandard Young tableaux of any shape
[7, 8, 10]. This group is well-defined although an explicit and comprehensive set of relations is
not known. Some of the relations that are held by the ¢; are listed in [7, 8, 42], and [ 10, Theorem
1.6], and they are recalled in Section 5.2.

Chmutov, Glick and Pylyavskyy [10] studied, using semistandard growth diagrams, the re-
lation between the group B/C,,, the subgroup of BIC generated by ¢4, ...,%,_1, and the cactus
group J,, (Definition 1.1), concluding that B, is isomorphic to a quotient of .J,,. Halacheva

has remarked [30, Remark 3.9] that this may also be concluded by noting that the action of
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the cactus group J, [29, Section 10.2] agrees with the one of B/C, on type A, ; crystals
of straight-shaped Young tableaux filled in [n]. Considering the alternative set of generators
Q1.5 qn-1 for BK,, where ¢; := t1(taty) - (tit;_1---11), then each ¢; acts on a straight-
shaped Young tableau via the partial Schiitzenberger involution, or evacuation, restricted to the
alphabet {1,...,7 + 1} [7, Theorem 2.1]. Chmutov, Glick and Pylyavskyy also refine their
results concerning the cactus group quotient in [10, Theorem 1.8] by showing precise implica-
tions between the cactus-type relations, satisfied by generators of BK,,, and a subset of known
relations (5.5) and (5.7) in the B/C,,, thereby yielding a presentation of the cactus group in terms

of the Bender—Knuth generators.

A shifted Berenstein—Kirillov group

Motivated by the tableau switching characterization of the Bender—Knuth moves on semistan-
dard Young tableaux [5], we introduced in [56, 57] a shifted version of the Bender—Knuth
involutions, here denoted t;, for shifted semistandard tableaux in the shifted tableau crystal
due to Gillespie, Levinson and Purbhoo [23], using the shifted tableau switching introduced by
Choi, Nam and Oh [15]. Alternatively, we may use the type C' infusion on shifted standard
tableaux due to Thomas and Yong [70] together with the semistandardization of Pechenik and
Yong [52]. We observe that genomic Bender—Knuth involutions have also been defined in a
similar way on genomic tableaux, by Pechenik and Yong [52]. The shifted Bender—Knuth in-
volutions we present differ from the operators introduced by Stembridge [69, Section 6], which
are not compatible with the canonical form requirement for the shifted tableau crystal consid-
ered (see Remark 5.18). Using the shifted Bender—Knuth involutions t; as generators, we define
a shifted analogue of the Berenstein—Kirillov group, denoted SBXC, with SBK,, being defined
analogously.

Following [7], the elements q; := t;(taty) - - - (tit;i_1 - - - t1), for 1 < i < n—1, also constitute
an alternative set of generators for SB/C,,. Similarly to the BXC,, group, each generator q; acts
on a straight-shaped shifted semistandard tableau, via the shifted Schiitzenberger involution
restricted to the primed alphabet {1,...,7 + 1}’. Thereby, as in the classical case [10, 29, 30],
the actions of the cactus group J,, (see Theorem 4.3) and of SBK,, agree on a straight-shaped
shifted tableau crystal [23]. Thus, the shifted Berenstein—Kirillov group is isomorphic to a

quotient of the cactus group (Theorem 5.25).
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The shifted Bender—Knuth operators t; also satisfy the BX-type relations (5.5) and (5.7).
Those are the relations satisfied by the generators ¢; in BK which are equivalent to the ones
of the cactus group, as shown in [10, Theorem 1.8] (here Theorem 5.20). Thus, we also have,
similarly to the classical case [10], another presentation of the cactus group via the shifted
Bender—Knuth moves.

Not all known relations that hold in B/C need to be satisfied by the shifted Bender-Knuth
involutions, namely the relation (t;t2)® = 1 (5.6) does not need to hold in SBK (see Example
5.23). As observed in [10, Remark 9], the relation (12,)% = 1 (5.6) in BK does not follow from
any cactus group relation. In fact, it is equivalent to the braid relations of the symmetric group
&, satisfied by the type A crystal reflection operators ¢; , due to Lascoux and Schiitzenberger
[44], and rediscovered by Kashiwara [39, Theorem 7.2.2]. These operators are elements of BXC
[7, Proposition 1.4], and ; acts on a type A,,_; crystal as a middle reflection of each ¢-string,
which agrees with the partial Schiitzenberger involution restricted to the alphabet {7, + 1}, for
i€[n—1].

The shifted crystal reflection operators o;, for 1 < 7 < n — 1 [54, Definition 4.3] (here
Definition 3.26) are also elements of SBK,,, and o; acts on a shifted tableau crystal as a double
reflection of each {i,'}-coloured string, which agrees with the shifted Schiitzenberger involu-
tion restricted to the primed alphabet {i,7 + 1}’. A relation of the type (t;t2)*™ = 1 holds in
SBK, if and only if the relation (¢;0;,1)™ = 1 does, where m is a positive integer (see Proposi-
tion 5.22). However, unlike type A crystals, the shifted crystal reflection operators do not define
an action of the symmetric group, thus none of the aforesaid relations holds for m = 3. It1is
not known whether some m > 3 exists (see Appendix A). It is an open question to find explicit
relations in SBIC, beyond those listed in Proposition 5.26, that do not follow from the cactus
group relations. Further relations for SBX seem to be intimately related with further relations

satisfied by the shifted crystal reflection operators.

Shifted growth diagrams

The proof of Theorem 4.1 in Section 4.1 concerning a cactus group action on a shifted tableau
crystal relies on the formulation of Schiitzenberger involution as the unique set involution on
a shifted tableau crystal satisfying certain conditions in terms of the shifted crystal operators
(Proposition 3.20). Thus, the partial Schiitzenberger involutions, corresponding to the restric-

tions of the Schiitzenberger involutions to all primed subintervals of [n], are also described
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in a similar way (Lemma 3.23) to what is done in [31, Definition 5.17]. These unique maps
coincide with the reversal map and its restrictions, and thus they are explicit involutions on
shifted tableaux. Sticking to this algorithmic formulation, we may use type C' growth diagrams,
introduced by Thomas and Yong [71], together with the semistandardization process due to
Pechenik and Yong [52], to obtain an alternative proof that the cactus group acts on a shifted

tableau crystal via the restrictions of the reversal involution.

The type C' growth diagrams, for shifted standard tableaux, were introduced by Thomas
and Yong [71], together with generalizations for other cominuscule posets, and they generalize
the classical growth diagrams for standard Young tableaux due to Fomin [67]. These diagrams
consist of saturated chains of shifted shapes encoding the shifted jeu de taquin for shifted stan-
dard tableaux. Thus, they define type C' infusion, as well as the shifted promotion, evacuation
and reversal, and the adequate restrictions. Like the classical growth diagrams [67, Proposi-
tion A1.2.7], the shifted ones may be computed via local growth rules [71, Theorem 2.1]. The

symmetry of those rules shows that the type C' infusion, evacuation and reversal are involutions.

Unlike the case for type A, shifted semistandard tableaux, being filled in a primed alphabet,
are not encoded by a sequence of strict shapes and thus we do not have a semistandard-like
growth diagrams as in [10]. However, the shifted semistandardization due to Pechenik and
Yong [52] allows us to extend these notions for semistandard shifted tableaux. Thus, we are
able to obtain an alternative proof, in Chapter 6, for the cactus group action on a shifted tableau

crystal (Theorem 4.1), relying on the combinatorial description of the shifted reversal.

Structure of the thesis

This thesis is organized as follows:

» Chapter 2 provides the background notions on shifted tableaux, as well as operations and
algorithms among them. In particular, we recall the shifted jeu de taquin, the Worley—
Sagan insertion algorithm, and state their relation with shifted Knuth and dual equiva-
lences. We then present the notions of evacuation and reversal. In Section 2.5 we recall
the shifted tableau switching algorithm due to Choi, Nam and Oh [15], which produces
the same result as the type C' infusion of Thomas and Yong [70] together with the semis-

tandardization due to Pechenik and Yong [52].
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* In Chapter 3 we present the basic definitions and main results concerning the shifted
tableau crystal of Gillespie, Levinson and Purbhoo [23], highlighting its ¢-string decom-
position. We then recall the definition of the Schiitzenberger involution and its restric-
tions. In Section 3.3 we introduce the notion of shifted crystal reflection operators using
the shifted crystal operators. We then prove, in Theorem 3.30, that these operators coin-
cide with the restrictions of the Schiitzenberger involution to the primed alphabet of two

adjacent letters.

* Chapter 4 is intended to prove, in Theorem 4.1 ([54, Theorem 5.7]), that the cactus group

J,, acts on the shifted tableau crystal via the partial Schiitzenberger involutions.

* In Chapter 5 we introduce a shifted version of the Berenstein—Kirillov group. We begin by
defining shifted Bender—Knuth involutions using the shifted tableau switching algorithm.
Then, as in the classical case, we use those shifted Bender—Knuth moves to define a
shifted Berenstein—Kirillov group. Proposition 5.26 shows that the known relations (5.5)
and (5.7) satisfied by the classical Bender—Knuth involutions also hold among the shifted
counterparts, with the exception of the relation (t1t2)6 = 1. We then prove, in Theorem
5.25, that the shifted Berenstein—Kirillov group is isomorphic to a quotient of the cactus
group ([56, Theorem 4.25]) and exhibit in (5.14) an alternative presentation for the cactus

group in terms of the shifted Bender—Knuth moves.

* In Chapter 6 we recall the notion of growth diagrams for shifted standard tableaux, as
well as the local growth rules. Using the semistandardization, we recover the shifted
jeu de taquin, type C' infusion, evacuation and reversal (as well as its restrictions) to
semistandard shifted tableaux. We then provide, in Section 6.3.1, an alternative proof for

the cactus group action on the shifted tableau crystal.
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CHAPTER 2

SHIFTED TABLEAUX AND THEIR OPERATIONS

In this chapter we recall the basic notions on shifted tableaux and related combinatorics. We

follow the notation in [23].

2.1 Words and shifted tableaux

A strict partition is a sequence A = (A; > --- > );) of distinct positive integers displayed in
strictly decreasing order. The entries \; are called the parts of A and the length of A\, denoted
¢(\), is the number of parts of \. We denote by |\| := Ay + - - - + A\ the sum of the parts of \.
A strict partition ) is identified with its shifted shape S(\) which consists of |A| boxes placed
in £(\) rows, with the i-th row having \; boxes and being shifted 7 — 1 units to the right. We use
the English (or matrix) notation. The boxes in {(1, ), (2,j+1), (3,7+2), ...} form a diagonal,
for j > 1. If 7 = 1 it is called the main diagonal.

Given strict partitions A and x such that S(u) € S(A), we write ;o C X and define the skew
shifted shape of \/p as S(\/u) = S(A) \ S(u) (see Figure 2.1). Shapes of the form \/& are
called straight (or normal). Any shifted shape A lies naturally in the ambient triangle of the
shifted staircase shape 6 = (A, A\; — 1,...,1). The complement of X is the strict partition \"
whose set of parts is the complement in {\;, A\; — 1,..., 1} of the set of parts of \. Pictorially,
this is the partition corresponding to the empty spaces in the staircase shape, after flipping across
the anti-diagonal (see Figure 2.1). In particular, &" = 0.

We consider the alphabet [n] := {1 <---<n} and define the primed alphabet to be
[n] ={1'<1<---<n'<n}.

Following the notation in [15], we will write i when referring to the letters ¢ or i’ without
specifying whether they are primed. Given a string w = wj - - - w,, in the alphabet [n]’, the

canonical form [23, Definition 2.1] of w is the string obtained from w by replacing the leftmost
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| | |
SN = S(A) = S\/p) =

Figure 2.1: The shapes of A, \Y and \/pu are shaded in gray, for A = (5,3,2) and 1 = (3,1).

They are represented within the ambient triangle § = (5,4, 3,2, 1).

i, if it exists, with ¢, for all 1 < ¢ < n. Two strings w and v are said to be equivalent if they
have the same canonical form (this is indeed an equivalence relation).

A word w 1s an equivalence class of the strings equivalent to w. If w is in canonical form,
then it is said to be the canonical representative of w, while the other strings are called the
representatives of 1w [23, Definition 2.2]. The weight of a word w is wt(w) = (wty, ..., wt,),
where wt; is equal to the total number of 7 and ' in w, any representative of w. We often refer
to w by its canonical representative w. We remark that the weight of a word does not depend
on the choice of representative, as the number of ¢ and ¢’ is the same for all representatives, for
i € [n].

Example 2.1. The string w = 122'132' is equivalent to 122’132, the former being in canonical

form. The equivalence class of w is given by
W= {122/132/,1'22'132', 12'2'132, 12213/, 1'2'2'132', 1'22'13'2', 122132/, 1'2'2'13/'2'},
and we refer to it by its canonical representative w. The weight of w is wt(w) = (2,3, 1).

Definition 2.2. Given strict partitions A and p such that y C A, a shifted semistandard tableau
T of shape A/ is a filling of S(\/u) with letters in [n]’ such that:

1. The entries are weakly increasing in each row and in each column.
2. There is at most one 7 per column, for each i € [n].
3. There is at most one i’ per row, for each i € [n].

The (row) reading word w(T) of a shifted tableau is obtained by concatenating its rows,
going from bottom to top. The weight of T is defined as wt(7") := wt(w(7)). A word, or a

shifted tableau, is said standard if its weightis (1,...,1).

Example 2.3. The following is a shifted semistandard tableau, with its reading word and weight:

| 1(1 2’|2|
T =128 w(T) = 3231122 wt(T) = (2,3,2).
3
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We say that a tableau 7' is in canonical form if its reading word is in canonical form and,
in that case, it is identified with its set of representatives, that are obtained by possibly priming
the entry corresponding to the leftmost ¢ in w(7'), for all ¢ [23, Definition 2.6]. The set of
shifted semistandard tableaux of shape A/, on the alphabet [n]’, in canonical form, is denoted
by ShST(A/u,n).

Example 2.4. The tableau of the previous example is in canonical form, as the first occurrences
of each letter is unprimed. Some of its representatives are listed below. Their reading words are

representatives of the class of w(7T').

[ [1[1[2]2] [ TT127T2] [Ti12]2] [Ti1[2]2]
23 23 2|3 23
El El 3 Ed

A diagonally-shaped tableau is a shifted tableau of shape (2n — 1,2n —3,...,1)/(2n —
2,2n —4,...,2). Every word w = wy ...w, may be regarded as a shifted tableau D,, having

this shape and word w.

Example 2.5. The word w = 2311’ is the reading word of
| V]
D, = e

2]

We consider the symmetric group S,, to be the Coxeter group generated by 6,,...,6, 1,

subject to the relations

02 =1, 6193 = 9]'91'7 f0r|z' — ]| > 1, (6i0i+1)3 =1, forl <i:<n-—2. 2.1)

)

The elements of &,, are explicitly described by the permutations of [n], where its generators 6;
are the simple transpositions (7,7 4 1), for 1 <7 < n — 1, using cycle notations. A permutation
7 € &, acts naturally on a vector of Z" as 7(vy,...,v,) := (v;-101),-..,V-—1(»)). This action

is extended to letters of the primed alphabet x € [n]’ as

T(x) ifx==x
T(x) == : (2.2)
T(x) ifx=2a

According to this action, given 7 € &,, and a word w = wy - - - wy, in the alphabet [n]’, we define

T(wy - - - wy) as the word 7(w;) - - - 7(wy), after canonicalizing it, for w; € [n]’.

Similarly,
the action of 7 is extended to fillings 7" in [n]" of a shifted shape (in particular, this includes
shifted semistandard tableaux), defining 7(7") by the action of 7 on the word of 7. Given
1 <i < j < j, we denote by 0; ; the longest permutation in Sy; ;1 embedded in G,, i.e,
0;; = 0;(6;410;) - - - (0,1 - - - 0;). In particular, 6, ,, is the longest permutation in &,,, also known

as the order reversing permutation.
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2.2 Shifted jeu de taquin and Worley—Sagan insertion

The shifted jeu de taquin [58, 72] is defined similarly to the one for ordinary Young tableaux.

A skew shape S(\/p) is said to be a border strip if it contains no subset of the form

{(,5), 0+ 1,5+ 1D}

Definition 2.6. Let 7" € ShST(\/u,n) and let i € [n]. The tableau obtained from 7" considering

only the letters 7 and ¢’ is called the i-border strip of T, and is denoted by T".

Given strict partitions v C 1 C \, we say that A/ extends /v, and, in this case, we define

(u/v) U (M) = Afv.

Given S and T shifted semistandard tableaux, we say that 1" extends S if the shape of
T extends the shape of S. In this case, we denote by S L T' the (disjoint) union of S and
T', obtained by overlapping the two tableaux, which is not necessarily a valid semistandard

tableau. A shifted semistandard tableau 7" filled in [n]’ is clearly the union of its i-border strips,

fori € [n].
[[I[1]2T2]
Example 2.7. Considering T' = [2[3 , we have
3
| EEI L e s
T = U5 L Bl =T uT"uTr.
= 3

A single box b is said to be an inner corner of a shape \/p if \/p extends b, and an outer

corner if b extends \/p.

Definition 2.8 ([72, Section 6.4]). Let T € ShST(A/u,n). An inner jeu de taquin slide is
the process in which an empty inner corner of the skew shape of 7" is chosen and then either
the entry to its right or the one below it is chosen to slide into the empty square, maintaining
semistandardness. The process is then repeated on the obtained new empty square until it is an
outer corner. An outer jeu de taquin slide is the reverse process, starting with an outer corner.
This process has an exception to the sliding rules when the empty box of an inner or outer slide
enters in the diagonal. If an inner slide moves a box with a’ to the left into the diagonal and then
moves a box with a up from the diagonal, to the right of it, the former becomes unprimed (and
vice versa for the corresponding outer slide), as illustrated by the following slide:

o]
— —
]
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If 7" is not in the canonical form, there is another exception to consider illustrated below

(observe that result is in the same canonical class of the former case):

The rectification rect(T) of T is the tableau obtained by applying any sequence of inner
slides until a straight shape is obtained (it is known that any chosen sequence of slides produces
the same straight-shaped tableau [58, Theorem 11.1]). The rectification of a word w is the word
of the rectification of any tableau with reading word w. Two tableaux are said to be shifted jeu
de taquin equivalent if they have the same rectification. An operator on shifted tableaux that
commutes with the shifted jeu de taquin is called coplactic.

The standardization of a word w, denoted std(w), is obtained by replacing the letters of any
representative of w with 1, ..., /(w), where /(w) denotes the lenght of w, from least to greatest,
reading right to left for primed entries, and left to right for unprimed entries [23, Definition
2.8]. This process does not depend on the choice of the representative. The standardization of
a shifted tableau 7', denoted std(7'), is defined as the tableau with the same shape as 7' with

reading word std(w(T)) .
1(1

272]
2|, with reading word w = 322112'2 and ¢(w) = 7. Then,
3

|
Example 2.9. LetT' =

[\

[1]2

3[6]
std(T) = " [4]5
7

Lemma 2.10 ([23, Lemma 3.5]). If s is a standard word in [m], with m = ay + - - - + ay, then

there is at most one word w of weight (aq, . . ., ax) with standardization std(w) = s.

As a consequence, we have that any shifted semistandard tableau is completely determined

(up to canonical form) by its shape, weight and standardization. Thus, given a standard tableau

T of shape \/u and a composition v (i.e., a vector of positive integers) such that |v| = |\| —|p|,
there exists at most one semistandard tableau with the same shape of 7" and weight . The
process to obtain it, if it exists, is known as shifted semistandardization and was introduced by
Pechenik and Yong [52, Section 9.1]. Let v be a composition and define, for k = 1,...,((v),
Pu(v) = {HZ%“Z%---?Z%}- (2.3)
i<k i<k i<k
Thatis, P1 = {1,...,1n}, Po = {v1 + 1,...,1v1 + 1»}, etc. By construction, each Py (v) has

cardinality v.
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Definition 2.11 ([52, Section 9.1]). Given a shifted standard tableau 7', its semistandardization

(with respect to v), denoted sstd, (T'), is given by the following process:
1. Replace each letter i with k;, for the unique & such that i € Py (v).

2. Then, replace each k; with £/, if there exists a k; south-west of k; with ¢ < j, or with £,

otherwise.

3. If the obtained filling is a semistandard tableau, then v is said to be admissible for T" and

sstd, (7') is set to be that tableau. Otherwise, sstd, (7") is said to be undefined.

Note that, if v is admissible for 7', then wt(sstd, (T")) = v. Moreover, if 7' € ShST(\/u, n)
has weight v, then v is admissible for std(7") and sstd, (std(7)) = T [52, Lemma 9.5]. A
shifted tableau in these conditions is said to be v-Pieri filled. As a consequence, we have that
std defines a bijection between the set of shifted semistandard tableaux of shape \/x and weight
v and the set of v-Pieri filled shifted semistandard tableaux of the same shape, whose inverse is

given by sstd,, [52, Theorem 9.6].

[1]2]3
Example 2.12. LetT = [4

6]
be a shifted standard tableau and let v = (2,4, 1). We have:

PI(V) = {1’ 2} PQ(V) = {3747576} P3(V) = {7}

Then, the semistandardization of 7" with respect to v is obtained as follows:

[1]2]3]6] [L1]12]25]26] [1]1]2]2]
5] —  RaPs] — [2]2
L7 37 3]

Given v a strict partition, there exists a unique shifted tableau in canonical form of shape
and weight equal to v. This is known as the Yamanouchi tableau Y,, and its i-th row consists
only of unprimed i’s. A word w on the alphabet [n]" with weight v, a strict partition, is said
to be ballot (or lattice, or Yamanouchi) if its rectification is w(Y,) (for another formulation of

ballot word, see [68, Section 8]).

Definition 2.13. A shifted semistandard tableau T’ of weight v is said to be Littlewood—Richardson—
Stembridge (LRS) if it is in canonical form and rect(7') = Y,,, or, equivalently, if its reading

word is ballot and has weight v.

Recall that the shifted Littlewood—Richardson coefficients Ify are the constants that appear

in the linear expansion of the skew Schur ()-functions in the basis of Schur ()-functions and
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in the product of P-functions in the basis of Schur P-functions (1.3). These are non-negative
integers, that are equal to zero whenever |A| # |u| + |v|, and they are precisely the number of
LRS tableaux of shape \/u and weight v [68, Theorem 8.3].

We now recall the notion of shifted tableau insertion, introduced independently by Worley
[72] and Sagan [58], providing a shifted version of the well-known Schensted insertion for
Young tableaux. We remark that this algorithm was originally presented for shifted tableaux
enumerated by Schur ()-functions, which are not required to be in canonical form. However,
the algorithm is compatible with canonicalizing, thus we present a simpler version, as in [23,
Definition 5.23]. Given letters a,b € [n]" we say that a <, b if either a = ¢’ and ¢’ < b, or

ifa=aand a < b. We say that a <., b if eithera = ¢’ and '’ < b,orifa =aand a < b.

Definition 2.14. Let 7" be a straight-shaped shifted tableau and let a € [n)’. The Worley—Sagan

insertion of a into T is the tableau obtained as follows:

1. If there is b on the first row of 7" such that a <, b, then place a at the end of that row.
Otherwise, let b be the leftmost entry in that row such that a <,.,, b and replace it with

a, “bumping” b.

2. If b was not in the main diagonal of 7" before being “bumped”, repeat the first step, now

inserting b on the next row.
3. Otherwise, insert b on the next column to its right, in the following way:
(a) If there is no y in the said column such that b <., y, place b at the bottom of the
column.
(b) Otherwise, let y be the topmost entry such that b <., y and replace it with b,
“bumping” y. Repeat this step, now inserting y into the next column.
The insertion of a into 7' is said to be Schensted if no entry in the main diagonal is ever
“bumped”, and non-Schensted otherwise.

Example 2.15. Consider the following shifted tableau, of straight shape,

[1]1]2']3]
T = 2137
3

The insertion of 2 into 7" is computed as follows: the entry 3 in the first row is the leftmost entry

such that 2 <., 3, and then it is “bumped” and replaced by 2. Then, 3 is inserted on the next
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row, and since there are no entries b such that 3 <,,,, b, then 3 is placed at the end of that row.

Thus, the resulting tableau is given by

[1[1]2]2
3/
3

[\
w

and since no entries of the main diagonal, the insertion of 2 into 7' is Schensted. We now
compute the insertion of 1 into the obtained tableau. Now 2’ is the leftmost entry in the first row
such that 1 <,q,, 2/, and thus 2’ is “bumped” and replaced by 1. Moving to the second row, we
have that 2 is the leftmost entry such that 2’ <,,,, 2, and thus 2 (which is an entry of the main
diagonal) is replaced by 2/, and the process continues now in the next column. Since we have
2 <o 3, then 3’ is replaced by 2, and is then placed at the end of the next column, as there are

no entries y there such that 3’ <, y. The resulting tableau, after being canonicalized, is

[1[1
2

2[3]
3/

|wm>—t

and since an entry of the main diagonal was moved, this insertion is non-Schensted.

Similarly to the Robinson—Schensted and RSK correspondences, there is a bijection between
the set of words in [n]" and ShST (v, n) x ShSTp(v, n), where, we recall, ShST p(v, n) denotes
the set of shifted tableaux of shape v filled in [n]’, not necessarily in canonical form, that has no
primed entries on the main diagonal [58, Theorem 8.1]. This bijection is known as the shifted

RSK and it is defined as follows.

Definition 2.16. Let w = wy - - - wy, be a word in [n]". The shifted RSK of w is a pair of shifted
tableaux with the same straight shape (P, ), where @ is not required to be in canonical form
and has no primed entries on its main diagonal. To obtain (P, ()), we consider a sequence of
pairs

(®7®) = (POaQ())?(Pl»Qvl)v"'(Pkan) = (PaQ)

where P; is obtained by inserting w; into P,_; (and canonicalizing it) and (); is obtained by
placing ¢ at the resulting new box, if that insertion was Schensted, or ¢’ otherwise, for i € [k].
The tableau P is known as the insertion tableau and also denoted by P(w), and () is known as

the recording tableau and is denoted by Q(w).

Example 2.17. Let w = 2112’. To compute the shifted RSK of w, we have

[1

®—>—>—>|1 —

o[ —Op — U

1 1
2] 2]

7 1274

i—>| B |::Q(w).
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2.3 Shifted Knuth and dual equivalences

Definition 2.18 ([58]). Two words w and v on an alphabet [n|" are said to be shifted Knuth
equivalent, denoted w =;, v, if one can be obtained from the other by applying a sequence of

the following Knuth moves on adjacent letters

(K1) bac <— bca if, under the standardization ordering, a < b < c.
(K2) acb «— cab if, under the standardization ordering, a < b < c.
(SK1) ab <— ba if these are the first two letters.

(SK2) aa <— ad’ if these are the first two letters.

Example 2.19. Let w = 212'21. Then std(w) = 41352, and since 2 < 3 < 5, we have
w =y 212'12.

The shifted Knuth moves may be regarded as (inner or outer) jeu de taquin slides. For
instance, if @ < b < c in standardization order, then the Knuth moves (K1) and (K2) are

illustrated by:

|ba [ Talc] [ b [ Talb]
c b alc c

For the Knuth move (SK1), assume, without loss of generality, that a < b in standardization

ordering. Then,

Ll @

Finally the Knuth move (SK?2) is illustrated by the exception slide

al
L fa1a

If w and v are shifted Knuth equivalent words, the diagonally-shaped tableaux D,, and D, have
the same rectification. Thus D,, can be transformed into D, via some sequence of jeu de taquin

slides.

Theorem 2.20 ([72, Theorem 4.4.4]). Two shifted semistandard tableaux are jeu de taquin

equivalent if and only if their reading words are shifted Knuth equivalent.

Theorem 2.21 ([58, Theorem 12.2]). Let w and u be words in [n]'. Then, w and u are shifted
Knuth equivalent if and only if their insertion tableaux under Worley—Sagan insertion coincide,

ie, P(w) = P(v).
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Two tableaux in ShST(A/u, n) are said to be shifted Knuth equivalent if so are their reading
words, or equivalently, if their words have the same insertion tableaux. Shifted Knuth equiva-
lence classes and jeu de taquin classes on words coincide and are in one-to-one correspondence
with shifted semistandard tableaux of straight shape, via rectification or Worley—Sagan inser-
tion. Unlike the classic Knuth relations for unprimed alphabets, the shifted Knuth equivalence
is not a congruence, due to rules (SK1) and (SK2), since w = v does not necessarily imply
that tw = tw for any letter ¢ € [n|’. For instance, 22’1 = 221 but 322’1 #, 3221. However,

under certain conditions we have the following results.

Lemma 2.22. Let w and v be two words in [n]" such that w =, v. Let t € [n]". Then,
wt =, vt

Proof. Let D, and D, be diagonally-shaped shifted tableaux with words w and v, respectively.
By Theorem 2.20, rect(D,,) = rect(D,). Let T be this straight-shaped tableau, of shape .
Hence, we may consider the tableau 7° of shape (A + 2, A1, ..., \x)/(A\1 + 1) consisting of
t on the entry (1,\; + 2) and T on the remaining part. Clearly, rect(7T°) = rect(D?) =
rect(D?) where DY and D? are the diagonally-shaped shifted tableaux with words wt and vt

respectively. L

Lemma 2.23. Let w and v be two words in [n|" such that w = v and such that there exists a

sequence of Knuth relations turning w into v using only (K1) and (K2). Let t € [n]'. Then,
tw =5, tv

Proof. If the rules (SK1) and (SK2) are not used, then w and v are Knuth equivalent as Young

tableau words, considering the standardization to avoid primed entries. [

We recall the notion of shifted dual equivalence on words and tableaux. Recall that Lemma

2.10 ensures that the shifted jeu de taquin commutes with standardization.

Definition 2.24 ([28]). Two standard shifted tableaux are shifted dual equivalent (or coplactic
equivalent) if they have the same shape after applying any sequence (including the empty se-
quence) of inner or outer jeu de taquin slides to both. Two shifted semistandard tableaux are

shifted dual equivalent if so are their standardizations.

In particular, considering the empty sequence of jeu de taquin slides, we have that shifted

tableaux that are dual equivalent must have the same shape. This notion is extended to words,
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with two words being shifted dual equivalent if their corresponding diagonally-shaped tableaux
are shifted dual equivalent.

The following characterizes dual equivalence on straight-shaped shifted tableaux, in which
the dual equivalence classes are determined by the (straight) shapes. Considering mixed-
insertion, the recording tableau of a dual class is the recording tableau of the unique shifted

Yamanouchi tableau in that class.

Proposition 2.25 ([28, Corollary 2.5]). Two tableaux of the same straight shape are dual equiv-

alent.

Shifted dual equivalent words also have a characterization in terms of Worley—Sagan inser-

tion.

Theorem 2.26 ([27, Theorem 2.12]). Let w and u be words in [n]'. Then, w and u are shifted

Knuth equivalent if and only if their recording tableaux under Worley—Sagan insertion coincide,

e, Qw) = Q(v).

2.4 Shifted evacuation and reversal

Definition 2.27. Let 7' € ShST(A/u,n). The complement of T in [n]’ is the tableau c,(7")
obtained by reflecting 7" along the anti-diagonal in the shifted stair shape 6 = (A, A\;—1,...,1),
i.e., sending each box in (7,j) to (\; — 7 + 1,A\; — ¢ + 1), replacing each unprimed entry i
with 6, ,,(¢)" and each primed entry ¢ with 6, ,, (), where, we recall, 6, ,, denotes the longest

permutation in &,,.

Hence, if T is of shape A/, then ¢, (T) is of shape ¥ /Y, and if wt(T') = (wty, . .., wt,),
then wt(c,,(T")) = 01, (Wt(T')) = (wty, ..., wt;). We have

Weol(Cn(T')) = cp(w(T)) (2.4)

where weo (1) denotes the column reading word of T', which is read along columns from bottom
to top, going left to right, and where c,(w) is set to be 6, ,(w), for w a word in [n]’. For
diagonally-shaped tableaux, it is clear that the row and column reading words coincide. More

generally, w(T') =5 weo(T), for any T € ShST(A/u) [72, Lemma 6.4.12], and thus

w(c,(T)) =g cp(w(T)). (2.5)
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By construction, the operator c,, is coplactic. In particular, it preserves shifted Knuth and dual
equivalences [72, Lemma 7.1.4], and it commutes with standardization. The following result,

which is also valid for ordinary Young tableaux, is due to Haiman.

Theorem 2.28 ([28, Theorem 2.13]). Given T' € ShST(A\/u,n), there exists a unique shifted

tableau T° that is shifted Knuth equivalent to ¢, (T') and shifted dual equivalent to T.

This unique tableau is known as the reversal of T'. If T' is straight-shaped, then this is known

as the shifted evacuation and denoted evac(7T').

Proposition 2.29 ([72, Definition 7.1.5, Lemma 7.1.6]). Given T' € ShST(v,n), its (shifted)
evacuation, defined as evac(T') := rect(c,,(T")) is the unique shifted tableau that is shifted Knuth

equivalent to ¢, (T') and shifted dual equivalent to T'. In particular, evac(T') has the same shape

as T and evac®(T) = T.

As a consequence of evac being an involution, we have that evac(Y},) is the unique shifted
tableau in canonical form of shape v and weight 6, ,,(), where v is a strict partition and n =

¢(v). The following result provides a straightforward way to compute the evacuation of Y.

Lemma 2.30. Let v = (vy,...,1v,) be a strict partition, with n. > 1. Then, evac(Y,) is the

tableau of shape v such that its n-th row is filled with n*", and its i-th row is filled with
R O ) O ) S (X T
reading from left to right, for 1 < n.

Proof. This filling clearly defines a shifted semistandard tableau. Let 7 be the tableau in
those conditions. By construction, 7 has shape v and it is clear that its weight is given by

(Un, ... v1) = 01,(v). Hence, T = evac(Y,). O

Example 2.31. Let = (4,3,1) and n = 3. Then,

[1]1

Y, = [2

1 1RT2[3

|CO [\l
[\
[¢]
<
[«5)
0O
—~
=<
~—
I
[\
<
w

Since ¢, preserves shifted Knuth equivalence, the reversal operator is the coplactic extension
of evacuation, in the sense that, we may first rectify 7', then apply the evacuation operator, and
then perform outer jeu de taquin slides, in the reverse order defined by the previous rectification,

to get a tableau 7 with the same shape of 7. From [28, Corollaries 2.5, 2.8 and 2.9], this

26



tableau 7" is shifted dual equivalent to 7', besides being shifted Knuth equivalent to c,,(7"). This
process is detailed in Proposition 2.45, with the aid of shifted tableau switching. In particular,

evac(7T') = T for tableaux of straight shape.

Proposition 2.32. Let T € ShST(\/uu, n). Then, we have the following:
1 (T =T.
2. wt(T°) = 6y, (wt(7)).

Proof. We have (7)€ is shifted dual equivalent to 7, which is shifted dual equivalent to 7.
The operator c,, is coplactic, and thus (7¢)¢ =, ¢,(T°) =, ¢2(T') = T. Then, by Theorem 2.28,
(T¢)¢ = T. Since shifted Knuth equivalence preserves the weight, then wt(7) = wt(c,(T)) =
01 n(Wt(T)). O

Example 2.33. Consider the following tableau in ShST(v, 3), with v = (4,2, 1):

[1]1

1]1]
T = 212
13

To obtain evac(7") we first compute c3(7") and then rectify it:

3/
' |

A ., AU T ERE] [ORPPFE]
T = 2[2 — CS(T) = 5137 1|23 — 2|33 — 23 = evaC(T)'
3] 3 313 3] 3]

Example 2.34. Consider the following tableau in ShST(\/pu, 3), with A = (6,5,3,1) and p =
(4,2):

I Ul

1|1
T = 212

To compute the reversal 7, we first rectify 7', recording in reverse order the outer corners
resulting of the sequence of inner jeu de taquin slides. Then, we compute the evacuation of
the obtained straight-shaped tableau and perform outer jeu de taquin slides defined by the outer
corners of the previous sequence, from the smallest to the largest. This process can be re-written

with the aid of the shifted tableau switching to be introduced in the next section.

| 1T1] [A]i]1]1]+] [1[2T3T3]+] | 2'T3]
1)1 rect 212 evac 2137 13 e
21(2 ’ 3 3 3 23 =T
3 3

If T is a LRS tableau of shape \/u and weight v, then ¢, (7°¢) is a LRS tableau of shape
p”/AY and weight v. Indeed, as c,, is coplactic and T°¢ =, c,(T), then ¢, (T°) =, T = Y,.

\%
Thus, we have the symmetry 21, = fi,.
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2.5 Shifted tableau switching

The tableau switching algorithm for type A is an involution that, given a pair of tableaux (.5, T'),
with S extending 7', moves one through another, using switches similar to the jeu de taquin
slides, regarding the boxes in S as inner corners, and keeping semistandardness, within each of
the alphabets, in the intermediate steps [5]. Any chosen sequence of those switches produces
the same final result [5, Theorem 2.2]. This is not the case for the shifted tableau switching,
which must be performed following a determined sequence of switches, similarly to the type
A infusion map [70, 71]. As observed in [15, Remark 8.1], the resulting pair obtained by
the shifted tableau switching can be recovered alternatively, using the type C' infusion map of
Thomas and Yong [70] on a pair of standardized tableaux, followed by the semistandardization
of Pechenik and Yong [52]. The infusion map on type A standard tableaux is a special case of
the tableau switching process [5], in which the order to perform the switches is determined by
the entries of the standardization of the inner-most tableau. Unlike the case for ordinary Young
tableaux, the shifted tableau switching process comprehends a determined sequence of switches
to be performed, which agrees with the one prescribed by the type C' infusion map on shifted
standard tableaux (Proposition 2.50). Furthermore, it is compatible with standardization [15,
Remark 3.8]. This will be illustrated in Example 2.51.

We recall the definitions of the shifted tableau switching for pairs (A, B) of border strip
shifted tableaux, with B extending A, and for pairs of shifted semistandard tableaux (S, 7)),
with 7" extending S. We omit most of the details and proofs, and refer to [15]. Recall that i
denotes either the letters i or i’ € [n]’. A skew shape S(A\/p) is said to be a double border strip
if it contains no subset of the form {(7,j), (i + 1,7 + 1), (i + 2,7 + 2)}.

Definition 2.35 ([ 15, Definition 3.1]). Let S(\/u) be a double border strip. A shifted perforated
a-tableau in \/y is a filling of some of the boxes of S(\/u) with letters a, a’ € [n]’ such that
no a’-boxes are south-east to any a-boxes, there is at most one a per column and one a’ per row,

and the main diagonal has at most one a.

The shape of a perforated a-tableau A in a double border strip S(\/ ) consists of the a-filled
boxes of S(A\/u), and is denoted by sh(A). Given a perforated a-tableau A and a perforated b-
tableau B, the pair (A, B) is said to be a shifted perforated (a, b)-pair of shape A/ if S(\/p)
is the disjoint union of sh(A) and sh(B). In this case, we denote by A LI B the filling obtained

by overlapping A and B.
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Example 2.36. The following are shifted perforated 1- and 2-tableaux, that form a shifted per-
forated (1, 2)-pair of shape (6,4,3)/(3,1):

[ 1'T1] ] [ 2’| [ 1T1]2']
A= T B = 272 AU B= 7272
T |1 2 T[2[1

If (A, B) is a shifted perforated (a, b)-pair, one can interchange an a-box with a b-box in

AU B subject to the following moves, called (shifted) switches , illustrated in Figure 2.2.

If an a-box is adjacent to If an a-box is adjacent to

a unique b-box two b-boxes

b]

[e]=

[a] b alb/ b[a alb
(S1) &[5 — [B[F] 82) B—R |69 |n—>£ | (s6) 21—
b

a (S7) |aab|}_>|ba'b|

a

(83) B[, (B (S4) l2lal, |

Figure 2.2: The shifted switches [15, Section 3].

The switches (S3), (S4), (S7) are called the diagonal switches and can only be performed
when a and b are in the main diagonal. An a-box is said to be fully switched if it cannot
be switched with any b-boxes, and A LI B is said to be fully switched if every a-box is fully

switched.

Remark 2.37. With the exception of (S4) and (S7), the shifted switches in Figure 2.2 correspond

to shifted jeu de taquin moves, regarding the a-boxes as empty corners.

Definition 2.38 (Shifted switching process [15]). Let 7' := AL B be a perforated (a, b)-pair that
is not fully switched. The shifted switching process from T to <™ (T'), with m the least integer
such that ¢ (") is fully switched, is obtained as follows: choose the rightmost a-box in A that
is a neighbour to the north or west of a b-box, if it exists, otherwise, choose the bottommost
a’-box in the same conditions, and then apply the adequate switch among (S1)-(S7), obtaining
§(T). The process is repeated until ¢ (7T') is fully switched, where ¢/(T') := ¢(s*}(T")), for
i > 2. We then set SP{(A, B) := ¢"™(T)” and SPy(A, B) := ¢™(T)%, the tableaux obtained

from ¢"(T") considering only the letters {¢', b} and {a’, b} respectively, and define
SP(A, B) := (SP1(A, B),SP2(A, B)).

This process is depicted by the algorithm in Figure 2.3.
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define SP(A, B)
input (A, B) a perforated (a, b)-pair, with a,b € [n], such that
B extends A.

set F':= AU B

while F' is not fully switched, do

F:=¢(F)
set C:= F%and D := F°
return (D, C)

Figure 2.3: Shifted tableau switching for shifted perforated (a, b)-pairs [15, Algorithm 1].

Example 2.39. Consider the shifted perforated (1, 2)-pair of the previous example, which is not
fully switched.

| YE
AUB= 2] 2
1[2[1

The leftmost box filled with 1 (unprimed) is in position (1, 5), and it is adjacent to two 2-boxes.

Hence, we apply the (S5) switch, obtaining:

| U2 (g5) | U|2'[T]
AUB = 2] —5 22 =¢(AUB).
1[2[1 1[2[1

This 1-box is now fully switched. Continuing the shifted switching process, until all 1-boxes

are fully switched, we obtain:

| U271 (1) | U211 (s5) | 2]
S(AUB) = 1'[2'[2 ! 17272 u> 27172
1[2[1 2|11 2|11
s1) | V2T (s5) | A IMEY
B, T ook 2|7 =¢°(AUB).
211 211

Remark 2.40. Unlike the tableau switching for Young tableaux [5], the shifted version depends
on the order in which the a-boxes are chosen [14, Remark 3.7 (1)]. For instance, if one applies
(S6) (corresponding to choose the box with 2’) instead of (S1) (corresponding to the box with

1, i.e., the rightmost 1-box), the obtained filling is not a valid (1, 2)-pair, as the second row is

not weakly increasing:

2[2]
] -

2] (S6) |
1|2 '

This process is well defined and it is an involution [15, Theorem 3.5]. It may be extended

to pairs of shifted semistandard tableaux (S, T"), with T extending S. The result is denoted by

SW(S, T) = (SW1<S, T), SW2(57 T)),
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where SW,(S,T) = T" and SWy(S,T) = S’ as depicted in Figure 2.4. The shifted tableau
switching SW for pairs of shifted semistandard tableaux is also well defined [15, Theorem 3.6]
and it is an involution [15, Theorem 4.3]. If S is straight-shaped, then SW;(S,7T") = rect(T).
Similar to the type A case [2, 5], if T" is a LRS tableau, then so it is SWy (S, T'), for any straight-
shaped shifted S extended by 7" [15, Theorem 4.3]. Thus, considering S := Y),, we have a
bijection that sends 7', a LRS tableau of shape A/ and weight v, to SW4(Y,,, T"), a LRS tableau

of shape \/v and weight v, giving the symmetry [}, = f, .

define SW(S,T)
input (S, T) pair of shifted tableaux, with 7" extending .S, which
are decomposed into 7 =T ---UT"and S = S' - --LUS™.

for ¢ from m to 1, do

for j from 1 to n, do
SP(S¢,T7)
set7/:=T'U...uT"and S’ :=S'U---LUS™
return (77, 5")

Figure 2.4: Shifted tableau switching for pairs of shifted tableaux [15, Algorithm 2].

This shifted tableau switching is compatible with standardization [15, Remark 3.8], i.e.,

SW(std(S),T) = (id x std) o SW(S,T)
(2.6)

SW(S,std(T")) = (std x id) o SW(S,T)
where id x std denotes the usual Cartesian product of maps, i.e., (id x std)(S,T") = (.5, std(T)).
Moreover, since the switches may be regarded as jeu de taquin slides, the pair SW(S,T)
is component-wise shifted Knuth equivalent to (77, 5), for any pair of shifted semistandard

tableaux (S, T"), with T" extending S. Moreover, rewriting [28, Corollaries 2.8 and 2.9] in terms

of the shifted tableau switching yields the following.

Proposition 2.41 ([13, Proposition 3.2]). Let S and T be shifted semistandard tableaux in
the same dual equivalence class (in particular, S and T have the same shape). Let W be a

semistandard shifted tableau. Then,

1. If S and T extend W, then SWy (W, S) = SWo(W,T'), and SW(W, S) is shifted dual
equivalent to SW, (W, T).

2. If W extends S and T, then SW1(S, W) = SW1(T, W), and SWy(S, W) is shifted dual
equivalent to SWo (T, W).
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Corollary 2.42. Let S and T be shifted semistandard tableaux such that T extends S. Then,
1. (SWq(S,T))¢ = SWy(S,T°).
2. (SWy(S,T))¢ = SWy(S5°,T).

Proof. By definition, 7' is shifted dual equivalent to 7°, hence, by Proposition 2.41, we have that
SW, (S, T) is shifted dual equivalent to SW; (S, 7). The shifted tableau switching algorithm
ensures that SW; (.S, 7) is shifted Knuth equivalent to 7, and since the operator ¢, is coplactic,
we have

SWi(S,T°) =, T° =, ¢, (T) =k, c,(SW1(S,T)).

Since SW (.S, T°) is shifted dual equivalent to SW, (.S, T") and shifted dual equivalent to c,,(SWy (S, T)),
we have that (SW;(S,T"))¢ = SWy(S,T*). The proof for the second statement is similar. [

The following result ensures that the shifted tableau switching is also compatible with

canonical form.

Proposition 2.43. Let S, S, T and T" be shifted semistandard tableaux filled in [n)’, not neces-
sarily in canonical form, such that T extends S and T' extends S’. Suppose that S and S’ have

the same canonical form, and so do T and T". Then,
1. SWy(S,T), SWy(S",T), SW1(S,T") and SW,(S’,T") have the same canonical form.
2. SWy(S,T), SWo(S",T), SWy (S, T") and SWo(S’, T") have the same canonical form.

Proof. Tt suffices to show that for each i € [n], the southwesternmost occurrence of i maintains
its relative position. This is verified for each switch (S1)-(S7). Moreover, the switching algo-
rithm states that one must start with the rightmost unprimed ¢ that has neighbours to its south
or east, and then proceeding to the lowest primed /. Hence, the switching path is going from
right to left, and then from bottom to top. Therefore, the lowest and leftmost i is either the last

unprimed 7 or the first primed ¢’, leaving the switching order unchanged. [

Example 2.44. Consider the following pair of shifted semistandard tableau (.S, 7T), with T" (in
gray background) extending S' (in white background):

[T[1]2T1]2]
(S’T): 212
2[3

To apply the shifted tableau switching SW to (S, T'), we first compute SP(S5?, T"):
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ORI ) CRER ) AR
(S,T7) = "[2[H2 OD e S Tk
2[3 2[3 2[3
Then, we compute SP(S?, T?):
OERT2] sy ORI ss5) (LRI
202 — @22 — mz2e2
2[3 2[3 2[3
Continuing the process, we have:
ORI 1 ORI 7 EVERIY] 1) EEVEIY] 1) EEVEI?]
22 — mzl2] — [12[2] — [[EE = ]2
2|3 3|2 3|2 3|2 32
2] AR 2]
s, | (5)
— R2E1] — 221 =SW(S,T).
3[2 3[2

The algorithm to compute the reversal of a shifted tableau 7" € ShST(\/u,n) may be
described using the shifted tableau switching [13].

Proposition 2.45 ([13, Definition 4.5]). Let T' € ShST(\/u,n) and let U and W be shifted
standard tableaux of shape 1. Let W' := SWy(W,T') and U’ := SWy (U, T'). Then,

SW(evac(rect(T)), W') = SW(evac(rect(T')), U’),
and we have
SW,(evac(rect(T)), W') = T*°.

Proof. Since they have the same straight shape, rect(7") is shifted dual equivalent to evac(rect(7)).
Thus, by Proposition 2.41, SWj(evac(rect(7")), U’) is dual equivalent to

SWQ(I’GCT.(T), U/) = SWQ (SWl(Uv7 T), SWQ(U, T)) = SWQ(SW(U, T)) =T.

Furthermore, since SWy(evac(rect(7')), U’) is shifted Knuth equivalent to evac(rect(7")), we
have

SW(evac(rect(T)),U’) =, evac(rect(T')) =y, c,(rect(T)) = c,(T).
The result then follows from the uniqueness of Theorem 2.28. U

Example 2.46. To illustrate this procedure, we use the same tableau in Example 2.34, filling the
inner shape ;. with a standard tableau UU. We note that, since U = U' LI - - - U U!#! is standard,
then each U* consists of a single box filled with (unprimed) i. Thus, the switches (S4) and (S7)

will not be used during the shifted tableau switching process.

[ 1']1] [IT2]3]1]1] [1]1]1]1]3] [1]27]3']3]3] [TT2]3]27[3']
11 2[1]1 SW, 2[21] evacxid [2[37]1 SW, 4|1(3] _ e
2]2 v 2]2 } 3|2 ’ 3]2 2[3 —<U7T)'
3 El 4] 4] 3]




2.5.1 Type C infusion

As remarked before, the shifted tableau switching process could be obtained by first standard-
izing the involved tableaux, apply the type C' infusion involution [70], and then the shifted
semistandardization process [52]. This is due to the shifted tableau switching being compati-
ble with standardization and the fact that, on shifted standard tableaux, the order in which the
shifted are performed (see Figure 2.4) agrees with the one determined by the type C' infusion

map (see Lemma 2.48 below).

Definition 2.47 ([70]). Let (S,7') be a pair of shifted standard tableaux, of shapes /v and
A/p (thus, T extends S), respectively. The type C infusion of the pair (S,T), denoted by
infusion(.S, T") := (infusiony (.S, T"), infusiony (.S, T")), is the pair (X, Y') of standard tableaux of
shapes /v and \/~, for some strict partition vy with |y| = |A| — |u|, obtained in the following

way:

1. Let m be the largest entry of S. Then, its box is a inner corner for A/, and we perform
Jjeu de taquin on ' starting with that inner corner, until an outer corner is obtained. Place

m on that outer corner and never move it again for the duration of the process.
2. Repeat the last step for the remaining entries of S, going from the largest to the smallest.

3. Then, X is tableau obtained after performing all the shifted jeu de taquin slides on T’
determined by the entries of .5, and Y is the tableau obtained by placing the entries of .S

on the resulting outer corners.

The shifted tableau infusion; (S, T) is then the result of applying shifted jeu de taquin inner
slides to 7" (determined by .S), and infusiony (.S, T") encodes the order in which those slides were
performed. In particular, if S has straight-shape, then infusion, (S, 7") = rect(T").

If (S, T) is a pair of shifted standard tableaux, then there are no repeated entries, nor primed
ones, thus the algorithm in Figure 2.4 to compute SW(S,T") requires only the switches (S1)
and (S2) of Figure 2.2. These switches correspond to shifted jeu de taquin slides in a shifted
standard tableau, as the exceptional slide (see Definition 2.8) cannot occur. Moreover, the
algorithm for the shifted tableau switching in Figure 2.4 states that the shifted switches must be
performed from the largest entry of .S to the smallest, which agrees with the order defined by

the type C' infusion (Definition 2.47). Thus, we have the following.
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Lemma 2.48. Let (S,T') be a pair of shifted standard tableaux, with T extending S. Then,
SW(S,T') = infusion(S,T).

Example 2.49. Consider the following pair of shifted standard tableaux

[1]2]3]2]3]
(S,T) = [4[2]5
4[6

To compute infusion(.S, T") we start with the largest entry of .S, and regarding its box as inner

corner, perform jeu de taquin slides:

[2[3[2]3] [112[3[2]3] [2[3[2]3] [112[3[2]3]
iAns — [mE4BE — mEEsE — 4[5
16 16 4[6 64
Continuing with the next largest entries of .S, we obtain:

[12[3[2]3] [2[2]3]3] [1[2[218]3] [12[2[3]3] (12131 3]
45| — [T43 — [T43 — [T43 — [2]4]5
64 64 64 64 64

[ I213]3] [1[I2E]3] [ E213]3] A 2EE]
—  H2[5] — [MEBEl2] — HEEl2] — EE2
6] 4 64 64 64
[IT2]1]3]3] E2qs]]s] )
— [EB2] — [A[BE[2] = infusion(S,T).
6]4 64

Proposition 2.50. Ler (S,T') be a pair of shifted semistandard tableaux, with T extending S,

and such that wt(T') = vy and wt(S) = vg. Then,
SW(S,T) = (sstd,,. x sstd,) o infusion(std(S), std(T")).

Proof. Since SW1(S,T) and SW5(S,T) have weights v and vg, respectively, then by [52,

Lemma 9.5] we have
(sstd,,. X sstd,) o (std x std)(SW(S,T)) = SW(S,T). (2.7)
By Lemma 2.48, (2.6) and (2.7), we have

(sstd,,. xsstd, ) o infusion(std(S), std(7)) =

(sstd,,. X sstd, ) o SW(std(S),std(T"))

S

sstd,,. x sstd,) o (id x std) o SW(S,std(T))

S

)

( )

(sstd,,. x sstd,) o (id x std) o (std x id) o SW(S, T)
)

sstd,,. X sstd,) o (std x std) o SW(S,T')

(
SW(S, T).
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Example 2.51. We illustrate the process with the shifted tableau pair (S,7") from a previous

example:
[T]1]2'T1]2]] [1]2]3]2]3]
, = [2]1]2] — 15| = (st ,st .
S, T d(S),std(T
2[3 46

From Example 2.49, we have

O3 2180 fusion TEI2IB]1]3]
i — 452
4[6 64

Since we have wt(7') = (2,3,1) and wt(S) = (2,2), we now apply the semistandardization

process with respect to these compositions, respectively:

EEINE [zl 24] AR 2]
452 — Rl — [[2[1] =SW(S,T).
6|4 36[24 3|2

2.5.2 Shifted evacuation via tableau switching

The authors in [15] present another algorithm for tableaux of straight shape, that coincides with
the shifted evacuation from Section 2.4, using the shifted tableau switching'. We consider the
auxiliary alphabet —[n] := {-n'<-n<.--<—-1'<—1}and —[n) U [n] := {-n'<—-n<
o< —lU<—-1<l<1l<---<n <n}. Given T € ShST(A/u,n) and k € [n], we define
neg, (7') to be the filling, in —[n]’ LI [n]’, obtained from 7" by replacing each k with —k and each
k' with —k', leaving the remaining letters unchanged. If T is a filling of a shifted shape in —[n]’,
we define d,,(7") to be the filling in [n]’ obtained from 7" by replacing each —i with 6, ,,(7) and

each —i’ with 6, ,,(7’), that is,
dn(T) = Oy nnegy ' - - neg, (7). (2.8)

Consider the algorithm presented in Figure 2.5, defined on the alphabet —[n|’U[n]" (we note that
the use of negative entries ensures that those will not move again after being fully switched).
This algorithm coincides with the shifted evacuation for straight-shaped tableaux [15, Theorem
5.6].

Given T' € ShST(v,n), the algorithm in Figure 2.5 may be easily modified to obtain a
restriction evacy, to the alphabet {1,...,k}’, for k < n, by applying evac to 7% LI --- LU T*
and maintaining 7%*! LJ --- LU T" unchanged. This is depicted in Figure 2.6. It is clear that

evac,, = evac.

I'The authors use the terminology shifted generalized evacuation for this algorithm.
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define evac(7')
input 7" a shifted tableau of straight shape decomposed into
T -y,
set TF =0
for ¢ from 1 to m, do
set T := neg,(T)
ifa=m
set TF =T TF
else
set (A, B) := SW(T*, Tt y...uT™)
setT:=AandT¥? := BUTF
return d,,, (TF)

Figure 2.5: The shifted evacuation algorithm [15, Algorithm 4].

define evac, (7T')
input 7' a shifted tableau of straight shape and k£ < n.
set TP =0
for a from 1 to k, do
set T := neg,(T)
ifa=k
set TF =T TF
else
set (A, B) := SW(T, Tt ... uTF)
setT := Aand TP := BUTF
return d;, (TP)uTF U 0T

Figure 2.6: The shifted evacuation algorithm, restricted to the letters [1, k]'.

[1
Example 2.52. Let T =

have

2]3]

o
BER
)

. Computing evac(T") with the Algorithm in Figure 2.5, we

B3EBE3E21-2 4. [1[1]2
3
221 —  [2]2]3
3

1[27]2]3] neg, EHEN2T2[3] (g5 EH2[EA2]3] (s6) [E[2]2[2]3] (s3) [2[2]2]2]3]
2[2 — 23] — [2]2[3] —= [2f] —= =13’
3] 3] 3] 3] 3]
(s5) [212]212]3] (s3) [2[2]2]2]3] neg, E2E2E2E2[3] (s1) E2E2E23F2
— PR — BB — [B[3[] —> 3[-1
El i i i
se) E223[3F (s7) 323 3F2]-2]
NN -2
-1

Similarly to the ordinary Young tableaux case [51, Section 2.2, (5)] [5, Section 5], the

shifted evacuation algorithms, in Figures 2.5 and 2.6, may be easily extended to skew shapes,

by removing in both algorithms the requirement for the input to have a straight shape. We

denote these operators by evac and evac,. However, we note that, similarly to the ordinary
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Young tableaux case [5, Section 5], the involution evac is different from the reversal, as in
general, given 7' € ShST(\/u, n), we have that evac(T') # T, since evac(T') does not need to

be shifted Knuth equivalent to c,,(T") or to evac(rect(T)).
| 1] | 23]
T

Example 2.53. Let T = st51 - Then, evac(T') =

—

—_
w
<

= T° (see Example 2.34).

[\
w
<

[eo[ro] =
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CHAPTER 3

A CRYSTAL-LIKE STRUCTURE ON ShST(\/p)

In this chapter, we recall the definition of the shifted tableau crystal introduced by Gillespie,

Levinson and Purbhoo [23]. We then introduce the shifted crystal reflection operators.

3.1 Shifted tableau crystals

We recall the main results on the shifted tableau crystal ShST(A/u, n), the crystal-like structure
on ShST(A/u, n) introduced in [21, 23]. Let {ey,...,e,} be the standard basis of R™ and let

a; 1= e; — e;;1 be the simple roots for the type A,_; root system, fori € I := [n — 1].

Definition 3.1 ([23, Definition 3.3]). Given a word w on [n]" and i € I, the primed raising

operator E!(w) is defined as the unique word such that
1. std(El(w)) = std(w),
2. wt(El(w)) = wt(w) + «,

if such word exists. Otherwise, £ (w) = &, and we say that E! is undefined on w. The primed

lowering operator F](w) is defined in analogous way using —a;.

This notion is well defined due to Lemma 2.10, and as a direct consequence we have that
FE!(w) = vifand only if w = F}(v), for any words w and v [23, Proposition 3.4]. This definition
is extended to a shifted semistandard tableau 7', putting E.(7") as the shifted semistandard
tableau with the same shape as 7" and with (row) reading word E!(w(T")). The primed operators
preserve semistandardness [23, Proposition 3.6] and they are coplactic [23, Proposition 3.7],
i.e., they commute with the shifted jeu de taquin. Moreover, the tableaux 7', E/(T) and F(T)
are shifted dual equivalent, since their standardization is unchanged (Definition 2.24), whenever

E!and E; are defined on 7.
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In order to simplify the notation, we will henceforth consider the alphabet {1,2}’ , but
the results hold for any primed alphabet {i,7 4+ 1}’ of two adjacent letters. The following
propositions provide a simple way to compute the primed operators both on words and on

straight-shaped shifted tableaux.

Proposition 3.2 ([23, Proposition 3.9]). To compute F|(w) consider all representatives of w.
If all representatives have the property that the last 1 is left of the last 2’ then F|(w) = @. If
there exists a representative such that the last 1 is right of the last 2’ then F|(w) is obtained by
changing the last 1 to 2 in that representative. The word E{(w) is defined similarly reverting

the roles of 1 and 2'.

Proposition 3.3 ([23, Proposition 3.11]). Let T' € ShST (A, n) a shifted semistandard tableau
of straight shape. If T has one row, then E|(T) (respectively F|(T)) is obtained by changing
the leftmost 2 to 1 (respectively, 1 to 2), if possible, and it is & otherwise. If T' has two rows
and the first row contains a 2/, then E}(T) is obtained by changing that 2' to 1 and F|(T) = @.
If the first row does not contain a 2/, then E|(T) = @ and F|(T) is obtained by changing the

rightmost 1 to 2'.

[T]1]1
Example 3.4. LetT = [2]2
3

—_

272]

[\

, withwt(T") = (3,5,1). Then,

HE

Fy(T)= 12

23

|ww.—n
no

Observe that wt(F3(T")) = (3,4,2) = (3,5,1) — (0,1, —1) and that

[1]2

std(T) = std(F5(T)) =[5

4]8]
7

[]a]es

Given a word w on the alphabet [n]" and ¢ € I, the i-th lattice walk of w is obtained
by considering the subword w’, consisting of the letters {4,7 + 1}’, and replacing each letter

according to the following table, starting at the origin (0, 0).

Tpyr =0 S Tz’ Tz

/

Tryp # 0 N ll — Tz

The lattice walks of a word may be used to provide another criterion for ballotness.

Proposition 3.5 ([23, Corollary 4.5]). A word w is ballot if and only if the i-th lattice walk of

the subword w* ends on the x axis, for all i € I.
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Figure 3.1: The lattice walks for w! and w?, for w = 3211221'11.

Example 3.6. Let w = 3211221’11. To obtain the 1st and 2nd lattice walks of w, consider the
subwords w! = 211221’11 and w? = 3222 (which corresponds to 2111, using the alphabet

{1, 2}"). Replacing each letter accordingly, we obtain the lattice walks in Figure 3.1. Since both

lattice walks end on the z axis, the word w is ballot.

If w is a word on the alphabet {1,2}’ and u = wxwy1 ---w; is a substring of some rep-

resentative of w, then w is called a substring of w. The coordinates (z,y) of the point of the

1-lattice walk before the start of w is called the location of w.

Definition 3.7 ([23, Definition 5.3]). A substring u is said to be a F)-critical substring if any

of these conditions on u and its location are satisfied (as well as the adequate transformations

to apply), where ab*c means any string of the form ab - - - bc, including ac:

Type | Substring  Condition steps  Location | Transformation
L0y
IF | u=1(1)2 v u— 2'(1")*2
P — T y=lLz>1
1 v
— 2 — =0
2F | u=1(2)*1 v u— 2/(1)*1
e — r=1Ly>1
3F u=1 N y= u— 2
4F u=1 ! =0 u— 2
u=1 I
S5F o r=1Ly>1 undefined
u=2 —

The final F}-critical substring u of the word w is the Fj-critical substring u« with the highest
starting index, taking the longest in the case of a tie. If there is still a tie (due to different

representatives), take any such u. Using this, we may now recall the definitions for the unprimed

raising and lowering operators.
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Definition 3.8 ([23, Definition 5.4]). Let w be a word. The word F;(w) is obtained by taking a
representative of w containing a final /' -critical substring and transforming it according to the
previous table. If there is no Fj-critical substring or it is of type 5F, then put F(w) = &, and

in this case, F] is said to be undefined on w.

Lemma 3.9 ([23, Proposition 5.14 (i)]). Let w be a word on the alphabet {i,i + 1} and let
(x,y) be the endpoint of the i-th lattice walk of w. If x = 0, then F;(w) is undefined.

The operators F; are called the unprimed raising operators. The unprimed lowering opera-
tors E; are defined on words by E;(w) := ¢, F,_;c,(w), for i € I. In particular, for n = 2, we
have E)(w) = coF(c2(w)), thus E; may be obtained in similar way using the following table

of F-critical substrings:

Type | Substring  Condition steps Location Transformation
T T2 SR x=0
IE | u=2'(2)"1 of L u— 1(2)*1
Vil T2 — x=1y>1
TZ/ 1_/> Tz y — 0
2E | u=2/(1")*2 oy u— 1(2)*2
—— P y=lz>1
3E u=2 Tz’ x = u— 1
4E u =2 TZ y=20 u—1
u=1 K
SE o y=1,z>1 undefined
u=2 —

These definitions can be extended to shifted tableaux. Given 7" € ShST(\/u,n), F;(T)
is defined to be the tableau with the same shape as 7', with (row) reading word F;(w(T")), for
i € I. The definition of E;(T) is analogous. In both definitions, the row reading word of 7'
may be replaced by the column reading word [23, Proposition 5.21]. These notions are well
defined, since E;(T') and F;(T) are shifted semistandard tableaux, for all i € I, whenever these
operators are defined on 7' [23, Theorem 5.18]. Moreover, the primed and uprimed operators
E!, E;, F! and F; commute whenever the compositions among them are defined, for each i € [

[23, Proposition 5.36].

[1[1[1][2]

|
Example 3.10. Let T' = [2[3']3
3

323'32" of w(T) consisting of the letters {2,3}’, having the lattice walk on the right side of

. To compute E, and F,, we consider the subword w? =
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Figure 3.2: On the right, the lattice walk for w = 212'21’, ending at (1, 2). Besides it there is
the lattice walkes for F5(w), ending at (0, 3), and F(w), ending at (2, 1).

Figure 3.2. Then, 7' has a final F5-critical substring of type 4F, and a final Fs-critical substring

of type 2E. Applying the corresponding substitutions, we obtain

[I[I]I[1]3] [I]1]1
F(T)="1273], Ey(T) = 1212]%
3

The primed and unprimed operators may be used to give an alternative formulation for ballot
(and anti-ballot) words. Indeed, a word w on the alphabet {7, + 1}’ is ballot (respectively anti-
ballot) if and only if F;(w) = El(w) = & (respectively F;(w) = F/(w) = @) [23, Proposition

/

5.17]. Hence, a word on the alphabet [n] is ballot (respectively anti-ballot) if and only if
E;(w) = El(w) = & (respectively E;(w) = E!(w) = @) foralli € I.

Whenever they are defined, F;(T") and F;(T') are shifted dual equivalent to 7" [23, Corollary
5.3]. Since this is also true for the primed operators, as the standardization is unchanged, then
any two tableaux that differ by a sequence of any lowering or raising operators are shifted dual
equivalent. Moreover, the unprimed operators are coplactic, whenever defined [23, Theorem
5.35].

A highest weight element (respectively lowest weight element) of ShST(\/ 1, n) is a tableau
T such that E;(T) = E/(T) = o (respectively F;(T) = F/(T) = @), for any i € [. Equiv-
alently, 7' is a highest weight element (respectively lowest weight element) if and only if its
reading word is ballot (respectively anti-ballot). For the next result, recall that Y, is the unique

shifted tableau in canonical form of shape and weight v.

Proposition 3.11 ([23, Proposition 6.4]). The shifted tableau crystal ShST(v,n) has a unique
highest weight element, which coincides with Y,. Then, every tableau ShST (v, n) may be ob-

tained from Y, by a sequence of primed and unprimed lowering and raising operators.
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The set ShST(\/u, n) is closed under the operators E;, E!, F;, F/, for i € 1. Moreover, we

also have the partial length functions [21] given by

ei(T) .= max{k : E(T) # @} §(T) :== max{k : E¥(T) # @}

1

Ol(T) == max{k : F*(T) # @} i(T) == max{k : F¥(T) # @},

and total length functions ¢;(T) and ¢;(T"), which are defined as the y-coordinate and z-
coordinate, respectively, of the endpoints of the i-th lattice walk of 7', for ¢ € [ [23, Section

5.11.

Example 3.12. Considering 7" as in the previous example, we have F5(7T") # @ and E(T) # 2.
The lattice walks for F5(T") and E5(T') (see Figure 3.2) have a final Fy-critical substring of type
5F and a final E,-critical substring of type SE, respectively. Then, FZ(T) = E3(T) = &, and
thus @o(7") = é2(T") = 1. Moreover, we have F3(7T) = &, and

[1]1
= [2

Ey(T) =

1]2/]
3

Y

|OO[\')H

and so ¢4(T") = 0 and €4(7") = 1. Finally, the 2nd lattice walk of 7" ends at (1, 2), and thus we
have v5(7T) = 1 and e5(T") = 2.

The set ShST(\/p, n), together with primed and unprimed operators, partial and total length
functions, and weight function, is called a shifted tableau crystal. We use the notation ShST(\ /1, n)
for both the set and its structure of shifted tableau crystal. It may be regarded as a directed
acyclic graph with weighted vertices, and i-coloured labelled double edges, solid ones being
labelled with i (z — y if F;(z) = y), and dashed ones with ¢’ (z Z, yif F/(x) = y),fori € T
(see Figure 3.3). The connected components of ShST(A/u,n) are the connected components
of the underlying undirected and non-labelled graph. We also remark that the set ShST(\/ i, n)
together with only the primed (or the unprimed) operators and with the same weight functions
wt and total length functions ;, ¢;, satisfies the axioms of a type A Kashiwara crystal [23,
Proposition 6.9]. However it is not a seminormal crystal, as the total length functions ¢; and ;
measure the total distance of 7" to the ends of a string consisting of both F; and F operators,

but not necessarily the distance to ends of a string obtained by only one of F; or F/ [23, Remark

1.3].

Example 3.13. For instance, considering 7" as in the previous examples and the string in Figure
3.4 consisting of both solid and dashed edges, then £5(7") = 2 (see Example 3.12) is the distance
to the left end of that string. But considering the string of solid edges containing 7', then the

distance to the left end is 1.
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Figure 3.3: On the left, the shifted tableau crystal graph ShST(v, 4), for v = (2,1). On the

right, the shifted tableau crystal graph ShST(\/p, 4), for A = (3,1) and u = (1). The operators

Fy, F| are in red, the I, I} in blue, and the F3, I in green. Note that ShST(\/pu, 4) has two

connected components, one of them being isomorphic to ShST (v, 4).

[I]L]L]1]2"] [I]L]1]1]2"]
[2[2[3] —— [2[3[3]
2 2 -

[I]1]1 1|2’[/ o NN o = [ITI[I]13]
12321 . 1 32’3[
o = [I[I[1[1]2] J[1|111|2’[/ -
[2[2[37] —— [2[3[3]

2 2

Figure 3.4: A separated 2-string

Proposition 3.14 ([23, Corollary 6.5]). Each connected component of ShST(\/u,n) has a

unique highest weight element TM&", which is a LRS tableau, and is isomorphic, as a weighted

edge-labelled graph, to the shifted tableau crystal ShST (v, n), where v = wt(T"&").

Proposition 3.15 ([23, Corollary 6.6]). Each connected component of ShST(\/p,n) forms a

shifted dual equivalence class.
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Therefore, by decomposing ShST(A/u, n) into connected components, we have the crystal
graph isomorphism

ShST(A/p,n) ~ | |ShST (v, n)fi, (3.1)

where 31, is the shifted Littlewood—Richardson coefficient.
Recall that given a infinite set of variables x = {xy, zo, ...}, we denote z® = x5 - - -,

for any vector &« = (o, qo,...), such that oy, = O for all & > N, for some N € N. In

particular, we associate to a string w in [n]’, a monomial 2"t (") = g™ ... z% where wt(w) =
(wtq, ..., wt,). The character of a shifted tableau 7" with word  is given by
X(T) =) 2
wWEW

where the sum is all over the representatives of w. The character of a collection of tableaux
is defined as the sum of the tableaux [23, Definition 7.1]. The following result is a direct
consequence of the definition of character, the definition of Schur Q)-functions (Definition 1.2)

and Proposition 3.11.

Proposition 3.16 ([23, Proposition 7.4]). The character of ShST(\/ ) is the Schur Q-function
QA/M (l’)

Consequently, taking the character in (3.1) yields the well known decomposition (1.3) of

skew Schur Q)-function @/, = > f;\yQV (for details, see [23, Section 7]).

3.1.1 Decomposition into ;-strings

Given ¢ € I, we may consider an equivalence relation on ShST(A/u,n), as a set, in which
X ~; Yif X and Y are related by any sequence (including the empty sequence) of i-labelled
crystal operators F;, F/, E; or E!. The equivalence classes are called the i-strings. These are
the underlying subsets of the {7’ i}-connected components of the crystal graph ShST(\/u, n),
which are obtained by removing the edges not coloured in {7, i}.

Hence, ShST(A/u, n) may be partitioned, as a set, into i-strings (see Figure 3.6). The i-
strings have two possible arrangements [21, Section 3.1] [23, Section 8], as shown in Figure
3.5. A string consisting of two i-labelled chains of equal lenght, connected by #'-labelled edges
is called a separated i-string. The smallest separated string is formed by two vertices connected

by a i'-labelled edge. A string formed by a double chain of both i- and i’-labelled strings
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Figure 3.5: A separated ¢-string (left) and a collapsed -string (right).
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Figure 3.6: The crystal graph ShST(v,4), for v = (2, 1), partitioned into 1-strings (left), 2-
strings (middle) and 3-strings (right).

is called a collapsed i-string. A single vertex (without edges) is considered as the smallest

collapsed string.

The following propositions are intended to detail the possible arrangements for an i-string.
This corresponds to the details of the axiom (B1) in [21]. Each i-string has a unique highest
weight element, which is a shifted tableau T in that i-string such that E;(T) = E/(T) = &,
and a unique lowest weight element, which is defined similarly. In particular, the next result
provides a condition for an ¢-string to be separated or collapsed in terms of its highest weight

element.

Proposition 3.17. Let T € ShST(\/u,n) and i € 1. Suppose that T is the highest weight

element of its i-string. Then, the i-string is collapsed if and only if wt(T);+1 = 0.
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Proof. To simplify the notation, we consider the alphabet {1,2}'. Suppose wt(7); = 0. If
wt(T); = 0, then Fy(T) = F{(T) = @ and the 1-string is a trivial collapsed string. Thus,
we may assume, without loss of generality, that wt(7"); > 0. Since wt(7"); = 0, there are no
occurrences of 2" to the right of the last 1 in the word of T". Therefore, F|(T') is defined and
obtained by changing the last 1 into 2’. Moreover, since wt(F7 (7)), = 1, this 2 is identified
with 2 in the canonical form. We claim that F (7") is defined, i.e., there exists a final F}-critical
substring that is not of type S5F. Since wt(7"), = 0, the location of a possible substring is y = 0,
excluding the type SF, and since wt(7"); > 1, there is necessarily a substring of type 2F (with
x = 0) or 3F (4F would be the case where either w(7) = 1’, which is equal to 1 in canonical
form, or w(7T) = 1’(1)*, and again the first 1’ would be identified with 1, and the substring
would be of type 2F and 3F). If w(7') has a final F}-critical substring of type 2F, then F}
changes the substring 11’ into 2’1, which is identified with 21 since this is the only occurrence
of 2. If it is of type 3F, then F changes the substring 1 into 2. In both cases, F; changes the
last 1 into 2, coinciding with F}. Since the operators commute [23, Proposition 5.36], then
F\(T) = F|(T) implies that F*(T") = F{*(T), for any k > 1, which means that the i-string is
collapsed.

Now suppose that the i-string is collapsed. In particular, F;(7") = F{(T). If both F} and
FY| are undefined on 7', then wt(7"); = 0, which is a trivial case. Thus, we may assume that
F\(T) = F{(T) # @. Since F{(T) # @, we have wt(7"); > 0 and there are no occurrences of

2’ to the right of the last 1 in 7". Suppose that wt(7); > 0. We have the following cases:

Case1l. We assume there are no occurrences of 2 after the mentioned 1. Since we are assuming
that wt(7"), > 0, the occurrences of 2 must be to the left of the last 1. Moreover, F7(7") must

coincide with F7(7T'), so we either have:

* F) changes 1 into 2, which implies that the 2’ resulting from F| must be identified with 2
in canonical form. For this to happen, this 2 must be the only occurrence of 2 in F(T).

Hence, wt(F1(7"))2 = 1 and necessarily wt(7"), = 0, contradicting the hypothesis.

» F) changes 1 into 2’. For this to happen, w(7') must have a final F}-critical substring of
type 1F or 2F. If it is 1F, there would be some 2’ to the right of the last 1 and F7] would not
be defined. If it is 2F, and since there are no occurrences of 2 to the right of the last 1, by
assumption, it must be the case 11’ — 2'1. So, since Fy(T") = F{(T'), we have that the

canonical form of 2’1’ is 2'1. For 1 and 1’ to be identified, there must be no occurrences of
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1 to the right of the last 1. By hypothesis, F;(T') = E{(T) = @. Clearly E is undefined
since the last 2 is not right to the last 1. Hence, it must be the case where 7" has no final
FE~critical substring or has some of type SE. If it is SE, then it is either 2’ at x > 1,y = 1.
Since y = 1, there must be some 2 before the 2’ of the substring, and since = > 1, there
must be some 1 after it, which contradicts the non-existence of 1 to the right of the 1 to
be changed. Therefore, it must be the case where there is no final F-critical substring.
Since we are assuming that wt(7")s > 0, some 2 must appear before the last 1, yielding

at least some final £/;-critical substring of type 3E or 4E, which is a contradiction.

Case 2. Assume there are some occurrences of 2 after the last 1. Then, we must have the

substring 12 (the 1 appearing is the one to be changed) at either one of these locations:
* Atz > 0 and y = 0. In this case F; would be defined, being type 4E.

e Atz = 0and y > 0. But then, y > 0 implies that there are some 2 before this string,

placing it at location y = 0 and yielding a 3E or 4E type.
* Aty = 1. Then, the 2 is located at y = 0 yielding a 4E type.

e Aty > 1. In this case necessarily x > 1, otherwise this would be a final F}-critical
substring of type 5F and F(7') = &. But then, the location obtained is not a valid one
for this string to be the final critical substring. Therefore, the 1 to be changed by F7 is not

the same as the one changed by F}, which contradicts their equality.
O]

The next lemmas concern the total length functions, which are the total distances from a

vertex to the highest and lowest weight vertices of its ¢-string.

Lemma 3.18. Let T € ShST(\/p,n) and let i € I. Then,

) E(T) =¢ei(T) ifT isina collapsed i-string
£ T) =
ET)+¢e(T) ifT isin aseparated i-string.

The result is also valid for p; with the adequate changes.

Proof. Suppose that 7" is in a collapsed ¢-string. Then, by Proposition 3.14, that collapsed

string has a highest weight element 7, and so 7y = Ef (T'), for some k£ > 0. Since Tj is a
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highest weight, then E;(T})) = @, hence EF!(T) = @. Consequently, £(T) = k. On the other
hand, T} is a LRS tableau (for the alphabet {¢’,4, (i + 1)’,7 + 1}), thus, by Proposition 3.5, the
endpoint of the ¢-th lattice walk of its word has the y-coordinate equal to 0. The operator F;
shifts the endpoint of the i-th lattice walk by (—1, 1) [23, Corollary 5.12]. Since Ty = E¥(T),
then T = FF(Ty), and so the i-th lattice walk of T" has the y-coordinate equal to k. Then,
&lT) =k =&(T).

Now suppose that 7" is in a separated ¢-string. This ¢-string has a highest weight element 7§,
which is a LRS tableau for the mentioned alphabet. Thus, the endpoint of the :-th lattice walk

of its word has the y-coordinate equal to zero. Then, we have two cases.

* Suppose that 7" is such that E/(T) # @. Let T} := E}(T'). By definition of EI, T} is
obtained from 7" by replacing the last (i + 1)’ that was right to the last ¢ with i. Hence,
E{(Ty) = E*(T) = @ and so

el(T) =1. (3.2)

Since Ty is the highest weight element, we have that E*E!(T) = Ty, for some k > 0.
This is equivalent to F/F*(T) = T, and since both F; and F shift the endpoint of the
i-th lattice walk by (—1, 1) [23, Propostion 4.9], the y-coordinate of the i-th lattice walk

of the word of 7" must be equal to k£ + 1. Hence,
e(T)=k+ 1. 3.3)

Since the operators E; and E! commute when defined, we have Ty, = E/E*(T'), and so
EX¥(T) = F/(T,) # @ (recall that the shortest i-string is one with a i’-labelled edge).
Thus, EF(T) = E;F!/(T) = @, and we have

&(T) = k. (3.4)
By (3.2), (3.3) and (3.4), we have
ei(T) =e(T)+ &(T).

* Suppose now that 7 is such that E(7T') = @. Then, €/(T") = 0. As in the previous case,
there exists a highest weight element 7§ in this 7-string, and the endpoint of the 7-th lattice
walk of its words has y-coordinate equal to zero. If T = Tj, then £;(7") = 0 and the proof

is done. Otherwise, there exists & > 0 such that T, = EF(T), and so, FF(Ty) = T.
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Consequently, the endpoint of the ¢-th lattice walk of the word of 7" has its y-coordinate

equal to k. Hence,

ei(T) = k. (3.5)

Moreover, EFTH(T) = E;(T,) = @, as Ty is a highest weight element. So,
5(T) = k. (3.6)

Hence, by (3.5) and (3.6), and since £;(T") = 0, we have ¢;(T) = &/(T') + &(T).

]

Lemma 3.19. Let T' € ShST(A\/p, n) and suppose its i-string has highest weight element T, (? ‘eh
and lowest weight element T\°", and that T # T(? igh, T(')"W. The following holds:

1. Ifthe i-string is separated, then

T = FFN(T) = FYE(T) = FFEAENT), for some k> 0

Ty = EfENT) = E{E[(T) = E"*E{E!, for some k > 0

witha = @i(T) € {0,1}, b=¢;(T) > 0, c=¢e(T) € {0,1}, and d = £,(T) > 0.
2. Ifthe i-string is collapsed, then

o™ = F(T) = F*(T)

I,®" = B)(T) = EX(T)
with a = ¢;(T) and b = &;(T).

Proof. We prove the case for the separated ¢-string and for the raising operators. For collapsed
i-string, the proof is similar, noting that by Lemma 3.18 we have ¢;(T) = &,(T) = (7).
Let T be in separated i-string. We have E/(EEXT)) = E"'EYT) = EIET(T), since
these operators commute. By definition of ¢ = ¢/(T), we have E/*'(T) = @. Hence
E/(EFENT)) = EX2) = @. On the other hand, we have E;(EEXT)) = EFESY(T).
By definition of d = &(T), ES™ = @. Consequently, F;(E°EXT)) = E°(9) = @. Thus,

E*EY(T) must be the highest weight element of this i-string. N
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3.2 The Schiitzenberger—Lusztig involution

The Schiitzenberger involution, or Lusztig involution, is defined on the shifted tableau crystal
[21, Section 2.3.1] in the same fashion as for type A Young tableau crystal. Similarly, it is
realized by shifted evacuation, for tableaux of straight shape, and through shifted reversal oth-
erwise. For each i € I = [n — 1], we define the shifted crystal reflection operator o;, using the
primed and unprimed crystal operators F;, £/, F; and F. We also show in Example 3.31 that
they do not need to satisfy the braid relations and, therefore, do not yield a natural action of &,,

on this crystal. Throughout this section v will denote a strict partition.

Proposition 3.20. There exists a unique map of sets 1 : ShST(v,n) — ShST(v,n) that
satisfies the following, for all T € ShST(v,n) and for all i € I:

N~

. En(T) = 77F9/1,n_1(i) (7).

2. Em(T) =nFp, . (T).
3. Fin(T) = 77E(/91,n,1(¢) (T).
4. Fm(T) =nEp, ,_,o)(T).
5. wt(n(T)) = Orn(wt(T)).

This map may is also defined on ShST(\/u,n), using the coplacity of the crystal operators,
by applying n to its connected components. Moreover, it coincides with the evacuation evac in

ShST (v, n), and with the reversal e on the connected components of ShST(\/ i, n).

The map 7 is called the Schiitzenberger or Lusztig involution, and we use the notation 7
for both straight-shaped and skew tableaux. The map 7 is indeed an involution on the set of
vertices of ShST (v, n), that reverses all arrows and indices. In particular, it sends the highest
weight element to the lowest, i.e. n(T"&") = T'°" and vice versa.

The Schiitzenberger involution is coplactic and a weight-reversing, shape-preserving involu-
tion. Note that the operator c,, also acts on ShST (v, n) by reversing arrows and indices, however
it does not preserve the shape, although the resulting crystal c,,(ShST (v, n)) is in a bijective cor-
respondence, as sets, with ShST (v, n) and with evac(ShST (v, n)), being isomorphic as crystal

graph to the latter (see Figure 3.7).
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Figure 3.7: The shifted tableau crystal ShST (v, 3), for v = (3, 1), on the left [23, Figure 6.1]. In
the middle, c3(ShST(v, 3)), which is a connected component of ShST(A/u, 3), for A = (3,2, 1)
and ;2 = (2). On the right, evac(ShST(v, 3)) = rect(c,(ShST(v, 3))).

Proof of Proposition 3.20. We prove that the evacuation evac satisfies the aforementioned con-
ditions. Let 7" € ShST(v,n) and let i € I. By definition, wt(evac(7)) = 6; ,(wt(T")). And
since evac is an involution, it suffices to prove the first two conditions. By definition of the
primed operators, std( Elevac(T')) = std(evac(T')). Therefore, since standardization commutes

with evacuation, we have
std(evacEevac(T)) = std(evac*(T)) = std(T).
Moreover, we have ag, ,_, ) = —01,»(;), and thus

wt(evacElevac(T)) =

Wt<T) = Q9 1(d)-
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Hence, by the definition of F ., we have evacE evac(T") = F_.(T') and consequently,
Elevac(T) = evacF,_,(T).

To prove that Esevac(T') = evacFy, ,_,;(T) we note that Eyevac(T') and Fy, ,_,(;)(T') are in
the same connected component of ShST (v, n), hence they are shifted dual equivalent, due to
Proposition 3.15. Thus, it remains to show that Eevac(T') and c,(Fy,,_,()(T)) are shifted

Knuth equivalent. We have that w(evac(7')) =, c,(7T') and since FE; is coplactic, we have
E;(w(evac(T))) = Ei(c,(T)). Then,
w(F;(evac(T))) = E;(w(evac(T)))
=i Fi(w(c,(T))) (3.7)
= by @ Cnlw(en(T))).
By (2.4), we have ¢, w(c,(T)) = weol(c2(T)) = weoi(T'). Moreover, the row and column words

of a shifted semistandard tableau are shifted Knuth equivalent (see, for instance, [72, Lemma

6.4.12]). Thus, since ¢, and Fp, () are coplactic,

CnFo, o i@iyCn(w(cn(T))) = cnly, (i) (Weal (1))
= o Fyo oy (w(T)) (3.8)
= cnw(Fp, ) (T))-
Finally, by (2.4), we have c,w(Fy, ,_,()(T)) = weol(cnFo,,,_,i)(T)) =k w(cnFo, ) (T)).
Thus, from (3.7) and (3.8) we have
w(Eevac(T)) = w(c,Fy, ) (T))

and, consequently, evac(Fy, , _,;)(1T))) = E;(evac(T")). For the uniqueness part, suppose that
there is another involution £ on ShST (v, n) satisfying the previous properties and let Y, be the
highest weight element of ShST(v,n). By Proposition 3.14, we have " = H;, --- H;, (Y,),
where H; € {F!, F;, E!, E;}, with i;, € I. Moreover, let H; be E! (respectively, E;, F! and F})
if H; is F/ (respectively F;, E! and E;). Then,
§(T) = EH;, - Hyy (V)

= gelyn,l(il) e ﬁel,n,l(ik)f(yu)

= flgm_l(il) e flgl’n_l(ik)evac(Yy)

=evacH,, ---H; (Y,)

= evac(7).
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]

As a direct consequence of Proposition 3.11 and Proposition 3.20, we have that the evacua-
tion of a Yamanouchi tableau Y, is the lowest weight of ShST (v, n), i.e., F] and F; are undefined

on evac(Y,), forall i < I.

3.2.1 The partial Schiitzenberger involutions

Givenl <i<j<m,let[i,jl:={i<---<jland[i,j] ={/ <i<---<j <j}. Wemay
define an equivalence relation in ShST(A/p, n), in which X ~; ; Y if X and Y are related by
any sequence of [i, j — 1]-labelled crystal operators. The equivalence classes are the underlying
subsets of the [i, j — 1)’-connected components of the crystal graph ShST(\/p, n), which are
obtained by removing the edges not coloured in [, j — 1]’. We denote by B; ; the collection of
these equivalence classes. Since, in particular, X ~; ;.1 Y ifand only if X ~; Y, B, ;44 is the
collection of all the i-strings of ShST(A/p, n). Moreover, we have B; ,, = ShST(\/p, n).

A highest weight element of B; ; is a shifted tableau 7" € ShST(\/pu, n) such that £} and
E), are undefined on 7', for all k € [i,j — 1]. A lowest weight element is defined analogously,

using Fj and Fj,.

Lemma 3.21. Let 1 < i < j < n. Each connected component of B, ; is isomorphic, as
a weighted edge-labelled graph, to ShST(v,n), for some v. In particular, each connected

component has unique highest and lowest weight elements.

Proof. Let C be a connected component of 53; ; and let 7' € C. Then, 7" may be regarded as a
shifted tableau of skew shape A/, for strict partitions such that 1 C pg € \g C A, where
fo/ it corresponds to the boxes of 7" consisting of the letters [1,7 — 1]" and A\/\g corresponding
to the boxes filled in [j + 1,n)". These indeed define the same shapes within each connected
component, since the operators corresponding to the edges coloured in [i, j — 1] leave the shapes
unchanged. Then, we may relabel the filling of 7" by replacing each letter k € [i, j]" with p; ;(k),

where p; ; is defined as

pi7j: [27]]/ - [17] —1 + 1]/
k—k—i+1 3.9

K (k—i+1)
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obtaining a tableau p; ;(1") of shape A\o/uo in the alphabet [1,j — i 4+ 1)'. Thus, C may be
identified with ShST(Ao/po,j — @ + 1), which is isomorphic via rectification to ShST (v, n),
where vy = (wt(T);,...,wt(7T"),). Thus, by Proposition 3.14, C has unique highest and lowest
weight elements.

]

Given T € ShST(A\/p,n) and 1 < i < j < n, we denote T := T' U --- U TV, the
tableau obtained from 7" considering only the entries in [z, j|’. Let C be the (unique) connected
component of B; ; containing 7. By Lemma 3.21, C is identified with a shifted tableau crystal
ShST(N\o/po,j — @ + 1), for some pu C pg € A\g € A. Then, when we write n(7%7), this means
that we first apply the Schiitzenberger involution 7 defined in in ShST(X\y/po,j — 7 + 1) to
pij(T"7) (as defined by (3.9)) and then apply pi. jl to the obtained tableau. Thus, we have the

following definition.

Definition 3.22. Let 7" € ShST(A/p,n) and let 1 < i < j < n. The partial Schiitzenberger
involution restricted to the interval [i, j]" is the map 7, ; : ShST(A/p,n) — ShST(A/p, n)
defined as

niy(T) =T ug(TH)u 17+

In particular, we have 0, ,(T") = n(T).

Lemma 3.23. Let 1 < i < j < nandletk € [i,j]. Given T € ShST(\/u,n), we have,

whenever the operators are defined:
1. Em;;(T) = Ui,erli,j_l(k;) (T).
2. Exnii(T) = nijFo, ;) (T).
3. Fynig(T) = mig ks, 4y (1)
4. Fxnii(T) = nijEg, , ., o)(T).
5. wt(n;;(T)) = 0, ;(wt(T)).

Proof. 1f [i, j] = [1,n], then this is Proposition 3.20. Otherwise, Lemma 3.21 and Definition
3.22 ensure that 7); ; may be regarded as 7) defined in ShST (Ao /. j—i+1), and the result follows

from Proposition 3.20. [

56



As a direct consequence of Lemma 3.23 and the fact that ) is a involution, we have the next

result.

Corollary 3.24. Let 1 < i < j < nandlet k € [i,j — 1|. Then, the operators n, ; satisfy the

following:

1. 771'2,3' =1

2. n; ; takes each connected component of B; ; to itself.

3. m;,; takes each k-string to a k-string, with k = 0, -1(k).
Proposition 3.25. Let T' € ShST(\/p,n) and let 1 < i < j < n. Then, putting k := 0, i-1(k),
we have, for any k € [i,j — 1],

1 or(T) = &3 (T).

2. ex(T) = ppni;(T).

In particular, n; ; interchanges the highest and lowest weight elements within each connected

component of BB; ;.

Proof. We prove the first assertion, the second one is analogous. Using Lemma 3.19, there are

two cases:

1. Suppose that the k-component in which 7" lies is a collapsed k-string Si. Then, by Lemma
3.19, F*)(T) is the lowest weight element of S;. We have that n, ; F**(T) is in a

I%-string S,g (which is also collapsed) and by Lemma 3.23,
T T
mig B (T) = B2 (1)),
Hence, by the definition of €;, we have that

e;(ni(T)) = @r(T).

ey (mi,5(T))

On the other hand, since E?i’j‘l (n:4(T)) is in S, then m’jE;’%(m’j (T))(niyj (T))

must be in S,. By Lemma 3.23, and since 7 ; is an involution, we have

m’jEch(m,j (T))(ni,j (T)) _ F%(m’j(T))<T).

(2

Consequently, by the definition of ¢y, we have

er(T) = (i (T)).
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2. Now suppose that 7" is in S, a separated k-string. Then, by Lemma 3.19 F,:,%(T) F,f w(T) (T)
is the lowest weight element of Sy,. Consequently, 7; ; F},** DF ,f &(T) (T) is in a k-string
S;. (which is also separated). As before, we have

' (T 5 (T ' (T 5. (T
B D EST(T) = B EA (g, 4(T)),

and by definition of ¢;, we have

i, (ni(T)) = @ (T) + @u(T) = @i (T).

s () e (s . /
Since E;;k(n o ))EZ’“(”“ ) (n:(T)) is in S, we have that nEf‘Ek(

i, (1)) &2 (i,5(T))
L BT (g 4(T)

is in §;. By Proposition 3.20, and since 7; ; is an involution, we have

! (i (T " i (T)) —&+(n; -
77E:k(n al ))EZk(m,J(T))(mJ(T)) _ F:k(n 4 ))sz(md(T))(T)?

and then,

(1) = &3, (ni(T)) + €03 (1)) = 3. (nis(T)).

3.3 The shifted reflection crystal operators

We now introduce a shifted version of the crystal reflection operators o; (see [9, Definition
2.35]) on ShST(v,n), for each i € I. Crystal reflection operators were originally defined by
Lascoux and Schiitzenberger [44] in the Young tableau crystal of type A. They are involutions,
on type A crystals, so that each ¢-string is sent to itself by reflection over its middle axis, for
all ¢ € I. It coincides with the restriction of the Schiitzenberger involution to the tableaux
consisting of the letters {7, i+ 1}, ignoring the remaining ones. On ShST (v, n), collapsed strings
are similar to the ¢-strings of type A crystals, hence the shifted reflection operator o; is expected
to resemble the one for Young tableaux. However, for separated strings, a sole reflection of the
i-string would not coincide with the restriction of the Schiitzenberger involution to {i,7 + 1},
hence we have the next definition. We recall that o; = e; — e;41, wWhere {ej,...,e,} is the

canonical basis of R".

Definition 3.26. Let i € [ and 7' € ShST(v,n). Let k = (wt(7"), ;) (usual inner product in

R™). The shifted crystal reflection operator o; is defined as follows
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F/FFYT) ifk>0and F/(T) # @
E/FFNT)  ifk>0and F/(T) =2
E;F/(T) if k=0and F/(T) # @
oi(T) = { E/F,(T) if k=0and F/(T) = @ and Fy(T) # @
T ifk=0and F/(T) = F,(T) =2
E7ME(T) ifk <0and F/(T) # @
| E; " 'E(T) ifk <0and F/(T) =

As the definition suggests, the shifted reflection operator o; must do a double reflection, by
vertical and horizontal middle axes (see Figure 3.8). As we will see in Theorem 3.30, a simple
reflection in the same fashion as the type A crystal fails to ensure the coincidence of the shifted
crystal reflection operators with the adequate restriction of the Schiitzenberger involution, on

separated strings. By coplacity, the operator o; is extended to ShST (A /v, n), fori € I.

e-—30-—30-=—30-—30

Figure 3.8: The action of a crystal reflection operator in separated and collapsed strings, which

coincides with the action of the Schiitzenberger involution on these strings.

We remark that this definition is the same for both separated or collapsed strings. However,
for the latter there is simpler formulation, as stated in the following lemma, since in this case

the primed and unprimed operators coincide.

Lemma 3.27. Let i € I and let T € ShST(A\/u, n) be such that F;(T) = F/(T) (i.e., T isin a
collapsed i-string). Let k = (wt(T'), ;). Then,

FK(T) ifk>0

oi(T)=4T ifk=0
E7HT) ifk<0

2

1 2’2

—_

Example 3.28. LetT' =
2 > 0. Moreover, F5(T') and F;(T) are both defined on 7', thus, we have

[\
w

1
2
3]

[1]1]1]2]3]
O'Q(T) = FéFQ(T) = 2[3'[3

3
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Proposition 3.29. For i € I, the operator o; satisfies the following:
1. o; sends each connected component of ShST(\/p, n) to itself, and each i-string to itself.
2. 0? =1land o;0; = oj04 for |i — j| > 1.
3. wt(oy(T)) = 0;(wt(T")), where 0; = (i,i + 1) € G,,.

Proof. The first assertion results directly from the definition of the raising and lowering opera-
tors. For the second assertion, it is clear that 0,0, = 0;0;, for [i—j| > 1, since each o}, acts only
on the primed subinterval of adjacent letters {k, k + 1}’, leaving the remaining ones unchanged.

To prove that o; is an involution, we must analyse various cases according to Definition 3.26.

Let 7' € ShST(A/p,n).

Case 1. Suppose that k¥ > 0 and that F}(T) # @. Let S = o,(T) = F/F"*(T). Then,

F!(S) = @. By definition of o;, we have

wt(S) = wt(F/FH(T))
= wt(F7H(T)) — o
= wt(T) — (k — Do — a,
= wt(T") — kay.

Hence, putting k := wt(S); — wt(S);,1 we have

k= (wt(T); = (kw);) = (Wt(T)ig1 — (kew)iga)
= W1Z(T7)Z —k— Wt(T)H_l —k
=—k<0.

Consequently,

oi(S) = B, TV EU(S)
= EFLEN(S)
= EF B R FEY(T)

=E'FN(T) =T.
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Case 2. Now suppose 7" is such that k& > 0 and F/(T) = @. Let S = o0;(T). We have

wt(S) =wt(T) + o; — (k + 1)a; = wt(T') — kay. Using the same notation as before, we have

k= (wt(T); = (kaw);) — (We(T)ig1 — (kew)iga)
= W1Z(T7)Z — Wt(T)Z‘_H —2k=—-k <.

Moreover, since E!F*™(T) is defined, this means that the last (i + 1)’ was to the right of the
last i in the word of F*"!(T"), and was then changed to i, due to Proposition 3.2. Consequently,

in S the last i is to the right of the last (¢ 4+ 1)’, which means that F/(S) # @. Hence,

0i(S) = B CVTE(S) = EFYEBIFFY(T) = EFTUEMY(T) = T

(2

Case 3. Suppose that 7" is such that k = 0 and F/(T) # @. Let S = o;(T). We have
wt(S) = wt(T'), hence k = k. Since F/(T) # @, we have F/(S) = @. Then,

0,(S) = E;F/(S) = E;F/E/F,(T) = E;F,(T) =T.

Case 4. Suppose that k = 0 and that F/(T') = F/(T) = @. Then, 0?(T) = 0;,(T) =T.
The remaining cases are dual to the first three, which concludes the proof that o7 = 1.

Finally, using the same notation as before, for the first case we have

wt(o:(T)) = wt(T) — kay
= wt(T") — (wt(T"); = wt(T)iy1)ei
= (wWt(T)q,...,wt(T); — wt(T); + wt(T);11,
wt(T)ip1 +wt(T); — wt(T)ig1, .-, wt(T),)
= (Wt(T)1, ..., wWt(T)iq1, wt(T)s, ..., wt(T),)

= 0;(wt(T)).
The remaining cases are proved analogously. 0

Given ¢ € I, recall that 53; ;1 denotes the collection of the i-strings of ShST(\/u, n) and
that
Niip1(T) = T Up(THHh T2, (3.10)

The next result, which is proved on Section 3.3.1, states that the shifted crystal reflection

operator coincides with the partial Schiitzenberger involution restricted to {i,7 + 1}'.
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Theorem 3.30. Let T' be a shifted semistandard tableau on the alphabet [n]'. Then, for any
1 e,
oi(T) = niiy1 (7).
Unlike the type A crystals, the reflection operators o, for i € I, do not define an action of the
symmetric group &,, on ShST(A/u, n). In particular, the braid relations 0;0;10; = 0;.10;0,11
do not need to hold, as shown in the next example.

Example 3.31. Let ShST(v,3) where v = (5,3,1), and consider the shifted semistandard

tableau

[T]1]1]1]3]
T = 12]2]%
3]

The weight of 7" is given by wt(7") = (4, 2, 3). Then, since (wt(7"), (1,—-1,0)) =4—-2=2>0
and F(T) # @, we have

[1]1]2']2]3]
0'1(T>:F1/F1(T): 2 33’

Putting 77 := o01(T"), we have that (wt(71),(0,1,-1)) =4 -3 =1> 0. As F}(T1) = &, we

have
[1]1]27]37] 3] [1]1]27T2]3]
o900 (T) = EYF2(TY) = By 2B13] ) = 12p13] ,
3 3

and putting 75 := o904 (T), we have (wt(73), (1,—1,0)) =2 -3 = —1 < 0and F|(T3) = &,

and thus,

[1]1]1]2]3]
010'201<T) = 0'1(T2) = Ei(Tg) = 213"[3] . (311)
3

On the other hand, we have that (wt(7'), (0,1, —1)) =2 —3 = —1 < 0 and F3(7) = @, hence

/ RRARRE
09(T) = E5(T) = 2§3'

We put 75 := 049(7T'), thus we have (wt(75), (1,—1,0)) =4 —3 =1> 0and F{(T3) # @ and

consequently

/ [A[i[1[272]
0102(T) = 01(T3) = F\(T3) = "2PF

Finally, putting 7} := o0109(7T), we have that (wt(7}),(0,1,—1)) = 3 -2 =1 > 0 and
Fi(Ty) # @, thus

[1]1]1]2"]3]
0'20'10'2(T) = O'Q(T4) = F2/F2(T4> = 23|13 (3.12)
3

Then, by (3.11) and (3.12), we have that 010901 (T) # o90102(T).

However, we have the following result, as in [3, Section 3.2] for ordinary LR tableaux,
ensuring that the longest permutation of &,, acts on a connected component of ShST(\/u, n)

by sending the highest weight element to the lowest weight element.
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Theorem 3.32. Let T"'&" be a LRS tableau in ShST(N\/p,n). Let 601, = 0;, - - - 0;, denote the
longest permutation in S,,. Then, 0y, acts on a connected component of ShST(\/u,n) by

sending its highest weight element T"&" to the lowest weight element T'V, i.e.,
917’” . Thigh =04, 0y, (Thigh) — 77(j"thigh) — TIOW.

Proof. Since the operators o; are coplactic, we may consider Y, = rect(7), v = wt(T"). By
Proposition 3.29, o; permutes the entries ¢ and ¢ 4+ 1 on the weight and keeps the shape v, and
as 0y, is the longest permutation, o;, - - - 0;, reverts the weight of 7. Then, the uniqueness of

evac(Y, ) implies that o;, - - - 0;, (Y,) = evac(Y,). O

Remark 3.33. Let G,, := (01,...,0,_1) be the free group generated by the shifted crystal
reflection operators o, for ¢ € I, modulo the relations satisfied by them on shifted semistandard
tableaux. We know from Proposition 3.29 that the relations O'Z»Q = 1 and 0;0; = oj0;, for
li — j| > 1, hold on G, but not the braid relations of &, (0;0;11)> = 1, fori € [n — 2].
However, since ShST (v, n) is finite, we have that, given 7" € ShST(v, n), there must exist some
m > 3 such that (0;0,41)"(T") = T, fori € [n — 2]. We computed some examples on the
alphabet {1, 2, 3}/, which show that (o102)™ = 1, for m a multiple of at least 90 [54, Appendix

Al], but we do not know if an upper bound valid for any shape v exists.

3.3.1 Proof of Theorem 3.30

It suffices to prove Theorem 3.30 for tableaux on the primed alphabet of two adjacent letters and
we consider it to be {1, 2}/, to simplify the notation. Moreover, the raising and lowering opera-
tors are coplactic, thus o is also coplactic. Hence, it suffices to prove the result for tableaux of
straight shape. We remark that such tableaux have at most two rows. Furthermore, 7" and o (T")
are in the same 1-string (which, in particular, is a connected component), hence by Proposi-
tion 3.15, T and o, (7T’) are shifted dual equivalent. It remains to show that cy(7") and o4 (7T)
are shifted Knuth equivalent. We remark that another proof may be done by directly verifying
the conditions on Proposition 3.20. The one we present highlights some of the properties of
straight-shaped tableaux with at most two rows. First, we introduce some technical results on

shifted Knuth equivalence.
Lemma 3.34. Let ay,...,a,,b1,...,by,c € 0], withm,n > 1.
1. If b, <---<b <c<a <---<ay, in standardization ordering, then

cay - apby by =g by bpay - ap.
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2. Ifar < <a, <c<b, <-

-+ < by in standardization ordering, then

a1~~-anb1-~bmczkb1~-'bma1-~anc.

Proof. We prove the first part by induction on n, the second part is proved similarly. If n = 1,

we have

ca1b162 cee bm =L cblale cee bm (Kl)

=k Cblbgalbg cee bm (Kl)

=k cby -+ bp_101byy (K1)

= ¢by -+ bp_1bay (K1)

Now suppose the result is true for some n > 1 and let a,,; > a,, in standardization ordering.

Then,

Cay -+ QpQpi1biby - by =5 cay -

Ekcal---anbl-~
Ekcal---anbl--

=p cby - by - - ApQpp

b1y 10203 - - - by, (K1)
. bmflanJrlbm (Kl)
Dl (K1)

Induction hypothesis and Lemma 2.23

Lemma 3.35. Let a € [n]'. Then, for any m > 1, a(d’)™ =4 a™ .

Proof. For m = 1 the result corresponds to the (SK2) relation. Suppose the result holds for

some m > 1. Then,

a<a/)m+1 — a(a/)ma/

=k (a)m+la/ Induction hypothesis and Lemma 2.23

= a(a)™d
= ad'(a)™ Lemma 3.34
= aa(a)™ (SK2)
= (a)™*2.
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In order to prove that cy(7") and oy (7") are shifted Knuth equivalent, we will present se-
quences of Knuth moves between their words. We have remarked that 7" has at most two rows.

The case where it has one row is in the following result.

Proposition 3.36. Let T be a straight-shaped shifted semistandard tableau with one row, filled
with in the alphabet {1,2}'. Then, o,(T) = evac(T).

Proof. As stated before, if suffices to show that ¢ (7") is shifted Knuth equivalent to cy(7).
Suppose that w(7T) = 1%, fora > 1. If a = 1, then w(co(T)) = 2 = w(F1(T)) = w(o1(T)).
If a > 1, then w(cy(T)) = 2(2) ' and w(o1(T)) = w(F{(T)) = 2°. Hence, by Lemma 3.35,
w(ca(T)) =x w(oy(T)). Now suppose that w(T) = 192°, with a,b > 1. Then, w(o((T)) =
1°2% and w(cy(T)) = 2(2')¢~11(1’)"~L. There are two cases:

Casel. Ifa =1, we have

21(1)°71 =5, 12(1)0 ! (SK1)
=, 1(1)" 12 Lemma 2.23
=, 1%2. Lemmas 2.23 and 3.35

Case 2. If a > 1, then we have

2(2) (1)t =4 271 (1) Lemmas 2.23 and 3.35

— 22(171 1(1I)b71

=5, 21(1")P~ 10t Lemma 3.34
=, 12(1")~ 1071 (SK1)
=, 1(1")"~ 122071 Lemmas 2.23 and 3.34
=127, Lemmas 2.23 and 3.35

]

If 7" has two rows, we remark that it suffices to verify the case where the second row has
only one box. To make this statement rigorous, we need to introduce some notation. A shifted
semistandard tableau 7' is called detached if its main diagonal has exactly one box. Then, we

may define the following operator on shifted semistandard tableaux:

65



T if T is detached
r(T) =

o~

T otherwise

where 7' is obtained from T removing its main diagonal and shifting every box one unit to the

left (so that its second diagonal becomes the main diagonal).

I[i[1]1]2]2
Example 3.37. If7 = 515 2]

N =

| then

—

o(T) =P 2oy = RERT2 o7y = (7272,

for m > 3.

The following lemma states that, if 7" is not detached and its (I + 1)-th diagonal is the first
with one box, then o (T) is determined by r'~!(T'), i.e., one may temporarily remove the first
[ — 1 diagonals with two elements, compute o; on the remaining tableau, and then place the

diagonals back.

Lemma 3.38. Let T’ be a shifted semistandard tableau of straight shape, with two rows, filled in
the alphabet {1,2}'. Let l be such that {(1,1),(2,1+1)} and {(1,1+ 1)} are adjacent diagonals
of T with two boxes and one box, respectively. Then,
o (T) = oy " N(T).

Proof. f T =Y, for v = (v1,1s), then wt(oy(Y,)) = (v2,11). Consequently, o1(Y,) =
evac(Y,). Then, r2"tevac(Y,) = evac(Y,0), where 1° = (v; — vy, 1). Similarly, r2=1(Y,,) =
Y,0, and using the same argument with the weight, o,r2=1(Y,) = evac(Y,0). The proof for
evac(Y,) is similar.

Suppose now that 7" is neither Y, nor evac(Y,). Suppose that the word of T is given by
w(T) = 291711°22¢, with a > 1 and b,c¢ > 0. Then, wt(T) = (a + b+ 1,a + ¢ + 1) and
considering Definition 3.26, we have k = (a + b+ 1) — (a + ¢+ 1) = b — ¢ (note that it does
not depend on a). We show the case when k£ > 0 and 2 = 2. The proof for the other cases is

analogous. If 2 = 2, then F}(T) # & and we have
0i(T) = F{Fy = (T)
— I pbreml(gaqatiyboetl)
— Fpbe-1(gagatiyb-(b-c-DgletD+(b-c-1))
— FY(2010+1 16+ 19b)

— 2a1a+1 102/2b
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and so, r* 1o (T) = 21%21¢2'2°,
On the other hand, we have r*~1(7") = 2121°22¢ and so
o NT) = FFP~e71(2121b2°HY)
= FJ(21°1°712%)
= 21%1°2'2".
0

In what follows, we consider 7" to be of shape v = (m, 1), i.e., such that its second row has
only one box. To show that co(7') is shifted Knuth equivalent to o (7) is equivalent to show
that rect(co(7")) = 01(T), since T is of straight shape. Moreover, we ask for 7" to be neither Y,
nor evac(Y,,), since the result for those cases is already proved. We have the following lemma,

which is easy to prove.

Lemma 3.39. Let v = (m, 1), form > 3. Let T € ShST (v, 2) such that T # Y, evac(Y,) and
let k = &1(T). Then,

1 T =U ; L-[1R2]12] i wt(T) = (m — k,k + 1), then

—_

1]-[1]2]2]-]2]

o (T) =1

withwt(o1(T)) = (k+ 1,m — k).

2. 1f T = LR iy wi(T) = (m— k, ke + 1), then

[y

[ [1[2]2][]2
al(T)zl [-[1]2]2]-]2]

withwt(oy(T)) = (k+ 1,m — k).

The rectification does not depend on the sequence of inner corners, so, for simplicity, we
may fix that we always choose the rightmost inner corner in the highest-index row. Thus, we
apply jeu de taquin slides on co(7T'), following this sequence, to the point where an occurrence
of 2 or 2" on T (which correspond to 1’ or 1 in cy(7")) will determine different slides on the next

move. For instance, consider the following tableaux:

| Y | 17
7 _ O] B o 2 o .
1="3 — Cy (Tl) = 2, = 1 the box (2, 4) with 1" will go left on the next slide.
| v | 17
7, - T B 1 Iz . . .
9 = — Co (Tg) = . g/ = P the box (3, 3) with 1 will go up on the next slide.
o 2
2

67



Continuing the rectification we obtain, respectively:

rect(ea(Th)) =g rect(ea(Ty)) = Hgp

We begin by stating some auxiliary results.

Lemma 3.40. Let T = Y, be the highest weight of its 1-string, with m > 3, for v = (m, 1).
Then,

1. w(coFi(T)) = 21(2")™ 21 =5, 212/1(2)™ 3,
2. w(cF{(T)) = 21(2")" 21" =, 212/1/(2)™ 3,
Proof. We prove a more general claim that, if a > 1, then,
21(2)"1 =5, 212'1(2)*!
21(2")*1 =5, 212'1(2)* 1

Then, the result follows, observing that m > 3 ensures that a := m —2 > 1. If a = 1, the claim

is trivial. Suppose this is true for some a > 1. We have,
21(2)*1 = 21(2)"2'1.

The word 21(2')*2" has the same standardization of 21(2')*1. Therefore, by induction hy-
pothesis 21(2/)2’ =, 212'2'(2)*~!. Then, we have

21(2)72'1 =, 212'2'(2)* 1 Lemma 2.22
=, 22'12'(2)* 11 (K2)
=, 2212'(2)* 11 (SK2)
=, 2122/(2)711 (K1)
=, 1222/(2)° 11 (SK1)
=, 122'2(2)* 11 (K1)
=, 212'2(2)°7 11 (SK1)
=212'(2)"1.

Moreover, we have 2'(2)*1 =, 2'1(2)%, by Lemma 3.34, using only (K1) Knuth moves.

Hence, by Lemma 2.23, we have
212/(2)"1 =5, 212'1(2)*.
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Consequentely, 21(2')*1 =, 212'1(2)*"!. The proof that 21(2)*1" =, 212'1'(2)*"! is done
similarly, since Lemma 3.34 also ensures that 2/(2)*1" =, 2'1’(2)%, using only (K1) Knuth

moves. L]

Corollary 3.41. Let T be a shifted semistandard tableaux in the 1-string of Y,,, withv = (m, 1)

and m > 3, such that T is not Y, neither evac(Y,). Let a = (7).

1 IfT = FA(Y,), then w(cy(T)) = 21(2)™ o 11(1)*~1 =, 212/1(2)mo=2(1')o~1,

2. IfT = FIF\(Y,) w(ca(T)) = 21(2)m=o 11/ (1)L =, 2121/(2)m—o=2(1')*L,

Proof. Since T' # evac(Y,) and evac(Y,) is a lowest weight element, then

a=¢e1(T) <ei(evac(y,)) =m — 1.

Then, a < m — 2 and so we have that m — a — 1 > 1. Therefore, using Lemma 3.40, we have

21(2))m 71 =, 212'1(2)™ 2,

Consequentely, by Lemma 2.22, we have 21(2")" " 11(1)*~ =, 212'1(2)™ 2 2(1)*"!. The

proof for the second case is similar. [

Proposition 3.42. Let T be a shifted semistandard tableau in the 1-string of Y,,, withv = (m, 1)

and m > 3, such that T is neither Y, or evac(Y,). Let a = ¢,(T).

I IfT = F2(Y,), then 212'1(2)"*2(1")a~1 =, 2(1)2+12(2)m=2 = o (T).

2. If T = FIF(Y,), then 212'1'(2)™=2(1")2~1 =, 2(1)*"12/(2)"~9=2 = ¢(T).
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Proof. We first prove the first assertion. We have

a—1

212'1(2)™ (1)

=, (1)"212(2)™ 2
=, 2(1)*12(2)m 2

— 2(1)(1—}-12(2)771—(1—2'
For the second assertion, we have

212'1(2)m 7 2(1)* =, 2121 (1)1 (2)m 2
= 212/(1")*(2)™ 2
=5, 21(1)*2/(2)m™ 2
=, 12(1)*2'(2)™ 2
=, 1(1')°22'(2)"

= (1)(2—‘,—1 22/(2>m—a—2

= 2(1)a+12/(2)m7a72.

We are now able to prove Theorem 3.30.

Lemmas 3.34 and 2.23
(K2)

(SK2)

(K2)

(SKT1)

(KI)

Lemma 2.23

(SK1)

Lemmas 2.22, 2.23 and 3.34
(SK1)

Lemmas 3.34 and 2.22
Lemmas 3.35 and 2.23

Lemmas 3.34 and 2.23

Lemma 3.34

Lemma 3.34

(SKT)
Lemma 3.34
Lemma 3.35

Lemma 3.34

Proof of Theorem 3.30. It suffices to show the result for 7" of straight shape with two rows.
Corollary 3.41 and Proposition 3.42 ensure that the words w(cy(7")) and w(o(T")) are shifted
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Knuth equivalent, thus c3(7") = 01(T"). Since T and o1(T") are dual equivalent, this concludes

the proof that o1 (7T") = evac(T). O
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CHAPTER 4

AN ACTION OF THE CACTUS GROUP

Halacheva [29] showed that there is a natural action of the cactus group .J; on any g-crystal,
for g a complex, reductive, finite-dimensional Lie algebra. In particular, the cactus group
Jn = Jy, (Definition 1.1) acts internally on the type A crystal of semistandard Young tableux
SSYT(M/u,n) (here considering any partitions), via the partial Schiitzenberger involutions,
which correspond to partial evacuations on SSYT (v, n). Following a similar approach, it was
shown in [54, Theorem 5.7] that there is a natural action of .J,, on the shifted tableau crystal
ShST(A/u, n). This action is realized by the restrictions of the Schiitzenberger involution to all
primed intervals of [n]’ (thus, containing in particular the shifted crystal reflection operators).
We recall the definition of the cactus group as in [32, Section 3.1].

Recall that 0; ; denotes the longest permutation of &; ;) embedded in &,,, and that n-fruit
cactus group .J,, (Definition 1.1) is the free group generated by s; ;, for 1 < ¢ < 57 < n, subject

to the relations
S2 . = 1, SZ'J‘S]{J = SkJSi’j, for [2,]] N [k, l] = @, si,jsk,l = si+j,l7i+j,ksi,j, for [k, l] g [Z,j]

The first and third relations ensure that the elements of the form s, ;, generate J,,, for 1 < k < n,
since any s; ; may be written as

Sij = S1,jS1,j—i+151,5- 4.1)

Theorem 4.1. There is a natural action of the n-fruit cactus group J,, on the shifted tableau

crystal ShST(X/p, n) given by the group homomorphism:

¢ I — GshsT(A /)
Sig > Mij
forl1 <i<j<n.
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7
R 0o
3 Qil
g
4

Figure 4.1: On the left, the action of sy 4 on ShST(v,4), with v = (2,1). On the right, an

illustration of 51,3514 = $1,452.4-

Recall that, given T € ShST(v,n), evac;(T) = evac(T™) U TVt = n ;(T). As a

consequence, the next results follow from (4.1) and from ¢ being a homomorphism.
Corollary 4.2. Let T € ShST(A/p,n) and 1 <i < j < n. Then,
i (T) = 11 g j—iv1m;(T).
In particular, for T € ShST (v, n), we have
n;.;(T) = evac;evac;_;ievac;(T).

Theorem 4.3. There is a natural action of the n-fruit cactus group on the shifted tableau crystal

ShST (v, n), given by the group homomorphism, for 1 < i < n:

5: Jn — GshsT(vn)

81, /= evac;.
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Proof. Since ¢ is a homomorphism between .J, and Gspst(x/un), In particular it is a ho-

momorphism between .J, and Gspst(,,n). The result then follows from (4.1), as we have

5(51,2') = €vac; = M, = @(SLZ‘). L]

4.1 Proof of Theorem 4.1

To show that ¢ in Theorem 4.1 is a group homomorphism, we show that the operators 7; ; satisfy
the cactus group relations of Definition 1.1, for any 1 < ¢ < 7 < n. The first two relations are
trivial, and we claim that if suffices to show that these operators satisfy the third relation for any

[k, 1] C [1, j]. Indeed, we have the following.
Lemma 4.4. Suppose that, for any [k,1] C [1, j],
MMt = Mj—141,j—k+1771,5- (4.2)
Then, for any [k, 1] C [i, j], we have
Ni,j Tkl = Nj+i—l,j+i—kTi5- (4.3)
Proof. Given [k, (] C [i, j], we show that (4.2) implies the third relation (4.3) of Definition 1.1.
Since, in particular, [7, j| C [1, 5], then (4.2) ensures that
M,iMig = Mt j—it 1M1, (4.4)
Moreover, [k, ] C [i, j| implies that [k — i+ 1,0 —i+ 1] C [1,j — i + 1], and thus, by (4.2),
Mjit 1 Mh—it Lt 1 = M1, j— k171, j—it1- 4.5)
Similarly, we have [j +¢ — [, j +i — k] C [1, j], and thus, by (4.2),
ML Mjtit ik = Mh—it1l—i+171,5- (4.6)
Then, using the fact that 7, ; is an involution, we have, for any [P, 7],
Nig el = M55 —i+1T1 5T, T 141, — k1715 by (4.2) and (4.4)
= M, j—i11j—1+1,5—k+1711,5
= nl,jnl,j—i-f—l(771,j—z‘—i—l77k—i+1,l—i+1771,j—z‘+1)nl,j by (4.5)
= T, jMk—i+1,l—i+1TN,j—i+1"71,5
=M,j (771,j77j+ifl,j+ifk771,j)771,j71'+1771,j by (4.6)

= Njti—l,j+i—kTi,j by (4.4)
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Proof of Theorem 4.1. Each operator 7, ; is an involution (Corollary 3.24) and the second re-
lation is a direct consequence of the definition, as each operator 7; ; acts only on the letters
i, 7]', leaving the others unchanged. Thus, to conclude the proof, due to Lemma 4.4, it suffices
to prove that the relation (4.2) holds for any [£k,1] C [1,7]. Given T" € ShST(\/u,n), let Cy
be the unique connected component of B, ; containing 7. If Cy is an isolated vertex, then by
Lemma 3.23 and Corollary 3.24 the result is trivially true. Thus, we assume that Cy has at least
two vertices. By Lemma 3.21, Cy has a unique highest weight element T(;‘ & and lowest weight
element T3P = nk,l(T(;'igh). These elements are different, as Cy has at least two vertices. Since
[ < j, Cp is contained in a connected component C; of B, ;. By Lemma 3.21, C; has unique
highest weight element 7}"8" and lowest weight element T}°% = 1, ;(T"8") # T"¢". Then, we

have
T = E’Tl F;?l . F’i/:anZ:r (T(;wigh)
- 4.7)
T(I)OW = E;Z‘l E‘;)ll v E;js E?:nlJ(Tlhlgh)

for some iy,...,i, € [k, 1 —1], j1,...,js € [1,7 — 1], with mq,...,m,,ay,...,as € {0,1},

and ny,...,n,,by,...,bs > 0. Thus, we have
M (T) = e FLM F - - Fm (T 4.7)
— m n I oy high
o nl’jE6k7l1—1(il)Eekl,l—l(il) o Eak,l—l(ir)Eek,l—l(ir)nk’l(TO ) Lemma 3.23

o ma ni L me Ny low
_nl’]Eek,zﬂ(il) Op,1—1(i1) Gk,z,l(iT)EGk’l,l(ir)( 0 )

- nl’ng::llfl(il)Egkl,lfl(il) T Eé?;,l(ir)Eg;:l,l(ir)
EjE - B By (T 4.7
- 0/717’1]'1_19’“’1‘1(1'1)FGTj—lakJ—l(il) o éﬁf—lek,l—l(iT)Fng—lek,l—l(ir)
Fit oo oo E o Fr e i (1) Lemma 3.23
- é?:;l*lek,lfl(il)Fé’iijlek,lfl(il) o Hlﬁclek,l,l(ir)FGTj,lem,l(ir)
é?,t‘—l(j1)F9l)1l,j71(j1) o FG/?,SJ;1(j5)F9bij,1(js)( 1high>7
that is,
fa by las bs high
Ml (T) = Fol' 0 Fol 0 Forya oo, a0 T )- (4.8)

Since Cy is a connected component of By, ;, given X,Y € Cy, we have X ~y; Y, and thus
X ==H; - ---H,,(Y) where H; € {F], F;, E}, E;}, for some i1, . .., i, € [k,l —1]. Lemma 3.23
then ensures that
M (X) = Hy - Hy (V) = Hp, ) Houy s (m (V)
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where H; denotes the partial inverse of H;. Then, 7, ;(X) and 7, ;(Y) are related by a se-
quence of crystal operators labelled in 6y ;_;[k,l — 1] = [j — [ + 1,5 — k], which means
that 7y ;(X) ~j_i+1-k+1 T ;(Y). Then, 7, ; takes Cy, a connected component of By, to
m,;(Co), which is a connected component of B;_;.;;_x+1. Then, Proposition 3.25 ensures
that, for any @) € Cy and any p € [k,l — 1] C [1,j — 1], £,(T) = o, ,_,(p»)(m,;(T)) and
ep(T) = €9, , () (m;(T)). This implies that 7, ;(7T;°") and 7, ; (T}'8") are, respectively, the
highest and lowest weight elements of 7, ;(Cy). On the other hand, since 7, ;(Co) is a con-
nected component of B;_;41 j_x+1, then n;_;1; j_41 interchanges its highest and lowest weight

elements, that is,
high w
Mjmt1j—ka1m5 (T55") = i (T™). (4.9)

Then, noting that ¢y ;_10x;-1 = 0,141 ;-101 -1, we may write,

Mmoot (T) = Mjorrr o FER - B F] (Tg'e") 4.7
- nj_l“’j_k“'lEéT;fl(il)Egll,jfl(il) o
m n high

R e S (/1 ) Lemma 3.23

/m mn1 .
05 141,j—k01,5-1(11)" 05_141,j-k01,5-1(i1)

I M
05 141,j—101,5—-1(ik)" 05141, x01,5-1(ix)

high
Nj—i+1,j—k+17 (15 ) Lemma 3.23
ma ni PPN
T 0it1,-k01,5-1081) 7 05141, kb1,5-1(i1)
M Nk (low
F9j—l+1,j—k‘91,j71(ik)FejflJﬁl,jfkel,jfl(ik)nl’]<T0 ) (4.9)

/Imy mni ..
05 —141,5—k01,5-1(11) " 05_141,j—k01,5-1(i1)

my, N
O5—1+1,5-k01,5—1 (k)" O5—141,5—-r01,j—1 (k)
el b plas pbs ) high
= [ n1 ... ime ny
- 91,j719k,171(i1)F91,j719k,171(i1) 91,j719k,171(ir)F91,j719k,171(ir)

la b las bs 2 high
oG Gn T Fa G0 TG 1 (1) Lemma 3.23

— my mni . Iy Fn»,»
01,5-10k,1—1(71)" 01,5—10k,1-1(%1) 01,j—10k,1—1(ir) " 01,5-10k,1—1(ir)

laq b1 ... as bs high
91,j—1(j1)F91,j—1(j1) F91,j—1(js)F91,j—1(js)(Tl >’

that is

_ a b /as bs high
Mj—t1j-k+175 (1) = Fo o Fo, Fel,jfl(js)FG’l,jﬂ(js)(Tl )- (4.10)
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Finally, by (4.8) and (4.10), we have

MMt (L) = nj—iv1j—kr1m,5(T).
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CHAPTER 5

A SHIFTED BERENSTEIN-KIRILLOV GROUP

In this chapter we introduce a shifted version of the Bender—Knuth involutions for shifted semi-
standard tableaux. Stembridge has defined Bender—Knuth moves for shifted tableaux [69, Sec-
tion 6], but they differ from the ones we introduce, as they do not preserve classes of canonical
form (see Remark 5.18). For ordinary Young tableaux, the Bender—Knuth involutions on letters
{i,7 + 1} are known to coincide with the tableau switching applied to horizontal border strips
filled with the same letters [5, Proposition 2.6], [51, Section 4.1], together with a swapping of
the letters. Thus, it is natural to use the shifted version of that algorithm, introduced by Choi,
Nam and Oh [15], to define the shifted Bender—Knuth moves, or, equivalently, the type C' in-
fusion map due to Thomas and Yong [70] on standardized tableaux, followed by the shifted
semistandardization process of Pechenik and Yong [52]. As in [7], we are then able to recover
the shifted evacuation, promotion, and shifted crystal reflection operators.

We then use the shifted Bender—Knuth involutions to introduce a shifted version of the
Berenstein—Kirillov group. Following the works of Halacheva [29, 30] and Chmutov, Glick and
Pylyavskyy [10], we show, using the action of the cactus group .J,, on ShST (v, n) (Chapter 4),
that the shifted Berenstein—Kirillov group is isomorphic to a quotient of the cactus group. We
also give an alternative presentation for the cactus group in terms of the shifted Bender—Knuth

involutions.

5.1 Shifted Bender—-Knuth involutions

We now introduce the shifted Bender—Knuth involutions t;, for i € Z-~, which will yield another
presentation for the cactus group J,,. We first fix some notation. Given i € I = [n — 1], recall
that ; € &,, denotes the simple transposition (7,7 + 1). We write the cyclic permutation
G=00;—1---6yas ¢ = (L,i+ 1,i,...,2) € &,. We recall that these permutations act on

letters of the marked alphabet [n]’ as in (2.2).
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Definition 5.1. Let 7%, ..., T be a sequence of i;z-border strips, with iy, € [n]’ and such
that {iy,...,4,} = [n]. Suppose that T+ extends T, for 1 < k < n. Consider T :=
T -+ T, ashifted skew shape filled in the alphabet [n]’ (that is not necessarily a shifted

semistandard filling).

1. Leti,j € [n] be such that 77 extends T". We define SP; ;(T) to be the filling of the shape
of T obtained by leaving each 7" unchanged, for k& # i, j, and replacing 7% LI T7 with
SP(T*, T7) ISPy (T, T7).

2. We also define SW;, 5,1 it (T) == SPi, i, ,SPiyirii s = SPipinsr (T).
[1]1]2'T2]3]
Example 5.2. LetT = —[2[2]3] . Then, to compute SP5 3(7") we have:
3
BREEE BBEEE BREEB BBEEE
P R S FIFIF S e (SL’(SQ) 32| = SPy3(7).
3 3 2 2

To compute SWy o 3(7), first apply the shifted tableau switching to the pair (7", T?), obtaining
(T2, T"), and then apply it again to the pair (T, T%):

EERT2[3] (g5 ERTEZ[E] (6 EZT21203] (g3 21212213
223 % a2y u) I e S S F = SP15(T)
3] 3] 3] 3] ’
[2]2]2]2]3] (5, [2][2]2]2]3] (s3) [2]2]2]2]3]
— EEE] — EFE — BEE = SP13SPi(T) = SWyp3(T).
3 3 1

We remark that SP; ; and SWg; in general do not yield shifted semistandard tableaux, as
the rows and columns may not be weakly increasing, as shown in the previous example, but
they may be composed with adequate permutations of G,,, acting as in (2.2) on the entries in

[n]’, ensuring that the resulting filling is a valid shifted semistandard tableau.

Lemma 5.3. Let 1 <i < j <nandT € ShST(\/u,n), such that T’ extends T". Then,
1. wt(SP;;(T)) = wt(T)".
2. SP;;SP;,; = 1.

3. 7SP; ;(T') = SP.(i),-(jT(T), for any permutation T € &,,.

IThe weight of a filling of a shifted shape, not necessarily a valid shifted semistandard tableau, is defined as

before.

80



Proof. To prove the first statement, we note that the shifted tableau switching solely moves
boxes, not changing the total weight. For the second statement, we assume, without loss of
generality, that T = A U B, with A = T" and B = TY. Then, SP; ;(AU B) = SP1(4, B) U
SP,(A, B), where SP1(A, B) is filled in {j’, j} and SP5(A, B) is filled in {¢’,i}. Then, since

the shifted tableau switching is an involution [15, Theorem 4.3], we have

SP;.:(SP1(A, B) LUSPy(A, B)) =
= SP,(SPi(A, B),SPs(A, B)) USPy(SP1(A, B),SPy(A, B))
= SP,(SP(A, B)) L'SP,(SP(4, B))
—AUB.

For the last assertion, we note that applying the shifted tableau switching to the pair (7%, 77),
followed by the action of a permutation 7 € &,, is the same as first apply the permutation 7
to the letters in 7', and then compute the shifted tableau switching to the pair that previously

corresponded to (7%, T7), which is now (T7® T70)), O
We may now define the operators t;, for ¢ € Z-, for shifted semistandard tableaux.

Definition 5.4. Given 7" € ShST(\/u,n), forn > 1, and i € I, we define the shifted Bender—

Knuth move t; as

ti(T) == 0;SP; 111 (T) = SPiy1,:0:(T).

[I[1[1[2]2]
Example 5.5. Let T' = —[2]2[3] . Then, we have
3
[I[1[1[2]2] O (ss DRI (s ORI (ss) TR
T = 2(2]3 — 2[2]3 (—; 2[2 (—; 2[3 (—; 2[2]3
El El El El El
se) LZ2RIT] (s3) BRI , [1[1[1]1]2]
(58 5] % s SN FIP =t(7).
El El El
OT2] o, O3] (s7y) CBT3] (s1) LIBT3
T = 12[23 2 3132 (4 2(37[2 Q 2237 =to(T)
3 2 3 3

Remark 5.6. A shifted Bender—Knuth move may be formulated in terms of type C' infusion
and semistandardization. The tableau t;(7’), as in the previous example, may be computed as

follows:
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[I]1]1]2T2] IR g st [L[213]0T4] [1]2]1]3]4] [1]2]1T4]3]
T = 12]2]3] — 2 — 3 —  [2]3 — [2]3
3
[1]x]2]4]3] [1]1]3]4]3] [A]1]3]4]3] [1]2]3]4]3]
— [2]3 —  [2]2 —  [2]2 —  [1]2

Then, the semistandardization process with respect to wt, = (4) and wt; = (3) yields:

[1]2]3
12

~
—

2]

3 = tl(T).

3| SStd(4) XSStd(g) | 1
SN

N =
[eo] o] =

Proposition 5.7. The shifted Bender—Knuth operators t; satisfy the following, for any i € 1:
I t2=1.
2.4t =t for |t — j| > 1.
3. wt(t; (7)) = 0;(wt(T)), for any T € ShST(\/p, n).

Thus, t; defines a bijection between the set of shifted semistandard tableaux of shape \/ . and

weight v, and the set of shifted semistandard tableaux of the same shape and weight 0;(v).

Proof. By Lemma 5.3, we have
t? = 0;SP; 110:5P; ;11 = SPi+1,i9iQSPi,i+l = SP;1,SPii1 = 1.

The second assertion results from t; acting only on the letters {i,7 + 1}, leaving the others

unchanged. For the third statement, Lemma 5.3, ensures that
O

Remark 5.8. Since the operators t; act on the weight of a shifted semistandard tableau 7" as the
simple transposition ;, for each 7, they can be used to derive a proof that the Schur )- and P-
functions are symmetric, similarly to the one for classic Schur functions using Bender—Knuth

moves.

As in the ordinary case, the operators t; do not commute with the jeu de taquin, as shown in
Example 5.9. In general, t; does not coincide with o; (although t; and o, coincide on straight-
shaped tableaux). Moreover, if 7" is in a i-string B;, it is not necessary for t;(7") to be in the

same 7-string (see Figure 5.1).
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Figure 5.1: An example of the action of t; on a shifted tableau crystal ShST(\/u,4), with

A = (3,1) and v = (1), which has two connected components.

Example 5.9. Considering T’ of the previous example, we have

O RT2] [ [V2]2

1
T= 1223 = [eB=T
3] 23
and
[I[113T3] | T2]2
to(T) = 22PB] # O3] = to(T").
3] 33
Moreover, note that (see Example 3.28)
[T[1]1]2]3]
oo(T) = [2B73] # tao(T).
3

Like the case for type A, we can define a shifted version of the promotion operator due to
Schiitzenberger [64], using the shifted Bender—Knuth involutions, and then recover the shifted

evacuation and shifted crystal reflection operators for straight-shaped tableaux.

Definition 5.10. Given 7" € ShST(\/u,n) and i € I, we define the shifted promotion operator

Pp; as

pz(T) = titi—l o t1 (T)
As a result of t; being involutions, we have p;” L PR T T8
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We will show that the promotion p;(7") coincides with the shifted tableau switching on the
pairs (71,72 U - - - U T*1), followed by an adequate cyclic substitution of the letters. We first

prove some auxiliary results.
Lemma 5.11. Let T € ShST(\/p,n) andlet 1 <i < j < n—1. Then, T""' U---UTY extends

T, and for any T € S,, we have

TSWijit1,...5 (1) = SWo(i) (i1, () T(T).

Proof. By Definition 5.1 and Lemma 5.3, we have

TSW“Z‘_H ..... j (T) == TSPi’jSPi,j,i cre SPM+1 (T)
= SPr()r()SPr0).7G-1) -+ - SPr(a) ey T(T)
= SW.(i)r(i41),..., (j)T(T)

Lemma 5.12. Let T' € ShST(A/u,n) and let 1 < i < n — 1. We have

GiSWijix1SWi_1jii41 - - - SWa3 i1 (T) = SWi_1iSW,_gji—1,i - - - SWaya,..., G(T).

,,,,,

Proof. Applying successively Lemma 5.11, we have

GSWilit1SWitjiivr -+ - SWas i1 = SWe ()¢ i+1)SWeii-1)1¢: (). i41) * - SWG2)16i3),06i 4 1) Gi

-----

= SW;_1iSW; aji—1,i - - - SWypa__iGi
[
Proposition 5.13. Given T' € ShST(A\/u,n), and i € I, we have
pi(T) = GSWapa, i (T).
Proof. The proof is done by induction on 7. For ¢z = 1, we have
P1(T) = t:1(T) = 01SP12(T) = (iSWqo(T)).
Assuming the result is true for some ¢ > 1, by Definition 5.1 and Lemma 5.3, we have
Pir1(T) = tipapi(T)
= 0;11SPi11,i12GSWapa, i1 (T)
= ¢91+1CZSP ). (i42) SWip,...i+1(T)
= 0;11GiSP1,i12SWipa,... i1 (T)
= Gi+1SWia,...it1,i42(T)
[
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For ¢ > 1, we define

qi =ty (toty) -+ (ti-- - t1). 5.1

Recall that evacy, is the operator obtained by allowing skew-shaped tableaux on the algorithm
of Figure 2.6, which differs from the reversal on skew shapes. We will show that evac; and
evac, may be written as a composition of promotion operators. As a consequence, q; coincides
with evac; ; on skew-shaped shifted tableaux and with evac; ; on straight-shapes ones. This

coincidence implies that g, are involutions, for any ¢ > 1.

Proposition 5.14. Given T' € ShST(\/p,n) and i € I, we have

evaci+1 (T) = %(T) = P1P2 - - pz(T) = tl (t2t1> o (titi—l s tl)(T)
In particular, when T’ € ShST (v, n) we have
mi+1(T) = evaci1(T) = q;(T) = pip2 - - - pi(T) = ta(taty) - - - (titimy - - t1)(1).

Proof. The proof is analogous either for straight or skew shape cases, as evac;,; and evac;
coincide on straight-shaped tableaux. By (2.8), we have d;1neg, ;- --neg, = 01,11 = (i -+ - (.

Moreover, it is clear that, for | < k < 1,

(5.2)

----------
..........
..........

..........

...............
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We prove (5.3) by induction on 7. The base case is trivial. For the induction step, assume

the claim holds for some ¢ > 1. Then, by Lemma 5.12 and Proposition 5.13, we have

-----

..........

= pip2- - pipi+1(T)-

Corollary 5.15. Leti € I. Then q? = 1 and wt(q;(T)) = 61,;11(T).

Proof. Since evac, is an involution, for any ¢ > 1, then so it is q;. From Proposition 5.7, we
have Wt(qz(T)) = Wt(tl (tgtl) s (titi—l s t1>(T)) = 91 (9291) s (91 cee 81)(T) = 01’i+1<T).
O

Corollary 5.16. Given T' € ShST(v,n) and i € I, we have
04(T) = evac; 1evacoevac,11(T) = q;t1qi(T) = pa(p2-- - p:)*(T).

Proof. By Theorem 3.30 and Corollary 4.2, we have 0;(T") = evac;jevacsevac;1(7"). From

Proposition 5.14, we have

evac;1evacgevac;i1 (1) = q;919:(T) = q;t19:(T)
= (p1p2-- - pi)ti(pip2- - pi) (1)
= (p1p2-- - pi)ti(tip2 - - - pi)(T)

= pi(p2- - pi)(p2- - pi)(T).
O]

For 1 < i < j < n, itis natural to consider the restriction of the operator evac;, to an interval

i, 7]', in the same fashion as Definition 3.22. For 7" € ShST(A/u,n) and 1 < i < j < n, we
define

evac; ;(T) := T Uevac(T™7) U T/ ", (5.4)

Clearly, evac,;, = evacy and evac; ; coincides with 7; ;, on straight-shaped shifted tableaux.
However, these operators do not satisfy the relation evac; ; = evac;evac;_;ievac;, for 1 # &,

unlike the operators n; ; (Corollary 4.2), as shown in the next example.
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[A[i[1[1]3]
Example 5.17. Considering 7' = [2[2[3'] , we have
3
- O] [Ooegegige
evaco3(T) = [2[2]3] # [2]2[3] = evaczevacsevacs(T).
3 3

Remark 5.18. Stembridge introduced a shifted version of Bender—Knuth moves in [69, Section
6]. These are two-to-two maps acting on adjacent letters by reverting their weight. Shifted
tableaux are not required to be in canonical form here, and in general, these maps are not
compatible with canonical form. For instance, consider the following tableau, in canonical

form:

—_

2’

2122
T =[1[1[1]2
T2
2]
and consider the representatives of 7":
2] 2] 2] 1[2]
22 27122 2712[2 27T2[2
T, =[U[1]1]1]2 T, =[1T11]1]2 T5 =[1]1]1]1]2 T, =[U[i[1]1]2

—
N
3
DN
<
—
N
—
N

Using the maps in [69, Section 6], we have:

2] 2]
i1 Ti[1 PO
{Tl,TQ}—>{1’12|22 J[TA2]2]2 }:; {Ty, T2}
12’ 12’
2] 2
2] 2]
i1 it A
{T37T4} — {1/ 1 2,|2 2 ) 1 2,|2 2 } = {T37T4}
1/2/ 1/2/
2] 2

The tableaux in {7}, 73} do not have the same canonical form as the ones in {T%, Ty }.

5.2 The Berenstein—Kirillov group

The Bender—Knuth involutions ¢;, for ¢ € I, are involutions on semistandard Young tableaux
filled in [n], that act only on the letters {i,7 + 1}, reverting their weight [4]. They are known
to coincide with the tableau switching on type A on two consecutive letters, together with a
swapping of those letters [5]. The Berenstein—Kirillov group BIC (or Gelfand-Tsetlin group) ,

is the free group generated by these involutions ¢;, for ¢ > 0, modulo the relations they satisfy
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on semistandard Young tableaux of any shape [8, 7, 10]. Some of the known relations to hold

in BK [7, Corollary 1.1] are

t2=1 tit; = tjt;, for |i — j| > 1, (tigi)* =1, fori > 2, (5.5)

where g; := t1(toty) - - - (tit;—1 - - - 1), for ¢ > 1, are involutions, and
(tit9)® = 1. (5.6)

The restriction of the evacuation to the alphabet {1, ...}, on straight-shaped semistandard
Young tableaux, may be regarded as an element of B, and it is computed by ¢;—1 [7, 10, 30,
29]. We also let ¢; , := qr—1qr—;qi—1, for j < k. In particular, ¢; = ¢; ;41 and g; ;, computes the
restriction of the evacuation to the alphabet {j, ..., k}, as an element of 5. Chmutov, Glick

and Pylyavskyy found another relation[10, Theorem 1.6].
(tigix)* =1, fori+1<j <k (5.7)

The relation (5.7) does not follow from the previous known relations (5.5) and (5.6) in BC,
but is instead a consequence from the cactus relations satisfied by the operators ¢; ; in BKC,
studied by Halacheva [30, 29] and Chmutov, Glick and Pylyavskyy [10]. We remark that (5.7)

generalizes the relation (¢,¢;)* = 1, since

(th1g:)' = (hat1a:)? = (haqa)? = (tgiis)?.

Let BK,, be the subgroup of BK generated by ¢4, ...,%,_1. The involutions g¢;, for ¢ € I,
provide another set of generators for B/C,,, and their action on straight-shaped Young tableaux
coincide with the one of the restriction of the Schiitzenberger involution (or evacuation) to
[i + 1] [7, Remark 1.3]. It was shown in [10], using semistandard growth diagrams, that B/,
is isomorphic to a quotient of the cactus group. This result could also be derived by noting the
coincidence of the actions of J,, [29] and B/C,, on a straight-shaped semistandard Young tableau

crystal SSYT (v, n), as noted in [30, Remark 3.9].

Theorem 5.19. The group BIC,, is isomorphic to a quotient of J,,, as a result of the following

being group epimorphisms from J,, to BIC,,:
1. s;j v+ qi; [10, Theorem 1.4].
2. s1; > qj—1[7, Remark 1.3], [29, Section 10.2], [30, Remark 3.9].
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Chmutov, Glick and Pylyavskyy established in [10, Theorem 1.8] an equivalence between
the relations (5.5) and (5.7) that are satisfied in B/C,, and the ones of the cactus group .J,, (see
Definition 1.1), thus obtaining an alternative presentation for the latter via the Bender—Knuth
moves. More precisely, they consider the free group generated by ¢;, for © € Z~, and consider

another free group generated by ¢; ;, 1 < ¢ < 7.

Theorem 5.20 ([10, Theorem 1.8]). The relations
=1, tit; = tit;, for|i — j| > 1, (tigr—1qr—jqu—1)” =1, fori+1<j <k (5.8)
where q; := t1(tatq) - - - (t;t;i_1 - - - 1), are equivalent to the relations

@ =1, Qi jQri = Qitj-Litj—kGig, fori <k <1 <7, Qi1 = Qi for j <k.
(5.9

As a consequence, we have the following group isomorphism

(t;,i € I| relations in (5.8)) =~ (g; j, 1 <1 < j < n] relations in (5.9))

In.

Remark 5.21. In type A crystals, the crystal reflection operators ¢; (see [9, 44]) acting on
straight-shaped Young tableaux are elements of the group B, since they can be written as

G := q;t1q;, for i € 1. Moreover, they satisfy the relation [7, Proposition 1.4]

(sisi+1)” = @it1pirita (tita) tip L trgs (5.10)

fori € [n—2], where p; := t1(tat1) - - - (t;t;_1 - - - t1). Thus, the relation (¢,t5)® = 1is equivalent
to the braid relation (§i§i+1)3 =1, forall 1 <: < n — 2. Itis known that the operators ¢; define
an action of the symmetric group on a type A crystal (for instance, see [9, Theorem 11.14]).
We shall see in Proposition 5.22 that the shifted crystal reflection operators o; satisfy a similar
identity, but since the braid relations do not need to be satisfied by o; (see Example 3.31), then

the relation (t;t2)% = 1 does not need to hold as well (see Example 5.23).

5.3 A shifted Berenstein—Kirillov group and a cactus group

action

Motivated by the definition of the Berenstein—Kirillov group, we consider SBK to be the free

group generated by the shifted Bender—Knuth involutions t;, for ¢ > 0, modulo the relations
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they satisfy when acting on shifted semistandard tableaux of any shape. We call it the shifted
Berenstein—Kirillov group, and consider its subgroup SBIC,, generated by ty,...,t, 1. From
Proposition 5.7, we know that the relations t? = 1l and t;t; = t;t;, for |i — 7] > 1, hold in SBK.
Recall from (5.1), that
qi := ty(taty) - - (titimg -+ - ty)

for = > 1. From Proposition 5.14, the shifted evacuation restricted to the primed interval
[1,7 + 1], on straight-shaped shifted tableaux, is an element of SB/C, being computed by q;. In
particular, the operators q; are involutions. We will show in Proposition 5.26 that the relation
(tigjx)? = 1,for2 <i+1 < j < k < n, which is the shifted version of (5.7) (see [10, Theorem
1.6]), also holds in SBK.

Recall from Definition 5.10 that p; = t;(taty) - - - (t;t;_1 - - - t1) and the promotion operators
p; are elements of SBXC. By Corollary 5.16, the shifted crystal reflection operators o; are also
elements of SBIC, for ¢ > 1, as they can be written as 0; = q;t;q;. Following a similar

computation in [7, Proposition 1.4], we show that they satisfy the following identity.
Proposition 5.22. Let i € [n — 2| and m € N. Then, writing o; = q;t1q;, we have
(050i+1)™ = Qitipisits (tita) " 1P 1. (5.11)
Thus, in particular we have
(050411)° = qitlpi+1t1(t1t2>6t1pi_+11t1qi- (5.12)
Proof. By Corollary 5.16 and the fact that g, is an involution, we have

(0i0i41)™ qit19:di+1t1Gi41)™

= (
= (9:t19:iPi1t19i1)"™
= (Qit1pi+1t1Gis1)™

= (qit1pir1tip 1 qi)"

= qz'(t1Pi+1t1P;+11)qu'

= Qi(t1pis1tip, )" (tipirititipyy t)ds

= qit1piaty (P tipigaty) "t P tadi

To conclude the proof, we claim that p;| +11t1 pirit1 = (t1t2)2, for any ¢+ > 1. The proof is done
by induction. For 7 = 1, we have

Py 'tipats = (tit2)ts (tat1)t = (tit2)?.
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For the induction step, assume the claim holds for some ¢ > 1. Then, due to Proposition 5.7, as

|(i+2) — 1| > 1, we have

P;rlgtlpz‘+2t1 = (t1 - - tiprtipo)t (tigativr - )ty
= phtivetitiopitits
= py it (tir2) Pitits
= p;_lltlpi-l—l = (ti1t2)”.

O

Recall that the braid relations (O’Z‘O'i+1)3 =1, for1 <1 < n — 2, for the shifted crystal
reflection operators do not need to hold (see Example 3.31). Thus, (5.12) ensures that the
relation (t;t2)® = 1 does not need to hold either, as illustrated in Example 5.23. This will have

no effects on our results, as none of the cactus group relations is equivalent to this one [10,

Remark 1.9].
[1]1]27]2]3]
Example 5.23. Let'T'= [2]3[3] . Then, we have
3
OT2[8] ., Oz2]?] . Oafey] ., O]
T= 1233 = 2B — 2B = 222
3] 3] 3] 3
o AP, OOEORT ,  [A1]2]2]3]
— 2]2 3 33
3] 3] 3
e, 27218  O[ATAT8]  [A[A]I]a]2]
2[2]3 2[2]3 2[3
3] 3] 3
g LL[2]  [A[[ifss] [1]L[2]3]3] 6
213 = [2]2]3 2[2[3] = (t1t2)*(T) # T.
3 3 3

Proposition 5.24. As elements of SBK, we have
t1 = qi, t; = 4i-19:9;—19i—2, for i > 2,
considering qq := 1. Consequently, the elements q, . . ., q,_1 are generators of SBIC,,.

Proof. The first identity is a direct consequence of the definition of q;. For the second one, we
note that by definition of the promotion operators, we have p; = t;p;_1, for « > 2, and thus
t, = pipl:ll. It also follows from the definition that, for 7 > 2, q; = q,_1p;, which is equivalent

to p; = q,-10;, as q; are involutions, for any j > 1. Then, we have

t = pip;_ll = qiflqi(qif2qi71)7l = ¢;—-19i9i—19;—2-
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We denote, for1 <1< j <n,
9Qij = 9qj—195—i95—1- (5.13)
In particular, we have q; = q; ;41. Corollary 4.2 ensures that q; ; is realized by
1;,j = €vacjevac;_;;1€evac;

when acting on straight-shaped shifted tableaux. As an element of the SBK group, the shifted
Schiitzenberger involution restricted to the alphabet [i, j]’, on straight-shaped shifted tableaux,
is computed by q; j, for 1 < ¢ < 57 < n. In general, q; ; is not realized by 7; ; when acting on
skew shapes (see Example 5.17).

As a consequence of the internal action of the cactus group in ShST(v, n) (Theorem 4.3),

we have the following result.
Theorem 5.25. The following map is an epimorphism, for1 < i < j < n.
v J, — SBK,
Sij — i -
Hence SBK,, is isomorphic to J, | ker 1.

Proof. From Proposition 5.24, SBIC,, is generated by q;, for ¢ € I. Then, considering that
d; = q1,; we have q; = 1(s;1,;), and thus 1) is a surjection. Since q; = evac;; for straight-shaped
tableaux, Theorem 4.3 then ensures that ) is a homomorphism. Thus, SBK,, is isomorphic to

the quotient of .J,, by ker 1. [l

As a consequence, we are able to recover the relation (5.7) for the shifted operators. The

known relations that are satisfied in SBIC are listed below.
Proposition 5.26. The following relations hold in SBIC,,:
1. t? =1, fori e I.
2.4t =ty for |i — 5| > 1.
3 (tigjr)?=1for2<i+1<j<k<n.

Proof. The first two relations correspond to Proposition 5.7. By Theorem 5.25, the action of
the operator q; ;, on straight-shaped shifted tableaux defines an action of the cactus group. Thus,

since [1,2] N [j, k] = @, we have (t;q;4)* = (q1.29,%)° = L. O
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Theorem 5.20 is stated and proved in terms of group generators satisfying the relations in
Proposition 5.26, and do not depend on specific operators. This ensures that the relations in

Proposition 5.26 are equivalent to

g, =1, Qi j9k1%i5 = Qitj—Litij—k, fori <k <1<y, Qi j9k1 = Ak.9ij, for j < k.
Then, we have the following alternative presentation for the cactus group, via the shifted Bender—
Knuth moves:

o= (ti, i € 1|t =1,tt; =tt,, if |i — j| > 1,

(5.14)
(t,;qk_lqk_jqk_l)z =1, fori+1<j<k).
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CHAPTER 6

SHIFTED GROWTH DIAGRAMS

In this chapter we recall the notion of growth diagrams for shifted standard tableaux due to
Thomas and Yong [71]. We give alternative formulations for some of the algorithms presented
before in the same fashion as [10], namely, the shifted jeu de taquin, tableau switching, evac-
uation and its restrictions. Using the semistandardization process of Pechenik and Yong [52],
these algorithms may be applied to shifted semistandard tableaux.

Using growth diagrams, we provide an alternative proof that the cactus group .J,, acts on a
shifted tableau crystal ShST(\/u, n) (Theorem 4.1, [54, Theorem 5.7]). This proof relies on the
algorithmic description of partial Schiitzenberger involutions as the restrictions of the shifted
reversal to primed intervals, while the one in [54, Theorem 5.7] uses the description in terms
of the Schiitzenberger-Lusztig involutions using the shifted tableau crystal operators (see [54,
Lemma 5.4]).

We remark that, unlike the case for semistandard growth diagrams for Young tableaux intro-
duced by Chmutov, Glick and Pylyavskyy [10, Section 3], shifted semistandard tableaux, filled
in a primed alphabet, are not encoded by a sequence of shape chains, as both each entry i and ¢/

contribute the same to the weight.

6.1 Shifted jeu de taquin and infusion

Definition 6.1. Let 7" be a shifted standard tableau of shape A/ . Its shape chain is the saturated

chain of strict partitions

p=XN0c AW c...cAb =)

where k = |\| — |u| and A\ is the shape of T' U - - - LU T%, for i > 1. Since T is standard, each

shape A\(*) has exactly one more box than A\(—1),
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The shape chain uniquely represents 7. Since 7T is standard, A®) differs from A(~1) by
exactly one box. If 7' is straight-shaped, then the chain starts with 4 = &. Moreover, the
sub-chain

AD C\O ... 2O,

for 7 > j, encodes the tableau T’. More precisely, it encodes the shifted standard tableau with
the same shape as T/, filled by the letters {1,...,7—j+ 1}, but one may consider a relabelling

of those letters, in order to have 7.

Example 6.2. Consider the following shifted standard tableau of shape (5,3,1)/(3, 1),

[y

3]
T: 2[5

which is represented by
(3,1) C (4,1) C (4,2) € (5,2) € (5,2,1) C (5,3,1).

Given a skew-shaped standard tableau of shape A/, a sequence of slides to rectify it may
be encoded by a straight-shaped standard tableau of shape u, where the slides are performed

starting on the inner corner corresponding to the largest entry.

Example 6.3. Considering the tableau of the previous example, we have the following rectifi-
cation sequences (corresponding to the straight-shaped tableaux in the inner shape of 7', with

gray letters):

_ | i3] HERE [3]5] 235 _
T= 200 » 2[4]5 * 2[5 T 24 4 = rect(T)
[ 1]3] [ 1[3
i3 1[3]5 1[2[3[5
T = 2[5] — 5]5] — | STIT5 — 5TT [ 7 | |:rect(T).
1 1 2]

The order in which the shifted jeu de taquin slides must be performed in these two cases is

encoded by the following shape chains, respectively,
ZC(1)C(2)C(3)C31),

@C(1)C(2)C(2,1)C(3,1).

Each of the tableaux that appear in the intermediate steps of the rectification process may

be encoded as well, thus we have the following definition.
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Definition 6.4 ([71, Section 2.1]). A shifted rectification growth diagram for T' a standard
tableau of shape A/ is a table with || rows and |A| — || columns, where the leftmost column
is filled with the chain encoding a fixed rectification sequence, the top row is filled with the
chain encoding 7’, and the subsequent rows are filled with the chain encoding the intermediate
tableaux corresponding to the said rectification sequence. In particular, the bottom row will
encode rect(7") and the rightmost column encodes the order in which the boxes were vacated

during the rectification process.

The following table is a shifted rectification growth diagram for the tableau 7" of Example
6.2, fixing the first rectification sequence of Example 6.3. It is also convenient to display these

diagrams under a rotation, as depicted in Figure 6.1.

(3,1) | (4,1) | (4,2)](5,2) | (5,2,1) | (5,3,1)
B | @ @) 6] (52 | (53)
2 | B [BGY &)] 42 | 43)
W1 @ &Y 6] 32 | 42
g | M@ 66D | %1

S, T)

Figure 6.1: A growth diagram depicting rectification of 7', according to a rectification sequence
encoded by S. This may also be used to compute the type C infusion on a pair of shifted
standard tableaux (S, 7).

We have seen in Lemma 2.48 that the shifted tableau switching and the type C' infusion

maps agree on shifted standard tableaux, and both can be regarded as a sequence of shifted jeu
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de taquin slides. Thus, given (.S, T) a pair of shifted standard tableaux, where S is a straight-
shaped shifted tableau extended by 7', we may place S and 7T on the southwestermost and
northwesternmost sides of a shifted rectification growth diagram, respectively, and then the
southeasternmost and northeasternmost sides will encode infusion; (S, 7") and infusions (S, 7)),
respectively. Thus, the diagram in Figure 6.1 is also referred to as a shifted infusion growth

diagram.

Example 6.5. Consider the following pair of shifted standard tableaux (these correspond to 7'

and the first rectification sequence, as in Example 6.3):

EEEE)

5

(SvT) =

[=]wo]ee

This pair is encoded in the southwestern and northwestern edges of the diagram of Figure 6.1.

Thus, we have

[1]2

ot

3]

infusion(S,7T) =

[es[=] e
no

The obtained pair is encoded in the southeastern and northeastern edges of the said diagram.

Similar to the growth diagrams for standard Young tableaux, which are characterized by
local rules, due to Fomin [67, Proposition A1.2.7], the shifted growth diagrams may also be

described by similar rules.

Theorem 6.6 ([71, Theorem 2.1]). An array of straight shapes is a shifted growth diagram if
and only if for any subgrid of the form

where v C u C Nand v C p/ C )\ the Fomin growth conditions hold:

1. N p, N, w/vand 1/ Jv consist of a single box.

2. If p is the unique shape that is contained in )\ and contains v, then pi' = yu.

3. Otherwise, there exists exactly one strict partition in the same conditions other than |,

which is p'.
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These growth conditions exhibit a symmetry under a vertical reflection. Thus, vertically

reflecting the diagram of Figure 6.1, we obtain

S = infusiony (infusiony (S, T"), infusiony (S, T°))

T = infusiony(infusion; (S, T'), infusiony (S, T7))
which explains that the infusion is an involution.

Corollary 6.7 ([71, Lemma 2.2]). Let (S,T) be a pair of shifted standard tableaux, with T
extending S. Then, infusion(infusion(S, T")) = (S, T).

6.2 Evacuation and reversal

We may obtain growth diagrams for the shifted evacuation and reversal (Section 2.4), by com-
bining the previous diagrams and local rules. As in the previous sections, most results will be
stated for shifted standard tableaux, and may be extended to the semistandard case using the
semistandardization process [52]. Throughout the next sections, unless otherwise stated, we

consider any standard shifted tableau to have n boxes, filled with the letters in [n].

Proposition 6.8. Let T' be straight-shaped shifted standard tableau. Consider an equilateral
triangular array such that the shape chain encoding T’ is placed on the northwestern edge and
each vertex of the bottom edge is filled with & and apply the local growth rules from left to

right. Then, the shape chain on the northeastern edge corresponds to evac(T).

Proof. Proposition 5.14 states that the evacuation of 7' may be obtained by applying sequen-
tially the promotion operators p,_1, p,_2,--.,p1 to T, where we recall that we are assuming

that 7" has n boxes, filled in [n]. By Proposition 5.13,

.....

and then each of promotion operator p;, acting on standard tableaux, may be computed using a
shifted infusion growth diagram with the southwestern edge having length 1, and northwestern
edge having length 7. Then, the diagram in Figure 6.3 corresponds to sequentially concate-
nate, from left to right, the growth diagrams of promotion operators p,_1,pPn_2,---,P1, thus

coinciding with evac(T'). O
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The symmetry of the local growth rules ensures that the diagram is symmetric under a
vertical reflection. Thus, taking a shifted evacuation growth diagram on input evac(T"), we
obtain evac(evac(T")) = T, thus exhibiting the fact that the shifted evacuation is an involution.

Since evac;(T) := evac(T"") U T, we have the following result.

Corollary 6.9. Let T be a straight-shaped standard shifted tableau and let i € [n]. Consider
the shifted evacuation growth diagram having T' as input on the northwestern edge and evac(T')

on the northeastern one. Then:

1. Removing the n — 1 rightmost northeastern edges of the diagram yields the shifted evac-

uation growth diagram on input T,

2. Removing the n — j leftmost northwestern edges of the diagram yields the shifted evacu-

ation growth diagram computing on input rect(T™=IT1m),

3. Removing simultaneously the n — 1 rightmost northeastern edges and the n — j leftmost
northwestern edges of the diagram, for 1 > j, yields the shifted evacuation growth dia-

gram on input rect(T"—7+11),

Example 6.10. Consider the following shifted standard tableau

HE

3[5]
T: 416
7]

Then, the left side of the triangular array in Figure 6.2 corresponds to the shape chain of T,

while the right side corresponds to evac(7"). Then, we have

[1]2

3[7]
evac(T) = [4[5
G

Using the same diagram we also obtain restrictions of evac. For instance, removing the right-

most 3 northeastern edges (see the gray area in Figure 6.2), we have

» . OEAD | 71 [1[2[4
evacy(T) = evac(T*)UT>" = "3 L 5] = 315
G G

7]

The shifted jeu de taquin and shifted tableau switching are compatible with standardization.
Thus, the previous characterizations with growth diagrams may be applied to a shifted semis-
tandard tableau 7, by first standardizing it, then apply the standard growth diagrams, and then

compute the adequate semistandardization of the obtained tableau.
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/EHI\ /EBI\ /EHJ\ /Eaj\
@V VANV
0V A NVAVANVAN
NSNS N NN N

0 ¥ # 0 0 0 0

Figure 6.2: A shifted evacuation growth diagram. The smaller gray diagram computes the

restriction evacy, on 7%,

H

AN
LHF
W /E%\

%
/.

N\
§7s

N\ 7
g%

AN
—H
7N N\
=+
7 \/\EH/\
/\/ \/\/\/\
/\/\/\/\/\/\
/\/\/\/\/\/\/\m

Figure 6.3: Illustration of the shifted evacuation as a composition of promotion operators,

corresponding to the gray rectangles.
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Example 6.11. Consider the following shifted semistandard tableau of weight v = (2,2, 3),

[1]1]2"]3]
T = 123
3

To compute evac(7") using growth diagrams, we consider its standardization and compute the
growth diagram (see Example 6.10) and then apply the semistandardization with respect to

Vi=03(v) = (3,2,2):

[1]2]3
std(7') = [4[6
7

—

i3]
22| = evac(T).
3

| evac | 7| SSthl |1
= —

3
i[5
6]

Given T a skew-shaped shifted standard tableau, Proposition 2.45 says that the reversal
T° may be computed by filling the diagram of ; with a standard tableau U, applying the
shifted infusion (or shifted tableau switching) to the pair (S,7") obtaining infusion(S,7T") =
(rect(T'), infusiony (S, T)), applying the evacuation to rect(7"), and then the shifted tableau

switching again to the pair (evac(rect(T)), infusiony(S,T')). Then,
T* = infusion, (evac(rect(T")), infusiony (U, T')) (6.1)
Thus, we have the following.

Proposition 6.12. Let T be a shifted standard tableau of shape \/ 1. Consider a diagram as in
Figure 6.4, with T on the segment [bc| and any standard tableau S of shape . on the segment
[ab]', and such that [dc] = [df]. Then, the segment [g f] encodes T°.

Proof. The diagram [abcd] computes the shifted tableau switching on the pair (.S, T'), thus [ad]
encodes infusion; (S,T") = rect(T") and [dc| encodes infusiony(S,T"). By Proposition 6.8, the
diagram [ade| computes the evacuation with input [ad], thus the segment [ed]| corresponds to
evac(rect(T')). Finally, since [df] = [dc|, the diagram [edfg] computes the shifted tableau
switching on the pair (evac(rect(T)), infusions(S,T)). It then follows from (6.1) that [gf]

corresponds to 7. [
Proposition 6.13. Given T a shifted semistandard tableau of shape \/u and weight v, its
reversal T'° may be obtained in the following way:

1. Standardize T and fill the diagram of p with a standard tableau S and add |\| — |u| to

each entry.

"We consider a segment [ab] to be directed, from a to b. In the growth diagrams, segments are read from bottom

to top.
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b g

N

Figure 6.4: Growth diagram to compute the shifted reversal on skew shapes. By construction,

we put [dc] = [df].

2. Perform the shifted infusion on the pair (S, T).

3. Reflect the obtained tableau along the anti-diagonal of the ambient triangle

0= (A, A\ —1,...,1), while complementing in {1, ... |\|}.

4. Apply rectification.

5. Let T' be the tableau corresponding to the boxes filled in {|u| + 1, |u| + 2, ..., |\

}, and

subtract || to each entry. Then, putting V' = 60, ,,(v), we have T = sstd,, (1").

Example 6.14. Consider the same skew-shaped tableau of Example 2.34, of shape \/pu, with
A=(5,3,2,1) and p = (3,1), and weight v = (4,2, 1):

I 1] I

T= L5 —

1 A
1

22 5
3

= std(7).

[N]]ew]~

Following the procedure on Proposition 6.13, we have

1 B9 14] B9 1[40

[\
w

PENIEREE

ot
FREEE

10] [1]2][3]4 [0

[(o0]

—

w
FEENIEEER

(=Y
=
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Reflecting and complementing in the ambient triangle, and then rectifying, we obtain 7" (in

white boxes).

|134§ [ 2[8 [T 28 [ E2[E3 [I2[E]6[8]
NEEE 1[3][6[9 3[5[6]9 35191 _ v
53190 ’ 516[10 570 7[10 ’ 7o = 1

11 7ji L] L1} L1}

Finally, semistandardizing 7" with respect to v/ = (1,2, 4), we have

[ 2'137]

e 1]3’
T° = 2137
3

Proof of Proposition 6.13. Without loss of generality, we consider 7" a shifted standard tableau.
Consider the diagram in Figure 6.5, where the segment [ab] corresponds to S and [bc] to T'.
Then, the segment [ad] encodes infusion;(S,T) = rect(7). Then, place [dc|, which corre-
sponds to infusiony (S, T'), in [df], and put [fv] to encode any standard tableau U of shape A"
(this tableau will encode a rectification sequence, to apply after reflection). We remark that [av]
encodes a tableau of shape o (the ambient staircase triangle), thus its reflection coincides with
the evacuation, which is then encoded in [pv]. Finally, rectification is achieved by applying jeu
de taquin growth diagram with rectification sequence determined by letters corresponding to U
(on the reflected tableau) on [ws] := [wv], thus obtaining a standard tableau encoded by [pqt].
Considering only the letters corresponding to 7, the obtained tableau (before semistandardiza-
tion) is encoded in [gt]. By Proposition 6.12, 7 is encoded by [g f]. Recall that the rectification
process is independent from the rectification sequence. Thus, since we put [wv] = [ws], we
have [hf] = [pt]. Similarly, [wr] = [wu] implies that [hg] = [pq]. Hence, [gf] = [qt], which

concludes the proof. [

6.3 Partial Schiitzenberger involutions

Following the same approach as in [10, Section 4.1], we may use the shifted growth diagrams for
rectification and evacuation to construct an array that computes 7; ; for straight-shaped shifted
tableaux. From (5.13) and Proposition 5.14, and since 7, ; is computed by q; ; when acting
on straight shapes, we have 7, ;(T) = q,;(T), for T' € ShST(v,n), thus the next growth
diagram computes q; ; as well. From Definition 3.22, given 7" € ShST (X /1, n), then n; ;(T') =
TV (T W Tt = g, (TH) U T+,
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v )

Figure 6.5: Another method to compute the reversal of a shifted standard tableau 7', of shape
A/p. The tableaux S and U are any standard tableaux of shapes p and \Y, respectively. If T’
is straight-shaped, the diagram consists only of the dark gray triangle [ade], together with the

green rectangles, with the segment [ fg] now being adjacent to [de| and u = 7.

Figure 6.6: The growth diagram to compute 7); ; or g, ; on straight-shaped tableaux [10, Figure
6]. By construction, [ef] = [eg].

Proposition 6.15. Let 1 < i < j < n and T be a straight-shaped shifted standard tableau
filled in [n]. Consider the diagram in Figure 6.6, which consists, from left to right, in the growth
diagrams of evac;_;, infusion, evac;_; 1, infusion, and evac;_, and such that the segments

lef] and [eg] coincide. Then, if the segment |af] encodes T, then the segment [dg] encodes
Mig (T) .
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Proof. We will show that [dv] = TV~ U n(T%). We have [af] = T, [au] = T""! and
[wf] = T%, thus, by Proposition 6.8, [bu] = evac(T""~!) =: S. Applying the shifted infusion

growth diagram on inputs [bu| and [u f], we have

[be] = infusion; (S, T7) = rect(T"7)

N (6.2)
lef] = infusiony (S, T*7) = [eg],
and by Corollary 6.9, applying the shifted evacuation growth diagram, we have
[ce] = evac(rect(T"7)). (6.3)

Then, applying the shifted infusion growth diagram on inputs [eg] (6.2) and [ce] (6.3), we obtain

[cv] = infusion; (evac(rect(T")), infusions (S, T7)) oo
[ug] = infusion (evac(rect(1™7)), infusiony (S, T*)).
By (6.1), we have
[vg] = n(T"). 6.5)

We recall that infusion, (S, T") = rect(7"), for any standard straight-shaped tableau S extended

by 7T'. Considering that rectification does not depend on the chosen rectification sequence, from

(6.4), we have

[cv] = infusion; (evac(rect(T"7)), infusions (S, T7))
= infusion; (evac(infusion; (S, 7)), infusion (S, T"))
= rect(infusiony (S, T%7))
= infusion; (infusion; (S, T"), infusiony (S, T"7))

= infusion; (infusion(S,T"7)) = S.
Finally, the shifted evacuation growth diagram ensures that
[dv] = evac(S) = evac*(T"" 1) = T 1, (6.6)
Thus, by (6.4) and (6.6), we have

[dg] =T~ Un(T™) = n; ;(T"). (6.7)
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Using Proposition 6.12, and considering that 7, ; commutes with the shifted jeu de taquin,
we may generalize the previous growth diagram for skew-shaped tableaux. We remark this

generalization is not valid for g; ;, as it does not commute with the shifted jeu de taquin.

Corollary 6.16. Let 1 < 1 < j < n and let T be a skew-shaped shifted standard tableau of
shape \/ 1. Consider the diagram on Figure 6.7, where the segment [pr] encodes T, S is any
standard tableau of shape 1, being encoded by [ap|, and the segments |er| and [es] coincide.
Then, n; j(T"7) is encoded by segment [ws].
Proof. Since [pr] = T and [ap] = S, then

[fr] = infusiony (S, T"7)

' (6.8)
[af] = infusion, (S, T"7) = rect(T"7) = (rect(T))"”.

By Proposition 6.15, the segment [dg] encodes 7; ;((rect(T))*7). By construction, [er] = [es],
and thus [gs] = [fr] = infusiony(S,T"). Then, considering the shifted infusion growth dia-

gram on inputs [ap] and [pr],

[ws] = infusiony(n; ;((rect(T))"), infusiony (S, 7))

' ' (6.9)
[dw] = infusion; (n; ;((rect(T))"), infusiony (S, T"))
Since 7); ; commutes with the shifted jeu de taquin, in particular we have
0 ((rect(T))H) = 11, (rect(T7)) = rect(m;,; (T")) (6.10)

Moreover, the operator 7; ; preserves shifted dual equivalence, and thus 7" and 7; ;(T"7) are

in the same shifted dual equivalence class. Then, by Proposition 2.41,
infusiony (S, T"7) = infusiony (S, n; ;(T"7)). (6.11)
Then, by (6.9), (6.10) and (6.11), and since infusion is an involution, we have

[ws] = infusiony(n; ;((rect(T))"), infusiony (S, T"))
= infusiony(n; ; ((rect(T))"), infusiony (S, ;. ;(T*7)))
= infusiony(rect(n; ;(T"7)), infusiony (S, n;.;(T*7)))
= infusiony(infusion, (S, n; ; (T"7)), infusiony (S, 1; ; (T")))

= ni5(T").
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Figure 6.7: A growth diagram to compute 7, ; on shifted standard tableaux of shape A/, with

S being any standard tableau of shape ;. By construction, [er] = [es]. A diagram to compute

q;,; on straight-shaped shifted standard tableaux is obtained by removing the pink sections.

As before, the growth diagrams for 7; ; may be used on a shifted semistandard tableau 7',

with weight v. Since we have

std(1i,5(T')) = nka(std(T)), (6.12)

where k := minP;(v) and | := max P;(v), we may standardize 7', apply 7, and then apply
the semistandardization (see Definition 2.11) with respect to v/ to the obtained tableau, with
vV = Qi,j(u), that iS,

1, (T') = sstd,s (my, (std(T))). (6.13)

Example 6.17. Consider the following shifted semistandard tableau of weight v = (2,2, 3),

| 2
T = 1[213].
33

To compute 7, 35(7"), we use the growth diagram in Figure 6.8 on the standardization of 7T,

followed by rectification, using the rectification sequence encoded by S = [I]2].

ER12] .y ERI2T4] fsion 121417 /
(S,7) = [[2p] ==  [1[3[5] —5" 351 = (rect(std(T)), S")
313 617 612

where S’ := infusiony(.S,T"). In the Figure 6.7, rect(std(7")) corresponds to the segment [a f]
and S’ to [fr]. Then, by (2.3), we have

7)2<V) = {374} P?)(V) - {57677}
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Thus, to obtain 7,3(T"), we must apply 73 7 to rect(std(7')). Note that the 73 7 (rect(std(7'))) is

encoded in the segment corresponding to [dg] in Figure 6.8.

[2[4]7] [1[2][3]6]
rect(std(T)) = [3]5] —%
6

3
5] = nyq(rect(std(T))) = T".
7

Then, we apply the shifted infusion growth diagram (the rightmost pink region, in Figure 6.8),

to recover the skew shape before the rectification:

/o [1]2]3]6 im‘usion|1 21213 . . YR
(T",S") = [A[5[@ — [L[4]6] = infusion(T",S").
712 57

This corresponds to the tableau of the segment [ws]. Finally, we apply the semistandardization

with respect to v/, where 1/ = 653(2,2,3) = (2,3, 2):

| 23sstd;l 12

infusiony (77, 5") = [I[4]6] —% [P = n2s(T).

5(7 2|3

Figure 6.8: A growth diagram to compute 73 7 on a skew-shaped tableau. A diagram to compute

qs7 on straight-shaped shifted standard tableaux is obtained by removing the pink sections.

6.3.1 Another proof of Theorem 4.1

The shifted growth diagrams may be used to obtain an alternative proof to Theorem 4.1,
which then implies Theorem 4.3 and Theorem 5.25, similarly to the one presented by Chmutov,
Glick and Pylyavskyy [10, Theorem 1.4]. The proof is done for shifted standard tableaux, and

may be generalized for the semistandard case using (6.12). More precisely, we will consider
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Figure 6.9: A growth diagram with input 7!, a shifted standard tableau of shape A/, which
is encoded on the segment [ps], and having n; ;(7"7) encoded on segment [wz], with S being
any standard tableau of shape ;. By construction, [vs] = [vz]. The corresponding diagram with

primed vertices has 1 jn,m ;(T"7) on the segment [p's’] and 7y, 11 ;(T7) on [w'z'].

the diagram in Figure 6.9, to prove that the partial Schiitzenberger involutions satisfy the third

cactus relation (recall Definition 1.1),

i Ml = Mitj—Li+i—kTigs  Tor [k, 1] T[4, ],
when acting on shifted standard tableaux.

Proof of Theorem 4.1 [54, Theorem 5.7]. The relations nzj = 1 and n;;nk; = Nk, for
[k, 1] N [i,j] = @, are trivial, thus it remains to show that 7; ;7 = 7itj—1,i+j—k"i;> for

[k, 1] C [i, j]. By Lemma 4.4, it suffices to show that

T,k = Tj—14+1,5—k+1711,5,

for any [k,l] C [1,j]. We will now prove this relation, using growth diagrams. Let T be a
standard tableau of shape A/, and consider the diagram in Figure 6.9, where the segment [ap]
encodes a fixed standard tableau S of shape p, [ps| encodes 7", [av] encodes rect(T'7) =
(rect(T))", [dv] encodes n; j(rect(T7)) and [wz] encodes 1, ;(T"7). Consider also another
growth diagram similar to this one, with the vertices labelled as {a’, b, ¢, ...}, with the segment
[a'p'] encoding the same S as before, [p's'] encoding T := 0y jnem ;(T"7) and [w'z'] encoding

. (T") = ngm;;(T*7). The proof then mimics the one in [10, Theorem 1.4]. Since [ps] and
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[p's'] encode T and ny i m ;j(T"7), respectively, we have

[av] = rect(T"V)
‘ (6.14)
[a'v'] = rect(ny jmkmi;(TH)).
Taking the shifted evacuation growth diagrams, for 7, ;, with the inputs in (6.14), which corre-

spond to 7, ;, and considering that the operators 7; ; are coplactic, we have

[dv] = my j(rect(T7))
v | | (6.15)
[d'v'] = g (rect (i gneam i (T77))) = nuamg (rect(TH)).
Thus, in particular, [d'v'] = ny[dv]. Since [dv] = [dh]U [hu] U [uv] and [d'v] = [d'W] U [h'v/] L
[u/v'], by definition of 7 ; we have
nea([dv]) = [dh] Un([hu]) U [uv] = [d'v],

and consequently

[dh] = [d'M], [uv] = [u''],

(6.16)
[hu] = n([h'u])
Since [dh] = [d'}], taking the shifted evacuation growth diagrams on those inputs yield
[ch] = [']]. (6.17)
From (6.16) and (6.17), considering shifted infusion growth diagrams, we have
[ce] = infusiony ([ch], [hu]) = infusiony ([¢'A'], n([R'u']))
and by Corollary 2.42,
infusiony ([¢'h'], n([h'v'])) = n(infusion; ([¢'R'], [W'u'])) = n([d'¢])
and thus
[ce] = n([ce). (6.18)

Considering the same shifted infusion growth diagrams, we have
leu] = infusiony([ch], [hu]) = infusiony([¢'R/], n([h'u'])),
and by Proposition 2.41, as [h/v/] is shifted dual equivalent to n([h'u']), we have
infusiony ([¢'R'], n([A'v'])) = infusiony([¢'R'], ['u']) = [¢'u],
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and thus
leu] = [e'v]. (6.19)
Considering now the shifted infusion growth diagrams on inputs [eu] and [uv], and on inputs

[¢u'] and [u/v'], respectively, from (6.16) and (6.19), we have

leg] = ['g'], [gv] = [g"V]. (6.20)

Then, considering the shifted evacuation growth diagrams, on inputs [be] and [V'¢’], respectively,

we have, from (6.18),
n([be]) = [ce] = n([c'e]) = '],
and thus

n([be]) = [V'e’]. (6.21)

We now consider the shifted infusion growth diagrams on inputs [be] and [eg], and on inputs
[b'¢’] and [¢’¢], respectively. Then, by Proposition 2.41, since 7([be]) is shifted dual equivalent

to [be], we have
[bf] = infusiony ([be], [eg]) = infusiony (n([be]), [eg]),
and by (6.20) and (6.21),

infusion; (n([be]), [eg]) = infusiony ([b'e'], [¢'¢]) = [V f'],
and consequently
bf]=[b'f]. (6.22)
Finally, taking the shifted evacuation growth diagram with inputs in (6.22), we get
[af] = [a'f]. (6.23)

By (6.20) and (6.22), we have [gv] = [¢"v'] and [af] = [a’f']. Thus, rect(T'7) agrees with
rect(n1 ;nk.m1,;(T77)) on the letters outside of [j — [ + 1,5 — k + 1] and may differ on the
segments [fg] and [f’¢']. Considering the shifted infusion diagram on inputs [be] and [eg], and

on inputs [0'e’] and [¢/¢'], respectively, by (6.20) and (6.21), we have
[f'g'] = infusiony([b'e'], [€'g']) = infusions(n([be]), [eg]),
and by Corollary 2.42, we have

infusiony (n([be]), [eg]) = n(infusiony([be], [eg])) = n([f9]),

112



and thus,
n([fg]) = [f'g]. (6.24)

Then, from the definition of 1;_;1 j_,+1 and the fact that it is coplactic, we have

rect(ny gk (177)) = 0] = [/ FTU[f'gT U [g"0]
= laf]Un([fg]) Ugv] by (6.20), (6.23) and (6.24)
= Nj-t+1,-k+1([av])
= 1j—t+1,j—h1 (rect(T"7))
= rect(n;—i1,5-k+1 (TH)).
It remains to show that the segments [ps] and [p's’] differ only on [¢r| and [¢'r'], and that

n(lgr]) = [¢'r']. We have [pq] = T'~'. By the definition 7, jnx,m1; and since j — [ < 7,

we have
'dl = (g (TH)) 1
= e, (T
= 11kt ([Pa])-
We recall that, by construction, [ap] = [a'p’| = S. Since the partial Schiitzenberger involu-
tions preserve shifted dual equivalence, [pg| is shifted dual equivalent to [p’¢’], and thus, by
Proposition 2.41, we have

[fq] = infusions([ap], [pq]) = infusiony([a'p'], [P'q]) = [f'q],
that is,
[fal = 1f'q). (6.25)
Then, by (6.23) and (6.25),
[pq] = infusiony([af], [fq]) = infusions([af'], [f'q]) = [P'd],
and thus
pa] = [p'd]- (6.26)
Since [p's’] = nu ks (TH) = 1 mkam;([ps]), and the partial Schiitzenberger involutions
preserve shifted dual equivalence, then [ps] is shifted dual equivalent to [p's’]. Then, Proposition
2.41 and the fact that [ap| = [a’p'] ensure that
[vs] = infusiony([ap], [ps]) = infusiony([a'D], [p's]) = [v's],

113



that is,

[vs] = [v's]. (6.27)
Then, by (6.20) and (6.27),
[rs] = infusions([gu], [vs]) = infusions([g'0], [v's]) =[]
and then,
[rs] = [r's']. (6.28)

From (6.20) and (6.27) we also conclude that
[gr] = infusion; ([gv], [vs]) = infusion; ([¢'V'], [v's]) = [¢'r]
and thus, by (6.20), we have
ler] = [eq] U [gr] = [¢'d] U [g'r'] = [€'r]. (6.29)
Then, by (6.21) and (6.29), we have
[¢'r"] = infusiony([V'€], [¢'7']) = infusions(n([be]), [er])
and by Corollary 2.42,

infusiony (1 ([be]), [er]) = n(infusiony([be], [er])) = n([gr]),

and then
n(lgr]) = '] (6.30)
To conclude the proof, we remark that by the definition of 7;_;41 j_x+1, we have
m e, (TH) = [p's'] = [P U ldrTu [r's]
= [pq| Un([gr]) U [rs] by (6.26), (6.28) and (6.30)
= Nj—i+1,j-k+1([Ps])
(

1,j
= Nj-t+1,-k+1(T7).
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FINAL REMARKS

Shifted crystal reflection operators. We have seen that the shifted crystal reflection operators
o; do not need to satisfy the braid relations of &,,, (0;0;11)> = 1. As a consequence, the action ¢
of the cactus group on ShST(A/u, n) (Theorem 4.1) does not factor through the braid relations,
i.e., the subgroup {(s; i1, Sit1i12)>™,i € [n — 2], m € Z} is not contained in ker ¢. As stated
in Remark 3.33, the group GG, := (01,...,0,_1) is not isomorphic to &,,. In the future, it
would be interesting to determine if other relations are satisfied here, besides the ones listed in
Proposition 3.29. It is also an open question in type A whether (<, ...,¢,_1) is isomorphic to
G,, or whether there are other relations satisfied by the crystal reflection operators.

Proposition 5.22 shows that a possible relation of the form (0;0,41)™ = 1, for m > 3, is

equivalent to a relation (t;ty)*™ = 1 satisfied by the shifted Bender—Knuth operators.

Shifted Berenstein—Kirillov group. Berenstein and Kirillov have also showed in [8] that
the Berenstein—Kirillov group is isomorphic to a quotient of the cactus group. This was done
independently of the work of Chmutov, Glick and Pylyavskyy [10]. Moreover, the Berenstein—
Kirillov group B\Ién considered in [8] differs from the one considered here, being defined as the

free group generated by ¢, ...,%,_1, subject only to the relations

3. tzt] = tjtz', for ‘Z — ]’ > 1,
4. (t1q1)4 =1, forv > 2.

Thus, besides concluding that Z/S’\IEn is isomorphic to a quotient .J,, / ker ¢ of the cactus group,

where QB is an epimorphism from J, to Zs%n this quotient i1s completely described as kergzg 1s

115



{(s1.2813)%™, m € Z}, the normal subgroup of J,, generated by (s;.251 3)°. For the Berenstein—
Kirillov group presented in [10], considering % : s;; — ¢; ;, one concludes that ker ¢, must
contain {(s;2513)%™, m € Z}, as it follows from a relation holding on BIC,, that is not equiva-
lent to any relation of the cactus group. But since a comprehensive set of relations for BX,, is
not known, it could be the case that there would be other relations not following from the cactus
group.

For the shifted case, we have seen that the relation (t1t2)6 = 1 does not need to hold.
However, fixing a shifted tableau crystal ShST (v, n), which is finite, there must exist some
m > 6 such that (t;tp)™(7) = T, for all T" € ShST(v,n). Previous computations suggested
that if there exists r € Z- such that (o109)" = 1, then r > 90 [54, Appendix A]. Thus, if there
exists m such that (t;t;)™ = 1, for any shape v, Proposition 5.22 implies that m > 180. We do
not know if there exists such m valid for any shifted tableau crystal.

Thus, considering the epimorphism ) between J,, and SBK,, of Theorem 5.25, an explicit
element of the kernel ker 1) is not known, although we can state that the kernel does not contain
{(s1.2813)%™, m € Z}. Proposition 5.22 shows that the study of ker 1) is closely related to the
study of the action of the shifted crystal reflection operators o; on ShST (v, n). For future work,
it would also be interesting to find whether there are other relations that are satisfied in SBIC,,
that do not follow from the cactus group relations. We refer to [6, Problem 1.7] for similar

problems.
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APPENDIX A

ADDITIONAL EXAMPLES

In this appendix we present some additional examples of the shifted tableau crystal ShST (v, n),
for n = 3. Shifted tableaux will be enumerated according to their list enumeration in SageMath
(with a slight modification so that the enumeration starts with 1). We remark the shifted tableaux
used in SageMath are the ones generating Schur P-functions [1], not the ones in [23]. We recall
that these shifted tableaux are not required to be in canonical form and there are no primed
entries on the main diagonal. However, we remark that both definitions coincide for shifted
tableaux of straight shape v that are filled with [n]’, where n := {(v), as this ensures that the
first occurrence of each letter i or ¢’ appears on the main diagonal, thus being unprimed in
canonical form. For instance, the tableau 7" € ShST(v, 3), with v = (5, 3, 1) (see Figure A.2),

in Example 3.31 is Tg;.

We have seen in Example 3.31 that (0,02)?(T;) # Ts1. However, we have that (0109)?(Tg;) =
Ts1. If we set m; := min{m : (0109)™(T;) = T;}, for i € [|ShST(v,3)|] = [64], then, we have
the following in ShST (v, n):

(

3 forie {1,2,3,9,10,11,15,18,19,22,23, 27,28, 31,37, 38, 44, 47}
m; =45 fori€ {6,13,25,33,42, 50,54, 58, 62, 64}

9 otherwise

\

Therefore, taking m = lem(3,5,9) = 45, we have that (o102)™(T) = T, for all T €
ShST(Vl, 3)

Similarly, for v, = (5,2, 1) (see Figure A.1), we have that, for all i € [|ShST (1, 3)|] = [48],
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(

3 fori € {1,2,3,4,5,7,10,11,12,13, 14, 15, 16, 19, 20,
m; = 21,23, 24, 25, 26, 30, 31, 32, 33, 35, 36, 39, 40, 42, 45}

9 otherwise

\

Hence, putting m = lem(3,9) = 9, we have that (0,09)™(7") = T for all T' € ShST (14, 3).
The following table summarizes these and other computations we did. We remark that Lemma
3.38 ensures that the effect of o; on rect(7%*™!) (which has, at most, two rows) does not depend
on the first diagonals, except for one, with two elements. Thus, it suffices to check strict par-

titions whose last part is equal to one. This means that the results obtained for (3,2, 1) are the

same for (3 + k,2 + k,1+ k), for k > 1.

least m such that (o102)™(T) =T
v | [ShST(v,3)]
for all T € ShST(v, 3)
(3,2,1) 8 3
(4,2,1) 24 3
(4,3,1) 24 3
(5,2,1) 48 9
(5,3,1) 64 45
(5,4,1) 48 9
(6,2,1) 80 18
(6,3,1) 120 18
(6,4,1) 120 18

Given v a strict partition, since ShST (v, 3) is finite, there exists a m > 3 such that
(0102)™(T) =T,

for all T" € ShST(v, 3). These computations show that, if there exits an m such that (0105)" =
1, for any v, then it should be greater or equal to lem(3,9, 18,45) = 90. However, an upper

bound for any v is not known.
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Figure A.1: Shifted tableau crystal graph ShST(v, 3), with v = (5,2, 1). The operators F}, F]

are in red and the Fy, F}) are in blue. Vertices with the same weight are grouped together.
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Figure A.2: Shifted tableau crystal graph ShST(v, 3), with v = (5, 3, 1). The operators Fy, F]

are in red and the Fy, F}) are in blue. Vertices with the same weight are grouped together.
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infusion, 34
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coplactic operator, 19 Jeu de taquin slide, 18

crystal graph, 4 Kashiwara crystal, 4

crystal reflection operators, 58 Knuth equivalence, 23

dual equivalence, 24, 45 lattice walk, 40

length functions, 44
evacuation, 26, 36
location of a lattice walk, 41

Grassmannian, 3 longest permutation, 17
odd orthogonal, 8 lowest weight element, 43
growth diagram, 97 LRS tableau, 20

evacuation, 99 .
main diagonal, 15

local rules, 98

reversal, 102 normal crystal, 5

shifted infusion, 98 outer corner, 18
shifted rectification, 97
partition, 2
highest weight crystal, 4 perforated pair, 28
highest weight element, 43 perforated tableau, 28
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power sum symmetric function, 2
primed alphabet, 15

primed lowering operator, 39
primed raising operator, 39

promotion, 83

reading word, 16
column, 25
rectification, 19

reversal, 26

ShST(N\/p,n), 17
Schiitzenberger—Lusztig involution, 52
partial, 56
Schur P-function, 7
Schur )-function, 7
Schur function, 2
Schur polynomial, 3
seminormal crystal, 4
semistandardization, 19
shape chain, 95
shifted Bender—Knuth involution, 81
shifted Berenstein—Kirillov group, 90
shifted LR coefficient, 8, 20
shifted RSK, 22
shifted shape, 15
skew, 15
straight, 15
shifted staircase shape, 15
shifted switches, 29
shifted tableau, 16
complement, 25

detached, 65
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diagonally-shaped, 17
extension, 18
semistandard, 16
standard, 16
shifted tableau crystal, 44
shifted tableau switching, 29
on a pair of tableaux, 31
on a perforated pair, 29
standardization, 19
strict partition, 15
complement, 15
substring, 41
critical, 41
symmetric function, 1

symmetric group, 17

unprimed lowering operator, 42

unprimed raising operator, 42

weight, 16
of a tableau, 16
of a word, 16
word, 16
ballot, 20
lattice, 20
representative, 17
Worley—Sagan insertion, 21
non-Schensted, 21

Schensted, 21

Yamanouchi tableau, 20
Young tableau, 2

semistandard, 2
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