
How to Improve
• More compact design built for versatility and 

varied environments

• Omni-Wheel design to reduce wheel scrub as 

well as 4-wheel drive

• Compartments for storage and convenience

• Safer and more aesthetic design with hidden 

wires and gearbox

• Object tracking for obstacles as safety measure

UC-209 Remote Presence Robot
Andrew Goeden, Aaron Newson, Anna Song, Hajar Zemzem, Mohammed Rehaan, Pamir Ahmad, Tam Dang

Introduction
Online interactions strip away the real human 

connection and make communication artificial. Many 

people are forced into these interactions which inhibits 

them from the advantages of communicating in person.

This remote presence robot aims to help the people 

who are forced to communicate online or the people 

with disabilities by adding a personalized feel to the 

user and help them to have meaningful interactions 

with their friends, family or in a classroom or work 

environment.

Components and Methods
• Raspberry Pi 4B - Controls the robot and connects 

to the client servers.

• Docker – Packaging the client servers.

• NodeJS & WebRTC – Powering the client servers 

to enable remote connections, controls, and video 

call functionalities.

• OpenCV – Analyze and post-process images to 

detect faces/objects.

• SolidWorks – Designing the whole robot so it can 

be assembled swiftly.

Research Question(s)
• How do we send video, audio, and controller input 

data from one computer to the other?

• What size should the robot be in order to 

effectively move about the environment and 

simulate a person's presence?

• What building materials are we using to make the 

robot?

Abstract
These robots can simulate a person's presence 

attending a meeting or help people with disabilities to 

interact with their friends or family if the world goes 

back to online interactions only. Our motorized robot 

has a screen, microphone, webcam, and speaker to 

perform video chat with the client. The robot can move 

about the environment by remote user input with 

a controller. The video call with the robot will have 

customization functionalities such as filters and live 

backgrounds, and the robot will have object tracking 

capabilities to center itself on the person in frame. 

Contact Information
LinkedIn URLs:

https://www.linkedin.com/in

Pamir Ahmad - /pamir-ahmad-84a0b21a3

Tam Dang - /tam-dang

Andrew Goeden - /agoeden12

Aaron Newson - /aaron-newson

Mohammed Rehaan - /mohammed-rehaan-14ba37164

Anna Song - /asong-8

Hajar Zemzem - /hajarzemzem

Acknowledgments

Electric Vehicle Team – providing a workshop 

space, tools, and equipment

Results

Design:
The robot frame is designed in Solidworks and made of 80/20 Extruded Aluminum. The gearbox is

also custom designed, and 3D printed out of PETG.

The motors are brushless motors that provide us with a good mix of torque and speed as well as

sensors that we can hook up to monitor if the motors stall, their speed, and their temperature.

Client Servers:
Used Node and Express server along with Socket.io to establish client server communication. Using

common socket.io events such as connection, join, or disconnect we can signal a connection

between the client and server. For real-time communication we used WebRTC, combined with

socket.io we were able to setup persistent communication between a client and a server.

WebRTC also depends on STUN and TURN servers, so we setup a TURN server and used a

Google STUN server. The TURN server exists only to fall back on in case the client and server are

not able to communicate through the STUN server.

• The TURN server was setup using a free service called Viagenie

• The user interface was built using ReactJS

• The icons and assets were obtained from free Figma UI kits.

Robot Controls:
To control the robot remotely, we send input values varying from –1 to 1 inclusively for speed and

turn from the client application to the web socket client in the robot application on localhost, then the

information would be processed on the Python server. With the input commands from the client, we

calculate the corresponding speed and steering values, send them to the Raspberry Pi to rotate the

motor controllers attached to wheels, so our differential driven robot can move around the

environment with the speed we want to apply on each wheel.

Object Tracking:
Making use of pre-trained weights and OpenCV, people detected in frame would be boxed with their

confidence levels and their centers would be compared to the frame's center. Taking the difference

between the frame and the object's center we would trigger the motors to turn either left or right

towards the frame center until within a certain boundary.

Figure 1: CAD design of all components
Figure 2: Gearbox CAD Figure 3: Monitor Cover CAD

Figure 4: Final Robot Assembled

Figure 5: Demonstration of Client 

servers and the connection model

Figure 6: Person Detection 1 Figure 7: Person Detection 2


