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ABSTRACT

Gillespie, Levinson and Purbhoo recently introduced a crystal-like structure for shifted tableaux,

called the shifted tableau crystal. This structure may be regarded as a directed acyclic weighted

graph, with coloured double edges, having vertices the shifted semistandard tableaux. It de-

composes into connected components, each one having unique source vertex, whose weight is

a strict partition, and sink vertex, with reverse weight. The character of each connected compo-

nent is the Schur Q-function indexed by the said strict partition. Following a similar approach

as Halacheva, for crystals of finite-dimensional representations of the quantized universal en-

veloping algebra of a finite-dimensional complex reductive Lie algebra, we exhibit a natural

internal action of the n-fruit cactus group on the shifted tableau crystal, realized by the restric-

tions of the shifted Schützenberger involution to all primed intervals of the underlying crystal

alphabet. This includes the shifted crystal reflection operators, which agree with the restrictions

of the shifted Schützenberger involution to single-coloured connected components, but unlike

the case for type A crystals, these do not need to satisfy the braid relations of the symmetric

group. In addition, we define a shifted version of the Berenstein–Kirillov group, by consider-

ing shifted Bender–Knuth involutions. Paralleling the works of Halacheva and Chmutov, Glick

and Pylyavskyy for type A semistandard tableaux of straight shape, we exhibit another occur-

rence of the cactus group action on shifted tableau crystals of straight shape via the action of

the shifted Berenstein–Kirillov group. We also conclude that the shifted Berenstein–Kirillov

group is isomorphic to a quotient of the cactus group. Not all known relations that hold in

the classic Berenstein–Kirillov group need to be satisfied by the shifted Bender–Knuth involu-

tions, but the ones implying the relations of the cactus group are verified, thus we have another

presentation for the cactus group in terms of shifted Bender–Knuth involutions. We also use

the shifted growth diagrams due to Thomas and Yong, together with the semistandardization

process of Pechenik and Yong, to provide an alternative proof concerning the mentioned cactus

group action.
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RESUMO ALARGADO

As funções P e Q de Schur são funções simétricas que surgem no contexto da teoria de re-

presentação projetiva de grupos simétricos. Estas funções são indexadas por partições com

partes distintas, chamadas partições estritas. Ambas são especializações de funções simétricas

de Hall–Littlewood e são somas de monómios que admitem uma descrição combinatória através

de certos tableaux desviados. Estes tableaux correspondem a diagramas desviados, associados

a partições estritas, semelhantes a diagramas de Ferrers, nos quais cada linha é desviada uma

unidade para a direita, relativamente à linha anterior, e são preenchidos num alfabeto marcado

[n]′ := {1′ < 1 < · · · < n′ < n}, satisfazendo certas condições. A presente tese restringe-se

aos tableaux desviados que geram as funções Q de Schur.

Gillespie, Levinson e Purbhoo (2017, 2020) introduziram recentemente uma estrutura de

cristal para estes tableaux desviados. Esta estrutura, denotada ShST(λ/µ, n), pode ser vista

como um grafo dirigido acíclico, com arestas duplas coloridas. O conjunto dos seus vértices,

no qual está definida uma função de peso, é formado por tableaux desviados semistandard de

forma λ/µ preenchidos em [n]′, e as suas arestas são definidas usando os operadores de cristal

marcados e não-marcados, que comutam com o jeu de taquin.

Ao contrário da estrutura de cristal para tableaux de Young, motivada pela teoria de repre-

sentações finitas da álgebra envolvente quantizada Uq(gln) da álgebra de Lie linear geral gln, e

que constitui um modelo para os cristais de tipo An−1, a estrutura de cristal em ShST(λ/µ, n)

tem a sua origem no cálculo de Schubert em tipo B (ou tipo C). No entanto, não é conhecido

se forma bases cristalinas para as representações de alguma álgebra envolvente quantizada, ao

contrário de outras estruturas de cristal com tableaux desviados para a super-álgebra de Lie

queer q(n), que têm as funções P de Schur como caráteres.

A estrutura de cristal em ShST(λ/µ, n) apresenta propriedades semelhantes às dos cristais

normais de tipoA, que podem ser inteiramente descritos em termos de tableaux de Young semis-

tandard. Com efeito, esta estrutura decompõe-se em componentes conexas, que são isomorfas
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por retificação a cristais de tableaux desviados de forma retificada,

ShST(λ/µ, n) '
⊔
ν

ShST(ν, n)f
λ
µν ,

onde fλµν denota um coeficiente de Littlewood–Richardson desviado. Cada componente conexa

possui um único vértice fonte, cujo peso é uma partição estrita, e um único vértice sumidouro

cujo peso é o reverso dessa partição. O caráter de cada componente conexa é a função Q

de Schur indexada pela partição estrita do vértice fonte. Assim, esta decomposição permite

recuperar a regra de Littlewood–Richardson para funções Q de Schur enviesadas,

Qλ/µ(x) =
∑
ν

fλµνQν(x).

A involução de Schützenberger–Lusztig define-se nesta estrutura de cristal de modo seme-

lhante ao dos cristais de tableaux de Young. Trata-se da única involução que reflete o grafo do

cristal através de um eixo horizontal, revertendo o sentido das arestas, as suas cores, e o peso de

cada vértice. Esta involução coincide com a operação reversal em tableaux desviados, e no caso

particular de formas retificadas, com a evacuação. A operação reversal define-se num tableau

através da interseção de certas classes de equivalência dual e de Knuth, e admite uma descrição

explícita baseada no jeu de taquin.

Halacheva (2016, 2020) mostrou que existe uma ação natural interna do grupo cactus Jg

em cristais das representações finitas de Uq(g), onde g é uma álgebra de Lie complexa redu-

tiva de dimensão finita, através de restrições da involução de Schützenberger aos subconjuntos

conexos não-vazios formados por nós do diagrama de Dynkin de g. Em particular, para os cris-

tais de tipo An−1, onde Jgln = Jn, estas restrições correspondem aos subintervalos conexos de

[n − 1]. Seguindo uma abordagem semelhante, exibimos uma ação natural interna do grupo

cactus Jn na estrutura de cristal em ShST(λ/µ, n), que é realizada pelas restrições da involução

de Schützenberger a todos os subintervalos marcados de [n − 1]. Isto inclui, em particular, os

operadores de reflexão do cristal σi, correspondendo às restrições da involução de Schützenber-

ger às componentes conexas de uma só cor. Ao contrário do caso para os cristais de tipo An−1,

este operadores não satisfazem necessariamente as relações (σiσi+1)3 = 1, para i ∈ [n − 2],

do grupo simétrico Sn (o grupo de Weyl de gln), pelo que a ação não se fatoriza através das

relações correspondentes. É uma questão em aberto, tanto no tipo A como no caso desviado,

saber se os operadores de reflexão do cristal satisfazem outras relações. Importa notar que existe

também uma ação externa do grupo cactus no produto tensorial de cristais normais, no entanto,

não é conhecido um produto tensorial para a estrutura de cristal de tableaux desviados.
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Adicionalmente, definimos uma versão desviada das involuções de Bender–Knuth ti, uti-

lizando o algoritmo de tableau switching para tableaux desviados, introduzido por Choi, Nam

e Oh (2017), ou, equivalentemente, a infusão de tipo C de Thomas e Yong (2009) em table-

aux desviados standard, juntamente com o processo de semistandardização de Pechenik e Yong

(2017). Utilizando os operadores ti, introduzimos uma versão em termos de tableaux desviados

do grupo de Berenstein–Kirillov BK, que denotamos por SBK. O grupo BK foi introduzido

por Berenstein e Kirillov (1995), como o grupo livre gerado pelas involuções de Bender–Knuth,

sujeito às relações que estas satisfazem em tableaux de Young semistandard. O grupo BKn é

o subgrupo de BK gerado pelas involuções de Bender–Knuth t1, . . . , tn−1. Este grupo atua na-

turalmente nos cristais de gln de tableaux de Young semistandard de forma retificada, e esta

ação coincide com a já referida ação de Jn. Como consequência, o grupo BKn é isomorfo a um

quociente de Jn.

Os grupos de Berenstein–Kirillov desviados SBK e SBKn são definidos de forma análoga,

através das involuções de Bender–Knuth desviadas. Em paralelo com os trabalhos de Halacheva

(2016, 2020) e Chmutov, Glick e Pylyavskyy (2016, 2020) para cristais do tipoA de tableaux de

Young semistandard de forma retificada, provamos que o grupo SBKn atua também de forma

natural na estrutura de cristal em ShST(ν, n), e que esta ação coincide com a do grupo cactus.

Como consequência, SBKn é também isomorfo a um quociente do grupo cactus Jn. No tipo

A, este quociente não é trivial, uma vez que existe pelo menos uma relação válida em BK que

não é equivalente a nenhuma relação do grupo cactus. Com efeito, a relação (t1t2)6 = 1 é

válida em BK, sendo equivalente à relação (ςiςi+1)3 = 1, para qualquer i ∈ [n − 2], em que ςi

denota o operador de reflexão de um cristal de tipo A. Esta equivalência é também válida para

os operadores desviados, contudo, as relações de trança não são necessariamente satisfeitas.

Não obstante, os operadores desviados ti satisfazem todas as relações que são equivalentes a

relações do grupo cactus, pelo que temos uma apresentação alternativa para o grupo cactus,

através das involuções de Bender–Knuth desviadas. É uma questão em aberto saber se existem

outras relações, tanto em BK como em SBK, que não sejam equivalentes às do grupo cactus.

A prova de que o grupo cactus atua no cristal de tableaux desviados através de restrições

da involução de Schützenberger utiliza a sua formulação enquanto única involução satisfazendo

certas condições em termos de operadores dos cristal ShST(λ/µ, n). Esta involução e as suas

restrições coincidem com as involuções reversal, pelo que podem ser descritas enquanto ope-

radores explícitos em tableaux desviados. Assim, é possível utilizar diagramas de crescimento

vii



para tableaux desviados standard, introduzidos por Thomas e Yong (2016), que generalizam os

diagramas de crescimento de Fomin para tableaux de Young, juntamente com o processo de se-

mistandardização, de Pechenik e Yong (2017), para obter uma prova alternativa de que o grupo

cactus Jn atua em ShST(λ/µ, n) através de restrições da involução reversal.

Palavras-chave: Tableaux desviados, grafos de cristais, involução de Schützenberger, grupo

cactus, grupo de Berenstein–Kirillov.
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CHAPTER 1

INTRODUCTION

Schur Q- and P -functions were firstly introduced by Schur [62], to study projective represen-

tations of symmetric groups. They are symmetric functions, indexed by strict partitions and

have a combinatorial description in terms of certain shifted tableaux [68]. These combinato-

rial objects carry many interesting parallels with the classical Young tableaux [58, 72]. There

are different definitions of shifted tableaux, resulting from considering different rules to fill

shifted diagrams (see, for instance, [11, 23, 66, 68]). The present thesis focus on the ones gen-

erating the Schur Q-functions. These tableaux may be organized into a crystal-like structure

[23] called a shifted tableau crystal, that in many aspects resembles the one for normal Kashi-

wara crystals of type A. This structure differs from other crystals on shifted decomposition

tableaux [25, 26] and on shifted tableaux for Schur P -functions [1, 24], which are crystals for

the quantum queer superalgebra Uq(q(n)). It is not known whether the crystal-like structure

due to Gillespie–Levinson–Purbhoo forms crystal bases for the representations of some quan-

tized universal enveloping algebra. Unlike the case for crystals for gln, we do not have a natural

action of the symmetric group Sn on these shifted tableau crystals. However, analogous to crys-

tals for gln, we will show that there exists a natural internal action of the cactus group, which is

realized by the partial shifted Schützenberger involutions. This action has another occurrence

via generators of the shifted Berenstein–Kirillov group that we introduce.

Young tableaux and Schur functions

Schur functions are a well-known family of symmetric functions, appearing in many areas of

mathematics. More precisely, let Λ = ΛZ denote the algebra of symmetric functions over

Z. As a set, it consists of the bounded-degree formal power series with coefficients in Z, in

countably many infinite variables x = {x1, x2, . . .}, that are invariant under any permutation

of the variables. This algebra has a natural grading Λ =
⊕
n∈N

Λn, where Λn denotes the Z-

1



module of symmetric functions homogeneous of degree n. We also consider ΛQ and Λn
Q to be

the corresponding Q-algebra and Q-vector space.

A partition of a positive integer m is a sequence of positive integers λ = (λ1 ≥ · · · ≥ λk)

displayed in weakly decreasing order and such that λ1 + · · · + λk = m. A partition λ of m

is associated with a Young diagram (or Ferrers diagram), consisting of m boxes disposed in k

left-justified rows, such that i-th row has λi boxes (following the English or matrix notation).

Given µ ⊆ λ, the skew diagram λ/µ is defined as the set of boxes of λ that are not boxes

in µ. A semistandard Young tableau is a filling of a Young diagram with a totally ordered

alphabet such that rows are weakly increasing and columns are strictly increasing. We denote by

SSYT(λ/µ, n) the set of semistandard Young tableaux of shape λ/µ filled in [n] := {1, . . . , n},
and by SSYT(λ/µ) the (infinite) set of the ones filled in N. Given a set of countably many

infinite variables x = {x1, x2, . . .} and a vector α = (α1, α2, . . .), such that αk = 0 for all

k > N , for some N ∈ N, let xα := xα1
1 x

α2
2 · · · . In particular, we associate to a semistandard

Young tableau T the monomial xwt(T ) = xα1
1 · · ·xαmm , where wt(T ) = (α1, . . . , αm) is the

weight of T , i.e., the vector such that αi is equal to the number of i’s in T .

Given n ∈ N, there are many well-known linear bases for Λn
Z and Λn

Q, indexed by partitions

of n. For the purpose of this thesis, we only need to recall the power sum symmetric functions

and Schur functions. For a more detailed introduction, we refer to [49, Chapter I], [60, Chapter

4] and [67, Chapter 7]. The k-th power sum symmetric function pk, for k ≥ 1, is defined as

pk(x) = xk1 + xk2 + . . . (1.1)

and, given a partition λ = (λ1, . . . , λk), we have pλ := pλ1 · · · pλk . The Schur function [45]

corresponding to a partition λ is given by

sλ(x) =
∑

T∈SSYT(λ)

xwt(T ). (1.2)

Unlike the power sum symmetric functions, it is not entirely obvious from the definition that

the Schur functions are symmetric. One way to prove that they are symmetric functions is using

the Bender–Knuth involutions ti [4], which act on a semistandard Young tableau by swapping

the multiplicities of i and i+ 1.

The sets {pλ} and {sλ}, indexed by partitions λ of n, are linear bases for Λn
Q, and the latter

is a linear basis for Λn
Z. The Littlewood–Richardson coefficients cλµν [46] are the structure con-

stants that appear in the linear expansions of the product of Schur functions sµsν and of the skew
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Schur function sλ/µ in the Z-basis of Λ of Schur functions. These coefficients are non-negative

integers and have a nice combinatorial description in terms of semistandard Young tableaux

with a certain rectification (for instance, see [60, Theorem 4.9.4] or [67, Theorem A1.3.3]).

The Schur functions play an important role in group representation theory of Sn. Namely, they

are the image under the Frobenius characteristic map of the irreducible representations of Sn

(see, for instance, [60, Theorem 4.6.4]).

We now consider Λn to be the ring of symmetric polynomials in n variables, with coefficients

in Z. We may consider a specialization Λ −→ Λn taking a symmetric function f(x1, x2, . . .) in

Λ to a symmetric polynomial f(x1, . . . , xn) := f(x1, . . . , xn, 0, 0, . . .) in Λn (see [67, Section

7.8]). In what follows, we consider the Schur polynomial sλ(x1, . . . , xn) to be a specialization

in Λn of the Schur function sλ in Λn, for λ a partition with at most n parts. The irreducible

polynomial representations φλ of GLn(C) are indexed by partitions with at most n parts, and

their characters are given by char(φλ)(X) = sλ(x1, . . . , xn), where {x1, . . . , xn} is the set of

eigenvalues of X ∈ GLn(C) [61].

The Schur polynomials are also present in the context of type A Schubert calculus. The

Grassmannian Gr(k,Cn) is the set of all k-dimensional subspaces of Cn, and may be re-

garded as a projective algebraic variety via an embedding of Gr(k,Cn) into the projective

space P(ΛkCn), where ΛkCn denotes the k-th exterior power of Cn, called the Plücker embed-

ding (for details see [18, 19]). The Grassmannian has a cellular decomposition into Schubert

cells Ωλ, consisting of the subspaces in Gr(k,Cn) whose associated row echelon form corre-

sponds to a partition λ, fitting in an ambient rectangle k × (n− k). The Schubert varieties Xλ

are obtained by taking the closure, with respect to the topology inherited from P(ΛkCn), and

the Schubert classes σλ are the fundamental classes of Schubert varieties in the cohomology

ring H∗(Gr(k,Cn)). Schubert classes form a Z-basis for this cohomology ring. Moreover,

H∗(Gr(k,Cn)) is isomorphic, as a ring, to a quotient of Λk by the ideal generated by the Schur

polynomials indexed by partitions that do not fit the ambient rectangle k × (n − k). Thus, the

Schur polynomial sλ is the representative of the Schubert class σλ, for λ ⊆ k × (n − k) [18,

Section 9.4]. The Littlewood–Richardson coefficients cλµν also appear as structure constants of

the Schubert class σλ in the cup product σµσν in H∗(Gr(k,Cn)) (see, for instance, [18, 19]).
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Kashiwara crystals

Kashiwara [37, 38] and Lusztig [47] independently introduced crystal bases (or canonical

bases) to study representations of quantized universal enveloping algebras Uq(g) of a Lie al-

gebra g. Informally speaking, crystal bases provide bases for Uq(g)-modules at q = 0. We may

associate to a crystal basis a unique directed, weighted, edge-coloured graph, called the crystal

graph, and its character coincides with the character of the representation. Moreover, crystal

graphs provide formulations for tensor product decomposition and branching rules.

Let E be an Euclidean space, with inner product 〈, 〉. Given a root system Φ in V with index

set I , let {αi, i ∈ I} be the set of simple roots and {α∨i , i ∈ I} the set of simple coroots, and let

Λ be the weight lattice and Λ+ the set of dominant weights. A Kashiwara crystal of type Φ [9,

Definition 2.13] is a non-empty set B together with maps ei, fi : B −→ Bt{∅}, where ∅ 6∈ B,

εi, ϕi : B −→ Z, for i ∈ I , and wt : B −→ Λ, satisfying the following:

1. For any b, c ∈ B and any i ∈ I , ei(b) = c if and only if fi(c) = b, and in such case,

wt(c) = wt(b) + αi, εi(c) = εi(b)− 1, and ϕi(c) = ϕi(b) + 1.

2. For any b ∈ B and any i ∈ I , ϕi(b)− εi(b) = 〈wt(b), α∨i 〉.

The maps ei, fi are called the Kashiwara or crystal operators, with ei being a raising oper-

ator and fi a lowering operator, the maps εi, ϕi are called the length maps, and the map wt is

called the weight map. A Kashiwara crystal is said seminormal if, for each i ∈ I and b ∈ B,

εi(b) = max{k : eki (b) 6= ∅}, ϕi(b) = max{k : fki (b) 6= ∅}.

To a Kashiwara crystal we associate a directed, acyclic weighted graph, called the crystal

graph, with vertices in B and edges labelled in I , in which there is a i-coloured directed edge

b
i−→ c if and only if fi(b) = c, or equivalently, ei(c) = b, for i ∈ I . The i-coloured connected

components of a crystal graphs are called the i-strings. In particular, a crystal is seminormal

if the length maps ϕi(b) and εi(b) measure the distance of b to the ends of its i-string, for any

i ∈ I .

A crystal B is called a highest weight crystal, with highest weight λ ∈ Λ+, if there exists an

element bλ ∈ B such that wt(bλ) = λ, ei(bλ) = ∅, for all i ∈ I , and B is generated by the maps

fi acting on bλ. Given a finite-dimensional complex reductive Lie algebra g with root system

Φ, each representation V =
⊕
λ∈Λ+

V λ of g may be associated with a seminormal crystal of type

Φ, with I being the set of nodes of its Dynkin diagram. For a dominant weight λ ∈ Λ+, let
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Bλ denote the connected crystal of the irreducible representation V λ of g of highest weight λ,

which is a highest weight crystal. The character of Bλ coincides with the character of V λ. A

crystal is said to be normal if it is isomorphic to a disjoint union of Bλ, for λ ∈ Λ+. Normal

crystals have nice properties, namely, the subcrystals BJ of a normal crystal B, obtained from

the crystal graph of B considering the edges labelled in a connected subset of nodes J ⊆ I , are

also normal.

In what follows, we will consider normal crystals of type An−1, that is g = gln, the general

linear Lie algebra. In this case we have Λ = Zn and I = [n − 1], and for each i ∈ I ,

αi = α∨i = ei − ei+1, where {e1, . . . , en} is the standard basis of Rn, and the set of dominant

weights Λ+ is the set of partitions having at most n parts. The set SSYT(λ, n), where λ has

at most n parts, has the structure of normal type An−1 crystal [41], and indeed, type A normal

crystals may be described entirely in terms of semistandard Young tableaux, where the crystal

operators ei, fi are coplactic, that is, they commute with the jeu de taquin [9, 43].

The crystal reflection operator ςi, originally defined by Lascoux and Schützenberger [44]

for type A crystals, acts on a i-string by reflecting it through its middle axis. These operators

define an action of the symmetric group Sn (which is the Weyl group of gln) on those crystals,

as they satisfy the braid relations. For any normal crystal, Kashiwara defined the action of the

corresponding Weyl group [39, Theorem 7.2.2] [40, Theorem 11.1].

The Schützenberger involution [63] is an involution on semistandard Young tableaux, also

known as the evacuation on straight shapes or the reversal on skew-shapes [5, 28]. It realizes

the Lusztig involution [48] on normal crystals of type A, as a set map on B acting on the

graph structure by “flipping” it upside down, while reverting the orientation of the arrows and

its colours. More precisely, consider a normal crystal B of type An−1 and define the map

ξ : Bλ −→ Bλ, on a connected component Bλ, as the unique set of maps satisfying, for all

b ∈ Bλ,

1. eiξ(b) = ξfn−i(b),

2. fiξ(b) = ξen−i(b),

3. wt(ξ(b)) = θ1,n · wt(b),

where θ1,n denotes the longest permutation in Sn. In particular, the map ξ takes the highest

weight bλ element to the lowest weight element blowλ , which is the unique element in Bλ such

that fi(blowλ ) = ∅, for any i ∈ I . The Schützenberger–Lusztig involution is defined on B by
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applying ξ to each connected component of B. The crystal reflection operators ςi correspond to

the restrictions of the Schützenberger–Lusztig involution to the i-strings.

The cactus group

The n-fruit cactus group Jn first appeared in the works of Devadoss [17] and Davis, Januszkiewicz

and Scott [16], as the fundamental group of the quotient orbifold of M
n+1

0 (R), the Deligne–

Mumford moduli space of stable curves of genus 0 with n + 1 marked points, by the action of

Sn that permutes the first n of those points. We recall its definition as a free group subject to

certain relations, as presented by Henriques and Kamnitzer [32].

Definition 1.1 ([32, Section 3.1]). The n-fruit cactus group Jn is the free group with generators

si,j , for 1 ≤ i < j ≤ n, subject to the relations:

1. s2
i,j = 1.

2. si,jsk,l = sk,lsi,j , for [i, j] ∩ [k, l] = ∅.

3. si,jsk,l = si+j−l,i+j−ksi,j , for [k, l] ⊆ [i, j].

There is an epimorphism Jn −→ Sn, sending si,j to the longest permutation of S[i,j], em-

bedded in Sn. The kernel of this epimorphism is known as the pure cactus group and denoted

by PJn (see [32, Section 3.4]). Halacheva [29, 30] generalized the notion of cactus group by

Jg for any finite-dimensional complex reductive Lie algebra g (see [29, Chapter 10]), where Jn

corresponds to Jgln , and showed that there is an internal action of the cactus group Jg in a nor-

mal g-crystal, via the partial Schützenberger involutions, which correpond to restrictions of the

Schützenberger–Lusztig involution to any non-empty connected subset of nodes of the Dynkin

diagram of g. For the type A crystal graph, these are the restrictions of the Schützenberger

involution to the subgraphs corresponding to the edges coloured in connected subintervals of

[n−1]. For the i-strings, the action of the cactus group agrees with the action of the correspond-

ing Weyl group generators, for all i ∈ I . Indeed, the internal action of the cactus group factors

through the quotient of this group by the corresponding braid relations of the Weyl group [29,

30, 31]. For type An−1 crystals, these are precisely the crystal reflection operators, and thus, the

action of the cactus group Jn factors through the quotient of the braid relations of Sn.
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Shifted tableaux and Schur P - and Q-functions

Schur P - and Q-functions are symmetric functions indexed by partitions with different parts,

called strict partitions. They are specializations of Hall–Littlewood functions [49, Chapter III],

and form dual bases, with respect to a modified Hall scalar product, for the subalgebra of the

symmetric functions over Q generated by the odd-degree power sum symmetric functions. They

have a combinatorial description as a sum of monomials arising from certain shifted semistan-

dard tableaux, which are fillings of shifted shapes (corresponding to strict partitions) in a primed

alphabet [n]′ := {1′ < 1 < · · · < n′ < n}.
Let ShSTQ(λ/µ, n) be the set of shifted semistandard tableaux of shape λ/µ, on the alphabet

[n]′ that are not required to be in canonical form (for a precise definition see Section 2.1), and

let ShSTP (λ/µ, n) be the subset of ShSTQ(λ/µ, n) of shifted tableaux without primed entries

on the main diagonal. We denote by ShSTQ(λ/µ) and ShSTP (λ/µ) the (infinite) sets of the

corresponding tableaux filled in {1′ < 1 < · · · }. As before, we associate to a shifted tableau T

a monomial xwt(T ), where wt(T ) = (wt1, . . . , wtn) is the weight of T , the vector in which wti

is equal to the total number of i and i′ in T .

Definition 1.2. Let µ ⊆ λ be a strict partitions. The Schur Q-function is defined as

Qλ/µ(x) =
∑

T∈ShSTQ(λ/µ)

xwt(T ),

and the Schur P -function is defined as

Pλ/µ(x) =
∑

T∈ShSTP (λ/µ)

xwt(T ).

It follows from the definition that Pλ/µ(x) = 2`(λ)−`(µ)Qλ/µ(x). Both Schur Q- and P -

functions are symmetric functions, as they are specializations of Hall–Littlewood functions,

although there are combinatorial proofs in the same fashion as for the classical Schur functions

[68, Corollary 6.2].

Let ΩQ := 〈p1, p3, p5, . . .〉 be the subalgebra of ΛQ generated by the odd-degree power sum

symmetric functions (1.1). This algebra also has a natural grading ΩQ =
⊕
n∈N

Ωn
Q, where Ωn

Q is

the set of functions of ΩQ that are homogeneous of degree n. Let Ω = ΩZ := ΩQ ∩ ΛZ denote

the subring of ΩQ with coefficients in Z, which also has a natural grading Ω =
⊕
n∈N

Ωn, with Ωn

denoting the subset of functions of Ω homogeneous of degree n.

The sets {Qλ} and {Pλ}, indexed by strict partitions λ of n, are linear bases of Ωn. More-

over they are dual bases under a modified Hall scalar product [68, (5.2) and Corollary 6.2].
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The shifted Littlewood–Richardson coefficients fλµν are the constants that appear in the linear

expansion of the skew Schur Q-functions in the basis of Schur Q-functions and in the prod-

uct of P -functions in the basis of Schur P -functions (a combinatorial definition is presented in

Section 2.2):

Qλ/µ =
∑
ν

fλµνQν , PµPν =
∑
λ

fλµνPλ. (1.3)

The Schur Q-functions first appeared in the context of projective representations [35, 36] of

Sn [62]. They provide information for the spin characters of Sn, which are indexed by strict

partitions, on certain non-trivial conjugacy classes [50, 59, 68]. The Schur P -functions also

appear in the representation theory of the queer Lie superalgebra q(n) [25, 26, 65], which is a

superalgebra generalization of gln.

Schur P -functions also appear in type B (or C) Schubert calculus [33, 53], as represen-

tatives for the cohomology classes of Schubert cycles in the odd orthogonal Grassmannian

OG(n,C2n+1), which is the set of n-dimensional subspaces V of C2n+1 such that for any

u, v ∈ V , 〈u, v〉 = 0, for a fixed non-degenerate symmetric bilinear form 〈, 〉. The Schubert

classes τλ form a basis for the cohomology ring H∗(OG(n,C2n+1)), where now λ is a strict

partition that fits in an ambient n× n triangle. The shifted Littlewood–Richardson coefficients

also appear as structure constants of the product of Schubert classes [19, 33, 53].

A shifted tableau crystal for Schur Q-functions

In [20], Gillespie and Levinson computed the topology of real Schubert curves in Gr(k,Cn),

using the coplactic operators of type A crystals. Motivated by the same question in the con-

text of OG(n,C2n+1), Gillespie, Levinson and Purbhoo [23] and Gillespie and Levinson [21]

introduced coplactic operators on shifted tableaux, yielding a crystal-like structure on shifted

tableaux, having Schur Q-functions as characters.

This is not the first crystal-like structure concerning shifted tableaux. Indeed, the represen-

tation theory for the queer Lie superalgebra q(n) motivated crystal structures for decomposition

tableaux [25, 26, 66] and shifted semistandard tableaux [1, 12, 24, 34]. These crystals form

canonical bases for the representations of Uq(q(n)) and have the Schur P -functions as charac-

ters. The crystal-like structure in [23] has its origins in the Schubert calculus for type B [22], it

is non-isomorphic to the crystal for q(n), and it is not known whether it forms canonical bases
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for the representations of some known quantized enveloping algebra. We will henceforth refer

to it as a shifted tableau crystal, denoted ShST(λ/µ, n).

The shifted tableau crystal ShST(λ/µ, n) has vertices the skew shifted tableaux, for a given

shape λ/µ, on the primed alphabet [n]′, and double edges, corresponding to the action of the

primed and unprimed lowering and raising operators which commute with the shifted jeu de

taquin. This crystal-like structure has nice properties that parallel the ones for normal Kashi-

wara crystals of type An−1. It decomposes into connected components (3.1), and each one has

an unique highest weight element, a shifted skew tableau where each primed and unprimed

raising operator E ′i and Ei is equal to ∅, for any i ∈ I = [n− 1]. This highest weight elements

is a Littlewood–Richardson–Stembridge (LRS) tableau of shape λ/µ [68] (see Definition 2.13).

Similarly, it has a unique lowest weight element, a shifted skew tableau such that each primed

and unprimed lowering operator F ′i and Fi is equal to ∅, for each i ∈ I , which is the rever-

sal of the highest weight element. The existence and uniqueness of highest and lowest weight

elements is also valid for the subcrystals obtained from considering the subgraph with edges

labelled in connected subsets of I .

In addition, the primed and unprimed operators considered separately yield a type A Kashi-

wara crystal, considering the total length functions εi and ϕi [23, Section 5.1] and the usual

weight function on shifted tableaux. However, these are not seminormal crystals, as the total

length functions do not measure the distance to the ends of a string of either Fi or F ′i operators,

but rather the total distance on the string of both.

The cactus group and shifted tableau crystals

A shifted version of the type A crystal reflection operators was introduced in [54, 55] (see

Definition 3.26), in terms of the shifted tableau crystal operators. In Theorem 3.30, we show

that, similarly to type A, they coincide with the partial Schützenberger involution restricted to

the primed alphabet of two adjacent letters {i′, i, (i+ 1)′, i+ 1} ⊆ [n]′, for any i ∈ I . They act

on the {i′, i}-coloured components of the shifted tableau crystal by a double reflection through

vertical and horizontal axes, rather than a simple reflection as in the Young tableau crystal.

Unlike type A crystals, they do not define a natural action of the symmetric group Sn on the

shifted tableau crystal, since the braid relations do not need to hold, as shown in Example 3.31.

Following a similar approach as Halacheva [29, 30], we then show in Theorem 4.1 [54,

Theorem 5.7] that the restrictions of the shifted Schützenberger involution on the primed subin-
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tervals of [n] yield an internal action of the cactus group Jn (Definition 1.1) on that crystal. We

note that this internal action on the shifted tableau crystal, unlike the one on type A crystals,

does not factor through the braid relations of the symmetric group. When the shifted Schützen-

berger involution is restricted to primed subintervals of two adjacent letters, the cactus group

action agrees with the action of the shifted crystal reflection operators on the shifted crystal.

This means that both actions agree as permutations of the vertices within each {i′, i}-coloured

component of the shifted crystal.

It is expected, although we have not attempted to explore it, that this combinatorial internal

action of the cactus group on the shifted crystal carries some geometrical meaning, as this

crystal has its origin in the orthogonal Grassmannian [22]. Moreover, the tensor product of

shifted tableau crystals is not known, and consequently, nor an external action of the cactus

group.

The Berenstein–Kirillov group

The Bender–Knuth moves ti are well known involutions on semistandard Young tableaux [4],

that act on adjacent letters i and i+1 by interchanging their multiplicity, while leaving the other

letters unchanged. The tableau switching, introduced by Benkart, Sottile and Stroomer [5], is

an algorithm on pairs of semistandard Young tableaux (S, T ), with T extending S, that moves

one through the other, obtaining a pair that is component-wise Knuth equivalent to (T, S).

The tableau switching on horizontal border strips of two adjacent letters i and i + 1, together

with a swapping of the labels i and i + 1, is known to coincide with the classical Bender–

Knuth involution ti [5, 51]. Berenstein and Kirillov [7] studied explicit relations satisfied by the

involutions ti [7, Corollary 1.1], and introduced the Berenstein–Kirillov group BK (also known

as Gelfand–Tsetlin group), the free group generated by the classical Bender–Knuth involutions

ti, for i ∈ Z>0, subject to the relations they satisfy on semistandard Young tableaux of any shape

[7, 8, 10]. This group is well-defined although an explicit and comprehensive set of relations is

not known. Some of the relations that are held by the ti are listed in [7, 8, 42], and [10, Theorem

1.6], and they are recalled in Section 5.2.

Chmutov, Glick and Pylyavskyy [10] studied, using semistandard growth diagrams, the re-

lation between the group BKn, the subgroup of BK generated by t1, . . . , tn−1, and the cactus

group Jn (Definition 1.1), concluding that BKn is isomorphic to a quotient of Jn. Halacheva

has remarked [30, Remark 3.9] that this may also be concluded by noting that the action of
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the cactus group Jn [29, Section 10.2] agrees with the one of BKn on type An−1 crystals

of straight-shaped Young tableaux filled in [n]. Considering the alternative set of generators

q1, . . . , qn−1 for BKn, where qi := t1(t2t1) · · · (titi−1 · · · t1), then each qi acts on a straight-

shaped Young tableau via the partial Schützenberger involution, or evacuation, restricted to the

alphabet {1, . . . , i + 1} [7, Theorem 2.1]. Chmutov, Glick and Pylyavskyy also refine their

results concerning the cactus group quotient in [10, Theorem 1.8] by showing precise implica-

tions between the cactus-type relations, satisfied by generators of BKn, and a subset of known

relations (5.5) and (5.7) in the BKn, thereby yielding a presentation of the cactus group in terms

of the Bender–Knuth generators.

A shifted Berenstein–Kirillov group

Motivated by the tableau switching characterization of the Bender–Knuth moves on semistan-

dard Young tableaux [5], we introduced in [56, 57] a shifted version of the Bender–Knuth

involutions, here denoted ti, for shifted semistandard tableaux in the shifted tableau crystal

due to Gillespie, Levinson and Purbhoo [23], using the shifted tableau switching introduced by

Choi, Nam and Oh [15]. Alternatively, we may use the type C infusion on shifted standard

tableaux due to Thomas and Yong [70] together with the semistandardization of Pechenik and

Yong [52]. We observe that genomic Bender–Knuth involutions have also been defined in a

similar way on genomic tableaux, by Pechenik and Yong [52]. The shifted Bender–Knuth in-

volutions we present differ from the operators introduced by Stembridge [69, Section 6], which

are not compatible with the canonical form requirement for the shifted tableau crystal consid-

ered (see Remark 5.18). Using the shifted Bender–Knuth involutions ti as generators, we define

a shifted analogue of the Berenstein–Kirillov group, denoted SBK, with SBKn being defined

analogously.

Following [7], the elements qi := t1(t2t1) · · · (titi−1 · · · t1), for 1 ≤ i ≤ n−1, also constitute

an alternative set of generators for SBKn. Similarly to the BKn group, each generator qi acts

on a straight-shaped shifted semistandard tableau, via the shifted Schützenberger involution

restricted to the primed alphabet {1, . . . , i + 1}′. Thereby, as in the classical case [10, 29, 30],

the actions of the cactus group Jn (see Theorem 4.3) and of SBKn agree on a straight-shaped

shifted tableau crystal [23]. Thus, the shifted Berenstein–Kirillov group is isomorphic to a

quotient of the cactus group (Theorem 5.25).
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The shifted Bender–Knuth operators ti also satisfy the BK-type relations (5.5) and (5.7).

Those are the relations satisfied by the generators ti in BK which are equivalent to the ones

of the cactus group, as shown in [10, Theorem 1.8] (here Theorem 5.20). Thus, we also have,

similarly to the classical case [10], another presentation of the cactus group via the shifted

Bender–Knuth moves.

Not all known relations that hold in BK need to be satisfied by the shifted Bender-Knuth

involutions, namely the relation (t1t2)6 = 1 (5.6) does not need to hold in SBK (see Example

5.23). As observed in [10, Remark 9], the relation (t1t2)6 = 1 (5.6) in BK does not follow from

any cactus group relation. In fact, it is equivalent to the braid relations of the symmetric group

Sn, satisfied by the type A crystal reflection operators ςi , due to Lascoux and Schützenberger

[44], and rediscovered by Kashiwara [39, Theorem 7.2.2]. These operators are elements of BK
[7, Proposition 1.4], and ςi acts on a type An−1 crystal as a middle reflection of each i-string,

which agrees with the partial Schützenberger involution restricted to the alphabet {i, i+ 1}, for

i ∈ [n− 1].

The shifted crystal reflection operators σi, for 1 ≤ i ≤ n − 1 [54, Definition 4.3] (here

Definition 3.26) are also elements of SBKn, and σi acts on a shifted tableau crystal as a double

reflection of each {i, i′}-coloured string, which agrees with the shifted Schützenberger involu-

tion restricted to the primed alphabet {i, i + 1}′. A relation of the type (t1t2)2m = 1 holds in

SBKn if and only if the relation (σiσi+1)m = 1 does, wherem is a positive integer (see Proposi-

tion 5.22). However, unlike typeA crystals, the shifted crystal reflection operators do not define

an action of the symmetric group, thus none of the aforesaid relations holds for m = 3. It is

not known whether some m > 3 exists (see Appendix A). It is an open question to find explicit

relations in SBK, beyond those listed in Proposition 5.26, that do not follow from the cactus

group relations. Further relations for SBK seem to be intimately related with further relations

satisfied by the shifted crystal reflection operators.

Shifted growth diagrams

The proof of Theorem 4.1 in Section 4.1 concerning a cactus group action on a shifted tableau

crystal relies on the formulation of Schützenberger involution as the unique set involution on

a shifted tableau crystal satisfying certain conditions in terms of the shifted crystal operators

(Proposition 3.20). Thus, the partial Schützenberger involutions, corresponding to the restric-

tions of the Schützenberger involutions to all primed subintervals of [n], are also described
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in a similar way (Lemma 3.23) to what is done in [31, Definition 5.17]. These unique maps

coincide with the reversal map and its restrictions, and thus they are explicit involutions on

shifted tableaux. Sticking to this algorithmic formulation, we may use type C growth diagrams,

introduced by Thomas and Yong [71], together with the semistandardization process due to

Pechenik and Yong [52], to obtain an alternative proof that the cactus group acts on a shifted

tableau crystal via the restrictions of the reversal involution.

The type C growth diagrams, for shifted standard tableaux, were introduced by Thomas

and Yong [71], together with generalizations for other cominuscule posets, and they generalize

the classical growth diagrams for standard Young tableaux due to Fomin [67]. These diagrams

consist of saturated chains of shifted shapes encoding the shifted jeu de taquin for shifted stan-

dard tableaux. Thus, they define type C infusion, as well as the shifted promotion, evacuation

and reversal, and the adequate restrictions. Like the classical growth diagrams [67, Proposi-

tion A1.2.7], the shifted ones may be computed via local growth rules [71, Theorem 2.1]. The

symmetry of those rules shows that the type C infusion, evacuation and reversal are involutions.

Unlike the case for type A, shifted semistandard tableaux, being filled in a primed alphabet,

are not encoded by a sequence of strict shapes and thus we do not have a semistandard-like

growth diagrams as in [10]. However, the shifted semistandardization due to Pechenik and

Yong [52] allows us to extend these notions for semistandard shifted tableaux. Thus, we are

able to obtain an alternative proof, in Chapter 6, for the cactus group action on a shifted tableau

crystal (Theorem 4.1), relying on the combinatorial description of the shifted reversal.

Structure of the thesis

This thesis is organized as follows:

• Chapter 2 provides the background notions on shifted tableaux, as well as operations and

algorithms among them. In particular, we recall the shifted jeu de taquin, the Worley–

Sagan insertion algorithm, and state their relation with shifted Knuth and dual equiva-

lences. We then present the notions of evacuation and reversal. In Section 2.5 we recall

the shifted tableau switching algorithm due to Choi, Nam and Oh [15], which produces

the same result as the type C infusion of Thomas and Yong [70] together with the semis-

tandardization due to Pechenik and Yong [52].
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• In Chapter 3 we present the basic definitions and main results concerning the shifted

tableau crystal of Gillespie, Levinson and Purbhoo [23], highlighting its i-string decom-

position. We then recall the definition of the Schützenberger involution and its restric-

tions. In Section 3.3 we introduce the notion of shifted crystal reflection operators using

the shifted crystal operators. We then prove, in Theorem 3.30, that these operators coin-

cide with the restrictions of the Schützenberger involution to the primed alphabet of two

adjacent letters.

• Chapter 4 is intended to prove, in Theorem 4.1 ([54, Theorem 5.7]), that the cactus group

Jn acts on the shifted tableau crystal via the partial Schützenberger involutions.

• In Chapter 5 we introduce a shifted version of the Berenstein–Kirillov group. We begin by

defining shifted Bender–Knuth involutions using the shifted tableau switching algorithm.

Then, as in the classical case, we use those shifted Bender–Knuth moves to define a

shifted Berenstein–Kirillov group. Proposition 5.26 shows that the known relations (5.5)

and (5.7) satisfied by the classical Bender–Knuth involutions also hold among the shifted

counterparts, with the exception of the relation (t1t2)6 = 1. We then prove, in Theorem

5.25, that the shifted Berenstein–Kirillov group is isomorphic to a quotient of the cactus

group ([56, Theorem 4.25]) and exhibit in (5.14) an alternative presentation for the cactus

group in terms of the shifted Bender–Knuth moves.

• In Chapter 6 we recall the notion of growth diagrams for shifted standard tableaux, as

well as the local growth rules. Using the semistandardization, we recover the shifted

jeu de taquin, type C infusion, evacuation and reversal (as well as its restrictions) to

semistandard shifted tableaux. We then provide, in Section 6.3.1, an alternative proof for

the cactus group action on the shifted tableau crystal.
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CHAPTER 2

SHIFTED TABLEAUX AND THEIR OPERATIONS

In this chapter we recall the basic notions on shifted tableaux and related combinatorics. We

follow the notation in [23].

2.1 Words and shifted tableaux

A strict partition is a sequence λ = (λ1 > · · · > λk) of distinct positive integers displayed in

strictly decreasing order. The entries λi are called the parts of λ and the length of λ, denoted

`(λ), is the number of parts of λ. We denote by |λ| := λ1 + · · · + λk the sum of the parts of λ.

A strict partition λ is identified with its shifted shape S(λ) which consists of |λ| boxes placed

in `(λ) rows, with the i-th row having λi boxes and being shifted i−1 units to the right. We use

the English (or matrix) notation. The boxes in {(1, j), (2, j+1), (3, j+2), . . .} form a diagonal,

for j ≥ 1. If j = 1 it is called the main diagonal.

Given strict partitions λ and µ such that S(µ) ⊆ S(λ), we write µ ⊆ λ and define the skew

shifted shape of λ/µ as S(λ/µ) = S(λ) \ S(µ) (see Figure 2.1). Shapes of the form λ/∅ are

called straight (or normal). Any shifted shape λ lies naturally in the ambient triangle of the

shifted staircase shape δ = (λ1, λ1 − 1, . . . , 1). The complement of λ is the strict partition λ∨

whose set of parts is the complement in {λ1, λ1 − 1, . . . , 1} of the set of parts of λ. Pictorially,

this is the partition corresponding to the empty spaces in the staircase shape, after flipping across

the anti-diagonal (see Figure 2.1). In particular, ∅∨ = δ.

We consider the alphabet [n] := {1< · · ·<n} and define the primed alphabet to be

[n]′ = {1′<1< · · ·<n′<n}.

Following the notation in [15], we will write i when referring to the letters i or i′ without

specifying whether they are primed. Given a string w = w1 · · ·wm in the alphabet [n]′, the

canonical form [23, Definition 2.1] of w is the string obtained from w by replacing the leftmost
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S(λ) = S(λ∨) = S(λ/µ) =

Figure 2.1: The shapes of λ, λ∨ and λ/µ are shaded in gray, for λ = (5, 3, 2) and µ = (3, 1).

They are represented within the ambient triangle δ = (5, 4, 3, 2, 1).

i, if it exists, with i, for all 1 ≤ i ≤ n. Two strings w and v are said to be equivalent if they

have the same canonical form (this is indeed an equivalence relation).

A word ŵ is an equivalence class of the strings equivalent to w. If w is in canonical form,

then it is said to be the canonical representative of ŵ, while the other strings are called the

representatives of ŵ [23, Definition 2.2]. The weight of a word ŵ is wt(w) = (wt1, . . . , wtn),

where wti is equal to the total number of i and i′ in w, any representative of ŵ. We often refer

to ŵ by its canonical representative w. We remark that the weight of a word does not depend

on the choice of representative, as the number of i and i′ is the same for all representatives, for

i ∈ [n].

Example 2.1. The string w = 122′132′ is equivalent to 12′2′13′2′, the former being in canonical

form. The equivalence class of w is given by

ŵ = {122′132′, 1′22′132′, 12′2′132′, 122′13′2′, 1′2′2′132′, 1′22′13′2′, 12′2′13′2′, 1′2′2′13′2′},

and we refer to it by its canonical representative w. The weight of w is wt(w) = (2, 3, 1).

Definition 2.2. Given strict partitions λ and µ such that µ ⊆ λ, a shifted semistandard tableau

T of shape λ/µ is a filling of S(λ/µ) with letters in [n]′ such that:

1. The entries are weakly increasing in each row and in each column.

2. There is at most one i per column, for each i ∈ [n].

3. There is at most one i′ per row, for each i ∈ [n].

The (row) reading word w(T ) of a shifted tableau is obtained by concatenating its rows,

going from bottom to top. The weight of T is defined as wt(T ) := wt(w(T )). A word, or a

shifted tableau, is said standard if its weight is (1, . . . , 1).

Example 2.3. The following is a shifted semistandard tableau, with its reading word and weight:

T =
1 1 2′ 2
2 3′

3
w(T ) = 323′112′2 wt(T ) = (2, 3, 2).
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We say that a tableau T is in canonical form if its reading word is in canonical form and,

in that case, it is identified with its set of representatives, that are obtained by possibly priming

the entry corresponding to the leftmost i in w(T ), for all i [23, Definition 2.6]. The set of

shifted semistandard tableaux of shape λ/µ, on the alphabet [n]′, in canonical form, is denoted

by ShST(λ/µ, n).

Example 2.4. The tableau of the previous example is in canonical form, as the first occurrences

of each letter is unprimed. Some of its representatives are listed below. Their reading words are

representatives of the class of w(T ).
1 1 2′ 2
2 3′

3

1′ 1 2′ 2
2 3′

3

1 1 2′ 2
2′ 3′

3

1 1 2′ 2
2′ 3′

3′
. . .

A diagonally-shaped tableau is a shifted tableau of shape (2n − 1, 2n − 3, . . . , 1)/(2n −
2, 2n − 4, . . . , 2). Every word w = w1 . . . wn may be regarded as a shifted tableau Dw having

this shape and word w.

Example 2.5. The word w = 2311′ is the reading word of

Dw =

1′

1
3

2

.

We consider the symmetric group Sn to be the Coxeter group generated by θ1, . . . , θn−1,

subject to the relations

θ2
i = 1, θiθj = θjθi, for |i− j| > 1, (θiθi+1)3 = 1, for 1 ≤ i ≤ n− 2. (2.1)

The elements of Sn are explicitly described by the permutations of [n], where its generators θi

are the simple transpositions (i, i+ 1), for 1 ≤ i ≤ n− 1, using cycle notations. A permutation

τ ∈ Sn acts naturally on a vector of Zn as τ(v1, . . . , vn) := (vτ−1(1), . . . , vτ−1(n)). This action

is extended to letters of the primed alphabet x ∈ [n]′ as

τ(x) :=

τ(x) if x = x

τ(x)′ if x = x′
. (2.2)

According to this action, given τ ∈ Sn and a word w = w1 · · ·wk in the alphabet [n]′, we define

τ(w1 · · ·wk) as the word τ(w1) · · · τ(wk), after canonicalizing it, for wi ∈ [n]′. Similarly,

the action of τ is extended to fillings T in [n]′ of a shifted shape (in particular, this includes

shifted semistandard tableaux), defining τ(T ) by the action of τ on the word of T . Given

1 ≤ i < j ≤ j, we denote by θi,j the longest permutation in S{i,...,j} embedded in Sn, i.e,

θi,j = θi(θi+1θi) · · · (θj−1 · · · θi). In particular, θ1,n is the longest permutation in Sn, also known

as the order reversing permutation.
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2.2 Shifted jeu de taquin and Worley–Sagan insertion

The shifted jeu de taquin [58, 72] is defined similarly to the one for ordinary Young tableaux.

A skew shape S(λ/µ) is said to be a border strip if it contains no subset of the form

{(i, j), (i+ 1, j + 1)}.

Definition 2.6. Let T ∈ ShST(λ/µ, n) and let i ∈ [n]. The tableau obtained from T considering

only the letters i and i′ is called the i-border strip of T , and is denoted by T i.

Given strict partitions ν ⊆ µ ⊆ λ, we say that λ/µ extends µ/ν, and, in this case, we define

(µ/ν) t (λ/µ) := λ/ν.

Given S and T shifted semistandard tableaux, we say that T extends S if the shape of

T extends the shape of S. In this case, we denote by S t T the (disjoint) union of S and

T , obtained by overlapping the two tableaux, which is not necessarily a valid semistandard

tableau. A shifted semistandard tableau T filled in [n]′ is clearly the union of its i-border strips,

for i ∈ [n].

Example 2.7. Considering T =
1 1 2′ 2
2 3′

3
, we have

T = 1 1 t 2′ 2
2 t 3′

3
= T 1 t T 2 t T 3.

A single box b is said to be an inner corner of a shape λ/µ if λ/µ extends b, and an outer

corner if b extends λ/µ.

Definition 2.8 ([72, Section 6.4]). Let T ∈ ShST(λ/µ, n). An inner jeu de taquin slide is

the process in which an empty inner corner of the skew shape of T is chosen and then either

the entry to its right or the one below it is chosen to slide into the empty square, maintaining

semistandardness. The process is then repeated on the obtained new empty square until it is an

outer corner. An outer jeu de taquin slide is the reverse process, starting with an outer corner.

This process has an exception to the sliding rules when the empty box of an inner or outer slide

enters in the diagonal. If an inner slide moves a box with a′ to the left into the diagonal and then

moves a box with a up from the diagonal, to the right of it, the former becomes unprimed (and

vice versa for the corresponding outer slide), as illustrated by the following slide:

a′

a
←→ a

a
←→ a a
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If T is not in the canonical form, there is another exception to consider illustrated below

(observe that result is in the same canonical class of the former case):

a′

a′
←→ a′

a′
←→ a′ a

The rectification rect(T ) of T is the tableau obtained by applying any sequence of inner

slides until a straight shape is obtained (it is known that any chosen sequence of slides produces

the same straight-shaped tableau [58, Theorem 11.1]). The rectification of a word w is the word

of the rectification of any tableau with reading word w. Two tableaux are said to be shifted jeu

de taquin equivalent if they have the same rectification. An operator on shifted tableaux that

commutes with the shifted jeu de taquin is called coplactic.

The standardization of a word w, denoted std(w), is obtained by replacing the letters of any

representative of w with 1, . . . , `(w), where `(w) denotes the lenght of w, from least to greatest,

reading right to left for primed entries, and left to right for unprimed entries [23, Definition

2.8]. This process does not depend on the choice of the representative. The standardization of

a shifted tableau T , denoted std(T ), is defined as the tableau with the same shape as T with

reading word std(w(T )) .

Example 2.9. Let T =
1 1 2′ 2

2 2
3

, with reading word w = 322112′2 and `(w) = 7. Then,

std(T ) =
1 2 3 6

4 5
7

.

Lemma 2.10 ([23, Lemma 3.5]). If s is a standard word in [m], with m = a1 + · · · + ak, then

there is at most one word w of weight (a1, . . . , ak) with standardization std(w) = s.

As a consequence, we have that any shifted semistandard tableau is completely determined

(up to canonical form) by its shape, weight and standardization. Thus, given a standard tableau

T of shape λ/µ and a composition ν (i.e., a vector of positive integers) such that |ν| = |λ|− |µ|,
there exists at most one semistandard tableau with the same shape of T and weight ν. The

process to obtain it, if it exists, is known as shifted semistandardization and was introduced by

Pechenik and Yong [52, Section 9.1]. Let ν be a composition and define, for k = 1, . . . , `(ν),

Pk(ν) :=

{
1 +

∑
i<k

νi, 2 +
∑
i<k

νi, . . . ,
∑
i≤k

νi

}
. (2.3)

That is, P1 = {1, . . . , ν1}, P2 = {ν1 + 1, . . . , ν1 + ν2}, etc. By construction, each Pk(ν) has

cardinality νk.
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Definition 2.11 ([52, Section 9.1]). Given a shifted standard tableau T , its semistandardization

(with respect to ν), denoted sstdν(T ), is given by the following process:

1. Replace each letter i with ki, for the unique k such that i ∈ Pk(ν).

2. Then, replace each ki with k′, if there exists a kj south-west of ki with i < j, or with k,

otherwise.

3. If the obtained filling is a semistandard tableau, then ν is said to be admissible for T and

sstdν(T ) is set to be that tableau. Otherwise, sstdν(T ) is said to be undefined.

Note that, if ν is admissible for T , then wt(sstdν(T )) = ν. Moreover, if T ∈ ShST(λ/µ, n)

has weight ν, then ν is admissible for std(T ) and sstdν(std(T )) = T [52, Lemma 9.5]. A

shifted tableau in these conditions is said to be ν-Pieri filled. As a consequence, we have that

std defines a bijection between the set of shifted semistandard tableaux of shape λ/µ and weight

ν and the set of ν-Pieri filled shifted semistandard tableaux of the same shape, whose inverse is

given by sstdν [52, Theorem 9.6].

Example 2.12. Let T =
1 2 3 6

4 5
7

be a shifted standard tableau and let ν = (2, 4, 1). We have:

P1(ν) = {1, 2} P2(ν) = {3, 4, 5, 6} P3(ν) = {7}.

Then, the semistandardization of T with respect to ν is obtained as follows:

1 2 3 6
4 5

7
−→

11 12 23 26
24 25

37
−→

1 1 2′ 2
2 2

3
.

Given ν a strict partition, there exists a unique shifted tableau in canonical form of shape

and weight equal to ν. This is known as the Yamanouchi tableau Yν , and its i-th row consists

only of unprimed i’s. A word w on the alphabet [n]′ with weight ν, a strict partition, is said

to be ballot (or lattice, or Yamanouchi) if its rectification is w(Yν) (for another formulation of

ballot word, see [68, Section 8]).

Definition 2.13. A shifted semistandard tableau T of weight ν is said to be Littlewood–Richardson–

Stembridge (LRS) if it is in canonical form and rect(T ) = Yν , or, equivalently, if its reading

word is ballot and has weight ν.

Recall that the shifted Littlewood–Richardson coefficients fλµν are the constants that appear

in the linear expansion of the skew Schur Q-functions in the basis of Schur Q-functions and
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in the product of P -functions in the basis of Schur P -functions (1.3). These are non-negative

integers, that are equal to zero whenever |λ| 6= |µ| + |ν|, and they are precisely the number of

LRS tableaux of shape λ/µ and weight ν [68, Theorem 8.3].

We now recall the notion of shifted tableau insertion, introduced independently by Worley

[72] and Sagan [58], providing a shifted version of the well-known Schensted insertion for

Young tableaux. We remark that this algorithm was originally presented for shifted tableaux

enumerated by Schur Q-functions, which are not required to be in canonical form. However,

the algorithm is compatible with canonicalizing, thus we present a simpler version, as in [23,

Definition 5.23]. Given letters a,b ∈ [n]′ we say that a ≺row b if either a = a′ and a′ ≤ b, or

if a = a and a < b. We say that a ≺col b if either a = a′ and a′ < b, or if a = a and a ≤ b.

Definition 2.14. Let T be a straight-shaped shifted tableau and let a ∈ [n]′. The Worley–Sagan

insertion of a into T is the tableau obtained as follows:

1. If there is b on the first row of T such that a ≺row b, then place a at the end of that row.

Otherwise, let b be the leftmost entry in that row such that a ≺row b and replace it with

a, “bumping” b.

2. If b was not in the main diagonal of T before being “bumped”, repeat the first step, now

inserting b on the next row.

3. Otherwise, insert b on the next column to its right, in the following way:

(a) If there is no y in the said column such that b ≺col y, place b at the bottom of the

column.

(b) Otherwise, let y be the topmost entry such that b ≺col y and replace it with b,

“bumping” y. Repeat this step, now inserting y into the next column.

The insertion of a into T is said to be Schensted if no entry in the main diagonal is ever

“bumped”, and non-Schensted otherwise.

Example 2.15. Consider the following shifted tableau, of straight shape,

T =
1 1 2′ 3

2 3′

3
.

The insertion of 2 into T is computed as follows: the entry 3 in the first row is the leftmost entry

such that 2 ≺row 3, and then it is “bumped” and replaced by 2. Then, 3 is inserted on the next
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row, and since there are no entries b such that 3 ≺row b, then 3 is placed at the end of that row.

Thus, the resulting tableau is given by
1 1 2′ 2

2 3′ 3
3

and since no entries of the main diagonal, the insertion of 2 into T is Schensted. We now

compute the insertion of 1 into the obtained tableau. Now 2′ is the leftmost entry in the first row

such that 1 ≺row 2′, and thus 2′ is “bumped” and replaced by 1. Moving to the second row, we

have that 2 is the leftmost entry such that 2′ ≺row 2, and thus 2 (which is an entry of the main

diagonal) is replaced by 2′, and the process continues now in the next column. Since we have

2 ≺col 3′, then 3′ is replaced by 2, and is then placed at the end of the next column, as there are

no entries y there such that 3′ ≺col y. The resulting tableau, after being canonicalized, is

1 1 1 2 3
2 2 3′

3

and since an entry of the main diagonal was moved, this insertion is non-Schensted.

Similarly to the Robinson–Schensted and RSK correspondences, there is a bijection between

the set of words in [n]′ and ShST(ν, n)× ShSTP (ν, n), where, we recall, ShSTP (ν, n) denotes

the set of shifted tableaux of shape ν filled in [n]′, not necessarily in canonical form, that has no

primed entries on the main diagonal [58, Theorem 8.1]. This bijection is known as the shifted

RSK and it is defined as follows.

Definition 2.16. Let w = w1 · · ·wk be a word in [n]′. The shifted RSK of w is a pair of shifted

tableaux with the same straight shape (P,Q), where Q is not required to be in canonical form

and has no primed entries on its main diagonal. To obtain (P,Q), we consider a sequence of

pairs

(∅,∅) =: (P0, Q0), (P1, Q, 1), . . . (Pk, Qk) = (P,Q)

where Pi is obtained by inserting wi into Pi−1 (and canonicalizing it) and Qi is obtained by

placing i at the resulting new box, if that insertion was Schensted, or i′ otherwise, for i ∈ [k].

The tableau P is known as the insertion tableau and also denoted by P (w), and Q is known as

the recording tableau and is denoted by Q(w).

Example 2.17. Let w = 2112′. To compute the shifted RSK of w, we have

∅ −→ 2 −→ 1 2 −→ 1 1
2 −→

1 1 2′

2 =: P (w)

∅ −→ 1 −→ 1 2′ −→ 1 2′

3 −→
1 2′ 4

3 =: Q(w).

22



2.3 Shifted Knuth and dual equivalences

Definition 2.18 ([58]). Two words w and v on an alphabet [n]′ are said to be shifted Knuth

equivalent, denoted w ≡k v, if one can be obtained from the other by applying a sequence of

the following Knuth moves on adjacent letters

(K1) bac←→ bca if, under the standardization ordering, a < b < c.

(K2) acb←→ cab if, under the standardization ordering, a < b < c.

(SK1) ab←→ ba if these are the first two letters.

(SK2) aa←→ aa′ if these are the first two letters.

Example 2.19. Let w = 212′21. Then std(w) = 41352, and since 2 < 3 < 5, we have

w ≡k 212′12.

The shifted Knuth moves may be regarded as (inner or outer) jeu de taquin slides. For

instance, if a < b < c in standardization order, then the Knuth moves (K1) and (K2) are

illustrated by:
a

b c −→
a c
b

b
a c −→

a b
c

For the Knuth move (SK1), assume, without loss of generality, that a < b in standardization

ordering. Then,
a

b −→ a b

Finally the Knuth move (SK2) is illustrated by the exception slide

a′

a ←→ a a

If w and v are shifted Knuth equivalent words, the diagonally-shaped tableaux Dw and Dv have

the same rectification. Thus Dw can be transformed into Dv via some sequence of jeu de taquin

slides.

Theorem 2.20 ([72, Theorem 4.4.4]). Two shifted semistandard tableaux are jeu de taquin

equivalent if and only if their reading words are shifted Knuth equivalent.

Theorem 2.21 ([58, Theorem 12.2]). Let w and u be words in [n]′. Then, w and u are shifted

Knuth equivalent if and only if their insertion tableaux under Worley–Sagan insertion coincide,

i.e., P (w) = P (v).
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Two tableaux in ShST(λ/µ, n) are said to be shifted Knuth equivalent if so are their reading

words, or equivalently, if their words have the same insertion tableaux. Shifted Knuth equiva-

lence classes and jeu de taquin classes on words coincide and are in one-to-one correspondence

with shifted semistandard tableaux of straight shape, via rectification or Worley–Sagan inser-

tion. Unlike the classic Knuth relations for unprimed alphabets, the shifted Knuth equivalence

is not a congruence, due to rules (SK1) and (SK2), since w ≡k v does not necessarily imply

that tw ≡k tw for any letter t ∈ [n]′. For instance, 22′1 ≡k 221 but 322′1 6≡k 3221. However,

under certain conditions we have the following results.

Lemma 2.22. Let w and v be two words in [n]′ such that w ≡k v. Let t ∈ [n]′. Then,

wt ≡k vt

Proof. Let Dw and Dv be diagonally-shaped shifted tableaux with words w and v, respectively.

By Theorem 2.20, rect(Dw) = rect(Dv). Let T be this straight-shaped tableau, of shape λ.

Hence, we may consider the tableau T 0 of shape (λ1 + 2, λ1, . . . , λk)/(λ1 + 1) consisting of

t on the entry (1, λ1 + 2) and T on the remaining part. Clearly, rect(T 0) = rect(D0
w) =

rect(D0
v) where D0

w and D0
v are the diagonally-shaped shifted tableaux with words wt and vt

respectively.

Lemma 2.23. Let w and v be two words in [n]′ such that w ≡k v and such that there exists a

sequence of Knuth relations turning w into v using only (K1) and (K2). Let t ∈ [n]′. Then,

tw ≡k tv

Proof. If the rules (SK1) and (SK2) are not used, then w and v are Knuth equivalent as Young

tableau words, considering the standardization to avoid primed entries.

We recall the notion of shifted dual equivalence on words and tableaux. Recall that Lemma

2.10 ensures that the shifted jeu de taquin commutes with standardization.

Definition 2.24 ([28]). Two standard shifted tableaux are shifted dual equivalent (or coplactic

equivalent) if they have the same shape after applying any sequence (including the empty se-

quence) of inner or outer jeu de taquin slides to both. Two shifted semistandard tableaux are

shifted dual equivalent if so are their standardizations.

In particular, considering the empty sequence of jeu de taquin slides, we have that shifted

tableaux that are dual equivalent must have the same shape. This notion is extended to words,
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with two words being shifted dual equivalent if their corresponding diagonally-shaped tableaux

are shifted dual equivalent.

The following characterizes dual equivalence on straight-shaped shifted tableaux, in which

the dual equivalence classes are determined by the (straight) shapes. Considering mixed-

insertion, the recording tableau of a dual class is the recording tableau of the unique shifted

Yamanouchi tableau in that class.

Proposition 2.25 ([28, Corollary 2.5]). Two tableaux of the same straight shape are dual equiv-

alent.

Shifted dual equivalent words also have a characterization in terms of Worley–Sagan inser-

tion.

Theorem 2.26 ([27, Theorem 2.12]). Let w and u be words in [n]′. Then, w and u are shifted

Knuth equivalent if and only if their recording tableaux under Worley–Sagan insertion coincide,

i.e., Q(w) = Q(v).

2.4 Shifted evacuation and reversal

Definition 2.27. Let T ∈ ShST(λ/µ, n). The complement of T in [n]′ is the tableau cn(T )

obtained by reflecting T along the anti-diagonal in the shifted stair shape δ = (λ1, λ1−1, . . . , 1),

i.e., sending each box in (i, j) to (λ1 − j + 1, λ1 − i + 1), replacing each unprimed entry i

with θ1,n(i)′ and each primed entry i′ with θ1,n(i), where, we recall, θ1,n denotes the longest

permutation in Sn.

Hence, if T is of shape λ/µ, then cn(T ) is of shape µ∨/λ∨, and if wt(T ) = (wt1, . . . , wtn),

then wt(cn(T )) = θ1,n(wt(T )) = (wtn, . . . , wt1). We have

wcol(cn(T )) = cn(w(T )) (2.4)

wherewcol(T ) denotes the column reading word of T , which is read along columns from bottom

to top, going left to right, and where cn(w) is set to be θ1,n(w), for w a word in [n]′. For

diagonally-shaped tableaux, it is clear that the row and column reading words coincide. More

generally, w(T ) ≡k wcol(T ), for any T ∈ ShST(λ/µ) [72, Lemma 6.4.12], and thus

w(cn(T )) ≡k cn(w(T )). (2.5)
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By construction, the operator cn is coplactic. In particular, it preserves shifted Knuth and dual

equivalences [72, Lemma 7.1.4], and it commutes with standardization. The following result,

which is also valid for ordinary Young tableaux, is due to Haiman.

Theorem 2.28 ([28, Theorem 2.13]). Given T ∈ ShST(λ/µ, n), there exists a unique shifted

tableau T e that is shifted Knuth equivalent to cn(T ) and shifted dual equivalent to T .

This unique tableau is known as the reversal of T . If T is straight-shaped, then this is known

as the shifted evacuation and denoted evac(T ).

Proposition 2.29 ([72, Definition 7.1.5, Lemma 7.1.6]). Given T ∈ ShST(ν, n), its (shifted)

evacuation, defined as evac(T ) := rect(cn(T )) is the unique shifted tableau that is shifted Knuth

equivalent to cn(T ) and shifted dual equivalent to T . In particular, evac(T ) has the same shape

as T and evac2(T ) = T .

As a consequence of evac being an involution, we have that evac(Yν) is the unique shifted

tableau in canonical form of shape ν and weight θ1,n(ν), where ν is a strict partition and n =

`(ν). The following result provides a straightforward way to compute the evacuation of Yν .

Lemma 2.30. Let ν = (ν1, . . . , νn) be a strict partition, with n > 1. Then, evac(Yν) is the

tableau of shape ν such that its n-th row is filled with nνn , and its i-th row is filled with

iνn(i+ 1)′(i+ 1)νn−1−νn−1 . . . n′nνi−νi+1−1,

reading from left to right, for i < n.

Proof. This filling clearly defines a shifted semistandard tableau. Let T0 be the tableau in

those conditions. By construction, T0 has shape ν and it is clear that its weight is given by

(νn, . . . , ν1) = θ1,n(ν). Hence, T0 = evac(Yν).

Example 2.31. Let µ = (4, 3, 1) and n = 3. Then,

Yµ =
1 1 1 1

2 2 2
3
−→ evac(Yµ) =

1 2′ 2 3′

2 3′ 3
3

.

Since cn preserves shifted Knuth equivalence, the reversal operator is the coplactic extension

of evacuation, in the sense that, we may first rectify T , then apply the evacuation operator, and

then perform outer jeu de taquin slides, in the reverse order defined by the previous rectification,

to get a tableau T e with the same shape of T . From [28, Corollaries 2.5, 2.8 and 2.9], this
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tableau T e is shifted dual equivalent to T , besides being shifted Knuth equivalent to cn(T ). This

process is detailed in Proposition 2.45, with the aid of shifted tableau switching. In particular,

evac(T ) = T e for tableaux of straight shape.

Proposition 2.32. Let T ∈ ShST(λ/µ, n). Then, we have the following:

1. (T e)e = T .

2. wt(T e) = θ1,n(wt(T )).

Proof. We have (T e)e is shifted dual equivalent to T e, which is shifted dual equivalent to T .

The operator cn is coplactic, and thus (T e)e ≡k cn(T e) ≡k c2
n(T ) = T . Then, by Theorem 2.28,

(T e)e = T . Since shifted Knuth equivalence preserves the weight, then wt(T e) = wt(cn(T )) =

θ1,n(wt(T )).

Example 2.33. Consider the following tableau in ShST(ν, 3), with ν = (4, 2, 1):

T =
1 1 1 1

2 2
3

.

To obtain evac(T ) we first compute c3(T ) and then rectify it:

T =
1 1 1 1

2 2
3

c3−→ c3(T ) =

3′

1 2′ 3′

2 3′

3

→
2′ 3′

1 2 3′

3 3
→

1 2′ 3′

2 3′ 3
3
→

1 2′ 3′ 3
2 3′

3
= evac(T ).

Example 2.34. Consider the following tableau in ShST(λ/µ, 3), with λ = (6, 5, 3, 1) and µ =

(4, 2):

T =

1′ 1
1 1
2 2

3

.

To compute the reversal T e, we first rectify T , recording in reverse order the outer corners

resulting of the sequence of inner jeu de taquin slides. Then, we compute the evacuation of

the obtained straight-shaped tableau and perform outer jeu de taquin slides defined by the outer

corners of the previous sequence, from the smallest to the largest. This process can be re-written

with the aid of the shifted tableau switching to be introduced in the next section.

1′ 1
1 1
2 2

3

rect−→
1 1 1 1 •3

2 2 •1
3 •2
•4

evac−−→
1 2′ 3′ 3 •3

2 3′ •1
3 •2
•4

−→
2′ 3′

1 3′

2 3′

3

= T e.

If T is a LRS tableau of shape λ/µ and weight ν, then cn(T e) is a LRS tableau of shape

µ∨/λ∨ and weight ν. Indeed, as cn is coplactic and T e ≡k cn(T ), then cn(T e) ≡k T ≡k Yν .

Thus, we have the symmetry fλµν = fµ
∨

λ∨ν .
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2.5 Shifted tableau switching

The tableau switching algorithm for typeA is an involution that, given a pair of tableaux (S, T ),

with S extending T , moves one through another, using switches similar to the jeu de taquin

slides, regarding the boxes in S as inner corners, and keeping semistandardness, within each of

the alphabets, in the intermediate steps [5]. Any chosen sequence of those switches produces

the same final result [5, Theorem 2.2]. This is not the case for the shifted tableau switching,

which must be performed following a determined sequence of switches, similarly to the type

A infusion map [70, 71]. As observed in [15, Remark 8.1], the resulting pair obtained by

the shifted tableau switching can be recovered alternatively, using the type C infusion map of

Thomas and Yong [70] on a pair of standardized tableaux, followed by the semistandardization

of Pechenik and Yong [52]. The infusion map on type A standard tableaux is a special case of

the tableau switching process [5], in which the order to perform the switches is determined by

the entries of the standardization of the inner-most tableau. Unlike the case for ordinary Young

tableaux, the shifted tableau switching process comprehends a determined sequence of switches

to be performed, which agrees with the one prescribed by the type C infusion map on shifted

standard tableaux (Proposition 2.50). Furthermore, it is compatible with standardization [15,

Remark 3.8]. This will be illustrated in Example 2.51.

We recall the definitions of the shifted tableau switching for pairs (A,B) of border strip

shifted tableaux, with B extending A, and for pairs of shifted semistandard tableaux (S, T ),

with T extending S. We omit most of the details and proofs, and refer to [15]. Recall that i

denotes either the letters i or i′ ∈ [n]′. A skew shape S(λ/µ) is said to be a double border strip

if it contains no subset of the form {(i, j), (i+ 1, j + 1), (i+ 2, j + 2)}.

Definition 2.35 ([15, Definition 3.1]). Let S(λ/µ) be a double border strip. A shifted perforated

a-tableau in λ/µ is a filling of some of the boxes of S(λ/µ) with letters a, a′ ∈ [n]′ such that

no a′-boxes are south-east to any a-boxes, there is at most one a per column and one a′ per row,

and the main diagonal has at most one a.

The shape of a perforated a-tableauA in a double border strip S(λ/µ) consists of the a-filled

boxes of S(λ/µ), and is denoted by sh(A). Given a perforated a-tableau A and a perforated b-

tableau B, the pair (A,B) is said to be a shifted perforated (a,b)-pair of shape λ/µ if S(λ/µ)

is the disjoint union of sh(A) and sh(B). In this case, we denote by A t B the filling obtained

by overlapping A and B.
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Example 2.36. The following are shifted perforated 1- and 2-tableaux, that form a shifted per-

forated (1,2)-pair of shape (6, 4, 3)/(3, 1):

A =
1′ 1

1′

1 1
B =

2′

2′ 2
2

A tB =
1′ 1 2′

1′ 2′ 2
1 2 1

.

If (A,B) is a shifted perforated (a,b)-pair, one can interchange an a-box with a b-box in

A tB subject to the following moves, called (shifted) switches , illustrated in Figure 2.2.

If an a-box is adjacent to If an a-box is adjacent to

a unique b-box two b-boxes

(S1) a b 7→ b a (S2) a
b 7→

b
a (S5) a b′

b 7→ b′ a
b (S6) a b

b 7→ b b
a

(S3) a b′

b 7→
b b

a (S4) a a
b 7→

b a′

a (S7) a a b
b 7→ b a′ b

a

Figure 2.2: The shifted switches [15, Section 3].

The switches (S3), (S4), (S7) are called the diagonal switches and can only be performed

when a and b are in the main diagonal. An a-box is said to be fully switched if it cannot

be switched with any b-boxes, and A t B is said to be fully switched if every a-box is fully

switched.

Remark 2.37. With the exception of (S4) and (S7), the shifted switches in Figure 2.2 correspond

to shifted jeu de taquin moves, regarding the a-boxes as empty corners.

Definition 2.38 (Shifted switching process [15]). Let T := AtB be a perforated (a,b)-pair that

is not fully switched. The shifted switching process from T to ςm(T ), with m the least integer

such that ςm(T ) is fully switched, is obtained as follows: choose the rightmost a-box in A that

is a neighbour to the north or west of a b-box, if it exists, otherwise, choose the bottommost

a′-box in the same conditions, and then apply the adequate switch among (S1)-(S7), obtaining

ς(T ). The process is repeated until ςm(T ) is fully switched, where ς i(T ) := ς(ς i−1(T )), for

i ≥ 2. We then set SP1(A,B) := ςm(T )b and SP2(A,B) := ςm(T )a, the tableaux obtained

from ςm(T ) considering only the letters {b′, b} and {a′, b} respectively, and define

SP(A,B) := (SP1(A,B), SP2(A,B)).

This process is depicted by the algorithm in Figure 2.3.
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define SP(A,B)
input (A,B) a perforated (a,b)-pair, with a, b ∈ [n], such that
B extends A.

set F := A tB
while F is not fully switched, do

F := ς(F )
set C := F a and D := F b

return (D,C)

Figure 2.3: Shifted tableau switching for shifted perforated (a,b)-pairs [15, Algorithm 1].

Example 2.39. Consider the shifted perforated (1,2)-pair of the previous example, which is not

fully switched.

A tB =
1′ 1 2′

1′ 2′ 2
1 2 1

.

The leftmost box filled with 1 (unprimed) is in position (1, 5), and it is adjacent to two 2-boxes.

Hence, we apply the (S5) switch, obtaining:

A tB =
1′ 1 2′

1′ 2′ 2
1 2 1

(S5)−−→
1′ 2′ 1

1′ 2′ 2
1 2 1

= ς(A tB).

This 1-box is now fully switched. Continuing the shifted switching process, until all 1-boxes

are fully switched, we obtain:

ς(A tB) =
1′ 2′ 1

1′ 2′ 2
1 2 1

(S1)−−→
1′ 2′ 1

1′ 2′ 2
2 1 1

(S5)−−→
1′ 2′ 1

2′ 1′ 2
2 1 1

(S1)−−→
1′ 2′ 1

2′ 2 1′

2 1 1

(S5)−−→
2′ 1′ 1

2′ 2 1′

2 1 1
= ς5(A tB).

Remark 2.40. Unlike the tableau switching for Young tableaux [5], the shifted version depends

on the order in which the a-boxes are chosen [14, Remark 3.7 (i)]. For instance, if one applies

(S6) (corresponding to choose the box with 2′) instead of (S1) (corresponding to the box with

1, i.e., the rightmost 1-box), the obtained filling is not a valid (1,2)-pair, as the second row is

not weakly increasing:
1′ 2

1 2

(S6)−→ 2 2
1 1′ .

This process is well defined and it is an involution [15, Theorem 3.5]. It may be extended

to pairs of shifted semistandard tableaux (S, T ), with T extending S. The result is denoted by

SW(S, T ) := (SW1(S, T ), SW2(S, T )),
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where SW1(S, T ) = T ′ and SW2(S, T ) = S ′ as depicted in Figure 2.4. The shifted tableau

switching SW for pairs of shifted semistandard tableaux is also well defined [15, Theorem 3.6]

and it is an involution [15, Theorem 4.3]. If S is straight-shaped, then SW1(S, T ) = rect(T ).

Similar to the type A case [2, 5], if T is a LRS tableau, then so it is SW2(S, T ), for any straight-

shaped shifted S extended by T [15, Theorem 4.3]. Thus, considering S := Yµ, we have a

bijection that sends T , a LRS tableau of shape λ/µ and weight ν, to SW2(Yµ, T ), a LRS tableau

of shape λ/ν and weight ν, giving the symmetry fλµν = fλνµ.

define SW(S, T )
input (S, T ) pair of shifted tableaux, with T extending S, which
are decomposed into T = T 1 t · · · tTn and S = S1 t · · · tSm.

for i from m to 1, do
for j from 1 to n, do

SP(Si, T j)
set T ′ := T 1 t · · · t Tn and S′ := S1 t · · · t Sm

return (T ′, S′)

Figure 2.4: Shifted tableau switching for pairs of shifted tableaux [15, Algorithm 2].

This shifted tableau switching is compatible with standardization [15, Remark 3.8], i.e.,

SW(std(S), T ) = (id× std) ◦ SW(S, T )

SW(S, std(T )) = (std× id) ◦ SW(S, T )
(2.6)

where id×std denotes the usual Cartesian product of maps, i.e., (id×std)(S, T ) = (S, std(T )).

Moreover, since the switches may be regarded as jeu de taquin slides, the pair SW(S, T )

is component-wise shifted Knuth equivalent to (T, S), for any pair of shifted semistandard

tableaux (S, T ), with T extending S. Moreover, rewriting [28, Corollaries 2.8 and 2.9] in terms

of the shifted tableau switching yields the following.

Proposition 2.41 ([13, Proposition 3.2]). Let S and T be shifted semistandard tableaux in

the same dual equivalence class (in particular, S and T have the same shape). Let W be a

semistandard shifted tableau. Then,

1. If S and T extend W , then SW2(W,S) = SW2(W,T ), and SW1(W,S) is shifted dual

equivalent to SW1(W,T ).

2. If W extends S and T , then SW1(S,W ) = SW1(T,W ), and SW2(S,W ) is shifted dual

equivalent to SW2(T,W ).
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Corollary 2.42. Let S and T be shifted semistandard tableaux such that T extends S. Then,

1. (SW1(S, T ))e = SW1(S, T e).

2. (SW2(S, T ))e = SW2(Se, T ).

Proof. By definition, T is shifted dual equivalent to T e, hence, by Proposition 2.41, we have that

SW1(S, T ) is shifted dual equivalent to SW1(S, T e). The shifted tableau switching algorithm

ensures that SW1(S, T e) is shifted Knuth equivalent to T e, and since the operator cn is coplactic,

we have

SW1(S, T e) ≡k T e ≡k cn(T ) ≡k cn(SW1(S, T )).

Since SW1(S, T e) is shifted dual equivalent to SW1(S, T ) and shifted dual equivalent to cn(SW1(S, T )),

we have that (SW1(S, T ))e = SW2(S, T e). The proof for the second statement is similar.

The following result ensures that the shifted tableau switching is also compatible with

canonical form.

Proposition 2.43. Let S, S ′, T and T ′ be shifted semistandard tableaux filled in [n]′, not neces-

sarily in canonical form, such that T extends S and T ′ extends S ′. Suppose that S and S ′ have

the same canonical form, and so do T and T ′. Then,

1. SW1(S, T ), SW1(S ′, T ), SW1(S, T ′) and SW1(S ′, T ′) have the same canonical form.

2. SW2(S, T ), SW2(S ′, T ), SW2(S, T ′) and SW2(S ′, T ′) have the same canonical form.

Proof. It suffices to show that for each i ∈ [n], the southwesternmost occurrence of i maintains

its relative position. This is verified for each switch (S1)-(S7). Moreover, the switching algo-

rithm states that one must start with the rightmost unprimed i that has neighbours to its south

or east, and then proceeding to the lowest primed i′. Hence, the switching path is going from

right to left, and then from bottom to top. Therefore, the lowest and leftmost i is either the last

unprimed i or the first primed i′, leaving the switching order unchanged.

Example 2.44. Consider the following pair of shifted semistandard tableau (S, T ), with T (in

gray background) extending S (in white background):

(S, T ) =
1 1 2′ 1 2′

2 1 2
2 3

To apply the shifted tableau switching SW to (S, T ), we first compute SP(S2, T 1):
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(S, T ) =
1 1 2′ 1 2′

2 1 2
2 3

(S1)−−→
1 1 2′ 1 2′

1 2 2
2 3

(S1)−−→
1 1 1 2′ 2′

1 2 2
2 3

.

Then, we compute SP(S2, T 2):

1 1 1 2′ 2′

1 2 2
2 3

(S6)−−→
1 1 1 2′ 2′

1 2 2
2 3

(S5)−−→
1 1 1 2′ 2′

1 2 2
2 3

Continuing the process, we have:

1 1 1 2′ 2′

1 2 2
2 3

(S1)−−→
1 1 1 2′ 2′

1 2 2
3 2

(S7)−−→
1 1′ 1 2′ 2′

1 2 2
3 2

(S1)−−→
1 1 1′ 2′ 2′

1 2 2
3 2

(S1)−−→
1 1 1′ 2′ 2′

2 1 2
3 2

(S1)−−→
1 1 1′ 2′ 2′

2 2 1
3 2

(S5)−−→
1 1 2′ 1′ 2′

2 2 1
3 2

= SW(S, T ).

The algorithm to compute the reversal of a shifted tableau T ∈ ShST(λ/µ, n) may be

described using the shifted tableau switching [13].

Proposition 2.45 ([13, Definition 4.5]). Let T ∈ ShST(λ/µ, n) and let U and W be shifted

standard tableaux of shape µ. Let W ′ := SW2(W,T ) and U ′ := SW2(U, T ). Then,

SW(evac(rect(T )),W ′) = SW(evac(rect(T )), U ′),

and we have

SW2(evac(rect(T )),W ′) = T e.

Proof. Since they have the same straight shape, rect(T ) is shifted dual equivalent to evac(rect(T )).

Thus, by Proposition 2.41, SW2(evac(rect(T )), U ′) is dual equivalent to

SW2(rect(T ), U ′) = SW2

(
SW1(U, T ), SW2(U, T )

)
= SW2(SW(U, T )) = T.

Furthermore, since SW2(evac(rect(T )), U ′) is shifted Knuth equivalent to evac(rect(T )), we

have

SW2(evac(rect(T )), U ′) ≡k evac(rect(T )) ≡k cn(rect(T )) ≡k cn(T ).

The result then follows from the uniqueness of Theorem 2.28.

Example 2.46. To illustrate this procedure, we use the same tableau in Example 2.34, filling the

inner shape µ with a standard tableau U . We note that, since U = U1 t · · · t U |µ| is standard,

then each U i consists of a single box filled with (unprimed) i. Thus, the switches (S4) and (S7)

will not be used during the shifted tableau switching process.

1′ 1
1 1
2 2

3

−→
1 2 3 1′ 1

2 1 1
2 2

3

SW−→
1 1 1 1 3

2 2 1
3 2

4

evac×id−→
1 2′ 3′ 3 3

2 3′ 1
3 2

4

SW−→
1 2 3 2′ 3′

4 1 3′

2 3′

3

= (U, T e).
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2.5.1 Type C infusion

As remarked before, the shifted tableau switching process could be obtained by first standard-

izing the involved tableaux, apply the type C infusion involution [70], and then the shifted

semistandardization process [52]. This is due to the shifted tableau switching being compati-

ble with standardization and the fact that, on shifted standard tableaux, the order in which the

shifted are performed (see Figure 2.4) agrees with the one determined by the type C infusion

map (see Lemma 2.48 below).

Definition 2.47 ([70]). Let (S, T ) be a pair of shifted standard tableaux, of shapes µ/ν and

λ/µ (thus, T extends S), respectively. The type C infusion of the pair (S, T ), denoted by

infusion(S, T ) := (infusion1(S, T ), infusion2(S, T )), is the pair (X, Y ) of standard tableaux of

shapes γ/ν and λ/γ, for some strict partition γ with |γ| = |λ| − |µ|, obtained in the following

way:

1. Let m be the largest entry of S. Then, its box is a inner corner for λ/µ, and we perform

jeu de taquin on T starting with that inner corner, until an outer corner is obtained. Place

m on that outer corner and never move it again for the duration of the process.

2. Repeat the last step for the remaining entries of S, going from the largest to the smallest.

3. Then, X is tableau obtained after performing all the shifted jeu de taquin slides on T

determined by the entries of S, and Y is the tableau obtained by placing the entries of S

on the resulting outer corners.

The shifted tableau infusion1(S, T ) is then the result of applying shifted jeu de taquin inner

slides to T (determined by S), and infusion2(S, T ) encodes the order in which those slides were

performed. In particular, if S has straight-shape, then infusion1(S, T ) = rect(T ).

If (S, T ) is a pair of shifted standard tableaux, then there are no repeated entries, nor primed

ones, thus the algorithm in Figure 2.4 to compute SW(S, T ) requires only the switches (S1)

and (S2) of Figure 2.2. These switches correspond to shifted jeu de taquin slides in a shifted

standard tableau, as the exceptional slide (see Definition 2.8) cannot occur. Moreover, the

algorithm for the shifted tableau switching in Figure 2.4 states that the shifted switches must be

performed from the largest entry of S to the smallest, which agrees with the order defined by

the type C infusion (Definition 2.47). Thus, we have the following.
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Lemma 2.48. Let (S, T ) be a pair of shifted standard tableaux, with T extending S. Then,

SW(S, T ) = infusion(S, T ).

Example 2.49. Consider the following pair of shifted standard tableaux

(S, T ) =
1 2 3 2 3

4 1 5
4 6

.

To compute infusion(S, T ) we start with the largest entry of S, and regarding its box as inner

corner, perform jeu de taquin slides:

1 2 3 2 3
4 1 5

4 6
−→

1 2 3 2 3
1 4 5

4 6
−→

1 2 3 2 3
1 4 5

4 6
−→

1 2 3 2 3
1 4 5

6 4

Continuing with the next largest entries of S, we obtain:

1 2 3 2 3
1 4 5

6 4
−→

1 2 2 3 3
1 4 5

6 4
−→

1 2 2 3 3
1 4 5

6 4
−→

1 2 2 3 3
1 4 5

6 4
−→

1 1 2 3 3
2 4 5

6 4

−→
1 1 2 3 3

4 2 5
6 4

−→
1 1 2 3 3

4 5 2
6 4

−→
1 1 2 3 3

4 5 2
6 4

−→
1 1 2 3 3

4 5 2
6 4

−→
1 2 1 3 3

4 5 2
6 4

−→
1 2 3 1 3

4 5 2
6 4

= infusion(S, T ).

Proposition 2.50. Let (S, T ) be a pair of shifted semistandard tableaux, with T extending S,

and such that wt(T ) = νT and wt(S) = νS . Then,

SW(S, T ) = (sstdνT × sstdνS) ◦ infusion(std(S), std(T )).

Proof. Since SW1(S, T ) and SW2(S, T ) have weights νT and νS , respectively, then by [52,

Lemma 9.5] we have

(sstdνT × sstdνS) ◦ (std× std)(SW(S, T )) = SW(S, T ). (2.7)

By Lemma 2.48, (2.6) and (2.7), we have

(sstdνT×sstdνS) ◦ infusion(std(S), std(T )) =

= (sstdνT × sstdνS) ◦ SW(std(S), std(T ))

= (sstdνT × sstdνS) ◦ (id× std) ◦ SW(S, std(T ))

= (sstdνT × sstdνS) ◦ (id× std) ◦ (std× id) ◦ SW(S, T )

= (sstdνT × sstdνS) ◦ (std× std) ◦ SW(S, T )

= SW(S, T ).
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Example 2.51. We illustrate the process with the shifted tableau pair (S, T ) from a previous

example:

(S, T ) =
1 1 2′ 1 2′

2 1 2
2 3

−→
1 2 3 2 3

4 1 5
4 6

= (std(S), std(T )).

From Example 2.49, we have

1 2 3 2 3
4 1 5

4 6

infusion−→
1 2 3 1 3

4 5 2
6 4

.

Since we have wt(T ) = (2, 3, 1) and wt(S) = (2, 2), we now apply the semistandardization

process with respect to these compositions, respectively:

1 2 3 1 3
4 5 2

6 4
−→

11 12 23 11 23
24 25 12

36 24
−→

1 1 2′ 1′ 2′

2 2 1
3 2

= SW(S, T ).

2.5.2 Shifted evacuation via tableau switching

The authors in [15] present another algorithm for tableaux of straight shape, that coincides with

the shifted evacuation from Section 2.4, using the shifted tableau switching1. We consider the

auxiliary alphabet −[n]′ := {−n′ <−n< · · ·<−1′ <−1} and −[n]′ t [n]′ := {−n′ <−n<
· · · < −1′ < −1 < 1′ < 1 < · · · < n′ < n}. Given T ∈ ShST(λ/µ, n) and k ∈ [n], we define

negk(T ) to be the filling, in−[n]′t [n]′, obtained from T by replacing each k with−k and each

k′ with−k′, leaving the remaining letters unchanged. If T is a filling of a shifted shape in−[n]′,

we define dn(T ) to be the filling in [n]′ obtained from T by replacing each −i with θ1,n(i) and

each −i′ with θ1,n(i′), that is,

dn(T ) = θ1,nneg
−1
1 · · · neg−1

n (T ). (2.8)

Consider the algorithm presented in Figure 2.5, defined on the alphabet−[n]′t[n]′ (we note that

the use of negative entries ensures that those will not move again after being fully switched).

This algorithm coincides with the shifted evacuation for straight-shaped tableaux [15, Theorem

5.6].

Given T ∈ ShST(ν, n), the algorithm in Figure 2.5 may be easily modified to obtain a

restriction evack to the alphabet {1, . . . , k}′, for k ≤ n, by applying evac to T 1 t · · · t T k

and maintaining T k+1 t · · · t T n unchanged. This is depicted in Figure 2.6. It is clear that

evacn = evac.

1The authors use the terminology shifted generalized evacuation for this algorithm.
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define evac(T )
input T a shifted tableau of straight shape decomposed into
T 1 t · · · t Tm.

set TE := ∅
for a from 1 to m, do

set T a := nega(T
a)

if a = m
set TE := T a t TE

else
set (A,B) := SW(T a, T a+1 t · · · t Tm)
set T := A and TE := B t TE

return dm(TE)

Figure 2.5: The shifted evacuation algorithm [15, Algorithm 4].

define evack(T )
input T a shifted tableau of straight shape and k ≤ n.

set TE := ∅
for a from 1 to k, do

set T a := nega(T
a)

if a = k
set TE := T a t TE

else
set (A,B) := SW(T a, T a+1 t · · · t T k)
set T := A and TE := B t TE

return dk(T
E) t T k+1 t · · · t Tn

Figure 2.6: The shifted evacuation algorithm, restricted to the letters [1, k]′.

Example 2.52. Let T =
1 1 2′ 2 3

2 2 3′

3
. Computing evac(T ) with the Algorithm in Figure 2.5, we

have

T =
1 1 2′ 2 3

2 2 3′

3

neg1−−→
91 91 2′ 2 3

2 2 3′

3

(S5)−−→
91 2′ 91 2 3

2 2 3′

3

(S6)−−→
91 2′ 2 2 3

2 91 3′

3

(S3)−−→
2 2 2 2 3
91 91 3′

3

(S5)−−→
2 2 2 2 3
91 3′ 91

3

(S3)−−→
2 2 2 2 3

3 3 91
91

neg2−−→
92 92 92 92 3

3 3 91
91

(S1)−−→
92 92 92 3 92

3 3 91
91

(S6)−−→
92 92 3 3 92

3 92 91
91

(S7)−−→
3 92′ 3 3 92
92 92 91

91

(S1)−−→
3 3 92′ 3 92
92 92 91

91

(S1)−−→
3 3 3 92′92
92 92 91

91

neg3−−→
93 93 9392′92

92 92 91
91

d3−→
1 1 1 2′ 2

2 2 3
3

= evac(T ).

Similarly to the ordinary Young tableaux case [51, Section 2.2, (5)] [5, Section 5], the

shifted evacuation algorithms, in Figures 2.5 and 2.6, may be easily extended to skew shapes,

by removing in both algorithms the requirement for the input to have a straight shape. We

denote these operators by ẽvac and ẽvack. However, we note that, similarly to the ordinary
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Young tableaux case [5, Section 5], the involution ẽvac is different from the reversal, as in

general, given T ∈ ShST(λ/µ, n), we have that ẽvac(T ) 6= T e, since ẽvac(T ) does not need to

be shifted Knuth equivalent to cn(T ) or to evac(rect(T )).

Example 2.53. Let T =

1′ 1
1 1
2 2

3

. Then, ẽvac(T ) =

2 3
1 3′

2 3′

3

6= T e (see Example 2.34).

38



CHAPTER 3

A CRYSTAL-LIKE STRUCTURE ON ShST(λ/µ)

In this chapter, we recall the definition of the shifted tableau crystal introduced by Gillespie,

Levinson and Purbhoo [23]. We then introduce the shifted crystal reflection operators.

3.1 Shifted tableau crystals

We recall the main results on the shifted tableau crystal ShST(λ/µ, n), the crystal-like structure

on ShST(λ/µ, n) introduced in [21, 23]. Let {e1, . . . , en} be the standard basis of Rn and let

αi := ei − ei+1 be the simple roots for the type An−1 root system, for i ∈ I := [n− 1].

Definition 3.1 ([23, Definition 3.3]). Given a word w on [n]′ and i ∈ I , the primed raising

operator E ′i(w) is defined as the unique word such that

1. std(E ′i(w)) = std(w),

2. wt(E ′i(w)) = wt(w) + αi,

if such word exists. Otherwise, E ′i(w) = ∅, and we say that E ′i is undefined on w. The primed

lowering operator F ′i (w) is defined in analogous way using −αi.

This notion is well defined due to Lemma 2.10, and as a direct consequence we have that

E ′i(w) = v if and only ifw = F ′i (v), for any wordsw and v [23, Proposition 3.4]. This definition

is extended to a shifted semistandard tableau T , putting E ′i(T ) as the shifted semistandard

tableau with the same shape as T and with (row) reading word E ′i(w(T )). The primed operators

preserve semistandardness [23, Proposition 3.6] and they are coplactic [23, Proposition 3.7],

i.e., they commute with the shifted jeu de taquin. Moreover, the tableaux T , E ′i(T ) and F ′i (T )

are shifted dual equivalent, since their standardization is unchanged (Definition 2.24), whenever

E ′i and Ei are defined on T .
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In order to simplify the notation, we will henceforth consider the alphabet {1, 2}′ , but

the results hold for any primed alphabet {i, i + 1}′ of two adjacent letters. The following

propositions provide a simple way to compute the primed operators both on words and on

straight-shaped shifted tableaux.

Proposition 3.2 ([23, Proposition 3.9]). To compute F ′1(w) consider all representatives of w.

If all representatives have the property that the last 1 is left of the last 2′ then F ′1(w) = ∅. If

there exists a representative such that the last 1 is right of the last 2′ then F ′1(w) is obtained by

changing the last 1 to 2′ in that representative. The word E ′1(w) is defined similarly reverting

the roles of 1 and 2′.

Proposition 3.3 ([23, Proposition 3.11]). Let T ∈ ShST(λ, n) a shifted semistandard tableau

of straight shape. If T has one row, then E ′1(T ) (respectively F ′1(T )) is obtained by changing

the leftmost 2 to 1 (respectively, 1 to 2), if possible, and it is ∅ otherwise. If T has two rows

and the first row contains a 2′, then E ′1(T ) is obtained by changing that 2′ to 1 and F ′1(T ) = ∅.

If the first row does not contain a 2′, then E ′1(T ) = ∅ and F ′1(T ) is obtained by changing the

rightmost 1 to 2′.

Example 3.4. Let T =
1 1 1 2′ 2

2 2 2
3

, with wt(T ) = (3, 5, 1). Then,

F ′2(T ) =
1 1 1 2′ 3′

2 2 2
3

.

Observe that wt(F ′2(T )) = (3, 4, 2) = (3, 5, 1)− (0, 1,−1) and that

std(T ) = std(F ′2(T )) =
1 2 3 4 8

5 6 7
9

.

Given a word w on the alphabet [n]′ and i ∈ I , the i-th lattice walk of w is obtained

by considering the subword wi, consisting of the letters {i, i + 1}′, and replacing each letter

according to the following table, starting at the origin (0, 0).

xkyk = 0
1′−→ 1−→

x2′
x2

xkyk 6= 0
1′−→

y1
2′←−

x2

The lattice walks of a word may be used to provide another criterion for ballotness.

Proposition 3.5 ([23, Corollary 4.5]). A word w is ballot if and only if the i-th lattice walk of

the subword wi ends on the x axis, for all i ∈ I .
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Figure 3.1: The lattice walks for w1 and w2, for w = 3211221′11.

Example 3.6. Let w = 3211221′11. To obtain the 1st and 2nd lattice walks of w, consider the

subwords w1 = 211221′11 and w2 = 3222 (which corresponds to 2111, using the alphabet

{1, 2}′). Replacing each letter accordingly, we obtain the lattice walks in Figure 3.1. Since both

lattice walks end on the x axis, the word w is ballot.

If w is a word on the alphabet {1, 2}′ and u = wkwk+1 · · ·wl is a substring of some rep-

resentative of w, then u is called a substring of w. The coordinates (x, y) of the point of the

1-lattice walk before the start of u is called the location of u.

Definition 3.7 ([23, Definition 5.3]). A substring u is said to be a F1-critical substring if any

of these conditions on u and its location are satisfied (as well as the adequate transformations

to apply), where ab∗c means any string of the form ab · · · bc, including ac:

Type Substring Condition steps Location Transformation

1F u = 1(1′)∗2′
1−→ 1′−→

x2 y = 0
u→ 2′(1′)∗2y1

1′−→
x2 y = 1, x ≥ 1

2F u = 1(2)∗1′
1−→
x2

1′−→ x = 0
u→ 2′(1′)∗1y1

x2
1′−→ x = 1, y ≥ 1

3F u = 1
1−→ y = 0 u→ 2

4F u = 1′
1′−→ x = 0 u→ 2′

5F
u = 1

y1
x = 1, y ≥ 1 undefined

u = 2′
2′←−

The final F1-critical substring u of the word w is the F1-critical substring u with the highest

starting index, taking the longest in the case of a tie. If there is still a tie (due to different

representatives), take any such u. Using this, we may now recall the definitions for the unprimed

raising and lowering operators.
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Definition 3.8 ([23, Definition 5.4]). Let w be a word. The word F1(w) is obtained by taking a

representative of w containing a final F1-critical substring and transforming it according to the

previous table. If there is no F1-critical substring or it is of type 5F, then put F1(w) = ∅, and

in this case, F1 is said to be undefined on w.

Lemma 3.9 ([23, Proposition 5.14 (i)]). Let w be a word on the alphabet {i, i + 1}′ and let

(x, y) be the endpoint of the i-th lattice walk of w. If x = 0, then Fi(w) is undefined.

The operators Fi are called the unprimed raising operators. The unprimed lowering opera-

tors Ei are defined on words by Ei(w) := cnFn−icn(w), for i ∈ I . In particular, for n = 2, we

have E1(w) = c2F1(c2(w)), thus E1 may be obtained in similar way using the following table

of E1-critical substrings:

Type Substring Condition steps Location Transformation

1E u = 2′(2)∗1

x2′
x2

1−→ x = 0
u→ 1(2)∗1′

2′←−
x2

1−→ x = 1, y ≥ 1

2E u = 2′(1′)∗2

x2′
1′−→

x2 y = 0
u→ 1(2)∗2′

2′←− 1′−→
x2 y = 1, x ≥ 1

3E u = 2′
x2′ x = 0 u→ 1′

4E u = 2
x2 y = 0 u→ 1

5E
u = 1

y1
y = 1, x ≥ 1 undefined

u = 2′
2′←−

These definitions can be extended to shifted tableaux. Given T ∈ ShST(λ/µ, n), Fi(T )

is defined to be the tableau with the same shape as T , with (row) reading word Fi(w(T )), for

i ∈ I . The definition of Ei(T ) is analogous. In both definitions, the row reading word of T

may be replaced by the column reading word [23, Proposition 5.21]. These notions are well

defined, since Ei(T ) and Fi(T ) are shifted semistandard tableaux, for all i ∈ I , whenever these

operators are defined on T [23, Theorem 5.18]. Moreover, the primed and uprimed operators

E ′i, Ei, F
′
i and Fi commute whenever the compositions among them are defined, for each i ∈ I

[23, Proposition 5.36].

Example 3.10. Let T =
1 1 1 1 2′

2 3′ 3
3

. To compute E2 and F2, we consider the subword w2 =

323′32′ of w(T ) consisting of the letters {2, 3}′, having the lattice walk on the right side of

42



y

x
•

◦

2 1

2′
2

1′

y

x
•

◦

2 1

2′
2

2′

y

x
•

◦
2

1

1 2′

1′

Figure 3.2: On the right, the lattice walk for w = 212′21′, ending at (1, 2). Besides it there is

the lattice walkes for F2(w), ending at (0, 3), and E2(w), ending at (2, 1).

Figure 3.2. Then, T has a final F2-critical substring of type 4F, and a final E2-critical substring

of type 2E. Applying the corresponding substitutions, we obtain

F2(T ) =
1 1 1 1 3′

2 3′ 3
3

, E2(T ) =
1 1 1 1 2′

2 2 3′

3
.

The primed and unprimed operators may be used to give an alternative formulation for ballot

(and anti-ballot) words. Indeed, a word w on the alphabet {i, i+ 1}′ is ballot (respectively anti-

ballot) if and only if Ei(w) = E ′i(w) = ∅ (respectively Fi(w) = F ′i (w) = ∅) [23, Proposition

5.17]. Hence, a word on the alphabet [n]′ is ballot (respectively anti-ballot) if and only if

Ei(w) = E ′i(w) = ∅ (respectively Ei(w) = E ′i(w) = ∅) for all i ∈ I .

Whenever they are defined, Ei(T ) and Fi(T ) are shifted dual equivalent to T [23, Corollary

5.3]. Since this is also true for the primed operators, as the standardization is unchanged, then

any two tableaux that differ by a sequence of any lowering or raising operators are shifted dual

equivalent. Moreover, the unprimed operators are coplactic, whenever defined [23, Theorem

5.35].

A highest weight element (respectively lowest weight element) of ShST(λ/µ, n) is a tableau

T such that Ei(T ) = E ′i(T ) = ∅ (respectively Fi(T ) = F ′i (T ) = ∅), for any i ∈ I . Equiv-

alently, T is a highest weight element (respectively lowest weight element) if and only if its

reading word is ballot (respectively anti-ballot). For the next result, recall that Yν is the unique

shifted tableau in canonical form of shape and weight ν.

Proposition 3.11 ([23, Proposition 6.4]). The shifted tableau crystal ShST(ν, n) has a unique

highest weight element, which coincides with Yν . Then, every tableau ShST(ν, n) may be ob-

tained from Yν by a sequence of primed and unprimed lowering and raising operators.
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The set ShST(λ/µ, n) is closed under the operators Ei, E ′i, Fi, F
′
i , for i ∈ I . Moreover, we

also have the partial length functions [21] given by

ε′i(T ) := max{k : E ′ki (T ) 6= ∅} ε̂i(T ) := max{k : Ek
i (T ) 6= ∅}

ϕ′i(T ) := max{k : F ′ki (T ) 6= ∅} ϕ̂i(T ) := max{k : F k
i (T ) 6= ∅},

and total length functions εi(T ) and ϕi(T ), which are defined as the y-coordinate and x-

coordinate, respectively, of the endpoints of the i-th lattice walk of T , for i ∈ I [23, Section

5.1].

Example 3.12. Considering T as in the previous example, we have F2(T ) 6= ∅ andE2(T ) 6= ∅.

The lattice walks for F2(T ) and E2(T ) (see Figure 3.2) have a final F2-critical substring of type

5F and a final E2-critical substring of type 5E, respectively. Then, F 2
2 (T ) = E2

2(T ) = ∅, and

thus ϕ̂2(T ) = ε̂2(T ) = 1. Moreover, we have F ′2(T ) = ∅, and

E2(T ) =
1 1 1 1 2′

2 2 3
3

,

and so ϕ′2(T ) = 0 and ε′2(T ) = 1. Finally, the 2nd lattice walk of T ends at (1, 2), and thus we

have ϕ2(T ) = 1 and ε2(T ) = 2.

The set ShST(λ/µ, n), together with primed and unprimed operators, partial and total length

functions, and weight function, is called a shifted tableau crystal. We use the notation ShST(λ/µ, n)

for both the set and its structure of shifted tableau crystal. It may be regarded as a directed

acyclic graph with weighted vertices, and i-coloured labelled double edges, solid ones being

labelled with i (x i→ y if Fi(x) = y), and dashed ones with i′ (x
i′

99K y if F ′i (x) = y), for i ∈ I
(see Figure 3.3). The connected components of ShST(λ/µ, n) are the connected components

of the underlying undirected and non-labelled graph. We also remark that the set ShST(λ/µ, n)

together with only the primed (or the unprimed) operators and with the same weight functions

wt and total length functions ϕi, εi, satisfies the axioms of a type A Kashiwara crystal [23,

Proposition 6.9]. However it is not a seminormal crystal, as the total length functions εi and ϕi

measure the total distance of T to the ends of a string consisting of both Fi and F ′i operators,

but not necessarily the distance to ends of a string obtained by only one of Fi or F ′i [23, Remark

1.3].

Example 3.13. For instance, considering T as in the previous examples and the string in Figure

3.4 consisting of both solid and dashed edges, then ε2(T ) = 2 (see Example 3.12) is the distance

to the left end of that string. But considering the string of solid edges containing T , then the

distance to the left end is 1.
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Figure 3.3: On the left, the shifted tableau crystal graph ShST(ν, 4), for ν = (2, 1). On the

right, the shifted tableau crystal graph ShST(λ/µ, 4), for λ = (3, 1) and µ = (1). The operators

F1, F
′
1 are in red, the F2, F

′
2 in blue, and the F3, F

′
3 in green. Note that ShST(λ/µ, 4) has two

connected components, one of them being isomorphic to ShST(ν, 4).
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Figure 3.4: A separated 2-string

.

Proposition 3.14 ([23, Corollary 6.5]). Each connected component of ShST(λ/µ, n) has a

unique highest weight element T high, which is a LRS tableau, and is isomorphic, as a weighted

edge-labelled graph, to the shifted tableau crystal ShST(ν, n), where ν = wt(T high).

Proposition 3.15 ([23, Corollary 6.6]). Each connected component of ShST(λ/µ, n) forms a

shifted dual equivalence class.
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Therefore, by decomposing ShST(λ/µ, n) into connected components, we have the crystal

graph isomorphism

ShST(λ/µ, n) '
⊔
ν

ShST(ν, n)f
λ
µν , (3.1)

where fλµν is the shifted Littlewood–Richardson coefficient.

Recall that given a infinite set of variables x = {x1, x2, . . .}, we denote xα := xα1
1 x

α2
2 · · · ,

for any vector α = (α1, α2, . . .), such that αk = 0 for all k > N , for some N ∈ N. In

particular, we associate to a string w in [n]′, a monomial xwt(w) = xwt11 · · ·xwtnn , where wt(w) =

(wt1, . . . , wtn). The character of a shifted tableau T with word ŵ is given by

χ(T ) :=
∑
w∈ŵ

xwt(w)

where the sum is all over the representatives of ŵ. The character of a collection of tableaux

is defined as the sum of the tableaux [23, Definition 7.1]. The following result is a direct

consequence of the definition of character, the definition of Schur Q-functions (Definition 1.2)

and Proposition 3.11.

Proposition 3.16 ([23, Proposition 7.4]). The character of ShST(λ/µ) is the Schur Q-function

Qλ/µ(x).

Consequently, taking the character in (3.1) yields the well known decomposition (1.3) of

skew Schur Q-function Qλ/µ =
∑
ν

fλµνQν (for details, see [23, Section 7]).

3.1.1 Decomposition into i-strings

Given i ∈ I , we may consider an equivalence relation on ShST(λ/µ, n), as a set, in which

X ∼i Y if X and Y are related by any sequence (including the empty sequence) of i-labelled

crystal operators Fi, F ′i , Ei or E ′i. The equivalence classes are called the i-strings. These are

the underlying subsets of the {i′, i}-connected components of the crystal graph ShST(λ/µ, n),

which are obtained by removing the edges not coloured in {i′, i}.
Hence, ShST(λ/µ, n) may be partitioned, as a set, into i-strings (see Figure 3.6). The i-

strings have two possible arrangements [21, Section 3.1] [23, Section 8], as shown in Figure

3.5. A string consisting of two i-labelled chains of equal lenght, connected by i′-labelled edges

is called a separated i-string. The smallest separated string is formed by two vertices connected

by a i′-labelled edge. A string formed by a double chain of both i- and i′-labelled strings
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Figure 3.5: A separated i-string (left) and a collapsed i-string (right).
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Figure 3.6: The crystal graph ShST(ν, 4), for ν = (2, 1), partitioned into 1-strings (left), 2-

strings (middle) and 3-strings (right).

is called a collapsed i-string. A single vertex (without edges) is considered as the smallest

collapsed string.

The following propositions are intended to detail the possible arrangements for an i-string.

This corresponds to the details of the axiom (B1) in [21]. Each i-string has a unique highest

weight element, which is a shifted tableau T in that i-string such that Ei(T ) = E ′i(T ) = ∅,

and a unique lowest weight element, which is defined similarly. In particular, the next result

provides a condition for an i-string to be separated or collapsed in terms of its highest weight

element.

Proposition 3.17. Let T ∈ ShST(λ/µ, n) and i ∈ I . Suppose that T is the highest weight

element of its i-string. Then, the i-string is collapsed if and only if wt(T )i+1 = 0.
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Proof. To simplify the notation, we consider the alphabet {1, 2}′. Suppose wt(T )2 = 0. If

wt(T )1 = 0, then F1(T ) = F ′1(T ) = ∅ and the 1-string is a trivial collapsed string. Thus,

we may assume, without loss of generality, that wt(T )1 > 0. Since wt(T )2 = 0, there are no

occurrences of 2′ to the right of the last 1 in the word of T . Therefore, F ′1(T ) is defined and

obtained by changing the last 1 into 2′. Moreover, since wt(F ′1(T ))2 = 1, this 2′ is identified

with 2 in the canonical form. We claim that F1(T ) is defined, i.e., there exists a final F1-critical

substring that is not of type 5F. Since wt(T )2 = 0, the location of a possible substring is y = 0,

excluding the type 5F, and since wt(T )1 > 1, there is necessarily a substring of type 2F (with

x = 0) or 3F (4F would be the case where either w(T ) = 1′, which is equal to 1 in canonical

form, or w(T ) = 1′(1)∗, and again the first 1′ would be identified with 1, and the substring

would be of type 2F and 3F). If w(T ) has a final F1-critical substring of type 2F, then F1

changes the substring 11′ into 2′1, which is identified with 21 since this is the only occurrence

of 2. If it is of type 3F, then F1 changes the substring 1 into 2. In both cases, F1 changes the

last 1 into 2, coinciding with F ′1. Since the operators commute [23, Proposition 5.36], then

F1(T ) = F ′1(T ) implies that F k
1 (T ) = F ′k1 (T ), for any k ≥ 1, which means that the i-string is

collapsed.

Now suppose that the i-string is collapsed. In particular, F1(T ) = F ′1(T ). If both F1 and

F ′1 are undefined on T , then wt(T )1 = 0, which is a trivial case. Thus, we may assume that

F1(T ) = F ′1(T ) 6= ∅. Since F ′1(T ) 6= ∅, we have wt(T )1 > 0 and there are no occurrences of

2′ to the right of the last 1 in T . Suppose that wt(T )2 > 0. We have the following cases:

Case 1. We assume there are no occurrences of 2 after the mentioned 1. Since we are assuming

that wt(T )2 > 0, the occurrences of 2 must be to the left of the last 1. Moreover, F1(T ) must

coincide with F ′1(T ), so we either have:

• F1 changes 1 into 2, which implies that the 2′ resulting from F ′1 must be identified with 2

in canonical form. For this to happen, this 2 must be the only occurrence of 2 in F1(T ).

Hence, wt(F1(T ))2 = 1 and necessarily wt(T )2 = 0, contradicting the hypothesis.

• F1 changes 1 into 2′. For this to happen, w(T ) must have a final F1-critical substring of

type 1F or 2F. If it is 1F, there would be some 2′ to the right of the last 1 and F ′1 would not

be defined. If it is 2F, and since there are no occurrences of 2 to the right of the last 1, by

assumption, it must be the case 11′ 7−→ 2′1. So, since F1(T ) = F ′1(T ), we have that the

canonical form of 2′1′ is 2′1. For 1 and 1′ to be identified, there must be no occurrences of
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1 to the right of the last 1. By hypothesis, E1(T ) = E ′1(T ) = ∅. Clearly E ′1 is undefined

since the last 2′ is not right to the last 1. Hence, it must be the case where T has no final

E1-critical substring or has some of type 5E. If it is 5E, then it is either 2′ at x ≥ 1, y = 1.

Since y = 1, there must be some 2 before the 2′ of the substring, and since x ≥ 1, there

must be some 1 after it, which contradicts the non-existence of 1 to the right of the 1 to

be changed. Therefore, it must be the case where there is no final E1-critical substring.

Since we are assuming that wt(T )2 > 0, some 2 must appear before the last 1, yielding

at least some final E1-critical substring of type 3E or 4E, which is a contradiction.

Case 2. Assume there are some occurrences of 2 after the last 1. Then, we must have the

substring 12 (the 1 appearing is the one to be changed) at either one of these locations:

• At x ≥ 0 and y = 0. In this case E1 would be defined, being type 4E.

• At x = 0 and y > 0. But then, y > 0 implies that there are some 2 before this string,

placing it at location y = 0 and yielding a 3E or 4E type.

• At y = 1. Then, the 2 is located at y = 0 yielding a 4E type.

• At y > 1. In this case necessarily x > 1, otherwise this would be a final F1-critical

substring of type 5F and F1(T ) = ∅. But then, the location obtained is not a valid one

for this string to be the final critical substring. Therefore, the 1 to be changed by F1 is not

the same as the one changed by F ′1, which contradicts their equality.

The next lemmas concern the total length functions, which are the total distances from a

vertex to the highest and lowest weight vertices of its i-string.

Lemma 3.18. Let T ∈ ShST(λ/µ, n) and let i ∈ I . Then,

εi(T ) =

ε̂i(T ) = ε′i(T ) if T is in a collapsed i-string

ε̂i(T ) + ε′i(T ) if T is in a separated i-string.

The result is also valid for ϕi with the adequate changes.

Proof. Suppose that T is in a collapsed i-string. Then, by Proposition 3.14, that collapsed

string has a highest weight element T0, and so T0 = Ek
i (T ), for some k ≥ 0. Since T0 is a
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highest weight, then Ei(T0) = ∅, hence Ek+1
i (T ) = ∅. Consequently, ε̂(T ) = k. On the other

hand, T0 is a LRS tableau (for the alphabet {i′, i, (i + 1)′, i + 1}), thus, by Proposition 3.5, the

endpoint of the i-th lattice walk of its word has the y-coordinate equal to 0. The operator Fi

shifts the endpoint of the i-th lattice walk by (−1, 1) [23, Corollary 5.12]. Since T0 = Ek
i (T ),

then T = F k
i (T0), and so the i-th lattice walk of T has the y-coordinate equal to k. Then,

εi(T ) = k = ε̂i(T ).

Now suppose that T is in a separated i-string. This i-string has a highest weight element T0,

which is a LRS tableau for the mentioned alphabet. Thus, the endpoint of the i-th lattice walk

of its word has the y-coordinate equal to zero. Then, we have two cases.

• Suppose that T is such that E ′i(T ) 6= ∅. Let T1 := E ′i(T ). By definition of E ′i, T1 is

obtained from T by replacing the last (i + 1)′ that was right to the last i with i. Hence,

E ′i(T1) = E ′2i (T ) = ∅ and so

ε′i(T ) = 1. (3.2)

Since T0 is the highest weight element, we have that Ek
i E
′
i(T ) = T0, for some k ≥ 0.

This is equivalent to F ′iF
k
i (T0) = T , and since both Fi and F ′i shift the endpoint of the

i-th lattice walk by (−1, 1) [23, Propostion 4.9], the y-coordinate of the i-th lattice walk

of the word of T must be equal to k + 1. Hence,

εi(T ) = k + 1. (3.3)

Since the operators Ei and E ′i commute when defined, we have T0 = E ′iE
k
i (T ), and so

Ek
i (T ) = F ′i (T0) 6= ∅ (recall that the shortest i-string is one with a i′-labelled edge).

Thus, Ek+1
i (T ) = EiF

′
i (T ) = ∅, and we have

ε̂i(T ) = k. (3.4)

By (3.2), (3.3) and (3.4), we have

εi(T ) = ε′i(T ) + ε̂i(T ).

• Suppose now that T is such that E ′i(T ) = ∅. Then, ε′i(T ) = 0. As in the previous case,

there exists a highest weight element T0 in this i-string, and the endpoint of the i-th lattice

walk of its words has y-coordinate equal to zero. If T = T0, then ε̂i(T ) = 0 and the proof

is done. Otherwise, there exists k > 0 such that T0 = Ek
i (T ), and so, F k

i (T0) = T .
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Consequently, the endpoint of the i-th lattice walk of the word of T has its y-coordinate

equal to k. Hence,

εi(T ) = k. (3.5)

Moreover, Ek+1
i (T ) = Ei(T0) = ∅, as T0 is a highest weight element. So,

ε̂i(T ) = k. (3.6)

Hence, by (3.5) and (3.6), and since ε′i(T ) = 0, we have εi(T ) = ε′i(T ) + ε̂i(T ).

Lemma 3.19. Let T ∈ ShST(λ/µ, n) and suppose its i-string has highest weight element T high
0

and lowest weight element T low
0 , and that T 6= T high

0 , T low
0 . The following holds:

1. If the i-string is separated, then

T low
0 = F ′ai F

b
i (T ) = F b

i F
′a
i (T ) = F b−k

i F ′ai F
k
i (T ), for some k ≥ 0

T high
0 = E ′ci E

d
i (T ) = Ed

i E
′c
i (T ) = Ed−k

i E ′ci E
k
i , for some k ≥ 0

with a = ϕ′i(T ) ∈ {0, 1}, b = ϕ̂i(T ) ≥ 0, c = ε′i(T ) ∈ {0, 1}, and d = ε̂i(T ) ≥ 0.

2. If the i-string is collapsed, then

T low
0 = F a

i (T ) = F ′ai (T )

T high
0 = Eb

i (T ) = E ′bi (T )

with a = ϕi(T ) and b = εi(T ).

Proof. We prove the case for the separated i-string and for the raising operators. For collapsed

i-string, the proof is similar, noting that by Lemma 3.18 we have εi(T ) = ε̂i(T ) = ε′i(T ).

Let T be in separated i-string. We have E ′i(E
′c
i E

d
i (T )) = E ′c+1

i Ed
i (T ) = Ed

i E
′c+1
i (T ), since

these operators commute. By definition of c = ε′i(T ), we have E ′c+1
i (T ) = ∅. Hence

E ′i(E
′c
i E

d
i (T )) = Ed

i (∅) = ∅. On the other hand, we have Ei(E ′ci E
d
i (T )) = E ′ci E

d+1
i (T ).

By definition of d = ε̂i(T ), Ed+1
i = ∅. Consequently, Ei(E ′ci E

d
i (T )) = E ′ci (∅) = ∅. Thus,

E ′ci E
d
i (T ) must be the highest weight element of this i-string.
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3.2 The Schützenberger–Lusztig involution

The Schützenberger involution, or Lusztig involution, is defined on the shifted tableau crystal

[21, Section 2.3.1] in the same fashion as for type A Young tableau crystal. Similarly, it is

realized by shifted evacuation, for tableaux of straight shape, and through shifted reversal oth-

erwise. For each i ∈ I = [n− 1], we define the shifted crystal reflection operator σi, using the

primed and unprimed crystal operators Ei, E ′i, Fi and F ′i . We also show in Example 3.31 that

they do not need to satisfy the braid relations and, therefore, do not yield a natural action of Sn

on this crystal. Throughout this section ν will denote a strict partition.

Proposition 3.20. There exists a unique map of sets η : ShST(ν, n) −→ ShST(ν, n) that

satisfies the following, for all T ∈ ShST(ν, n) and for all i ∈ I:

1. E ′iη(T ) = ηF ′θ1,n−1(i)(T ).

2. Eiη(T ) = ηFθ1,n−1(i)(T ).

3. F ′iη(T ) = ηE ′θ1,n−1(i)(T ).

4. Fiη(T ) = ηEθ1,n−1(i)(T ).

5. wt(η(T )) = θ1,n(wt(T )).

This map may is also defined on ShST(λ/µ, n), using the coplacity of the crystal operators,

by applying η to its connected components. Moreover, it coincides with the evacuation evac in

ShST(ν, n), and with the reversal e on the connected components of ShST(λ/µ, n).

The map η is called the Schützenberger or Lusztig involution, and we use the notation η

for both straight-shaped and skew tableaux. The map η is indeed an involution on the set of

vertices of ShST(ν, n), that reverses all arrows and indices. In particular, it sends the highest

weight element to the lowest, i.e. η(T high) = T low, and vice versa.

The Schützenberger involution is coplactic and a weight-reversing, shape-preserving involu-

tion. Note that the operator cn also acts on ShST(ν, n) by reversing arrows and indices, however

it does not preserve the shape, although the resulting crystal cn(ShST(ν, n)) is in a bijective cor-

respondence, as sets, with ShST(ν, n) and with evac(ShST(ν, n)), being isomorphic as crystal

graph to the latter (see Figure 3.7).
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Figure 3.7: The shifted tableau crystal ShST(ν, 3), for ν = (3, 1), on the left [23, Figure 6.1]. In

the middle, c3(ShST(ν, 3)), which is a connected component of ShST(λ/µ, 3), for λ = (3, 2, 1)

and µ = (2). On the right, evac(ShST(ν, 3)) = rect(cn(ShST(ν, 3))).

Proof of Proposition 3.20. We prove that the evacuation evac satisfies the aforementioned con-

ditions. Let T ∈ ShST(ν, n) and let i ∈ I . By definition, wt(evac(T )) = θ1,n(wt(T )). And

since evac is an involution, it suffices to prove the first two conditions. By definition of the

primed operators, std(E ′ievac(T )) = std(evac(T )). Therefore, since standardization commutes

with evacuation, we have

std(evacE ′ievac(T )) = std(evac2(T )) = std(T ).

Moreover, we have αθ1,n−1(i) = −θ1,n(αi), and thus

wt(evacE ′ievac(T )) = θ1,n(wt(E ′ievac(T )))

= θ1,n(wt(evac(T )) + αi)

= θ1,n(θ1,n(wt(T ))− θ1,n(αθ1,n−1(i)))

= θ2
1,n(wt(T )− αθ1,n−1(i))

= wt(T )− αθ1,n−1(i).
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Hence, by the definition of F ′n−i, we have evacE ′ievac(T ) = F ′n−i(T ) and consequently,

E ′ievac(T ) = evacF ′n−i(T ).

To prove that Eievac(T ) = evacFθ1,n−1(i)(T ) we note that Eievac(T ) and Fθ1,n−1(i)(T ) are in

the same connected component of ShST(ν, n), hence they are shifted dual equivalent, due to

Proposition 3.15. Thus, it remains to show that Eievac(T ) and cn(Fθ1,n−1(i)(T )) are shifted

Knuth equivalent. We have that w(evac(T )) ≡k cn(T ) and since Ei is coplactic, we have

Ei(w(evac(T ))) ≡k Ei(cn(T )). Then,

w(Ei(evac(T ))) = Ei(w(evac(T )))

≡k Ei(w(cn(T ))) (3.7)

= cnFθ1,n−1(i)cn(w(cn(T ))).

By (2.4), we have cnw(cn(T )) = wcol(c
2
n(T )) = wcol(T ). Moreover, the row and column words

of a shifted semistandard tableau are shifted Knuth equivalent (see, for instance, [72, Lemma

6.4.12]). Thus, since cn and Fθ1,n−1(i) are coplactic,

cnFθ1,n−1(i)cn(w(cn(T ))) = cnFθ1,n−1(i)(wcol(T ))

≡k cnFθ1,n−1(i)(w(T )) (3.8)

= cnw(Fθ1,n−1(i)(T )).

Finally, by (2.4), we have cnw(Fθ1,n−1(i)(T )) = wcol(cnFθ1,n−1(i)(T )) ≡k w(cnFθ1,n−1(i)(T )).

Thus, from (3.7) and (3.8) we have

w(Eievac(T )) ≡k w(cnFθ1,n−1(i)(T ))

and, consequently, evac(Fθ1,n−1(i)(T )) = Ei(evac(T )). For the uniqueness part, suppose that

there is another involution ξ on ShST(ν, n) satisfying the previous properties and let Yν be the

highest weight element of ShST(ν, n). By Proposition 3.14, we have T = Hi1 · · ·Hik(Yν),

where Hi ∈ {F ′i , Fi, E ′i, Ei}, with ik ∈ I . Moreover, let H̃i be E ′i (respectively, Ei, F ′i and Fi)

if Hi is F ′i (respectively Fi, E ′i and Ei). Then,

ξ(T ) = ξHi1 · · ·Hik(Yν)

= H̃θ1,n−1(i1) · · · H̃θ1,n−1(ik)ξ(Yν)

= H̃θ1,n−1(i1) · · · H̃θ1,n−1(ik)evac(Yν)

= evacHi1 · · ·Hik(Yν)

= evac(T ).
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As a direct consequence of Proposition 3.11 and Proposition 3.20, we have that the evacua-

tion of a Yamanouchi tableau Yν is the lowest weight of ShST(ν, n), i.e., F ′i and Fi are undefined

on evac(Yν), for all i ≤ I .

3.2.1 The partial Schützenberger involutions

Given 1 ≤ i < j ≤ n, let [i, j] := {i < · · · < j} and [i, j]′ := {i′ < i < · · · < j′ < j}. We may

define an equivalence relation in ShST(λ/µ, n), in which X ∼i,j Y if X and Y are related by

any sequence of [i, j− 1]-labelled crystal operators. The equivalence classes are the underlying

subsets of the [i, j − 1]′-connected components of the crystal graph ShST(λ/µ, n), which are

obtained by removing the edges not coloured in [i, j − 1]′. We denote by Bi,j the collection of

these equivalence classes. Since, in particular, X ∼i,i+1 Y if and only if X ∼i Y , Bi,i+1 is the

collection of all the i-strings of ShST(λ/µ, n). Moreover, we have B1,n = ShST(λ/µ, n).

A highest weight element of Bi,j is a shifted tableau T ∈ ShST(λ/µ, n) such that E ′k and

Ek are undefined on T , for all k ∈ [i, j − 1]. A lowest weight element is defined analogously,

using F ′k and Fk.

Lemma 3.21. Let 1 ≤ i < j ≤ n. Each connected component of Bi,j is isomorphic, as

a weighted edge-labelled graph, to ShST(ν, n), for some ν. In particular, each connected

component has unique highest and lowest weight elements.

Proof. Let C be a connected component of Bi,j and let T ∈ C. Then, T may be regarded as a

shifted tableau of skew shape λ0/µ0, for strict partitions such that µ ⊆ µ0 ⊆ λ0 ⊆ λ, where

µ0/µ corresponds to the boxes of T consisting of the letters [1, i− 1]′ and λ/λ0 corresponding

to the boxes filled in [j + 1, n]′. These indeed define the same shapes within each connected

component, since the operators corresponding to the edges coloured in [i, j−1] leave the shapes

unchanged. Then, we may relabel the filling of T by replacing each letter k ∈ [i, j]′ with ρi,j(k),

where ρi,j is defined as

ρi,j : [i, j]′ → [1, j − i+ 1]′

k 7→ k − i+ 1 (3.9)

k′ 7→ (k − i+ 1)′
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obtaining a tableau ρi,j(T ) of shape λ0/µ0 in the alphabet [1, j − i + 1]′. Thus, C may be

identified with ShST(λ0/µ0, j − i + 1), which is isomorphic via rectification to ShST(ν0, n),

where ν0 = (wt(T )i, . . . ,wt(T )j). Thus, by Proposition 3.14, C has unique highest and lowest

weight elements.

Given T ∈ ShST(λ/µ, n) and 1 ≤ i < j ≤ n, we denote T i,j := T i t · · · t T j , the

tableau obtained from T considering only the entries in [i, j]′. Let C be the (unique) connected

component of Bi,j containing T . By Lemma 3.21, C is identified with a shifted tableau crystal

ShST(λ0/µ0, j − i+ 1), for some µ ⊆ µ0 ⊆ λ0 ⊆ λ. Then, when we write η(T i,j), this means

that we first apply the Schützenberger involution η defined in in ShST(λ0/µ0, j − i + 1) to

ρi,j(T
i,j) (as defined by (3.9)) and then apply ρ−1

i,j to the obtained tableau. Thus, we have the

following definition.

Definition 3.22. Let T ∈ ShST(λ/µ, n) and let 1 ≤ i < j ≤ n. The partial Schützenberger

involution restricted to the interval [i, j]′ is the map ηi,j : ShST(λ/µ, n) −→ ShST(λ/µ, n)

defined as

ηi,j(T ) := T 1,i−1 t η(T i,j) t T j+1,n.

In particular, we have η1,n(T ) = η(T ).

Lemma 3.23. Let 1 ≤ i < j < n and let k ∈ [i, j]. Given T ∈ ShST(λ/µ, n), we have,

whenever the operators are defined:

1. E ′kηi,j(T ) = ηi,jF
′
θi,j−1(k)(T ).

2. Ekηi,j(T ) = ηi,jFθi,j−1(k)(T ).

3. F ′kηi,j(T ) = ηi,jE
′
θi,j−1(k)(T ).

4. Fkηi,j(T ) = ηi,jEθi,j−1(k)(T ).

5. wt(ηi,j(T )) = θi,j(wt(T )).

Proof. If [i, j] = [1, n], then this is Proposition 3.20. Otherwise, Lemma 3.21 and Definition

3.22 ensure that ηi,j may be regarded as η defined in ShST(λ0/µ,j−i+1), and the result follows

from Proposition 3.20.
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As a direct consequence of Lemma 3.23 and the fact that η is a involution, we have the next

result.

Corollary 3.24. Let 1 ≤ i < j < n and let k ∈ [i, j − 1]. Then, the operators ηi,j satisfy the

following:

1. η2
i,j = 1.

2. ηi,j takes each connected component of Bi,j to itself.

3. ηi,j takes each k-string to a k̂-string, with k̂ = θi,j−1(k).

Proposition 3.25. Let T ∈ ShST(λ/µ, n) and let 1 ≤ i < j < n. Then, putting k̂ := θi,j−1(k),

we have, for any k ∈ [i, j − 1],

1. ϕk(T ) = εk̂ηi,j(T ).

2. εk(T ) = ϕk̂ηi,j(T ).

In particular, ηi,j interchanges the highest and lowest weight elements within each connected

component of Bi,j .

Proof. We prove the first assertion, the second one is analogous. Using Lemma 3.19, there are

two cases:

1. Suppose that the k-component in which T lies is a collapsed k-string Sk. Then, by Lemma

3.19, Fϕk(T )
k (T ) is the lowest weight element of Sk. We have that ηi,jF

ϕk(T )
k (T ) is in a

k̂-string S0
k̂

(which is also collapsed) and by Lemma 3.23,

ηi,jF
ϕk(T )
k (T ) = E

ϕk(T )

k̂
(ηi,j(T )).

Hence, by the definition of εk̂, we have that

εk̂(ηi,j(T )) ≥ ϕk(T ).

On the other hand, since E
εθi,j−1(k)

(ηi,j(T ))

k̂
(ηi,j(T )) is in S0

k̂
, then ηi,jE

εk̂(ηi,j(T ))

k̂
(ηi,j(T ))

must be in Sk. By Lemma 3.23, and since ηi,j is an involution, we have

ηi,jE
εk̂(ηi,j(T ))

k̂
(ηi,j(T )) = F

εk̂(ηi,j(T ))

i (T ).

Consequently, by the definition of ϕk, we have

ϕk(T ) ≥ εk̂(ηi,j(T )).
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2. Now suppose that T is in Sk, a separated k-string. Then, by Lemma 3.19F ′ϕ
′
k(T )

k F
ϕ̂k(T )
k (T )

is the lowest weight element of Sk. Consequently, ηi,jF
′ϕk(T )
k F

ϕ̂k(T )
k (T ) is in a k̂-string

Sk̂ (which is also separated). As before, we have

ηi,jF
′ϕ′k(T )

k F
ϕ̂k(T )
k (T ) = E

′ϕ′k(T )

k̂
E
ϕ̂k(T )

k̂
(ηi,j(T )),

and by definition of εk̂, we have

εk̂(ηi,j(T )) ≥ ϕ′k(T ) + ϕ̂k(T ) = ϕk(T ).

SinceE
′ε′
k̂
(ηi,j(T ))

k̂
E
ε̂k̂(ηi,j(T ))

k̂
(ηi,j(T )) is in Sk̂, we have that ηE

′ε′
k̂
(ηi,j(T ))

k̂
E
ε̂k̂(ηi,j(T ))

k̂
(ηi,j(T ))

is in Sk̂. By Proposition 3.20, and since ηi,j is an involution, we have

ηE
′ε′
k̂
(ηi,j(T ))

k̂
E
ε̂k̂(ηi,j(T ))

k̂
(ηi,j(T )) = F

′ε′
k̂
(ηi,j(T ))

k F
ε̂k̂(ηi,j(T ))

k (T ),

and then,

ϕk(T ) ≥ ε′
k̂
(ηi,j(T )) + ε̂k̂(ηi,j(T )) = εk̂(ηi,j(T )).

3.3 The shifted reflection crystal operators

We now introduce a shifted version of the crystal reflection operators σi (see [9, Definition

2.35]) on ShST(ν, n), for each i ∈ I . Crystal reflection operators were originally defined by

Lascoux and Schützenberger [44] in the Young tableau crystal of type A. They are involutions,

on type A crystals, so that each i-string is sent to itself by reflection over its middle axis, for

all i ∈ I . It coincides with the restriction of the Schützenberger involution to the tableaux

consisting of the letters {i, i+1}, ignoring the remaining ones. On ShST(ν, n), collapsed strings

are similar to the i-strings of type A crystals, hence the shifted reflection operator σi is expected

to resemble the one for Young tableaux. However, for separated strings, a sole reflection of the

i-string would not coincide with the restriction of the Schützenberger involution to {i, i + 1}′,
hence we have the next definition. We recall that αi = ei − ei+1, where {e1, . . . , en} is the

canonical basis of Rn.

Definition 3.26. Let i ∈ I and T ∈ ShST(ν, n). Let k = 〈wt(T ), αi〉 (usual inner product in

Rn). The shifted crystal reflection operator σi is defined as follows
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σi(T ) =



F ′iF
k−1
i (T ) if k > 0 and F ′i (T ) 6= ∅

E ′iF
k+1
i (T ) if k > 0 and F ′i (T ) = ∅

EiF
′
i (T ) if k = 0 and F ′i (T ) 6= ∅

E ′iFi(T ) if k = 0 and F ′i (T ) = ∅ and Fi(T ) 6= ∅

T if k = 0 and F ′i (T ) = Fi(T ) = ∅

E−k+1
i F ′i (T ) if k < 0 and F ′i (T ) 6= ∅

E−k−1
i E ′i(T ) if k < 0 and F ′i (T ) = ∅

As the definition suggests, the shifted reflection operator σi must do a double reflection, by

vertical and horizontal middle axes (see Figure 3.8). As we will see in Theorem 3.30, a simple

reflection in the same fashion as the type A crystal fails to ensure the coincidence of the shifted

crystal reflection operators with the adequate restriction of the Schützenberger involution, on

separated strings. By coplacity, the operator σi is extended to ShST(λ/ν, n), for i ∈ I .

•
•

•

•

•

•

•
•

• • • • •

Figure 3.8: The action of a crystal reflection operator in separated and collapsed strings, which

coincides with the action of the Schützenberger involution on these strings.

We remark that this definition is the same for both separated or collapsed strings. However,

for the latter there is simpler formulation, as stated in the following lemma, since in this case

the primed and unprimed operators coincide.

Lemma 3.27. Let i ∈ I and let T ∈ ShST(λ/µ, n) be such that Fi(T ) = F ′i (T ) (i.e., T is in a

collapsed i-string). Let k = 〈wt(T ), αi〉. Then,

σi(T ) =


F k
i (T ) if k > 0

T if k = 0

E−ki (T ) if k < 0

Example 3.28. Let T =
1 1 1 2′ 2

2 2 3
3

. To compute σ2(T ) we have k = 〈wt(T ), α2〉 = 〈(3, 4, 2), (0, 1,−1)〉 =

2 > 0. Moreover, F2(T ) and F ′2(T ) are both defined on T , thus, we have

σ2(T ) = F ′2F2(T ) =
1 1 1 2 3′

2 3′ 3
3

.
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Proposition 3.29. For i ∈ I , the operator σi satisfies the following:

1. σi sends each connected component of ShST(λ/µ, n) to itself, and each i-string to itself.

2. σ2
i = 1 and σiσj = σjσi, for |i− j| > 1.

3. wt(σi(T )) = θi(wt(T )), where θi = (i, i+ 1) ∈ Sn.

Proof. The first assertion results directly from the definition of the raising and lowering opera-

tors. For the second assertion, it is clear that σiσj = σjσi, for |i−j| > 1, since each σk acts only

on the primed subinterval of adjacent letters {k, k+1}′, leaving the remaining ones unchanged.

To prove that σi is an involution, we must analyse various cases according to Definition 3.26.

Let T ∈ ShST(λ/µ, n).

Case 1. Suppose that k > 0 and that Fi(T ) 6= ∅. Let S = σi(T ) = F ′iF
k−1
i (T ). Then,

F ′i (S) = ∅. By definition of σi, we have

wt(S) = wt(F ′iF
k−1
i (T ))

= wt(F k−1
i (T ))− αi

= wt(T )− (k − 1)αi − αi
= wt(T )− kαi.

Hence, putting k̃ := wt(S)i − wt(S)i+1 we have

k̃ = (wt(T )i − (kαi)i)− (wt(T )i+1 − (kαi)i+1)

= wt(T )i − k − wt(T )i+1 − k

= −k < 0.

Consequently,

σi(S) = E
−(−k)−1
i E ′i(S)

= Ek−1
i E ′i(S)

= Ek−1
i E ′iF

′
iF

k−1
i (T )

= Ek−1
i F k−1

i (T ) = T.
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Case 2. Now suppose T is such that k > 0 and F ′i (T ) = ∅. Let S = σi(T ). We have

wt(S) = wt(T ) + αi − (k + 1)αi = wt(T )− kαi. Using the same notation as before, we have

k̃ = (wt(T )i − (kαi)i)− (wt(T )i+1 − (kαi)i+1)

= wt(T )i − wt(T )i+1 − 2k = −k < 0.

Moreover, sinceE ′iF
k+1
i (T ) is defined, this means that the last (i+1)′ was to the right of the

last i in the word of F k+1
i (T ), and was then changed to i, due to Proposition 3.2. Consequently,

in S the last i is to the right of the last (i+ 1)′, which means that F ′i (S) 6= ∅. Hence,

σi(S) = E
′−(−k)+1
i F ′i (S) = Ek+1

i F ′iE
′
iF

k+1
i (T ) = Ek+1

i F k+1
i (T ) = T.

Case 3. Suppose that T is such that k = 0 and F ′i (T ) 6= ∅. Let S = σi(T ). We have

wt(S) = wt(T ), hence k̃ = k. Since F ′i (T ) 6= ∅, we have F ′i (S) = ∅. Then,

σi(S) = EiF
′
i (S) = EiF

′
iE
′
iFi(T ) = EiFi(T ) = T.

Case 4. Suppose that k = 0 and that F ′i (T ) = F ′i (T ) = ∅. Then, σ2
i (T ) = σi(T ) = T .

The remaining cases are dual to the first three, which concludes the proof that σ2
i = 1.

Finally, using the same notation as before, for the first case we have

wt(σi(T )) = wt(T )− kαi
= wt(T )− (wt(T )i − wt(T )i+1)αi

= (wt(T )1, . . . ,wt(T )i − wt(T )i + wt(T )i+1,

wt(T )i+1 + wt(T )i − wt(T )i+1, . . . ,wt(T )n)

= (wt(T )1, . . . ,wt(T )i+1,wt(T )i, . . . ,wt(T )n)

= θi(wt(T )).

The remaining cases are proved analogously.

Given i ∈ I , recall that Bi,i+1 denotes the collection of the i-strings of ShST(λ/µ, n) and

that

ηi,i+1(T ) := T 1,i−1 t η(T i,i+1) t T i+2,n. (3.10)

The next result, which is proved on Section 3.3.1, states that the shifted crystal reflection

operator coincides with the partial Schützenberger involution restricted to {i, i+ 1}′.
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Theorem 3.30. Let T be a shifted semistandard tableau on the alphabet [n]′. Then, for any

i ∈ I ,

σi(T ) = ηi,i+1(T ).

Unlike the typeA crystals, the reflection operators σi, for i ∈ I , do not define an action of the

symmetric group Sn on ShST(λ/µ, n). In particular, the braid relations σiσi+1σi = σi+1σiσi+1

do not need to hold, as shown in the next example.

Example 3.31. Let ShST(ν, 3) where ν = (5, 3, 1), and consider the shifted semistandard

tableau

T =
1 1 1 1 3′

2 2 3′

3
.

The weight of T is given by wt(T ) = (4, 2, 3). Then, since 〈wt(T ), (1,−1, 0)〉 = 4−2 = 2 > 0

and F ′1(T ) 6= ∅, we have

σ1(T ) = F ′1F1(T ) =
1 1 2′ 2 3′

2 2 3′

3
.

Putting T1 := σ1(T ), we have that 〈wt(T1), (0, 1,−1)〉 = 4 − 3 = 1 > 0. As F ′2(T1) = ∅, we

have

σ2σ1(T ) = E ′2F
2
2 (T1) = E ′2(

1 1 2′ 3′ 3
2 3′ 3

3
) =

1 1 2′ 2 3
2 3′ 3

3
,

and putting T2 := σ2σ1(T ), we have 〈wt(T2), (1,−1, 0)〉 = 2 − 3 = −1 < 0 and F ′1(T2) = ∅,

and thus,

σ1σ2σ1(T ) = σ1(T2) = E ′1(T2) =
1 1 1 2 3

2 3′ 3
3

. (3.11)

On the other hand, we have that 〈wt(T ), (0, 1,−1)〉 = 2− 3 = −1 < 0 and F ′2(T ) = ∅, hence

σ2(T ) = E ′2(T ) =
1 1 1 1 2

2 2 3′

3
.

We put T3 := σ2(T ), thus we have 〈wt(T2), (1,−1, 0)〉 = 4 − 3 = 1 > 0 and F ′1(T3) 6= ∅ and

consequently

σ1σ2(T ) = σ1(T3) = F ′1(T3) =
1 1 1 2′ 2

2 2 3′

3
.

Finally, putting T4 := σ1σ2(T ), we have that 〈wt(T4), (0, 1,−1)〉 = 3 − 2 = 1 > 0 and

F ′2(T4) 6= ∅, thus

σ2σ1σ2(T ) = σ2(T4) = F ′2F2(T4) =
1 1 1 2′ 3′

2 3′ 3
3

(3.12)

Then, by (3.11) and (3.12), we have that σ1σ2σ1(T ) 6= σ2σ1σ2(T ).

However, we have the following result, as in [3, Section 3.2] for ordinary LR tableaux,

ensuring that the longest permutation of Sn acts on a connected component of ShST(λ/µ, n)

by sending the highest weight element to the lowest weight element.
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Theorem 3.32. Let T high be a LRS tableau in ShST(λ/µ, n). Let θ1,n = θi1 · · · θik denote the

longest permutation in Sn. Then, θ1,n acts on a connected component of ShST(λ/µ, n) by

sending its highest weight element T high to the lowest weight element T low, i.e.,

θ1,n · T high = σi1 · · ·σik(T high) = η(T high) = T low.

Proof. Since the operators σi are coplactic, we may consider Yν = rect(T ), ν = wt(T ). By

Proposition 3.29, σi permutes the entries i and i + 1 on the weight and keeps the shape ν, and

as θ1,n is the longest permutation, σi1 · · · σik reverts the weight of T . Then, the uniqueness of

evac(Yν) implies that σi1 · · ·σik(Yν) = evac(Yν).

Remark 3.33. Let Gn := 〈σ1, . . . , σn−1〉 be the free group generated by the shifted crystal

reflection operators σi, for i ∈ I , modulo the relations satisfied by them on shifted semistandard

tableaux. We know from Proposition 3.29 that the relations σ2
i = 1 and σiσj = σjσi, for

|i − j| > 1, hold on Gn, but not the braid relations of Sn, (σiσi+1)3 = 1, for i ∈ [n − 2].

However, since ShST(ν, n) is finite, we have that, given T ∈ ShST(ν, n), there must exist some

m > 3 such that (σiσi+1)m(T ) = T , for i ∈ [n − 2]. We computed some examples on the

alphabet {1, 2, 3}′, which show that (σ1σ2)m = 1, for m a multiple of at least 90 [54, Appendix

A], but we do not know if an upper bound valid for any shape ν exists.

3.3.1 Proof of Theorem 3.30

It suffices to prove Theorem 3.30 for tableaux on the primed alphabet of two adjacent letters and

we consider it to be {1, 2}′, to simplify the notation. Moreover, the raising and lowering opera-

tors are coplactic, thus σ1 is also coplactic. Hence, it suffices to prove the result for tableaux of

straight shape. We remark that such tableaux have at most two rows. Furthermore, T and σ1(T )

are in the same 1-string (which, in particular, is a connected component), hence by Proposi-

tion 3.15, T and σ1(T ) are shifted dual equivalent. It remains to show that c2(T ) and σ1(T )

are shifted Knuth equivalent. We remark that another proof may be done by directly verifying

the conditions on Proposition 3.20. The one we present highlights some of the properties of

straight-shaped tableaux with at most two rows. First, we introduce some technical results on

shifted Knuth equivalence.

Lemma 3.34. Let a1, . . . , an, b1, . . . , bm, c ∈ [n]′, with m,n ≥ 1.

1. If bm < · · · < b1 < c < a1 < · · · < an in standardization ordering, then

ca1 · · · anb1 · · · bm ≡k cb1 · · · bma1 · · · an.
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2. If a1 < · · · < an < c < bm < · · · < b1 in standardization ordering, then

a1 · · · anb1 · · · bmc ≡k b1 · · · bma1 · · · anc.

Proof. We prove the first part by induction on n, the second part is proved similarly. If n = 1,

we have

ca1b1b2 · · · bm ≡k cb1a1b2 · · · bm (K1)

≡k cb1b2a1b3 · · · bm (K1)

· · ·

≡k cb1 · · · bm−1a1bm (K1)

≡k cb1 · · · bm−1bma1 (K1)

Now suppose the result is true for some n ≥ 1 and let an+1 > an in standardization ordering.

Then,

ca1 · · · anan+1b1b2 · · · bm ≡k ca1 · · · anb1an+1b2b3 · · · bm (K1)

· · ·

≡k ca1 · · · anb1 · · · bm−1an+1bm (K1)

≡k ca1 · · · anb1 · · · bman+1 (K1)

≡k cb1 · · · bma1 · · · anan+1 Induction hypothesis and Lemma 2.23

Lemma 3.35. Let a ∈ [n]′. Then, for any m ≥ 1, a(a′)m ≡k am+1.

Proof. For m = 1 the result corresponds to the (SK2) relation. Suppose the result holds for

some m ≥ 1. Then,

a(a′)m+1 = a(a′)ma′

≡k (a)m+1a′ Induction hypothesis and Lemma 2.23

= a(a)ma′

≡k aa′(a)m Lemma 3.34

≡k aa(a)m (SK2)

= (a)m+2.
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In order to prove that c2(T ) and σ1(T ) are shifted Knuth equivalent, we will present se-

quences of Knuth moves between their words. We have remarked that T has at most two rows.

The case where it has one row is in the following result.

Proposition 3.36. Let T be a straight-shaped shifted semistandard tableau with one row, filled

with in the alphabet {1, 2}′. Then, σ1(T ) = evac(T ).

Proof. As stated before, if suffices to show that σ1(T ) is shifted Knuth equivalent to c2(T ).

Suppose that w(T ) = 1a, for a ≥ 1. If a = 1, then w(c2(T )) = 2 = w(F1(T )) = w(σ1(T )).

If a > 1, then w(c2(T )) = 2(2′)a−1 and w(σ1(T )) = w(F a
1 (T )) = 2a. Hence, by Lemma 3.35,

w(c2(T )) ≡k w(σ1(T )). Now suppose that w(T ) = 1a2b, with a, b ≥ 1. Then, w(σ1(T )) =

1b2a and w(c2(T )) = 2(2′)a−11(1′)b−1. There are two cases:

Case 1. If a = 1, we have

21(1′)b−1 ≡k 12(1′)b−1 (SK1)

≡k 1(1′)b−12 Lemma 2.23

≡k 1b2. Lemmas 2.23 and 3.35

Case 2. If a > 1, then we have

2(2′)a−11(1′)b−1 ≡k 2a1(1′)b−1 Lemmas 2.23 and 3.35

= 22a−11(1′)b−1

≡k 21(1′)b−12a−1 Lemma 3.34

≡k 12(1′)b−12a−1 (SK1)

≡k 1(1′)b−122a−1 Lemmas 2.23 and 3.34

≡ 1b2a. Lemmas 2.23 and 3.35

If T has two rows, we remark that it suffices to verify the case where the second row has

only one box. To make this statement rigorous, we need to introduce some notation. A shifted

semistandard tableau T is called detached if its main diagonal has exactly one box. Then, we

may define the following operator on shifted semistandard tableaux:
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r(T ) =

T if T is detached

T̂ otherwise

where T̂ is obtained from T removing its main diagonal and shifting every box one unit to the

left (so that its second diagonal becomes the main diagonal).

Example 3.37. If T = 1 1 1 1 2′ 2
2 2 2 , then

r(T ) = 1 1 1 2′ 2
2 2 , r2(T ) = 1 1 2′ 2

2 , rm(T ) = 1 2 2 ,

for m ≥ 3.

The following lemma states that, if T is not detached and its (l + 1)-th diagonal is the first

with one box, then σ1(T ) is determined by rl−1(T ), i.e., one may temporarily remove the first

l − 1 diagonals with two elements, compute σ1 on the remaining tableau, and then place the

diagonals back.

Lemma 3.38. Let T be a shifted semistandard tableau of straight shape, with two rows, filled in

the alphabet {1, 2}′. Let l be such that {(1, l), (2, l+1)} and {(1, l+1)} are adjacent diagonals

of T with two boxes and one box, respectively. Then,

rl−1σ1(T ) = σ1r
l−1(T ).

Proof. If T = Yν , for ν = (ν1, ν2), then wt(σ1(Yν)) = (ν2, ν1). Consequently, σ1(Yν) =

evac(Yν). Then, rν2−1evac(Yν) = evac(Yν0), where ν0 = (ν1 − ν2, 1). Similarly, rν2−1(Yν) =

Yν0 , and using the same argument with the weight, σ1r
ν2−1(Yν) = evac(Yν0). The proof for

evac(Yν) is similar.

Suppose now that T is neither Yν nor evac(Yν). Suppose that the word of T is given by

w(T ) = 2a1a+11b22c, with a ≥ 1 and b, c ≥ 0. Then, wt(T ) = (a + b + 1, a + c + 1) and

considering Definition 3.26, we have k = (a + b + 1)− (a + c + 1) = b− c (note that it does

not depend on a). We show the case when k > 0 and 2 = 2. The proof for the other cases is

analogous. If 2 = 2, then F1(T ) 6= ∅ and we have

σi(T ) = F ′1F
b−c−1
1 (T )

= F ′1F
b−c−1
1 (2a1a+11b2c+1)

= F ′1F
b−c−1
1 (2a1a+11b−(b−c−1)2(c+1)+(b−c−1))

= F ′1(2a1a+11c+12b)

= 2a1a+11c2′2b
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and so, ra−1σ1(T ) = 2121c2′2b.

On the other hand, we have ra−1(T ) = 2121b22c and so

σ1r
a−1(T ) = F ′1F

b−c−1
1 (2121b2c+1)

= F ′1(2121c+12b)

= 2121c2′2b.

In what follows, we consider T to be of shape ν = (m, 1), i.e., such that its second row has

only one box. To show that c2(T ) is shifted Knuth equivalent to σ1(T ) is equivalent to show

that rect(c2(T )) = σ1(T ), since T is of straight shape. Moreover, we ask for T to be neither Yν

nor evac(Yν), since the result for those cases is already proved. We have the following lemma,

which is easy to prove.

Lemma 3.39. Let ν = (m, 1), for m ≥ 3. Let T ∈ ShST(ν, 2) such that T 6= Yν , evac(Yν) and

let k = ε1(T ). Then,

1. If T = 1 1 1 ··· 1 2′ 2 ··· 2
2 , with wt(T ) = (m− k, k + 1), then

σ1(T ) = 1 1 1 ··· 1 2 2 ··· 2
2

with wt(σ1(T )) = (k + 1,m− k).

2. If T = 1 1 1 ··· 1 2 2 ··· 2
2 , with wt(T ) = (m− k, k + 1), then

σ1(T ) = 1 1 1 ··· 1 2′ 2 ··· 2
2

with wt(σ1(T )) = (k + 1,m− k).

The rectification does not depend on the sequence of inner corners, so, for simplicity, we

may fix that we always choose the rightmost inner corner in the highest-index row. Thus, we

apply jeu de taquin slides on c2(T ), following this sequence, to the point where an occurrence

of 2 or 2′ on T (which correspond to 1′ or 1 in c2(T )) will determine different slides on the next

move. For instance, consider the following tableaux:

T1 = 1 1 1 2 2
2 −→ c2(T1) =

1′

1′

2′

1 2′

2

≡k
1′

1′ 2
1 2′

2

the box (2, 4) with 1′ will go left on the next slide.

T2 = 1 1 1 2′ 2
2 −→ c2(T2) =

1′

1
2′

1 2′

2

≡k
1′

1 2
1 2′

2

the box (3, 3) with 1 will go up on the next slide.
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Continuing the rectification we obtain, respectively:

rect(c2(T1)) = 1 1 1 2′ 2
2 rect(c2(T2)) = 1 1 1 2 2

2 .

We begin by stating some auxiliary results.

Lemma 3.40. Let T = Yν be the highest weight of its 1-string, with m ≥ 3, for ν = (m, 1).

Then,

1. w(c2F1(T )) = 21(2′)m−21 ≡k 212′1(2)m−3.

2. w(c2F
′
1(T )) = 21(2′)m−21′ ≡k 212′1′(2)m−3.

Proof. We prove a more general claim that, if a ≥ 1, then,

21(2′)a1 ≡k 212′1(2)a−1

21(2′)a1′ ≡k 212′1′(2)a−1.

Then, the result follows, observing that m ≥ 3 ensures that a := m−2 ≥ 1. If a = 1, the claim

is trivial. Suppose this is true for some a ≥ 1. We have,

21(2′)a+11 = 21(2′)a2′1.

The word 21(2′)a2′ has the same standardization of 21(2′)a1. Therefore, by induction hy-

pothesis 21(2′)a2′ ≡k 212′2′(2)a−1. Then, we have

21(2′)a2′1 ≡k 212′2′(2)a−11 Lemma 2.22

≡k 22′12′(2)a−11 (K2)

≡k 2212′(2)a−11 (SK2)

≡k 2122′(2)a−11 (K1)

≡k 1222′(2)a−11 (SK1)

≡k 122′2(2)a−11 (K1)

≡k 212′2(2)a−11 (SK1)

= 212′(2)a1.

Moreover, we have 2′(2)a1 ≡k 2′1(2)a, by Lemma 3.34, using only (K1) Knuth moves.

Hence, by Lemma 2.23, we have

212′(2)a1 ≡k 212′1(2)a.
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Consequentely, 21(2′)a1 ≡k 212′1(2)a−1. The proof that 21(2′)a1′ ≡k 212′1′(2)a−1 is done

similarly, since Lemma 3.34 also ensures that 2′(2)a1′ ≡k 2′1′(2)a, using only (K1) Knuth

moves.

Corollary 3.41. Let T be a shifted semistandard tableaux in the 1-string of Yν , with ν = (m, 1)

and m ≥ 3, such that T is not Yν neither evac(Yν). Let a = ε1(T ).

1. If T = F a
1 (Yν), then w(c2(T )) = 21(2′)m−a−11(1′)a−1 ≡k 212′1(2)m−a−2(1′)a−1.

2. If T = F ′1F
a−1
1 (Yν) w(c2(T )) = 21(2′)m−a−11′(1′)a−1 ≡k 212′1′(2)m−a−2(1′)a−1.

Proof. Since T 6= evac(Yν) and evac(Yν) is a lowest weight element, then

a = ε1(T ) < ε1(evac(Yν)) = m− 1.

Then, a ≤ m− 2 and so we have that m− a− 1 ≥ 1. Therefore, using Lemma 3.40, we have

21(2′)m−a−11 ≡k 212′1(2)m−a−2.

Consequentely, by Lemma 2.22, we have 21(2′)m−a−11(1′)a−1 ≡k 212′1(2)m−a−2(1′)a−1. The

proof for the second case is similar.

Proposition 3.42. Let T be a shifted semistandard tableau in the 1-string of Yν , with ν = (m, 1)

and m ≥ 3, such that T is neither Yν or evac(Yν). Let a = ε1(T ).

1. If T = F a
1 (Yν), then 212′1(2)m−a−2(1′)a−1 ≡k 2(1)a+12(2)m−a−2 = σ1(T ).

2. If T = F ′1F
a
1 (Yν), then 212′1′(2)m−a−2(1′)a−1 ≡k 2(1)a+12′(2)m−a−2 = σ1(T ).
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Proof. We first prove the first assertion. We have

212′1(2)m−a−2(1′)a−1 ≡k 212′1(1′)k−1(2)m−a−2 Lemmas 3.34 and 2.23

≡k 22′11(1′)a−1(2)m−a−2 (K2)

≡k 2211(1′)a−1(2)m−a−2 (SK2)

≡k 2121(1′)a−1(2)m−a−2 (K2)

≡k 1221(1′)a−1(2)m−a−2 (SK1)

≡k 1212(1′)a−1(2)m−a−2 (K1)

≡k 121(1′)a−12(2)m−a−2 Lemma 2.23

≡k 211(1′)a−12(2)m−a−2 (SK1)

≡k 21(1′)a−112(2)m−a−2 Lemmas 2.22, 2.23 and 3.34

≡k 12(1′)a−112(2)m−a−2 (SK1)

≡k 1(1′)a−1212(2)m−a−2 Lemmas 3.34 and 2.22

≡k (1)a212(2)m−a−2 Lemmas 3.35 and 2.23

≡k 2(1)a12(2)m−a−2 Lemmas 3.34 and 2.23

= 2(1)a+12(2)m−a−2.

For the second assertion, we have

212′1′(2)m−a−2(1′)a−1 ≡k 212′1′(1′)a−1(2)m−a−2 Lemma 3.34

= 212′(1′)a(2)m−a−2

≡k 21(1′)a2′(2)m−a−2 Lemma 3.34

≡k 12(1′)a2′(2)m−a−2 (SK1)

≡k 1(1′)a22′(2)m−a−2 Lemma 3.34

≡k (1)a+122′(2)m−a−2 Lemma 3.35

≡k 2(1)a+12′(2)m−a−2. Lemma 3.34

We are now able to prove Theorem 3.30.

Proof of Theorem 3.30. It suffices to show the result for T of straight shape with two rows.

Corollary 3.41 and Proposition 3.42 ensure that the words w(c2(T )) and w(σ1(T )) are shifted
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Knuth equivalent, thus c2(T ) ≡k σ1(T ). Since T and σ1(T ) are dual equivalent, this concludes

the proof that σ1(T ) = evac(T ).
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CHAPTER 4

AN ACTION OF THE CACTUS GROUP

Halacheva [29] showed that there is a natural action of the cactus group Jg on any g-crystal,

for g a complex, reductive, finite-dimensional Lie algebra. In particular, the cactus group

Jn = Jgln (Definition 1.1) acts internally on the type A crystal of semistandard Young tableux

SSYT(λ/µ, n) (here considering any partitions), via the partial Schützenberger involutions,

which correspond to partial evacuations on SSYT(ν, n). Following a similar approach, it was

shown in [54, Theorem 5.7] that there is a natural action of Jn on the shifted tableau crystal

ShST(λ/µ, n). This action is realized by the restrictions of the Schützenberger involution to all

primed intervals of [n]′ (thus, containing in particular the shifted crystal reflection operators).

We recall the definition of the cactus group as in [32, Section 3.1].

Recall that θi,j denotes the longest permutation of S[i,j] embedded in Sn, and that n-fruit

cactus group Jn (Definition 1.1) is the free group generated by si,j , for 1 ≤ i < j ≤ n, subject

to the relations

s2
i,j = 1, si,jsk,l = sk,lsi,j, for [i, j]∩ [k, l] = ∅, si,jsk,l = si+j−l,i+j−ksi,j, for [k, l] ⊆ [i, j].

The first and third relations ensure that the elements of the form s1,k generate Jn, for 1 < k ≤ n,

since any si,j may be written as

si,j = s1,js1,j−i+1s1,j. (4.1)

Theorem 4.1. There is a natural action of the n-fruit cactus group Jn on the shifted tableau

crystal ShST(λ/µ, n) given by the group homomorphism:

φ : Jn −→ SShST(λ/µ,n)

si,j 7−→ ηi,j

for 1 ≤ i < j ≤ n.
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Figure 4.1: On the left, the action of s2,4 on ShST(ν, 4), with ν = (2, 1). On the right, an

illustration of s1,3s1,4 = s1,4s2,4.

Recall that, given T ∈ ShST(ν, n), evacj(T ) = evac(T 1,j) t T j+1,n = η1,j(T ). As a

consequence, the next results follow from (4.1) and from φ being a homomorphism.

Corollary 4.2. Let T ∈ ShST(λ/µ, n) and 1 ≤ i < j ≤ n. Then,

ηi,j(T ) = η1,jη1,j−i+1η1,j(T ).

In particular, for T ∈ ShST(ν, n), we have

ηi,j(T ) = evacjevacj−i+1evacj(T ).

Theorem 4.3. There is a natural action of the n-fruit cactus group on the shifted tableau crystal

ShST(ν, n), given by the group homomorphism, for 1 < i ≤ n:

φ̂ : Jn −→ SShST(ν,n)

s1,i 7−→ evaci.
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Proof. Since φ is a homomorphism between Jn and SShST(λ/µ,n), in particular it is a ho-

momorphism between Jn and SShST(ν,n). The result then follows from (4.1), as we have

φ̂(s1,i) = evaci = η1,i = φ(s1,i).

4.1 Proof of Theorem 4.1

To show that φ in Theorem 4.1 is a group homomorphism, we show that the operators ηi,j satisfy

the cactus group relations of Definition 1.1, for any 1 ≤ i < j ≤ n. The first two relations are

trivial, and we claim that if suffices to show that these operators satisfy the third relation for any

[k, l] ⊆ [1, j]. Indeed, we have the following.

Lemma 4.4. Suppose that, for any [k, l] ⊆ [1, j],

η1,jηk,l = ηj−l+1,j−k+1η1,j. (4.2)

Then, for any [k, l] ⊆ [i, j], we have

ηi,jηk,l = ηj+i−l,j+i−kηi,j. (4.3)

Proof. Given [k, l] ⊆ [i, j], we show that (4.2) implies the third relation (4.3) of Definition 1.1.

Since, in particular, [i, j] ⊆ [1, j], then (4.2) ensures that

η1,jηi,j = η1+,j−i+1η1,j. (4.4)

Moreover, [k, l] ⊆ [i, j] implies that [k − i+ 1, l − i+ 1] ⊆ [1, j − i+ 1], and thus, by (4.2),

η1,j−i+1ηk−i+1,l−i+1 = ηj−l+1,j−k+1η1,j−i+1. (4.5)

Similarly, we have [j + i− l, j + i− k] ⊆ [1, j], and thus, by (4.2),

η1,jηj+i−l,j+i−k = ηk−i+1,l−i+1η1,j. (4.6)

Then, using the fact that ηi,j is an involution, we have, for any [i, j],

ηi,jηk,l = η1,jη1,j−i+1η1,jη1,jηj−l+1,j−k+1η1,j by (4.2) and (4.4)

= η1,jη1,j−i+1ηj−l+1,j−k+1η1,j

= η1,jη1,j−i+1(η1,j−i+1ηk−i+1,l−i+1η1,j−i+1)η1,j by (4.5)

= η1,jηk−i+1,l−i+1η1,j−i+1η1,j

= η1,j(η1,jηj+i−l,j+i−kη1,j)η1,j−i+1η1,j by (4.6)

= ηj+i−l,j+i−kηi,j by (4.4)
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Proof of Theorem 4.1. Each operator ηi,j is an involution (Corollary 3.24) and the second re-

lation is a direct consequence of the definition, as each operator ηi,j acts only on the letters

[i, j]′, leaving the others unchanged. Thus, to conclude the proof, due to Lemma 4.4, it suffices

to prove that the relation (4.2) holds for any [k, l] ⊆ [1, j]. Given T ∈ ShST(λ/µ, n), let C0

be the unique connected component of Bk,l containing T . If C0 is an isolated vertex, then by

Lemma 3.23 and Corollary 3.24 the result is trivially true. Thus, we assume that C0 has at least

two vertices. By Lemma 3.21, C0 has a unique highest weight element T high
0 and lowest weight

element T low
0 = ηk,l(T

high
0 ). These elements are different, as C0 has at least two vertices. Since

l ≤ j, C0 is contained in a connected component C1 of B1,j . By Lemma 3.21, C1 has unique

highest weight element T high
1 and lowest weight element T low

1 = η1,j(T
high
1 ) 6= T high

1 . Then, we

have

T = F ′m1
i1

F n1
i1
· · ·F ′mrir

F nr
ir

(T high
0 )

T low
0 = E ′a1j1 E

b1
j1
· · ·E ′asjs Ebs

js
η1,j(T

high
1 )

(4.7)

for some i1, . . . , ir ∈ [k, l − 1], j1, . . . , js ∈ [1, j − 1], with m1, . . . ,mr, a1, . . . , as ∈ {0, 1},
and n1, . . . , nr, b1, . . . , bs ≥ 0. Thus, we have

η1,jηk,l(T ) = η1,jηk,lF
′m1
i1

F n1
i1
· · ·F ′mrir

F nr
ir

(T high
0 ) (4.7)

= η1,jE
′m1

θk,l−1(i1)E
n1

θk,l−1(i1) · · ·E ′mrθk,l−1(ir)
Enr
θk,l−1(ir)

ηk,l(T
high
0 ) Lemma 3.23

= η1,jE
′m1

θk,l−1(i1)E
n1

θk,l−1(i1) · · ·E ′mrθk,l−1(ir)
Enr
θk,l−1(ir)

(T low
0 )

= η1,jE
′m1

θk,l−1(i1)E
n1

θk,l−1(i1) · · ·E ′mrθk,l−1(ir)
Enr
θk,l−1(ir)

E ′a1j1 E
b1
j1
· · ·E ′asjs Ebs

js
η1,j(T

high
1 ) (4.7)

= F ′m1

θ1,j−1θk,l−1(i1)F
n1

θ1,j−1θk,l−1(i1) · · ·F ′mrθ1,j−1θk,l−1(ir)
F nr
θ1,j−1θk,l−1(ir)

F ′a1θ1,j−1(j1)F
b1
θ1,j−1(j1) · · ·F ′asθ1,j−1(js)

F bs
θ1,j−1(js)

(η2
1,j(T

high
1 )) Lemma 3.23

= F ′m1

θ1,j−1θk,l−1(i1)F
n1

θ1,j−1θk,l−1(i1) · · ·F ′mrθ1,j−1θk,l−1(ir)
F nr
θ1,j−1θk,l−1(ir)

F ′a1θ1,j−1(j1)F
b1
θ1,j−1(j1) · · ·F ′asθ1,j−1(js)

F bs
θ1,j−1(js)

(T high
1 ),

that is,

η1,jηk,l(T ) = F ′a1θ1,j−1(j1)F
b1
θ1,j−1(j1) · · ·F ′asθ1,j−1(js)

F bs
θ1,j−1(js)

(T high
1 ). (4.8)

Since C0 is a connected component of Bk,l, given X, Y ∈ C0, we have X ∼k,l Y , and thus

X = Hi1 · · ·Hip(Y ), where Hi ∈ {F ′i , Fi, E ′i, Ei}, for some i1, . . . , ip ∈ [k, l−1]. Lemma 3.23

then ensures that

η1,j(X) = η1,jHi1 · · ·Hip(Y ) = H̃θ1,j−1(i1) · · · H̃θ1,j−1(ip)(η1,j(Y )),
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where H̃i denotes the partial inverse of Hi. Then, η1,j(X) and η1,j(Y ) are related by a se-

quence of crystal operators labelled in θ1,j−1[k, l − 1] = [j − l + 1, j − k], which means

that η1,j(X) ∼j−l+1,j−k+1 η1,j(Y ). Then, η1,j takes C0, a connected component of Bk,l, to

η1,j(C0), which is a connected component of Bj−l+1,j−k+1. Then, Proposition 3.25 ensures

that, for any Q ∈ C0 and any p ∈ [k, l − 1] ⊆ [1, j − 1], εp(T ) = ϕθ1,j−1(p)(η1,j(T )) and

ϕp(T ) = εθ1,j−1(p)(η1,j(T )). This implies that η1,j(T
low
0 ) and η1,j(T

high
0 ) are, respectively, the

highest and lowest weight elements of η1,j(C0). On the other hand, since η1,j(C0) is a con-

nected component of Bj−l+1,j−k+1, then ηj−l+1,j−k+1 interchanges its highest and lowest weight

elements, that is,

ηj−l+1,j−k+1η1,j(T
high
0 ) = η1,j(T

low
0 ). (4.9)

Then, noting that θ1,j−1θk,l−1 = θj−l+1,j−kθ1,j−1, we may write,

ηj−l+1,j−k+1η1,j(T ) = ηj−l+1,j−k+1η1,jF
′m1
i1

F n1
i1
· · ·F ′mkik

F nk
ik

(T high
0 ) (4.7)

= ηj−l+1,j−k+1E
′m1

θ1,j−1(i1)E
n1

θ1,j−1(i1) · · ·

· · ·E ′mkθ1,j−1(ik)E
nk
θ1,j−1(ik)(η1,j(T

high
0 )) Lemma 3.23

= F ′m1

θj−l+1,j−kθ1,j−1(i1)F
n1

θj−l+1,j−kθ1,j−1(i1) · · ·

· · ·F ′mkθj−l+1,j−kθ1,j−1(ik)F
nk
θj−l+1,j−kθ1,j−1(ik)

ηj−l+1,j−k+1η1,j(T
high
0 ) Lemma 3.23

= F ′m1

θj−l+1,j−kθ1,j−1(i1)F
n1

θj−l+1,j−kθ1,j−1(i1) · · ·

· · ·F ′mkθj−l+1,j−kθ1,j−1(ik)F
nk
θj−l+1,j−kθ1,j−1(ik)η1,j(T

low
0 ) (4.9)

= F ′m1

θj−l+1,j−kθ1,j−1(i1)F
n1

θj−l+1,j−kθ1,j−1(i1) · · ·

· · ·F ′mkθj−l+1,j−kθ1,j−1(ik)F
nk
θj−l+1,j−kθ1,j−1(ik)

η1,jE
′a1
j1
Eb1
j1
· · ·E ′asjs Ebs

js
η1,j(T

high
1 ) (4.7)

= F ′m1

θ1,j−1θk,l−1(i1)F
n1

θ1,j−1θk,l−1(i1) · · ·F ′mrθ1,j−1θk,l−1(ir)
F nr
θ1,j−1θk,l−1(ir)

F ′a1θ1,j−1(j1)F
b1
θ1,j−1(j1) · · ·F ′asθ1,j−1(js)

F bs
θ1,j−1(js)

(η2
1,j(T

high
1 )) Lemma 3.23

= F ′m1

θ1,j−1θk,l−1(i1)F
n1

θ1,j−1θk,l−1(i1) · · ·F ′mrθ1,j−1θk,l−1(ir)
F nr
θ1,j−1θk,l−1(ir)

F ′a1θ1,j−1(j1)F
b1
θ1,j−1(j1) · · ·F ′asθ1,j−1(js)

F bs
θ1,j−1(js)

(T high
1 ),

that is

ηj−l+1,j−k+1η1,j(T ) = F ′a1θ1,j−1(j1)F
b1
θ1,j−1(j1) · · ·F ′asθ1,j−1(js)

F bs
θ1,j−1(js)

(T high
1 ). (4.10)

77



Finally, by (4.8) and (4.10), we have

η1,jηk,l(T ) = ηj−l+1,j−k+1η1,j(T ).
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CHAPTER 5

A SHIFTED BERENSTEIN–KIRILLOV GROUP

In this chapter we introduce a shifted version of the Bender–Knuth involutions for shifted semi-

standard tableaux. Stembridge has defined Bender–Knuth moves for shifted tableaux [69, Sec-

tion 6], but they differ from the ones we introduce, as they do not preserve classes of canonical

form (see Remark 5.18). For ordinary Young tableaux, the Bender–Knuth involutions on letters

{i, i + 1} are known to coincide with the tableau switching applied to horizontal border strips

filled with the same letters [5, Proposition 2.6], [51, Section 4.1], together with a swapping of

the letters. Thus, it is natural to use the shifted version of that algorithm, introduced by Choi,

Nam and Oh [15], to define the shifted Bender–Knuth moves, or, equivalently, the type C in-

fusion map due to Thomas and Yong [70] on standardized tableaux, followed by the shifted

semistandardization process of Pechenik and Yong [52]. As in [7], we are then able to recover

the shifted evacuation, promotion, and shifted crystal reflection operators.

We then use the shifted Bender–Knuth involutions to introduce a shifted version of the

Berenstein–Kirillov group. Following the works of Halacheva [29, 30] and Chmutov, Glick and

Pylyavskyy [10], we show, using the action of the cactus group Jn on ShST(ν, n) (Chapter 4),

that the shifted Berenstein–Kirillov group is isomorphic to a quotient of the cactus group. We

also give an alternative presentation for the cactus group in terms of the shifted Bender–Knuth

involutions.

5.1 Shifted Bender–Knuth involutions

We now introduce the shifted Bender–Knuth involutions ti, for i ∈ Z>0, which will yield another

presentation for the cactus group Jn. We first fix some notation. Given i ∈ I = [n − 1], recall

that θi ∈ Sn denotes the simple transposition (i, i + 1). We write the cyclic permutation

ζi = θiθi−1 · · · θ1 as ζi := (1, i + 1, i, . . . , 2) ∈ Sn. We recall that these permutations act on

letters of the marked alphabet [n]′ as in (2.2).
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Definition 5.1. Let T i1 , . . . , T in be a sequence of ik-border strips, with ik ∈ [n]′ and such

that {i1, . . . , in} = [n]. Suppose that T ik+1 extends T ik , for 1 ≤ k < n. Consider T :=

T i1 t · · · t T in , a shifted skew shape filled in the alphabet [n]′ (that is not necessarily a shifted

semistandard filling).

1. Let i, j ∈ [n] be such that T j extends T i. We define SPi,j(T ) to be the filling of the shape

of T obtained by leaving each T k unchanged, for k 6= i, j, and replacing T i t T j with

SP1(T i, T j) t SP2(T i, T j).

2. We also define SWik|ik+1,...,ik+l(T ) := SPik,ik+lSPik,ik+l−1
· · · SPik,ik+1

(T ).

Example 5.2. Let T =
1 1 2′ 2 3

2 2 3′

3
. Then, to compute SP2,3(T ) we have:

1 1 2′ 2 3
2 2 3′

3

(S6)−→
1 1 2′ 3′ 3

2 2 2
3

(S4)−→
1 1 2′ 3′ 3

3 2′ 2
2

(S1),(S1)−→
1 1 3′ 3 2′

3 2′ 2
2

= SP2,3(T ).

To compute SW1|2,3(T ), first apply the shifted tableau switching to the pair (T 1, T 2), obtaining

(T̃ 2, T̃ 1), and then apply it again to the pair (T̃ 1, T 3):

1 1 2′ 2 3
2 2 3′

3

(S5)−→
1 2′ 1 2 3

2 2 3′

3

(S6)−→
1 2′ 2 2 3

2 1 3′

3

(S3)−→
2 2 2 2 3

1 1 3′

3
= SP1,2(T )

−→
2 2 2 2 3

1 1 3′

3

(S5)−→
2 2 2 2 3

1 3′ 1
3

(S3)−→
2 2 2 2 3

3 3 1
1

= SP1,3SP1,2(T ) = SW1|2,3(T ).

We remark that SPi,j and SWK|J in general do not yield shifted semistandard tableaux, as

the rows and columns may not be weakly increasing, as shown in the previous example, but

they may be composed with adequate permutations of Sn, acting as in (2.2) on the entries in

[n]′, ensuring that the resulting filling is a valid shifted semistandard tableau.

Lemma 5.3. Let 1 ≤ i < j ≤ n and T ∈ ShST(λ/µ, n), such that T j extends T i. Then,

1. wt(SPi,j(T )) = wt(T )1.

2. SPj,iSPi,j = 1.

3. τSPi,j(T ) = SPτ(i),τ(j)τ(T ), for any permutation τ ∈ Sn.
1The weight of a filling of a shifted shape, not necessarily a valid shifted semistandard tableau, is defined as

before.
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Proof. To prove the first statement, we note that the shifted tableau switching solely moves

boxes, not changing the total weight. For the second statement, we assume, without loss of

generality, that T = A t B, with A = T i and B = T j . Then, SPi,j(A t B) = SP1(A,B) t
SP2(A,B), where SP1(A,B) is filled in {j′, j} and SP2(A,B) is filled in {i′, i}. Then, since

the shifted tableau switching is an involution [15, Theorem 4.3], we have

SPj,i
(
SP1(A,B) t SP2(A,B)

)
=

= SP1

(
SP1(A,B), SP2(A,B)

)
t SP2

(
SP1(A,B), SP2(A,B)

)
= SP1

(
SP(A,B)

)
t SP2

(
SP(A,B)

)
= A tB.

For the last assertion, we note that applying the shifted tableau switching to the pair (T i, T j),

followed by the action of a permutation τ ∈ Sn is the same as first apply the permutation τ

to the letters in T , and then compute the shifted tableau switching to the pair that previously

corresponded to (T i, T j), which is now (T τ(i), T τ(j)).

We may now define the operators ti, for i ∈ Z>0, for shifted semistandard tableaux.

Definition 5.4. Given T ∈ ShST(λ/µ, n), for n > 1, and i ∈ I , we define the shifted Bender–

Knuth move ti as

ti(T ) := θiSPi,i+1(T ) = SPi+1,iθi(T ).

Example 5.5. Let T =
1 1 1 2′ 2

2 2 3
3

. Then, we have

T =
1 1 1 2′ 2

2 2 3
3

−→
1 1 1 2′ 2

2 2 3
3

(S5)−→
1 1 2′ 1 2

2 2 3
3

(S1)−→
1 1 2′ 2 1

2 2 3
3

(S5)−→
1 2′ 1 2 1

2 2 3
3

(S6)−→
1 2′ 2 2 1

2 1 3
3

(S3)−→
2 2 2 2 1

1 1 3
3

θ1−→
1 1 1 1 2

2 2 3
3

= t1(T ).

T =
1 1 1 2′ 2

2 2 3
3

θ2−→
1 1 1 3′ 3

3 3 2
2

(S7)−→
1 1 1 3′ 3

2 3′ 2
3

(S1)−→
1 1 1 3′ 3

2 2 3′

3
= t2(T ).

Remark 5.6. A shifted Bender–Knuth move may be formulated in terms of type C infusion

and semistandardization. The tableau t1(T ), as in the previous example, may be computed as

follows:
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T =
1 1 1 2′ 2

2 2 3
3

−→
1 1 1 2′ 2

2 2 3
3

std×std−→
1 2 3 1 4

2 3 3
3

−→
1 2 1 3 4

2 3 3
3

−→
1 2 1 4 3

2 3 3
3

−→
1 1 2 4 3

2 3 3
3

−→
1 1 3 4 3

2 2 3
3

−→
1 1 3 4 3

2 2 3
3

−→
1 2 3 4 3

1 2 3
3

.

Then, the semistandardization process with respect to wt2 = (4) and wt1 = (3) yields:

1 2 3 4 3
1 2 3

3

sstd(4)×sstd(3)−→
1 1 1 1 2

2 2 3
3

= t1(T ).

Proposition 5.7. The shifted Bender–Knuth operators ti satisfy the following, for any i ∈ I:

1. t2i = 1.

2. titj = tjti, for |i− j| > 1.

3. wt(ti(T )) = θi(wt(T )), for any T ∈ ShST(λ/µ, n).

Thus, ti defines a bijection between the set of shifted semistandard tableaux of shape λ/µ and

weight ν, and the set of shifted semistandard tableaux of the same shape and weight θi(ν).

Proof. By Lemma 5.3, we have

t2i = θiSPi,i+1θiSPi,i+1 = SPi+1,iθ
2
i SPi,i+1 = SPi+1,iSPi,i+1 = 1.

The second assertion results from ti acting only on the letters {i, i + 1}′, leaving the others

unchanged. For the third statement, Lemma 5.3, ensures that

wt(ti(T )) = wt(SPi+1,iθi(T )) = wt(θi(T )) = θi(wt(T )).

Remark 5.8. Since the operators ti act on the weight of a shifted semistandard tableau T as the

simple transposition θi, for each i, they can be used to derive a proof that the Schur Q- and P -

functions are symmetric, similarly to the one for classic Schur functions using Bender–Knuth

moves.

As in the ordinary case, the operators ti do not commute with the jeu de taquin, as shown in

Example 5.9. In general, ti does not coincide with σi (although t1 and σ1 coincide on straight-

shaped tableaux). Moreover, if T is in a i-string Bi, it is not necessary for ti(T ) to be in the

same i-string (see Figure 5.1).
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Figure 5.1: An example of the action of t2 on a shifted tableau crystal ShST(λ/µ, 4), with

λ = (3, 1) and ν = (1), which has two connected components.

Example 5.9. Considering T of the previous example, we have

T =
1 1 1 2′ 2

2 2 3
3

≡k
1′ 2′ 2

1 1 2 3
2 3

= T ′

and

t2(T ) =
1 1 1 3′ 3

2 2 3′

3
6≡k

1′ 2 2
1 1 3′ 3

3 3
= t2(T ′).

Moreover, note that (see Example 3.28)

σ2(T ) =
1 1 1 2 3′

2 3′ 3
3

6= t2(T ).

Like the case for type A, we can define a shifted version of the promotion operator due to

Schützenberger [64], using the shifted Bender–Knuth involutions, and then recover the shifted

evacuation and shifted crystal reflection operators for straight-shaped tableaux.

Definition 5.10. Given T ∈ ShST(λ/µ, n) and i ∈ I , we define the shifted promotion operator

pi as

pi(T ) := titi−1 · · · t1(T ).

As a result of ti being involutions, we have p−1
i = t1 · · · ti−1ti.

83



We will show that the promotion pi(T ) coincides with the shifted tableau switching on the

pairs (T 1, T 2 t · · · t T i+1), followed by an adequate cyclic substitution of the letters. We first

prove some auxiliary results.

Lemma 5.11. Let T ∈ ShST(λ/µ, n) and let 1 ≤ i < j ≤ n−1. Then, T i+1t · · ·tT j extends

T i, and for any τ ∈ Sn we have

τSWi|i+1,...,j(T ) = SWτ(i)|τ(i+1),...,τ(j)τ(T ).

Proof. By Definition 5.1 and Lemma 5.3, we have

τSWi|i+1,...,j(T ) = τSPi,jSPi,j−i · · · SPi,i+1(T )

= SPτ(i),τ(j)SPτ(i),τ(j−1) · · · SPτ(i),τ(i+1)τ(T )

= SWτ(i)|τ(i+1),...,τ(j)τ(T ).

Lemma 5.12. Let T ∈ ShST(λ/µ, n) and let 1 < i ≤ n− 1. We have

ζiSWi|i+1SWi−1|i,i+1 · · · SW2|3,...,i+1(T ) = SWi−1|iSWi−2|i−1,i · · · SW1|2,...,iζi(T ).

Proof. Applying successively Lemma 5.11, we have

ζiSWi|i+1SWi−1|i,i+1 · · · SW2|3,...,i+1 = SWζi(i)|ζi(i+1)SWζi(i−1)|ζi(i),ζi(i+1) · · · SWζi(2)|ζi(3),...,ζi(i+1)ζi

= SWi−1|iSWi−2|i−1,i · · · SW1|2,...,iζi.

Proposition 5.13. Given T ∈ ShST(λ/µ, n), and i ∈ I , we have

pi(T ) = ζiSW1|2,...,i+1(T ).

Proof. The proof is done by induction on i. For i = 1, we have

p1(T ) = t1(T ) = θ1SP1,2(T ) = ζ1SW1|2(T ).

Assuming the result is true for some i ≥ 1, by Definition 5.1 and Lemma 5.3, we have

pi+1(T ) = ti+1pi(T )

= θi+1SPi+1,i+2ζiSW1|2,...,i+1(T )

= θi+1ζiSPζ−1
i (i+1),ζ−1

i (i+2)SW1|2,...,i+1(T )

= θi+1ζiSP1,i+2SW1|2,...,i+1(T )

= ζi+1SW1|2,...,i+1,i+2(T ).
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For i ≥ 1, we define

qi := t1(t2t1) · · · (ti · · · t1). (5.1)

Recall that ẽvack is the operator obtained by allowing skew-shaped tableaux on the algorithm

of Figure 2.6, which differs from the reversal on skew shapes. We will show that ẽvack and

evack may be written as a composition of promotion operators. As a consequence, qi coincides

with ẽvaci+1 on skew-shaped shifted tableaux and with evaci+1 on straight-shapes ones. This

coincidence implies that qi are involutions, for any i ≥ 1.

Proposition 5.14. Given T ∈ ShST(λ/µ, n) and i ∈ I , we have

ẽvaci+1(T ) = qi(T ) = p1p2 · · · pi(T ) = t1(t2t1) · · · (titi−1 · · · t1)(T ).

In particular, when T ∈ ShST(ν, n) we have

η1,i+1(T ) = evaci+1(T ) = qi(T ) = p1p2 · · · pi(T ) = t1(t2t1) · · · (titi−1 · · · t1)(T ).

Proof. The proof is analogous either for straight or skew shape cases, as evaci+1 and ẽvaci+1

coincide on straight-shaped tableaux. By (2.8), we have di+1negi+1 · · · neg1 = θ1,i+1 = ζ1 · · · ζi.
Moreover, it is clear that, for l < k < i,

SW9k|k+1,...,i+1negk = negkSWk|k+1,...,i+1

SWk|k+1,...,i+1negl = neglSWk|k+1,...,i+1.
(5.2)

Then, the algorithm for ẽvaci+1 (see Figure 2.6) performed on T can be written as:

ẽvaci+1(T ) = di+1negi+1SW9i|i+1negi · · · SW92|3,...,i+1neg2SW91|2,...,i+1neg1(T )

= di+1negi+1negiSWi|i+1 · · · neg2SW2|3,...,i+1neg1SW1|2,...,i+1(T )

= di+1negi+1 · · · neg2neg1SWi|i+1 · · · SW2|3,...,i+1SW1|2,...,i+1(T )

= ζ1 · · · ζiSWi|i+1 · · · SW2|3,...,i+1SW1|2,...,i+1(T ).

To conclude the proof, we claim that

ζ1 · · · ζiSWi|i+1 · · · SW2|3,...,i+1SW1|2,...,i+1(T ) = ζ1SW1|2ζ2SW1|2,3 · · · ζiSW1|2,...,i(T ) = p1p2 · · · pi(T ).

(5.3)
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We prove (5.3) by induction on i. The base case is trivial. For the induction step, assume

the claim holds for some i ≥ 1. Then, by Lemma 5.12 and Proposition 5.13, we have

ζ1 · · · ζiζi+1SWi+1|i+2 · · · SW2|3,...,i+1,i+2SW1|2,...,i+1,i+2(T ) =

= ζ1 · · · ζiSWi|i+1 · · · SW1|2,...,i+1ζi+1SW1|2,...,i+1,i+2

= ζ1SW1|2ζ2SW1|2,3 · · · ζiSW1|2,...,iζi+1SW1|2,...,i+1,i+2(T )

= p1p2 · · · pipi+1(T ).

Corollary 5.15. Let i ∈ I . Then q2
i = 1 and wt(qi(T )) = θ1,i+1(T ).

Proof. Since ẽvaci+1 is an involution, for any i ≥ 1, then so it is qi. From Proposition 5.7, we

have wt(qi(T )) = wt(t1(t2t1) · · · (titi−1 · · · t1)(T )) = θ1(θ2θ1) · · · (θi · · · θ1)(T ) = θ1,i+1(T ).

Corollary 5.16. Given T ∈ ShST(ν, n) and i ∈ I , we have

σi(T ) = evaci+1evac2evaci+1(T ) = qit1qi(T ) = p1(p2 · · · pi)2(T ).

Proof. By Theorem 3.30 and Corollary 4.2, we have σi(T ) = evaci+1evac2evaci+1(T ). From

Proposition 5.14, we have

evaci+1evac2evaci+1(T ) = qiq1qi(T ) = qit1qi(T )

= (p1p2 · · · pi)t1(p1p2 · · · pi)(T )

= (p1p2 · · · pi)t1(t1p2 · · · pi)(T )

= p1(p2 · · · pi)(p2 · · · pi)(T ).

For 1 ≤ i < j ≤ n, it is natural to consider the restriction of the operator ẽvack to an interval

[i, j]′, in the same fashion as Definition 3.22. For T ∈ ShST(λ/µ, n) and 1 ≤ i < j ≤ n, we

define

ẽvaci,j(T ) := T 1,i−1 t ẽvac(T i,j) t T j+1,n. (5.4)

Clearly, ẽvac1,k = ẽvack and ẽvaci,j coincides with ηi,j , on straight-shaped shifted tableaux.

However, these operators do not satisfy the relation ẽvaci,j = ẽvacj ẽvacj−i+1ẽvacj , for µ 6= ∅,

unlike the operators ηi,j (Corollary 4.2), as shown in the next example.
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Example 5.17. Considering T =
1 1 1 1 3′

2 2 3′

3
, we have

ẽvac2,3(T ) =
1 1 1 1 2′

2 2 3
3

6=
1 1 1 1 2

2 2 3′

3
= ẽvac3ẽvac2ẽvac3(T ).

Remark 5.18. Stembridge introduced a shifted version of Bender–Knuth moves in [69, Section

6]. These are two-to-two maps acting on adjacent letters by reverting their weight. Shifted

tableaux are not required to be in canonical form here, and in general, these maps are not

compatible with canonical form. For instance, consider the following tableau, in canonical

form:

T =

1 2′

2′ 2 2
1′ 1 1 1 2
1 2′

2

and consider the representatives of T :

T1 =

1 2′

2′ 2 2
1′ 1 1 1 2
1 2′

2

T2 =

1 2′

2′ 2 2
1′ 1 1 1 2
1 2′

2′

T3 =

1 2′

2′ 2 2
1′ 1 1 1 2
1′ 2′

2

T4 =

1 2′

2′ 2 2
1′ 1 1 1 2
1′ 2′

2′

.

Using the maps in [69, Section 6], we have:

{T1, T2} −→
{ 1′ 2

1′ 1 1
1′ 1 2 2 2
1 2′

2

,

1′ 2
1′ 1 1

1′ 1 2 2 2
1 2′

2′

}
=: {T̂1, T̂2}

{T3, T4} −→
{ 1′ 2

1′ 1 1
1′ 1 2′ 2 2
1′ 2′

2

,

1′ 2
1′ 1 1

1′ 1 2′ 2 2
1′ 2′

2′

}
=: {T̂3, T̂4}

The tableaux in {T̂1, T̂2} do not have the same canonical form as the ones in {T̂3, T̂4}.

5.2 The Berenstein–Kirillov group

The Bender–Knuth involutions ti, for i ∈ I , are involutions on semistandard Young tableaux

filled in [n], that act only on the letters {i, i + 1}, reverting their weight [4]. They are known

to coincide with the tableau switching on type A on two consecutive letters, together with a

swapping of those letters [5]. The Berenstein–Kirillov group BK (or Gelfand-Tsetlin group) ,

is the free group generated by these involutions ti, for i > 0, modulo the relations they satisfy

87



on semistandard Young tableaux of any shape [8, 7, 10]. Some of the known relations to hold

in BK [7, Corollary 1.1] are

t2i = 1, titj = tjti, for |i− j| > 1, (t1qi)
4 = 1, for i > 2, (5.5)

where qi := t1(t2t1) · · · (titi−1 · · · t1), for i ≥ 1, are involutions, and

(t1t2)6 = 1. (5.6)

The restriction of the evacuation to the alphabet {1, . . . , i}, on straight-shaped semistandard

Young tableaux, may be regarded as an element of BK, and it is computed by qi−1 [7, 10, 30,

29]. We also let qj,k := qk−1qk−jqk−1, for j < k. In particular, qi = q1,i+1 and qj,k computes the

restriction of the evacuation to the alphabet {j, . . . , k}, as an element of BK. Chmutov, Glick

and Pylyavskyy found another relation[10, Theorem 1.6].

(tiqj,k)
2 = 1, for i+ 1 < j < k. (5.7)

The relation (5.7) does not follow from the previous known relations (5.5) and (5.6) in BK,

but is instead a consequence from the cactus relations satisfied by the operators qi,j in BK,

studied by Halacheva [30, 29] and Chmutov, Glick and Pylyavskyy [10]. We remark that (5.7)

generalizes the relation (t1qi)
4 = 1, since

(t1qi)
4 = (t1qit1qi)

2 = (t1qiq1qi)
2 = (t1qi,i+1)2.

Let BKn be the subgroup of BK generated by t1, . . . , tn−1. The involutions qi, for i ∈ I ,

provide another set of generators for BKn, and their action on straight-shaped Young tableaux

coincide with the one of the restriction of the Schützenberger involution (or evacuation) to

[i + 1] [7, Remark 1.3]. It was shown in [10], using semistandard growth diagrams, that BKn
is isomorphic to a quotient of the cactus group. This result could also be derived by noting the

coincidence of the actions of Jn [29] and BKn on a straight-shaped semistandard Young tableau

crystal SSYT(ν, n), as noted in [30, Remark 3.9].

Theorem 5.19. The group BKn is isomorphic to a quotient of Jn, as a result of the following

being group epimorphisms from Jn to BKn:

1. si,j 7→ qi,j [10, Theorem 1.4].

2. s1,j 7→ qj−1 [7, Remark 1.3], [29, Section 10.2], [30, Remark 3.9].
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Chmutov, Glick and Pylyavskyy established in [10, Theorem 1.8] an equivalence between

the relations (5.5) and (5.7) that are satisfied in BKn and the ones of the cactus group Jn (see

Definition 1.1), thus obtaining an alternative presentation for the latter via the Bender–Knuth

moves. More precisely, they consider the free group generated by ti, for i ∈ Z>0, and consider

another free group generated by qi,j , 1 ≤ i ≤ j.

Theorem 5.20 ([10, Theorem 1.8]). The relations

t2i = 1, titj = tjti, for |i− j| > 1, (tiqk−1qk−jqk−1)2 = 1, for i+ 1 < j < k (5.8)

where qi := t1(t2t1) · · · (titi−1 · · · t1), are equivalent to the relations

q2
i,j = 1, qi,jqk,l = qi+j−l,i+j−kqi,j, for i ≤ k < l ≤ j, qi,jqk,l = qk,lqi,j, for j < k.

(5.9)

As a consequence, we have the following group isomorphism

〈ti, i ∈ I| relations in (5.8)〉 ' 〈qi,j, 1 ≤ i < j ≤ n| relations in (5.9)〉 = Jn.

Remark 5.21. In type A crystals, the crystal reflection operators ςi (see [9, 44]) acting on

straight-shaped Young tableaux are elements of the group BKn, since they can be written as

ςi := qit1qi, for i ∈ I . Moreover, they satisfy the relation [7, Proposition 1.4]

(ςiςi+1)3 = qit1pi+1t1(t1t2)6t1p
−1
i+1t1qi (5.10)

for i ∈ [n−2], where pi := t1(t2t1) · · · (titi−1 · · · t1). Thus, the relation (t1t2)6 = 1 is equivalent

to the braid relation (ςiςi+1)3 = 1, for all 1 ≤ i ≤ n− 2. It is known that the operators ςi define

an action of the symmetric group on a type A crystal (for instance, see [9, Theorem 11.14]).

We shall see in Proposition 5.22 that the shifted crystal reflection operators σi satisfy a similar

identity, but since the braid relations do not need to be satisfied by σi (see Example 3.31), then

the relation (t1t2)6 = 1 does not need to hold as well (see Example 5.23).

5.3 A shifted Berenstein–Kirillov group and a cactus group

action

Motivated by the definition of the Berenstein–Kirillov group, we consider SBK to be the free

group generated by the shifted Bender–Knuth involutions ti, for i > 0, modulo the relations
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they satisfy when acting on shifted semistandard tableaux of any shape. We call it the shifted

Berenstein–Kirillov group, and consider its subgroup SBKn generated by t1, . . . , tn−1. From

Proposition 5.7, we know that the relations t2i = 1 and titj = tjti, for |i− j| > 1, hold in SBK.

Recall from (5.1), that

qi := t1(t2t1) · · · (titi−1 · · · t1)

for i ≥ 1. From Proposition 5.14, the shifted evacuation restricted to the primed interval

[1, i+ 1]′, on straight-shaped shifted tableaux, is an element of SBK, being computed by qi. In

particular, the operators qi are involutions. We will show in Proposition 5.26 that the relation

(tiqj,k)
2 = 1, for 2 ≤ i+1 < j < k ≤ n, which is the shifted version of (5.7) (see [10, Theorem

1.6]), also holds in SBK.

Recall from Definition 5.10 that pi = t1(t2t1) · · · (titi−1 · · · t1) and the promotion operators

pi are elements of SBK. By Corollary 5.16, the shifted crystal reflection operators σi are also

elements of SBK, for i ≥ 1, as they can be written as σi = qit1qi. Following a similar

computation in [7, Proposition 1.4], we show that they satisfy the following identity.

Proposition 5.22. Let i ∈ [n− 2] and m ∈ N. Then, writing σi = qit1qi, we have

(σiσi+1)m = qit1pi+1t1(t1t2)2mt1p
−1
i+1t1qi. (5.11)

Thus, in particular we have

(σiσi+1)3 = qit1pi+1t1(t1t2)6t1p
−1
i+1t1qi. (5.12)

Proof. By Corollary 5.16 and the fact that qi is an involution, we have

(σiσi+1)m = (qit1qiqi+1t1qi+1)m

= (qit1qiqipi+1t1qi+1)m

= (qit1pi+1t1qi+1)m

= (qit1pi+1t1p
−1
i+1qi)

m

= qi(t1pi+1t1p
−1
i+1)mqi

= qi(t1pi+1t1p
−1
i+1)m(t1pi+1t1t1p

−1
i+1t1)qi

= qit1pi+1t1(p−1
i+1t1pi+1t1)mt1p

−1
i+1t1qi.

To conclude the proof, we claim that p−1
i+1t1pi+1t1 = (t1t2)2, for any i ≥ 1. The proof is done

by induction. For i = 1, we have

p−1
2 t1p2t1 = (t1t2)t1(t2t1)t1 = (t1t2)2.
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For the induction step, assume the claim holds for some i ≥ 1. Then, due to Proposition 5.7, as

|(i+ 2)− 1| > 1 , we have

p−1
i+2t1pi+2t1 = (t1 · · · ti+1ti+2)t1(ti+2ti+1 · · · t1)t1

= p−1
i+1ti+2t1ti+2pi+1t1

= p−1
i+1t1(ti+2)2pi+1t1

= p−1
i+1t1pi+1 = (t1t2)2.

Recall that the braid relations (σiσi+1)3 = 1, for 1 ≤ i ≤ n − 2, for the shifted crystal

reflection operators do not need to hold (see Example 3.31). Thus, (5.12) ensures that the

relation (t1t2)6 = 1 does not need to hold either, as illustrated in Example 5.23. This will have

no effects on our results, as none of the cactus group relations is equivalent to this one [10,

Remark 1.9].

Example 5.23. Let T =
1 1 2′ 2 3

2 3′ 3
3

. Then, we have

T =
1 1 2′ 2 3

2 3′ 3
3

t2−→
1 1 2 2 2

2 3′ 3
3

t1−→
1 1 1 1 2′

2 3′ 3
3

t2−→
1 1 1 1 3′

2 2 2
3

t1−→
1 1 1 2′ 3′

2 2 2
3

t2−→
1 1 1 2′ 3′

2 3′ 3
3

t1−→
1 1 2 2 3′

2 3′ 3
3

t2−→
1 1 2′ 2 3

2 2 3
3

t1−→
1 1 1 1 3

2 2 3
3

t2−→
1 1 1 1 2

2 2 3′

3

t1−→
1 1 1 2′ 2

2 2 3′

3

t2−→
1 1 1 3′ 3

2 2 3
3

t1−→
1 1 2′ 3′ 3

2 2 3
3

= (t1t2)6(T ) 6= T.

Proposition 5.24. As elements of SBK, we have

t1 = q1, ti = qi−1qiqi−1qi−2, for i ≥ 2,

considering q0 := 1. Consequently, the elements q1, . . . , qn−1 are generators of SBKn.

Proof. The first identity is a direct consequence of the definition of q1. For the second one, we

note that by definition of the promotion operators, we have pi = tipi−1, for i ≥ 2, and thus

ti = pip
−1
i−1. It also follows from the definition that, for i ≥ 2, qi = qi−1pi, which is equivalent

to pi = qi−1qi, as qj are involutions, for any j ≥ 1. Then, we have

ti = pip
−1
i−1 = qi−1qi(qi−2qi−1)−1 = qi−1qiqi−1qi−2.

91



We denote, for 1 ≤ i < j ≤ n,

qi,j := qj−1qj−iqj−1. (5.13)

In particular, we have qi = q1,i+1. Corollary 4.2 ensures that qi,j is realized by

ηi,j = evacjevacj−i+1evacj

when acting on straight-shaped shifted tableaux. As an element of the SBK group, the shifted

Schützenberger involution restricted to the alphabet [i, j]′, on straight-shaped shifted tableaux,

is computed by qi,j , for 1 ≤ i < j ≤ n. In general, qi,j is not realized by ηi,j when acting on

skew shapes (see Example 5.17).

As a consequence of the internal action of the cactus group in ShST(ν, n) (Theorem 4.3),

we have the following result.

Theorem 5.25. The following map is an epimorphism, for 1 ≤ i < j ≤ n.

ψ : Jn −→ SBKn
si,j 7−→ qi,j.

Hence SBKn is isomorphic to Jn/ kerψ.

Proof. From Proposition 5.24, SBKn is generated by qi, for i ∈ I . Then, considering that

qi = q1,i we have qi = ψ(s1,i), and thus ψ is a surjection. Since qi = evaci+1 for straight-shaped

tableaux, Theorem 4.3 then ensures that ψ is a homomorphism. Thus, SBKn is isomorphic to

the quotient of Jn by kerψ.

As a consequence, we are able to recover the relation (5.7) for the shifted operators. The

known relations that are satisfied in SBK are listed below.

Proposition 5.26. The following relations hold in SBKn:

1. t2i = 1, for i ∈ I .

2. titj = tjti, for |i− j| > 1.

3. (tiqj,k)
2 = 1, for 2 ≤ i+ 1 < j < k ≤ n.

Proof. The first two relations correspond to Proposition 5.7. By Theorem 5.25, the action of

the operator qj,k on straight-shaped shifted tableaux defines an action of the cactus group. Thus,

since [1, 2] ∩ [j, k] = ∅, we have (tiqj,k)
2 = (q1,2qj,k)

2 = 1.
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Theorem 5.20 is stated and proved in terms of group generators satisfying the relations in

Proposition 5.26, and do not depend on specific operators. This ensures that the relations in

Proposition 5.26 are equivalent to

q2
i,j = 1, qi,jqk,lqi,j = qi+j−l,i+j−k, for i ≤ k < l ≤ j, qi,jqk,l = qk,lqi,j, for j < k.

Then, we have the following alternative presentation for the cactus group, via the shifted Bender–

Knuth moves:

Jn = 〈ti, i ∈ I | t2i = 1, titj = tjti, if |i− j| > 1,

(tiqk−1qk−jqk−1)2 = 1, for i+ 1 < j < k〉.
(5.14)
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CHAPTER 6

SHIFTED GROWTH DIAGRAMS

In this chapter we recall the notion of growth diagrams for shifted standard tableaux due to

Thomas and Yong [71]. We give alternative formulations for some of the algorithms presented

before in the same fashion as [10], namely, the shifted jeu de taquin, tableau switching, evac-

uation and its restrictions. Using the semistandardization process of Pechenik and Yong [52],

these algorithms may be applied to shifted semistandard tableaux.

Using growth diagrams, we provide an alternative proof that the cactus group Jn acts on a

shifted tableau crystal ShST(λ/µ, n) (Theorem 4.1, [54, Theorem 5.7]). This proof relies on the

algorithmic description of partial Schützenberger involutions as the restrictions of the shifted

reversal to primed intervals, while the one in [54, Theorem 5.7] uses the description in terms

of the Schützenberger–Lusztig involutions using the shifted tableau crystal operators (see [54,

Lemma 5.4]).

We remark that, unlike the case for semistandard growth diagrams for Young tableaux intro-

duced by Chmutov, Glick and Pylyavskyy [10, Section 3], shifted semistandard tableaux, filled

in a primed alphabet, are not encoded by a sequence of shape chains, as both each entry i and i′

contribute the same to the weight.

6.1 Shifted jeu de taquin and infusion

Definition 6.1. Let T be a shifted standard tableau of shape λ/µ. Its shape chain is the saturated

chain of strict partitions

µ = λ(0) ⊆ λ(1) ⊆ · · · ⊆ λ(k) = λ

where k = |λ| − |µ| and λ(i) is the shape of T 1 t · · · t T i, for i ≥ 1. Since T is standard, each

shape λ(i) has exactly one more box than λ(i−1).
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The shape chain uniquely represents T . Since T is standard, λ(i) differs from λ(i−1) by

exactly one box. If T is straight-shaped, then the chain starts with µ = ∅. Moreover, the

sub-chain

λ(i−1) ⊆ λ(i) ⊆ · · · ⊆ λ(j),

for i ≥ j, encodes the tableau T i,j . More precisely, it encodes the shifted standard tableau with

the same shape as T i,j , filled by the letters {1, . . . , i−j+1}, but one may consider a relabelling

of those letters, in order to have T i,j .

Example 6.2. Consider the following shifted standard tableau of shape (5, 3, 1)/(3, 1),

T =
1 3

2 5
4

which is represented by

(3, 1) ⊆ (4, 1) ⊆ (4, 2) ⊆ (5, 2) ⊆ (5, 2, 1) ⊆ (5, 3, 1).

Given a skew-shaped standard tableau of shape λ/µ, a sequence of slides to rectify it may

be encoded by a straight-shaped standard tableau of shape µ, where the slides are performed

starting on the inner corner corresponding to the largest entry.

Example 6.3. Considering the tableau of the previous example, we have the following rectifi-

cation sequences (corresponding to the straight-shaped tableaux in the inner shape of T , with

gray letters):

T =
1 2 3 1 3

4 2 5
4

−→ 1 2 3 1 3
2 4 5 −→ 1 2 1 3

2 4 5 −→
1 1 3 5

2 4 −→ 1 2 3 5
4 = rect(T )

T =
1 2 4 1 3

3 2 5
4

−→
1 2 1 3

3 2 5
4
−→ 1 2 1 3

2 4 5 −→
1 1 3 5

2 4 −→ 1 2 3 5
4 = rect(T ).

The order in which the shifted jeu de taquin slides must be performed in these two cases is

encoded by the following shape chains, respectively,

∅ ⊆ (1) ⊆ (2) ⊆ (3) ⊆ (3, 1),

∅ ⊆ (1) ⊆ (2) ⊆ (2, 1) ⊆ (3, 1).

Each of the tableaux that appear in the intermediate steps of the rectification process may

be encoded as well, thus we have the following definition.

96



Definition 6.4 ([71, Section 2.1]). A shifted rectification growth diagram for T a standard

tableau of shape λ/µ is a table with |µ| rows and |λ| − |µ| columns, where the leftmost column

is filled with the chain encoding a fixed rectification sequence, the top row is filled with the

chain encoding T , and the subsequent rows are filled with the chain encoding the intermediate

tableaux corresponding to the said rectification sequence. In particular, the bottom row will

encode rect(T ) and the rightmost column encodes the order in which the boxes were vacated

during the rectification process.

The following table is a shifted rectification growth diagram for the tableau T of Example

6.2, fixing the first rectification sequence of Example 6.3. It is also convenient to display these

diagrams under a rotation, as depicted in Figure 6.1.

(3, 1) (4, 1) (4, 2) (5, 2) (5, 2, 1) (5, 3, 1)

(3) (4) (4, 1) (5, 1) (5, 2) (5, 3)

(2) (3) (3, 1) (4, 1) (4, 2) (4, 3)

(1) (2) (2, 1) (3, 1) (3, 2) (4, 2)

∅ (1) (2) (3) (3, 1) (4, 1)

∅

rect(T )= infusion1(S, T )

T

S

infusion2(S, T )

Figure 6.1: A growth diagram depicting rectification of T , according to a rectification sequence

encoded by S. This may also be used to compute the type C infusion on a pair of shifted

standard tableaux (S, T ).

We have seen in Lemma 2.48 that the shifted tableau switching and the type C infusion

maps agree on shifted standard tableaux, and both can be regarded as a sequence of shifted jeu
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de taquin slides. Thus, given (S, T ) a pair of shifted standard tableaux, where S is a straight-

shaped shifted tableau extended by T , we may place S and T on the southwestermost and

northwesternmost sides of a shifted rectification growth diagram, respectively, and then the

southeasternmost and northeasternmost sides will encode infusion1(S, T ) and infusion2(S, T ),

respectively. Thus, the diagram in Figure 6.1 is also referred to as a shifted infusion growth

diagram.

Example 6.5. Consider the following pair of shifted standard tableaux (these correspond to T

and the first rectification sequence, as in Example 6.3):

(S, T ) =
1 2 3 1 3

4 2 5
4

.

This pair is encoded in the southwestern and northwestern edges of the diagram of Figure 6.1.

Thus, we have

infusion(S, T ) =
1 2 3 5 3

4 1 2
3

.

The obtained pair is encoded in the southeastern and northeastern edges of the said diagram.

Similar to the growth diagrams for standard Young tableaux, which are characterized by

local rules, due to Fomin [67, Proposition A1.2.7], the shifted growth diagrams may also be

described by similar rules.

Theorem 6.6 ([71, Theorem 2.1]). An array of straight shapes is a shifted growth diagram if

and only if for any subgrid of the form

ν

µ

λ

µ′

where ν ⊆ µ ⊆ λ and ν ⊆ µ′ ⊆ λ, the Fomin growth conditions hold:

1. λ/µ, λ/µ′, µ/ν and µ′/ν consist of a single box.

2. If µ is the unique shape that is contained in λ and contains ν, then µ′ = µ.

3. Otherwise, there exists exactly one strict partition in the same conditions other than µ,

which is µ′.
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These growth conditions exhibit a symmetry under a vertical reflection. Thus, vertically

reflecting the diagram of Figure 6.1, we obtain

S = infusion1(infusion1(S, T ), infusion2(S, T ))

T = infusion2(infusion1(S, T ), infusion2(S, T ))

which explains that the infusion is an involution.

Corollary 6.7 ([71, Lemma 2.2]). Let (S, T ) be a pair of shifted standard tableaux, with T

extending S. Then, infusion(infusion(S, T )) = (S, T ).

6.2 Evacuation and reversal

We may obtain growth diagrams for the shifted evacuation and reversal (Section 2.4), by com-

bining the previous diagrams and local rules. As in the previous sections, most results will be

stated for shifted standard tableaux, and may be extended to the semistandard case using the

semistandardization process [52]. Throughout the next sections, unless otherwise stated, we

consider any standard shifted tableau to have n boxes, filled with the letters in [n].

Proposition 6.8. Let T be straight-shaped shifted standard tableau. Consider an equilateral

triangular array such that the shape chain encoding T is placed on the northwestern edge and

each vertex of the bottom edge is filled with ∅ and apply the local growth rules from left to

right. Then, the shape chain on the northeastern edge corresponds to evac(T ).

Proof. Proposition 5.14 states that the evacuation of T may be obtained by applying sequen-

tially the promotion operators pn−1, pn−2, . . . , p1 to T , where we recall that we are assuming

that T has n boxes, filled in [n]. By Proposition 5.13,

pi(T ) = ζiSW1|2,...,i+1(T ) = ζi(infusion1(T 1, T 2,i+1) t infusion2(T 1, T 2,i+1)),

and then each of promotion operator pi, acting on standard tableaux, may be computed using a

shifted infusion growth diagram with the southwestern edge having length 1, and northwestern

edge having length i. Then, the diagram in Figure 6.3 corresponds to sequentially concate-

nate, from left to right, the growth diagrams of promotion operators pn−1, pn−2, . . . , p1, thus

coinciding with evac(T ).
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The symmetry of the local growth rules ensures that the diagram is symmetric under a

vertical reflection. Thus, taking a shifted evacuation growth diagram on input evac(T ), we

obtain evac(evac(T )) = T , thus exhibiting the fact that the shifted evacuation is an involution.

Since evaci(T ) := evac(T 1,i) t T i+1,n, we have the following result.

Corollary 6.9. Let T be a straight-shaped standard shifted tableau and let i ∈ [n]. Consider

the shifted evacuation growth diagram having T as input on the northwestern edge and evac(T )

on the northeastern one. Then:

1. Removing the n− i rightmost northeastern edges of the diagram yields the shifted evac-

uation growth diagram on input T 1,i.

2. Removing the n− j leftmost northwestern edges of the diagram yields the shifted evacu-

ation growth diagram computing on input rect(T n−j+1,n).

3. Removing simultaneously the n − i rightmost northeastern edges and the n − j leftmost

northwestern edges of the diagram, for i ≥ j, yields the shifted evacuation growth dia-

gram on input rect(T i−j+1,i).

Example 6.10. Consider the following shifted standard tableau

T =
1 2 3 5

4 6
7

.

Then, the left side of the triangular array in Figure 6.2 corresponds to the shape chain of T ,

while the right side corresponds to evac(T ). Then, we have

evac(T ) =
1 2 3 7

4 5
6

.

Using the same diagram we also obtain restrictions of evac. For instance, removing the right-

most 3 northeastern edges (see the gray area in Figure 6.2), we have

evac4(T ) = evac(T 1,4) t T 5,7 =
1 2 4

3 t
7

5
6

=
1 2 4 7

3 5
6

.

The shifted jeu de taquin and shifted tableau switching are compatible with standardization.

Thus, the previous characterizations with growth diagrams may be applied to a shifted semis-

tandard tableau T , by first standardizing it, then apply the standard growth diagrams, and then

compute the adequate semistandardization of the obtained tableau.
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∅ ∅∅ ∅ ∅ ∅ ∅ ∅

T evac(T )

Figure 6.2: A shifted evacuation growth diagram. The smaller gray diagram computes the

restriction evac4, on T 1,4.

∅ ∅∅ ∅ ∅ ∅ ∅ ∅

Figure 6.3: Illustration of the shifted evacuation as a composition of promotion operators,

corresponding to the gray rectangles.
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Example 6.11. Consider the following shifted semistandard tableau of weight ν = (2, 2, 3),

T =
1 1 2′ 3′

2 3′

3
.

To compute evac(T ) using growth diagrams, we consider its standardization and compute the

growth diagram (see Example 6.10) and then apply the semistandardization with respect to

ν ′ = θ1,3(ν) = (3, 2, 2):

std(T ) =
1 2 3 5

4 6
7

evac−→
1 2 3 7

4 5
6

sstdν′−→
1 1 1 3

2 2
3

= evac(T ).

Given T a skew-shaped shifted standard tableau, Proposition 2.45 says that the reversal

T e may be computed by filling the diagram of µ with a standard tableau U , applying the

shifted infusion (or shifted tableau switching) to the pair (S, T ) obtaining infusion(S, T ) =(
rect(T ), infusion2(S, T )

)
, applying the evacuation to rect(T ), and then the shifted tableau

switching again to the pair
(
evac(rect(T )), infusion2(S, T )

)
. Then,

T e = infusion2

(
evac(rect(T )), infusion2(U, T )

)
(6.1)

Thus, we have the following.

Proposition 6.12. Let T be a shifted standard tableau of shape λ/µ. Consider a diagram as in

Figure 6.4, with T on the segment [bc] and any standard tableau S of shape µ on the segment

[ab]1, and such that [dc] = [df ]. Then, the segment [gf ] encodes T e.

Proof. The diagram [abcd] computes the shifted tableau switching on the pair (S, T ), thus [ad]

encodes infusion1(S, T ) = rect(T ) and [dc] encodes infusion2(S, T ). By Proposition 6.8, the

diagram [ade] computes the evacuation with input [ad], thus the segment [ed] corresponds to

evac(rect(T )). Finally, since [df ] = [dc], the diagram [edfg] computes the shifted tableau

switching on the pair
(
evac(rect(T )), infusion2(S, T )

)
. It then follows from (6.1) that [gf ]

corresponds to T e.

Proposition 6.13. Given T a shifted semistandard tableau of shape λ/µ and weight ν, its

reversal T e may be obtained in the following way:

1. Standardize T and fill the diagram of µ with a standard tableau S and add |λ| − |µ| to

each entry.
1We consider a segment [ab] to be directed, from a to b. In the growth diagrams, segments are read from bottom

to top.
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b

c

a

d

f

e

g

S S

T T e

Figure 6.4: Growth diagram to compute the shifted reversal on skew shapes. By construction,

we put [dc] = [df ].

2. Perform the shifted infusion on the pair (S, T ).

3. Reflect the obtained tableau along the anti-diagonal of the ambient triangle

δ = (λ1, λ1 − 1, . . . , 1), while complementing in {1, . . . , |λ|}.

4. Apply rectification.

5. Let T ′ be the tableau corresponding to the boxes filled in {|µ|+ 1, |µ|+ 2, . . . , |λ|}, and

subtract |µ| to each entry. Then, putting ν ′ = θ1,n(ν), we have T e = sstdν′(T
′).

Example 6.14. Consider the same skew-shaped tableau of Example 2.34, of shape λ/µ, with

λ = (5, 3, 2, 1) and µ = (3, 1), and weight ν = (4, 2, 1):

T =

1′ 1
1 1
2 2

3

−→
1 4

2 3
5 6

7

= std(T ).

Following the procedure on Proposition 6.13, we have

1 4
2 3
5 6

7

−→
8 9 10 1 4

11 2 3
5 6

7

−→
8 9 10 1 4

2 3 6
5 7

11

−→
8 9 1 4 10

2 3 6
5 7

11

−→
8 1 3 4 10

2 5 6
7 9

11

−→
1 2 3 4 10

5 6 8
7 9

11
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Reflecting and complementing in the ambient triangle, and then rectifying, we obtain T ′ (in

white boxes).

2
1 3 4 8

5 6 9
7 10

11

−→
2 8

1 3 4 9
5 6 10

7 11

−→
2 4 8

1 3 6 9
5 7 10

11

−→
1 2 4 8
3 5 6 9

7 10
11

−→
1 2 4 6 8

3 5 9
7 10

11

= T ′

Finally, semistandardizing T ′ with respect to ν ′ = (1, 2, 4), we have

T e =

2′ 3′

1 3′

2 3′

3

.

Proof of Proposition 6.13. Without loss of generality, we consider T a shifted standard tableau.

Consider the diagram in Figure 6.5, where the segment [ab] corresponds to S and [bc] to T .

Then, the segment [ad] encodes infusion1(S, T ) = rect(T ). Then, place [dc], which corre-

sponds to infusion2(S, T ), in [df ], and put [fv] to encode any standard tableau U of shape λ∨

(this tableau will encode a rectification sequence, to apply after reflection). We remark that [av]

encodes a tableau of shape δ (the ambient staircase triangle), thus its reflection coincides with

the evacuation, which is then encoded in [pv]. Finally, rectification is achieved by applying jeu

de taquin growth diagram with rectification sequence determined by letters corresponding to U

(on the reflected tableau) on [ws] := [wv], thus obtaining a standard tableau encoded by [pqt].

Considering only the letters corresponding to T , the obtained tableau (before semistandardiza-

tion) is encoded in [qt]. By Proposition 6.12, T e is encoded by [gf ]. Recall that the rectification

process is independent from the rectification sequence. Thus, since we put [wv] = [ws], we

have [hf ] = [pt]. Similarly, [wr] = [wu] implies that [hg] = [pq]. Hence, [gf ] = [qt], which

concludes the proof.

6.3 Partial Schützenberger involutions

Following the same approach as in [10, Section 4.1], we may use the shifted growth diagrams for

rectification and evacuation to construct an array that computes ηi,j for straight-shaped shifted

tableaux. From (5.13) and Proposition 5.14, and since ηi,j is computed by qi,j when acting

on straight shapes, we have ηi,j(T ) = qi,j(T ), for T ∈ ShST(ν, n), thus the next growth

diagram computes qi,j as well. From Definition 3.22, given T ∈ ShST(λ/µ, n), then ηi,j(T ) =

T 1,i−1 t η(T i,j) t T j+1,n = ηi,j(T
1,j) t T j+1,n.
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Figure 6.5: Another method to compute the reversal of a shifted standard tableau T , of shape

λ/µ. The tableaux S and U are any standard tableaux of shapes µ and λ∨, respectively. If T

is straight-shaped, the diagram consists only of the dark gray triangle [ade], together with the

green rectangles, with the segment [fg] now being adjacent to [de] and u = r.

a

u

f

b

e

g

c

v

d

i− 1

j − i+ 1

i− 1

j − i+ 1
T 1,j ηi,j(T )

Figure 6.6: The growth diagram to compute ηi,j or qi,j on straight-shaped tableaux [10, Figure

6]. By construction, [ef ] = [eg].

Proposition 6.15. Let 1 ≤ i < j ≤ n and T be a straight-shaped shifted standard tableau

filled in [n]. Consider the diagram in Figure 6.6, which consists, from left to right, in the growth

diagrams of evaci−1, infusion, evacj−i+1, infusion, and evaci−1, and such that the segments

[ef ] and [eg] coincide. Then, if the segment [af ] encodes T 1,j , then the segment [dg] encodes

ηi,j(T
1,j) .
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Proof. We will show that [dv] = T 1,i−1 t η(T i,j). We have [af ] = T 1,j , [au] = T 1,i−1 and

[uf ] = T i,j , thus, by Proposition 6.8, [bu] = evac(T 1,i−1) =: S. Applying the shifted infusion

growth diagram on inputs [bu] and [uf ], we have

[be] = infusion1(S, T i,j) = rect(T i,j)

[ef ] = infusion2(S, T i,j) = [eg],
(6.2)

and by Corollary 6.9, applying the shifted evacuation growth diagram, we have

[ce] = evac(rect(T i,j)). (6.3)

Then, applying the shifted infusion growth diagram on inputs [eg] (6.2) and [ce] (6.3), we obtain

[cv] = infusion1

(
evac(rect(T i,j)), infusion2(S, T i,j)

)
[vg] = infusion2

(
evac(rect(T i,j)), infusion2(S, T i,j)

)
.

(6.4)

By (6.1), we have

[vg] = η(T i,j). (6.5)

We recall that infusion1(S, T ) = rect(T ), for any standard straight-shaped tableau S extended

by T . Considering that rectification does not depend on the chosen rectification sequence, from

(6.4), we have

[cv] = infusion1

(
evac(rect(T i,j)), infusion2(S, T i,j)

)
= infusion1

(
evac(infusion1(S, T i,j)), infusion2(S, T i,j)

)
= rect

(
infusion2(S, T i,j)

)
= infusion1

(
infusion1(S, T i,j), infusion2(S, T i,j)

)
= infusion1

(
infusion(S, T i,j)

)
= S.

Finally, the shifted evacuation growth diagram ensures that

[dv] = evac(S) = evac2(T 1,i−1) = T 1,i−1. (6.6)

Thus, by (6.4) and (6.6), we have

[dg] = T 1,i−1 t η(T i,j) = ηi,j(T
1,j). (6.7)
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Using Proposition 6.12, and considering that ηi,j commutes with the shifted jeu de taquin,

we may generalize the previous growth diagram for skew-shaped tableaux. We remark this

generalization is not valid for qi,j , as it does not commute with the shifted jeu de taquin.

Corollary 6.16. Let 1 ≤ i < j ≤ n and let T be a skew-shaped shifted standard tableau of

shape λ/µ. Consider the diagram on Figure 6.7, where the segment [pr] encodes T 1,j , S is any

standard tableau of shape µ, being encoded by [ap], and the segments [er] and [es] coincide.

Then, ηi,j(T 1,j) is encoded by segment [ws].

Proof. Since [pr] = T 1,j and [ap] = S, then

[fr] = infusion2(S, T 1,j)

[af ] = infusion1(S, T 1,j) = rect(T 1,j) = (rect(T ))1,j.
(6.8)

By Proposition 6.15, the segment [dg] encodes ηi,j((rect(T ))1,j). By construction, [er] = [es],

and thus [gs] = [fr] = infusion2(S, T 1,j). Then, considering the shifted infusion growth dia-

gram on inputs [ap] and [pr],

[ws] = infusion2(ηi,j((rect(T ))1,j), infusion2(S, T 1,j))

[dw] = infusion1(ηi,j((rect(T ))1,j), infusion2(S, T 1,j))
(6.9)

Since ηi,j commutes with the shifted jeu de taquin, in particular we have

ηi,j((rect(T ))1,j) = ηi,j(rect(T
1,j)) = rect(ηi,j(T

1,j)) (6.10)

Moreover, the operator ηi,j preserves shifted dual equivalence, and thus T 1,j and ηi,j(T 1,j) are

in the same shifted dual equivalence class. Then, by Proposition 2.41,

infusion2(S, T 1,j) = infusion2(S, ηi,j(T
1,j)). (6.11)

Then, by (6.9), (6.10) and (6.11), and since infusion is an involution, we have

[ws] = infusion2(ηi,j((rect(T ))1,j), infusion2(S, T 1,j))

= infusion2(ηi,j((rect(T ))1,j), infusion2(S, ηi,j(T
1,j)))

= infusion2(rect(ηi,j(T
1,j)), infusion2(S, ηi,j(T

1,j)))

= infusion2(infusion1(S, ηi,j(T
1,j)), infusion2(S, ηi,j(T

1,j)))

= ηi,j(T
1,j).
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Figure 6.7: A growth diagram to compute ηi,j on shifted standard tableaux of shape λ/µ, with

S being any standard tableau of shape µ. By construction, [er] = [es]. A diagram to compute

qi,j on straight-shaped shifted standard tableaux is obtained by removing the pink sections.

As before, the growth diagrams for ηi,j may be used on a shifted semistandard tableau T ,

with weight ν. Since we have

std(ηi,j(T )) = ηk,l(std(T )), (6.12)

where k := minPi(ν) and l := maxPj(ν), we may standardize T , apply ηk,l, and then apply

the semistandardization (see Definition 2.11) with respect to ν ′ to the obtained tableau, with

ν ′ = θi,j(ν), that is,

ηi,j(T ) = sstdν′
(
ηk,l(std(T ))

)
. (6.13)

Example 6.17. Consider the following shifted semistandard tableau of weight ν = (2, 2, 3),

T =
1 2

1 2 3′

3 3
.

To compute η2,3(T ), we use the growth diagram in Figure 6.8 on the standardization of T ,

followed by rectification, using the rectification sequence encoded by S = 1 2 .

(S, T ) =
1 2 1 2

1 2 3′

3 3

std−→
1 2 2 4

1 3 5
6 7

infusion−→
1 2 4 7

3 5 1
6 2

= (rect(std(T )), S ′)

where S ′ := infusion2(S, T ). In the Figure 6.7, rect(std(T )) corresponds to the segment [af ]

and S ′ to [fr]. Then, by (2.3), we have

P2(ν) = {3, 4} P3(ν) = {5, 6, 7}.
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Thus, to obtain η2,3(T ), we must apply η3,7 to rect(std(T )). Note that the η3,7

(
rect(std(T ))

)
is

encoded in the segment corresponding to [dg] in Figure 6.8.

rect(std(T )) =
1 2 4 7

3 5
6

η3,7−→
1 2 3 6

4 5
7

= η3,7

(
rect(std(T ))

)
=: T ′.

Then, we apply the shifted infusion growth diagram (the rightmost pink region, in Figure 6.8),

to recover the skew shape before the rectification:

(T ′, S ′) =
1 2 3 6

4 5 1
7 2

infusion−→
1 2 2 3

1 4 6
5 7

= infusion(T ′, S ′).

This corresponds to the tableau of the segment [ws]. Finally, we apply the semistandardization

with respect to ν ′, where ν ′ = θ2,3(2, 2, 3) = (2, 3, 2):

infusion2(T ′, S ′) =
2 3

1 4 6
5 7

sstdν′−→
1 2′

1 2′ 3′

2 3
= η2,3(T ).

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

std(T ) η3,7(std(T ))

Figure 6.8: A growth diagram to compute η3,7 on a skew-shaped tableau. A diagram to compute

q3,7 on straight-shaped shifted standard tableaux is obtained by removing the pink sections.

6.3.1 Another proof of Theorem 4.1

.

The shifted growth diagrams may be used to obtain an alternative proof to Theorem 4.1,

which then implies Theorem 4.3 and Theorem 5.25, similarly to the one presented by Chmutov,

Glick and Pylyavskyy [10, Theorem 1.4]. The proof is done for shifted standard tableaux, and

may be generalized for the semistandard case using (6.12). More precisely, we will consider
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Figure 6.9: A growth diagram with input T 1,j , a shifted standard tableau of shape λ/µ, which

is encoded on the segment [ps], and having η1,j(T
1,j) encoded on segment [wz], with S being

any standard tableau of shape µ. By construction, [vs] = [vz]. The corresponding diagram with

primed vertices has η1,jηk,lη1,j(T
1,j) on the segment [p′s′] and ηk,lη1,j(T

1,j) on [w′z′].

the diagram in Figure 6.9, to prove that the partial Schützenberger involutions satisfy the third

cactus relation (recall Definition 1.1),

ηi,jηk,l = ηi+j−l,i+j−kηi,j, for [k, l] ⊆ [i, j],

when acting on shifted standard tableaux.

Proof of Theorem 4.1 [54, Theorem 5.7]. The relations η2
i,j = 1 and ηi,jηk,l = ηk,lηi,j , for

[k, l] ∩ [i, j] = ∅, are trivial, thus it remains to show that ηi,jηk,l = ηi+j−l,i+j−kηi,j , for

[k, l] ⊆ [i, j]. By Lemma 4.4, it suffices to show that

η1,jηk,l = ηj−l+1,j−k+1η1,j,

for any [k, l] ⊆ [1, j]. We will now prove this relation, using growth diagrams. Let T be a

standard tableau of shape λ/µ, and consider the diagram in Figure 6.9, where the segment [ap]

encodes a fixed standard tableau S of shape µ, [ps] encodes T 1,j , [av] encodes rect(T 1,j) =

(rect(T ))1,j , [dv] encodes η1,j(rect(T
1,j)) and [wz] encodes η1,j(T

1,j). Consider also another

growth diagram similar to this one, with the vertices labelled as {a′, b′, c′, . . .}, with the segment

[a′p′] encoding the same S as before, [p′s′] encoding T ′ := η1,jηk,lη1,j(T
1,j) and [w′z′] encoding

η1,j(T
′) = ηk,lηi,j(T

1,j). The proof then mimics the one in [10, Theorem 1.4]. Since [ps] and
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[p′s′] encode T 1,j and η1,jηk,lη1,j(T
1,j), respectively, we have

[av] = rect(T 1,j)

[a′v′] = rect(η1,jηk,lη1,j(T
1,j)).

(6.14)

Taking the shifted evacuation growth diagrams, for η1,j , with the inputs in (6.14), which corre-

spond to η1,j , and considering that the operators ηi,j are coplactic, we have

[dv] = η1,j(rect(T
1,j))

[d′v′] = η1,j(rect(η1,jηk,lη1,j(T
1,j))) = ηk,lη1,j(rect(T

1,j)).
(6.15)

Thus, in particular, [d′v′] = ηk,l[dv]. Since [dv] = [dh]t [hu]t [uv] and [d′v′] = [d′h′]t [h′u′]t
[u′v′], by definition of ηk,l we have

ηk,l([dv]) = [dh] t η([hu]) t [uv] = [d′v′],

and consequently

[dh] = [d′h′], [uv] = [u′v′],

[hu] = η([h′u′])
(6.16)

Since [dh] = [d′h′], taking the shifted evacuation growth diagrams on those inputs yield

[ch] = [c′h′]. (6.17)

From (6.16) and (6.17), considering shifted infusion growth diagrams, we have

[ce] = infusion1([ch], [hu]) = infusion1([c′h′], η([h′u′]))

and by Corollary 2.42,

infusion1([c′h′], η([h′u′])) = η(infusion1([c′h′], [h′u′])) = η([c′e′])

and thus

[ce] = η([c′e′]). (6.18)

Considering the same shifted infusion growth diagrams, we have

[eu] = infusion2([ch], [hu]) = infusion2([c′h′], η([h′u′])),

and by Proposition 2.41, as [h′u′] is shifted dual equivalent to η([h′u′]), we have

infusion2([c′h′], η([h′u′])) = infusion2([c′h′], [h′u′]) = [e′u′],
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and thus

[eu] = [e′u′]. (6.19)

Considering now the shifted infusion growth diagrams on inputs [eu] and [uv], and on inputs

[e′u′] and [u′v′], respectively, from (6.16) and (6.19), we have

[eg] = [e′g′], [gv] = [g′v′]. (6.20)

Then, considering the shifted evacuation growth diagrams, on inputs [be] and [b′e′], respectively,

we have, from (6.18),

η([be]) = [ce] = η([c′e′]) = [b′e′],

and thus

η([be]) = [b′e′]. (6.21)

We now consider the shifted infusion growth diagrams on inputs [be] and [eg], and on inputs

[b′e′] and [e′g′], respectively. Then, by Proposition 2.41, since η([be]) is shifted dual equivalent

to [be], we have

[bf ] = infusion1([be], [eg]) = infusion1(η([be]), [eg]),

and by (6.20) and (6.21),

infusion1(η([be]), [eg]) = infusion1([b′e′], [e′g′]) = [b′f ′],

and consequently

[bf ] = [b′f ′]. (6.22)

Finally, taking the shifted evacuation growth diagram with inputs in (6.22), we get

[af ] = [a′f ′]. (6.23)

By (6.20) and (6.22), we have [gv] = [g′v′] and [af ] = [a′f ′]. Thus, rect(T 1,j) agrees with

rect(η1,jηk,lη1,j(T
1,j)) on the letters outside of [j − l + 1, j − k + 1] and may differ on the

segments [fg] and [f ′g′]. Considering the shifted infusion diagram on inputs [be] and [eg], and

on inputs [b′e′] and [e′g′], respectively, by (6.20) and (6.21), we have

[f ′g′] = infusion2([b′e′], [e′g′]) = infusion2(η([be]), [eg]),

and by Corollary 2.42, we have

infusion2(η([be]), [eg]) = η(infusion2([be], [eg])) = η([fg]),
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and thus,

η([fg]) = [f ′g′]. (6.24)

Then, from the definition of ηj−l+1,j−k+1 and the fact that it is coplactic, we have

rect(η1,jηk,lη1,j(T
1,j)) = [a′v′] = [a′f ′] t [f ′g′] t [g′v′]

= [af ] t η([fg]) t [gv] by (6.20), (6.23) and (6.24)

= ηj−l+1,j−k+1([av])

= ηj−l+1,j−k+1(rect(T 1,j))

= rect(ηj−l+1,j−k+1(T 1,j)).

It remains to show that the segments [ps] and [p′s′] differ only on [qr] and [q′r′], and that

η([qr]) = [q′r′]. We have [pq] = T 1,j−l. By the definition η1,jηk,lη1,j and since j − l ≤ j,

we have

[p′q′] = (η1,jηk,lη1,j(T
1,j))1,j−l

= η1,jηk,lη1,j(T
1,j−l)

= η1,jηk,lη1,j([pq]).

We recall that, by construction, [ap] = [a′p′] = S. Since the partial Schützenberger involu-

tions preserve shifted dual equivalence, [pq] is shifted dual equivalent to [p′q′], and thus, by

Proposition 2.41, we have

[fq] = infusion2([ap], [pq]) = infusion2([a′p′], [p′q′]) = [f ′q′],

that is,

[fq] = [f ′q′]. (6.25)

Then, by (6.23) and (6.25),

[pq] = infusion2([af ], [fq]) = infusion2([a′f ′], [f ′q′]) = [p′q′],

and thus

[pq] = [p′q′]. (6.26)

Since [p′s′] = η1,jηk,lη1,j(T
1,j) = η1,jηk,lη1,j([ps]), and the partial Schützenberger involutions

preserve shifted dual equivalence, then [ps] is shifted dual equivalent to [p′s′]. Then, Proposition

2.41 and the fact that [ap] = [a′p′] ensure that

[vs] = infusion2([ap], [ps]) = infusion2([a′p′], [p′s′]) = [v′s′],
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that is,

[vs] = [v′s′]. (6.27)

Then, by (6.20) and (6.27),

[rs] = infusion2([gv], [vs]) = infusion2([g′v′], [v′s′]) = [r′s′]

and then,

[rs] = [r′s′]. (6.28)

From (6.20) and (6.27) we also conclude that

[gr] = infusion1([gv], [vs]) = infusion1([g′v′], [v′s′]) = [g′r′]

and thus, by (6.20), we have

[er] = [eq] t [gr] = [e′q′] t [g′r′] = [e′r′]. (6.29)

Then, by (6.21) and (6.29), we have

[q′r′] = infusion2([b′e′], [e′r′]) = infusion2(η([be]), [er])

and by Corollary 2.42,

infusion2(η([be]), [er]) = η(infusion2([be], [er])) = η([qr]),

and then

η([qr]) = [q′r′]. (6.30)

To conclude the proof, we remark that by the definition of ηj−l+1,j−k+1, we have

η1,jηk,lη1,j(T
1,j) = [p′s′] = [p′q′] t [q′r′] t [r′s′]

= [pq] t η([qr]) t [rs] by (6.26), (6.28) and (6.30)

= ηj−l+1,j−k+1([ps])

= ηj−l+1,j−k+1(T 1,j).
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FINAL REMARKS

Shifted crystal reflection operators. We have seen that the shifted crystal reflection operators

σi do not need to satisfy the braid relations of Sn, (σiσi+1)3 = 1. As a consequence, the action φ

of the cactus group on ShST(λ/µ, n) (Theorem 4.1) does not factor through the braid relations,

i.e., the subgroup {(si,i+1, si+1,i+2)3m, i ∈ [n− 2],m ∈ Z} is not contained in kerφ. As stated

in Remark 3.33, the group Gn := 〈σ1, . . . , σn−1〉 is not isomorphic to Sn. In the future, it

would be interesting to determine if other relations are satisfied here, besides the ones listed in

Proposition 3.29. It is also an open question in type A whether 〈ς1, . . . , ςn−1〉 is isomorphic to

Sn or whether there are other relations satisfied by the crystal reflection operators.

Proposition 5.22 shows that a possible relation of the form (σiσi+1)m = 1, for m > 3, is

equivalent to a relation (t1t2)2m = 1 satisfied by the shifted Bender–Knuth operators.

Shifted Berenstein–Kirillov group. Berenstein and Kirillov have also showed in [8] that

the Berenstein–Kirillov group is isomorphic to a quotient of the cactus group. This was done

independently of the work of Chmutov, Glick and Pylyavskyy [10]. Moreover, the Berenstein–

Kirillov group B̃Kn considered in [8] differs from the one considered here, being defined as the

free group generated by t1, . . . , tn−1, subject only to the relations

1. (ti)
2 = 1,

2. (t1t2)6 = 1,

3. titj = tjti, for |i− j| > 1,

4. (t1qi)
4 = 1, for i > 2.

Thus, besides concluding that B̃Kn is isomorphic to a quotient Jn/ ker φ̃ of the cactus group,

where φ̃ is an epimorphism from Jn to B̃Kn, this quotient is completely described as ker φ̃ is
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{(s1,2s1,3)6m,m ∈ Z}, the normal subgroup of Jn generated by (s1,2s1,3)6. For the Berenstein–

Kirillov group presented in [10], considering ψ : si,j 7→ qi,j , one concludes that kerψ, must

contain {(s1,2s1,3)6m,m ∈ Z}, as it follows from a relation holding on BKn that is not equiva-

lent to any relation of the cactus group. But since a comprehensive set of relations for BKn is

not known, it could be the case that there would be other relations not following from the cactus

group.

For the shifted case, we have seen that the relation (t1t2)6 = 1 does not need to hold.

However, fixing a shifted tableau crystal ShST(ν, n), which is finite, there must exist some

m > 6 such that (t1t2)m(T ) = T , for all T ∈ ShST(ν, n). Previous computations suggested

that if there exists r ∈ Z>0 such that (σ1σ2)r = 1, then r ≥ 90 [54, Appendix A]. Thus, if there

exists m such that (t1t1)m = 1, for any shape ν, Proposition 5.22 implies that m ≥ 180. We do

not know if there exists such m valid for any shifted tableau crystal.

Thus, considering the epimorphism ψ between Jn and SBKn of Theorem 5.25, an explicit

element of the kernel kerψ is not known, although we can state that the kernel does not contain

{(s1,2s1,3)6m,m ∈ Z}. Proposition 5.22 shows that the study of kerψ is closely related to the

study of the action of the shifted crystal reflection operators σi on ShST(ν, n). For future work,

it would also be interesting to find whether there are other relations that are satisfied in SBKn
that do not follow from the cactus group relations. We refer to [6, Problem 1.7] for similar

problems.
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APPENDIX A

ADDITIONAL EXAMPLES

In this appendix we present some additional examples of the shifted tableau crystal ShST(ν, n),

for n = 3. Shifted tableaux will be enumerated according to their list enumeration in SageMath

(with a slight modification so that the enumeration starts with 1). We remark the shifted tableaux

used in SageMath are the ones generating Schur P -functions [1], not the ones in [23]. We recall

that these shifted tableaux are not required to be in canonical form and there are no primed

entries on the main diagonal. However, we remark that both definitions coincide for shifted

tableaux of straight shape ν that are filled with [n]′, where n := `(ν), as this ensures that the

first occurrence of each letter i or i′ appears on the main diagonal, thus being unprimed in

canonical form. For instance, the tableau T ∈ ShST(ν, 3), with ν = (5, 3, 1) (see Figure A.2),

in Example 3.31 is T61.

We have seen in Example 3.31 that (σ1σ2)3(T61) 6= T61. However, we have that (σ1σ2)9(T61) =

T61. If we set mi := min{m : (σ1σ2)m(Ti) = Ti}, for i ∈ [|ShST(ν, 3)|] = [64], then, we have

the following in ShST(ν, n):

mi =


3 for i ∈ {1, 2, 3, 9, 10, 11, 15, 18, 19, 22, 23, 27, 28, 31, 37, 38, 44, 47}

5 for i ∈ {6, 13, 25, 33, 42, 50, 54, 58, 62, 64}

9 otherwise

Therefore, taking m = lcm(3, 5, 9) = 45, we have that (σ1σ2)m(T ) = T , for all T ∈
ShST(ν1, 3).

Similarly, for ν2 = (5, 2, 1) (see Figure A.1), we have that, for all i ∈ [|ShST(ν2, 3)|] = [48],
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mi =


3 for i ∈ {1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14, 15, 16, 19, 20,

21, 23, 24, 25, 26, 30, 31, 32, 33, 35, 36, 39, 40, 42, 45}

9 otherwise

Hence, putting m = lcm(3, 9) = 9, we have that (σ1σ2)m(T ) = T for all T ∈ ShST(ν2, 3).

The following table summarizes these and other computations we did. We remark that Lemma

3.38 ensures that the effect of σi on rect(T i,i+1) (which has, at most, two rows) does not depend

on the first diagonals, except for one, with two elements. Thus, it suffices to check strict par-

titions whose last part is equal to one. This means that the results obtained for (3, 2, 1) are the

same for (3 + k, 2 + k, 1 + k), for k ≥ 1.

ν |ShST(ν, 3)|
least m such that (σ1σ2)m(T ) = T

for all T ∈ ShST(ν, 3)

(3, 2, 1) 8 3

(4, 2, 1) 24 3

(4, 3, 1) 24 3

(5, 2, 1) 48 9

(5, 3, 1) 64 45

(5, 4, 1) 48 9

(6, 2, 1) 80 18

(6, 3, 1) 120 18

(6, 4, 1) 120 18

Given ν a strict partition, since ShST(ν, 3) is finite, there exists a m > 3 such that

(σ1σ2)m(T ) = T,

for all T ∈ ShST(ν, 3). These computations show that, if there exits an m such that (σ1σ2)m =

1, for any ν, then it should be greater or equal to lcm(3, 9, 18, 45) = 90. However, an upper

bound for any ν is not known.
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12

15 32 11

19 39 14 10 31 45

24 9 44 18 29 38 48 13 30

7 42 23 35 8 43 17 28 37 47

4 6 41 27 46 22 34 16 36

3 26 5 40 21 33

2 25 20

1

Figure A.1: Shifted tableau crystal graph ShST(ν, 3), with ν = (5, 2, 1). The operators F1, F
′
1

are in red and the F2, F
′
2 are in blue. Vertices with the same weight are grouped together.
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11

18 47 10 37

27 17 36 8 60 46 52 9

14 55 34 63 26 43 16 7 35 45 59 51

22 31 6 58 13 54 25 50 33 62 42 64 15 44

5 49 21 40 30 57 12 32 53 24 61 41

3 4 48 20 39 29 56 23

2 38 19 28

1

Figure A.2: Shifted tableau crystal graph ShST(ν, 3), with ν = (5, 3, 1). The operators F1, F
′
1

are in red and the F2, F
′
2 are in blue. Vertices with the same weight are grouped together.
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Knuth equivalence, 23
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power sum symmetric function, 2

primed alphabet, 15

primed lowering operator, 39

primed raising operator, 39

promotion, 83

reading word, 16

column, 25

rectification, 19

reversal, 26

ShST(λ/µ, n), 17

Schützenberger–Lusztig involution, 52

partial, 56

Schur P -function, 7

Schur Q-function, 7

Schur function, 2

Schur polynomial, 3

seminormal crystal, 4

semistandardization, 19

shape chain, 95

shifted Bender–Knuth involution, 81

shifted Berenstein–Kirillov group, 90

shifted LR coefficient, 8, 20

shifted RSK, 22

shifted shape, 15

skew, 15

straight, 15

shifted staircase shape, 15

shifted switches, 29

shifted tableau, 16

complement, 25

detached, 65
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extension, 18

semistandard, 16

standard, 16

shifted tableau crystal, 44

shifted tableau switching, 29

on a pair of tableaux, 31

on a perforated pair, 29

standardization, 19
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substring, 41

critical, 41

symmetric function, 1

symmetric group, 17

unprimed lowering operator, 42

unprimed raising operator, 42

weight, 16

of a tableau, 16

of a word, 16

word, 16

ballot, 20

lattice, 20

representative, 17

Worley–Sagan insertion, 21

non-Schensted, 21

Schensted, 21

Yamanouchi tableau, 20

Young tableau, 2

semistandard, 2

128


	Acknowledgements
	Abstract
	Resumo alargado
	Symbols and notations
	List of Figures
	Contents
	Introduction
	Shifted tableaux and their operations
	Words and shifted tableaux
	Shifted jeu de taquin and Worley–Sagan insertion
	Shifted Knuth and dual equivalences
	Shifted evacuation and reversal
	Shifted tableau switching
	Type C infusion
	Shifted evacuation via tableau switching


	A crystal-like structure on ShST(/)
	Shifted tableau crystals
	Decomposition into i-strings

	The Schützenberger–Lusztig involution
	The partial Schützenberger involutions

	The shifted reflection crystal operators
	Proof of Theorem 3.30


	An action of the cactus group
	Proof of Theorem 4.1

	A shifted Berenstein–Kirillov group
	Shifted Bender–Knuth involutions
	The Berenstein–Kirillov group
	A shifted Berenstein–Kirillov group and a cactus group action

	Shifted growth diagrams
	Shifted jeu de taquin and infusion
	Evacuation and reversal
	Partial Schützenberger involutions
	Another proof of Theorem 4.1


	Final remarks
	Additional examples
	Bibliography
	Index

