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Abstract—Recent advances in Natural Language Processing
have led to powerful and sophisticated models like BERT
(Bidirectional Encoder Representations from Transformers) that
have bias. These models are mostly trained on text corpora that
deviate in important ways from the text encountered by a chatbot
in a problem-specific context. While a lot of research in the
past has focused on measuring and mitigating bias with respect
to protected attributes (stereotyping like gender, race, ethnicity,
etc.), there is lack of research in model bias with respect to
classification labels. We investigate whether a classification model
hugely favors one class with respect to another. We introduce a
bias evaluation method called directional pairwise class confusion
bias that highlights the chatbot intent classification model’s bias
on pairs of classes. Finally, we also present two strategies to
mitigate this bias using example biased pairs.

Index Terms—Natural Language Processing, Chatbots, Intent
classification, Directional Pairwise Class Confusion Bias, Bias
mitigation

I. INTRODUCTION

Conversational chatbots are commonly used by businesses
to help end users or customers with their concerns or problems
to provide immediate assistance during anytime of the week.
With the help of new methods in Artificial Intelligence (AI)
and Natural Language Processing (NLP), chatbots aim to
provide better customer service. Using chatbots, companies
save time and financial resources by utilizing their human

resources for more complicated tasks. Additionally, chatbots
are also convenient for customers since they do not have to
read through large FAQ pages or be in the waiting list until a
customer support employee is available.

Chatbots first aim to find the intent behind human text
utterances. After recognizing the intent, chatbots can provide
appropriate information or guide the end users in the correct
direction. Although chatbots have evolved over time they still
have some limitations [1], [2]. Chatbots are mostly trained
on a specific domain. Therefore, if a customer asks regarding
a slightly different topic, it might not know how to respond
like a human. Chatbots are generally incapable of recognizing
grammatical errors or misspellings. In cases where customers
come from different backgrounds, chatbots might not be able
to understand their accents or lingo. This leads to poor
conversation understanding and runs the risk of incorrect intent
classification. Such biases in intent classification could cause
chatbots to give replies that sound robotic, give ambiguous an-
swers, lead customers in the wrong direction or even frustrate
the customer [3].

In general machine learning models are vulnerable to bias.
As a result of this, their decision could be undesirable or unfair.
To understand how bias occurs in machine learning models, it
is important to recognize the intimate relationship between
bias in data and bias in algorithms. Since most machine
learning models are data-driven, it is possible for these models
to learn the bias in data during training and reflect it in978-1-5386-5541-2/18/$31.00 ©2022 IEEE



predictions. Also, algorithms can change the level of bias in
data or display a bias that is not present in data. The outcome
of such biased models is then introduced to real-world systems
such as chatbots and subsequently affects human decisions.
Then it may produce even more biased data for future model
training [4].

The bias in the data or a predictive model mostly refers
to stereotyping which can be identified through structured or
semi-structured data in the form of protected attributes [5]–
[8]. Popular tools like AI Fairness 360 (AIF360) [9] and
AWS Sagemaker Clarify [10] address bias related to protected
attributes such as age, gender, race, ethnicity and more. These
biases found in protected attributes are part of the input
features. In unstructured data like text, stereotyping bias can
also culminate into semantic biases. Additionally, deviations
from standard text corpora like grammatical errors, spelling
mistakes, accents and regional lingo might be embedded in
the semantics of the text. The accumulation of all these biases
is capable of influencing model behavior and classification
label preferences. While there is research that solely addresses
the class imbalance problem [11]–[14], not much research has
been conducted in model’s classification bias due to various
anomalies enclosed in the text semantics. In our application,
class refers to classification labels of the chatbot such as
Document Related or Payment Related. A model could favor
a certain class more than another in a task like intent classifi-
cation. Therefore, defining and quantifying such class-specific
bias can help find the cause of the bias and eventually find
procedures to mitigate it.

The research in this paper focuses on class level bias of a
NLP classification model. The results presented in this paper
shows the bias of a BERT [15] model used in a chatbot for
intent classification. We propose a measure called directional
pairwise class confusion bias. The aim of this measure is to
find whether the trained model makes mispredictions in the
favor of one class compared to another class. The directional
pairwise class confusion bias is visualized to reveal the most
critical bias cases. Such biases in the model might arise due to
class imbalance in the training data, or other semantic biases
encapsulated through accents, misspelling or chatbot’s limited
domain knowledge. Additionally, this paper also proposes two
strategies to mitigate bias.

This paper is organized as follows. The next section presents
literature review of research that has been done in the field
of bias detection and mitigation. Section III describes the
directional pairwise confusion class bias and its mitigation.
Section IV demonstrates the results of our experiments on
chatbot data and discussion of the results. Finally, the last
section concludes our paper.

II. RELATED WORK

There are numerous cognitive biases that can be identified
based on domains like social, behavioral and more. Stereotyp-
ing is type of a cognitive bias when assumptions are made
or discrimination takes place on the basis of national, ethnic
or gender groups [16]. On the other hand, model bias looks

for whether a model has preference for certain classes or data
groups.

When collecting structured data from humans, stereotyping
bias is present in protected attributes such as age, gender,
race, ethnicity, religion, profession, etc. The performance of
a model can vary for different values of the same protected
attribute. For example, if the protected attribute was gender,
the performance of a model for male instances might be better
than for female instances. Other than measuring bias only
in protected attributes, bias in NLP has also been measured
in their numerical representation: word embedding vectors.
Popular word embeddings like Word2Vec [17] and Glove [18]
have found to inherit gender, race and religion bias from
the corpus they were trained on [19]–[22]. Apart from word
embeddings, models like BERT [23]–[26] and GPT-3 [27]
have been found to have stereotype bias too.

Bias can be introduced at several points in the machine
learning pipeline, and Suresh et al. [28] provides a useful
taxonomy of the corresponding biases. Shah et al. [29] mention
four situations in the supervised NLP pipeline, specifically
where bias can occur. They can be listed as label bias, selection
bias, representation bias, and over-amplification. Label bias
occurs in annotating training labels. Selection bias takes place
in sampling observations. Representation bias occurs when
a model incorrectly compares two situations. Finally, over-
amplification is considered a bias that is associated with the
machine learning hypothesis. Dixon et al. [30] introduce a
method to measure and mitigate unintended bias in text clas-
sification models. They contrast unintended bias with fairness
which is a measure of potentially negative impact on society.
According to Dixon et al. [30], unintended bias is caused
by the disproportional representation of demographic identity
terms in training data.

For any machine learning model that makes decisions
involving humans, inspecting the model’s bias and fairness be-
comes very crucial. Detecting as well as mitigating bias is im-
portant. AI Fairness 360 (AIF360) [9] is an open source Python
toolkit that provides various bias metrics and algorithms
to mitigate bias in structured datasets and models. AIF360
includes over 71 bias detection metrics, 9 bias mitigation
algorithms. Additionally, it also includes a unique extensible
metric explanations facility to help consumers of the system
understand the meaning of bias detection results. Although
AIF360 is a very comprehensive tool, its bias detection and
mitigation only works for structured data that contain protected
attributes. Alternatively, Amazon Web Services (AWS) clients
can make use of Sagemaker’s Clarify. Clarify offers explain-
ability, bias detection and bias mitigation. Clarify can schedule
recurring jobs to monitor bias drifts and give explanations.
The bias monitor includes 21 bias detection metrics and 4
bias mitigation algorithms. Although both AIF360 and AWS
Sagemaker Clarify offer bias detection and bias mitigation
techniques, their bias metrics and mitigation algorithms are
designed for protected attributes included in the features
dataset. However, they do not highlight class-level bias for
the trained model.



Fig. 1. Results of all 4 epochs in the training phase.

In this paper, our focus will be on the class-level bias by
the trained model. To the best of our knowledge, class-level
bias or a class favored compared to another class has not been
formally analyzed and quantified. Rather than just a statement
on the presence of such bias, its quantification is important to
be able to decide whether it can be mitigated or not.

III. METHODS

In this section, we describe the directional pairwise class
confusion bias and its mitigation. We analyze this bias based
on an intent classification model for clarifying concepts.

A. Data

The dataset and label sets used in our experiments are pro-
vided by Travelers Indemnity Company. This dataset consists
of customer (human) utterances with intent class. In total there
were 128,201 user utterances, each belonging to one of 21
classes. A subset of the data was separated for modelling into
training and testing. The training set had 96,150 utterances and
18 classes. The test set had 20,031 utterances with 15 labels.

B. Building Intent Classification Model using Transfer Learn-
ing with BERT model

Intent classification with more than two classes is a complex
task requiring a highly developed model. In order to have
high predictive power in our model and save time with the
limited computing resources, transfer learning was applied on
a pre-trained BERT (Bidirectional Encoder Representations
from Transformers [15]) model namely, bert-base-uncased.
The fundamental concept of transfer learning is to reuse a
machine learning model originally developed for one task in
a different task with limited dataset.

The pre-trained model bert-base-uncased was trained on
BooksCorpus and English Wikipedia (excluding lists, tables
and headers). As the name suggests bert-base-uncased was
trained on lower-cased English text. The model consists of
12 transformer blocks, 768-hidden layers, 12 self attention-
heads and a total of 110 million parameters. Training of bert-
base-uncased required total of 16 TPUs. Transfer learning was
done on bert-base-uncased for the variant that does single
sentence classification task. The input for training was our
chatbot data (human utterances) and their corresponding class
labels were used in the softmax layer. The 4 epochs were run
giving validation accuracy of 86% in epoch 4 (Fig.1).

Once training was complete, the model was evaluated on
an unseen test set. The test accuracy of the model was

74.4%. Considering there are 18 classes, the test accuracy is
fairly good and performs much better than a random guess
( 1

number of classes = 1
18 = 5.5%). However, note that the goal of

our research is not to improve the performance of the model
but to investigate model’s bias at class level. This model will
be used to analyze bias.

C. Directional pairwise class confusion bias

The most common measure to evaluate a machine learning
model is accuracy. However, accuracy cannot provide insight
about the model’s performance if the class distribution is
unbalanced. Hence, measures such as precision, recall, sen-
sitivity, and specificity could be used for evaluating the model
at the class level. Still these measures do not provide where the
mispredictions originate from at the class level. For example,
the sensitivity measure may not reveal the misclassifications
that happen with respect to a specific class. Hence, the model
could be biased towards one class when the actual instances
belong to another class.

We begin our bias analysis by plotting the confusion matrix
generated by the fine-tuned BERT model on the test dataset.
Fig.2 shows the confusion matrix plot with true labels on the
rows and model predicted labels in the columns. The values in
each cell represent the number of samples that were predicted
as the column label for the correct row label. Since there are
a lot of classes, looking at the confusion matrix with a naked
eye might not highlight the prominent values. Fig. 3 shows
a heatmap of the confusion matrix. The largest (dark blue)
values are found in the diagonal. This confirms the model
being mostly accurate (74.4%).

In Fig. 2 there are cells above and below the diagonal which
have values greater than 0. Those cells show bias at class level
and are of interest for this research. Since classes were not
distributed evenly, it is difficult to observe any biases directly
from the confusion matrix. If there is any bias, quantifying the
bias is essential to prioritize bias mitigation.

In order to visualize the biases more clearly, the confusion
matrix was modified to highlight the bias between a pair
of classes. Since typically the classes are unbalanced, the
confusion matrix needs to be normalized. Each cell in the
confusion matrix (Fig. 2) was divided by the maximum of its
column.

C ′(i, j) =
C(i, j)

max
k=1,···n

C(k, j)
(1)

where C represents the confusion matrix, C(i, j) represents
the number of classifications predicted class cj but whose
ground truth was ci, and C ′ indicates the normalized confusion
matrix. Doing this operation converts all the values in the
matrix between 0 and 1. Normalization could be done with
respect to rows (actual labels) rather than columns (predic-
tions). Since the user of a machine learning model observes
the predictions, it makes more sense to normalize with respect
to the predictions. The normalized results are visualized in
Fig. 4. As the original model is highly accurate (74.4%), the



Fig. 2. Class Confusion matrix

Fig. 3. Heatmap of Class Confusion matrix

diagonal elements have the highest values in their respective
columns. Due to this, most of the diagonal elements have the
largest value 1.

The diagonal elements in Fig. 4 are accurate predictions and
do not show bias. Hence, C ′ matrix is updated as C ′(i, i) = 0
for every value in its diagonal. The cells that have some degree
of blue color above and below the diagonal show cases where
bias is present. In order to visualize these cases more clearly,
the values in the diagonal were muted by setting them to be
0. The result showing the bias pairs are then visualized in Fig.
5. Equation 1 is updated as follows:

identity(i, j) =

{
1 i = j

0 i ̸= j
(2)

C ′(i, j) =
C(i, j) ∗ (1− identity(i, j))

max
k=1,···n

C(k, j)
(3)

We coined the term directional pairwise class confusion
bias for evaluating the bias. This indicates the likelihood of

Fig. 4. Dividing each cell in the confusion matrix by the maximum of its
column.

classifying an instance in one specific class into another class.
Thus, there is a direction of misclassification.

Although Fig. 5 gives a clear view of directional pairwise
class confusion bias, we are only interested in cases where the
bias is strongly present. To reflect on the cases where bias is
strong, the directional pairwise class confusion bias matrix was
further pruned by setting a threshold. The threshold filter will
return only those rows and columns where one of their values
is above the threshold. Fig. 6 is the pruned matrix reflecting
bias cases above threshold of 0.15. The plot clearly shows a
strong bias for cases which are Coverage Related but were
classified by our BERT model as Document Related. Now,
we may formally define directional pairwise class confusion
bias.

Definition: Directional pairwise class confusion bias.
ci

b−→ cj represents a directional pairwise bias from class
ci to cj for a machine learning model that indicates that
there is a likelihood of a sample belonging to class ci being
classified as cj by the trained model. This bias is quantified
as β(ci

b−→ cj) = C ′(i, j) and this bias is considered to
be significant if β(ci

b−→ cj) > θb where θb is a threshold
for significance of bias and determined by an expert. The
antecedent is called as the source bias class whereas the
consequent is called as the destination bias class.

Directional pairwise class does not have the identity prop-
erty. In other words, β(ci

b−→ ci) = 0. The symmetry property
may not always hold. Thus, if ci

b−→ cj is true, we cannot infer
that cj

b−→ ci. Similarly, we cannot claim the anti-symmetry
property, if ci

b−→ cj is true, there is a likelihood of cj
b−→ ci.

The transitive property is unlikely to hold, since ci
b−→ cj and

cj
b−→ ck, there is no guarantee that ci

b−→ ck is true.
Fig. 6 shows the strongest pairwise class confusion bias

between pair (Coverage Related, Document Related) rep-
resented as ccoverage

b−→ cdocument. Note that other pairs like
cbilling

b−→ cpayment, ccoverage
b−→ cquote, ceverythingElse

b−→



Fig. 5. Directional Pairwise Class Confusion Bias

Fig. 6. Pruned Directional Pairwise Class Confusion Bias matrix after
threshold was set to 0.15.

cescalation, ceverythingElse
b−→ cdocument and cquote

b−→
cdocument also show significant bias.

D. Bias Mitigation Process

Here, we introduce two approaches for mitigating: pairwise
bias mitigation and boosted bias mitigator. Here, we illustrate
the mitigation process using class pair cs

b−→ cd. Fig. 7 shows
the entire mitigation process in a flow chart starting from left
and ending to the right. Bias arises if for a huge proportion of
cases the model predicts to be a different class. In this case,
the model predicts cd when the ground truth was cs for a
large proportion of the predicted class cases. The mitigation
techniques pairwise bias mitigation and boosted bias mitigator
are very similar. The only difference is that they use a different
secondary model (random forest classifier) which we call the
bias mitigator model in Fig. 7.

1) Pairwise Bias Mitigator: In this technique firstly, the
results of the original classification model are analyzed. If
the model predicts an instance as cd, there is a significant

likelihood that instance of cs could be classified into cd. The
original classification aims to develop a global model that
can separate each class from another class. However, coming
up with an accurate model for a large number of classes
may overlook pairwise misclassifications. If the presence of
a directional pairwise class bias is detected, a binary classifier
could be trained to distinguish the source bias class from the
destination bias class.

Once cd predicted instances are separated, we build a bias
mitigator model. In this technique, bias mitigator model was
trained on the original training set instances for which the
ground truth class was either cd or cs. Since this classifier
only distinguishes between the biased pair, we call it pairwise
bias mitigator. Hence, our pairwise bias mitigator is a binary
classifier. Then, the reclassified (now either cd or cs) instances
are merged with all the other test instances that were predicted
not to be cd by the original model. In the end, the results of the
original model and the results of the bias mitigated instances
are compared (Section IV-B).

2) Boosted bias mitigator: Like the pairwise bias mitigator,
the boosted bias mitigator also first considers the original test
set results. Similarly, the test instances that were predicted to
be cd by the original model are separated. Instead of training
the secondary classifier on the original training set instances,
this method trains the secondary classifier on the test instances
predicted as cd but with their ground truth. Therefore, we
name the secondary classifier boosted pairwise mitigator. We
propose this technique not to repeat the same bias in the
original model inherited from the training set. It should be
noted that the secondary classifier is not necessarily binary
but may contain as many classes as the ground truth of the
original model predicted cd instances. The results of the bias
mitigated instances and remaining instances are merged and
evaluated. These are compared with the original model results.
Section IV-C presents results of boosted pairwise classifier.

IV. EXPERIMENTS

In this section, we explain the results of the mitigation
process. We use the BERT model that was fine-tuned for intent
classification which was followed up with a bias mitigator
model to mitigate the bias. Here, we firstly illustrate the
mitigation process for ccoverage

b−→ cdocument using pairwise
bias mitigator. Then we provide the mitigation for both
ccoverage

b−→ cdocument and cbilling
b−→ cpayment using the

boosted bias mitigator. To evaluate the bias before and after
mitigation we use precision, recall and F1-score.

A. Bias in original BERT model for chatbot’s intent classifi-
cation

Fig. 8 presents the precision, recall, F1-score and support of
the original BERT model built for intent classification. In the
figure, the classes for directional bias ccoverage

b−→ cdocument

are highlighted. The F1-score for Coverage Related class
(0.55) is much lower than for Document Related (0.81). It
can be seen that both precision (0.79) and recall (0.83) for
Document Related are higher than the precision (0.63) and



Fig. 7. Bias mitigation process

Fig. 8. Test set evaluation on original intent classification BERT model
without mitigating bias.

recall (0.49) of Coverage Related. Ideally, if bias is mitigated,
improvement is expected in the precision and recall values as
well as the F1-score for both classes.

B. Pairwise Bias Mitigator

We firstly focus on ccoverage
b−→ cdocument. In this tech-

nique, if a data instance is classified as Document Related,
the data instance is reclassified using the bias mitigator model.
In this case, we have used random forest classifier as a binary
classifier. The training set is a subset of the original training
set where only the instances whose ground truth are cdocument

or ccoverage are included. Fig. 9 shows the results of pairwise
bias mitigator. Compared to the results in Fig. 8 this technique

Fig. 9. Results after Pairwise Bias Mitigator on pair ccoverage
b−→

cdocument

shows slight difference. For Coverage Related, the F1-score
slightly improves from 0.55 to 0.56 but this happens as a
result of decrease in precision (0.63 to 0.59) and increase
in recall (0.49 to 0.55). This technique has barely improved
the F1-score. The performance for Document Related class
declined slightly. The precision remained the same whereas the
F1-score reduced from 0.81 to 0.80. Although the results of
pairwise mitigation did not show any significant improvement,
there is potential for larger change if more biased pairs are
mitigated using this technique.



Fig. 10. Results of Boosted Bias Mitigator on pair ccoverage
b−→ cdocument

Fig. 11. Results of Boosted Bias Mitigator on pairs ccoverage
b−→ cdocument

and cbilling
b−→ cpayment

C. Boosted Bias Mitigator

After pairwise bias mitigation, we analyze how boosted bias
mitigator performs. The results of boosted bias mitigator are
shown in Figures 10 and 11.

1) ccoverage
b−→ cdocument: In comparison to the results

of original BERT model (Fig.8), the performance of both
Coverage Related and Document Related classes improved
(Fig. 10). While the precision of Coverage Related remained
0.63, the recall improved from 0.49 to 0.55. As a result, the F1-
score improved to from 0.55 to 0.57. For Document Related
class, the precision improved from 0.79 to 0.83. Although the
recall for Document Related decreased slightly by 0.01 (from
0.83 to 0.82), the F1-score still increases (from 0.81 to 0.83)

as a result of increase in precision by a larger margin.
2) cbilling

b−→ cpayment: Since boosted bias mitigator
worked well for ccoverage

b−→ cdocument, we also used this
technique on top of it for one more pair namely cbilling

b−→
cpayment. In other words, the bias was mitigated sequentially,
first for ccoverage

b−→ cdocument, then the results of it were
used as from the original model when mitigating for cbilling

b−→
cpayment. Fig.11 highlights the F1-score for both pairs. The
performance of Billing Related and Payment Related classes
improve compared to the original BERT model in Fig.9.
The F1-score for Billing Related increases from 0.71 to 0.74
whereas for Payment Related it increases from 0.90 to 0.91.

D. Discussion

Since there is lack of research on class related model bias,
this paper quantifies class related model bias called directional
pairwise class confusion bias. We also presented two strategies
to mitigate the bias.

Pairwise bias mitigator uses a binary random forest classi-
fier as a secondary classifier. This method only had a slight
increase on the F1-score for each class (Section IV-B). A
possible reason why this method’s performance was limited is
that the model was trained on the original subset of instances
coming from each class. Although some instances could easily
be correctly classified, they were already used in training of
the original model. In other words, the mitigator did not focus
on the learning space where the original model fails.

Boosted bias mitigator follows a similar process except
that it solely focuses on the mispredicted test results. This
mitigator model tries to correct the bias by learning from the
test instances of the original model that makes mistakes for the
destination bias class. This technique increased F1-scores for
both classes of the biased pair ccoverage

b−→ cdocument (Section
IV-C1). When this technique was used for two biased pairs
ccoverage

b−→ cdocument and cbilling
b−→ cpayment, the results

improved for all 4 classes (Section IV-C2). When repeated
for other biased pairs, the boosted bias mitigator model can
potentially mitigate directional pairwise class confusion bias
significantly as well as improve the overall performance of the
classifier.

The overall mitigation could be improved by choosing al-
ternate classifiers for the bias mitigator models. Here, we have
chosen a simple random forest classifier. After trying a variety
of classifiers if the system’s performance does not improve,
it may be a good idea to investigate the labeling of data.
For example, in this scenario, if ccoverage is closely related
to cdocument because of a subclass relationship, an alternate
labeling or hierarchical classification may be considered to
distinguish these classes.

V. CONCLUSION

Due to reasons like class imbalance and noise, NLP classifi-
cation models might favor one class more than the other. While
a lot of studies have focused on stereotyping bias of humans,
little work has been done on a model’s class related bias. This



paper introduced directional pairwise class confusion bias to
indicate a model’s favoring of a class compared to another
class. We quantified and visualized this bias, revealing biased
pairs. Furthermore, we also presented two strategies to mitigate
the bias. Both techniques make use of a secondary classi-
fier that corrects the biased outputs. Pairwise bias mitigator
showed slight improvement only. The boosted bias mitigator
showed better results after bias mitigation. We anticipate more
progress if this mitigation is done for all other major biased
class pairs. These results show quantification of directional
class confusion bias and its mitigation. Even for cases where
mitigation is limited, directional class confusion bias still gives
insights about the cases that are hindering the performance of
the model.
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