
Deep Learning Search Engine
Abstract

Author(s): Malik Naik Mohammed, Yves Jr. Kwame Kamgaing, Madhu Rao, Charan Gandi
Advisors(s): Dr. Md Abdullah Al Hafiz Khan, mkhan74@kennesaw.edu 

GC-183
Most of the search engines use algorithms like Best Match 25 [1] that perform 
well and return the top-ranked results, but they lack the ability to understand the 
semantics of the user that they are searching for. The main task of this project is 
to apply the various deep learning techniques to build the search engine that 
gives the most relevant results using the search query using the pre-trained 
models. Our main objective is to use deep learning to rank highly similar results 
at scale. This project also deals with the image data using the Image Captioning 
model that was trained on the Open Images V6 dataset [2]. We have 
successfully vectorized the text data from the 200,000+ Jeopardy! Questions 
dataset [3] and wrote the search engine to search given query by vectorizing the 
search query and return results with the least cosine or euclidean distance

ConclusionsResults

Introduction

For this work we used two different datasets. One dataset is text-based and the 
other dataset is image-based with captions. The first dataset that we used for 
searching text and indexing is the 200,000+ Jeopardy! Questions [3] from 
Kaggle, which contain the jeopardy questions and answers. For the Image 
Captioning model we used the Open Images V6 dataset that adds localized 
narratives.

We performed data preprocessing and transformation into the vectors using the 
Universal Sentence Encoder model and indexed the vectored data using the 
Microsoft’s SPTAG with the Balanced k-means Tree and relative neighborhood 
graph (SPTAG-BKT) algorithm as it has very good search accuracy with very 
high-dimensional data as shown in Fig. 4. Our dimension of the dataset is 
216,930 × 512. We then successfully deployed our model to the server using the 
Flask along with the exported pre-trained models state dictionaries. When given 
the search query like ”Linux” the model was able to rank the results with 
“Operating Systems”, “Windows”, etc. even though the dataset doesn’t contain 
the word ”Linux” in it. The response of the results was within 0.5 seconds. The 
Fig. 2 and Fig. 3 shows our system workflow and result.

We successfully preprocessed, trained, and deployed the model onto the server. 
The indexer was built using the Balanced k-means Tree and relative 
neighborhood graph (SPTAG- BKT) algorithm. Then, we trained the image 
captioning model to return captions (e.g., text) from the image and then feed it to 
the vectorizer that generates the word embedding using Universal Sentence 
Encoder as shown in the architecture in Fig. 2. For the future work, we can try 
indexing the text corpus using the kd-tree and relative neighborhood graph 
(SPTAG-KDT) and compare its performance

Nearest neighbor search (NNS) selects chunk of data from the database that 
has the smallest distance to the given query.  Despite much research in this 
domain it is generally very expensive to find the nearest neighbor in the high 
dimensional euclidean or cosine space because of the curse of dimensionality 
[4]. We used the Image Captioning and Approximate Nearest Neighbor search 
(ANNs) to rank the similar results with the closest proximity using Microsoft’s 
SPTAG. To the best of our knowledge, at the time of writing this paper, there is 
no such implementation or work that has been done so far that uses 
Microsoft’s SPTAG and Image Captioning at the same time to perform the 
nearest neighbor search.

We used the Microsoft’s Space Partition Tree And Graph (SPTAG) [5] library, 
which is built by Microsoft used in Bing’s core search engine [6]. The proposed
architecture of the model workflow is shown in Fig. 1. This library is for a 
large-scale vector approximate nearest neighbor search scenarios released by 
Microsoft Research (MSR) and Microsoft Bing. It uses the vector data to perform 
the nearest neighbor search.

[1] Wikipedia, “Okapi BM25 — Wikipedia, the free encyclopedia,” https://en.wikipedia.org/wiki/Okapi BM25, 
2022, [Online; accessed 15-April-2022].
[2] “Open images dataset v6 + extensions.” [Online]. Available: 
https://storage.googleapis.com/openimages/web/index.html
[3] B. Tunguz, “Towards efficient and intelligent internet of things search engine,” Kaggle.com, vol. 9, pp. 15 
778–15 795, 2021.
[4] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing the curse of dimensionality,” 
in Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, ser. STOC ’98. New York, 
NY, USA: Association for Computing Machinery, 1998, p. 604–613. [Online]. Available: 
https://doi.org/10.1145/276698.276876
[5] Q. Chen, B. Zhao, H. Wang, M. Li, C. Liu, Z. Li, M. Yang, and J. Wang, “Spann: Highly-efficient billion-scale 
approximate nearest neighbor search,” in 35th Conference on Neural Information Processing Systems 
(NeurIPS 2021), 2021.
[6] C. Waldburger, “’how tall is the tower in paris?’ how bing knows its about the eiffel tower,” Dec 2019. 
[Online]. Available: https://blogs.microsoft.com/ai/bing-vector-search

We would like to thank Dr. Md Abdullah Al Hafiz Khan, whose expertise was 
invaluable in finishing this project. His insightful feedback pushed us to sharpen 
our thinking and brought us work to a higher level.

We would also like to thank Department of College of Computing and Software 
Engineering to provide us this opportunity. 

Malik Naik Mohammed 
    Email:         mmoham25@students.kennesaw.edu
    Website:     http://maliknaik.me/
    LinkedIn:    https://www.linkedin.com/in/maliknaik/

Yves Junior Kwame Kamgaing - ykwameka@students.kennesaw.edu

Madhusudhan Rao Atmakuri - matmakur@students.kennesaw.edu

Sai Charan Gandi - sgandi@students.kennesaw.edu

How can we search in a very high dimensional data for the similar data at 
scale?
How do we evaluate the search results?

Research Question(s)

Methodology

Acknowledgments

Contact Information

References

Fig. 1 High level architecture of our system

Fig. 2 Search workflow of the system

Fig. 3 Results for the search query “linux”

Fig. 4 Vectorized data

mailto:mmoham25@students.kennesaw.edu
http://maliknaik.me/
mailto:ykwameka@students.kennesaw.edu
mailto:matmakur@students.kennesaw.edu
mailto:sgandi@students.kennesaw.edu

