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Abstract: Functional Electrical Stimulation (FES) is a technique that artificially elicits muscle 

contractions and it is used to restore motor/sensory functions in both assistive and therapeutic 

applications. The use of multi-field surface electrodes is a novel popular approach in transcutaneous FES 

applications. Lately, hybrid systems that combine artificial neural networks and fuzzy logic have also 

been proposed for many applications in different areas. This paper presents the possibility of combining 

both approaches for obtaining subject-specific models of FES induced hand movements for grasping 

applications. Data of the hand and finger motion from two subjects affected by acquired brain injury were 

used to train two different approaches: coactive neuro-fuzzy inference system and recurrent fuzzy neural 

network. Preliminary results show that these approaches can be considered in modelling applications for 

their ability to learn and predict main characteristics of the system, as well as providing useful 

information from the original system that could be interpreted as subject-specific knowledge.  
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1. INTRODUCTION 

Functional Electrical Stimulation (FES) provides the 

possibility of achieving functional movements by externally 

delivering electrical pulses to the nervous system and 

eliciting muscle contractions. The main applications of FES 

are within the rehabilitation field, in which this technique is 

used to aid recovery or to restore lost or damaged 

sensory/motor functions (Popović et al. 2003, Kimberley et 

al. 2004). Unlike implanted electrodes, which require surgery 

to be placed and attached to the target nerves, surface 

electrodes are placed over the skin. They can present 

selectivity issues due to the complex composition of the 

layers between the electrodes and target nerves. Nevertheless, 

lately multi-field surface electrodes have become popular as 

they attend to reduce some of the disadvantages that surface 

stimulation carries, such as poor selectivity as shown by 

Popović‐Bijelić et al. (2005) and Malešević et al. (2012). 

Although FES is extensively used in rehabilitation 

applications, its use as an assistive technology for restoring 

completely lost functions is still challenging in many cases, 

especially to reproduce complex tasks such as grasping. The 

main cause of this is the high complexity inherent to the 

human biological system and the large inter-subject 

physiological and pathological variances.  

A wide variety of mathematical models to describe 

electrically stimulated musculoskeletal behaviour has been 

proposed throughout last decades for diverse applications 

such as the ones proposed by Lemay and Crago (1996), 

Dorgan and O’Malley (1997), or Blana et al. (2008) among 

others. However, most of them are complex models using 

many physiological parameters which are difficult to obtain 

in real world cases. In addition, most models are designed for 

very specific applications. Thus, lack of generic models for 

diverse FES applications and the difficulty of defining many 

parameters make mathematical models not very practical for 

real world applications.  

As an alternative to mathematical models, Artificial Neural 

Networks (ANN) have been successfully implemented in 

many FES applications (Chang et al. 2009, Hincapie and 

Kirsch 2009, Yu et al. 2002, Malešević et al. 2010), due to 

their ability to learn from and predict the behaviour of 

complex systems. Similarly, Fuzzy Systems (FS) or Expert 

Systems for modelling and control have also been proposed 

in many FES applications, in which previous knowledge 

from human experts can be transferred to the FS by means of 

membership functions and fuzzy rules (Abdulla and Tokhi 

2013, Miura 2011, Davoodi and Andrews 2004). Finally, 

hybrid systems that combine the advantages of these latter 

strategies are being proposed, taking advantage of the 

learning ability of ANNs and providing an intuitive manner 

of converting expert knowledge in terms of fuzzy rules 

(Micera et al. 2001, Qi et al. 1999, Hussain et al. 2011). 

These hybrid approaches, known as Fuzzy Neural Networks 

(FNN) involve different architectures. Many of them include 

a membership layer, as the first layer shown in Fig. 1, where 

the input space is divided into a predefined number of fuzzy 

sets. In these cases, fuzzification of input terms is carried out 

through membership functions (represented by Aij in Fig. 1), 

which most common ones include triangular or Gaussian 

functions. During training, the parameters of such functions 
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are modified in order to obtain fuzzy sets and rules that adapt 

to the system as explained by Jang et al. 1996.  

 

Fig. 1. Example of FNN with 2 inputs, 2 outputs and 6 rules. 

In this work, we propose the possibility of using fuzzy neural 

networks to obtain subject-specific models of FES induced 

movements, in particular wrist and finger movements. For 

this purpose, data of the hand and finger motion from two 

subjects affected by acquired brain injury were used. With 

this hybrid approach we intend to merge the advantages of 

both ANN and fuzzy systems by creating models that are able 

to learn specific characteristics of the system while providing 

linguistic interpretability of fuzzy systems.  

2. MATERIAL 

2.1 Stimulator and electrodes 

The FES device used in the trials was an enhanced version of 

the system presented by Velik et al. (2011) called FES:a, 

which was designed to activate 2 surface multi-field 

electrodes with 16 fields each and it was remotely controlled 

via Bluetooth. Regarding electrodes, two identical multi-field 

electrodes, shown in Fig. 2, were used for the stimulation of 

dorsal and volar sides of the forearm. Two standard single 

electrodes of size 50x50mm were also used as common 

anodes, one for each electrode matrix. The adaptation 

sessions were carried out by therapists, so conventional single 

electrodes (50x50mm) and Compex stimulator were used in 

these sessions as therapists were more familiar to handling 

this technology.  

 

Fig. 2. Multi-field surface electrode sizes. 

2.2  Sensor system 

The sensor system for measuring hand motion and position 

consisted of a combination of two separated systems based on 

inertial sensors and optic fiber based sensors. For the 

measurement of finger flexion/extension the 5Data 

instrumented glove from Fifth Dimension Technologies was 

used.  It contains 5 optic fiber sensors, one for each finger, 

which provided the percentage of curvature of both 

metacarpophalangeal and proximal interphalangeal joints 

with respect to a previously defined maximum value. In these 

trials, the maximum and minimum values were defined by 

the passive range of motion (PROM) measured at the 

beginning of the trials. 

Wrist flexion/extension was measured with two 3-space 

wireless inertial sensors from YEI Technology, mounted on 

top of the glove as can be seen in Fig. 4. One of them was 

mounted on top of the dorsal side of the palm and the other 

one was mounted on the dorsal side of the forearm, close to 

the wrist. Euler pitch angles were collected from these 

sensors and their difference was taken as an approximation of 

wrist joint angle.  

Data from all sensors were collected at 20Hz and they were 

all calibrated at the beginning of the session as described in 

next section.  

3. METHODS 

3.1 Data collection protocol 

The objective of this pilot study was to collect data from hand 

movements of hemiplegic patients upon application of FES 

on the forearm. For this purpose, experiments were carried 

out in two volunteer chronic stroke patients at ADACEN 

(Brain Injury Association of Navarra) centre.  The protocol 

consisted of an adaptation week to become familiar with FES 

and a main session held at ADACEN centre. Both 

participants signed the informed consent to carry out the 

experiment and had the cognitive ability to understand and 

follow the study without any difficulties. Both subjects were 

left side affected and time from stroke was 3 and 4 years for 

subject 1 and subject 2 respectively.  

Adaptation sessions were held a week before the main 

session and consisted on daily sessions of 30 minutes of 

electrical stimulation carried out on dorsal (channel 1) and 

volar (channel 2) sides of the forearm. Electrode pairs were 

placed longitudinally on the forearm, with the anodes placed 

on the wrist and cathodes placed covering extensor/flexor 

muscles. Each session followed a sequence of 5s of 

stimulation on dorsal side of forearm, 5s on volar side of 

forearm and 5s of rest. All this was carried out in three phases 

consisting of: a) 5 minutes at 25Hz, 150μs and amplitude 

below motor threshold (MT); b) 20 minutes at 25Hz, 250μs, 

and amplitude over MT; and c) 5 minutes at 5Hz, 250μs and 

amplitude below MT. 

After the adaptation week, a main session of around 60 

minutes was carried out at the centre. A first stage consisted 
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in donning the electrodes and sensor system on patients’ arm. 

Electrode placement is shown in Fig. 3. One matrix electrode 

and its corresponding anode were placed on the dorsal side of 

the forearm taking the olecranon as a reference. Similarly, the 

second matrix electrode and its correspondent anode were 

placed on the volar side of the forearm taking the medial 

epicondyle as a reference. An elastic sleeve was put on top of 

the electrodes to ensure hydrogel-skin contact throughout the 

experiment. Finally, the instrumented glove was donned.  

 

Fig. 3. Electrode placement. 

After the donning stage, the calibration stage took place. At 

this point, the subject was seated in a chair and rested his arm 

on top of a table with an elbow angle of 90 degrees. The 

forearm was kept in neutral position and rested on top of a 

pillow. Firstly, PROM ranges were registered by collecting 

maximum extension/flexion of wrist angles and maximum 

and minimum flexion percentages of fingers. 

Correspondingly, active ranges of motion (AROM) were 

recorded afterwards. Finally, maximum tolerated amplitudes 

were registered for flexor and extensor areas by activating a 

single field in each area and increasing the amplitude until 

subject’s tolerance.  

The final stage consisted of data collection, for which FES 

parameters were fixed at 25Hz frequency and 200µs pulse 

width. In this phase the subject was asked to not make any 

voluntary movements and to relax the forearm and hand 

while the forearm was kept in neutral position. Stimulation 

consisted of 4 repetitions of randomly activating all the fields 

of the two electrode matrices. Each field started at 20 mA and 

increased in steps of 1 mA and 1 s of duration until the 

amplitude limit for that subject was reached. The sequence 

followed an order, which was activation of fields located over 

the extensors first and activation of fields located over the 

flexors next with approximately 10 seconds of rest between 

each field, and 1 minute of rest between the repetitions. 

These frequent and long resting periods were applied to avoid 

fatigue interfere in this preliminary study. If the subject felt 

discomfort at any time during the experiment, the stimulation 

was stopped for the corresponding forearm area and 

stimulation continued in the next stage. 

3.2 Model training  

Two different structures were trained with the same data: co-

adaptive neural fuzzy inference system (CANFIS) and 

recurrent fuzzy neural network (RFNN). The first method is a 

modification of the adaptive neural fuzzy inference system 

(ANFIS) to allow its use in multiple output applications. It 

constructs fuzzy rules by adjusting Gaussian membership 

function parameters learned by means of an adaptive network 

as described by Jang et al. (1996). Similarly, RFNN also 

merges both FS and ANN techniques, but its architecture 

includes an internal recurrence in the second layer, which 

brings the ability of temporarily storing information, and, 

therefore, it is possible to deal with dynamic system 

applications with smaller structures than other FNNs (Lee 

and Teng 2000). 

In order to train the fuzzy neural networks, data was codified 

in 3 inputs and 6 outputs. One of the inputs represented the 

amplitude, which was scaled to the maximum value tolerated 

by the subject. The other two inputs represented the position 

of the activated field on the arm in two planes, which were 

proximal-distal and medial-lateral dimensions. Proximal-

distal dimension was represented by being zero the closest 

row to the elbow. In the case of lateral-medial dimension, 

data was scaled to the range (-1,1), where negative values 

represented fields over extensor muscles and positive values 

fields over flexor muscles. Zero value or reference value 

represented the ulna area. Regarding the outputs, 5 outputs 

represented each finger flexion percentage over the PROM, 

whereas the wrist was scaled to the range (-1,1) over the 

PROM, where negative and positive values represented 

extension and flexion angles respectively.   

Once data was codified and scaled, model training was 

carried out with an error backpropagation learning strategy 

using Matlab/Simulink. Data was trained with 80% of the 

samples and was validated with the remaining 20%. 

Regarding fuzzy partition, grid partition was used, where 

input space term number was selected in a previous stage as 

10 input terms for Subject 1 and 7 input terms for Subject 2. 

Membership functions consisted on Gaussian functions and 

they were uniformly distributed throughout the input space 

on initialization. Additionally, an approach with an output 

feedback was tested with both structures, where an additional 

input was added for providing previous output information to 

the network. In this case, only one output feedback was used 

to avoid network size increase, and wrist feedback was 

selected as it was considered to carry the most important 

information regarding hand kinematics. The scheme showing 

the tested approaches is shown in Fig. 4. 

4. RESULTS 

4.1 Identification without feedback  

Training the CANFIS and RFNN systems without any 

feedback information resulted in the behaviour shown in the 

examples in Fig. 5 and Fig. 6, which represent training and 

validation periods respectively. In order the figures to be 

understandable, only two of the five outputs, and a portion of 

the data sets are shown. Both approaches were able to 

reproduce the system outputs properly, although some peaks 

were present during the learning phase, and were much more 

prominent in the CANFIS case. Regarding the validation 

case, RFNN showed higher variation than CANFIS, as shown 
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in Fig. 6, and although these variations were overestimated, it 

can be said that in overall RFNN captured the system 

characteristics slightly better than the CANFIS. Table 1 and 

Table 2 show the mean square errors (MSE) of the scaled 

values of CANFIS and RFNN results respectively. We can 

see that higher peak values of CANFIS in the learning period 

resulted in higher MSE errors, whereas differences in terms 

of error were small and dependent on subject and output type 

in the case of validation phase.  

 

Fig. 4. Identification approach scheme, with dashed line 

representing wrist output feedback. 

 

Fig. 5. Training outputs of wrist and index with Subject 1. 

4.2 Identification with wrist feedback 

Training the CANFIS and RFNN systems with the wrist 

feedback information resulted in the behaviour shown in the 

examples in Fig. 7 and Fig. 8, which represent training and 

validation periods respectively. Once more, training phase 

was properly reproduced by both structures, and the peak 

values produced by CANFIS had lower values than before. 

Regarding validation phase, in this case RFNN presented 

small variation and did not represent the system 

characteristics properly, whereas, CANFIS showed greater 

variation but it was either overestimating or underestimating 

the outputs, especially in the latest periods of the validation 

phase. Table 3 and Table 4 show the MSE values of the 

scaled values of CANFIS and RFNN results respectively. 

Once again, peak values of CANFIS in the learning period 

resulted in higher MSE errors. In the validation period, 

RFNN showed smaller MSE values for all outputs and both 

subjects, however, as already mentioned, it was not able to 

capture the system characteristics properly.  

 

Fig. 6. Validation results of wrist and index with Subject 1. 

Table 1.  MSE errors of CANFIS system 

Subj. Wrist Thumb Index Middle Ring Little 

Training 

1 1.0166 0.0154 1.0665 0.0160 0.0625 0.5526 

2 0.0796 0.3702 2.2323 4.923 0.7771 4.2618 

Validation 

1 0.0143 0.0004 0.0012 0.0001 0.0035 0.0058 

2 0.0169 0.0005 0.0056 0.0004 0.0009 0.0015 

Table 2.  MSE errors of RFNN system 

Subj. Wrist Thumb Index Middle Ring Little 

Training 
1 0.0041 0.0004 0.0031 0.0011 0.0014 0.0017 

2 0.001 0.0009 0.0013 0.0038 0.0004 0.0018 

Validation 

1 0.0123 0.0005 0.0014 0.0003 0.0005 0.0034 

2 0.0238 0.0003 0.0082 0.0024 0.0003 0.0059 

 

Fig. 7. Training outputs of wrist and index with Subject 1 

with wrist feedback. 
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Fig. 8. Validation outputs of wrist and index with Subject 1 

with wrist feedback. 

Table 3.  MSE errors of CANFIS system 

Subj. Wrist Thumb Index Middle Ring Little 

Training 

1 0.0108 0.0634 0.5291 0.2514 0.1791 0.1721 

2 0.0007 0.0024 0.2550 1.3505 0.2805 1.5714 

Validation 

1 0.1411 0.0036 0.0028 0.0003 0.0024 0.0061 

2 4.96 0.1113 0.0041 0.0050 0.0228 0.0535 

Table 4.  MSE errors of RFNN system 

Subj. Wrist Thumb Index Middle Ring Little 

Training 

1 0.0029 0.0003 0.003 0.001 0.0011 0.0016 

2 0.001 0.0008 0.0011 0.0032 0.0004 0.0016 

Validation 

1 0.0356 0.0005 0.0008 0.0002 0.0004 0.0045 

2 0.0136 0.0004 0.0126 0.0067 0.0005 0.0082 

4.3 Membership functions 

As described in the introduction section, FNNs have the 

ability to adjust membership function parameters to adapt 

them to the system. In this case, means and standard 

deviations of initially uniformly distributed Gaussian 

functions were adjusted in order to adapt to this specific case. 

This type of information can bring clues and knowledge 

about the system that is being analysed.  

Membership functions will tend to expand in order to wrap 

those values which lead to similar results, whereas they will 

tend to become narrower to differentiate between values that 

lead to distinct results. As an illustration, the resulting 10 

membership functions for each input after training with 

Subject 1 are shown in Fig. 9. For example, one of the 

membership functions that represent distal position has 

extended almost from elbow to middle forearm, which can 

mean that similar movements are achieved when any field 

located in this area is active. Lateral position shows similar 

behaviour on the extensors side. Conversely, membership 

functions that represent distal position from middle forearm 

to wrist and lateral position on the flexors side are slightly 

narrower. This fact tells us that Subject 1 has higher 

selectivity of FES induced movements on flexors than on 

extensors and, similarly, on the distal part of the forearm than 

on the proximal part of the forearm. In the case of stimulation 

amplitude, different membership functions tend to merge and 

become narrower around the motor threshold, whereas one of 

the membership function becomes very wide, representing 

the lack of movement that is common to these lower values. 

It should be noted that membership functions that represent 

amplitudes from 0 to 20mA (0-0.5) do not change because 

those values were not present in the data used for training.  

 

Fig. 9. Membership functions after training Subject 1. 

5.  DISCUSSION 

The aim of this paper was to suggest the use of fuzzy neural 

networks in the identification and modelling of FES 

applications, in particular those involving hand movements. 

Two approaches and two structures were tested and although 

wrist feedback structure showed worse results on the 

validation phase, in these preliminary results, all cases 

showed the ability to learn main characteristics from data 

recorded from subjects, at least on the training phase. The 

main advantage of the presented systems is the ability to 

extract combined physiological and stimulation features and 

to transform them into membership functions that can be 

interpreted in an easy manner. Like this, subject-specific 

models and knowledge can be acquired from a single data-

recording session, which can later be analysed or used as a 

support for the design of subject-specific neuroprostheses, 

design of control systems, simulations, etc. Additionally, it 

can be useful for visually and easily comparing inter-subject, 

inter-session or inter-pathology variability among others. 

Although this study has focused on hand movements, the 

presented approach could easily be adapted to elbow and 
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shoulder movements for FES reaching and grasping 

applications. 

These preliminary results show that fuzzy neural networks in 

combination with novel multi-field electrodes can be a 

promising branch that could help in the development of 

surface neuroprostheses. Future work should include a deeper 

analysis on the architecture, feedback approaches, parameter 

tuning and learning strategies and their effect into the 

different models’ performance. Next steps could also involve 

fatigue induced trials, and inter-session trials, to study the 

ability of the system to learn these dynamic properties. 
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