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Abstract: Hematologic malignancies are cancers that develop in the blood, bone 

marrow, and lymph nodes. Hematopoietic stem cell transplantation (HSCT) is a critical 

therapeutic approach that contributes to offer a potential cure for hematologic cancers and 

other hematologic disorders by replacing abnormal bone marrow with healthy bone marrow 

components to help bone marrow function recovery. Peripheral blood is the primary resource 

for collecting hematopoietic stem cells (HSCs). The collection yield of HSCs is critical for 

successful transplantation. Few articles have discussed this topic that the collection of stem 

cells not only from healthy donors but also from donors with a hematologic or non-

hematologic malignancy who likewise be in danger of mobilization failure. Therefore, our 

goal of this paper is to study the collection efficiency of obtaining HSCs. Correlations were 

measured by computing Spearman’s correlation coefficients. Trends were measured using 

the Jonckheere-Terpstra test. Differences in groups were measured using the Mann-Whitney 

U test. An all subsets selection model was built to compare to the model built with a 



 

 

purposeful variable selection method. We employed sensitivity analysis to compare the 

models and find the factors that influence the efficient collection. Our results showed that 

many factors contribute to an efficient collection (r2 = 0.6). However, all but one of these 

factors correlated very poorly with collection efficiency. It was the predicted total number of 

CD34+ progenitor cells that correlated most strongly with predicting collection efficiency. 

Our results showed that the patient's CD34+ cells could keep up at a sufficient level even 

after large volume apheresis. Also, adding or deduct drug (plerixafor) usage could cause the 

patient’s CD34+ level to increase or decrease. Overall, these discoveries will help to 

determine the mobilizing drug usages when harvesting HSCs.  
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Study Background 

Hematologic Malignancies 

Hematologic malignancies are cancers begin in the bone marrow that affect the blood, 

bone marrow, and lymph nodes. They account for 9.5% of new cancer diagnoses in the 

United States.1 Although hematologic malignancies are one of the leading causes of death 

across the world, the survival rates of patients have improved at population level 10-year 

survival based on recent progress in the treatment of hematologic malignancies.2 There are 

three types of hematopoietic malignancies; leukemia, lymphoma, and myeloma. Leukemia is 

a type of hematopoietic cancer that affects blood-forming tissues which begin in the bone 

marrow and induces large amounts of abnormal blood cells. It accounts for 2.5% of all 

cancers worldwide. It affects all age groups, especially in children age 0-14, and older adults 

over 65 years old.1 In the United States, the estimated number of new patients diagnosed with 

leukemia in 2018 is 60,300 patients and the number of deaths is 24,370 patients.2 

Approximately 11% are diagnosed under age 20 and 21% are diagnosed over age 65.2 Also, 

the incidence is higher in Caucasians than in African Americans and Hispanics. The overall 

incidence rate increases slowly, as treatment advances. There are four main types of 

leukemia, acute lymphocytic leukemia (ALL), acute myelogenous leukemia (AML), chronic 

lymphocytic leukemia (CLL), and chronic myelogenous leukemia (CML) affecting both 

children and adults.1,3 ALL is more common in children that represent 15% of leukemias.1,3 

In comparison, AML is the most common type of leukemia in adults which accounts for 

about 30% of all leukemias.1,3 CLL accounts for about 30% of leukemia. It usually affects 

older adults.1,3 CML is a rare type of leukemia, it accounts for 2 % to 3% of leukemias.1,3 
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Lymphoma develops from lymphocytes residing in lymphoid tissue outside of the marrow. 

Lymphomas are broadly separated into Hodgkin lymphoma (HL), and non-Hodgkin 

lymphomas (NHL). HL occurs more often in younger adults age 15 to 30 and older adults 

over age 55.1,4 The incidence of HL is about 3 per 100,000 in the United States.1,4 The 5-year 

relative survival rate for patients diagnosed with HL is about to 86%.4 The incidence rate of 

NHL in the United States is 2.1%.1,5 The 5-year relative survival rate for patients diagnosed 

with NHL is about 71%.1,5 Myeloma is a plasma cell malignancy that accounts for 

approximately 10% of the hematological malignancies.1 The incidence of myeloma is about 

6.5 per 100,000 people per year in the United States.1,6 It usually occurs around the age of 60. 

The five-year survival rate is about 49%.1,6 Hematologic malignancies have a devastating 

effect on a person that age ranges from children to the old groups. Moreover, it has a large 

negative impact on a person’s physical, mental, and economic health. 

Hematologic Malignancies Treatment 

The treatment of hematologic malignancies remains a challenge. Treatment varies 

based on the types or subtypes of hematologic malignancies. Chemotherapy, radiotherapy, 

immunotherapy, and stem cell transplantation are the well-established treatments for these 

diseases. Chemotherapy uses anti-cancer drugs to destroy rapidly growing cancer cells in the 

body. The role of chemotherapy play depends on the type of cancer or how advanced it is. It 

gives patients with curative intent, or it prolongs survival or to reduce symptoms.7,8 Most 

chemotherapy kills cancer cells rapidly by dividing cells that are most susceptible to the 

drug. The major advantage of chemotherapy is it can travel all over the body and attack 

vulnerable cells, whereas surgery and radiation are more likely to focus on one area. The 

https://en.wikipedia.org/wiki/Five-year_survival_rate
https://en.wikipedia.org/wiki/Chemotherapy
https://en.wikipedia.org/wiki/Radiotherapy
https://en.wikipedia.org/wiki/Immunotherapy
https://en.wikipedia.org/wiki/Cure
https://en.wikipedia.org/wiki/Palliative_care
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disadvantages of chemotherapy include side effects and the resistance of the chemical agents. 

Radiotherapy kills cancer cells by using high doses of radiation. Radiation only targets a 

certain part of the body based on the location of the tumor, while chemotherapy targets 

cancerous cells throughout the body. The main disadvantages of radiation therapy include 

damage to surrounding tissues and breakdown at the entry of the beam.10 Immunotherapy 

uses the body’s immune system to fight cancer by considering the differences between 

normal and cancerous cells and attack the cancer cells without harming normal cells.11 HSCT 

is a critical therapeutic approach that contributes to offer a potential cure for hematologic 

cancers and other hematologic disorders by replacing abnormal bone marrow with healthy 

bone marrow components to help bone marrow functions recovery.12 HSCT transplant 

healthy hematopoietic stem cells (HSCs) in patients from bone marrow, umbilical cord 

blood, or peripheral blood.13-15 Three main types of hematopoietic cell transplantation: 

autologous, allogeneic and syngeneic. In autologous transplantation, the patients’ own HSCs 

are used. In allogeneic transplantation, the HSCs come from a donor.13,14 In syngeneic 

transplantation, the donor and the recipient are identical twins.13,14 HSC harvest is the 

principal method for obtaining the cells that are transplanted in the bone marrow.15 Bone 

marrow transplantation harvests HSCs directly from the pelvic bone of a person and then 

infused into another person or the same person under general anesthesia.17 Nowadays, bone 

marrow is mainly used in allogeneic HSCT. However, bone marrow harvest has a higher risk 

and relatively low yield. Therefore, using the peripheral blood stem cell (PBSC) as a stem 

cell source could be an optimal option.17 Umbilical cord blood is another HSC source that 

blood is taken from the placenta after childbirth.22 Umbilical cord blood transplantation can 

treat patients by harvesting and administrating stem cells quickly with fewer infections, and 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044664&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045072&version=Patient&language=English
https://en.wikipedia.org/wiki/Umbilical_cord_blood
https://en.wikipedia.org/wiki/Umbilical_cord_blood
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lower rates of Graft vs host disease.12 However, umbilical cord blood transplant has higher 

rates of disease relapses and delayed engraftment. Also,  umbilical cord blood transplantation 

can’t meet the needs of allogeneic transplantation for adults.12 Peripheral blood stem cell 

transplantation (PBSCT) replaces destroyed blood-forming stem cells. From 2003, over 65% 

of the HSCT is used mobilized PBSCs.18  PBSC harvests are easier and appealing than bone 

marrow harvests.18 Moreover, the benefits of PBSCT include the recipient of PBSCs shows 

less risk of graft failure, and the donors of PBSCT recover more rapidly, experience less 

pain, and have no increased risk of cancer, autoimmune disease, or thrombosis.20, 21 Now, a 

majority of autologous and allogeneic transplants are performed with PBSC, there is a special 

interest in optimizing their collection.   

Peripheral Blood Stem Cell Mobilization and Collection Efficiency 

Mobilization uses medications to stimulate the HSCs to exit the bone marrow and 

move into the peripheral blood.22 Numerous factors with distinctive kinetics and efficiencies 

induce peripheral blood stem cell mobilization.18,25 Commonly perceived regimens include 

development factors like granulocyte-state animating variable (G-CSF), chemotherapy, and 

plerixafor.26 Blends of growth factors that can have significant synergistic effects and can 

deliver grafts with quantitative as well as subjective differences.18,25 G-CSF is a dominant 

mobilizer that intensifies release serine proteases and hematopoietic stem cells from the bone 

marrow.18,25 Plerixafor is a novel mobilization agent that stimulates the mobilization of stem 

cells to the peripheral blood by preventing the combination of stromal cell-derived factor-1-

alpha (SDF-1) and C-X-C chemokine receptor type 4 (CXCR4).18,25 CD34+ is a useful 

marker for progenitor hematopoietic stem cells that correlate with the collection yields in the 

https://en.wikipedia.org/wiki/Blood-forming
https://en.wikipedia.org/wiki/Stem_cells
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peripheral blood.18, 25 The minimal dose of 2×102 cells/kg is required for proper engraftment, 

while the optimal numbers are 4 to 5×106 CD34+ cells/kg.18, 25 Mobilization with 

combinations of agents G-CSF alone, or with plerixafor accelerate PB CD34+ cells 

circulating.18 Monitoring agents and combination agents during stem cell mobilization are 

useful for identifying endangered patients who fail to collect a sufficient number of HSCs. 

Transfusion sufficient CD34+ cell is critical for HSCT that the success can be measured like 

engraftment, mortality. Collection efficiency (CE) is the ratio of the collection yield (CY) of 

HSCs and the total number of HSCs circulating in the Peripheral blood.27 Aside from the 

outcome, collection efficiency (CE) is a core parameter that can be utilized to measure the 

cell separator’s ability to maximize the collection of PBSCs. Despite the fact that improved 

technical increase efficient collections and application of PBSC transplantation have slowly 

begun to expand, investigating CE is still at the starting stage. Thus, evaluating the agents, 

understanding the mechanism of mobilization, and optimizing CE are fundamental to prevent 

mobilization failure. 

Public Health Significance  

Hematologic malignancies patients have a high mortality rate. HSCT is a widely used 

and crucial therapeutic strategy for improving overall survival for patients with 

hematological malignancies.18 Poor mobilization response has become a significant obstacle 

in HSCT, particularly in autologous patients. Ongoing investigations have demonstrated that 

a higher portion of HSCs is related to better results. Therefore, the collection of an adequate 

number of HSCs for reestablishing the bone marrow work plays a decisive rule.18 The data-

driven analysis using the HSC data in this study can predict the CYs based on both pre-

collection and collection factors. Results from our analysis can be utilized as hypothesis-



6 

 

generating for the rule in structuring future safety and quality control guidelines which puts a 

demanding task on the transplant establishment and reduce the incidence of mobilization 

failure of HSCT. In the long run, our study also has the potential to improve HSCT treatment 

and reduce the incidence of mobilization failure of HSCT among hematologic malignancies 

patients.  

Specific Aims 

The objective of this research is to review the outcomes from patients who 

experienced multiday collections by apheresis to evaluate the effect of mobilization regimes 

on the CY of PBSC. First, we utilized Spearman’s correlation coefficients to measure the 

correlations. Then, trends were measured using the Jonckheere-Terpstra Test. Moreover, 

differences in groups were measured using the Mann-Whitney U test. To obtain the model of 

the relationship between the analytic factors and CE, we utilized all subsets regression. 

Purposeful variable selection was then used to build a model. Third, we compared the all 

subsets selection model to the obtained purposeful variable selection model to get a final 

selected model. Finally, we assessed the appropriateness and strength of the final selected 

model using sensitivity analysis. 

The specific aims are as follows: 

1. Identifying vital sign factors associated with CE. 

2. Conducting all subsets regression and purposeful variable selection to build 

models. 

3. Comparing model performance by sensitivity analysis. 
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Methods 

Data Summary 

In this study, we used the patient who underwent large volume apheresis records. The 

data is retrieved from a Quality Assurance project.34,35 This database is hosted by Wexner 

Medical Center, Ohio State University, between November 2011 and July 2014.34,35 Data 

included de-identified electronic patient records from Wexner Medical Center. 484 patients 

underwent 683 leukapheresis procedures for the collection of hematopoietic stem cells. 283 

(58.5%) are male, and 201(41.5%) are females. The mean age of patients is 53.7 years.34,35 

Descriptive measures of factors are shown as below: 

Table 1. Descriptive measure of factors 

Factor Mean Median SD 95% CI 

Age (years) 53.77 57.00 13.12 (46.27; 59.22) 

Height (ln) 51.88 65.00 14.84 (49.63; 67.29) 

Weight (kg) 86.67 85.20 3.52 (76.50; 94.00) 

Absolute lymphocyte 

count (× 109/𝐿) 

62.64 60.00 1.38 (59.82; 70.58) 

Absolute segmented 

neutrophil count (×
109/𝐿) 

50.18 51.00 15.13 (48.48; 54.88) 

Absolute lymphocyte 

count (× 109/𝐿) 

57.69 50.00 14.26 (49.19; 52.26) 

Absolute monocyte 

count (× 109/𝐿) 

50.18 47.00 13.30 (46.27; 51.88) 

Relative neutrophil 

count (× 109/𝐿) 

37.29 32.00 10.14 (36.82; 37.76) 

Relative lymphocyte 

count (× 109/𝐿) 

39.50 44.00 13.30 (38.11; 61.36) 

Relative monocyte 

count (× 109/𝐿) 

34.90 42.00 11.65 (39.50; 44.60 

Total blood volume 

(ml) 

5197.00 5131.00 8.39 (4903.02; 5204.00) 

White blood cell 

count (× 109/𝐿) 

38.00 36.00 12.29 (28.76; 39.82) 

Hematocrit (%) 41.99 42.15 3.99 (39.50; 44.61) 

Platelet count (×
109/𝐿) 

103.9 98.00 37.16 (77.01; 108.49) 

Processed blood 

volume (ml) 

20781 20524 335.97 (19817.14; 

25667.29) 
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Minimum 

anticoagulant ratio 

13.05 12.00 1.34 (11.82; 15.19) 

Maximum 

anticoagulant ratio 

13.48 14.00 1.31 (12.01; 17.34) 

Product, collection 

volume 

1338.00 2197.00 7.29 (1143.74; 2772.04) 

Product, CD34+ cells 

per ml 

2194.00 1330.00 163.69 (1274.58; 2875.60) 

Product, CD34+ total 

cell yield (CD34+×
106/𝑘𝑔) 

6.59 4.82 0.41 (3.64; 7.83) 

Prediction, CD34+ 

cells per ml 

2279.00 1483.00 133.81 (1163.29; 2747.04) 

Prediction, CD34+ 

total cell yield 

(CD34+× 106/𝑘𝑔) 

6.60 4.83 1.19 (3.35; 8.58) 

CD34 percentage of 

viable leukocytes (%) 

38.05 36.30 12.12 (36.62; 39.48) 

Collection 

efficiency(%)  

56.09 47.27 30.14 (43.72; 59.12) 

 

 

Inclusion/ Exclusion criteria: From the patient records, our study population was 

identified based on the following criteria: (1) Only records with a diagnosis history of 

multiple myeloma (MM), NHL, acute leukemia, or HL. Autologous donors included patients 

with MM (N = 236), NHL (N = 118), HL (N = 27), AML (N = 8), amyloidosis (N= 5), germ 

cell tumor (N = 1) and healthy volunteers (N = 89). The minimum target collection goal was 

2.5 x 106 CD34+ cells/kg by performing 683 leukapheresis procedures. Mobilization 

regimens included G-CSF alone (N = 227), plerixafor alone (N = 5), G-CSF and plerixafor 

(N = 353), G-CSF and chemotherapy (N = 66), and G-CSF and plerixafor and chemotherapy 

(N = 32). Pre-collection laboratory results included absolute and relative differentials of 

segmented neutrophils, lymphocytes, and monocytes, hematocrit, and platelet count. The 

minimum platelet count was 30,000×106/L and minimum hematocrit was 24% for both 

autologous and allogeneic donors. Anticoagulant (AC) ranged from 8:1 to 15:1. Patients 

without complete information were excluded.  
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Data cleaning: Observations with NULL value for height, weight, white blood cell 

(WBC), operator, absolute segmented neutrophil count, absolute lymphocyte count, absolute 

monocyte count, relative neutrophil count, relative lymphocyte count, relative monocyte 

count, hematocrit, platelet count, minimum anticoagulant ratio, maximum anticoagulant 

ratio, prediction CD34+ cells per ml, prediction CD 34+ total cell yield, product CD34+ cells 

per ml, product CD 34+ total cell yield, CD34+ percentage of viable leukocytes. Patients’ 

records with any missing information were omitted from our analysis.  

Study population: The average age of all patients is 53.77 years. 283 (58.5%) were 

male, and 201 (41.5%) were female. Patients with MM, HL, NHL, AML, and germ cell 

tumor and healthy volunteers were included. Our final data consisted of cleaned de-identified 

patients’ records by using an individual identifier (variable Patient_SK). The data also 

included age, gender, height, weight, white blood cell, operator, absolute segmented 

neutrophil count, absolute lymphocyte count, absolute monocyte count, relative neutrophil 

count, relative lymphocyte count, relative monocyte count, hematocrit, platelet count, 

minimum anticoagulant ratio, maximum anticoagulant ratio, prediction CD34+ cells per ml, 

prediction CD 34+ total cell yield, product CD34+ cells per ml, product CD 34+ total cell 

yield, CD34+ percentage of viable leukocytes, calculated CE. Appendix I lists the all 

predictors. 

Statistical Analysis 

The analysis was performed using the R statistical software package, version 4.0.2. 

Factors were analyzed collectively from all procedures, from procedures performed on 

single-day collectors and the first procedure of multiday collectors, and from multiday 

collectors only. Factors were further analyzed after categorizing patients into three groups 
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based on increasing CEs: poor (CE < 50th percentile, N = 318), normal (CE between 50th 

and 80th percentiles, N = 191), and good (CE > 80th percentile, N = 127). Percentiles were 

selected based on targets relative to the generally accepted minimum target collection goal (2 

x 106 CD34+ cells/kg).36 Poor allogeneic CE patients may still have enough HSCs for one 

transplant. Good autologous CE patients may still have enough HSCs for one transplant if 

they do not achieve a minimum 2.5 x 106 CD34+ cells/kg, which promotes the rapid 

engraftment of neutrophils and platelets.37 Correlations were measured by computing 

Spearman’s correlation coefficients. Trends were measured using the Jonckheere-Terpstra 

test. Differences in groups were measured using the Mann-Whitney U test. All subsets 

regression and purposeful variable selection were applied to obtain of the model of the 

relationship between the analytic factors and CE. Mallow’s Cp, Akaike’s Information 

Criteria (AIC), Receiver Operating Characteristic (ROC) curve were then utilized to compare 

the model performance. Collection product (CP) volume is used to determine the CY. The 

CP volume is used to determine the CY. Collection efficiency is calculated using the 

following formula29-33: 

𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝐶𝐷34+ 𝑐𝑒𝑙𝑙𝑠

𝑘𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝐵𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡(𝑘𝑔)

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑(𝜇𝐿) × 𝑃𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙𝑏𝑙𝑜𝑜𝑑 𝐶𝐷34+𝑐𝑒𝑙𝑙𝑠/𝜇𝐿 × 10
 

The proposed formula includes input parameters such as patients’ body weight and total 

volume processed, which had been tested by several studies that it would accurately predict 

the CE.60-64 Nonetheless, there is no universal formula that has been developed to precisely 

calculate the CE across various institutions. Also, in order to make sure all-important factors 

being tested out, we left the input parameters in the formula in our dataset. Calculated CE 

was added as new variable on the dataset. 
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Spearman’s Correlation Coefficient 

Spearman’s correlation coefficient was employed to test the strength of how well the 

variables relate or associate with each other.38,39 The spearman’s correlation coefficient is a 

nonparametric measurement of the strength of the linear relationship which was first 

formulated by Charles Spearman in 1904.38 Spearman correlation coefficient is calculated by 

applying the formula40,41: 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
 

Where 𝑑𝑖 denotes the margin of each pair value, n denotes Spearman rank pair values. 

We often use a hypothesis test to decide whether reject or does not reject 𝐻0 at the significant 

level, where 

𝐻0: variable X and variable Y are mutually independent. 

𝐻1: There is either a positive or a negative correlation between variable X and variable Y. 

A positive connection coefficient demonstrates a positive connection between the two 

variables, while a negative relationship coefficient indicates a negative relationship. 

Regardless of whether the correlation coefficient is zero, a non-linear relationship may still 

exist. At the point we are interested in the strength of relationship between risk factors and 

CE more than direction, the Spearman’s correlation coefficient is suitable to use with the 

sizes of measurement for the data. Connection coefficients do not impact data about whether 

one variable moves because of another.41 There is no endeavor to set up one variable as 

dependent and the other one as independent. In this manner, association can be recognized 

utilizing relationship coefficients not causal relationships. 
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Jonckheere-Terpstra Test 

Jonckheere-Terpstra test was used to determine if there is a statistically significant 

trend between variables.42 The Jonckheere-Terpstra test is a nonparametric method for 

ordered differences among classes which was first formulated by Terpastra and Jonckheere in 

1952 and 1954.43 Jonckheere-Terpstra test is preferred when the alternative hypothesis takes 

ordering into account. It tests the null hypothesis that the distribution of the variables does 

not vary among classes and used to recognize the alternative hypothesis of ordered class 

differences which can be shown as 𝐻0: 𝜃1 = 𝜃2 = ⋯ = 𝜃𝑘, 𝐻1: 𝜃1 ≤ 𝜃2 ≤ ⋯ ≤ 𝜃𝑘,  where 

𝜃𝑖 is the population median42,43. 

Test statistic is defined as43 

𝐽∗ =
𝐽 − 𝐸0(𝐽)

√𝑉𝑎𝑟0(𝐽)
 

Where 𝐸0(𝐽) is the expected value and 𝑉𝑎𝑟0(𝐽) is the variance of the test statistic under null 

hypothesis 

𝐸0(𝐽) =
𝑛2 − ∑ 𝑛𝑖

2
𝑖

4
 

𝑉𝑎𝑟0(𝐽) =
𝐴

72
+

𝐵

36𝑛(𝑛 − 1)(𝑛 − 2)
+

𝐶

8𝑛(𝑛 − 1)
 

Where 

𝐴 = 𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑛𝑖(𝑛𝑖 − 1)(2𝑛𝑖 + 5) − ∑ 𝑛𝑗(𝑛𝑗 − 1)(2𝑛𝑗 + 5)

𝑗𝑖

 

𝐵 = (∑ 𝑛𝑖(𝑛𝑖 − 1)(𝑛𝑖 − 2)

𝑖

) ∑ 𝑛𝑗(𝑛𝑗 − 1)(𝑛𝑗 − 2)

𝑗

) 
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𝐶 = ∑ 𝑛𝑖(𝑛𝑖 − 1)

𝑖

(∑ 𝑛𝑗(𝑛𝑗 − 1)

𝑗

) 

Where 𝑛𝑖 is the total number of outcomes in group i and 𝑛𝑗 is the total number of outcomes 

in group j. 

Mann-Whitney U test 

One of the challenges is the data are not normally distributed. Hence, Mann-Whitney 

U test was used to determine the difference between groups. The Mann-Whitney U test is a 

one of the most powerful non-parametric tests for the differences coming from the same 

population which was first formulated by Mann and Whitney in 1947.44 When the test 

statistic gives good probabilities, the measure of reality is significant which is less at risk 

compared to t-test when there exist some extreme values.44,45 Also, it can identify differences 

in shape, spread, and medians.44,45 The null hypothesis (𝐻0) of the Mann‐Whitney U test 

specifies that the two similar independent groups are from the same population. The Mann‐

Whitney test is based on the comparison of each observation 𝑥𝑖 from the first group with 

each observation from the second group. The total number of possible paired comparisons is 

(𝑛𝑥𝑛𝑦), where 𝑛𝑥 is the number of observations in the first group and 𝑛𝑦 the number of 

observations in the second. If the two groups have the same median, then each observation in 

the first group has an equal chance of being greater or smaller than each observation in the 

second group. In technical terms,45  

𝐻0: 𝑝(𝑥𝑖 > 𝑦𝑖) =
1

2
 

𝐻0: 𝑝(𝑥𝑖 > 𝑦𝑖) ≠
1

2
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The null hypothesis is rejected if one group is significantly larger than the other group. 

The test statistic is,45  

𝑧 =
𝑈 −

𝑛𝑥𝑛𝑦

2
𝜎𝑈

 

 

|𝑧| =
|𝑈𝑥 + 𝑈𝑦|

𝜎𝑈
 

Where 

𝑈𝑥 = 𝑛𝑥𝑛𝑦 +
𝑛𝑥(𝑛𝑥 + 1)

2
− 𝑅𝑥 

𝑈𝑦 = 𝑛𝑥𝑛𝑦 +
𝑛𝑦(𝑛𝑦 + 1)

2
− 𝑅𝑦 

 

Where 𝑛𝑥 is the number of observations in the first group, 𝑛𝑦 is the number of observations 

in the second group, 𝑅𝑥 is the sum of the ranks of the first group and 𝑅𝑦 is the sum of the 

ranks of the second group. If the absolute value of the calculated z is larger or equal to the 

tabulated z value, the null hypothesis is rejected. 

All Subsets Selection 

All subsets regression aims to find the most ideal fit model from all possible subset 

models that meet Mallow’s Cp, 𝑅2, Bayesian Information Criteria (BIC) etc. which were first 

formulated by Hocking and Leslie in 1967.46 We applied the best subset regression to obtain 

with a reasonable and helpful regression model by including all variables that actually predict 

the outcome. All subsets selection gives better prediction precision than forward stepwise 

selection and lasso, over an assortment of problems.46 To begin with, identify all possible 
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regression models from the potential mixes of the candidate variables. Then, determine the 

model that has the lowest Mallow’s Cp, lowest BIC and largest 𝑅2. Interactions of risk 

factors then are checked, and the significance are assessed. Mallow’s Cp is the criteria to 

access the fit of a regression model by comparing the parameters of the full model and a 

smaller model and finding the errors which first proposed by Mallows in 1964.49 The formula 

is defined as:49 

𝐶𝑝 =
𝑆𝑆𝐸𝑝

𝑀𝑆𝐸𝑝
+ 2𝑝 − 𝑛 

Where p is the number of parameters, 𝑆𝑆𝐸𝑝  is the error sum of squares, 𝑀𝑆𝐸𝑝 is the mean 

squared error. 

BIC is another model selection criterion which first proposed by Schwartz in 1978.51 

It estimates the validity of a model by Bayesian setup. The formula is defined as:50 

𝐵𝐼𝐶 = 𝑘𝑙𝑛(𝑛) − 2ln (�̂�) 

Where k is the number of parameters, n is the number of observations, �̂� is the maximized 

value of the likelihood function of the model. 

The adjusted 𝑅2 measure the coefficient of determination and are utilized to 

determine the predictability of the variables.46 Mallow’s Cp measures bias and prediction 

error. MSE estimates the average of the squares of the error.46 When choosing the best 

subset, we are looking for the highest adjusted 𝑅2  as the adjusted 𝑅2  only increases when 

the added variables improve the model, not by chance alone.46 While 𝑅2  increases as the 

number of variables increase. When Cp=p, Mallow’s Cp is not a good choice for selecting 

the best model.46 When Cp is large, important variables need to be identified first, while, 

when Cp nears p, the smallest Cp and few variables should be selected.46 Later, a validation 
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set approach was employed by randomly assign 50% of the data set for training and 50% for 

testing. Validation set approach is cross-validation technique that estimates a model error by 

holding out a subset of the data during fitting.46 By employing this method, the best model is 

the one with the lowest mean squared error (MSE).47 If the model does not correspond to the 

previously chosen model by Mallow’s Cp, BIC or adjusted 𝑅2, the 5-fold cross validation 

approach to improve the holdout method. In k-fold cross validation, data set is split into k 

disjoint subsets equally and repeat the holdout method for k times. One of the subsets is used 

as test set, and k-1 subsets are used as training set. Then, the performance of the test sets is 

measured. The best model would give the least MSE. The all subsets selection model can be 

expressed as a linear combination of the predictors: 

𝑔(𝜇) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 

Purposeful Variable Selection 

We applied the purposeful variable selection method for best subset selection to build 

a logistic regression model. We used logistic regression to measure the association of 

covariates with binary outcome. Binary classification was used to classify CE into two 

groups on the basis of its mean value, whether CE is greater than the mean (1) or not (0).  

The accompanying seven stages depict a technique for choosing variables that we call 

deliberate determination. The reasoning behind the strategy is that it follows the means that 

many applied agents utilize while analyzing a bunch of information and afterward 

constructing a multivariable relapse model. Hosmer and Lemeshow proposed the purposeful 

selection of variables method that not only select statistically significant covariates, but also 

possible confounders.60 This method could be an alternative way that has not been examined 
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with a few examples. There are seven steps of purposeful selection variables method to build 

a multivariable regression model: 

1. Initial screening: the purposeful selection starts by univariate regression analysis for 

each variable. Conduct a contingency table analysis for categorical variables. Any 

variable that has significant univariate test results is chosen as a candidate for further 

analysis based on the Wald test or likelihood ratio test and p-value cutoff point of 0.2-

0.25. 

2. Reduced model: fit the multivariable model containing the variables that are 

significantly identified in step 1, perform backward variable selection to remove the 

insignificant variables if p-value greater than 0.05 or 0.1. 

3. Comparing: compare the significant variables to the larger and the smaller model to 

identify the notable covariates or confounding variables and add them back to the 

model if necessary. 

4. Fit a preliminary main effects model: any variable not chosen for the original 

multivariate model is added back to the model in step 3, with critical covariates and 

confounders held before. Significance is evaluated at p<0.05-0.2. This step can be 

useful in recognizing variables that are not identified because of the insignificant 

result but make a significant contribution with other variables together. 

5. Fit a main effects model: check the linearity of the continuous variables that are 

added back in step 4 in the logistic regression model by Locally Weighted Scatterplot 

Smoothing (Lowess). Then, revise the model function if necessary. 

6. Fit a preliminary final model: check for interactions in the model and if there are 

important interaction terms left in the model. 
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7. Final model: check the model fitting by Hosmer-Lemeshow (HL) statistics. If it is 

good, it should be the final model. 

Sensitivity Analysis 

Sensitivity analysis plays a crucial rule to assess the robustness of the statistical 

methods which includes model selection, classification, comparison, etc. It can also be 

utilized to figure out which subset of input variables are attributed to most of the output 

variance. Sensitivity analysis is a broad definition that the approach type and the purpose are 

mainly depending on the modelling and study aim. In order to compare the all subsets 

selection model and the purposeful variable selection model, AIC and ROC curve were 

utilized. AIC is an estimator of out-of-sample deviances which was first proposed by 

Hirotugu in 1970.50 It measures the quality of each model and ranks them. Also, it is 

perceived as an index for reporting the trade-off between fitting and parsimony of the model. 

Take into account of time and economic costs, AIC is employed to find a simple model with 

great explanatory predictive power.50 The selected best model is neither under-fit nor over-

fit. The formula is defined as:50 

𝐴𝐼𝐶 = 2𝑘 − 2ln (�̂�) 

Where k is the number of estimated parameters in the model, �̂� is the maximum value of the 

likelihood function for the model. 

 ROC curve is a measurement of model performance over the range of trade-offs 

which plots the sensitivity versus 1-specificity. It plays a central role in assessing the ability 

of models to figure out the true state of the variables, finding the ideal cut off points and 

comparing the models that are built from the same data.52 The Area Under Curve (AUC) is 
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an index of accuracy that the higher the area under curve the better the prediction of the 

model.52 

Results 

Spearman’s Correlation Coefficient 

The first objective in our analysis was to measure correlations. For this purpose, we 

conducted Spearman’s correlation coefficient. We used the cor.test function in R to evaluate 

the strength of relationship between two variables. The variables that correlated with CE are 

shown in Table 2. For first or only procedure, CE weakly correlated with WBC, absolute 

segmented neutrophil count, absolute lymphocyte count, absolute monocyte count, platelet 

count, minimum anticoagulant ratio, maximum anticoagulant ratio, prediction CD34+ cells 

per ml, prediction CD 34+ total cell yield, same for all procedures.  

 

Table 2: Factors correlating with collection efficiency. 

 First Only Procedure All Procedures   

Factor Number Spearman’s 

Coefficient 

Number Spearman’s 

Coefficient 

Age 

 

White Blood Cell 

Count 

443 

 

442 

-0.107* 

 

-0.427** 

636 

 

635 

-0.056 

 

-0.399** 

 

Absolute 

Segmented 

Neutrophil Count 

 

434 

 

-0.394** 

 

624 

 

-0.347** 

 

 

Absolute 

Lymphocyte Count 

 

434 

 

-0.269** 

 

624 

 

-0.252** 

     

Absolute 

Monocyte Count 

434 -0.306** 624 -0.296** 

     

Relative 

Neutrophil Count 

 

434 

 

 

434 

-0.098* 

 

 

0.196** 

624 

 

 

624 

0.036 

 

 

-0.002 
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Relative 

Lymphocyte Count 

 

 

Relative Monocyte 

Count 

 

Hematocrit 

434 

 

 

438 

 

0.103* 

 

 

-0.160** 

624 

 

 

631 

0.038 

 

 

-0.148** 

Platelet Count 442 -0.272** 635 -0.237** 

 

Minimum 

Anticoagulant 

Ratio 

 

443 

 

0.123** 

 

636 

 

0.127** 

 

Maximum 

Anticoagulant 

Ratio 

 

Product, Collection 

Volume 

Product, CD34+ 

Cells per ml† 

 

443 

 

 

443 

 

 

443 

 

0.166** 

 

 

0.089 

 

 

0.063 

 

636 

 

 

636 

 

 

636 

 

0.145** 

 

 

0.086* 

 

 

0.159** 

     

Product, CD34+ 

Total Cell Yield 

443 0.091 636 0.166** 

 

Prediction, CD34+ 

Cells per ml† 

 

443 

 

-0.149** 

 

636 

 

-0.193** 

 

Prediction, CD34+ 

Total Cell Yield 

 

443 

 

-0.143** 

 

636 

 

-0.193** 

     

CD34+ Percentage 

of Viable 

Leukocytes 

 

Operator  

443 

 

 

 

443 

0.171** 

 

 

 

0.076 

636 

 

 

 

636 

0.056 

 

 

 

0.082 

     
 

*p < 0.05, **p < 0.01 

†These values reflect the total number of CD34+ cells from a sample of the patient’s blood prior to collection 

(prediction) and from the collection bag (product). 

 

Jonckheere-Terpstra Test and Mann-Whitney U Test 

After evaluating the correlation relationship between variables, we proceed with the 

Jonckheere-Terpstra test. We used jonckheere.test function to identify statistically significant 

trends between variables. Mann-Whitney U test was utilized to determine the difference 

between groups with the wilcox.test function in R. As shown in Table 3, these variables 
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trended significantly between CE groups. For the first or only procedure, age, WBC, absolute 

segmented neutrophil count, absolute lymphocyte count, absolute monocyte count, platelet 

count, prediction CD34+ cells per ml, prediction CD 34+ total cell yield trended inversely 

between CE groups. For all procedures, age, WBC, absolute segmented neutrophil count, 

absolute lymphocyte count, absolute monocyte count, hematocrit, platelet count, prediction 

CD34+ cells per ml, prediction CD 34+ total cell yield trends inversely between CE groups. 

For first or only procedure, minimum anticoagulant ratio, maximum anticoagulant ratio had 

direct trends, while for all procedures, minimum anticoagulant ratio, maximum anticoagulant 

ratio, product CD34+ cells per ml, product CD 34+ total cell yield had direct trends. Patient 

age only collectively trended inversely between CE groups: for all procedures there was no 

difference between individual CE groups, and for only the first procedure poor collectors 

tended to be older than good collectors (p = 0.048).  

 

Table 3: How factors trend relative to correlation efficiency groups. 

 First Only Procedure All Procedures   

Factor Number Direction Number Significance 

Age 

 

White Blood Cell 

Count 

443 

 

442 

Inverse* 

 

Inverse*** 

636 

 

635 

Inverse* 

 

Inverse*** 

 

 

Absolute 

Segmented 

Neutrophil Count 

 

434 

 

Inverse*** 

 

 

624 

 

Inverse*** 

 

 

Absolute 

Lymphocyte Count 

 

434 

 

Inverse*** 

 

 

624 

 

Inverse*** 

 

     

Absolute 

Monocyte Count 

434 Inverse*** 

 

624 Inverse*** 

 

     

Relative 

Neutrophil Count 

 

434 

 

 

434 

No Trend 

 

 

No Trend 

624 

 

 

624 

No Trend 

 

 

No Trend 



22 

 

Relative 

Lymphocyte Count 

 

   

Relative Monocyte 

Count 

 

Hematocrit 

434 

 

 

438 

 

No Trend 

 

 

No Trend 

 

624 

 

 

631 

No Trend 

 

 

Inverse** 

Platelet Count 442 Inverse*** 635 Inverse*** 

 

Minimum 

Anticoagulant 

Ratio 

 

443 

 

Direct* 

 

636 

 

Direct*** 

 

Maximum 

Anticoagulant 

Ratio 

 

Product, Collection 

Volume 

 

Product, CD34+ 

Cells per ml† 

 

443 

 

 

443 

 

 

443 

 

Direct** 

 

 

No Trend 

 

 

No Trend 

 

 

636 

 

 

636 

 

 

636 

 

Direct*** 

 

 

No Trend 

 

 

Direct** 

     

Product, CD34+ 

Total Cell Yield 

443 Inverse*** 636 Inverse*** 

 

Prediction, CD34+ 

Cells Per ml† 

 

443 

 

Inverse*** 

 

636 

 

Inverse*** 

 

Prediction, CD34+ 

Total Cell Yield 

 

443 

 

Inverse*** 

 

636 

 

Inverse*** 

     

CD34+ Percentage 

of Viable 

Leukocytes 

 

Operator  

443 

 

 

 

443 

No Trend 

 

 

 

No Trend 

636 

 

 

 

636 

No Trend 

 

 

 

No Trend 

     
 

*p < 0.05, **p < 0.01, ***p < 0.001 

 

In Table 4, results of variables that affect CE were found in multiday collectors to 

further explain correlation or trend discrepancies in CE between first or only procedures and 

all procedures. The CP volume was highest on the first day. By the third collection day CY 

was less than in the first two days of collection. The HSC percentage of viable leukocytes 

significantly decreases with each collection day. With each collection day the relative 
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segmented neutrophil count increased whereas the relative lymphocyte and monocyte counts 

decreased. Hematocrit also tended to fall with each collection, though not significantly 

between each collection day. Overall, CE did not change in multiday collectors. No 

correlation or trend was seen with TBV and processed blood volume. Mobilization with G-

CSF + chemotherapy results in a higher CE compared to all other regimens (p < 0.001). 

Collection efficiencies were no different in pairwise comparisons of these other regimens. 

There was no difference in CE with respect to gender and diagnosis used to perform the 

procedure. These findings were consistent for all procedures, including the first or only 

procedure. In multiday collectors, there was no change from day to day in the mobilization 

regimen. 

 

Table 4: Factors affecting CE in multiday collectors 

Factor (Including 

Overall Test 

Significance) 

 

White Blood Cell 

Count* 

Mean Rank Day 1 

(N=181) 

 

 

173.91 

Mean Rank Day 2 

(N=173) 

 

 

199.24 

Mean Rank Day 3 

(N=22) 

 

 

224.07 

Comparison 

Groups 

 

 

Day 1 Vs. Day 2 

Day 1 Vs. Day 3 

Day 2 Vs. Day 3 

     

Relative 

Segmented 

Neutrophil 

Count*** 

162.98 201.37 237.26 Day 1 Vs. Day 2** 

Day 1 Vs. Day 3** 

Day 2 Vs. Day 3 

     

Relative 

Lymphocyte 

Count*** 

221.14 156.86 109.52 Day 1 Vs. Day 

2*** 

Day 1 Vs. Day 

3*** 

Day 2 Vs. Day 3 

     

Relative Monocyte 

Count*** 

214.52 161.58 125.00 Day 1 Vs. Day 

2*** 

Day 1 Vs. Day 3** 

Day 2 Vs. Day 3 

 

Hematocrit* 

 

203.22 

 

176.39 

 

162.57 

 

Day 1 Vs. Day 2 

Day 1 Vs. Day 3 
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Day 2 Vs. Day 3 

Product, Collection 

Volume*** 

 

226.54 

 

155.42 

 

135.64 

Day 1 Vs. Day 

2*** 

Day 1 Vs. Day 3** 

Day 2 Vs. Day 3 

 

Product, CD34+ 

Cells per ml** 

 

 

Product, CD34+ 

Total Cell Yield** 

 

 

CD34+ Percentage 

of Variable 

Leukocytes*** 

 

185.31 

 

 

 

190.89 

 

 

 

210.92 

 

188.74 

 

 

 

183.56 

 

 

 

178.08 

 

104.70 

 

 

 

99.82 

 

 

 

85.98 

 

Day 1 Vs. Day 2 

Day 1 Vs. Day 3** 

Day 2 Vs. Day 3** 

 

Day 1 Vs. Day 2 

Day 1 Vs. Day 

3*** 

Day 2 Vs. Day 3** 

 

Day 1 Vs. Day 2* 

Day 1 Vs. Day 

3*** 

Day 2 Vs. Day 3** 

 

 
 

*p < 0.05, **p < 0.01, ***p < 0.001 

 

All Subsets Selection 

After we analyzed the correlations, trends and differences, we proceeded with all 

subsets selection to build a model. We used the regsubset function to perform best subset 

selection in order to choose the best model. By investigating the values of Mallow’s Cp, BIC 

and adjusted 𝑅2. The best model according to Mallow’s Cp was 3, according to adjusted 𝑅2 

was 9 and, according to BIC was 3. By using the cross validation, the model with predictors 

age, WBC, operator, platelet count, prediction CD34+ total cell yield, product CD34+ cell 

per ml, product collection volume, product CD34+ total cell yield, processed blood volume 

and mobilization was chosen. However, this model did not correspond with any of the 

models chosen by using Mallow’s Cp, BIC or adjusted 𝑅2 values. So, we used the predict 

function with a 5-fold cross validation approach. We observed that the model with 9 

predictor variables: WBC, operator, prediction CD34+ total cell yield, product CD34+ cell 
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per ml, product collection volume, product CD34+ total cell yield, CD34+ percentage of 

viable leukocytes, processed blood volume, and mobilization was shown to have the lowest 

test error. This model corresponded with the model that was chosen by the lowest BIC value. 

Interactions of factors were not significant which were not included in the model. Utilizing 

these significant factors, the base model was constructed as below: 

𝐸(𝐶𝐸) = 0.804 + 0.016 × 𝑊ℎ𝑖𝑡𝑒 𝑏𝑙𝑜𝑜𝑑 𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡 + 0.057 × 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

+  0.001 × 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐶𝐷34 + 𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑦𝑖𝑒𝑙𝑑

+ 0.001 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝐷34 +  𝑐𝑒𝑙𝑙 𝑝𝑒𝑟 𝑚𝑙

+ 0.001 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑐𝑜𝑙𝑙𝑐𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 + 0.073 × 𝑀𝑜𝑏𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

+ 0.001 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝐷34 + 𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑦𝑖𝑒𝑙𝑑 − 0.240 × 𝐶𝐷34

+  𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑣𝑖𝑎𝑏𝑙𝑒 𝑙𝑒𝑢𝑘𝑜𝑐𝑦𝑡𝑒𝑠

+ 0.001 × 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑏𝑙𝑜𝑜𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 

Purposeful Variable Selection 

After conducting all subsets modeling, the purposeful variable selection was 

conducted. Based on the mean value, CE was dichotomized into two groups: greater than the 

mean (1) or not (0). A univariable logistic regression analysis was used to select the variables 

from the univariate stage that have a p-value <0.25. The p-value threshold was chosen 

because after carried out the analysis, we found over half of the variables had p-value greater 

than 0.25. CD34+ total cell yield, product CD34+ cell per ml, product collection volume, 

product CD34+ total cell yield, processed blood volume, platelet count, Hematocrit and 

mobilization were included in our model. For multivariate logistic regression, p-value 

threshold was chosen since none of the variables have p-value <0.10. Further, in order to 
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check the scale of the continuous covariates, we employed Locally Weighted Scatterplot 

Smoothing (Lowess) smoothed univariable logit. The plots showed linear increase for all 

continuous variables. We then built the main effects model. The model was constructed as 

below:  

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝐶𝐸 >  𝑚𝑒𝑎𝑛(𝐶𝐸)))

= 2.077 + 0.048 × 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐶𝐷34 + 𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑦𝑖𝑒𝑙𝑑

+ 0.903 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝐷34 +  𝑐𝑒𝑙𝑙 𝑝𝑒𝑟 𝑚𝑙

+ 0.091 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑐𝑜𝑙𝑙𝑐𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 + 0.073 × 𝑀𝑜𝑏𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

+ 0.74 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝐷34 + 𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑦𝑖𝑒𝑙𝑑 + 0.993 × 𝐻𝑒𝑚𝑎𝑡𝑜𝑐𝑟𝑖𝑡

+ 0.324 × 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑏𝑙𝑜𝑜𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 − 0.101 × 𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡 𝑐𝑜𝑢𝑛𝑡 

By adding interactions and assessing the significance using likelihood ratio test, the results 

showed very poor interaction between product CD34+ cell per ml and product CD34+ total 

cell yield. The model with interaction term was constructed as: 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝐶𝐸 >  𝑚𝑒𝑎𝑛(𝐶𝐸)))

= 2.077 + 0.048 × 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐶𝐷34 + 𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑦𝑖𝑒𝑙𝑑

+ 0.903 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝐷34 +  𝑐𝑒𝑙𝑙 𝑝𝑒𝑟 𝑚𝑙

+ 0.091 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑐𝑜𝑙𝑙𝑐𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 + 0.073 × 𝑀𝑜𝑏𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

+ 0.74 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝐷34 + 𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑦𝑖𝑒𝑙𝑑 + 0.993 × 𝐻𝑒𝑚𝑎𝑡𝑜𝑐𝑟𝑖𝑡

+ 0.324 × 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑏𝑙𝑜𝑜𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 − 0.101 × 𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡 𝑐𝑜𝑢𝑛𝑡

+ 0.009 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝐷34 +  𝑐𝑒𝑙𝑙 𝑝𝑒𝑟 𝑚𝑙 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝐷34

+ 𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑦𝑖𝑒𝑙𝑑 
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As the likelihood ratio test showed the p-value was 0.018. We rejected the null 

hypothesis. The two models were significantly different. So, we chose the model with 

interaction terms as the preliminary final model. Later, by Hosmer-Lemeshow (HL) test, p-

value was 0.066, the results did not reject the null hypothesis. We concluded the model with 

interaction terms fitted the data. 

Sensitivity Analysis 

After building the models, we proceeded with sensitivity analysis. First, we looked at 

the AIC value, for all subsets selection model the AIC value was 251.9698, while for the 

purposeful variable selection model it was 273.2441. All subsets selection model 

outperformed purposeful variable selection model. Therefore, all subsets selection model had 

the better parsimonious fit. For all subsets selection model, the highest validation AUC was 

0.8658 with sensitivity 0.9493 and specificity 0.4046 (Figure 1). The validation AUC value 

applying the purposeful variable selection was 0.804, with sensitivity value 0.9958 and 

specificity value 0.0246 (Figure 2). The all subsets selection model performed slightly better 

than the purposeful variable selection model, having higher specificity for a given sensitivity, 

and higher sensitivity for given specificity. Therefore, all subsets selection model was chosen 

over purposeful selection model. The most significant factors were chosen based on all 

subsets selection model (p < 0.05) are summarized in Table 5. By far the most important 

predictor of CE was the prediction CD34+ total cell yield. 

Figure 1. ROC for All subsets selection 
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Figure 2. ROC for purposeful variable selection 

 
 

Table 5. Factors that impact CE based on multiple regression analysis (N = 636) 

Factor Importance 

Prediction, CD34+ Total Cell Yield 0.728*** 

Product, CD34+ Cells per ml 0.074*** 

Product, Collection Volume 0.048*** 

Mobilization Regimen 0.035*** 

Product, CD34+ Total Cell Yield 0.026*** 

CD34+ Percentage of Viable Leukocytes 0.022** 

Processed Blood Volume 0.018** 

Operator 0.015* 
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White Blood Cell Count 0.012* 

*p < 0.05, **p < 0.01, ***p < 0.001 

 

Upon further evaluation predicted CD34 total cell count yield alone was estimated to 

fit a logarithmic curve (Figure 3) (r2 =.868, p < .001) and to significantly predict the CE (β = 

-.932, p < .001). 

 

Figure 3. Correlation between CE and predicted CD34 total cell count yield 

 

Discussion 

A previous study on patients who underwent large volume apheresis records showed 

that among all factors, absolute segmented neutrophil count, absolute lymphocyte count, 

absolute monocyte count, platelet count, minimum anticoagulant ratio, maximum 

anticoagulant ratio, prediction CD34+ cells per ml, prediction CD 34+ total cell yield had 

been weakly associated with CE by Spearman’s correlation coefficient. At this point, we 

were interested in investigating the trends and differences between groups. Tests showed 

absolute segmented neutrophil count, absolute lymphocyte count, absolute monocyte count, 

platelet count, prediction CD34+ cells per ml, prediction CD 34+ total cell yield trends 

inversely between CE groups. A lower AC ratio helped platelets stabilize the buffy coat 
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which allows for a more efficient collection53. Our results were consistent with the expected 

findings of a direct relationship between the AC ratio and CE and an inverse relationship 

between the platelet count and CE. In multiday collectors, however, both the AC ratio and 

the platelet count maintained the same inverse relationship despite no effect on CE. Likely 

the effects of mobilization on the platelet count were more pronounced in multiday 

collectors. In patients mobilized with G-CSF platelet counts can begin to fall significantly 

prior to collection54,55. There should be no effect from antiplatelet medications because they 

were held well and throughout all procedures. The activation of neutrophils scintillates the 

release of HSCs from within the bone marrow into the peripheral blood56. As the population 

of HSCs increases the populations of other blood are expected to decrease so as to maintain 

an efficient collection. While this effect was seen for all procedures the most efficient 

collection was seen in the first or only procedure, which exhibited the highest HSC 

percentage of viable leukocytes. This suggested that there was a point where a maximum 

number of HSCs can be mobilized relative to their collection, which is further supported by 

the fact that neither mobilization regimen nor CE changed with each collection. By the third 

day of a daily series of collections the CY was significantly lower than in the first two days. 

We found a more efficient collection with G-CSF + chemotherapy compared to all other 

regimens. The same results were seen after analyzing the majority of the patients despite the 

fact that in 66% of their collective procedures they were mobilized with G-CSF + plerixafor. 

However, the addition of plerixafor to G-CSF + chemotherapy did not seem to result in 

higher CEs. This may be due to the fact that both G-CSF and chemotherapy target HSC 

niches in the endosteal and perivascular spaces as well as bone formation whereas plerixafor 

directly targets HSCs without affecting either their niche or bone formation57. Some studies 
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showed higher CYs with G-CSF + plerixafor compared to G-CSF + chemotherapy58,59. In 

these studies, however, there was no difference in the median number of total CD34+ 

cells/kg. We used the median number of total CD34+ cells per volume (as opposed to per 

weight) to calculate CYs and CEs. In doing so we found that the total CD34+ cells/ml 

correlated with both the final collection yield of CD34+ cells and CE for all procedures. 

Prediction CD34+ total cell yield, product CD34+ cell per ml, product collection volume, 

product CD34+ total cell yield, processed blood volume and mobilization were important 

factors that were included in both the all subsets selection model and the purposeful variable 

selection model. These variables were important factors included in models accurately 

predicted CE especially prediction CD34+ total cell yield. CD34+ percentage of viable 

leukocytes was considered important in the all subsets selection model, while platelet count 

and hematocrit were considered important in the purposeful variable selection model. AIC, 

ROC curve and AUC resulted in a better prediction for predicting CE in all subsets selection 

model compared to the purposeful variable selection model. The results of our analyses 

simplified the prediction of an efficient collection by limiting pre-collection analytic 

variables to just prediction CD34+ total cell yield, with very high correlation. When we 

included all analytic variables into the regression model, we found a high 𝑅2; however, due 

to a number of competing interactions each variable correlated poorly with CE that can be 

ignored. The prediction model produced allows for the surveillance of medication and 

procedural factors associated with HSCT in order to observe which factors are most highly 

associated with mortality. By understanding these variables, one can plan and implement 

preventative measures to reduce the risk of hematologic malignancies that is so often 

observed among patients.  
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Our study has several limitations. The quality of the HSC data is poor since it is 

retrospective and are not designed for the study. And the data has a high percentage of 

missing values. Also, our study was limited by a mixed-effect regression analysis. However, 

incorporating many analytic variables into a model that adjusts for numerous interactions 

requires significant computer processing power. We simplified our approach by assuming 

that discrepant analyses between first/only collection procedures and all procedures were a 

result of patients who underwent multiple collections to achieve their prescribed collection 

dose. As a result, changes in analytic variables from day to day in multiday collectors had no 

effect on CE. Moreover, all the important factors that accurately predict CE may not be 

captured in the data like participants’ race, apheresis machine, etc. Therefore, there is a high 

probability of having excluded unmeasured confounding effects. Consequently, there could 

be a potential for selection bias. The final equation may not necessarily reflect the true 

model. To validate the research findings prospective studies applying our model would need 

to be performed. Outcomes for CE groups would also need to be analyzed with respect to 

achieving the prescribed collection dose. 

Conclusion 

In this thesis, we conducted the Spearman’s correlation coefficients to measure the 

correlations, the Jonckheere-Terpstra test to measure the trends, and the Mann-Whitney U 

test to measure the differences. An all subsets selection model was built to compare to the 

model built with a purposeful variable selection method. The model difference could be the 

result of the inherent differences of the two model approaches. The results suggested 

prediction CD34+total cell yield alone was expected to be the most important variable in 
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determining CE. Prediction CD34+total cell yield may be best determined by the 

mobilization regimen, which is directly responsible for the release of HSCs into the 

peripheral blood. Different mobilization regimens and their side effects on the complete 

blood cell count have synergistic and opposing effects on CE, which altogether must be taken 

into account in conjunction with procedural characteristics in order to maximize CY. The CY 

will be highest on the first day of a multiday collection, in part because of their availability in 

the peripheral blood and decreased presence of available HSCs thereafter. 
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Appendices 

Appendix i 

Summary of Predictors 

Factor Type Number of 

factors (First or 

only procedure)  

Number of factors 

(All procedures) 

Number of visits Categorical  3 3 

Age Numeric  443 635 

Gender Binary 2 2 

Height Numeric 443 635 

Weight Numeric 443 635 

Absolute lymphocyte 

count 

Numeric 434 624 

Absolute segmented 

neutrophil count 

Numeric 434 624 

Absolute lymphocyte 

count 

Numeric 434 624 

Absolute monocyte 

count 

Numeric 434 624 

Relative neutrophil 

count 

Numeric 434 624 

Relative lymphocyte 

count 

Numeric 434 624 

Relative monocyte 

count 

Numeric 434 624 

AADX Categorical  7 7 

Total blood volume Numeric  434 631 

Mobilization  Categorical 6 6 
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White blood cell count Numeric 442 624 

Operator  Categorical 7 7 

Hematocrit Numeric 438 631 

Platelet count Numeric 442 635 

Processed blood 

volume 

Numeric  443 636 

Minimum 

anticoagulant ratio 

Numeric 443 636 

Maximum 

anticoagulant ratio 

Numeric 443 636 

Product, collection 

volume 

Numeric 443 636 

Product, CD34+ cells 

per ml 

Numeric 443 636 

Product, CD34+ total 

cell yield 

Numeric 443 636 

Prediction, CD34+ 

cells per ml† 

Numeric 443 636 

Prediction, CD34+ 

total cell yield 

Numeric 443 636 

CD34 percentage of 

viable leukocytes 

Numeric 443 636 
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