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À Professora Doutora Solange Gil, por me ter dado a possibilidade de aplicar as minhas

metodologias num conjunto de dados gentilmente cedido por ela e pela sua equipa que levaram
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À Escola Superior de Gestão e Tecnologia de Santarém (ESGTS) e ao Instituto Superior

de Engenharia de Lisboa (ISEL) pelo apoio institucional. Em particular, agradecer aos coorde-
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Abstract

Serological data can be described as a mixture of distributions, with each mixture compo-

nent representing a serological population (e.g. seronegative and seropositive population). In

seroepidemiological studies of infectious diseases, mixture models with Normal distribution are

mostly used, which implies that the components that make up the mixture are approximately

symmetric. However, it has been observed that, especially in seropositive populations, it is

possible to observe skewness to the left, leading to the violation of the assumption of normal-

ity underlying the data. Thus, and in order to capture the possible skewness in serological

data, the family of Scale Mixtures of Skew-Normal (SMSN) distributions is used, of which the

Skew-Normal distribution and the Skew-t distribution are particular cases. In the case of the

Skew-t distribution, being a heavy-tailed distribution, it allows capturing the possible existence

of outliers.

In addition to the models used to describe the behavior of the serological data, the issue

of estimating the cutoff point for classifying an individual as seropositive is explored. In this

sense, two perspectives on the problem are presented: one in which the true state of the disease

is unknown; another in which this state is known a priori.

The generalization of the use of a cutoff point without statistical methodology to support

the estimation of this point may have consequences in the seroprevalence of a population,

that is, in the proportion of seropositive individuals. Thus, three methods based on mixture

models are proposed in this work for estimating the cutoff point when the true infection status

is unknown.

Keywords: serology; finite mixture models; skew-normal distribution; skew-t distribution;

cutoff point.
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Resumo

A serologia é a área cientı́fica que se dedica ao estudo do soro sanguı́neo, nomeadamente

à identificação de anticorpos no sangue, permitindo reconstruir o historial de infeção de um

indivı́duo.

Os dados serológicos podem ser modelados por uma mistura finita de distribuições, sendo

que cada componente da mistura representa uma população serológica (p.ex. população

seronegativa e seropositiva).

Os modelos de mistura finitos são modelos bastante flexı́veis, utilizados para modelar dados

de populações heterogéneas, permitindo captar caracterı́sticas como multimodalidade, assime-

tria e curtose. O racional por detrás destes modelos baseia-se na consideração de subpopulações

em número finito e em diferentes proporções.

O método da máxima verosimilhança com recurso ao algoritmo de expectação-maximização

(EM) é o método usual para a estimação dos parâmetros do modelo.

Em estudos seroepidemiológicos de doenças infecciosas são utilizados maioritariamente

modelos de mistura de componentes com distribuição normal, o que implica que as mesmas

sejam simétricas. No entanto, tem sido possı́vel observar assimetrias à esquerda, sobretudo nas

populações seropositivas, levando a que o pressuposto da normalidade dos modelos de mistura

gaussianos seja violado.

Desta forma, e de modo a captar o possı́vel enviesamento em dados serológicos, con-

sideramos aqui a famı́lia de distribuições baseadas em misturas do parâmetro de escala da

distribuição normal-assimétrica, das quais a distribuição normal-assimétrica e a distribuição

t de Student assimétrica são casos particulares. Esta famı́lia de distribuições foi inicialmente

discutida por Andrews e Mallows (1974), tendo o seu trabalho sido estendido por Branco e

Dey (2001). Desta forma, considerando modelos de mistura baseados em distribuições da

famı́lia de misturas do parâmetro de escala da distribuição normal-assimétrica, tem-se que para

a estimação dos parâmetros é utilizada uma variante do algoritmo EM, designado por algoritmo
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de expectação-maximização condicional (ECM). Esta versão do método consiste em particionar

o passo M em sub-passos, condicional aos valores dos parâmetros do passo anterior. Trata-se

de uma alternativa que simplifica o passo M do tradicional algoritmo EM quando é necessário

proceder à estimação de muitos parâmetros, permitindo reduzir o tempo computacional para a

produção das estimativas dos mesmos.

Tal como foi referido anteriormente, a distribuição t de Student assimétrica é um caso par-

ticular da famı́lia de misturas do parâmetro de escala da distribuição normal-assimétrica, sendo

esta uma distribuição de caudas pesadas, que permite captar a possı́vel existência de outliers e

modelar convenientemente possı́veis observações extremas. Até ao momento este é um trabalho

pioneiro na aplicação desta famı́lia de distribuições a dados serológicos.

Para ilustrar a aplicação destes modelos foram utilizados dados de anticorpos contra sete

herpesvı́rus (citomegalovirus (CMV), Epstein-Barr antigénio EBNA1 (EBV-EBNA1), Epstein-

Barr antigénio VCA (EBV-VCA), vı́rus do herpes humano tipo 6 (HHV-6), herpes simplex tipo

1 (HSV1), herpes simplex tipo 2 (HSV2) e vı́rus da varicela zoster (VZV)), disponı́veis no

banco de dados de sı́ndrome de fadiga crónica do Reino Unido. Foram ainda analisados da-

dos de anticorpos contra o vı́rus SARS-CoV-2 (Severe acute respiratory syndrome coronavirus

2) resultantes da análise de quatro antigénios (RBD – glycoprotein receptor-binding domain;

Stri — S trimeric spike protein; S1 — spike glycoprotein S1 domain; S2 – SARS-CoV-2 spike

glycoprotein S2 domain), disponibilizados por Rosado et al., 2020.

No caso do primeiro conjunto de dados, pretendeu-se averiguar a possı́vel existência de

relação entre a exposição a um herpesvı́rus e a manifestação da condição, uma vez que até ao

momento a etiologia da sı́ndrome de fadiga crónica é desconhecida. Numa primeira fase, foram

ajustados aos dados de anticorpos os modelos baseados nas distribuições normal-assimétrica e

t de Student assimétrica, bem como os tradicionais modelos simétricos (Normal e t de Student)

para comparação. Observou-se então que os modelos baseados em distribuições assimétricas

apresentam melhor qualidade de ajustamento. Além disso, como a exposição do indivı́duo ao

vı́rus não era conhecida a priori, foi possı́vel testar o número adequado de componentes do

modelo de mistura através de bootstrap paramétrico. Relativamente aos vı́rus para os quais as

infeções ocorrem maioritariamente na infância, observou-se apenas uma população serológica

(seropositiva), como é o caso dos vı́rus HHV-6 e VZV. Para o vı́rus HSV1, verificou-se que o

modelo que melhor se ajusta aos dados é o modelo baseado na distribuição normal-assimétrica

com três componentes. Neste caso, a componente intermédia foi interpretada como sendo cor-
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respondente a uma subpopulação seronegativa, tendo em conta que a distribuição é assimétrica

à direita e sendo esta a interpretação dada a populações seronegativas, segundo estudos anteri-

ores. Para os restantes vı́rus, foram consideradas duas componentes serológicas (i.e, populações

seronegativas e seropositivas).

No caso dos dados relativos ao vı́rus SARS-CoV-2, dado que o verdadeiro estado de infeção

é conhecido a priori, considerou-se o ajustamento de um modelo de mistura com duas compo-

nentes (seropositiva e seronegativa, respetivamente).

Além dos modelos utilizados para descrever o comportamentos deste tipo de dados, é explo-

rada a questão da estimação do ponto de corte para proceder à classificação do estado serológico

de um indivı́duo, isto é, proceder à categorização da concentração de anticorpos. Note-se que,

no caso em que o verdadeiro estado de infeção não é conhecido (caso do conjunto de dados

de sı́ndrome de fadiga crónica), não é possı́vel utilizar métodos de determinação do ponto de

corte, como, por exemplo, métodos baseados na curva ROC. Nesse sentido, são apresentadas

duas perspetivas sobre o problema: uma em que o verdadeiro estado de infeção é desconhecido;

outra em que esse estado é conhecido a priori.

No primeiro cenário, o procedimento usual (tendo em conta que na maioria dos casos

é assumida a normalidade dos dados), é utilizar a regra dos 3-σ , isto é, selecciona-se uma

população de controlo (seronegativa) e procede-se ao cálculo da média mais 3 desvios padrão.

A generalização da utilização de um ponto de corte sem metodologia estatı́stica que sustente

a sua estimação pode ter consequências nas conclusões acerca da seroprevalência de uma

população, isto é, da proporção de indı́viduos seropositivos. Assim, são propostos neste tra-

balho três métodos baseados em modelos de mistura para a estimação do ponto de corte, apli-

cados quando o verdadeiro estado de infeção é desconhecido: 1) determinação do quantil de

probabilidade 99.9% da população seronegativa; 2) determinação do mı́nimo das densidades

do modelo de mistura; 3) determinação do ponto para o qual é fixada a priori em 90% a prob-

abilidade condicional de classificação do indivı́duo como seropositivo dada a quantidade de

anticorpo. Os métodos propostos foram validados através da sua aplicação ao conjunto de da-

dos de anticorpos contra o vı́rus SARS-CoV-2, onde o verdadeiro estado de infeção é conhecido,

procedendo-se ao cálculo da sensibilidade, especificidade e acurácia. Foi ainda realizado um

estudo de simulação aplicado aos dados de anticorpos contra o vı́rus SARS-CoV-2, com o obje-

tivo de avaliar a capacidade dos modelos para identificar as respetivas populações serológicas,

variando a dimensão da amostra (100,500 e 1000) e a proporção de indivı́duos seronegativos
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(30%,60% e 90%) e seropositivos (70%,40% e 10%). Os resultados obtidos revelam algumas

fragilidades dos modelos na identificação das respetivas populações serológicas, considerando

pequenas amostras e valores extremos da proporção de indivı́duos seronegativos e seropositivos

(p.ex. 30% e 90%), alertando para a possı́vel existência de falsos positivos e/ou falsos negativos

nestas situações. Além deste aspeto, estes resultados também permitem avaliar a qualidade dos

programas de vacinação aplicados, bem como o tempo de imunização da população.

Com este trabalho pretende-se fornecer novas ferramentas para a análise e tratamento

de dados serológicos, sendo uma alternativa a metodologias standard, pouco especı́ficas,

utilizadas até aqui para modelação e estimação de ponto de corte.

Palavras-chave: serologia; modelos de mistura finitos; distribuição normal-assimétrica;

distribuição t de Student assimétrica; ponto de corte.
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Chapter 1

Introduction

To introduce the theme of this doctoral thesis, it is inevitable to mention the year 2020, when

the country and the world were ravaged by the COVID-19 pandemic that changed the lives of

millions of people since the subject of this doctoral thesis is the analysis of serological data.

The words serology, antibodies, seropositive, seroprevalence, among others, have taken over

everyday conversations. The scientific community had to mobilize to provide answers on how

to act against a virus that was totally unknown until then. Once again, Science put itself at the

service of society, revealing its power in knowing the unknown.

When this doctoral work began we were far from imagining what the future would bring,

more specifically in the application of this doctoral work in a pandemic scenario.

The main goal of this work was to use mixture models based on distributions from the

Scale Mixtures of Skew-Normal (SMSN) distributions family to model serological data. Also,

we aimed to answer the problem of estimating the cutoff point for classifying an individual

as seropositive. Currently, and according to the knowledge we have so far, many laboratories

manufacture serological tests using a general criterion for estimating the cutoff point, the most

used being the mean plus three standard deviations. Thus, alternative methods to estimate the

cutoff point are proposed throughout this work.

In order for the reader to become familiar with the type of data, some basic concepts

on serological data, essential for understanding the following chapters, will be presented

throughout this chapter. More specifically, the concept of antibody, its types and functions

in the immune system are introduced. Some techniques for obtaining serological data are
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1. INTRODUCTION

also presented, namely laboratory techniques such as enzyme-linked immunoabsorbent assays

(ELISA) that are the most common in this type of analysis.

In chapter 2 we present a brief description of the statistical methodology used in this

work. It starts with a characterization of the Skew-Normal and Skew-t distributions that are the

distributions used in this work. This distributions are part of the SMSN distributions having the

particularity of incorporating an additional parameter to the traditional symmetric distributions

that allows to control the skewness of the data. Next, some basic concepts of mixture models

are introduced. The basic assumption of these models is that data is composed of different

latent populations, each one representing a distinct serological state.

Chapters 3, 4 and 5 concern applications to real data of the methodologies used throughout

this work. In particular, chapters 3 and 4 are already under peer review for possible publication.

In chapter 3 we used mixture models based on SMSN distributions to a data set related to

antibodies against 6 different common herpesviruses in Myalgic Encephalomyelitis/Chronic

Fatigue Syndrome (ME/CFS) from the UK biobank. In addition to the previously mentioned

models we explore the definition of an individual’s serological status. An individual is classi-

fied as seropositive by performing a serological test for which an antibody value greater than

a certain value c causes them to be classified as seropositive, otherwise they are classified as

seronegative. The usual interpretation is that individuals are seropositive after a recent infection

whilst seronegative individuals reflect either absence of any infection or an infection that oc-

curred a long time ago. For a given infectious agent, there are several criteria to define a cutoff

for seropositivity.

In the most pragmatic approach, one uses a general cutoff advised by the manufacturer of

the lab reagents used for antibody quantification. However, it is unclear whether such cutoff

holds true in general or whether its determination followed any statistical rationale.

In order to circumvent this scourge, three methods are proposed for estimating the cutoff point

for defining an individual’s serological status. Note that the motivation to define a method

for estimating the cutoff point arises in cases where the true infection status is not known.

Otherwise, there are several methods in the literature to determine an optimal cutoff point, the

best known being the Receiver Operating Characteristic (ROC) curve.

Thus, in the application chapter 3 we also explore the cutoff point estimation problem for the

2
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case where the true infection status of the individuals is unknown, since ME/CFS is not even

recognized as a disease by the World Health Organization (WHO).

Whereas viruses can be disease-causing (note that the human immunodeficiency virus

(HIV) causes the acquired immunodeficiency syndrome (AIDS)), and the ME/CFS is a

condition with unknown etiology, in chapter 4 we conducted an association study in order to

understand if is possible to establish an association between ME/CFS and chronic herpesviruses

infections. Basically, it is intended to evaluate the impact of the choice of cutoff point on the

presence of a clinical condition.

In chapter 5 we explore the definition of an individual serological status from the per-

spective of knowing the true infection status. Antibody data against Severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) was used for this purpose and are freely avaliable

at https://github.com/MWhite-InstitutPasteur/SARSCoV2SeroDXphase2. Note that since

we know the true infection status of the individual it is possible to evaluate the quality of

the methods established in chapter 3 though sensitivity, specificity, and accuracy, as well as

compared to other methods that are already well described in the literature, such as the ROC

curve-based method.

Chapter 6 presents the general conclusions of this work.

Finally, the bibliography and some appendices are presented, namely some supplementary

material from chapter 4, papers presented in conferences and collaborations with other institu-

tions where the methods developed here were applied.

1.1 Basic concepts in Human serology1

Human serology is the area dedicated to the study of serum or blood plasma. More specif-

ically, serology is used to identify antibodies against different microorganisms that invade the

human body, providing concrete answers on the epidemiology of specific diseases, as well as

allowing the evaluation of the effectiveness of immunization / vaccination programs. Basically,

1Main reference: The Immunological Basis for Immunization Series. Module 1: General Immunology. Global
Programme for Vaccines and Immunization. World Health Organization
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serology allows the reconstruction of an individual’s infection history.

Daily, the human being comes into contact with pathogens responsible for diseases such as

viruses, bacteria, fungi and parasites, and the human immune system is responsible for protec-

tion against these pathogens. The defense organism’s function is immunity, which is classified

as innate or non-specific and adaptive.

Innate immunity is always present in the body, acting in a similar way to any exposure to a

foreign agent. Adaptive immunity, as the name implies, is specific / adapted / personalized to a

given pathogen.

The human immune system is a very complex system in its own right, and it is well known

that the most important cellular component in this system is leukocyte cells, also called leuko-

cytes or white blood cells. Leukocytes are produced in bone marrow and are subsequently

released into the blood and transported throughout the body. We can say that these are the

soldiers who are on duty to protect against the enemy.

From the moment a certain pathogen invades the organism, we enter the first phase of the

immune system’s action through innate immunity. This includes the skin, mucous membranes,

hair and other mechanical factors, which prevent the entry of the pathogen or remove it from

the body surface. If the pathogen crosses these barriers, then you will encounter another bio-

chemical one where there are chemical mediators such as saliva, sweat, tears and hydrochloric

acid in the stomach that try to prevent the pathogen from entering the cells. Once inside the

organism and in the last line of defense of the innate system there are several effector cells and

mechanisms that try to hinder or destroy the pathogen, including cytokines and cells such as

natural killers, macrophages and neutrophils.

When the innate responses are not sufficient to remove the pathogen, the adaptive immunity

is then activated. This is the stage where the production of antibodies by lymphocytes occurs.

The activity of the adaptive immune system is ensured by two types of lymphocytes: B lym-

phocytes or B cells and T lymphocytes or T cells. B cells are responsible for the production

of antibodies, and T cells are divided into two main sub-groups: CD8+ T cells which kill cells

infected with a pathogen; and CD4+ T cells which help coordinate the response of both CD8+

T cells and B cells.

The antibodies produced by B cells are nothing more than glycoproteins2, also called im-

2Glycoproteins are proteins containing glycans attached to amino acid side chains. Glycans are oligosaccha-
ride chains; which are saccharide polymers, that can attach to either lipids (glycolipids) or amino acids (glyco-
proteins). Typically, these bonds are formed through a process called glycosylation. For more information see
https://www.news-medical.net/health/What-is-a-Glycoprotein.aspx
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munoglobulins (Ig) and their function is to neutralize and prevent the normal functioning of

pathogens. Each pathogen contains antigens to which antibodies bind via receptors. These

receptors are part of the natural structure of the antibody and their shape is adapted to the

antigenic determinant or epitope3 of the antigen. That is why it is often said that antibodies

specific to a particular antigen are produced. Basically, it is possible to make the analogy that

the relationship between antibody and antigen is like a key and lock.

Schematically,

Figure 1.1: Antibody-antigen structure (Salazar et al., 2017)

After the first contact with a particular antigen, the adaptive immune system learns to deal

with that pathogen by memorizing it. This property of the system means that successive in-

fections caused by the same pathogen are treated more quickly and efficiently by the adaptive

immune system.

For the destruction of an antigen to be effective, there must be a great affinity between the

antibody that binds to the different epitopes that make up an antigen. In this way, it is necessary

that the B cells producing the antibodies expand in order to guarantee a sufficient number to

fight the respective antigen. Due to the mass production of antibodies, there are those that will

serve to eliminate the antigen and there will be others that will continue to circulate in the body

acting on future infections.

Depending on their function, antibodies can belong to five classes, namely IgA, IgD, IgE,

IgG and IgM.

IgG are the main immunoglobulins present in the bloodstream and represent about 80 %

of the total immunoglobulins. These are responsible for containment of viruses and bacteria,

3An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune
system, specifically by antibodies, B cells, or T cells. The epitope is the specific piece of the antigen to which an
antibody binds.
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Figure 1.2: Antibody mediated-immunity (Source: https://courses.lumenlearning.com/cuny-kbcc-
microbiologyhd/chapter/b-lymphocytes-and-humoral-immunity/)

helping in phagocytosis and bacterial lysis4. IgGs are also able to pass through the maternal

placenta. IgMs are confined to the bloodstream and are unable to pass through the maternal

placenta. IgA is the second most abundant immunoglobulin in serum. It is present in the

secretions of the gastrointestinal and respiratory tracts as well as in colostrum and breast milk.

Regarding IgD, its function is not yet fully known.

In the next section we explore the behavior of the most important immunoglobulins in the

immune response, IgG and IgM depending on the type of immune response.

1.2 Primary and secondary immune response

As mentioned above, the most important immunoglobulins in the immune response are IgG

and IgM.
4Lysis is the breaking down of the membrane of a cell, often by viral, enzymic, or osmotic mechanisms that

compromise its integrity.
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When a pathogen invades the human body, the production of antibodies against pathogen-

derived antigens takes up to 10 days. During this phase, also called the ”lag phase” the lym-

phocytes find the antigen replicating itself and only then start the production of antibodies. It

is at this stage of the initial contact with the antigen, also called the primary response, that the

concentration of IgM and IgG antibodies increases considerably, reaching a plateau and then

decreasing as the response is produced and the pathogen is eliminated.

Considering that there is a second encounter with the same antigen, that is, a secondary

response, the immune response is much faster in the sense that antibodies are produced more

quickly and it is possible to observe more persistent levels of them. This latter property is

largely due to IgGs, also called ”memory antibodies” that remain in circulation even after

the antigen has been eliminated. Figure 1.3 shows the relationship between IgM and IgG

antibodies taking into account a primary and secondary response.

Figure 1.3: Primary immune response versus secondary immune response (Source:
https://courses.lumenlearning.com/cuny-kbcc-microbiologyhd/chapter/b-lymphocytes-and-humoral-immunity/)

Next, we discuss one of the most used techniques for the quantification of antibodies and

antigens, the ELISA assays.

1.3 Quantification of antibody concentration

The detection of antibodies in serum or blood plasma can be done through different tech-

niques, the most used being ELISA assays. ELISA assays emerged in 1971 when two groups
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of researchers introduced an immunoenzymatic method for the detection and quantification of

specific antigens or antibodies against a given pathogen. They observed that proteins could

be immobilized on a solid polystyrene surface and that the antibody-antigen reaction could be

revealed by the formation of colored products formed by the enzyme-substrate reaction, in the

presence of an electron donor component called chromogen (Hipólito, 2017).

ELISA assays can be classified into direct, indirect, sandwich, competitive and non-competitive,

with each method defined by the research method used, that is, whether the research relates to

antibodies or antigens.

The direct method is used to search for antigens in the serum that will react with antibodies

specific to that antigen producing an intensity of colored light called optical density (OD).

This light intensity reveals the amount of antibodies that have bound to the antigen. Staining

is produced by a protein called an enzyme conjugate, the most used proteins being alkaline

phosphatase and peroxidase.

The indirect method is used to search for primary antibodies against a given antigen by

binding those (unconjugated) antibodies to conjugated secondary antibodies. The color is de-

veloped when the enzyme substrate is added. The color intensity is directly proportional to the

concentration of antigens present in the solution sample.

The sandwich method considers a primary (unconjugated) antibody immobilized under the

plate that captures the antigen. Subsequently, the conjugated secondary antibody is added that

will bind to the antigen captured by the immobilized primary antibody, thus forming a sandwich.

It is through the conjugated secondary antibody that the intensity of light is then produced, its

intensity being proportional to the concentration of antigen in the sample (Figure 1.4).

In competitive tests, based on a microplate with an inert surface with wells, the antigens

or antibodies that are thus bound to the plate are placed in it. If antigens are placed, then an

amount of antibody will be added that will bind to the antigen. It turns out that the higher the

concentration of antigen, the lower the ability of the antibody to establish the binding, hence

the term ”competition”.

As mentioned earlier, in ELISA assays, whenever binding of an antibody (analyte) to an

antigen is established, a coloration is produced, and the more intense it is, the greater the amount

of antibody that has bound to the antigen. The light intensity is translated in terms of OD values

and the OD values are compared with known concentrations of antigen (Figure 1.5). Next the
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Figure 1.4: Direct, indirect and sandwich ELISA assays (Salazar et al., 2017)

most common procedure is to fit a 4 parameter logistic model (4-PL) (Hoogen et al., 2020), that

is

y j = a+
(d −a)

1+(x j/c)b ,

where y j is the response at concentration x j, a is the upper asymptote, d is the lower asymptote,

c is the concentration at the inflection point of the curve and b is the growth factor (Azadeh

et al., 2017).

Figure 1.5: ELISA standard curve (Source: https://www.bio-rad-antibodies.com/elisa-results-quantitative-semi-
qualitative.html). x axis: known concentrion of antigen; y axis: OD values (light intensity).

Note that the antibody concentration tends to be very low for OD values very close to the

lower asymptote while OD values very close to the upper asymptote correspond to higher an-

tibody concentration. During the whole process of constructing the calibration curve, there

are several statistical procedures that should be taken into account when obtaining antibody

data, namely the minimum detectable concentration, the reliable detection limit and the limit of

9
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quantitation which are well described in O’Connell et al., 1993.
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Chapter 2

Statistical methodology

After the reader has had a first contact with what serological data are, we introduce in this

chapter the statistical methodology that will be used to analyze this type of data. In particular,

the reader’s attention is drawn to the fact that given the organization of this document, in each

of the application chapters the statistical methodology used is described in great detail, so we

will only give a brief introduction in this chapter. Throughout the text we will refer to the

application chapters that explore each of the methodologies used.

When analyzing data of the antibody responses against a specific virus, it is usually assumed

the existence of two or more latent, unobservable populations representing different serological

states (e.g., seronegative and seropositive). In this scenario, data is typically described by a

mixture of two or more probability distributions (Dias Domingues et al., 2020). We start this

chapter with some basic concepts in finite mixture models.

2.1 Finite mixture models

Finite mixture models are very flexible models, used to model data from heterogeneous

populations, allowing to capture population characteristics such as multimodality, skewness and

kurtosis (Lachos Dávila et al., 2018). The rationale behind these types of models is that, given a

population, it is possible to consider subpopulations in a finite number, in different proportions,

with each subpopulation characterized by a probability density function and a parameter space.

Naturally, in the case in which infinite subpopulations are considered, we are in the presence of

11
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the so-called infinite mixture models (which we do not address in this work).

The development of finite mixture models deserved the attention of Everitt and Hand (1981),

Lindsay (1995), Böhning (2000), McLachlan and Peel (2000) due to the mathematical treata-

bility of these types of models, but largely due to the flexibility of their use in several areas such

as biology, medicine and economics. The first important work on mixture distributions is due

to Karl Pearson (1894), in which he adjusted a mixing model with normal components to data

that represented the distance from the forehead to the body length of 100 crabs from Bay of

Naples (G. McLachlan and Peel, 2000). Throughout this chapter we review the properties of

these models, considering their application in the general case and specifying their application

to serological data in chapters 3, 4 and 5.

2.1.1 Formulation of a finite mixture model

In general, let Z1, ...,Zn be the identical and independent random variables for a sample of

size n, G1, ...,Gg be the partition from a superpopulation G (sample space) and π1, ...,πg the

probabilities of sampling an observation belonging to each latent population (with the usual

restriction of ∑g
k=1 πk = 1 and 0 < πk ≤ 1). The probability density function (pdf) of a mixture

of distributions is then given by

f (z) =
g

∑
k=1

πk fk(z;θk), (2.1)

where fk(z;θk) is the mixing probability density function associated with k−th latent population

and parameterized by a vector θk. The quantities πk are the proportions or weights of the

mixture. The number of components g, can be a known value or a parameter to be estimated

from a sample.

As previously mentioned, the density of a mixture of distributions depends on parameters that

need to be estimated, so they become part of a parametric family, and the density of the mixture

can be written in the form

f (z;Θ) =
g

∑
k=1

πk fk(z;θk), (2.2)

being Θ the vector that contains all the unknown parameters of the mixture model, being

defined by Θ = (π1, ...,πg−1,θ1, ...,θg).
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2.1.2 Identifiability of Mixture Models

When a mixture model is fitted to a set of observations in which it is unknown which com-

ponent each observation belongs to, it is important to ensure the model identifiability, i.e, there

is a unique characterization for any of the mixing distributions considered (G. McLachlan and

Peel, 2000). This fact is important for the parameter estimation.

Definition 1 A mixture of distributions with pdf given in (2.2) is said to be identifiable if and

only if

g

∑
k=1

πk fk(z;θk) =
g̃

∑
j=1

π̃ j f j(z; θ̃ j)⇒

⇒ g = g̃∧ (∀k = 1, ...,g,∃ j = 1, ..., g̃ : πk = π̃ j ∧θk = θ̃ j).

(2.3)

In addition to characterizing a mixture model through its density function and its distribution

function, it is necessary to characterize it in terms of location and scale.

2.1.3 Moments of mixture models

Definition 2 Let Z a random variable with pdf given by (2.2). The moments of order n of Z are

E(Zn) =
g

∑
k=1

πkE(Zn
k ), (2.4)

where E(Zn
k ) is the moment of order n of a random variable with pdf fk(z;θk),k = 1, ...,g.

Definition 3 The variance of a random variable with pdf given by (2.2) is given by

V (Z) = E(Z2)−E2(Z)

=
g

∑
k=1

πkE(Z2
k )−E2(Z)

=
g

∑
k=1

πk(V (Zk)+E2(Zk))−E2(Z)

=
g

∑
k=1

πkV (Zk)+
g

∑
k=1

πk(E(Zk)−E(Z))2, (2.5)

13



2. STATISTICAL METHODOLOGY

where V (Zk) is the variance of a random variable with pdf fk(z;θk),k = 1, ...,g.

2.1.4 Maximum Likelihood method in mixture models

Regarding the estimation of the parameters of a mixture model, several methods have

been proposed, namely the maximum likelihood method, graphic methods, minimum distance

method and Bayesian methods (G. McLachlan and Peel, 2000).

In the context of serological data, the serological status of an individual can be a latent

variable leading to a problem of incomplete data. In this sense we explore the maximum

likelihood method via EM algorithm to estimate the model parameters.

2.1.4.1 EM algorithm

The EM algorithm is an iterative method used to calculate the maximum likelihood esti-

mators in the context of incomplete data whenever the maximum likelihood method does not

produce analytical solutions.

Consider (z1, ...,zn) an observed random sample of dimension n from a mixture of g components

with pdf given by

f (zi;Θ) =
g

∑
k=1

πk fk(zi;θk), (2.6)

being Θ the vector that contains all the unknown parameters of the mixture model, i.e., the

vector to be estimated by the maximum likelihood method. The correspondent log likelihood

function is given by

logL(Θ) =
n

∑
i=1

log
( g

∑
k=1

πk fk(zi;θk)
)
. (2.7)

For the algorithm to be applied, it is necessary to constitute the complete sample, that is, the

sample that contains the information of the unobservable latent variable, Y , which for a sample

of dimension n we will consider as being defined by (Y1, ...,Yn) with Yi = (Yi1, ...,Yig), where

the element k of Yi, designated by yik is defined as follows (G. McLachlan and Peel, 2000)

yik =





1 , if zi comes from the kth component

0 , otherwise
(2.8)
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2.1 Finite mixture models

In this way, the complete sample is then formed by the pair (zn,yn) independent and iden-

tically distributed in which Y1, ...,Yn are independent realizations of a multinomial distribution,

i.e,

Y1, ...,Yn ⌢ Multinomial(1,π1, ...,πg).

The pdf is given by

f (yi;Θ) =
g

∏
k=1

π
yik
k , (2.9)

that is, f (yi;Θ) is the marginal probability density of Y . Considering that Y is the indicator

variable of the component from which zi comes from, we can obtain the conditional probability

of Zi given Yi = yi, i.e,

fZi|Yi=yi(zi;Θ) =
g

∏
k=1

fk(zi,θk)
yik . (2.10)

By the Total Probability Theorem, we obtain the pdf of the complete data, that is the joint

probability density,

f ((zi,yi);Θ) =
g

∏
k=1

[πk fk(zi,θk)]
yik . (2.11)

and the log-likelihood function is given by

logL(Θ) =
n

∑
i=1

g

∑
k=1

yik log{πk fk(zi;θk)}. (2.12)

As we can see by the expression (2.12), we can’t obtain the maximum likelihood estimators

(MLE) for the parameters since Yi = yi is a random variable. Then we need a iterative process

to obtain the MLE for the parameters.
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2. STATISTICAL METHODOLOGY

2.1.4.2 The iterative process

The EM algorithm works through two steps, an E (expectation) and an M (maximization)

steps.

In step E and in the iteration p+ 1 of the algorithm, the conditional expected value of the log

likelihood function defined by the equation (2.12) given the incomplete sample is calculated,

using the value for Θ the value in the previous iteration, Θ(p). That is,

Q(Θ,Θ(p)) = EΘ(p){logL(Θ)|zi}. (2.13)

Note that function (2.12) is linear in yik, so with function (2.13) we intend to calculate the

probability that a given observation, zi, belongs to the k− th component. In fact,

Q(Θ,Θ(p)) =
n

∑
i=1

g

∑
k=1

EΘ(p){Yik|zi} log{πk fk(z
;
iθk)}. (2.14)

How,

EΘ(p){Yik|zi} = PΘ(p){Yik = 1|zi}

=
PΘ(p){Yik = 1,zi}

PΘ(p)(zi)

=
π
(p)
k fk(zi;θ

(p)
k )

∑g
h=1 π

(p)
h fh(zi;θ

(p)
h )

= w(p+1)
ik (i = 1, ...,n;k = 1, ...,g), (2.15)

Thus, given the result in (2.15), the expression (2.14) can be written in the form

Q(Θ,Θ(p)) =
n

∑
i=1

g

∑
k=1

w(p+1)
ik log{πk fk(zi;θk)}. (2.16)

In the (p+ 1) interaction of the step M is calculated the new value of Θ that maximizes

the expression (2.16), that is, the updated maximum likelihood estimates of the parameters are

determined, Θ(p+1). Dempster et al., 1977 demonstrated that

16



2.2 Scale Mixtures of Skew-Normal distributions as mixing distributions

L(Θ(p+1))≥ L(Θ(p)), p = 0,1, ... (2.17)

which implies that L converges to some L∗ by a previously limited sequence of values.

The algorithm stops as soon as the stopping criterion is established, that is, whenever the value

of the criterion becomes less than a given constant (G. McLachlan and Peel, 2000).

The serological populations that make up a mixture can exhibit distinct behaviors given the

particularities of antibody data, in particular IgG data.

Parker et al., 1990 states that the distribution of the seronegative population is Normal,

noting that in the case of the seropositive population there is a skew of the antibody data to

the left, because there is a decrease over time. This fact motivated us to use distributions that

capture this skewness such as the Skew-Normal and Skew-t distributions. In the section 2.2 a

brief characterization of these distributions is presented.

2.2 Scale Mixtures of Skew-Normal distributions as mixing

distributions

The study of class of distributions used in this work to model serological data begins with

the most widely known and used probability distribution, the Normal distribution.

Due to its good properties, namely the fact that it is symmetrical around the mean, its support

is the real line, has several applications due to the central limit theorem, the normal distribution

also ends up being used to model serological data.

In many studies it is assumed that the components that make up a mixture are well modelled

by a normal distribution with mean value µ and standard deviation σ . It turns out that the

serological data have some peculiarities, namely the fact that they can be asymmetric in each

component, presenting heavy tails, which ends up violating the assumption of symmetry present

in the normal distribution. Thus, it becomes necessary to control the skewness inherent in this

type of data.

Azzalini, 1985 dedicated to the study of skewed distributions, namely in a generalization

of the normal distribution including a skewness parameter which he called the Skew-Normal
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distribution. The Skew-Normal distribution is a particular case of a class of distributions called

Scale Mixtures of Skew-Normal (SMSN) distributions, of which the Skew-t distribution is also

a part and which will also be used throughout this work (Basso et al., 2010; Dias Domingues

et al., 2021). The following is a brief characterization of these distributions.

2.2.1 Special case: Skew-Normal distribution

Definition 4 A random variable W has a Skew-Normal distribution with location parameter µ ,

scale parameter σ2 and skewness parameter α (denoted as W ⌢ SN(µ,σ2,α)) if its probability

density function (pdf) can be written as

fW (w) = 2
1√

2πσ
e−

(w−µ)2

2σ2 ×
∫

α
(w−µ)

σ

−∞

1√
2π

e−
x2
2 dx

= 2φ(w; µ,σ2)Φ
(

α(w−µ)

σ

)
, w,µ,α ∈ R, σ

2 ∈ R+ (2.18)

where φ(.; µ,σ2) denotes the pdf of the Normal distribution with mean µ and variance σ2; Φ(.)

denotes the the cumulative distribution function of the standard Normal distribution.

For the sake of simplicity, considering the standard Skew-Normal distribution, SN(α),

we have that when α = 0, the SN(α) reduces to the N(0,1) and when α → ∞, the SN(α)

converges to the half-Normal distribution (Figueiredo et al., 2013).

The mean and variance of the Skew-Normal distribution are respectively given by,

E(W ) = µ +σ

√
2
π

α√
1+α2

, V (W ) =

(
1−

(
2
π

α√
1+α2

)2)
σ

2. (2.19)

2.2.2 Special case: Skew-t distribution

Definition 5 A random variable Z has a Skew-t distribution with location parameter µ , scale

parameter σ2, skewness parameter α and v degrees of freedom, i.e., Z ⌢ ST (µ,σ2,α,v), if its

pdf is given by

fZ(z) = 2 t(z; µ,σ ,v+1) T
(

A

√
v+1
d + v

;v+1
)
. (2.20)

where t(.; µ,σ ,v + 1) denotes the probability density function of a Generalized Student-t
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Figure 2.1: Density functions of standard Skew-Normal distribution varying the skewness parameter

distribution1 with location parameter µ , scale parameter σ and v + 1 degrees of freedom;

T (.;v+ 1) represents the cumulative distribution function of a standard Student-t distribution

with v+1 degrees of freedom.

For the sake of simplicity, considering the standard Skew-t distribution, ST (α), we have

that when α = 0, the ST (α) reduces to the standard Student’s t distribution, when α → ∞, the

ST (α) converges to the half-t distribution and when v → ∞ converges to the Skew-Normal

distribution (Azzalini, 2014).

The mean and variance of the Skew-t distribution are respectively given by,

E(Z) = µ +σbvδ , if v > 1, V (Z) = σ
2
[

v
v−2

−
(

bvδ

)2]
if v > 2, (2.21)

where bv =
√

v Γ( 1
2 (v−1))√

π Γ( 1
2 v)

and δ = α√
1+α2 .

The full derivation of the Skew-Normal and Skew-t distributions as particular cases of the

SMSN family can be found in the application chapter 3, sub-section 3.3.1.

1We consider the Generalized Student’s t-distribution as the non-standardized Student’s t-distribution (Jack-
man, 2009)
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Figure 2.2: Density functions of standard Skew-t distribution varying the skewness parameter

−4 −2 0 2 4

Distributions

SN(3)

ST(3, v=3)

ST(3, v=10)

ST(3, v=60)

ST(3,v=120)

Figure 2.3: Density functions of Skew-t distribution with α = 3 and with degrees of freedom v = 3,10,60,120

2.2.3 Maximum likelihood estimators of the Skew-Normal and Skew-t

distributions

Regarding the estimation of the parameters of the Skew-Normal distribution and the Skew-t

distribution, it is not possible to obtain closed expressions for the parameter estimators by the

maximum likelihood method as proved below (Yalçınkaya et al., 2018):

2.2.3.1 Case of the Skew-Normal distribution

For a random sample of size n, the likelihood function is given by
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L(Θ;w) =
n

∏
i=1

fW (wi) =
n

∏
i=1

2
σ
.

1√
2π

e−
1
2 (

wi−µ

σ
)2
.Φ

(
α(

wi −µ

σ
)

)
=

=
n

∏
i=1

2
σ
.

n

∏
i=1

(2π)−1/2.e−
1
2 ∑n

i=1(
wi−µ

σ
)2
.

n

∏
i=1

Φ
(

α(
wi −µ

σ
)

)
. (2.22)

Then, the log-likelihood is given by

log(L(Θ;w)) = n log(
2
σ
)− n

2
log(2π)− 1

2

n

∑
i=1

(
wi −µ

σ

)2

+
n

∑
i=1

log
(

Φ
(

α(
wi −µ

σ
)

))
.(2.23)

ML for µ:

∂ log(L(Θ;w))

∂ µ
= −1

2

n

∑
i=1

2.
(

wi −µ

σ

)
.

(
− 1

σ

)
+

n

∑
i=1

φ

(
α.(wi−µ

σ
)

)

Φ
(

α.(wi−µ

σ
)

) .

(
α.(− 1

σ
)

)
=

=
1
σ

n

∑
i=1

(
wi −µ

σ

)
−

n

∑
i=1

φ

(
α.(wi−µ

σ
)

)

Φ
(

α.(wi−µ

σ
)

) .

(
α

σ

)
.

(2.24)

ML for σ :
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∂ log(L(Θ;w))

∂σ
= − n

σ
− 1

2

n

∑
i=1

−2.
(

wi −µ

σ

)(
wi −µ

σ2

)
−

n

∑
i=1

φ

(
α.(wi−µ

σ
)

)

Φ
(

α.(wi−µ

σ
)

) .

(
α.(−wi −µ

σ2 )

)
=

= − n
σ
+

n

∑
i=1

(
(wi −µ)2

σ3

)
+

n

∑
i=1

φ

(
α.(wi−µ

σ
)

)

Φ
(

α.(wi−µ

σ
)

) .

(
α.(

wi −µ

σ2 )

)
=

=
1
σ

(
−n+

n

∑
i=1

(
wi −µ

σ

)2

+
n

∑
i=1

φ

(
α.(wi−µ

σ
)

)

Φ
(

α.(wi−µ

σ
)

) .

(
α.(

wi −µ

σ
)

))
(2.25)

ML for α:

∂ log(L(Θ;w))

∂α
=

n

∑
i=1

φ

(
α.(wi−µ

σ
)

)

Φ
(

α.(wi−µ

σ
)

) .

(
wi −µ

σ

)
. (2.26)

2.2.3.2 Case of the Skew-t distribution

For a random sample of size n, the likelihood function is given by

L(Θ;z) =
n

∏
i=1

fZ(zi) =
n

∏
i=1

2.
Γ
(

v+1
2

)

σ
√

vπΓ
(

v
2

) .

(
1+

(
zi−µ

σ

)2

v

)− v+1
2

.FT

(
A(zi).

√
v+1

d(zi)+ v
;v+1

)
=

=
n

∏
i=1

2.
Γ
(

v+1
2

)

σ
√

vπΓ
(

v
2

) .
n

∏
i=1

(
1+

(
zi−µ

σ

)2

v

)− v+1
2

.
n

∏
i=1

FT

(
A(zi).

√
v+1

d(zi)+ v
;v+1

)
.

(2.27)

We have then that the log-likelihood is given by,
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log
(

L(Θ;z)
)

= log
( n

∏
i=1

2.
Γ
(

v+1
2

)

σ
√

vπΓ
(

v
2

)
)
+ log

( n

∏
i=1

(
1+

(
zi−µ

σ

)2

v

)− v+1
2
)
+

+ log
( n

∏
i=1

FT

(
A(zi).

√
v+1

d(zi)+ v
;v+1

))
=

= n
(

log(2)+ log
(

Γ
(

v+1
2

))
− log(σ)− 1

2
log(vπ)− log

(
Γ
(

v
2

))
+

+

(
v+1

2

)
log(σ2v)

)
+

(
− v+1

2

) n

∑
i=1

log
(

σ
2v+(zi −µ)2

)
+

+
n

∑
i=1

log
(

FT

(
A(zi).

√
v+1

d(zi)+ v
;v+1

))
. (2.28)

ML for µ:

∂ log(L(Θ;z))
∂ µ

=

(
− v+1

2

) n

∑
i=1

− 2(zi −µ)

σ2v+(zi −µ)2 +
n

∑
i=1

fT

(
A(zi).

√
v+1

d(zi)+v

)

FT

(
A(zi).

√
v+1

d(zi)+v

) ×

×
((

− α

σ

)
.

√
v+1

d(zi)+ v
+A(zi).

(
v+1

d(zi)+ v

)− 1
2

.

(
( zi−µ

σ2 ).(v+1)

(d(zi)+ v)2

))

= (v+1)
n

∑
i=1

(zi −µ)

σ2v+(zi −µ)2 +
n

∑
i=1

fT

(
A(zi).

√
v+1

d(zi)+v

)

FT

(
A(zi).

√
v+1

d(zi)+v

) ×

×
((

− α

σ

)
.

√
v+1

d(zi)+ v
+A(zi).

(
v+1

d(zi)+ v

)− 1
2

.

(
( zi−µ

σ2 ).(v+1)

(d(zi)+ v)2

))

(2.29)

ML for σ :
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∂ log(L(Θ;z))
∂σ

=
nv
σ

+

(
− v+1

2

) n

∑
i=1

2σv
σ2v+(zi −µ)2 +

n

∑
i=1

fT

(
A(zi).

√
v+1

d(zi)+v

)

FT

(
A(zi).

√
v+1

d(zi)+v

) ×

×
((

− α

σ2

)
.(zi −µ).

√
v+1

d(zi)+ v
+A(zi).

(
v+1

d(zi)+ v

)− 1
2

.

(
( (zi−µ)2

σ3 ).(v+1)

(d(zi)+ v)2

))

(2.30)

ML for α:

∂ log(L(Θ;z))
∂α

=
n

∑
i=1

fT

(
A(zi).

√
v+1

d(zi)+v

)

FT

(
A(zi).

√
v+1

d(zi)+v

) ×
((

z−µ

σ

)
.

√
v+1

d(zi)+ v

)
. (2.31)

ML for v:

∂ log(L(Θ;z))
∂v

= n
(

1
2

ψ

(
v+1

2

)
− 1

2v
− 1

2
ψ

(
v
2

)
+

v+1
2v

+
log(σ2v

2

)
+

+

(
− 1

2

) n

∑
i=1

log
(

σ
2v+(zi −µ)2

)
+

+

(
− v+1

2

) n

∑
i=1

σ2

σ2v+(zi −µ)2 +
n

∑
i=1

fT

(
A(zi).

√
v+1

d(zi)+v

)

FT

(
A(zi).

√
v+1

d(zi)+v

) ×

×
(

A(zi).
1
2
.

(
v+1

d(zi)+ v

)− 1
2

.

(
d(zi)−1

(d(zi)+ v)2

))
, (2.32)

where ψ(.) denotes the digamma function, i.e., ψ(x) = ∂

∂x ln(Γ(x)) = Γ′(x)
Γ(x) .
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Thus, it is necessary to use iterative methods for parameter estimation. There are several

iterative methods for estimating the parameters, such as Newton-Raphson (NR), Nelder Mead

(NM), and Iteratively Re-weighting Algorithm (IRA) (Yalçınkaya et al., 2018). Since we will

be using mixtures of Skew-Normal and Skew-t distributions throughout our applications, we

will use the EM algorithm for estimating the model parameters. In particular, in the case of

distributions belonging to the SMSN family, we will use a variant of the EM algorithm called

expectation-conditional-maximization (ECM) whose description of the algorithm is detailed in

then application chapter 5, sub-section 5.3.2.
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Chapter 3

Serological analysis of herpesviruses using

data from the United Kingdom ME/CFS

biobank

Finite mixture models have been widely used in antibody (or serological) data analysis in

order to help classifying individuals into either antibody-positive or antibody-negative. The

most popular models are the so-called Gaussian mixture models which assume a Normal dis-

tribution for each component of a mixture. In this work, we propose the use of finite mixture

models based on a flexible class of scale mixtures of Skew-Normal distributions for serologi-

cal data analysis. These distributions are sufficiently flexible to describe right and left asym-

metry often observed in the distributions associated with hypothetical antibody-negative and

antibody-positive individuals, respectively. We illustrate the advantage of these alternative mix-

ture models with a data set of 406 individuals in which antibodies against six different hu-

man herpesviruses were measured in the context of Myalgic Encephalomyelitis/Chronic Fatigue

Syndrome.

3.1 Introduction

Antibodies are key immunological proteins produced by B cells upon molecular recogni-

tion of an antigen derived from an infectious agent. In general, they contribute to microbial

clearance and, if maintained in the body over time, they comprise the basis of the so-called

immunological memory, which translates into a quicker and more efficient immune response
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in the case of repeated exposure to the same infectious agent. In turn, autoantibodies are

antibodies recognizing components from the body and they are usually present in autoimmunity

diseases, such as multiple sclerosis or rheumatoid arthritis. In the laboratory, antibodies (or

autoantibodies) against a specific antigen are usually quantified by the enzymatic-linked

immunosorbent assays (ELISA) using serum samples; see ref. Wang et al., 2003; Vila Nova

et al., 2018; Shikova et al., 2020 for some recent studies using these assays. The respective

readout is a light intensity, also known as optical density, which can be converted into a

concentration or a titre using a calibration curve of known antibody concentrations. In practice,

these assays are easily standardized, widely available, and ideal for high-throughput analysis

of antibodies against a single antigen (Wang et al., 2003). Such advantages make ELISA

particularly suitable for large-scale sero-epidemiology surveys where one aims to estimate the

prevalence of exposure to a given pathogen in the population (Wang et al., 2003; Cook et al.,

2011; Hsiang et al., 2012). With the recent development of high-throughput technologies,

antibody quantification is currently shifting from the traditional ELISA to more advance assays,

such as microarray (Helb et al., 2015; Loebel et al., 2017), luminex (Lammie et al., 2012;

Blomberg, Rizwan, et al., 2019), or cytometry bead assays (Sowa et al., 2017), where a large

number of different antibodies can be evaluated in the same serum sample. However, some

of these promising technologies still require some degree of optimization before their widely

applicability in biomedical research (Hoogen et al., 2020; Wu et al., 2020).

Statistical analysis of antibody (or serological) data is usually carried out under the assump-

tion that the antibody distribution consists of different latent populations, each one representing

a distinct antibody state or different degrees of exposure to a given antigen. This assumption

gives rise to a serological data analysis based on finite mixture models (G. McLachlan and Peel,

2000). These models can be more or less complex depending on the number of components

and mixing distributions used to describe the data. Due to its conceptual simplicity and easy

of interpretation, the most popular finite mixture model in routine serological applications

invokes the existence of two components related to hypothetical seronegative and seropositive

individuals or, equivalently, antibody-negative and antibody-positive individuals (Gay, 1996;

Chis Ster, 2012; Rogier et al., 2015). Models comprising more than two components have also

been found appropriate to describe data from some studies (Parker et al., 1990; Baughman

et al., 2006; M. C. Rota et al., 2008; Nhat et al., 2017; Moreira da Silva et al., 2020), but
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they might bring some ambiguity when interpreting which components are associated with

antibody positivity (Sepúlveda, Stresman, et al., 2015). In turn, the most popular choice for the

mixing distributions is the Lognormal distribution in the original scale of the measurements or,

equivalently, the Normal distribution after logarithmic transformation of the data (Chis Ster,

2012; Parker et al., 1990). Gamma and Weibull are other choices for the mixing distributions

among textbook probability distributions (Rogier et al., 2015; Nhat et al., 2017). Alternatively,

less trivial mixture models can be used in the analysis. This is the case of a mixture between

two truncated Normal distributions describing the situation where observations might fall

below the lower limit of detection or above the upper limit of detection of the assay (Baughman

et al., 2006). Another interesting model is a mixture between a Normal and a combination

of half-Normal distributions for the hypothetical seronegative and seropositive populations,

respectively (Gay, 1996). The rationale behind this proposal is that the distribution of the

seropositive population should be left skewed, because antibody levels tend to decrease over

time (Parker et al., 1990). Notwithstanding their suitability to tackle specific characteristics of

serological data, none of the above models would appear to provide sufficiently flexibility in

terms of skewness and flatnesss of each mixing distribution that could be used as the basis of

data analysis automation in high-throughput serological studies.

In this scenario, we propose the scale mixture of Skew-Normal distributions (SMSN) as a

flexible mixing distribution for serological data analysis. The flexibility of this family is at-

tributed to four parameters that control the location, the scale, the skewness and the flatness of

the resulting distribution. In addition, SMSN includes the Normal distribution, the Generalized

Student’s t-distribution, and its skewed version as special cases (Basso et al., 2010). We illus-

trate the advantage of using these models by analysing a data set related to antibodies against

6 different common herpesviruses in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

(ME/CFS) (Cliff et al., 2019).

3.2 Data under analysis

ME/CFS is complex disease whose patients experience a long-lasting fatigue that cannot

be alleviated by rest or suffer from post-exertional malaise upon minimal physical and mental

activity (Fukuda et al., 1994; Carruthers et al., 2003). The aetiology of the disease remains
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unknown, but it is often linked with common viral infections, including common herpesviruses

(Rasa et al., 2018).

To accelerate current knowledge on ME/CFS, it was created a large disease-specific

biobank in the United Kingdom (E. M. Lacerda, Bowman, et al., 2017; E. M. Lacerda, Mudie,

et al., 2018). The data set under analysis is part of this biobank and it was published in a recent

study with the aim of investigating the immunological component of the disease (Cliff et al.,

2019). In the data set, there is a total of 406 individuals, all adults, divided into three main

groups: healthy controls (HC, n = 107;26.4%), patients with ME/CFS (n = 250;61.8%), and

patients with multiple sclerosis (MS, n = 49;12.1%). The group of patients with ME/CFS was

further divided into a subgroup of 196 patients with mild or moderate symptoms (ME-M) and

another subgroup of 54 severely affected patients who are home- or even bed-bound (ME-S).

A detailed description about the recruitment of study participants, inclusion/exclusion criteria,

and ethics can be found in the original reference (Cliff et al., 2019).

The data set comprises six serological variables corresponding to the antibody concentration

against the following common herpesviruses: human cytomegalovirus, CMV; Epstein-Barr

virus, EBV; human herpesvirus-6, HHV-6; types 1 and 2 herpes simplex viruses, HSV-1 and

HSV-2, respectively; and varicella-zoster virus, VZV. Note that the tested antibodies against

EBV were specific to the viral-capsid antigen.

In each serum sample, the concentration of each vira-specific antibody was expressed in

arbitrary units per ml (U/ml) according the corresponding optical density determined by com-

mercial ELISA kits. According to the ELISA’s kit manufacturers, samples with antibodies

concentration ≤ 8 U/ml should be classified as seronegative and those with concentration ≥ 12

U/ml should be classified as seropositive for all antibodies with the exception of HHV-6. Sam-

ples with IgG concentration between 8 and 12 U/ml should be classified as equivocal. For

antibodies against HHV-6, seronegative and seropositivity should be defined as ≤ 10.5 U/ml or

≥ 12.5 U/ml, respectively. Samples with concentrations between these two limits were consid-

ered equivocal.
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3.3 Statistical analysis of serological data

3.3.1 Finite mixture models based on SMSN distributions

When analysing serological data related to the antibody responses against a specific

antigen, it is usually assumed the existence of two or more latent, unobserved populations,

which might represent different levels of exposure to that antigen. For simplicity, individuals

that were never exposed to a given antigen are considered as seronegatives whilst indi-

viduals exposed to it are considered seropositives. In this scenario, the respective data from

a specific antibody are typically described by a mixture of two or more probability distributions.

Let G1, ...,Gg be the partition from a superpopulation G (sample space) and π1, ...,πg the

probabilities of sampling an individual belonging to each latent population (with the usual re-

striction of ∑g
k=1 πk = 1 and 0 ≤ πk ≤ 1). A random variable Z is a finite mixture of independent

random variables Z1,Z2, ...,Zg if the probability density function (pdf) of Z is given by

f (z) =
g

∑
k=1

πk fZk(z;θθθ k), (3.1)

where fZk(z;θθθ k) is the mixing probability density function of Zk associated with the k-th latent

population and parameterized by the vector θθθ k =
{

θ1, ...,θg
}

.

The most popular choice for the mixing distribution in serological analysis is the Normal

distribution which is symmetric around the mean and it is a mesokurtic distribution (with a

kurtosis of 3 irrespective of the mean and standard deviation of the distribution). However,

serological data from populations on the brink of malaria elimination show long tails and

marked right asymmetry (Rogier et al., 2015) in each latent population even after applying

log-transformation. In such cases, one can use instead the Generalized Student t as the mixing

distribution, because it has heavier tails than the Normal distribution. However, this distri-

bution remains in the realm of the symmetric distributions. To incorporate asymmetry in the

modelling, one can alternatively use the less-known Skew-Normal as the mixing distribution

(Lin et al., 2007a).

A random variable Wk has a Skew-Normal distribution with location parameter µk, scale

parameter σ2
k and skewness parameter αk (denoted as Wk ⌢ SN(µk,σ

2
k ,αk)) if its pdf can be
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written as

fWk(w) = 2
1√

2πσk
e
− (w−µk)

2

2σ2
k ×

∫
αk

(w−µk)
σk

−∞

1√
2π

e−
x2
2 dx

= 2φ(w; µk,σ
2
k )Φ

(
αk(w−µk)

σk

)
, w,µk,αk ∈ R, σk ∈ R+ (3.2)

where φ(.; µk,σ
2
k ) denotes the pdf of the Normal distribution with mean µk and variance σ2

k ;

Φ(.) denotes the the cumulative distribution function of the standard Normal distribution (Az-

zalini, 1985; Azzalini and Capitanio, 2003; Basso et al., 2010). The mean and variance of the

Skew-Normal distribution are respectively given by,

E(Wk) = µk +σk

√
2
π

αk√
1+α2

k

, V (Wk) =

(
1−

(
2
π

αk√
1+α2

k

)2)
σ

2
k . (3.3)

Additionally, the Skew-Normal distribution can be used to construct a more general class of

flexible distributions, the scale mixtures of Skew-Normal (SMSN) distributions.

The random variable Z in expression (3.1) belongs to the SMSN family with location pa-

rameter µk, scale parameter σ2
k , skewness parameter αk and mixing distribution Hk(.;vvvk) pa-

rameterized by θk (denoted as Zk ⌢ SMSN(µk,σ
2
k ,αk)) if it can be written in the following

way:

Zk = µk +
Wk√
Uk

, (3.4)

where Uk is a random variable with distribution function Hk(.,vvvk) and pdf hk(.,vvvk); vvvk is either

a scalar or a vector of parameters indexing the distribution of Uk; and Wk ⌢ SN(0,σ2
k ,αk)

which is assumed to be independent of Uk (Basso et al., 2010; Lachos Dávila et al., 2018).

Based on expression (3.4), it is worth noting that the conditional distribution

Zk|Uk = u takes the form

FZk|Uk=u(z) = P(Zk ≤ z | Uk = u) = P(µk +
1√
u

Wk ≤ z) (3.5)

= P(Wk ≤
√

u(z−µk)) = FWk(
√

u(z−µk)), z ∈ R.
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Thus,

fZk|Uk=u(z) =
d
dz

|Uk=u FWk(z) =
√

u× fWk(
√

u(z−µk)) (3.6)

=
√

u
2
σk

φ

(√
u(z−µk)

σk

)
Φ
(

αk
√

u(z−µk)

σk

)
, z ∈ R,

where φ(.) represents the pdf of the standard Normal distribution. Which is equivalent to,

fZk|Uk=u(z) = 2φ

(
z; µk,

σ2
k

u

)
Φ
(

αk(z−µk)
σk/

√
u

)
, z ∈ R, where φ(.; µk,

σ2
k

u ) denotes the pdf of the

N(µk,
σ2

k
u ). Hence, Zk|Uk = u ⌢ SN(µk,

σ2
k

u ,αk).

The marginal probability density distribution of Zk is given by

fZk(z) =
∫ +∞

0
2φ

(
z; µk,

σ2
k

u

)
Φ
(

αk(z−µk)

σk/
√

u

)
dH(u;vvv), z ∈ R. (3.7)

The name of this class of distributions relies on the fact that the density function of Zk (3.4)

involves an infinite mixture of Skew-Normal distributions.

To model different patterns arising from serological data, we rely on 4 particular cases of

the SMSN family. The first one is the case of the Skew-Normal distribution itself. This happens

when Uk is not a random variable but rather the scalar u = 1. Then, variable Zk in expression

(3.4) simplifies to Zk = µk +Wk. Hence,

FZk(z) = P(Wk ≤ z−µk) = FWk(z−µk),z ∈ R, (3.8)

fZk(z) = fWk(z−µk) = 2φ(z−µk;0,σ2
k )Φ

(
αk

(
z−µk

σk

))
. (3.9)

Therefore, Zk ⌢ SN(µk,σ
2
k ,αk).

The second case is a simplification of the previous one when αk = 0. In this case, the Skew-

Normal distribution reduces to the usual (symmetric) Normal distribution. In fact, when αk = 0

we get

fZk(z) = 2φ(z−µk;0,σ2
k )Φ(0) = φ(z−µk;0,σ2

k ) = φ(z; µk,σ
2
k ),z ∈ R, (3.10)
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where φ(.; µk,σ
2
k ) represents the pdf of the N(µk,σ

2
k ) distribution.

The third and fourth cases are the skew Generalized Student’s t-distribution and its

symmetric counterpart, hereafter referred to as Skew-t and Student’s t-distributions for short,

respectively. These distributions can be obtained as follows.

Let Uk be a Gamma distribution with shape and rate parameters v
2 and v

2 , respectively, that

is, Uk ⌢ Gamma( v
2 ,

v
2). The formulation is such that the mean of Uk is equal to one.

Note that Zk = µk +
Wk√
Uk

, where Wk ⌢ SN(0,σ2
k ,αk),Uk ⌢ Gamma( v

2 ,
v
2) are independent

random variables, is equivalent to Zk = µk +
Wk√

Rk
v

where Rk is a χ2 distribution with v degrees

of freedom.

The conditional cumulative distribution function and the corresponding pdf of Zk|Uk = u

are given by the expressions (3.5) and (3.6), respectively. According to expression (3.7), the

marginal probability density distribution of Zk takes the form

fZk(z) =
∫ +∞

0
fZk|Uk=u(z) fUk(u)du

=
∫ +∞

0
2
√

uφ(
√

u(z−µk);0,σ2
k )Φ

(
αk

√
u(z−µk)

σk

)
(vk

2 )
vk
2 u

vk
2 −1e−

vk
2 −u

Γ(vk
2 )

du

=
2v

vk
2

k

σk
√

π2
vk+1

2 Γ(vk
2 )

∫ +∞

0
Φ(

√
uA)u

1
2 (vk−1)e−

1
2 u(d+vk)du,

(3.11)

with A = αk(z−µk)
σk

,d =

(
z−µk

σk

)2

.

Integrating expression (3.11) by substitution of the variable s = 1
2u(d + vk), we obtain

34



3.3 Statistical analysis of serological data

fZk(z) =
2

σk
√

πvk Γ(vk
2 )

(
1+

d
vk

)− 1
2 (vk+1) ∫ +∞

0
Φ
(

A

√
2s

d + vk

)
s

1
2 (vk−1)e−sds

=
2 Γ(vk+1

2 )

σk
√

πvk Γ(vk
2 )

(
1+

d
vk

)− 1
2 (vk+1) ∫ +∞

0
Φ
(

A

√
2

d + vk

√
s
)

1

Γ(vk+1
2 )

s
1
2 (vk−1)e−sds

=
2 Γ(vk+1

2 )

σk
√

πvk Γ(vk
2 )

(
1+

d
vk

)− 1
2 (vk+1)

×

×
∫ +∞

0
P
(

Z ≤ A

√
2

d + vk

√
s|S = s

)
1

Γ(vk+1
2 )

s
1
2 (vk−1)e−sds. (3.12)

It is important to notice the following Lemma.

Lemma (Azzalini, 2014): Suppose that Z ⌢ N(0,1), Y ⌢ Gamma(m,1),R ⌢ t2m,

m > 0. It can be proved that

E
(

Φ(c
√

Y )
)
=

∫ +∞

0
P(Z ≤ c

√
y|Y = y) fY (y)dy = P(R ≤ c

√
m),c ∈ R. (3.13)

The application of this Lemma to expression (3.12) leads to

fZk(z) =
2 Γ(vk+1

2 )

σk
√

πvk Γ(vk
2 )

(
1+

d
vk

)− 1
2 (vk+1)

E
(

Φ
(

A

√
2

d + vk

√
s
))

= 2 t(z; µk,σk,vk +1) E
(

Φ
(

A

√
2

d + vk

√
s
))

= 2 t(z; µk,σk,vk +1) P
(

T ≤ A

√
vk +1
d + vk

;vk +1
)

= 2 t(z; µk,σk,vk +1) T
(

A

√
vk +1
d + vk

;vk +1
)
,

(3.14)

where t(.; µk,σk,vk + 1) denotes the probability density function of a Generalized Student-t

distribution with location parameter µk, scale parameter σk and vk + 1 degrees of freedom;

T (.;vk + 1) represents the cumulative distribution function of a standard Student-t distribution

with vk +1 degrees of freedom.
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In short, if Zk ⌢ ST (µk,σ
2
k ,αk,vk), then its pdf is given by

fZk(z) = 2 t(z; µk,σk,vk +1) T
(

A

√
vk +1
d + vk

;vk +1
)
. (3.15)

It should be noted that when the skewness parameter is equal to zero, i.e., αk = 0, the

quantity A = αk(z−µk)
σk

= 0, and the above expression takes the form

fZk(z) = 2 t(z; µk,σk,vk +1) P(T ≤ 0;vk +1) = t(z; µk,σk,vk +1). (3.16)

which corresponds to the probability density function of a Generalized Student-t distribution

with location parameter µk, scale paramter σk and vk +1 degrees of freedom.

As the degrees of freedom tends to infinity, the Skew-t distribution converges to the Skew-

Normal distribution (Azzalini, 1985; Azzalini and Capitanio, 2003; Basso et al., 2010).

The mean and variance of the Skew-t distribution are respectively given by,

E(Zk) = µk +σkbvkδk, if vk > 1, V (Zk) = σ
2
k

[
vk

vk −2
−
(

bvkδk

)2]
if vk > 2, (3.17)

where bvk =
√

vk Γ( 1
2 (vk−1))√

π Γ( 1
2 vk)

and δk =
αk√
1+α2

k
.

3.3.2 Estimation and model selection

Suppose that we have a random sample X1, ...,Xn representing the antibody levels of

n individuals. In general, it is very difficult to determine the maximum likelihood (ML)

estimates of the parameters of any given finite mixture model by direct maximization of

the corresponding log-likelihood functions. One way to surpass this problem is to con-

sider the Expectation-Maximization (EM) algorithm given that the latent serological status

of each individual is unknown and, thus, we are in the presence of a problem of incomplete data.

A full derivation of an EM-type algorithm for fitting mixtures of SMSN can be found

in Basso et al., 2010. In brief, the E-step is the same as in the traditional mixtures of
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Normal distributions, which has been widely studied in the literature (Lin et al., 2007a; Basso

et al., 2010; Lachos Dávila et al., 2018). Replacing the classical M-step with a sequence of

conditional maximization steps (CM-steps), one obtains closed form expressions that simplify

the implementation of the algorithm. Also, the observed information matrix can be derived

analytically (Ferreira et al., 2011).

There are several methods to determine the optimal number of components that constitute

the mixture, g (G. McLachlan and Peel, 2000; Oliveira-Brochado et al., 2005; Lukočienė et al.,

2009). A simple way to do it is to use penalized forms of the log-likelihood function: the

information criteria. They rely on the idea that an increase in the number of components in

the mixture leads to a better fit of the data, thus, increasing the maximized likelihood function.

Invoking the parsimony principle to determine the best model for the data, enhancement in

model fitting is penalized by an increase in the number of parameters included in the model. In

this framework, two of the most popular measures are Akaike’s Information Criterion (AIC)

and Bayesian Information Criterion (BIC) (Xie et al., 2013). In general the best model is the

one that provides the lowest estimate of AIC or BIC value among all models tested. About the

use of one or the other criterion, the BIC criterion demonstrates consistency in determining

the number of components of the mixture models (Xie et al., 2013; Mehrjou et al., 2016). In

addition, BIC tends to select simpler models (ideally with less number of components) than

AIC, which simplifies data interpretation. Hence, this information criterion is preferred for

model selection.

Another way to assess the number of components in a mixture model is to carry out a

hypothesis testing, namely the Likelihood Ratio Test (LRT). However, the regularity conditions

for the validity of classical asymptotic approximation of the test statistic are not met in the

context of finite mixture models, because the null hypothesis associated with this hypothesis

is specified in the boundary of the parameter space rather than its interior (G. McLachlan

and Peel, 2000). In some cases, the true parameter is in a non-identifiable subset of the

parameter space (Feng et al., 1996). As a consequence, there is no guarantee that, under the

null hypothesis, the likelihood ratio statistic asymptotically follows a χ2 distribution with

the degrees of freedom given by the difference between the number of parameters under the

alternative and the null hypothesis (G. McLachlan and Peel, 2000). To surpass this problem, a
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bootstrap approach can be carried out to estimate the p-value of this non-standard LRT (Feng

et al., 1996; Yu et al., 2019).

Let us consider the test specified by H0 : g= g0 versus H1 : g= g1 where g0 < g1. Let us also

denote ψψψ0 and ψψψ1 the vector of parameters of the mixture models under H0 and H1 hypotheses,

respectively, xxx = (x1, ...,xn) the observed data and T (xxx;ψψψ0,ψψψ1) the test statistic of LRT. The

bootstrap approach is given by the following algorithm (Yu et al., 2019):

1. Use the EM algorithm to estimate the ψψψ0 and ψψψ1 estimates under the H0 and H1 hypothe-

ses, respectively. Calculate T (xxx; ψ̂ψψ0, ψ̂ψψ1);

2. Simulate N = 10,000 independent samples xxx∗1, ...,xxx
∗
n using the mixture model under H0

and parameterized by ψ̂ψψ0;

3. For each bootstrap sample i, calculate T (xxx∗i ; ψ̂ψψ0i
, ψ̂ψψ1i

), where ψ̂ψψ0i
and ψ̂ψψ1i

are the es-

timated parameter vectors for the bootstrap sample i under the H0 and H1 hypotheses,

respectively;

4. Estimate the p-value as 1
N ∑N

i=1 I{T (xxx∗i ; ψ̂ψψ0i
, ψ̂ψψ1i

)> T (xxx; ψ̂ψψ0, ψ̂ψψ1)}, where I{.} is the indi-

cator function.

Another important statistical test in the context of mixtures based on SMSN is to address

the significance of the asymmetry parameters of the mixing distributions composing the mixture

model based on Skew-Normal or Skew-t distributions . To attain this goal, a LRT can also be

carried out. Suppose that we have a mixture model with all g components given by either Skew-

Normal or Skew-t distributions. In this test, the hypotheses under testing are the following:

H0 : αk = 0, ∀k=1,...,g versus H1 : ∃k=1,...,g, αk ̸= 0.

The test statistic is given by Λ = −2ln L̂0
L̂1

, where L̂0 and L̂1 correspond to the likelihood

functions of the mixture model evaluated at the maximum likelihood estimates under H0 and

H1, respectively. In contrast with the previous test related to the number of components, the

usual asymptotic approximation for the distribution of the LRT statistic under H0 holds, that is,

a χ2 distribution with g degrees of freedom.

38



3.3 Statistical analysis of serological data

Finally, the quality of the fit of the estimated models should be assessed. For a matter of

simplicity, the Pearson’s χ2 test for goodness-of-fit can be used. To apply this test, the data

under analysis can be divided into bins according to the sampled 5%-quantiles or deciles (i.e.,

10%-quantiles).

3.3.3 Estimation of seropositivity

After determining the best finite mixture model for the data, the next step is usually to

estimate the seroprevalence, that is, the prevalence of antibody-positive individuals in the

population (or, the probability of an individual being antibody-positive). Seropositivity is

usually defined by a cutoff, denoted by c, in the respective antibody distribution above which

individuals would be considered seropositive. In the context of finite mixture models, cutoff

determination requires the interpretation of each latent population in terms of seronegativity

and seropositivity. To do that, one typically assumes the seronegative population as the

one with lowest average value while the remaining components are interpreted as different

levels of seropositivity upon recurrent infections. In this scenario, the seropositivity of i-th

individual can be seen as resulting from a Bernoulli random variable Yi ⌢ Ber(p) where

p = P [Xi ≥ c] and Xi (i = 1, ...,n) represents the random variable representing the underlying

antibody concentration. The probability p is also called seroprevalence and it embodies the

probability of exposed individuals to a given antigen in the population. According to the

maximum likelihood method, seroprevalence can be estimated as the proportion of seropositive

individuals in the sample. Therefore, different estimates for the seroprevalence can be obtained

according to the methods used to determine the cutoff.

In this work, we consider the following three different methods for determining the seropos-

itivity cutoff:

- Method 1: It is based on the 99.9%-quantile associated with the estimated seronegative

population. This method is the most popular in sero-epidemiology (Sepúlveda, Stresman,

et al., 2015; Saraswati et al., 2019). It is often called as the 3σ rule, because the 99.9%-

quantile is given by the mean plus 3 times the standard deviation of a normally distributed

seronegative population;

- Method 2: It relies on the minimum of the density mixture functions. In the case of two
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latent populations, the cutoff corresponds to the absolute minimum, and in the case of

three or more latent populations the cutoff corresponds to the lowest relative minimum.

This point can be calculated using the Dekker’s algorithm (Brent, 1973). It should be

noted that the minimum of the mixing function is not expected to coincide with the point

of intersection of the probability densities of each individual subpopulation;

- Method 3: It imposes a threshold in the the so-called conditional classification curves

(Sepúlveda, Stresman, et al., 2015). Under the assumption that all components but the first

one refer to seropositive individuals, the conditional classification curve of seropositive

individuals given the antibody level x is defined as

p+|x =
∑g

k=2 πk fk(x;θθθ k)

∑g
k=1 πk fk(x;θθθ k)

. (3.18)

In turn, the classification curve of seronegative individuals is given by

p−|x = 1− p+|x. (3.19)

After calculating these curves, one can impose a minimum value for the classification of

each individual. In this case, two cutoff values arise in the antibody distribution, one for

the seronegative individuals and another for seropositive individuals. Mathematically, the

classification rule is given as follows

Ci =





seronegative , if xi ≤ c−

equivocal , if c− < xi < c+

seropositive , if xi ≥ c+

(3.20)

where c− and c+ are the cutoff values in the antibody distribution that ensure a mini-

mum classification probability, say 90%. To calculate these cutoff values in practice, one

can use the bisection method providing an initial interval where they might be located

(Sepúlveda, Stresman, et al., 2015).

3.3.4 R packages

We used the package mixsmsn to fit different mixture models based on SMSN (Prates et al.,

2013). In particular, we used the function smsn.mix to estimate the model parameter via the
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EM algorithm and the function rmix to generate random samples from a given mixture model

in the bootstrap method. For fitting the Student’s t-distribution, we considered the R package

extraDistr (Wolodzko, 2020), namely, the function dlst to calculate their density and the

function plst to define the cumulative distribution function. The fitting of the Skew-Normal

distributions was performed with the package sn (Azzalini, 2020). The functions dsn and psn

were used to calculate the probability density function and the cumulative distribution function

of the Skew-Normal distribution, respectively. In the case of the Skew-t distribution, the func-

tions dst and pst were used to calculate the probability density function and the cumulative

distribution function, respectively.

3.4 Results

3.4.1 Analysis of serological data by finite mixture models based on

SMSN

The statistical analysis was performed after applying the base 10 logarithmic transformation

to the data. The number of components g in the mixture models was allowed to vary from 1

(single distribution) to 3 components. When fitting the mixtures of Skew-t distributions, the

package mixsmsn only allowed to fit models with a common degree of freedom for all mixing

distributions (i.e., v1 = ...= vg = v).

Our results suggested that the 6 antibodies under evaluation could be divided into two

major classes: (i) the first one including antibodies against HHV-6 and VZV where there was

evidence for a single serological population (Table 3.1) and (ii) another one including the

antibodies against the remaining four herpesviruses where there was evidence for the existence

of more than one serological population in the respective data (Table 3.2).

According to BIC, the best models for the antibodies against HHV-6 and VZV were

Skew-Normal and Skew-t distributions, respectively. The estimated distributions were both

left skew (Figure 3.1A; αHHV 6 = −1.82 with 95% CI =(-2.44;-1.02) and αV ZV = −4.54 with

95% CI =(-6.94;-2.14). They would appear to have a good fit to the data at the 5% significance

level (pgo f = 0.140 and 0.076, respectively). In the case of antibodies against VZV, further
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Table 3.1: Antibody data with evidence for a single serological population, where g represents the number of
components in the mixture models, p is the number of parameters of the model, Lmax is the value of the maximized
log-likelihood function, pgo f is the maximum p-value for the goodness-of-fit test when dividing data into deciles
or 5%-quantiles, and pboot is the bootstrap p-value for testing H0 : g = 1 versus H1 : g = 2.

Virus SMSN g p Lmax BIC pgo f pboot
HHV-6 Normal 1 2 -129.46 270.94 0.064 0.064

2 5 -116.97 263.97 0.169
3 8 -110.43 268.91 0.462

Skew-Normal 1 3 -121.35 260.71 0.140 0.027
2 7 -117.35 276.75 0.084
3 11 -109.40 284.87 0.152

Student’s t 1 3 -124.38 266.77 0.157 0.042
2 6 -117.14 270.32 0.122
3 9 -105.36 264.78 0.254

Skew-t 1 4 -118.81 261.65 0.148 0.409
2 8 -116.83 281.71 0.076
3 12 -104.00 586.83 0.001

VZV Normal 1 2 -108.76 229.53 < 0.001 < 0.001
2 5 -7.28 44.60 0.159
3 8 -1.70 51.45 0.153

Skew-Normal 1 3 -23.94 65.90 < 0.001 0.180
2 7 -0.11 42.27 0.406
3 11 0.10 65.87 0.068

Student’s t 1 3 -61.90 141.80 < 0.001 < 0.001
2 6 -7.41 50.86 0.082
3 9 -1.68 57.42 0.113

Skew-t 1 4 -7.89 39.81 0.076 0.375
2 8 -0.05 48.16 0.211
3 12 5.47 62.14 0.134

evidence was obtained for a single population when testing one Skew-t distribution against

a mixture of two Skew-t distributions, respectively (pboot = 0.375). However, when testing

one Skew-Normal distribution against a mixture of two Skew-Normal distributions for the

antibodies against HHV-6, the respective result was in the borderline of the 5% statistical

significance (pboot = 0.027).

In terms of serological classification, the evidence for a single population would appear

to represent a putative seropositive population. This interpretation is consistent with the prior

knowledge that HHV-6 and VZV are usually acquired during childhood and more than 95%

of the adult populations typically shows evidence of antibody positivity against these viruses

(Braun et al., 1997). In addition, the core values of these distributions are higher than the cutoff

for seropositivity suggested by the lab protocol. Finally, a left skewness is also predicted for

a hypothetical seropositive population, because the antibodies should decay over time (Parker

et al., 1990).

It is worth noting that most of the mixture models under comparison could also fit data of

these two antibodies well. This the case of the mixture of two or three Normal distributions

(pgo f = 0.169 and 0.462 for antibodies against HHV-6 and pgo f = 0.159 and 0.153 for VZV),
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which are typically used in serological data analysis. Therefore, although not being the

best models for HHV-6 and VZV-related antibodies, these models could have been used for

subsequent serological analyses.

With respect to the antibodies against the remaining herpesviruses, the respective data anal-

ysis was not so straightforward, because the model with lowest BIC estimate could not fit the

data well according to the Pearson’s goodness-of-fit test at 5% significance level (Table 3.2).

This is the case of the mixtures of two Skew-Normal distributions for the antibodies against

CMV (BIC=509.69 and pgo f = 0.038), HSV-1 (BIC=563.52 and pgo f = 0.003), and HSV-2

(BIC=570.68 and pgo f = 0.013). For these antibodies, the best models were considered to be a

mixture of two Skew-t distributions (BIC=511.45 and pgo f = 0.072), a mixture of three Skew-

Normal distributions (BIC=570.70 and pgo f = 0.104), and a mixture of two Normal distribu-

tions (BIC=585.27 and pgo f = 0.516), respectively, because they were the best models ranked

by BIC with a good fit for the data (Figure 3.1B). Interestingly, for the HSV-2-related antibody

data, when the mixture of two Normal distributions was compared to the mixture of 2 Skew-

Normal distribution by a likelihood ratio test, the first model was strongly rejected (p< 0.0001),

which suggested the asymmetry of at least one of the components. This inconsistency between

this test and the selected model can be explained by the unavailability of fitting a mixture of a

Normal distribution and a Skew-Normal distribution in the package smsn. For the EBV-related

antibody data, the best model according to BIC was a mixture of two Skew-t distributions,

which also had a good fit for the data (BIC=299.32 and pgo f = 0.248; Figure 3.1B).

In terms of interpretation of each component, there was evidence of putative seronegative

and seropositive populations for antibodies against CMV, EBV, and HSV-2 (Figure 3.1B). This

interpretation was supported by the observation that the cutoff value suggested by the com-

mercial kits lies between these hypothetical serological populations. In the case of antibodies

against HSV-1, the respective interpretation was not so obvious, because (i) the best mixture

model was composed of three components and (ii) the cutoff suggested by the commercial kits

lies in the middle of the intermediate distribution, which shows right asymmetry. In theory, the

distribution of a putative seronegative population tends to show right asymmetry (Parker et al.,

1990) and, if so, this intermediate component should be interpreted accordingly. However, this

interpretation opens the door for the presence of two sets of seronegative populations resulting

from distinct background signals in absence of antibodies. In absence of additional information
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Table 3.2: Antibody data with evidence for more than one serological population, where g represents the number of
components in the mixture models, p is the number of parameters of the model, Lmax is the value of the maximized
log-likelihood function, and pgo f is the maximum p-value for the goodness-of-fit test when dividing data in deciles
or 5%-quantiles.

Virus SMSN g p Lmax BIC pgo f
CMV Normal 1 2 -409.11 830.24 < 0.001

2 5 -245.75 521.54 0.016
3 8 -233.70 515.45 0.018

Skew-Normal 1 3 -357.61 733.23 < 0.001
2 7 -233.82 509.69 0.038
3 11 -226.64 519.35 0.146

Student’s t 1 3 -410.14 838.29 < 0.001
2 6 -238.54 513.12 0.038
3 9 -231.23 516.59 0.046

Skew-t 1 4 -357.71 739.45 < 0.001
2 8 -231.55 511.45 0.072
3 12 -226.93 525.93 0.324

EBV Normal 1 2 -342.30 696.62 < 0.001
2 5 -152.66 335.36 < 0.001
3 8 -129.30 306.65 0.173

Skew-Normal 1 3 -226.42 470.86 < 0.001
2 7 -130.57 303.17 0.084
3 11 -128.02 322.10 0.054

Student’s t 1 3 -240.21 498.43 < 0.001
2 6 -151.61 339.26 < 0.001
3 9 -129.41 312.88 0.117

Skew-t 1 4 -173.14 370.31 < 0.001
2 8 -125.63 299.32 0.248
3 12 -126.29 324.66 0.087

HSV-1 Normal 1 2 -442.27 896.56 < 0.001
2 5 -291.59 613.22 < 0.001
3 8 -264.94 577.94 0.003

Skew-Normal 1 3 -394.55 807.11 < 0.001
2 7 -260.74 563.52 0.003
3 11 -252.32 570.70 0.104

Student’s t 1 3 -443.73 905.48 < 0.001
2 7 -291.73 619.51 < 0.001
3 9 -264.98 584.02 0.002

Skew-t 1 4 -395.43 814.88 < 0.001
2 8 -260.88 569.82 0.001
3 12 -251.86 575.79 < 0.001

HSV-2 Normal 1 2 -427.29 866.59 < 0.001
2 5 -277.62 585.27 0.516
3 8 -269.24 586.54 0.007

Skew-Normal 1 3 -337.36 692.74 < 0.001
2 7 -264.32 570.68 0.013
3 11 -257.19 580.45 0.003

Student’s t 1 3 -428.40 874.81 < 0.001
2 6 -277.84 591.71 0.688
3 9 -269.60 593.26 0.004

Skew-t 1 4 -337.79 699.60 < 0.001
2 8 -264.52 577.10 0.007
3 12 -257.38 586.83 0.001

about the serological data, this intermediate component was considered to represent a putative

seronegative population.
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Figure 3.1: Best models for the data under analysis. A. Antibody distributions with evidence for a single serological
population (HHV-6 and VZV). B. Antibody distributions with evidence for more than one serological population
(CMV, EBV, HSV1, and HSV2). Antibody concentration in x axis is given in log10 units.

3.4.2 Estimation of cutoff for seropositivity

After fitting the mixture models to the data, the following step of the analysis was to

estimate a cutoff value for seropositivity and the subsequent seroprevalence in the different

study groups (Table 3.3).

For CMV and HSV-2 antibody data, the cutoff values did not vary substantially from one

method to another. Interesting, the cutoff values estimated by method 1 (the 3σ rule) almost

perfectly matched with the ones suggested by the commercial kits (12.6 U/ml and 12.0 U/ml
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for CMV and HSV-2 respectively versus 12.0). This good matching between estimates could be

explained by a good approximation of the Normal distribution for the seronegative population

(Figure 3.1B) and, therefore, we could infer that the cutoff value suggested by the commercial

kits was derived from the 3σ rule; this information was absent from the original study (Cliff

et al., 2019). Since the seronegative and seropositive populations were separated well in these

antibody distributions, the estimates of seroprevalence across the different study groups were

almost invariant with respect to cutoff value used.

With respect to the EBV antibody data, the hypothetical seronegative population is asym-

metric to the right (α1 = 1.74; 95% CI=(-1.30; 4.80); Figure 3.1B) with heavy tails (v = 4.52;

95% CI=(0.79;8.26)). As a consequence, the cutoff value of 249.5 U/ml derived from method

1 was quite different from the one suggested by the commercial kit. However, this cutoff value

was considered non-informative, because it was well located within the seropositive population

and implied seroprevalence estimates close to zero for the different study groups. In contrast,

the cutoff values from the remaining methods were in the same order of magnitude of the one

suggested by the commercial kits. Therefore, the subsequent seroprevalence estimates of each

study group did not differ substantially among these methods. Again, the consistency of the

resulting seroprevalence estimates was due to the fact that the seronegative and seropositive

populations were well separated in these data.

The largest differences in the cutoff values for seropositivity were observed for the HSV-1

antibody data. Coincidentally, this was the data set where the best mixture model was

composed of three components. As discussed earlier in this paper, the intermediate component

was considered a second hypothetical seronegative population, which resulted in a shift in the

calculation of seropositivity towards higher values. As such, the cutoff seropositive based on

the commercial kit led to the highest seroprevalence estimates for all study groups with a global

estimate of 45.2% (95% CI=(40.2%;50.2%). As an extreme case, the 3σ rule produced again

a too-high cutoff value due to the right asymmetry of both seronegative populations. Such

unrealistic cutoff value led a zero seroprevalence estimates and rendered the respective analysis

useless.

Finally, although not being the main objective of this study, the comparison of the four
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study groups suggested that, given a method for determining seropositivity and antibody under

analysis, the seroprevalence of patients with ME/CFS did not appear to differ significantly from

the one of healthy controls and patients with multiple sclerosis alike.

Table 3.3: Seroprevalence (%) by cutoff method for seropositivity and by study group. c− and c+ are on the
linear scale (U/ml). Seroprevalence was calculated based on c+. The method denoted by ”M” refers to the cutoff
suggested by the protocol of the commercial kit. The confidence intervals (CI) refer to the Clopper-Pearson exact
confidence interval for a proportion.

Seroprevalence (95% CI)
Virus Method c− c+ Global HC ME-M ME-S MS

CMV M 8.0 12.0
33.5

(28.9-38.4)
37.4

(28.2-47.3)
28.6

(22.4-35.4)
33.3

(21.1-47.5)
36.7

(23.4-51.7)

1 - 12.6
33.5

(28.9-38.4)
37.4

(28.2-47.3)
28.6

(22.4-35.4)
33.3

(21.1-47.5)
36.7

(23.4-51.7)

2 - 13.5
33.2

(28.6-38.1)
37.4

(28.2-47.3)
28.6

(22.4-35.4)
31.5

(19.5-45.6)
36.7

(23.4-51.7)

3 9.4 14.1
32.9

(28.4-37.9)
37.4

(28.2-47.3)
28.1

(21.9-34.9)
31.5

(19.5-45.6)
36.7

(23.4-51.7)

EBV M 8.0 12.0
87.3

(83.6-90.4)
87.9

(80.1-93.4)
86.2

(80.6-90.7)
81.5

(68.6-90.7)
75.5

(61.1-86.7)

1 - 249.5
2.0

(0.09-3.9)
1.9

(0.02-6.6)
1.5

(0.03-4.4)
0.0

(0.0-6.6)
6.1

(1.3-16.9)

2 - 11.5
87.3

(83.6-90.4)
87.9

(80.1-93.4)
86.2

(80.6-90.7)
81.5

(68.6-90.7)
75.5

(61.1-86.7)

3 5.6 20.4
85.5

(81.7-88.9)
87.9

(80.1-93.4)
82.7

(76.6-87.7)
81.5

(68.6-90.7)
75.5

(61.1-75.5)

HSV-1 M 8.0 12.0
45.2

(40.2-50.2)
42.1

(32.6-51.9)
41.8

(34.8-49.1)
51.9

(37.8-65.6)
46.9

(32.5-61.7)

1 - 271.0
0.0

(0.0-0.1)
0.0

(0.0-3.4)
0.0

(0.0-1.2)
0.0

(0.0-6.6)
0.0

(0.0-7.3)

2 - 46.9
34.5

(29.8-39.4)
28.0

(19.8-37.5)
34.7

(28.1-41.8)
38.9

(25.9-53.1)
34.7

(21.7-49.6)

3 42.7 83.2
30.7

(26.2-35.5)
24.3

(16.5-33.5)
32.1

(25.7-39.2)
33.3

(21.1-47.5)
28.6

(16.6-43.3)

HSV-2 M 8.0 12.0
38.1

(33.3-43.1)
33.6

(24.8-43.4)
38.8

(31.9-45.9)
40.7

(27.6-54.9)
32.7

(19.9-47.5)

1 - 12.0
38.1

(33.3-43.1)
33.6

(24.8-43.4)
38.8

(31.9-45.9)
40.7

(27.6-54.9)
32.7

(19.9-47.5)

2 - 10.7
38.8

(33.9-43.8)
33.6

(24.8-43.4)
39.3

(32.4-46.5)
40.7

(27.6-54.9)
36.7

(23.4-51.7)

3 7.1 12.6
37.8

(33.0-42.8)
33.6

(24.8-43.4)
38.8

(31.9-45.9)
40.7

(27.6-54.9)
30.6

(18.3-45.4)

3.5 Conclusions

This study aimed to review the finite mixture models based on SMSN and to recommend

their routine use in serological data analysis. Such recommendation sets its foundation in the

high flexibility of these models in describing different patterns of randomness, as illustrated

with the analysis of antibodies against 6 different herpesviruses. In particular, a high modelling

flexibility is necessary given that right and left asymmetry could emerge from hypothetical

seronegative and seropositive populations, respectively. In this regard, most popular distri-

butions used in statistics are not able to exhibit either left or right asymmetry depending on

the parameters specified. A less-known family of distributions that shows such remarkable
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stochastic property is the so-called the Generalized Tukey’s λ distribution (Ramberg et al.,

1974; Freimer et al., 1988). This distribution offers a great variety of shapes owing to four

parameters controlling the location, the scale, the skewness, and the flatness of the resulting

distribution. However, the Generalized Tukey’s λ distribution is only defined in terms of its

quantile function and, hence, its estimation is cumbersome. This distribution has already been

proposed for mixture modelling, but there are only theoretical and computational developments

available for the two-component case (Su, 2007; Su, 2011). This limits the applicability of

these alternative models, namely, in data where there is evidence for more than two serological

populations, such as the case of the antibodies against HSV-1 here analyzed or against the

influenza virus reported elsewhere (Nhat et al., 2017). Therefore, finite mixture models based

on SMSN would appear the most general and flexible approach so far for analysing serological

data.

For data analysis, we recommend the use of the package mixsmsn for estimating the finite

mixture models (Prates et al., 2013). Notwithstanding this recommendation, the package only

allows to estimate finite mixture models where all mixing distributions belong to the same

class of SMSN probability distributions. Hence, it is only possible to fit 4 different models

per number of components. In theory, there are 42 = 16 possible two-component mixture

models resulting from the combination of Normal, Skew-Normal, Generalized Student’s t,

and Skew-t distributions as mixing distributions. Note that these possible models result from

imposing parametric restrictions to the most general mixture model based on the Skew-t

distribution. For three-component mixture models, the number of possible models increases

to 43 = 64. Therefore, the package mixsmsn excludes a vast number of possible models,

which ultimately affects the detection of the true best model for the data. This computational

limitation might be the reason for some inconsistencies that can be found in the example

of application. For instance, a single Skew-Normal distributions was considered the best

model for the antibodies against HHV-6. However, the hypothesis of a single Skew-Normal

distribution against a mixture of two Skew-Normal distributions could be rejected by bootstrap

at the 5% significance level. A possible explanation for this contradicting evidence is that the

best model for these data could be a mixture of a Normal distribution for the seronegative

population and a Skew-Normal distribution for the seropositive population.
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Another limitation of using mixsmsn package is that, for mathematical tractability, the

mixtures of generalized Student t and Skew-t distributions were assumed to have the same

degrees of freedom in all the mixing distributions. In theory, this assumption could be relaxed

so this parameter could vary from one component of the mixture to another. This modelling

option was available in the package EMMIXuskew for the mixture of Skew-t distributions (G.

McLachlan and S. Lee, 2013). However, this package is currently discontinued. In practice,

we expect some degree of numerical instability when trying to estimate different degrees of

freedom for mixtures in which different components overlap with each other substantially. In

this regard, future research could be conducted in order to determine under which conditions

different degrees of freedom could infer for the different components.

The problem of determining the optimal cutoff value for seropositivity has been intensively

investigated, discussed, and revisited over the years (Ridge et al., 1993; Kafatos et al.,

2016; Migchelsen et al., 2017; Saraswati et al., 2019). In this regard, the most popular

cutoffs for seropositivity are simply defined by the mean plus a given number of times the

standard deviation of the hypothetical seronegative population without checking the Normality

assumption of the hypothetical seronegative population. The resulting cutoffs are associated

with high-order quantiles of the Normal distribution, such as 97.7% or 99.9% for the 2σ and

3σ rules, respectively. In practice, these cutoffs imply a high specificity but show an arbitrary

sensitivity for the respective serological classification. When the hypothetical seronegative

population shows a right skew distribution, similar cutoffs can be obtained by calculating

same high quantiles of the estimated SMSN, as done here. The reverse argument can be made

when analysing antibodies where seropositivity is expected to be the default serological state

of an individual, such as the case of antibodies against HHV-6 and VZV here analyzed or

vaccine-related antibodies in populations where vaccination is mandatory. For these antibodies,

similar cutoffs can be determined by the mean minus a given number of times the standard

deviation of the hypothetical seropositive population assumed to be normally distributed.

For a hypothetical seropositive population with a left skew distribution, the cutoff values for

seropositive are now calculated using the low order quantiles (e.g., 2.3% and 0.1%-quantiles

for the 2σ and 3σ rules, respectively). Inversely, these cutoffs generate a high sensitivity

but an arbitrary specificity for the respective serological classification. It is worth noting

that, as expected, several authors advocate a free-cutoff approach for serological analysis
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(Chis Ster, 2012; Bouman et al., 2020). However, a detailed discussion about the advantages

and disadvantages of free-cutoff approaches was considered to be out of the scope of this study.

In terms of the results concerning the example of application, there is no evidence for a

different level of exposure of the patients with ME/CFS to these herpesviruses when compared

to healthy controls and patients with multiple sclerosis. This finding seems independent

of the method for determining the seropositivity and it is in line with the findings reported

in the original study (Cliff et al., 2019) and with another serological investigation of these

herpesviruses when comparing patients with healthy controls only (Blomberg, Rizwan, et al.,

2019). A possible explanation for this ”negative” finding might be explained by the choice

of antibodies against highly immunogenic antigens used in this serological study. It is then

possible that there is a specific set of viral-derived antigens associated with ME/CFS, as

suggested by a comprehensive study about the role of antibodies against EBV in this disease

(Loebel et al., 2017). Finally, a more detailed analysis of these data is currently carried out

in order to understand whether the lack of association between ME/CFS and these antibodies

could be explained by putative confounding effects of age and gender on the underlying

antibody distributions. This detailed analysis will be reported elsewhere.

In summary, the finite mixture models based on SMSN show a good potential to become

a routine tool for serological data analysis. They have the advantage of including the popular

Gaussian mixture models as special cases. However, given the statistical complexity of these

models, we recommend a closer collaboration between biomedical researchers who generate

the serological data and biostatisticians who have in principle the knowledge and skills to fit

and compared them properly.
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Chapter 4

Association analysis between herpesviruses

serology and ME/CFS using a varying

cutoff approach for seropositivity

The evidence of an association between Myalgic Encephalomyelitis/Chronic Fatigue Syn-

drome (ME/CFS) and chronic herpesviruses infections remains inconclusive. Two possible

reasons for this lack of consistent evidence are the large heterogeneity of the patients’ popula-

tion with different disease triggers and the use of arbitrary cutoffs for defining seropositivity.

In this work we re-analyzed previously published serological data related to 7 herpesvirus anti-

gens. These data were collected as part of the United Kingdom ME/CFS Biobank (UKMEB).

In our re-analysis, patients with ME/CFS were subdivided into four major subgroups related to

the disease triggers: S0 - 42 patients who did not know their disease trigger; S1 - 43 patients

who reported a non-infection trigger; S2 - 93 patients who reported an infection trigger, but

that infection was not confirmed by a lab test; and S3 - 48 patients who reported an infection

trigger and that infection was confirmed by a lab test. In accordance with a sensitivity analysis,

the data were compared to those from 99 healthy controls allowing the seropositivity cutoffs to

vary within a wide range of possible values. We found a negative association between S1 and

seropositivity to Epstein-Barr virus (VCA and EBNA1 antigens) and Varicella-Zoster virus.

However, the significance of this finding was affected by the seropositivity cutoff used. We

also found that S3 had a lower seroprevalence to the human cytomegalovirus when compared

to healthy controls for all cutoffs used for seropositivity. In summary, herpesviruses serology

could distinguish subgroups of ME/CFS patients according to their disease trigger.
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4.1 Introduction

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disease

whose affected patients experience persistent fatigue that cannot be alleviated by rest and suf-

fer from post-exertional malaise upon minimal physical and/or mental activity (Rivera et al.,

2019). Disease prevalence has been estimated around 0.4% after pooling data from differ-

ent epidemiological studies (Lim et al., 2020). However, this estimate might be conservative

(Valdez et al., 2019, Hanson et al., 2020) due to poor societal recognition of the disease includ-

ing amongst health professionals (Raine et al., 2004), the inexistence of an objective disease-

specific biomarker for the corresponding diagnosis (Scheibenbogen et al., 2017), a small num-

ber of well-designed epidemiological studies (Estévez-López et al., 2020), and limited funding

opportunities for more comprehensive and integrative research (Pheby et al., 2020).

The pathogenesis of ME/CFS remains a topic under intense debate with the proposal of

many competing hypotheses (Underhill, 2015; Sotzny et al., 2018; Blomberg, Gottfries, et al.,

2018; Hatziagelaki et al., 2018; Sepúlveda, Carneiro, et al., 2019; Morris et al., 2019; Wirth

et al., 2020; Stanculescu et al., 2021). However, there is a general consensus that the disease

could be initiated by a combination of genetic predisposing factors and environmental triggers

(e.g., exposure to toxins, chronic emotional and physical stress) (Blomberg, Gottfries, et al.,

2018; L. Nacul, O’Boyle, et al., 2020). In this regard, a large proportion of patients report an

acute infection at the onset of their symptoms (Johnston et al., 2016; Chu et al., 2019). With the

objective of finding the master infectious agent of the disease cause and progression, many sero-

logical investigations were conducted with inconclusive or even contradicting findings (Rasa et

al., 2018). Possible reasons for this contrasting evidence could be related to disease misclassifi-

cation and selection bias (L. Nacul, E. Lacerda, et al., 2019; Malato et al., 2021), the necessity

of dividing patients into different subtypes (Jason et al., 2005), the low number of patients re-

cruited (Hatziagelaki et al., 2018), or differences in the antigen and experimental assays used

(Ariza, 2020). An additional but often ignored reason is that serological studies are typically

based on arbitrary cutoff values for identifying seropositive individuals or high antibody respon-

ders, as illustrated in two serological studies on herpesviruses (Loebel et al., 2017; Blomberg,

Rizwan, et al., 2019).

Recently, the analysis of serological data from the United Kingdom ME/CFS Biobank (UK-

MEB) did not find any association between ME/CFS and the presence of antibodies against

chronic infections by different herpesviruses (Cliff et al., 2019). In this work, we re-analyzed
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these data by dividing the ME/CFS patients into four subgroups related to non-infection versus

infection disease triggers. We also performed a sensitivity analysis of the association between

ME/CFS and each herpesvirus as a function of the cutoff defining seropositivity.

4.2 Materials and Methods

4.2.1 Study participants

All study participants are part of the UKMEB as described before (Tengvall et al., 2019).

In summary, the data refer to a cohort of 226 patients with ME/CFS and 99 healthy controls

(HC). At biobank enrollment, patients had to fill in a symptom’s assessment questionnaire in

which they were asked a specific question about whether they had an infection at the disease

onset. This question had four categories of response, which we used to divide the patients into

the following subgroups (Table 4.1): subgroup S0 - she/he did not know whether she/he had an

infection at the disease onset (n = 42,18.5%); subgroup S1 - she/he did not have an infection at

the disease onset (n = 43,18.9%); subgroup S2 - she/he had an infection at the disease onset,

but this infection was not confirmed with a lab test (n = 93,41.0%); subgroup S3 - she/he had an

infection at the disease onset and this infection was confirmed with a lab test (n = 48,21.1%).

In the participant questionnaire, patients were also asked to narrate the factors that could have

triggered or contributed to the disease. Given that this was an open question, we only performed

a brief description of the respective responses (Table 4.2).

All individuals had age between 18 and 60 years old. Patients with ME/CFS were referred

for a possible inclusion in the UKMEB by general practitioners working in the United Kingdom

National Health System (NHS). The respective diagnosis was confirmed using the 1994 Centers

for Disease Control and Prevention (CDC) (Fukuda et al., 1994) or the 2003 Canadian Consen-

sus Criteria (Carruthers et al., 2003) by the UKMEB dedicated clinical research team, according

to their designed clinical protocol (E. M. Lacerda, Bowman, et al., 2017). Healthy controls were

either family member or friends of the recruited patients with ME/CFS, or they were volunteers

recruited by advertisement within Higher Education Institutions. The exclusion and inclusion

criteria of the UKMEB and additional information about recruitment and sample processing can

be found elsewhere (E. M. Lacerda, Bowman, et al., 2017; E. M. Lacerda, Mudie, et al., 2018).
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4.2.2 Herpesviruses serology

Serological data and the respective laboratory procedures were previously described in the

original study (Cliff et al., 2019). However, given that the main focus of this early study was

cellular immunology, the description of herpesviruses serology was kept to a minimum. We

have now provided some additional details. The following commercial ELISA assays from

Demeditec Diagnostics (Kiel, Germany) were used to quantify the plasma concentrations of

IgG antibodies against the following viruses: the human cytomegalovirus (CMV; Prod. Ref.

DECMV01), EBV - VCA antigen (Prod. Ref. DEEBVG0150), EBV - EBNA1 antigen (Prod.

Ref. DE4246), herpes simplex virus-1 (HSV1) (Prod. Ref. DEHSV1G0500), herpes simplex

virus-2 (HSV2; Prod. Ref. DEHSV2G0540), Varicella-Zoster virus (VZV; Prof. Ref. DE-

VZVG0490). The commercial ELISA-VIDITEST from VIDIA (Vestec, Czech Republic) was

used for IgG quantification against the human herpesvirus 6 (HHV6; Prod. Ref. ODZ-235).

Antibody quantification was expressed in arbitrary units per milliliter (U/ml). According to

manufacturer’s instructions, seropositivity was considered for all samples with concentration ≥
12 U/ml for HSV1, HSV2, VZV, CMV and EBV antigens. Likewise, individuals with antibody

concentrations against HHV6 ≥ 12.5 U/ml were considered seropositive.

4.2.3 Statistical analysis

To compare the age and gender distributions of different study groups and/or subgroups

of ME/CFS patients, we used the non-parametric Kruskal-Wallis test and the Pearson’s χ2 test

for two-way contingency tables, respectively. For simplicity of the analysis, we only reported

frequencies and the respective percentages of different disease triggers in the subgroups of

ME/CFS that mentioned the occurrence of such triggers.

We previously performed thorough analyses of different cutoff values for seropositivity to

each viral antigen (Dias Domingues et al., 2020; Dias Domingues et al., 2021). These earlier

analyses were based on the comparison and selection of different scale mixture of skew-normal

distributions and four different criteria to define seropositivity. In accordance with a sensitiv-

ity analysis, instead of selecting a fixed cutoff, we here allowed this cutoff to vary between 10

U/ml and 100 U/ml with a lag of 1 U/ml. For each cutoff of a given antibody, we first estimated

the unadjusted seropositivity odds ratio (OR) between each ME/CFS subgroup and the healthy

controls using a logistic regression model in which seropositivity status of the individuals and

a group indicator were the outcome and the covariate, respectively. We then adjusted this OR
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using a similar logistic regression model but including age, gender, and a group indicator vari-

able as covariates. In both unadjusted and adjusted analyses, the effect of healthy controls was

set as the reference of the group indicator variable. We used the Wald’s score test to assess the

significance of different log-ORs in relation to healthy controls.

Finally, we estimated the statistical power of the hypothetical associations using a para-

metric Bootstrap (Efron et al., 1993). For each antibody, we used the following algorithm: (i)

determine the optimal seropositive cutoff by maximizing the likelihood ratio statistic as a func-

tion of the seropositivity cutoff when comparing the above logistic models with and without the

group indicator covariate; (ii) generate the seropositivity data resulting from the optimal cut-

off; (iii) estimate a logistic model including the group indicator only (unadjusted analysis) or a

logistic model including age, gender and group indicator variables as covariates (adjusted anal-

ysis) using the seropositivity data obtained in (ii); simulate 1,000 data sets using the seropositive

probability estimates obtained from models fitted in (iii); (iv) calculate the power of the asso-

ciation between seropositivity and each study group by the proportion of simulated data sets

in which the association was deemed significant at the 5% significance level using the Wald’s

score test as described above.

The statistical analysis was conducted in the R software version 4.0.3. In particular, the

estimation of the logistic regression models was done using the “glm” command. The corre-

sponding scripts are available from the first or the corresponding author upon request. The

significance level of each executed test was set at 5%.

4.2.4 Ethical approval

All participants provided written informed consent for data collection (questionnaire, clini-

cal measurement and laboratory tests), and for allowing their samples to be available to any re-

search receiving ethical approval (E. M. Lacerda, Bowman, et al., 2017). Participants received

an extensive information sheet and consent form in which there was an option for participation

withdrawal from the study at any time. Ethical approval was granted by the London School

of Hygiene & Tropical Medicine (LSHTM) Ethics Committee (Ref. 6123) and the National

Research Ethics Service (NRES) London-Bloomsbury Research Ethics Committee (REC ref.

11/10/1760, IRAS ID: 77765).
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4.3 Results

4.3.1 Basic characterization of study participants

The four subgroups of ME/CFS had the same age distribution approximately (Kruskal-

Wallis test, p = 0.30) with means of 44.6, 40.7, 43.3, and 40.9 years old for S0, S1, S2, and S3,

respectively. Similarly, the percentages of female patients ranged from 70.8% to 80.6%, but they

were not statistically different (Pearson’s χ2 test, p = 0.62). Overall, the percentage of severely

affected patients significantly differed among the subgroups (Pearson’s χ2 test, p = 0.003). In

particular, the percentage of these patients in S0 and S1 was approximately 9%. This value

was in clear contrast with the 30% of severely affected patients belonging to S2 and S3, both

groups related to infection triggers. In terms of the number of narrated disease factors or triggers

reported in the participant’s questionnaire, the subgroup S1 had the lowest percentage of patients

reporting a single factor or trigger for their disease (44%) when compared to infection-related

subgroups S2 and S3 (56% and 67%, respectively; Table 4.1). The same subgroup was the

one with the highest percentage of missing data to this question (33% for S1 versus 6% and

10% for S2 and S3, respectively). Overall, the distribution of the number of reported disease

factors or triggers was significantly different among subgroups S1, S2, and S3 (Pearson’s χ2

test, p < 0.001) mostly due to differences in the amount of missing data.

These subgroups of ME/CFS patients were well matched for gender and age with respect

to the healthy control group (Pearson’s χ2 and Kruskal-Wallis tests, p = 0.69 and 0.44, respec-

tively).

4.3.2 Disease factors or triggers reported by different subgroups of

ME/CFS

When the 184 patients belonging to the subgroups S1, S2, and S3 were asked to narrate the

factors or triggers of their disease in the participant questionnaire, 103 (56%) and 56 (30%)

of them reported single and multiple factors (or triggers), respectively. However, 25 patients

(14%) did not mention any specific trigger or factor contributing to their disease. The following

non-infection factors or triggers were mentioned by patients mostly belonging to the subgroup

S1: stress subdivided into general anxiety (9%, n=20), personal (8%, n=18) or professional-

related stress (5%, n=11); accidents/injuries/surgeries (5%, n=11); pregnancy, childbirth and
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other problems related to women’s reproduction system (3%, n=6), and other non-infection

triggers (Table 4.2). The remaining factors are related to microbial infections and/or infectious

diseases: upper respiratory tract infections - glandular fever (GF), tonsillitis, EBV infections,

or throat infection (21%, n=48); lower respiratory tract infections - chest infection or pneu-

monia (4%, n=10); flu- or cold-like illness (11%, n=26); gastrointestinal problems and related

infections (4%; n=9); and tropical infectious diseases – Dengue fever and schistosomiasis (1%,

n=3); and other viral or bacterial infection, and unspecified infections (22%, n=51). Note that 6

patients from subgroup S1 mentioned an infection in the narrative question about the factors or

triggers of their disease. However, the same patients also reported other possible non-infection

triggers, such as trauma, bereavement, and stress. We speculate that these patients attributed a

higher likelihood to these non-infection disease triggers when answering the related question in

the symptoms’ assessment questionnaire. Interestingly, patients belonging to the subgroup S3

reported the highest percentage of disease factors or triggers consistent with an EBV infection

(46%, n=22). Patients from subgroup S2 also self-reported a high frequency of EBV-related

factors or triggers (27%, n=25), but closely matched by a flu-like infection or illness (22%, n=

20).

4.3.3 Serological data analysis by subgroup of ME/CFS

We then compared serology data of these ME/CFS subgroups of patients with healthy

controls (Figure 4.1). In this analysis, we intended to assess the impact of cutoff on the resulting

seropositivity odds ratio between each study group and healthy controls.

With the respect to unadjusted analysis, we could not find any significant association of

herpesviruses serology with subgroups S0 and S2 (Figures 4.2A and C). The only exception

was a putative association for subgroup S0 using a cutoff of 37 U/ml for the antibodies against

EBV-VCA (Figure 4.2A). Interestingly, we found significant negative associations between

the subgroup S1 and antibodies against EBV-VCA, EBV-EBNA1, and VZV depending on the

cutoff used (Figure 4.2B). These negative associations suggested decreased seroprevalences

to these herpesviruses in this subgroup when compared to healthy controls. We also found

a strong negative association between subgroup S3 and CMV seropositivity (Figure 4.2D).

This association was consistent across the range of cutoffs specified for the analysis and

it suggested decreased antibody levels in this subgroup of patients in relation to healthy

controls. All the above findings remained significant after adjusting for age and gender (Figures
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A.2A, B, C, and D). This finding was consistent with a good matching between the different

ME/CFS subgroups of patients and healthy controls in terms of age and gender. However,

the significance of adjusted ORs was slightly reduced due to these putative confounding factors.

Finally, we estimated the statistical power related to the identified associations using the

optimal seropositivity cutoff for each herpesvirus antibody. For the unadjusted analysis, these

optimal cutoffs varied from 11 to 90 (Figure A.1 and Table A.1). Similar optimal cutoffs were

obtained for the analysis adjusting for age and gender (Figure A.3 and Table A.1) with the ex-

ception of EBV-EBNA1 for which the optimal cutoffs were 72 and 88 for the unadjusted and

adjusted analyses, respectively. The maximum power (≈ 90%) was obtained for the association

between CMV seropositivity and ME/CFS subgroup S3 in either unadjusted or adjusted analy-

ses (Figure A.4). A high power (≈75%) was also obtained for the associations between VZV

seropositivity and ME/CFS subgroup S1. The remaining associations between each study group

and herpesvirus seropositivity had a power that did not exceed 60%. In conclusion, the manu-

facturer’s seropositivity cutoffs were not the most adequate to maximize the chance of finding

an association of ME/CFS subgroups with the herpesvirus serology and only three associations

between the study groups and herpesviruses seropositivity had a high statistical power.

4.4 Discussion

In contrast with the original study where we could not find differences related to her-

pesviruses serology between healthy controls and ME/CFS patients divided according to their

disease severity (Cliff et al., 2019), our re-analysis of the same data identified two subgroups of

ME/CFS patients (S1 and S3) in which such differences are now statistically significant. This

new finding was only possible due to the stratification of patients according to a question re-

lated to the occurrence of an infection at disease onset together with a sensitivity analysis of the

seropositivity cutoff used. Patients’ stratification or subtyping was performed in line with past

recommendations for ME/CFS research (Jason et al., 2005). Following this recommendation,

we previously performed an immunological investigation based on a stratification of ME/CFS

patients according to the severity of their symptoms (Cliff et al., 2019). By using this stratifica-

tion, we showed perturbations in the T-cell compartment, namely, in effector CD8+ T cells and

in the mucosal-associated invariant T cells. In another study using similar stratification of the
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samples from the UKMEB, the levels of the cellular stress biomarker GDF15 were found to be

increased in severely affected patients at different time points (Melvin et al., 2019). We specu-

late that immunological and other perturbations could be detected if our alternative stratification

would have been used. This investigation will be carried out in the near future.

In line with our findings, evidence has been emerging that the occurrence of an acute in-

fection at the onset of disease symptoms is indeed a key stratifying factor to detect genetic and

immunological differences between subgroups of ME/CFS patients when compared to healthy

controls (Steiner et al., 2020; Szklarski et al., 2021). However, the simplistic approach of divid-

ing patients according to non-infection and infection triggers might not be sufficient to obtain

relatively homogeneous subgroups of ME/CFS patients, which affects the statistical power to

detect any disease-specific effects. Besides the limited choice of antibodies against different

herpesvirus-related antigens, the large heterogeneity in infectious triggers seems a possible ex-

planation for the lack of association between the subgroup S2 and herpesviruses seropositivity.

Notwithstanding not having their infection trigger confirmed in the lab, patients from this sub-

group reported the highest proportion of flu-like illnesses, which could have been caused by

the influenza virus, the rhinovirus, or the respiratory syncytial virus (Monto, 2002). It is then

conceivable that these patients exhibit different pathological mechanisms of ME/CFS according

to the causative virus, some of which without any direct impact on antibody responses against

herpesviruses. To overcome these problems, we recommend the collection of infection-trigger

data as detailed and accurate as possible.

Our most consistent association was obtained between CMV seropositivity and patients

from the subgroup S3. These patients tended to be less seropositive to this herpesvirus when

compared to healthy controls, irrespective of the seropositivity cutoff value used. Previously,

different serological investigations did not provide conclusive evidence for the role of CMV on

ME/CFS pathogenesis, as reviewed in Rasa et al., 2018. The lack of or the use of an inadequate

stratification could also explain these past findings. In this regard, the unveiled association was

obtained in a subgroup in which the accuracy of the reporting might be the highest, because the

disease-triggering infections were supposedly confirmed in the lab. However, we cannot ignore

the fact that this subgroup has a large fraction of patients whose disease trigger was related to an

EBV infection, one of the most reported causative agents of ME/CFS. Therefore, it is possible

that our finding resulted from a coincidence between a low-resolution patient’s stratification and

a random enrichment of a specific infection trigger in one of the subgroups.
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A supposedly decreased seropositivity (or antibody levels) to CMV in an EBV-infection trig-

ger could be explained by the hyperregulation hypothesis (Sepúlveda, Carneiro, et al., 2019).

According to this hypothesis, a possible pathological mechanism of ME/CFS is related to an ex-

pansion of regulatory T cells (Tregs) driven by an autoimmune response against a viral antigen

that mimics a self-antigen. This expansion of Tregs upon herpesvirus infection or reactivation

locks the (adaptive) immune system in an active state of hyperregulation where different infec-

tions are more difficult to be cleared from the body. Frequent infections are in fact reported by

patients with ME/CFS (E. Lacerda et al., 2019). The question is then how the expansion of Tregs

could affect antibody responses against CMV. The so-called follicular Tregs might hold the an-

swer to this question. These specialized Tregs are derived from Treg precursors with the ability

to migrate to germinal center reactions (GCRs) to inhibit the respective antibody production

and antibody maturation (Maceiras et al., 2017). In particular, experiments with animal models

demonstrated that the amount of IgG antibodies against different foreign antigens is increased

in immunized mice depleted of follicular Tregs (Chung et al., 2011; Wollenberg et al., 2011). In

this line of thought, it is reasonable to assume that an increased proportion of Tregs in ME/CFS

could be translated into an increased proportion of follicular Tregs. This increase could in turn

decrease the antibody production derived from GCRs. We can then hypothesize that an EBV

infection triggered an autoimmune response that disrupted the normal balance between Tregs

and effector T cells; a peptide of the viral EBNA6 was found to share a high sequence homology

with the human lactoperoxidase and thyroid peroxidase (Loebel et al., 2017). The disruption

of this balance could lead to an increase of both Tregs and follicular Tregs. A possible conse-

quence of this increase is a diminished antibody production against a posterior CMV infection

or reactivation. Note that several peptides from CMV were also found as putative candidate

for molecular mimicry with human proteins (Lunardi et al., 2005). Similar to the situation of

immunosuppression, a reduction in the humoral immunity against CMV would render ME/CFS

patients more susceptible to a possible reactivation of this virus (Krmpotić et al., 2019). It is

worth noting that the role of follicular Tregs was never investigated on ME/CFS.

Another interesting finding is the possible association between the subgroup S1 and EBV

and VZV seropositivity. This subgroup refers to patients who reported non-infectious triggers,

mostly related to stressful or stress-related events. It is also a group where ME/CFS was trig-

gered in many women who had problems during and after pregnancy, had difficult childbirth

or had disorders related to women’s reproduction system. In line with this finding, stressful
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conditions and events such as the ones experienced by astronauts increase the chance of her-

pesvirus reactivation, specifically, EBV, VZV and CMV (Rooney et al., 2019). Reactivation of

latent herpesvirus infections could be explained by an increase in production of stress-related

hormones together with an inflammatory cytokine signature that debilitates the immune system.

This subgroup is then expected to have a higher prevalence of active herpesvirus infections than

the remaining subgroups of ME/CFS patients and healthy controls. Given that this subgroup

could represent less than 50% of the patients (Johnston et al., 2016; Chu et al., 2019), it is likely

to have insufficient statistical power to detect any differences in herpesvirus reactivation rates

between ME/CFS and healthy controls even in the case of a proper stratification of the patients’

populations. This limitation is then likely to explain the inconsistent findings on herpesvirus

reactivation across many studies on ME/CFS.

We did not find any association between the subgroup S0 and herpesvirus seropositivity.

This subgroup represented 18.5% of the patients’ cohort, a value compatible with the per-

centages of patients that did not report any disease triggering event from past epidemiological

studies (10%, ref. (Chu et al., 2019); 24%, ref. (L.C. Nacul et al., 2011)). The sample size of

this subgroup was not very large and, therefore, we cannot rule out that our lack of associations

could be simply due to insufficient statistical power to detect putative associations between this

subgroup and herpesvirus seropositivity. Finally, in our association analysis, we allowed the

seropositivity cutoff to vary within a given range of possible values, similarly done in a recent

study of molecular mimicry between Anoctamin 2 and EBNA1 in multiple sclerosis (Tengvall

et al., 2019). This analytical approach seems reasonable given the difficulty to choose the

best seropositivity cutoff among the different criteria and methods available, as illustrated in

earlier analyses of the same data (Dias Domingues et al., 2020; Dias Domingues et al., 2021).

This approach is also in line with several discussions about seropositivity estimation and the

sensibility to use a fixed cutoff (Ridge et al., 1993; Kafatos et al., 2016; Migchelsen et al.,

2017; Bouman et al., 2020). However, we should note that a high cutoff for the data might not

define seropositivity per se, but rather a high antibody response whose detection could be the

primary objective of the analysis (Loebel et al., 2017; Blomberg, Rizwan, et al., 2019). The

use of a high cutoff is also in accordance with a modelling approach where seropositivity might

be subdivided into different levels (Pothin et al., 2016; Nhat et al., 2017; Moreira da Silva

et al., 2020). Therefore, our sensitivity-like approach seems to have the capacity to detect

further serological associations beyond the ones based on the classical seroprevalence. Such a
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capacity could increase the chance of reaching scientific reproducibility. We then recommend

the routine use of this approach in future serological investigations of ME/CFS.
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Figure 4.1: Herpesvirus serology data per study group including the four ME/CFS subgroups. Horizontal dashed
lines represent the optimal seropositivity cutoff for the unadjusted analysis according to the maximization of like-
lihood ratio statistic for testing the significance of the group indicator covariate in the logistic models. Antibody
concentration in y axis is given in U/ml.
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Figure 4.2: Unadjusted association analysis of seropositivity to different herpesvirus antigens based on log-OR of
four subgroups of patients with ME/CFS in relation to healthy controls. For convenience, statistical significance
was calculated as -log10(p-value). The dashed lines in the statistical significance plots represent the threshold
associated with the 5% significance level (i.e., -log10(0.05)). Cutoff values in which -log10(p-values) are above
these thresholds provided evidence for significant associations.
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Table 4.2: Frequency and the respective percentage within brackets of specific disease factors or triggers narrated
by patients from the subgroups S1 (n = 43), S2 (n = 93), and S3, (n = 48) in the participant’s questionnaire.

Subgroups of ME/CFS patients
Reported disease trigger S1(%) S2(%) S3(%) Total(%)

Glandular Fever; tonsilitis; EBV infection 1 (2) 25 (27) 22 (46) 48 (21)
Respiratory infection; pneumonia 1 (2) 6 (6) 3 (6) 10 (4)

Flu-like infection or illness 2 (5) 20 (22) 4 (8) 26 (11)
Gastrointestinal infection 0 (0) 6 (6) 3 (6) 9 (4)

Tropical infections 0 (0) 1 (1) 2 (4) 3 (1)
Other infections including unspecified viral infections 2 (5) 33 (35) 13 (27) 51 (22)

General Stress or Anxiety 6 (14) 11 (12) 3 (6) 20 (9)
Stress due to personal events 9 (21) 6 (6) 3 (6) 18 (8)

Stress at work or school 4 (9) 5 (5) 2 (4) 11 (5)
Vaccinations 0 (0) 4 (4) 6 (12) 10 (4)

Chemical exposure 1 (2) 6 (6) 0 (0) 7 (3)
Accidents/Injuries/Surgeries 7 (16) 2 (2) 2 (4) 11 (5)

Pregnancy/Childbirth/Postnatal/Hysterectomy/Endometriosis 6 (14) 0 (0) 0 (0) 6 (3)
Other 4 (9) 6 (6) 0 (0) 7 (3)
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Chapter 5

Analysis of cutoff point estimation for

determining seropositivity in the context of

SARS-CoV-2 infections

This chapter will apply mixture models based on distributions from the SMSN family to

antibody data against four SARS-CoV-2 virus antigens. Furthermore, since the true infection

status of individuals is known a priori, performance measures will be calculated for the

methods proposed in chapters 3 and 4 for cutoff point estimation such as sensitivity, specificity

and accuracy. The results of a simulation study will also be presented.

5.1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that causes the

devastating and often lethal COVID-19 disease was first detected in China, province of Wuhan

in December 2019 (Rosado et al., 2020). Rapidly, SARS-CoV-2 infection spread over the entire

world and the COVID-19 disease was declared as a pandemic by the World Health Organization.

The detection of the virus is so far done by the so-called reverse transcription quantitative

PCR (RT-qPCR) on samples from nasopharyngeal or throat swabs (Rosado et al., 2020). In

general, only symptomatic individuals or people who were in close contact with detected cases

are tested, which might lead to an underestimation of the proportion of individuals infected

with SARS-CoV-2 (Stringhini et al., 2020). Alternatively, serological testing allows to detect
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asymptomatic individuals exposed to the infection. In addition, serological testing is able

to quantify the degree of exposure to the infection in the population. In this context, it is

important to estimate seroprevalence at the population level, i.e., the proportion of seroposi-

tive individuals that show antibodies against any SARS-CoV-2 antigen (Larremore et al., 2020).

The presence of antibodies in a serum sample can be regarded as an indicator of immunity

against a given infectious agent or as an indicator of past infection in the absence of vaccination

(Gay, 1996). The detection of antibodies in the serum samples is classically done via enzyme

linked immunosorbent assays (ELISA), where the resulting data are light intensities, also

called optical density, which reflects the underlying antibody concentration in the samples

(Dias Domingues et al., 2021). For statistical convenience, the analysis of serological data pro-

ceeds by dichotomizing the amount of antibodies present in the serum of an individual using an

arbitrary cutoff point in the antibody distribution to achieve a certain sensitivity and specificity.

This allows the classification of individuals into seronegative (with antibody levels below the

cutoff point) and seropositive (with antibody levels above the cutoff point) (Rosado et al., 2020).

Given the possible impact of the cutoff chosen, different criteria for seropositivity deter-

mination have a direct impact on the sensitivity and specificity of the respective serological

classification (Parker et al., 1990). In addition, it might also impact the estimation of the sero-

prevalence (Kafatos et al., 2016) and the following (epidemiological) decision that can be taken

when facing a given estimate of this epidemiological parameter. This means that when deter-

mining the cutoff point for a serological test, one should take into account the benefit of the test,

the economic and social consequences of serological misclassification and the prevalence of the

disease in the population. It turns out that these aspects are often ignored in practice (Ridge

et al., 1993).

One of the traditional methods to establish the cutoff point in serological assays is to con-

sider the logarithmic transformation of the antibody concentration of a known seronegative pop-

ulation and proceed to calculate the mean plus 2 or 3 standard deviations (Ridge et al., 1993;

Maple et al., 2006; Baughman et al., 2006; Tong et al., 2007). This method is more adequate

when the antibody distribution of the seronegative population is normally distributed (Baugh-

man et al., 2006). However, our previous studies of different serological data (Moreira da Silva

et al., 2020; Dias Domingues et al., 2021) showed evidence against a normality assumption for
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5.2 Serological data concerning SARS-CoV-2 virus

the antibody levels associated with a putative seronegative population. In the case where the

true infection (or disease) status is known, ROC curve-based methods are most commonly used

to determine the cutoff point for defining seropositivity. These methods are widely discussed in

the literature (Perkins et al., 2006; Hasibi et al., 2013; M. Rota et al., 2014; Habibzadeh et al.,

2016; Blacksell et al., 2016; Unal, 2017; Migchelsen et al., 2017).

Alternatively, finite mixture models can be used to determine the seropositivite cutoff di-

rectly from the data (Baughman et al., 2006; Sepúlveda, Stresman, et al., 2015; Kafatos et al.,

2016; Migchelsen et al., 2017; Dias Domingues et al., 2021). In our previous work, three

methods for determining seropositivity cutoff were explored using the so-called scale mix-

tures of Skew-normal distributions in the case where the true infection status is unknown (Dias

Domingues et al., 2021). In this paper we applied the same methods and models in order to

evaluate their performance in freely available serological data concerning SARS-CoV-2 virus

(Rosado et al., 2020). We also used simulation to understand the performance of the cutoff

estimators associated with different criteria for seropositivity determination.

5.2 Serological data concerning SARS-CoV-2 virus

In this study we analyzed IgG antibody responses against four SARS-CoV-2 spike or nu-

cleoprotein antigens: RBD – glycoprotein receptor-binding domain; Stri — S trimeric spike

protein; S1 — spike glycoprotein S1 domain; S2 – SARS-CoV-2 spike glycoprotein S2 do-

main. Antibodies were measured in serum samples collected up to 39 days after symptom

onset from 215 adults in four French hospitals (53 patients and 162 health-care workers) with

quantitative RT-PCR-confirmed SARS-CoV-2 infection. A total of 335 negative control serum

samples were collected from France, Thailand, and Peru before the start of the COVID-19

pandemic (Rosado et al., 2020). A detailed description of lab procedures can be found in the

original study (Rosado et al., 2020). The data is freely available at https://github.com/MWhite-

InstitutPasteur/SARSCoV2SeroDXphase2.

5.3 Statistical methods

Serological data can be viewed as arising from two or more latent populations; each

population is assumed to represent different levels of exposure to a given antigen. For
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simplicity, individuals that were never exposed or exposed a long time ago to an infectious

agent are considered as seronegative. In contrast, individuals exposed to the same infectious

agent are considered seropositive. In this scenario, the antibody distribution can be described

by a mixture of two or more probability distributions (Dias Domingues et al., 2020). However,

the true serological state of the individuals is unknown and therefore it needs to be estimated.

In the particular case of the SARS-CoV-2 data, we know which individuals were exposed

to the virus and, therefore, we can assume to know which individuals are true seronegative and

seropositives.

In many serological studies, it is common to assume a normal distribution for the basis

of the mixture models. However, the behaviour of antibody distribution is not constant over

time and their concentration decreases after infection (Rosado et al., 2020). This fact makes

the distribution of the seropositive population skewed to the left (Gay, 1996). In order to

accommodate the possible skewness in the seropositive population we use the scale mixture

of Skew-Normal (SMSN) class of distributions that include the Skew-Normal and the Skew-t

distributions, which will be the focus of our study. A brief description of these alternative

distributions can be found below.

5.3.1 Skew-Normal and Skew-t distributions

Let W ⌢ SN(µ,σ2,α) a random variable with a Skew-Normal distribution. In this distri-

bution, the parameters µ , σ2, and α can be seen as the location, scale, and shape parameters,

respectively. Then the probability density function (pdf) is given by

fW (w) = 2
1√

2πσ
e−

1
2 (

w−µ

σ
)2 ×

∫
α(w−µ

σ
)

0

1√
2π

e−
x2
2 dx = (5.1)

=
2
σ

φ

(
w−µ

σ

)
Φ
(

α(
w−µ

σ
)

)
,w ∈ R,

where φ(.) and Φ(.) is the pdf and the cumulative distribution function of the standard Normal

distribution, respectively (Basso et al., 2010; Azzalini, 2014; Dias Domingues et al., 2021).

70



5.3 Statistical methods

The Skew-Normal distribution is part of a family of distributions called the Scale Mixtures of

Skew-Normal distributions (SMSN), of which the Skew-t distribution is also a particular case

(Dias Domingues et al., 2021).

A random variable W is said to have a Skew-t distribution, W ⌢ ST (µ,σ2,α,v), if the pdf

is given by

fW (w) = 2 fT (w; µ,σ2,v+1)FT

(
A(w)

√
v+1

d(w)+ v
;v+1

)
,w ∈ R, (5.2)

where fT (.; µ,σ2,v + 1) and FT (.; µ,σ2,v + 1) represents the pdf and the cumulative dis-

tribution function of the generalized Student’s t distribution with v + 1 degress of freedom,

A(w) = α
(w−µ)

σ
and d(w) =

(
w−µ

σ

)2

(Basso et al., 2010; Azzalini, 2014; Dias Domingues

et al., 2021).

5.3.2 Finite mixture models

Let G1 and G2 be the seronegative and seropositive subpopulations from a population G,

respectively. Let π1 and π2 the probabilities of sampling a seronegative and a seropositive indi-

vidual, respectively (with the usual restriction of ∑2
k=1 πk = 1 and 0 ≤ πk ≤ 1) and considering

Z the random variable that represents the antibody level. The probability density function (pdf)

of Z is given by

f (z;Θ) =
2

∑
k=1

πk fk(z;θθθ k), (5.3)

where fk(z;θθθ k) is the mixing probability density function of Z associated with the k− th latent

population and parameterized by the vector θθθ k. Θ is the vector of all unknown parameters

of the mixture model, i.e., Θ = (π1,π2,θθθ 1,θθθ 2). In our application, fk(z;θθθ k), is given by the

Skew-normal or the Skew-t distributions.

In general, the estimation of a finite mixture model can be done by the classical EM al-

gorithm (S.X. Lee et al., 2016). The EM algorithm is an iterative method widely used in

incomplete data problems where the maximum likelihood estimators (MLE) have no closed
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expression (Dempster et al., 1977). Considering (z1,z2, ...,zn) the observed sample of size n

and Yi ≡Yik,(i = 1, ..,n;k = 1,2), the binary vector representing the component from which the

data comes from. Thus, Yi ⌢ Bernoulli(π2) and the pdf of Yi is given by

f (yi;Θ) = π
yi2
2 (1−π2)

1−yi2 . (5.4)

From what was explained in Chapter 2, section 2.1.4, we have that the complete data is the

pair (zn,yn) and the joint pdf is given by

f ((zi,yi);Θ) = [(1−π2)( f1(zi;θθθ 1))]
1−yi2[π2 f2(zi;θθθ 2)]

yi2. (5.5)

Then, the log-likelihood function is given by

logL(Θ) =
n

∑
i=1

(1− yi2) log{(1−π2)( f1(zi;θθθ 1))}+ yi2 log{π2 f2(zi;θθθ 2)}. (5.6)

The step E of the EM algorithm consists in obtaining

Q(Θ,Θ(p))=EΘ(p){logL(Θ)|zi}=
n

∑
i=1

w(p+1)
i1 log{(1−π2 f1(zi;θθθ 1)}+w(p+1)

i2 log{(π2 f2(zi;θθθ 2)},
(5.7)

where w(p+1)
ik = EΘ(p){Yik|zi}= PΘ(p){Yik = 1|zi},k = 1,2.

The step M consists in maximizing Q(Θ,Θ(p)) as function of the unknown parameters.

However, if the model has many parameters that need to be estimated, then step M may incur in

computational problems such as excessive time consuming or estimate instability. In this sense,

it is possible to break the step M into several sub-steps (S > 1) that allow to get around these

computational constraints by performing some restrictions on the parameters. This method is

called expectation-conditional-maximization (ECM) algorithm (Meng et al., 1993; Liu et al.,

1994; G.J. McLachlan et al., 2008). Considering that Θ(p+s) represents the value of Θ in the

sth CM step of the iteration p+1 in order to maximize Q(Θ,Θ(p)) and the constraint function

gs(Θ) = gs(Θ(p+(s−1)), the ECM algorithm is performed as follow (Liu et al., 1994):

1. calculate the expected complete-data log-likelihood given the current estimates of the

parameters, Θ(p). The calculations are the same as for the EM algorithm;

2. fix Θ(p) and calculate Θ(p+s) to maximise the expected complete-data log-likelihood;
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3. fix Θ(p+s) and calculate Θ(p+(s+1)) to maximise the expected complete-data log-

likelihood on the s+ 1 sub-step iteration and continuing until you have gone through

all the S sub-steps.

In this way, it can be seen that Q(Θ,Θ(p+s) ≥ Q(Θ,Θ(p)) for all Θ ∈ Ωs(Θ(p+s)), where

Ωs(Θ(p+s)) = {Θ ∈ Ω : gs(Θ) = gs(Θ(p+(s−1))} (Meng et al., 1993; Liu et al., 1994; G.J.

McLachlan et al., 2008).

Considering the SMSN family of distributions, namely the Skew-Normal and the Skew-t

distributions, the application of the ECM algorithm in the context of mixtures can be found in

(Lin et al., 2007b; Basso et al., 2010).

In order to decide which model is the best one among all the models fitted to the same data,

we used the Bayesian Information Criterion (BIC) (Dias Domingues et al., 2021).

5.3.3 Definition of seropositivity

Seroprevalence is an epidemiological measure defined by the proportion of seropositive

individuals in the sample. For its estimation, it is then necessary to define the serological sta-

tus of the i-th individual by dychotomization the variable, Zi, which represents the antibody

concentration of the individual. This dychotomization is done by determining a value c such

that for antibody values equal to or greater than c, the individual is classified as seropositive

and seronegative, otherwise. Thus, let Y be the random variable representing the number of

seropositive individuals in a sample of size n, we have to

Y =
n

∑
i=1

I{Zi≥c} ⌢ Binomial(n,π2),

where π2 represents the seroprevalence, i.e, π2 = P[Zi ≥ c] and I{.} is the indicator variable.

Considering that the random variable representing the antibody levels Zi is modelled by a finite

mixture of distributions, the way to estimate the cutoff c from the observed data is not standard.

To facilitate the determination of this cutoff value, we below present three estimation methods

or criteria.

- Method 1 (M1): It is based on the 99.9%-quantile associated with the estimated seroneg-

ative population. This method is the most popular in sero-epidemiology (Sepúlveda,
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Stresman, et al., 2015; Saraswati et al., 2019). It is often called as the 3σ rule, because

the 99.9%-quantile is given by the mean plus 3 times the standard deviation of a normally

distributed seronegative population;

- Method 2 (M2): It relies on the minimum of the density mixture functions. In the case of

two latent populations, the cutoff corresponds to the absolute minimum, and in the case of

three or more latent populations the cutoff corresponds to the lowest relative minimum.

This point can be calculated using the Dekker’s algorithm (Brent, 1973). It should be

noted that the minimum of the mixing function is not expected to coincide with the point

of intersection of the probability densities of each individual subpopulation;

- Method 3 (M3): It imposes a threshold in the the so-called conditional classification

curves (Sepúlveda, Stresman, et al., 2015). Under the assumption that all components but

the first one refer to seropositive individuals, the conditional classification curve for the

i-th individual given the antibody level Zi = x is defined as

p+|Zi=x =
π2 f2(Zi = x;θθθ 2)

∑2
k=1 πk fk(Zi = x;θθθ k)

. (5.8)

In turn, the classification curve of seronegative individuals is simply given by

p−|Zi=x = 1− p+|Zi=x. (5.9)

After calculating these curves, one can impose a minimum value for the classification of

each individual. In this case, two cutoff values arise in the antibody distribution, one for

the seronegative individuals and another for seropositive individuals. Mathematically, the

classification rule is given as follows

Ci =





seronegative , if xi ≤ c−

equivocal , if c− < xi < c+

seropositive , if xi ≥ c+

(5.10)

where c− and c+ are the cutoff values in the antibody distribution that ensure a mini-

mum classification probability, say 90%. To calculate these cutoff values in practice, one

can use the bisection method providing an initial interval where they might be located

(Sepúlveda, Stresman, et al., 2015).
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5.3 Statistical methods

5.3.4 Performance of the proposed methods for cutoff point estimation

In order to evaluate the performance of each of the cutoff points, we estimated the respective

sensitivity and specificity. Let D and D∗ be the true and estimated serological classification (or

infection status), respectively. Sensitivity is defined as the conditional probability

sens = P(D∗ =+|D =+), (5.11)

In turn, the specificity is defined as

spec = P(D∗ =−|D =−). (5.12)

The overall performance of each method is given by the accuracy (ACC) of the proposed method

which corresponds to the proportion of correct results, that is,

ACC = sens×P(D =+)+ spec×P(D =−). (5.13)

5.3.5 Simulation study

We performed a small simulation study to assess the performance of cutoff points proposed

by each method. With this purpose, we assume two simulation scenarios regarding the mixture

model assumed for the data: (i) a mixture model based on the Skew-Normal distributions and

(ii) a mixture model based on the Skew-t distribution.

For each scenario, we simulated 1000 samples with dimensions 100, 500 and 1000. In

addition, for each simulation cycle, the weight of the mixture model was varied to check the

ability of the model to identify the seropositive component even when the weight assigned

to that component is very low. The implications of varying the weight of the seronegative

and seropositive population are as follows: in the case where the proportion of seronegative

individuals is very high relative to seropositive individuals, more effective decisions can be

made to control the number of infections in the population. The opposite scenario is important

in the case of effectiveness of vaccination in the population, particularly for individuals who

may have lost immunity.

To this end, it was considered that the proportion of seronegative individuals could take the

values 90%, 60% and 30%, being the respective proportion of seropositive individuals 10%,
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40% and 70%, respectively. For each simulated sample, the parameters of the mixture model

were estimated by maximum likelihood (via the EM algorithm) according to the distributional

scenarios described above, as well as the respective cutoff points according to the methods M1,

M2 and M3. Considering θ ∗ the estimated parameter, θ the true value of the parameter, than we

calculate the relative error that is 1
1000 ∑1000

i=1 [(θ ∗− θ)/θ ]× 100% and the mean squared error

(MSE), i.e, 1
1000 ∑1000

i=1 [(θ ∗−θ)2].

5.3.6 R packages

We used the package mixsmsn to fit different mixture models based on SMSN (Prates et al.,

2013). In particular, we used the function smsn.mix to estimate the model parameter via the

EM algorithm For fitting the Student’s t-distribution, we considered the R package extraDistr

(Wolodzko, 2020), namely, the function dlst to calculate their density, the function plst to de-

fine the cumulative distribution function and the function rlst to generate random samples in

the simulation study. The fitting of the Skew-Normal distributions was performed with the

package sn (Azzalini, 2020). The functions dsn, psn and rsn were used to calculate the prob-

ability density function, the cumulative distribution function and generate random samples of

the Skew-Normal distribution, respectively. In the case of the Skew-t distribution, the func-

tions dst, pst and rst were used to calculate the probability density function, the cumulative

distribution function and generate random samples, respectively.

5.4 Results

5.4.1 Patients characteristic’s

For this study, data relating to 549 individuals was analysed. Serum samples were collected

from individuals with confirmed SARS-CoV-2 infection by PCR test in four hospital units from

Paris, namely: 4 (0.7%) from the Hôpital Bichat, 49 (9.0%) from the Hôpital Cochin and 161

(29.3%) from the Nouvel Hôpital (Strasbourg). Regarding the negative controls, 68 (12.4%)

are from the Thai Red Cross (TRC), 90 (16.4%) from the Peruvian donors (NHP) and 177

(32.2%) from the France blood donors (Établissement Français du Sang). For each antigen

under analysis, the logarithmic transformation of base 10 was considered for the concentration

of antibodies against that antigen.
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Figure 5.1: Antibody distribution by infection status. A. Antibody distribution for RBD antigen. B. Antibody
distribution for S1 antigen. C. Antibody distribution for S2 antigen. D. Antibody distribution for Stri antigen.
Number of negative individuals: 335; number of positive individuals: 214. Antibody concentration in y axis is
given in log10 units.

Regarding the analysis of antibodies by the individuals who performed PCR test, there

were statistically significant differences between individuals who tested negative and positive

for SARS-CoV-2 by Mann-Whitney test (RBD: 1.64 vs. 3.48, p < 0.001; S1: 1.72 vs. 2.59,

p < 0.001; S2: 1.79 vs. 2.99, p < 0.001; Stri: 1.59 vs. 3.43, p < 0.001) (Figure 5.1).

Such differences were expected given the general knowledge about the infection status, i.e.,

individuals who have already been exposed to the virus will have a higher concentration of

antibodies than those who are still susceptible.

5.4.2 Mixture Model approach

We performed the fitting of the different mixture models considering two subpopulations,

i.e., a seronegative population and a seropositive population. According to the BIC values, the

model based on the Skew-Normal distribution was considered for the following antigens: RBD

(BIC=852.25), S1 (BIC=561.63), S2 (BIC=775.29). For the case of the Stri antigen, the best
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model was found to be the Skew-t distribution (BIC=915.82) (Figure 5.2 and table 5.2). As

has been observed in previous studies, there is a marked skew to the right of the data for the

seronegative population and a skewed for the left in the seropositive population, although not

very marked for the S1 (αS1 = 1.062) and S2 (αS2 = 0.450) antigens (Table 5.1).
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Figure 5.2: Best models with two components for the data under analysis. A. Antibody distribution for RBD
antigen. B. Antibody distribution for S1 antigen. C. Antibody distribution for S2 antigen. D. Antibody distribution
for Stri antigen. Antibody concentration in x axis is given in log10 units.

Table 5.1: Parameter estimates for the best model

Seronegative population Seropositive population
Antigen Distribution µ σ2 α v µ σ2 α v
RBD Skew-Normal 1.435 0.125 6.318 NA 4.077 0.767 -7.634 NA
S1 Skew-Normal 1.569 0.062 2.687 NA 2.339 0.321 1.062 NA
S2 Skew-Normal 1.583 0.096 2.804 NA 2.817 0.212 0.450 NA
Stri Skew-t 1.352 0.121 5.751 4.873 3.885 0.367 -6.482 4.873

5.4.3 Seropositivity estimation

After defining the model that best fits the data, we proceeded to categorize the amount of

antibodies for each antigen by estimating the cutoff point. For this, we used the methods M1,
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M2 and M3 already described and whose results are shown in Figure 5.1 and table 5.2.

Estimation of the cutoff point based on the minimum densities of the mixture model (M2)

proved to be the method with the highest sensitivity for classifying seropositive individuals,

as well as the one that produces the highest proportion of correct results (accuracy) for the

RBD antigen (cuto f f = 2.49,sens = 86.45%,ACC = 92.89%), S1 (cuto f f = 2.27,sens =

71.03%,ACC = 86.89%) and S2 (cuto f f = 2.39,sens = 83.64%,ACC = 90.89%). In the case

of the Stri antigen, it was not possible to calculate the sensitivity and accuracy of the method

based on the 99.9%-quantile (M1), given the high values that the quantile assumes leading to

the seropositive population being fully absorbed by it. Thus, for comparison purposes, the ap-

plication of each methods to the Skew-Normal distribution was considered, again verifying that

the method based on the minimum densities of the mixture model produces the highest sensi-

tivity (cuto f f = 2.46,sens = 90.19%). However, for this antigen, the method with the highest

accuracy is based on the conditional probability (set at 90%) of classifying an individual as

being seropositive (ACC=93.44%) (Figure 5.3 and table 5.2).
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Figure 5.3: Performance of each method to estimate the cutoff value. A. Sensitivity values for each method. B.
Specificity values for each method. C. Accuracy values for each method.
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5.4 Results

In order to evaluate the quality of methods M1, M2 and M3, the optimal cutoff point was

estimated using the ROC curve. This is possible since the true infection status of the individuals

is known. It is interesting to see that in terms of specificity and accuracy the results are similar

to the method that is traditionally used (ROC curve). However, it is possible to observe a poor

performance of the M1 method with regard to its sensitivity. (Figure 5.3, table 5.2 and table 5.3).

Table 5.3: Cutoff point estimates, sensitivity, specificity, accuracy and area under the curve (AUC) for the empirical
ROC curve method

Antigen Cutoff Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

AUC
(CI 95%)

RBD 2.15 94.39 94.33 94.35
98.50

(97.80, 99.30)

S1 2.07 86.92 93.73 91.07
96.10

(94.60, 97.60)

S2 2.33 86.92 94.63 91.62
94.90

(92.80, 97.00)

Stri 2.81 86.92 98.51 93.98
98.30

(97.40, 99.20)

5.4.4 Simulation results

To conduct the simulation study, two scenarios were considered: the first consists of the

scenario where the model that best fits the data is a Skew-Normal distribution, and the second

where the model that best fits the data is a Skew-t distribution. For this purpose, the results

for the RBD antigen (Skew-Normal distribution) and the Stri antigen (Skew-t distribution) were

selected. For each scenario the sample size was varied, as well as the proportion of seronegative

individuals in the population. The results are shown in table 5.4 and table 5.5.

In general it is found that as the sample size increases, both the relative error and the

root mean square error tend to decrease. It is also found that for small samples and extreme

π1 values (π1 = 0.3 or π1 = 0.9), the models tend to have some difficulty in identifying a

seronegative and seropositive population. This is a result that alerts to the existence of possible

false positives and false negatives in the case of small samples.

In situations where there is an ongoing vaccination plan and therefore the majority of the

population is seropositive (e.g. π1 = 0.9) it is important to know if it is possible to identify

seronegative individuals in this population given the time of immunization. If the timing of

immunization is short, it is important to identify these individuals early in order to take action
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and prevent a further increase in infections.

Table 5.4: Relative bias and Mean Square Error (MSE) of the 99.9%-quantile method (M1); minimum of mixture
densities method (M2) and conditional probability method (M3) for the RBD antigen. optM1 denotes the theoretical
cutoff point for the 99.9%-quantile; optM2 denotes the theoretical cutoff point for the minimum of the density
mixture method; optM3 denotes the theoretical cutoff point for conditional probability method. π1 denotes the
weight of the seronegative population; cM1 denotes the cutoff estimated by M1 method after N=1000 simulations;
cM2 denotes the cutoff estimated by M2 method after N=1000 simulations; cM3 denotes the cutoff estimated by
M3 method after N=1000 simulations.

Normal distribution; optM1 = 2.65; optM2 = 2.33; optM3 = 2.37

Sample size π1 cM1 cM2 cM3

Relative
bias cM1

(%)

MSE
(cM1)

Relative
bias cM2

(%)

MSE
(cM2)

Relative
bias cM3

(%)

MSE
(cM3)

% Two
comp.

retained
0.3 5.67 2.34 2.46 113.9314 0.0914 0.6185 0.0001 3.8938 0.0004 93.1

100 0.6 5.17 2.51 2.58 95.2155 0.0641 7.6017 0.0004 8.8272 0.0006 100.0
0.9 3.68 2.72 2.75 39.0584 0.0114 16.6388 0.0017 15.9472 0.0016 99.9
0.3 5.68 2.35 2.48 114.3252 0.0183 0.9958 0.000007 4.5243 0.00003 100.0

500 0.6 5.19 2.51 2.59 95.9969 0.0129 7.7858 0.00007 9.2046 0.0001 100.0
0.9 3.72 2.70 2.73 40.3432 0.0023 16.1593 0.0002 15.3683 0.0002 100.0
0.3 5.69 2.35 2.47 114.6181 0.0092 0.8462 0.000002 4.3660 0.00001 100.0

1000 0.6 5.19 2.51 2.59 95.9990 0.0064 7.7956 0.00003 9.1638 0.00005 100.0
0.9 3.73 2.70 2.73 40.6998 0.0011 16.0422 0.0001 15.3499 0.0001 100.0

Skew-Normal distribution; optM1 = 2.83; optM2 = 2.49; optM3 = 2.56
0.3 4.63 2.50 2.74 63.3181 0.0345 0.5088 0.0001 7.0728 0.0010 96.9

100 0.6 5.73 2.75 2.74 102.2463 0.0846 10.3808 0.0010 6.9046 0.0006 99.5
0.9 3.94 3.04 2.89 39.2453 0.0131 22.0631 0.0043 12.7332 0.0016 94.7
0.3 4.44 2.48 2.68 56.7727 0.0053 -0.5071 0.000009 4.6945 0.00007 100.0

500 0.6 5.76 2.74 2.73 103.2662 0.0171 10.2602 0.0001 6.3299 0.00006 100.0
0.9 3.94 3.14 2.89 39.2537 0.0025 26.1894 0.0011 13.0415 0.0002 100.0
0.3 4.39 2.48 2.68 55.3506 0.0024 -0.5008 0.000003 4.6036 0.00003 100.0

1000 0.6 5.76 2.75 2.72 103.3116 0.0085 10.4370 0.00009 6.0958 0.00003 100.0
0.9 3.94 3.16 2.89 38.9617 0.0012 27.1796 0.0005 12.9545 0.0001 100.0

Student t distribution; optM1 = 4.16; optM2 = 2.34; optM3 = 2.38
0.3 5.85 2.15 2.23 40.6111 0.0296 -7.8239 0.0004 -6.3481 0.0004 99.9

100 0.6 15.22 2.31 2.45 265.6374 57.9703 -1.2775 0.0001 2.7550 0.0003 100.0
0.9 33.74 2.60 2.86 710.4484 13.8984 11.5284 0.0013 20.084 0.0035 84.3
0.3 5.85 2.16 2.25 40.4626 0.0057 -7.3517 0.00006 -5.4927 0.00004 100.0

500 0.6 5.39 2.31 2.47 29.3408 0.0030 -0.9376 0.00004 3.7417 0.00006 100.0
0.9 25.38 2.59 2.92 509.6060 1.0029 11.2388 0.0001 22.5757 0.0006 100.0
0.3 5.85 2.16 2.25 40.5011 0.0028 -7.4162 0.00003 -5.5194 0.00002 100.0

1000 0.6 5.37 2.31 2.47 28.8965 0.0014 -1.0348 0.000001 3.7648 0.00001 100.0
0.9 24.52 2.59 2.93 489.0068 0.4401 11.2467 0.00007 23.0901 0.0003 100.0

Skew-t distribution; optM1 = 4.80; optM2 = 2.60; optM3 = 2.89
0.3 4.59 2.35 2.53 -4.5079 0.0031 -9.9120 0.0009 -12.7692 0.0021 99.3

100 0.6 8.14 2.47 2.68 69.4317 0.4065 -5.1031 0.0004 -7.5949 0.0012 100.0
0.9 NA 2.78 3.06 NA NA 6.6832 0.0008 5.5875 0.0014 40.6
0.3 4.43 2.31 2.49 -7.8118 0.0004 -11.0747 0.0001 -14.2211 0.0003 100.0

500 0.6 6.81 2.48 2.71 41.8089 0.0114 -4.6537 0.00004 -6.5774 0.0001 100.0
0.9 22.93 2.83 3.22 377.5419 0.7006 8.8679 0.0001 11.1838 0.0005 98.7
0.3 4.42 2.32 2.50 -7.9676 0.0002 -10.8456 0.00008 -13.6653 0.0001 100.0

1000 0.6 6.82 2.49 2.73 42.1175 0.0048 -4.2254 0.00001 -5.8102 0.00004 100.0
0.9 22.81 2.85 3.28 374.9435 0.3352 9.6048 0.00007 13.0902 0.0002 99.5
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5.4 Results

Table 5.5: Relative bias and Mean Square Error (MSE) of the 99.9%-quantile method (M1); minimum of mixture
densities method (M2) and conditional probability method (M3) for the Stri antigen. optM1 denotes the theoretical
cutoff point for the 99.9%-quantile; optM2 denotes the theoretical cutoff point for the minimum of the density
mixture method; optM3 denotes the theoretical cutoff point for conditional probability method. π1 denotes the
weight of the seronegative population; cM1 denotes the cutoff estimated by M1 method after N=1000 simulations;
cM2 denotes the cutoff estimated by M2 method after N=1000 simulations; cM3 denotes the cutoff estimated by
M3 method after N=1000 simulations.

Normal distribution; optM1 = 2.75; optM2 = 2.37; optM3 = 2.47

Sample size π1 cM1 cM2 cM3

Relative
bias cM1

(%)

MSE
(cM1)

Relative
bias cM2

(%)

MSE
(cM2)

Relative
bias cM3

(%)

MSE
(cM3)

% Two
comp.

retained
0.3 5.52 2.33 2.51 100.7315 0.0769 -2.4407 0.0002 1.6126 0.0004 95.2

100 0.6 5.09 2.51 2.64 84.9707 0.0549 5.3154 0.0002 6.8551 0.0004 100.0
0.9 3.69 2.75 2.81 34.1160 0.0094 15.1483 0.0015 13.6833 0.0014 99.7
0.3 5.53 2.33 2.53 101.0684 0.0154 -2.1549 0.00001 2.3597 0.00002 100.0

500 0.6 5.09 2.51 2.64 85.4509 0.0110 5.2410 0.00003 6.9538 0.00006 100.0
0.9 3.72 2.75 2.81 35.1543 0.0018 15.0652 0.0002 13.6792 0.0002 100.0
0.3 5.53 2.33 2.52 101.0995 0.0077 -2.2169 0.000004 2.2269 0.000006 100.0

1000 0.6 5.10 2.51 2.64 85.6346 0.0055 5.3327 0.00002 7.0909 0.00003 100.0
0.9 3.72 2.74 2.81 35.4638 0.0009 14.9128 0.0001 13.6695 0.0001 100.0

Skew-Normal distribution; optM1 = 2.98; optM2 = 2.46; optM3 = 2.58
0.3 4.19 2.38 2.69 40.7854 0.0155 -3.3167 0.0002 4.3221 0.0007 95.8

100 0.6 5.69 2.69 2.78 91.0185 0.0741 9.2839 0.0007 7.6265 0.0007 98.5
0.9 4.03 3.03 2.91 35.1676 0.0116 23.2536 0.0046 12.7065 0.0016 77.8
0.3 4.13 2.37 2.73 38.4556 0.0026 -3.7077 0.00003 5.4574 0.00008 100.0

500 0.6 5.73 2.69 2.78 92.1103 0.0151 9.2010 0.0001 7.6095 0.00009 100.0
0.9 3.99 3.14 2.96 34.1244 0.0020 27.5261 0.0011 14.4625 0.0002 100.0
0.3 4.12 2.37 2.72 38.2737 0.0013 -3.7890 0.00001 5.2385 0.00003 100.0

1000 0.6 5.73 2.69 2.78 92.1627 0.0075 9.1482 0.00006 7.6591 0.00004 100.0
0.9 3.99 3.19 2.96 33.8530 0.0010 29.4491 0.0006 14.6881 0.0001 100.0

Student t distribution; optM1 = 4.34; optM2 = 2.39; optM3 = 2.48
0.3 6.12 2.27 2.47 40.9502 0.0499 -4.9286 0.0002 -0.1643 0.0002 100.0

100 0.6 7.47 2.42 2.66 71.9891 5.5903 1.2376 0.00009 7.5574 0.0006 100.0
0.9 25.93 2.68 2.97 496.9340 7.0674 12.0814 0.0011 19.9530 0.0031 87.9
0.3 5.96 2.28 2.49 37.1156 0.0052 -4.6806 0.00003 0.8053 0.00008 100.0

500 0.6 5.49 2.43 2.69 26.4182 0.0027 1.5251 0.000006 8.8431 0.0001 100.0
0.9 21.13 2.67 3.04 386.3460 0.6201m 11.8413 0.0001 22.7049 0.0006 100.0
0.3 5.95 2.28 2.49 37.0179 0.0026 -4.7472 0.00001 0.7876 0.000002 100.0

1000 0.6 5.49 2.43 2.70 26.3405 0.0013 1.6033 0.000002 9.1507 0.000005 100.0
0.9 20.91 2.67 3.05 381.2481 0.2865 11.9272 0.000008 23.1211 0.0003 100.0

Skew-t distribution; optM1 = 5.49; optM2 = 2.53; optM3 = 2.84
0.3 4.20 2.33 2.59 -23.4201 0.0186 -7.7389 0.0005 -8.9259 0.0012 99.9

100 0.6 6.97 2.49 2.79 26.9224 0.1472 -1.2113 0.0001 -2.0286 0.0006 100.0
0.9 NA 2.76 3.05 NA NA 9.2127 0.0010 7.1952 0.0013 43.7
0.3 4.19 2.31 2.59 -23.6233 0.0035 -8.7076 0.0001 -8.8653 0.0001 100.0

500 0.6 7.09 2.51 2.86 29.2639 0.0094 -0.5573 0.000009 0.6079 0.00003 100.0
0.9 19.83 2.83 NA 261.1660 0.4367 12.0420 0.0002 NA NA 97.2
0.3 4.19 2.31 2.59 -23.6742 0.0017 -8.8327 0.000005 -8.9670 0.000008 100.0

1000 0.6 7.27 2.52 2.88 32.4641 0.0043 -0.3427 0.0000003 1.2370 0.000001 100.0
0.9 19.8 2.85 3.28 260.0015 0.2104 12.5592 0.0001 15.3388 0.0003 97.8
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5. ANALYSIS OF CUTOFF POINT ESTIMATION FOR DETERMINING
SEROPOSITIVITY IN THE CONTEXT OF SARS-COV-2 INFECTIONS

5.5 Conclusions

The purpose of this study was to use a flexible class of mixture models to antibody data

against the SARS-CoV-2 virus. In particular, we used a class of models that allows captur-

ing the skewness present in this type of data, namely the Skew-Normal and Skew-t distributions.

It has become clear that diagnostic tests play a key role in the early identification of infected

individuals, allowing us to act to control a pandemic by isolating and tracing the contacts of

an infected person. Diagnostic tests can classify an individual as seronegative or seropositive

by defining a cutoff point that can take on different values depending on the technique used

by the manufacturer to develop the test. Most of the time, this cutoff point is relaxed and is

calculated using the 3σ -rule, which assumes that the underlying distribution of the data is

Normal. However, as we have seen in our application, this assumption cannot always be made,

making this method unfeasible.

Note that this study has the advantage that the true cases and controls of the infection are

known, allowing us to compare different methods for obtaining the cutoff point that allows

classifying an individual as seropositive.

In Dias Domingues et al., 2021, three methods for obtaining the cutoff point had been

presented that could not yet be validated because the true infection status of the individuals was

not known. In this sense, we proceeded to use these methods in this study, and it was verified

that the three methods under analysis present high accuracy, compared to methods used in

literature, namely through the empirical ROC curve. However, the proposed methods proved to

be more specific than sensitive. Note that the performance of the method based on the 99.9%

probability quantile may be overestimated, especially when the fitted distribution corresponds

to a heavy-tailed distribution (such as the Skew-t distribution). This is because the calculation

of this quantile involves only and exclusively the population of seropositive individuals, so that

if the distribution is too skewed to the right, then the seropositive population is totally absorbed

by this quantile.

When a new virus is present in the population, there is a natural tendency for the proportion

of susceptible individuals to be much higher than the seropositive individuals. This is the phase
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5.5 Conclusions

in which early identification of the infected people is essential for pandemic control, although

total control of the spread of the virus only occurs when there is vaccination or eradication

of the virus. In this sense, with the simulation study developed in this work, we intend to

analyze the pandemic evolution scenarios and understand the behavior of different methods

for determining the cutoff point. It was found that as the sample size increases, there is a

tendency for the relative error and the mean square error of the cutoff point estimates in skewed

distributions to decrease, while this tendency is not linear in the case of the usual symmetric

distributions (Normal and Student t). This fact may be due to the fact that symmetrical

distributions are not the most appropriate for these types of data, or even that the proposed

methods should not be used when considering the usual distributions.

As we expected, for small sample sizes and for large imbalances in the serological popula-

tions, the proposed models were found to have problems in identifying two components. Note

that in the case of skewed distributions, it will be natural that if the weight of the seronegative

population is very high, then observations relating to the seropositive population are considered

false negatives and false positives otherwise.

A limitation of this study is the fact that the adjustment of the different mixture models was

performed using the same distribution for the two components (through the package mixsmsn).

If the components of the mixture model were distinct, this would have a direct implication

on the estimated cutoff points. However, the package that would allow this analysis is now

discontinued.

In conclusion, we recommend the use of mixture models based on distributions of the SMSN

family for the analysis of serological data given the flexibility of these models, as well as the

use of the proposed methods for determining cutoff points as an alternative to the method based

on the 3σ rule.
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Chapter 6

General conclusions

This work was intended to provide new tools for the analysis of serological data. More

specifically, it was shown that serological data can be well described by mixture of distributions

based on the SMSN family, namely through the Skew-Normal and Skew-t distributions.

In addition to using these distributions to model serological data, we also wanted to work

and deepen an issue that was hitherto little discussed in this type of data and that is related to

the cutoff point to be used to define the serological status of an individual. In the case where

the true infection status is known, several statistical methods are available to estimate the

optimal cutoff point, namely through ROC curve methods. However, when the true infection

status of an individual is unknown the majority of seropeidemiological studies uses a standard

rule based on the normality of the population which consists in defining a control population

(seronegative) and calculating the mean plus 3 standard deviations. In this sense, we presented

two applications where this theme is discussed: one in which the serological status of the

individual is unknown and another in which the serological status is known. The second

scenario was used to validate the proposed methods with those already used in literature,

namely the ROC curve.

The methods proposed in this study showed the same capacity as the reference method

already used in the literature, thus proving to be viable alternatives for estimating the cutoff

point when the true serological status is unknown.

In addition to evaluating the impact that the choice of cutoff point has on the seroprevalence
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6. GENERAL CONCLUSIONS

of the population, it was also possible through a simulation study to understand what are the

desirable conditions for the proposed models to have the ability to identify two serological

populations (seronegative and seropositive). It was found that the two serological populations

were well detected for large samples and in balanced proportions.

Several points of this project may still be subject to analysis in future work. More

specifically, for application in chronic fatigue data, it is possible to perform a multivariate

analysis considering several antibodies that are related to each other and understanding which

factors influence the seropositivity of an individual.

With regard to the package used for adjusting the mixture models, it was found that it

was not possible to perform the adjustment for the case where the mixture model components

have distinct distributions (for example, a mixture model based on Skew Normal and Skew-t

distributions). Thus, in the future, an update to the package mixsmsn could be performed

to extend its applicability. Furthermore, in this work we only consider the Skew-Normal

and Skew-t distributions of the SMSN family. However, this can be generalized to the use

of the Skew-slash and Skew-contaminated distributions that are also part of this family of

distributions.

Regarding the application to the study of SARS-CoV-2 infections, more specifically to the

simulation study carried out, it is still possible to complement the analysis by calculating con-

fidence intervals via non-parametric bootstrap and calculating the coverage of each method to

estimate the cutoff point.
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Figure A.1: Seropositivity cutoff versus the likelihood ratio statistic for testing the significance of a group indicator
covariate in the logistic models used in unadjusted analysis. The vertical red lines represent the optimal cutoff in
which the maximization of the likelihood ratio statistic is achieved. The dashed horizontal lines represent the
critical point of the likelihood ratio test. This critical point is defined by the 95% quantile of the χ2 distribution
with 5 degrees of freedom for the likelihood ratio statistic under the null hypothesis.
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Figure A.2: Age-gender adjusted association analysis of seropositivity to different herpesvirus antigens based on
log-OR of the 4 subgroups of patients with ME/CFS in relation to healthy controls. See Figure 4.2 for further
information.
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Figure A.3: Seropositivity cutoff versus the likelihood ratio statistic for testing the significance of a group indicator
covariate in the logistic models used in the analysis controlling for age and gender. See Figure A.1 for further
information.
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Figure A.4: Statistical power to detect an association between each study group and the seropositivity to a given
herpesvirus. Statistical power was estimated by the proportion of times when the log odds ratio between a given
study group and healthy controls was deemed statistically significant at 5% significance level in 1000 simulated
data sets from logistic models using the optimal cutoffs shown in Figures A.1 and A.3. Horizontal dashed lines
represent the 5% significance level.
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Table A.1: Optimal seropositivity cutoff for each herpesvirus antibody as shown in Figures A.1 (unadjusted anal-
ysis) and A.3 (age and gender adjusted analysis).

Herpesvirus serology Unadjusted analysis Adjusted analysis
CMV 58 58

EBV-EBNA1 72 88
EBV-VCA 90 90

HHV6 11 11
HSV1 52 52
HSV2 14 14
VZV 31 31
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Abstract. Myalgic encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease of a unknown cause without
a specific biomarker for the respective diagnostic. Here we analyzed anti-viral antibody data from healthy controls, patients with
multiple sclerosis, and patients with ME/CFS. Finite mixture models based on flexible skew Normal and skew distributions were
first fitted to the data in order to determine the seropositivity to each virus. A logistic regression analysis was then carried out to
distinguish between patients with ME/CFS and the remaining study groups.

INTRODUCTION

ME/CFS is a disease with unknown cause characterized by prolonged tiredness and persistence of many non-specific
symptoms that limit patient’s quality-of-life. The most frequent symptoms are post-exertion malaise, chronic pain,
sleep disturbances and frequent viral infections. The prevalence of this condition has been estimated between 0.2%
and 0.3%. This disease is believed to be triggered by common viral infections, which elicit in turn a chronic activation
of the immune system and its possible exhaustion. Similar disease triggers, immunological deregulation and clinical
symptoms are often reported for autoimmune diseases such as multiple sclerosis or rheumatoid arthritis. The similarity
between these diseases suggested an autoimmune origin for ME/CFS [1].

Until now there is no disease-specific biomarker that could clearly identify putative patients in the population.
Instead patients are identified by symptoms’ assessment questionnaires, which may vary from country to country. To
help searching a putative biomarker, a ME/CFS biobank was recently created in the United Kingdom [2]. This biobank
comprises data from healthy controls (HC), patients with multiple sclerosis (MS), patients with ME/CFS. Here we
explore the potential of using antibody data from this biobank in discriminating between patients with ME/CFS and
remaining study groups.

DATA & STATISTICAL METHODOLOGY

Antibody data

Antibody data refer to quantitative measurements of optimal density determined by ELISA assays, as described
elsewhere [3]. For each individual, there are antibody data related to four common herpes viruses: human Cy-
tomegalovirus (CMV), Herpes Simplex Virus types 1 and 2 (HSV-1 and HSV-2), and Epstein-Barr virus (antibodies
against EBNA and VCA proteins).

Estimating seropositivity

When analyzing data of the antibody responses against a specific virus, it is usually assumed the existence of two or
more latent, unobservable populations representing different serological states (e.g., seronegative and seropositive). In
this scenario, data is typically described by a mixture of two or more probability distributions. In general, let Z1, ...,Zn
be the identical and independent random variables representing the antibody levels for a sample of n individuals,
G1, ...,Gg be the partition from a superpopulation G (sample space) and π1, ...,πg the probabilities of sampling an
individual from each serological population (with the usual restriction of ∑g

k=1 πk = 1 and 0< πk ≤ 1). The probability
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density function (pdf) of the antibody level of i-th individual is then given by

f (zi) =
g

∑
k=1

πk fk(zi;θk), i = 1, ...,n, (1)

where fk(zi;θk) is the so-called mixing pdf associated with k-th serological group and parameterized by a vector θk.
The first statistical analysis was then to fit different finite mixture models to the data and select the best one. With

this purpose, we first log-transformed the data and then fitted distinct mixture models based the normal, skew normal,
student’s t and skew-t distributions. The pdf distribution of skew normal and skew-t are respectively described by the
following formulas

f (zi;θ) =
g

∑
k=1

2πk
1√

2πσk
exp

(
− (zi −μk)

2

2σ2
k

)
×

∫ λk
(zi−μk)

σk

−∞

1√
2π

exp
(
− x2

2
)
dx, i = 1, ...,n, (2)

and

f (zi;θ) =
g

∑
k=1

πk
Γ( νk+1

2 )

Γ( νk
2 )

√
πνkσk

(
1+

d
νk

)− νk+1
2 T

(√νk +1
d +νk

A;νk +1
)
, i = 1, ...,n. (3)

where T (·;νk + 1) denotes the distribution function of the standard t distribution with νk + 1 degrees of freedom,
location equal to 0 and scale equal to 1; d = (zi − μk)

2/σ2
k and A = λk(zi − μk)/σk. Note that, if λk = 0, the above

formulas correspond to the Normal and non-standard t distributions, respectively [4].
Model estimation was performed using maximum likelihood method as available in the R package mixsmsn [5].

Model selection was performed using the Akaike’s Information Criteria (AIC) where the goodness-of-fit was penalised
by the number of parameters of an given model. The best model for the data is then the one with the lowest AIC value.

Seropositivity to a given virus was determined by calculating a cutoff τ in the respective antibody distribution above
which individuals would be considered seropositive. For this calculation, the seronegative population was interpreted
as the component of the mixture distribution with the lowest average value while the remaining components were
interpreted as different levels of seropositivity upon recurrent infections. In this case, a cutoff for a seropositivity was
calculated by the estimated 99.9%-quantile associated with the distribution of the putative seronegative population.

In the end, the seropositivity of i-th individual can be seen as resulting from a Bernoulli random variable Yi �Ber(p)
where p is the so-called seroprevalence, which is the probability of an individual having an antibody level greater than
τ . Seroprevalence can be easily estimated as the proportion of putative seropositive individuals in the sample.

Once the cut-off point was estimated for each antibody under analysis, the next step was to assess the sensitivity
and specificity of the respective serological classification. With this purpose, it was assumed that the seronegative
population is associated with the first component of the mixture distribution while the remaining components are
associated with seropositivity. In this case, the probability of classifying an individual as seronegative S− given an
antibody level zi is defined as

P(S−|zi) =
π1 f1(zi;θ1)

∑2
k=1 πk fk(zi;θk)

. (4)

In turn, the probability of classifying an individual as seropositive S+ given an antibody level zi is simply defined as

P(S+|zi) = 1−P(S−|zi). (5)

Logistic regression

A logistic regression model was constructed with the objective of understanding whether serological data is able to
distinguish patients with ME/CFS from healthy controls and patients with MS. In this model, the response variable
was the study group allowing a pairwise comparison between ME/CFS and HC and between ME/CFS and MS. The
respective covariates are the seropositivity for the different virus. The predictive performance of the logistic regression
model was assessed using the area under receiver operating characteristic curve (AUC).
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RESULTS

The analysis was carried out in a total of 335 individuals with complete information for all the variables under analysis.
Eighty-one (24.2%) were male and 254 (75.8%) were female with ages at data collection of 43.47 ± 11.24 years. The
distribution of different study groups was the following: healthy controls (HC, n=92; 27.5%), patients with multiple
sclerosis (MS, n=36; 10.8%), and patients with ME/CFS (n=207; 61.8%).

Estimating seroprevalence associated with each virus

TABLE . Results of the best model for the antibody data of 4 common herpesviruses.
Virus Distribution No of components Population Mean (SD) Cut-off AIC Seroprevalence (95% CI)
CMV skew-t 2 S− 1.61 (0.28 2.503 957.62 31.94

S+ 5.09 (0.54) (22.41-41.47)
EBV (EBNA) skew-t 2 S− 2.07 (0.34) 2.321 916.97 76.12

S+ 4.45 (0.74) (67.41-84.83)
EBV (VCA) skew-t 2 S− 0.67 (0.39) 3.521 779.22 83.88

S+ 5.37 (0.49) (76.37-91.39)
HSV1 skew-t 3 S− 0.51 (0.09) 1.058 1020.38 76.42

S+ 1 1.43 (0.73) (67.74-85.09)
S+ 2 5.22 (0.24)

HSV2 skew normal 2 S− 0.50 (0.65) 2.622 1029.82 37.61
S+ 3.84 (0.79) (27.71-47.51)

Most antibody distributions could be described by two latent populations with the exception of HSV1 antibody
data where the best model supported three latent populations (I). In this case, the latent population with the lowest
mean was interpreted as the seronegative population while the remaining latent populations were considered to be the
putative seropositive populations with distinct degrees of exposure to the virus. Seroprevalence was estimated to be
the highest for the Epstein-Barr virus (EBNA or VCA) and HSV1. These results were in line with the known fact that
these viruses are quite common in the human population. As an example, Figure 1 shows the classification probability
of the putative seropositive and seronegative population as function of the antibody level associated with CMV.
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FIGURE 1. Conditional classification probabilities for CMV antibody data as defined by equations (4) and (5) (blue line - putative
seronegative population, green line - putative seropositive populatio, red vertical line - cutoff for seropositivity as reported in
Table I.
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Comparing ME/CFS with Multiple Sclerosis (Model 1) and Healthy controls (Model 2)

After defining which individuals were seropositive and seronegative to each virus, we then determined the potential of
using serology as way to distinguish ME/CFS patients from healthy controls and patients with MS. Most of serological
predictors were not statistically significant at 5% significance level with some exceptions shown in Table II. In the
case of ME/CFS patients versus healthy controls, the fitted regression model had limited predictive power because the
estimate of AUC was close to a random guess situation (0.60; 95% CI=(0.53-0.67)). A slight better prediction was
obtained for the comparison between patients with ME/CFS and MS (AUC=0.75; 95% CI=(0.68-0.82)). However,
this prediction was still far from being useful for diagnostic purposes.

TABLE . Statistically significant results from the multiple logistic regression comparing ME/CFS group against healthy controls 
and patients with MS.

Comparison Predictors OR (95% CI) p-value AUC CI (95%)
ME/CFS vs. HC CMV 0.60 (0.36-1.02) 0.06 0.60 (0.53-0.67)

EBNA (VCA) 0.53 (0.24-1.07) 0.09
ME/CFS vs. MS EBV (EBNA) 0.07 (0.00-0.33) 0.01 0.75 (0.68-0.82)

HSV-1 0.06 (0.00-0.32) 0.01
HSV-2 2.22 (1.03-4.92) 0.04

CONCLUSIONS

In conclusion, the results suggested that serological data to these common herpesviruses have limited power to be
used as a diagnostic tool for ME/CFS. A limitation of this study is the small number of antibodies used for predicting
ME/CFS cases. It is then expected that an increased number of antibodies under analysis might improve model
prediction. In this scenario, high-throughput serology data might be a solution as available elsewhere [6]. Another
limitation is related to a possible misclassification of seropositivity for some individuals. This influences the results
and might introduce bias in the analysis specially for individuals who tend to show antibody levels close to cutoff for
seropositive. Finally, these herpes viruses might elicit similar antibody responses and, therefore, one should expected
some correlation between the respective data. This correlation suggest the use of multivariate methods, which will be
reported elsewhere.
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A B S T R A C T

Leptospirosis is a zoonosis of global importance caused by Leptospira species. Rodents are the main reservoirs,
known to shed the bacteria in urine, thus contaminating water and soil and infecting other animals and people.
Leptospirosis has been re-emerging in both developing and developed countries including Europe. It has been
hypothesized that cats could be asymptomatic carriers of Leptospira. This study aims to evaluate cats’ exposure to
Leptospira in Lisbon, Portugal, by measuring IgG titres and correlating them with possible factors that may
increase the risk of exposure in urban cats. Two hundred and forty-three samples were collected from the
biobank. An ELISA test followed by a seroprevalence analysis using a finite mixture model was performed to
detect and measure anti-Leptospira IgG antibodies titres. In parallel, a survey was conducted to identify possible
risk factors for seropositivity.

According to the ELISA test protocol, only twenty-three cats (9.5%; 95% CI =(6.1%;13.9%)) could be con-
sidered as seropositive to Leptospira antigens. However, when the same data were analysed by the best different
mixture models, one hundred and forty-four cats (59.3%; 95%CI = (52.8%; 65.5%)) could be classified as
intermediate and high antibody responders to Leptospira antigens. Seropositivity to Feline Immunodeficiency
Virus infection (FIV) was found to be the only significant risk factor associated with anti-Leptospira IgG anti-
bodies. In conclusion, the present studies raises the possibility of a higher exposure of cats to Leptospira than
previously thought due to the identification of a subpopulation of cats with intermediate antibody levels.

Introduction

Leptospirosis is one of the leading zoonotic diseases in terms of
morbidity and mortality worldwide, often in regions where the burden
of leptospirosis is underestimated. Globally, the total number of lep-
tospirosis cases has been estimated at 1.03 million and 58.900 deaths
every year (Costa et al., 2015 ). It is also considered by many the most
widespread bacterial zoonotic disease (Costa et al., 2015) and a silent

epidemic disease by the World Health organization (WHO), Pan
American Health organization (PAHO) and Health and Climate Foun-
dation (Schneider et al., 2013).

Leptospirosis is caused by an infection with spirochete bacterium of
the genus Leptospira and affects humans as well as a broad spectrum of
animal hosts. There are currently 27 Leptospira species as delineated by
DNA–DNA hybridization (Masuzawa et al., 2019). Phylogenetic ana-
lysis of these species using the 16S rRNA gene has resulted in the broad
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classification of the species into pathogenic, saprophytic and inter-
mediate (Perolat et al., 1998). Within the species Leptospira interrogans
over 500 serovars are recognized (Caimi & Ruybal, 2020).

Although the respective molecular classification is not problematic
for clinicians and individual treatment, it poses a problem regarding
public health and epidemiology as it does not have enough dis-
criminatory power to determine the infecting serovar (Levett, Paul,
2001). However, methods are being developed to improve this situation
(Bezerra da Silva, Carvalho, Hartskeerl & Ho, 2011).

Most mammalian species are natural carriers of pathogenic
Leptospira (Hartskeerl, Collares-Pereira & Ellis, 2011). These include
feral, semi-domestic, farm and pet animals. Leptospirosis is commonly
diagnosed in livestock species such as cattle, sheep, goats, horses, pigs
and dogs (Pal, Mahendra, 1996).

Leptospira infection is also commonly described and investigated in
dogs, while in cats it is less well described. Recently, the role of cats as
concurrent carriers for illness has been questioned. Cats are the main
predators for rodents and can act as reservoir hosts, with some studies
proving transmission of pathogenic Leptospira between cats and other
animals (Ojeda, Salgado, Encina, Santamaria & Monti, 2018). There is
also the premise that feral cats or cats living in shelters are more likely
to have been infected with these bacteria. Considering the predator-
prey relationship cats have with rodents and their close proximity to
Humans, their role as a potential source for this agent needs to be better
evaluated. These last options are more likely to happen with stray cats,
cats who have outdoor access or even cats that live in rural environ-
ments. The direct contact with other cats, dogs or cattle is also con-
sidered to be a risk factor for this infection (Arbour, Blais, Carioto &
Sylvestre, 2012; Hartmann et al., 2013).

Laboratory diagnosis of leptospirosis is not straightforward and may
involve tests to detect Leptospira (Musso & La Scola, 2013), leptospiral
antigens, or leptospiral nucleic acid in animal tissues or body fluids
and/or to detect anti-leptospiral antibodies. Serological testing includes
microscopic agglutination tests (MAT), enzyme-linked immunosorbent
assay (ELISA) and rapid immunomigration tests (Kodjo, Calleja,
Loenser, Lin & Lizer, 2016; Lizer, Velineni, Weber, Krecic & Meeus,
2018).

Diagnosis of infection by antibody detection in cats is appealing
since they are not currently vaccinated, and therefore, the chance of
finding false positives is much smaller. Testing is not too expensive and
it can be performed in veterinary hospitals with supporting diagnostic
laboratories. However, the international market supply of Leptospira
IgG ELISA kits applicable to cat samples is limited. For example, in
Portugal, there is only one commercial kit available at the time of the
study, developed by the Bioassay Technology Laboratory (BT Lab).
Production of other Cat Leptospira IgG ELISA test kit had been dis-
continued, possibly due to lack of sales. The rationale for using anti-
body data is that the antibody concentrations in the serum could be an
indicator of bacteria exposure, thus providing epidemiological in-
formation about cats which are currently or have been infected.
Antibody quantification is usually done by means of traditional enzyme
linked immunosorbent assays. Optical densities or titres in arbitrary
units are then used for the subsequent data analysis. In this epidemio-
logical scenario of extremely low frequency of disease, scarcity of ELISA
tests to measure cat Leptospira IgG and weakness of these tests valida-
tion methods, it is timely to apply statistical approaches to determine in
antibody data analysis for diseases like malaria to cat leptospirosis in an
attempt to optimize an ELISA test result interpretation
(Sepúlveda, Stresman, White & Drakeley, 2015).

The present study falls under the “One Health” scope, as cats are
exposed to environmental risks and share a great proximity to their
owners, consequently placing them at risk of contracting leptospirosis.

The objectives of this study were: (1) to determine the ser-
oprevalence of Leptospira spp. antibodies in cats presented to the
Veterinary Teaching Hospital (VTH) of the Veterinary Faculty (FMV) of
the University of Lisbon (ULisboa) by analysing the data directly with a

statistical modeling approach; (2) to investigate associated risk factors,
namely indoor/outdoor lifestyle and presence of retroviral infection.

Materials and methods

Sample collection

Previously collected blood samples from 243 cats was used to assess
the performance of an ELISA kit for the presence of anti-Leptospira IgG.
Blood samples were collected from a biobank which was developed
using cat's serum samples obtained from a well characterized popula-
tion of cats. Biobank stored blood samples were previously collected by
venipuncture of the jugular vein. To allow a better evaluation and
simpler blood sample collections, cats were subjected to mild sedation
with 0•2 to 0•5 mg/kg butorphanol solution sc (Dolorex, Intervet
Portugal). Serum samples were collected after clotting of the sample
had occurred by centrifugation (5000 g, 10 min), and were subse-
quently frozen at −80 °C until analysed. This population is composed of
cats from three different locations: two different animal shelters in the
Lisbon area; cats which went to a consultation at the Veterinary
Teaching Hospital – University of Lisbon (VTH) and cats which were
hospitalized at the Infectious Disease Unit at the hospital (IDIU). All
samples were stored at −80 °C.

Data collection

Data was collected using clinical database software from 2014 to
December 2018. Collected data included age, lifestyle (indoor or out-
door) and contact with other animals. Cat's lifestyle was considered
unknown when this information was missing or it was stated that cats
were indoor but had contact with other animals with unknown lifestyle.
Cats were considered to have an indoor lifestyle if they had not been
outdoors for more than 10 years.

Plasma samples and FIV/FeLV infection

A total of 243 samples were analysed. All blood samples were tested
to confirm their viral infection status by means of commercially avail-
able ELISA kits (ViraCHEK/FIV and ViraCHEK/FeLV, Synbiotics).
Therefore, two groups were set: one group of retroviral negative cats
(Status FIV/Feline Leukemia Virus (FeLV) negative) and one group of
positive-retroviral cats (which were positive for FIV, FeLV or both).

Leptospiral IGG screening

All samples were screened for the presence of anti- Leptospira IgG
antibodies by using IgG ELISA test kit by Bioassay Technology
Laboratory. The manufacturer's guidelines were followed for the
making of this test and the OD values were read at 450 nm. The cut-off
value to consider a sample positive was the sum of the value obtained
for the negative control plus 0.15. For quality control purposes, both
the OD value for a blank well (no solutions at all) and the OD for ne-
gative control had to be ≤ 1. For statistical purposes, data under
analysis referred to the average antibody values from two independent
replicates of ELISA performed in the same biological samples.

Estimation of IGG seroposivity to Leptospira antigens

Finite mixture models based on flexible Skew-Normal and Skew-t
distributions were fitted to data. In theory, the basic assumption of
these models is that the antibody distribution could represent different
serological populations (e.g., seronegative population and different
seropositive populations possibly describing different levels of exposure
to Leptospira). Note that these mixture models were chosen, because
they extend the classical mixture models based on normal and t dis-
tributions by introducing an additional parameter that controls the
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degree of asymmetry of the mixing distributions. The above models
were estimated assuming one serological population (e.g., ser-
onegative) to 5 different serological populations. In the case of models
with more than one serological population, it was assumed that the
serological population with the lowest average referred to hypothetical
seronegative individuals, while the remaining serological populations
referred to putative seropositive individuals with different degree of
exposure to leptospira. Model estimation was performed based on the
maximum likelihood method using the Expectation-Maximization al-
gorithm. Akaike's Information Criterion (AIC), which is defined by the
deviance minus twice the number of model parameters, was used to
determine the best fitted model for the data. According to this criterion,
the best model was the one showing with the lowest AIC estimate
among all models tested (Supplementary Table 1).

After determining the best model for the data, the putative ser-
onegative population was identified as the hypothetical serological
population with the lowest antibody average. A cut-off for ser-
opositivity was calculated using the estimated 99.9% quantile of the
hypothetical seronegative population. Cats whose antibody values were
above this cut-off, were considered seropositive and seronegative
otherwise. After classifying each cat as either seropositive or ser-
onegative, the seroprevalence of the sample was estimated by the
proportion of the seropositive cats among all cats tested. Note that the
choice of a cut-off value defining seropositivity was somehow arbitrary.
Therefore, a more stringent cut-off value could have been used for es-
timating seroprevalence. Finally, univariate and multivariate logistic
regression models were used to determine which factors were asso-
ciated with seropositivity to leptospiral antigen.

All statistical analysis was conducted in the software R version
3.4.3. using the package mixsmsn to estimate finite mixture models
(Prates, Cabral & Lachos, 2013) and glm function to fit regression to the
corresponding seropositivity data. The significance level for statistical
testing was specified at 5%.

Results

Characterization of the studied population: Retroviral status, lifestyle, other
pets and concomitant diseases

One hundred and twenty two out of the 243 cats tested were ser-
opositive for either FIV or FeLV (74 FIV positive, 37 FeLV positive and
11 FIV and FeLV co-infected) (Fig. 1A). Twelve and 159 cats (65.43%)
had indoor and outdoor lifestyles, respectively, according to criteria
defined in the section of data collection from Materials and Methods.

The remaining 72 cats (29.63%) had an unknown lifestyle (Fig. 1B).
With respect to home contact with other animals, 115 cats had other

cats in the same house, 64 cats were considered to have unknown
lifestyles, 40 cats did not cohabit with other pets, 16 cats lived with
other cats and dogs, 6 cats cohabited with dogs and 2 cats cohabited
with other pets (birds, reptile, fish or others) (Fig. 1C).

Estimation of Leptospiral seroprevalence

All samples were screened for the presence of anti- Leptospira IgG
antibodies by using IgG ELISA test kit by Bioassay Technology
Laboratory. Twenty-three out of the 243 cats (9.5%; 95% CI=
(6.1%;13.9%)) analysed were tested positive using the seropositive cut-
off value suggested by the manufacturer of the commercial ELISA used.
An alternative seropositive cut-off value based on flexible finite mixture
models was calculated for the same data. In brief, among all the ten
mixture models fitted to the data (Supplementary Table 1), the lowest
AIC estimate was obtained for the mixture model based on Skew-t
distribution with three serological populations (Fig. 2). These ser-
ological populations were assumed to represent a seronegative popu-
lation (with the lowest average) and two seropositive populations.
Under this assumption, the cut-off for seropositivity was re-estimated at
0.40, which contrasts with the cut-off value of 1 as instructed by the
manufacturer of the serological kits. Therefore, the intermediate ser-
ological population could be interpreted as putative seropositive cats on
their way to sero-reversion. According to this new cut-off value, the
seroprevalence to leptospirosis was re-estimated at 59.3% (n = 144/
243; 95%CI = (52.8%; 65.5%)).

Analysis of potential factors contributing to Leptospiral seroprevalence

Regarding the analysis comparing retroviral infection and
Leptospiral IgG seropositivity, 52.78% animals negative for retroviral
infections tested positive for IgG anti-Leptospira (76/144) and 46.53%
were positive for retroviral infections and IgG anti-Leptospira (67/144 -
38/67 for FIV+; 24/67 for FELV+ and 5/67 FIV+/ FELV+) (Fig. 3).

From the risk assessment analysis, FIV is the only significant factor
(p-value = 0.02 - (Table 1)). Four cats lived in animal refugees, with
the other 140 positive cats being domestic. However, most of positive
cats (n = 96) had an outdoor lifestyle (66.67%), with a small percen-
tage being indoor cats (n= 5; 3.47%). 18.75% (27/144) of animals had
some form of renal and/or hepatic laboratory parameter alteration and
of these, 51.85% (14/27) were immunocompetent (data not shown).

Fig. 1. Sample distribution between different characteristics analysed. A – 50.21% (n = 122) were retroviral positive, of which 60.65% (n = 74) were FIV+,
followed by 30.33% (n = 37) for FeLV+ and 9.02% (n = 11) had both retroviral infections; 49.79% (n = 121) were retroviral negative. B - 4.94% had an indoor
lifestyle (n= 12), followed by 29.60% (n= 72) whose lifestyle could not be characterized, and 65.43% (n= 159) had access to the outdoor. C – 0.82% (n= 2) had
close contact with other pets, followed by contact just dogs (2.42%, n = 6); 6.58% (n = 16) lived with other cats and dogs, followed by cats which lived alone
(16.46%, n = 40); for 26.34% (n = 64), co-habitation with other animals could not be determined and 47.32% (n = 115) co-habited with other cats.
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Discussion

This study comes under the perspective of One Health (where
human and animal health are inexorably linked) with leptospirosis
being an emerging infectious disease and zoonosis.

The frequency of clinical illness is low in cats, despite the presence
of leptospiral antibodies in the feline free-roaming population in-
dicating a high probability of leptospiral exposure. Serological surveys
carried out in Europe found a serological prevalence of 10% in Glasgow
(Agunloye & Nash, 1996), 18% in Munich (Weis et al., 2017) and 48%

Fig. 2. Positive samples distribution across population. The first peak represents samples positive for the presence of IgG anti-Leptospira. The dotted line represents
the estimated cut-off value for the ELISA assay. The second and third peak represent samples with a low positivity result or false positives.

Fig. 3. IgG Leptospira positive samples distribution within the retroviral status previously determined. Within positive IgG results, 3.47% (n= 5) had both retroviral
infections, followed by FeLV+ individuals (16.67%, n = 24) and FIV+ (26.39%, n = 38). 52.78% (n = 76) were negative for retroviral infections.
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in France (Andre-Fontaine, Geneviève, 2006). Ser-
ovars Canicola, Grippotyphosa and Pomona have been isolated from
cats (Adler & de la Peña Moctezuma, 2010). Clinical signs in cats are
usually mild or not apparent, despite the presence of leptospiraemia
and leptospiruria and histological evidence of renal and hepatic in-
flammation.

Several ELISAs have been developed and are primarily used for the
detection of recent infections in dogs and livestock species. Problems
with validation are a major constraint (OIE, 2018). A small number of
ELISA tests for dogs (Hartman and Houten, 1984; Hartman, van den
Ingh & Rothuizen, 1986) and cattle (Cousins, Robertson & Hustas,
1985) have been validated, using sequential serum samples from ex-
perimental animals but not beyond 6 months post-challenge. Labora-
tory variation and differences in host-specific humoral immune re-
sponses sometimes make correct assignment of antibody tests even
more difficult. Many different serogroup antigens are tested in the
assay, but false-negative results occur when the infecting serogroup is
not included (Hartmann et al., 2013).

Evidence for a high seroprevalence in cats suggests that exposure in
these species and its role for transmitting the bacteria to humans could
be of more clinical importance in this species than previously re-
cognized (Azócar-Aedo, Monti & Jara, 2014), posing a non-negligible
public health risk to cat owners. However, the role of cats in the epi-
demiology of this zoonosis has not received much attention and clinical
reports of leptospirosis in cats are rare (Arbour, Blais, Carioto and
Sylvestre, 2012; Hartmann et al., 2013). Cats are predators of rodents
(Loss & Marra, 2017; Parsons, Banks, Deutsch & Munshi-South, 2018),
so prey-predator transmission between cats and rodents is likely to
occur, and adding the free access to the outside or leash-walking, the
concern should be reinforced. Scarce number of available ELISA tests
and their limited validation for cats are a problem when analysing the
frequency of exposure to Leptospira in the cat population.

Antibody quantification regarding diseases with extremely low
prevalence, for which few ELISA tests are available plus the weakness of
these tests’ validation methods, advocate for a deeper analysis of the
raw data in order to improve the accuracy of the serological classifi-
cation of individuals/cats. This method was applied for other diseases
with low rates of seropositive infected individuals such as malaria,
where alternative measures based on antibodies have gained recent
interest due to the possibility of estimating past disease exposure in
absence of infected individuals. (Sepúlveda et al., 2015). This can be
done using flexible mathematical models that could distinguish ser-
onegative individuals from seropositive ones, thus, allowing the esti-
mation of the seroprevalence, the proportion of seropositive individuals
in the sample. The main advantage of using finite mixture models is
allowing the raw data to determine the cut-off value for seroprevalence,
rather than using the pre-established cut-off value. Such models also
help determine specificity and sensitivity from the serologic classifica-
tion obtained, which cannot be done when using a universal cut-off
value.

Out of the 243 cats tested, (50% positive for retroviral infections
and the rest immunocompetent), 23 samples tested positive for
Leptospira IgG following the manufacturer's instruction and the in-
dicated cut-off value for seropositivity. Applying the best model for
quantitative antibody data used to determine the seropositivity of each
individual to Leptospira antigen, 59.25% (n = 144) tested positive for
the presence of IgG against Leptospira. This value is higher when com-
pared to other studies, with positive results ranging from 18% to 43%
(Dybing, Jacobson, Irwin, Algar & Adams, 2017; Lapointe, Plamondon
& Dunn, 2013; Weis et al., 2017).

In these previous studies, the presence of Leptospira species was
determined by IgM or PCR. However, it is valid to compare such results
with the one obtained in this study when it comes to contact with the
bacteria, because IgG remains after IgM and the bacteria have been
cleared from the host. Nevertheless, the cut-off value used in these
studies was pre-established by the manufacturer, which poses the
question of whether or not one can trust such seroprevalence results as
it is not known how the cut-off used was calculated. Seroprevalence
comparison would be easier if cut-off was determined through the use
of finite mixture models. Comparisons would also be more reliable since
it would be known how the cut-off had been calculated.

The first risk factor analysed was retroviral infection status. This
study showed that FIV infected cats have significantly lower anti-
Leptospira IgG titres when compared to immunocompetent or FeLV in-
fected cats. As immunocompromised cats often present a decreased
capability on creating a memory immune response (Machado et al.,
2019), a possible explanation relies on the fact that FIV infected cats
have an impaired memory response towards Leptospira antigens used in
this ELISA. Contrary to expectations, the same is not observed in FeLV
cats. This can be due to a lower number of FeLV-infected cats com-
paring to FIV-infected ones as well as a non-standardization of lifestyle
status between groups, which can reflect a different antigen-stimulus
and, consequently, differences on memory immune response. Further
studies are needed to clarify this finding.

This study analysed other risk factors that may eventually lead to
cats’ contact with Leptospira species, despite no significant association
was found. Some individuals had missing data, which reduced the
statistical power to detect an association with IgG Leptospira ser-
opositivity. Although only one of the proposed risk factors was sig-
nificantly associated with the anti-Leptospira IgG titres observed (FIV+),
careful examination of outdoor lifestyle and sharing the household with
other animals should be further analysed using more indoor confined
cats. Furthermore, the rough definition of “outdoor lifestyle” can also
justify that no association was found – better parameters should have
been determined in order to categorize into outdoor or indoor lifestyle.

The imbalanced frequency between indoor and outdoor distribution
within the studied population, as well as the number of other animals
sharing the household, may difficult the statistical analysis regarding
these variables and their association to seropositivity. This aspect is a
limitation of the study.

Nineteen of the cats presented azotaemia (renal or post-renal). After
careful record review, most of the azotaemic patients exhibit some form
of post-renal azotaemia which, by itself, justifies renal tubular damage
and impaired urine concentrating ability. However, there is evidence
that Leptospira can lodge itself in the renal tissue of carrier species like
the cat (Parsons et al., 2018). Anti-Leptospira IgG seropositivity show
that these cats have had contact with the bacteria and, therefore, azo-
taemia due to renal colonization by the bacteria cannot be ruled out
without doing further testing. Some studies confirm that seropositivity
is significantly greater in Chronic Kidney Disease (CKD) diagnosed cats
(Rodriguez et al., 2014). Although not conclusive, several clinical stu-
dies in human subjects also assert that there may be a strong association
between Leptospira infection and the development of CKD, suggesting
infection as a risk factor for CKD (Carrillo-Larco, Altez-Fernandez,
Acevedo-Rodriguez, Ortiz-Acha & Ugarte-Gil, 2019; Yang, Chang &
Yang, 2019).

Table 1
Different variables analysed and respective significance values and intervals.
Through multivariate logistic regression model, FIV is the only characteristic
that can influence positiveness for IgG.

Variable Estimate (SE) P OR (CI 95%)

Intercept −1.22 (1.87) 0.52 –
Gender (M) 0.16 (0.43) 0.72 1.17 (0.50–2.73)
FIV −1.05 (0.45) 0.02 0.35 (0.14–0.85)
FeLV −0.15 (0.53) 0.77 0.86 (0.30–2.42)
Lifestyle (Outdoor) 0.73 (0.75) 0.33 2.08 (0.48–9.07)
Dog 1.01 (0.67) 0.13 2.74 (0.73–10.22)
Cat 0.98 (1.64) 0.55 2.67 (0.11–66.29)
Other 1.14 (1.99) 0.57 3.13 (0.06–155.27)

*CI – confidence interval; OR – odds-ratio; P – p-value; SE – Standard Error.
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Some of the sampled cats revealed changes in the complete blood
count (CBC) (mainly leucocytosis, leukopenia and anemia). These
changes can be explained by them presenting a suspicion of or diag-
nosed illness (urinary tract inflammation or infection, colangiohepa-
titis, among others). Many of these animals were FIV and/or FeLV in-
fected, which can likely account for these CBC abnormalities in some
part (Tvedten & Raskin, 2013). Overall, no consistent clinical signs
pattern was associated with the IgG Leptospiral positive population.

The present work using a statistical analysis of the raw antibody
data contributes to a better knowledge of feline leptospirosis exposure
in the context of One Health. The more evidence is gathered by studies
like this one, the easier it will be to raise public awareness for cats and
their possible role in transmission of this zoonotic disease. In a future
study, it would be interesting to evaluate the owner's Leptospira IgM/
IgG seroprevalence, alongside their cats.

Conclusions

In conclusion, the direct analysis of antibody data provided evi-
dence for an additional subpopulation of cats with intermediate anti-
body levels to Leptospira antigen. Since this putative subpopulation was
considered as seronegative according to the commercial ELISA test, we
hypothesize that the real exposure of cats to Leptospira bacteria might
be in fact higher than previously reported and therefore, it might pose a
health hazard for both animals and humans in the context of One
Health. To assess the validity of this hypothesis, similar serological
assessment should be conducted in the other cohorts of cats.
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