Iwasawa 5 and μ 5-invariants of a totally real cubic field with discriminant 1396

著者	TAYA Hisao	
journal or	Bulletin of Miyagi University of Education	
publication title		
volume	49	
page range	91-94	
year	2015-01-28	
URL	http://id.nii.ac.jp/1138/00000408/	

Iwasawa λ_5 and μ_5 -invariants of a totally real cubic field with discriminant 1396

* TAYA Hisao

Abstract

In this paper, we will treat a totally real non-cyclic cubic field k with discriminant $1396 = 2^2 \cdot 349$, which is unique up to isomorphism. Then the prime 5 splits completely in k. First we will introduce our previous results on Iwasawa invariants. And, by using these results, we will show that the Iwasawa λ_5 and μ_5 -invariants of k vanish.

Key words: Iwasawa invariants (岩澤不変量), totally real cubic fields (総実 3 次代数体), Z_p-extensions (Z_p-拡大) Mathematics Subject Classification. Primary 11R23; Secondary 11R16, 11R29.

1. Introduction

For a number field k and a prime number p, let k_{∞} be the cyclotomic \mathbb{Z}_p -extension of k with n-th layer k_n . Let A_n be the p-Sylow subgroup of the ideal class group of k_n . Then there exist integers λ , μ and v, depending only on k and p, such that $\#A_n = p^{\lambda n + \mu p^n + \nu}$ for sufficiently large n (cf. [Iw59], and also an excellent text book [Wa82]), where #G denotes the order of a finite group G. The integers $\lambda = \lambda_p(k)$, $\mu = \mu_p(k)$ and $v = v_p(k)$ are called the (cyclotomic) Iwasawa invariants of k for p. It is conjectured that both $\lambda_p(k)$ and $\mu_p(k)$ always vanish for any totally real number field k and any prime number p (cf. [Gr76], and also [Iw73]). This is called as Greenberg's conjecture. It is known by a theorem of Iwasawa [Iw56] that if p does not split in k and the class number of k is not divided by p, then Iwasawa $\lambda_p(k)$, $\mu_p(k)$ and $v_p(k)$ -invariants vanish. In particular, Greenberg's conjecture is valid for $k = \mathbb{Q}$, the field of rational numbers. Further, for any prime number p, it is shown by Ferrero and Washington [FW79] that the Iwasawa $\mu_p(k)$ -invariant always vanishes if k is an abelian number field, but it is not known yet for the Iwasawa $\lambda_p(k)$ -invariants of totally real number fields k, even if k has a low degree except when $k = \mathbb{Q}$.

Until now, several authors investigated Greenberg's conjecture in the case where k is a real abelian number field (cf. Greenberg [Gr76], Fukuda and Komatsu

^{*} Department of Mathematics, Miyagi University of Education

[FK86], Fukuda and the author [FT95], Ichimura and Sumida [IS96, IS97], Kraft and Schoof [KS97], Kurihara [Ku99], and the author [Ta96]). For instance, when p = 3, it is shown in [IS96] and [IS97] that the λ_3 -invariants of real quadratic fields $\mathbb{Q}(\sqrt{m})$ vanish for all positive integers m < 10,000. Also, Ono [On99] and Byeon [By01, By03] proved that, for any prime number $p \ge 5$, there are infinitely many real quadratic fields k with $\lambda_p(k) = \mu_p(k) = v_p(k) = 0$ by estimating the number of such k.

Concerning cubic fields, we gave some affirmative computational date for totally real cubic fields (including cyclic cubic fields) and p = 3 (cf. [Ta99a]), for cyclic cubic fields and p = 5, 7 (cf. [Ta99b]), in the case where a given prime p splits completely. In this paper, we will treat a totally real non-cyclic cubic field k with discriminant 1396 = $2^2 \cdot 349$, which is unique up to isomorphism. Then the prime 5 splits completely in k. First, we will recall our previous results (cf. [Gr76], [Ta99a]). After that, we will calculate the order of some subgroups of the intermediate fields of the cyclotomic \mathbb{Z}_5 -extension of k, and finally show by using the previous results that Iwasawa invariants λ_5 and μ_5 of k vanish.

2. Previous results

In this section, we will recall our previous results which we use in the next section. Let Γ be the Galois group of k_{∞} over k, and let A_n^{Γ} be the subgroup of A_n consisting of ideal classes which are invariant under the action of Γ , namely, A_n^{Γ} is the Γ -invariant part of A_n . Let v_p be the *p*-adic valuation normalized by $v_p(p)$ = 1. In the case where *p* splits completely in *k*, the following theorem, which is proved in [Ta99a], holds.

Theorem 2.1 Let k be a totally real number field and p an odd prime number. Assume that p splits completely in k and also that Leopoldt's conjecture is valid for k and p. Then, for every sufficiently large n,

$$#A_{n}^{\Gamma} = #A_{0} p^{\nu_{p}(R_{p}(k)) - [k:\mathbb{Q}]+1},$$

where $R_p(k)$ is the *p*-adic regulator of *k* and $[k : \mathbb{Q}]$ the degree of *k* over \mathbb{Q} .

Let D_n is the subgroup of A_n consisting of ideal classes represented by products of prime ideals of k_n lying above p. It is clear that $D_n \subset A_n^{\Gamma}$. By using Theorem 2.1, we obtain the following alternative formulation of a theorem of Greenberg [Gr76, Theorem 2] on the vanishing of the Iwasawa invariants.

Theorem 2.2 Let k be a totally real number field and p an odd prime number. Assume that p splits completely in k and also that Leopoldt's conjecture is valid for k and p. Then the following conditions are equivalent:

(1)
$$\lambda_p(k) = \mu_p(k) = 0,$$

(2) $D_n = \#A_0 p^{\nu_p (R_p(k)) - [k:\mathbb{Q}]+1}$ for some $n \ge 0$

In particular, if $v_p(R_p) = [k : \mathbb{Q}] - 1$ and if $A_0 = D_0$, then $\lambda_p(k) = \mu_p(k) = 0$.

3. Example

In this section, we will study a totally real cubic field k defined by $f(x) = x^3 - x^2 - 7x + 5$, which is a non-Galois extension over \mathbb{Q} (i.e., the Galois group of its Galois closure is the symmetric group of degree 3). This k is unique up to isomorphism, and also the prime 5 splits completely in k. Our purpose is to show that $\lambda_5(k) = \mu_5(k) = 0$ by applying Theorems 2.1 and 2.2.

Our computation has been carried out by means of excellent number theoretic calculator packages "KASH 3" [KASH3] and "GP/PARI Ver.2.7.0" [PARI2]. Also, we use the polynomials generating totally real cubic fields in a table made by M. Olivier, which is available at the site of "GP/PARI". Note that most of the previous effective methods to verify Greenberg's conjecture have been developed in the case where p is an odd prime number and k is a real abelian number field such that $[k : \mathbb{Q}]$ divides p - 1 (cf. [Gr76], [FK86], [FT95], [IS96], [IS97], [KS97]). Now, we will give computational data of the total real cubic field k in which p = 5 splits completely, and show that $\lambda_5(k) = \mu_5(k) = 0$. Note that this k is the only one example such that k is a non-Galois cubic extension with p = 5 splitting completely and with discriminant less than 2000.

Example 3.1 Let *k* be a totally real cubic field defined by $f(x) = x^3 - x^2 - 7x + 5$ which is unique up to isomorphism. Then the discriminant of *k* is 1396 = 2^2 . 349 and p = 5 splits completely in *k*. Let θ be a root of f(x) = 0 and θ' one of its conjugates. By using KASH 3, we see that a system of fundamental units of *k* is

$$\{4-7\theta+2\theta^2, 8-\theta^2\}$$

and the class number of k is 1. Put $\varepsilon_1 = 4 - 7\theta + 2\theta^2$ and $\varepsilon_2 = 8 - \theta^2$. Further, put $\varepsilon'_1 = 4 - 7\theta' + 2{\theta'}^2$ and $\varepsilon'_2 = 8 - {\theta'}^2$, which are conjugates of ε_1 and ε_2 respectively. Since we may take the following values as θ and θ' (other pairs are possible and we obtain the same conclusion on the order of A_n^{Γ} and D_n for any other pairs):

$$\theta \equiv 177579 \pmod{5^{10}},$$

 $\theta' \equiv 734132 \pmod{5^{10}},$

we obtain

$$\begin{split} \epsilon_1 &\equiv 953183 \pmod{5^{10}}, \\ \epsilon_2 &\equiv 8667517 \pmod{5^{10}}, \\ \epsilon'_1 &\equiv 3822928 \pmod{5^{10}}, \\ \epsilon'_2 &\equiv 5284709 \pmod{5^{10}}. \end{split}$$

Taking the 5-adic logarithms of these, we get

$\log_5 \varepsilon_1$	≡	8024605	$(mod 5^{10}),$
$\log_5 \varepsilon_2$	\equiv	2861705	$(mod 5^{10}),$
$\log_5 \varepsilon_1'$	\equiv	5566195	$(mod 5^{10}),$
$\log_5 \varepsilon'_2$	\equiv	4923115	$(mod 5^{10}).$

Hence it follows that

$$R_5(k) \equiv 4 \cdot 5^2 \pmod{5^3}$$

Thus, we have $v_5(R_5(k)) = 2$. In particular, Leopoldt's conjecture is valid in this case. Now, by Theorem 2.1, we obtain

$$#A_n^{\Gamma} = #A_0 \cdot 5^{\nu_s (R_s(k)) - [k:\mathbb{Q}]+1} = 1$$

for all integers $n \ge 0$, which implies that $\#D_n = 1$ for all integers $n \ge 0$. Hence it follows from Theorem 2.2 that $\lambda_5(k) = \mu_5(k) = 0$.

References

- [By01] D. Byeon, Indivisibility of class numbers and Iwasawa λ-invariants of real quadratic fields, Compositio Math. 126 (2001), 249-256.
- [By03] D. Byeon, Existence of certain fundamental discriminants and class numbers of real quadratic fields, J. Number Theory 98 (2003), 432-437.
- [FW79] B. Ferrero, and L. C. Washington, *The Iwasawa invariant*, μ_p vanishes for abelian number fields, Ann. of Math. 109 (1979), 377-395.
- [FK86] T. Fukuda and K. Komatsu, On \mathbb{Z}_p -extensions of real quadratic fields, J. Math. Soc. Japan 38 (1986), 95-102.
- [FT95] T. Fukuda and H. Taya, The Iwasawa λ -invariants of \mathbb{Z}_p -extensions of real quadratic fields, Acta Arith. **69** (1995), 277-292.
- [Gr76] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
- [IS96] H. Ichimura and H. Sumida, On the Iwasawa λ-invariants of certain real abelian fields II, International J. Math. 7 (1996), 721-744.
- [IS97] H. Ichimura and H. Sumida, On the Iwasawa λ-invariants of certain real abelian fields, Tohoku Math. J. 49 (1997), 203-215.
- [Iw56] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Hamburg 20 (1956), 257-258.
- [Iw59] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183-226.
- [Iw73] K. Iwasawa, On \mathbb{Z}_i -extensions of algebraic number fields, Ann. of Math. **98** (1973), 246-326.

- [KASH3] The KANT Group, KANT/KASH 3, Berlin, 2005, http://page.math.tu-berlin.de/~kant/kash.html.
- [KS97] J. S. Kraft and R. Schoof, Computing Iwasawa modules of real quadratic number fields, Compositio Math. 97 (1995), 135-155.
- [Ku99] M. Kurihara, The Iwasawa λ-invariants of real abelian fields and the cyclotomic elements, Tokyo J. Math. 22 (1999), 259-277.
- [On99] K. Ono, Indivisibility of class numbers of real quadratic fields, Compositio Math. 119 (1999), 1-11.
- [PARI2] The PARI Group, PARI/GP version 2.7.0, Bordeaux, 2014, http://pari.math.u-bordeaux.fr/.
- [Ta96] H. Taya, On cyclotomic \mathbb{Z}_p -extensions of real quadratic fields, Acta Arith. **74** (1996), 107-119.
- [Ta99a] H. Taya, On p-adic L-functions and Z_p-extensions of certain totally real number fields, Tohoku Math. J. 51, (1999), 21-33.
- [Ta99b] H. Taya, On p-adic L-functions and Z_p-extensions of certain real abelian number fields, Journal of Number Theory 75, (1999), 170-184.
- [Wa82] L. C. Washington, "Introduction to Cyclotomic Fields", Graduate Texts in Math. Vol. 83, Springer-Verlag, New York, Heidelberg, Berlin 1982, Second Edition 1997.

(平成26年9月30日 受理)