19

-研究ノート-Scientific Note

南大洋インド洋区で採集された NORPAC ネット標本における 動物プランクトン湿重量の再評価

鵜飼由紀子¹・高橋邦夫^{2,3}・福地光男²・谷村 篤^{2,3*}

Revaluation of zooplankton wet weight data of the NORPAC net samples collected in the Indian sector of the Southern Ocean

Yukiko Ukai¹, Kunio T. Takahashi^{2,3}, Mitsuo Fukuchi² and Atsushi Tanimura^{2,3*}

(2013年11月20日受付; 2013年12月13日受理)

Abstract: The Japanese Antarctic Research Expedition (JARE) has been conducting routine observations of zooplankton in the Indian Ocean sector of the Southern Ocean with standard NORPAC nets (mesh size: $330 \,\mu$ m and $100 \,\mu$ m) every austral summer since the 1972/73 season (JARE-14). We used a new processing method to measure the wet weight of the zooplankton only because the effect of the inclusion of phytoplankton on the wet weight has been problem in previous studies. The repeated-measurement made in this study show that 26.7 % of the total wet weight of the samples that were collected with 330 μ m (targeting zooplankton) was attributable to phytoplankton. We have thus demonstrated that previous reports have overestimated the wet weight of zooplankton by approximately 30 %. Furthermore, when we compared the wet weights caught with the 330 μ m and 100 μ m nets, they did not differ significantly for zooplankton greater than 10 mm, whereas the wet weights of small sized zooplankton less than 10 mm caught with 100 μ m nets were approximately two-fold greater than those caught with 330 μ m nets.

要旨: 日本南極地域観測隊 (JARE) による長期モニタリング観測の一環とし て40年以上に渡り継続して実施している,NORPACネットによる動物プランク トン標本の湿重量値の再評価を行った.これまで報告されてきた湿重量値は植物 プランクトンの混入による影響が問題視されてきたため、動物プランクトンのみ を計測する標本精査を実施した.動物相をターゲットにした目合い 330 μm で採集 された動物プランクトン標本においては,総湿重量の 26.7%が混入した植物プラ ンクトンであり,これまでの報告値は約3割程度の過大評価であったことが明ら かとなった.また 330 μm と 100 μm の両ネット地間での湿重量を比較すると, 10 mm 以上の動物プランクトンでは有意な差が見られず,一方で 10 mm 未満の動 物プランクトンでは, 100 μm により採集された標本が 330 μm で採集されたもの の約2倍であることが明らかとなった.本研究で実施した標本の精査方法により,

南極資料, Vol. 58, No. 1, 19-41, 2014 Nankyoku Shiryô (Antarctic Record), Vol. 58, No. 1, 19-41, 2014 © 2014 National Institute of Polar Research

¹ 三重大学. Mie University, 1577, Kurimamachiya-cho, Tsu-shi, Mie 514-8507.

² 情報・システム研究機構国立極地研究所. National Institute of Polar Research, Research Organization of Information and Systems, Midori-cho 10–3, Tachikawa, Tokyo 190-8518.

³ 総合研究大学院大学複合科学研究科極域科学専攻. Department of Polar Science, School of Multidisciplinary Sciences, The Graduate University for Advanced Studies (SOKENDAI), Midori-cho 10-3, Tachikawa, Tokyo 190-8518.

^{*} Corresponding author. E-mail: tanimura.atsushi@nipr.ac.jp

植物プランクトンの混入による影響の除外,例外的に高い湿重量値をもたらした 大型動物プランクトンの原因種の特定,1mm以下の小型動物プランクトンの生物 量の評価が可能となった.植物プランクトンの混在する標本間において,混入割 合に大きなバラつきが生じていることから,将来的には全標本を精査し,再度湿 重量を測りなおす必要があると考えられた.

1. はじめに

日本南極地域観測隊(JARE: Japanese Antarctic Research Expedition,以下,JARE と呼ぶ) では、長期モニタリング観測の一環として、動物プランクトンに焦点を当てた定常的な採集 を 40 年以上に渡り継続して実施している.JARE の南極観測船が航行する南大洋インド洋 区をフィールドとした NORPAC ネット(NORth PACific standard net:北太平洋標準ネット) を用いた観測である.NORPAC ネットでの観測は第 14 次隊(1972/73 年)より開始され、 これまでに 1200 を超える標本を採集してきた.目合い 330 µm と 100 µm のネットを装着し た双子(ツイン)型のフレームを用いることで、それぞれ動物相と植物相をターゲットにし た採集を同時に行ってきた.第 29 次隊(1987/88 年)からは昭和基地へ向かい 12 月に南下 する 110°E ライン、および帰路で 3 月に北上する 150°E ラインが航路として固定されたため、 毎年同じ時期に同じ観測点での標本採集が可能となった.このような長期間に及ぶ低次生産 者を扱ったモニタリングでは、世界でも希少な標本とデータを蓄積している.

動物プランクトンの生物量を示す一般的な方法の一つに湿重量(Wet weight)がある.湿 重量は水分を含んだ動物プランクトンの重さであり,採集された動物プランクトンを濾過し, 周りについた水分を充分に取り除いてから重さを測定する.これまでに第14次隊から第49 次隊(2007/08年)までの全標本の湿重量データが報告されている(Fukuchi and Tanimura, 1981: Watanabe *et al.*, 1984: Takahashi *et al.*, 1997; Sawabe *et al.*, 2005; Takahashi *et al.*, 2008).

JARE における湿重量の測定は毎回同一の方法で処理測定されてきた.すなわち,鉛直採 集によって得られた試料は,船上でただちにホルマリンで固定し暗所で保存した.日本に持 ち帰った標本は国立極地研究所において,プランクトン分割器を用いて2分割し,原則とし て一方を湿重量測定標本とし,もう一方を保存標本とした.ただし,試料が極めて多い場合 には,さらに分割した後に重量の測定に供した.湿重量の測定は,あらかじめ重量を測定し たグラスファイバーフィルター (GFF または GFC)で,試料を吸引濾過したのち,水分を 充分に取り除いてから電子天秤を用いて秤量した.なお,湿重量の測定は,国内に持ち帰っ た後1年以内に行った.こうして得られた約20年分の標本の湿重量データの一次解析結果 によって,動物プランクトンの分布特性は,海氷の広がりや海流などの物理的過程と関連し た,4年から6年周期の変動がある可能性が示唆されている(Takahashi *et al.*,1998).

しかしながら、湿重量は採集時に植物プランクトンやデトリタスがネットに入ってこない という前提で評価する数値である.南大洋において大型の群体をつくる植物プランクトン(特 に珪藻類)が優占する海域では、動物相を対象とした 330 µm サイズのネットにおいても大 量の植物プランクトンが混入してしまう. このような標本から植物プランクトンのみを取り 除く,あるいは動物プランクトン,特に1mm以下の小型種のみを取り上げることは極めて 困難である. そのため,これまでの動物プランクトンの湿重量の値は,植物プランクトンを 含めた湿重量で評価されてきたのが現状である. さらには多くの動物プランクトンはパッチ 状分布であるため,南極海ではしばしば優占する大型種のオキアミ類やヨコエビ類,さらに はサルパ類をはじめとするゼラチン質の動物プランクトンが大量に採集されることで,同観 測点で同時に採られた標本間においても,湿重量に大きなバラつきが生じていることが指摘 されてきた.

本研究では、はじめに植物プランクトンを除いた動物プランクトンのみの湿重量の測定を 目指し、標本を精査することを試みた. さらには大型動物プランクトン分類群ごとの湿重量 計測を実施した.得られた値を用いて過去に報告されている湿重量値を再評価するとともに、 近年採集された 330 µm と 100 µm の試料を同方法で精査することで、双方の目合いのネッ トにおける動物プランクトン採集相の差異を評価することを目的とした.

2. 材料及び方法

2.1. 標本セット

湿重量の精査は以下の2つの標本セットを用いて実施した.

1) 湿重量値の再評価:すでに湿重量(植物プランクトンを含む)が報告されている,第 14 次隊から第48 次隊(2006/07 年)の間に採集された,330 μ mのネット標本38 本を用い て湿重量を精査した(表1).すべての標本は12 月に JARE の南極観測船が110°E 付近を南 下する航路(44°31'S~60°26'S)で採集された.第14 次隊の4 観測点は0-200 m,それ以外 はおよそ0-150 mの鉛直 $\hat{\emptyset}$ きにより採集した.標本は実験室で1/2 に分割し,片方は湿重量 を測定してすでに報告されている.保存されていたもう片方の標本を用いて2.2.に示す精査 手順に従って精査を行い,再度湿重量を求め,さらには種同定・計数を行った.なお,動物 プランクトンの総湿重量に加えて,植物プランクトンの湿重量も測定した.

2) 330 µm と 100 µm の比較:第 50 次隊(2009/10 年)から第 54 次隊(2013/14 年)の5 年間に,往路の110°Eを南下する航路(40-60°S),復路の150°Eを北上する航路(64-45°S) で採集された標本96本(各ネット地48標本)を用いた(表 2).ただし第 50 次隊では,往 路は1月初旬,復路は2月中旬に採集を実施した.また第 53 次隊(2012/13 年)の復路は3 月に110°Eを北上した航路にて採集した標本を用いた.2.2.で示す精査手順に従って,動物 プランクトンの総湿重量を測定した.

Cruise	Station number	Ship's (LN	s time /IT)	Pos	ition	Sampling depth (m)	Estimated volume of water
	-	Date	time in	Latitude (S)	Longitude (E)		filtered (m ³)
JARE-14	5	Dec. 21	0841	48°51'S	104°4 7 'E	200	35.90
	6	Dec. 22	0850	52°56'S	104°51'E	207	35.30
	7	Dec. 23	0920	57°29'S	104°38'E	215	37.60
	8	Dec. 24	0830	60°26'S	101°57'E	204	36.60
JARE-17	3	Dec. 21	0900	49°10'S	106°53'E	150	31.79
	4	Dec. 22	0900	52°27'S	103°00'E	150	31.79
	5	Dec. 23	0900	57°00'S	101°45'E	150	31.79
JARE-18	4	Dec. 23	0820	57°43'S	102°26'E	123	23.85
JARE-29	2	Dec. 6	-	46°40'S	110°05'E	149	24.86
	3	Dec. 7	-	51°22'S	109°56'E	150	23.84
	4	Dec. 8	-	55°35'S	108°53'E	130	37.56
JARE-30	2	Dec. 6	-	45°36'S	110°01'E	150	31.79
	3	Dec. 7	-	50°44'S	110°00'E	150	31.79
	4	Dec. 8	-	55°13'S	109°07'E	150	31.79
JARE-32	2	Dec. 6	1515	44°38'S	110°03'E	159	29.47
	3	Dec. 7	1529	49°37'S	109°56'E	148	39.77
	4	Dec. 8	0610	54°29'S	109°56'E	141	68.47
JARE-34	4	Dec. 8	1524	55°00'S	10 7 °30'E	150	33.62
JARE-35	3	Dec. 7	1300	49°45'S	109°24'E	150	41.27
	4	Dec. 8	1200	54°40'S	109°50'E	150	31.25
JARE-36	2	Dec. 6	1205	45°27'S	109°54'E	150	72.16
	4	Dec. 8	1520	55°23'S	106°33'E	150	33.62
	5	Dec. 9	1155	59°11'S	100°40'E	150	75.98
JARE-38	3	Dec. 8	1212	52°19'S	110°02'E	150	28.86
JARE-40	4	Dec. 8	1438	58°01'S	110°01'E	150	48.31
	5	Dec. 9	0835	59°59'S	103°54'E	150	31.63
JARE-41	3	Dec. 7	1427	50°31'S	109°58'E	150	50.48
	4	Dec. 8	1419	55°04'S	109°59'E	150	60.17
JARE-42	2	Dec. 6	1404	46°40'S	110°04'E	150	64.03
	3	Dec. 7	1405	51°33'S	110°04'E	150	29.34
JARE-44	2	Dec. 6	1400	44°31'S	110°01'E	150	85.11
	3	Dec. 7	1400	49°18'S	109°53'E	150	47.04
JARE-45	2	Dec. 6	1317	46°09'S	110°02'E	150	60.04
	3	Dec. 7	1343	50°35'S	110°01'E	150	31.44
	4	Dec. 8	1255	55°28'S	109°21'E	150	38,23
JARE-46	2	Dec. 6	1321	45°46'S	110°02'E	150	36.45
	3	Dec. 7	1420	50°48'S	110°06'E	150	76.24
JARE-48	2	Dec. 7	1300	45°04'S	109°55'E	150	40.86

表 1 第 14 次隊~第 48 次隊における NORPAC ネットのサンプリング情報 *Table 1. Sampling information of NORPAC net tows from JARE-14 to JARE-48.*

Cruise	Station	Ship's	time	Pos	sition	Sampling	Estimated
	number	(LN	4T)			depth (m)	volume of water
		Date	time in	Latitude (S)	Longitude (E)		filtered (m ³)
JARE-50	1	Jan. 1	1305	39°02'S	110°43'E	150	32.2
	2	Jan. 2	1140	43°26'S	110°00'E	150	35.7
	3	Jan. 3	1125	47°33'S	109°59'E	150	24.8
	4	Jan. 4	1052	51°57'S	110°05'E	150	25.2
	5	Jan. 5	1110	56°06'S	109°58'E	150	37.5
	6	Jan. 6	1121	59°59'S	109°59'E	150	22.3
	7	Feb. 15	1119	62°04'S	149°35'E	159	31.5
	8	Feb. 16	1106	58°07'S	149°46'E	161	25.1
	9	Feb. 17	1051	54°04'S	150°07'E	159	25.9
	10	Feb. 18	1036	49°49'S	150°03'E	154	35.4
	11	Feb. 19	1036	46°00'S	150°01'E	158	25.3
JARE-51	LI	Dec . 1	0906	40°50'S	109°57'E	150	59.5
	L2	Dec. 2	0752	45°52'S	110°01'E	150	32.8
	L3	Dec. 3	0749	50°54'S	110°06'E	150	58.5
	L4	Dec. 4	0857	55°34'S	108°41'E	150	40.8
	L5	Dec. 5	0747	59°20'S	108°41'E	150	108.9
	L6	Mar. 7	0858	64°07'S	149°41'E	150	87.5
	L7	Mar. 9	0859	60°13'S	149°50'E	150	114.9
	L10	Mar. 13	1551	44°56'S	152°11'E	150	65.7
JARE-52	LI	Dec. 2	0832	40°24'S	110°10'E	150	33.5
	L2	Dec. 3	0832	45°11'S	110°00'E	150	25.4
	L3	Dec. 4	0835	50°35'S	110°01'E	150	25.4
	L4	Dec. 5	0841	54°53'S	110°00'E	150	27.1
	L5	Dec. 6	1445	60°01'S	110°00'E	150	41.2
	L6	Mar. 10	0651	63°04'S	149°49'E	150	96.9
	L7	Mar. 11	1653	60°53'S	149°50'E	150	49.9
	L8	Mar. 12	1749	56°00'S	150°03'E	150	65.8
	L9	Mar. 13	1540	50°57'S	150°11'E	150	46.4
	L10	Mar. 14	1553	45°48'S	151°59'E	150	91.6
JARE-53	L01	Dec. 2	1628	39°23'S	110°34'E	150	68.4
	L02	Dec. 3	1422	44°20'S	110°29'E	150	94.8
	L03	Dec. 4	1415	49°50'S	110°06'E	150	41.2
	L04	Dec. 5	1427	54°58'S	110°04'E	150	41.6
	L05	Dec. 6	1342	59°35'S	110°00'E	150	52.4
	L05'	Mar. 10	1336	59°33'S	109°58'E	150	43.2
	L04'	Mar. 11	0802	55°43'S	109°59'E	150	38.7
	L03'	Mar. 12	0825	50°10'S	110°04'E	150	49.4
	L02'	Mar. 13	0815	44°35'S	110°00'E	150	32.1
	L01'	Mar. 14	0821	39°32'S	110°18'E	150	28.1
JARE-54	L01	Dec. 2	0856	40°39'S	110°02'E	150	44.8
	L02	Dec. 3	0849	45°33'S	110°02'E	150	34.9
	L03	Dec. 4	0938	50°34'S	110°02'E	150	87.0
	L04	Dec. 5	0846	55°27'S	109°58'E	150	25.6
	L05	Dec. 6	0846	60°49'S	110°03'E	150	28.0
	L06	Mar. 9	0858	63°10'S	149°14'E	150	64.7
	L08	Mar. 12	1547	55°56'S	150°02'E	150	42.9
	L09	Mar. 13	0904	49°13'S	150°28'E	150	91.3
	L10	Mar. 14	0846	45°08'S	152°27'E	150	35.8

表 2 第 50 次隊~第 54 次隊における NORPAC ネットのサンプリング情報 *Table 2. Sampling information of NORPAC net tows from JARE-50 to JARE-54.*

図 1 本研究で実施した NORPAC ネット標本の精査手順 Fig. 1. Procedure used to measure wet weight of NORPAC net samples in this study.

2.2. 標本の精査

NORPAC ネット標本の採集は、330 µm 目合いおよび 100 µm 目合いのネットを装着した 双子 (ツイン)型のフレーム (口径 45 cm)を用いて、原則として水深 150 m から鉛直方向 に 1 m/s の速度で引き揚げることにより行った. 濾水量はネットフレームに取り付けられた 流量計により算出した.得られたサンプルは、直ちに船上で 5-10%のホルマリン海水で固 定し保存した.

標本の精査は以下に記す手順 1-5 に従って実施した(図 1).

手順1)標本から10mm以上の大型動物プランクトンをソーティングし,網レベルにまで 分類した.出現種は12分類群に区分し,分類群ごとに個体数を計数したのち,湿重量を測 定した.

手順 2) 残った 10 mm 未満の動物プランクトンについて、分割器を用いて適当な量に分割

したのち,分割した標本を用いてソーティングを行い,種同定・計数を実施した.その後, 分類群毎に湿重量を測定した.なお,10mm 未満の動物プランクトン標本の分割量は,ソー トされた動物プランクトンの総湿重量が最低10mg となるのを目安とした.

手順3)植物プランクトンの混入が激しく、ソーティングが困難な1mm以下の動物プラ ンクトンは換算式を用いて湿重量を算出した(表3).有孔虫や繊毛虫、卵といった楕円体 の形状をしている種は、比重を1と仮定して体積から湿重量を算出した.また、有鐘繊毛虫 やカメガイ科に属する円錐体の種類も同様に、比重を1と仮定して体積から求めた.体長— 湿重量換算式が報告されているヨコエビ類は、体長を測定したのち、換算式により湿重量を 測定した.カイアシ類をはじめとする多くの分類群では、乾燥重量—湿重量換算式が確立さ れているため、体長を測定したのち、体長—乾燥重量換算式により乾燥重量を算出してから、 乾燥重量—湿重量換算式により湿重量を導いた.カイアシ類やオキアミ類のノープリウス幼 生、また尾虫類では体長—炭素重量換算式を用いて炭素重量を、炭素重量を用いて乾燥重量 を求めたのち、湿重量を算出した.

手順4) 手順 1-3 で求めた, 10 mm 以上の動物プランクトン湿重量, 10 mm 未満の動物プ ランクトン湿重量, および 1 mm 以下の湿重量を合計して動物プランクトンの総湿重量とし た.

手順5)一部の試料においては、分割したのち、動物およびその破片や糞粒など、動物由 来のデトライタス状のものを注意深く取り除いた残りについて、凝集して塊となった集合体 をピンセットやピペットで集めてフィルター上に集め、水分を切って重量を測定した.本研 究ではこれを植物プランクトン湿重量とした.

2.3. データ解析

湿重量の平均値は±標準偏差の形で示した.平均値の差の比較は Tukey's test を用いて検 定を行い,有意水準 (*p*) は 0.05 とした.

表3 動物プランクトンの湿

	20.0	3010 / / • /	1 * * * / 12
CW: 炭素重量,	DW: 乾燥重量,	WW: 湿重量,	L: 体長

Category	Species/taxa and/or Form	Developmental stage	Conversion factors of wet weight	
Saroomastigophora	Foraminiferida, Actinopodea, Acantharia		WW $(\mu g) = ((3.14*BW (\mu m)^{2}*L (\mu m))/6)*10^{-6}$	[1]
	Tintinnid Ciliate		WW (μ g)=((3.14*BW (μ m) ² *L (μ m))/12)*10 ⁻⁶	[2]
Arthropoda Chaetognatha	Ciliate		WW (μ g)=((3.14*BW (μ m) ² *L (μ m))/6)*10 ⁻⁶	[1]
11	BH/BD≧1		WW $(\mu g) = DW (\mu g)/0.040$	[3]
Hydorozoa	BH/BD<1		www $(\mu g) = Dw (\mu g)/0.040$ [3] WW $(\mu g) = DW (\mu g)/0.043$ [3] WW $(\mu g) = DW (\mu g)/0.125$ [3] WW $(\mu g) = DW (\mu g)/0.256$ [3] WW $(\mu g) = DW (\mu g)/0.097$ [3] WW $(\mu g) = DW (\mu g)/0.182$ [3] Copeodite WW $(\mu g) = DW (\mu g)/0.135$ [3] Copeodite WW $(\mu g) = DW (\mu g)/0.135$ [3] Copeodite WW $(\mu g) = DW (\mu g)/0.135$ [3] Copeodite WW $(\mu g) = DW (\mu g)/0.135$ [3] Copeodite WW $(\mu g) = DW (\mu g)/0.135$ [3] Copeodite WW $(\mu g) = DW (\mu g)/0.135$ [3] copeodite WW $(\mu g) = DW (\mu g)/0.135$ [3] s WW $(\mu g) = DW (\mu g)/0.135$ [3] s WW $(\mu g) = DW (\mu g)/0.182$ [3] uplifi WW $(\mu g) = DW (\mu g)/0.182$ [3] uplifi WW $(\mu g) = DW (\mu g)/0.182$ [3] uplifi WW $(\mu g) = DW (\mu g)/0.182$ [3] uplifi WW $(\mu g) = DW $	
Rotifera	Rotifera		WW $(\mu g) = DW (\mu g)/0.125$	[3]
	Thecosomata, Gastropoda larvae		WW $(\mu g) = DW (\mu g)/0.256$	[3]
Mollusca	Cavolinidae (Cone)		WW (μ g)=((3.14*BW (μ m) ² *L (μ m))/12)*10 ⁻⁶	[2]
	Bivalve	Larvae	WW $(\mu g) = DW (\mu g)/0.256$	[3]
Annelida	Polychaeta	Larvae	WW (μ g)=DW (μ g)/0.097	[3]
	Ostracoda		WW $(\mu g) = DW (\mu g)/0.182$	[3]
	Copepoda: Calanoida	Adult, Copeodite	WW $(\mu g) = DW (\mu g)/0.135$	[3]
	Copepoda: Cyclopoida	Adult, Copeodite	WW $(\mu g) = DW (\mu g)/0.135$	[3]
	Copepoda: Microsetella	Adult, Copeodite	WW $(\mu g) = DW (\mu g)/0.135$	[3]
	Copepoda: Corycaeus	Adult, Copeodite	WW $(\mu g) = DW (\mu g)/0.135$	[3]
	Copepoda: Oncaea	Adult, Copeodite	WW $(\mu g) = DW (\mu g)/0.135$	[3]
	Copepoda: Others	Adult, Copeodite	WW $(\mu g) = DW (\mu g)/0.135$	[3]
Arthropoda	Copepoda: Eucalanoidae	Nauplius	WW $(\mu g) = DW (\mu g)/0.135$	[3]
	Copepoda	Other nauplii	WW $(\mu g) = DW (\mu g)/0.135$	[3]
	Ciminadia	Cypris	WW $(\mu g) = DW (\mu g)/0.182$	[3]
	Cimpedia	Nauplius	WW $(\mu g) = DW (\mu g)/0.182$	[3]
	Amphipoda		$\log WW (mg) = -1.517 + 2.832 \log L (mm)$	[8]
	Euphausiacea	Calyptopis, Furcilia, Adult	WW $(\mu g) = DW (\mu g)/0.159$	
		Nauplius	WW $(\mu g) = DW (\mu g)/0.159$	[3]
Chaetognatha	-		WW $(\mu g) = DW (\mu g)/0.068$	[3]
Chaudata	Doliolida, Salpida		WW $(\mu g) = DW (\mu g)/0.050$	[4]
	Appendiculata		WW (μ g) = DW (μ g)/0.050	[4]
Others Larvae		including eggs	WW (μ g)=((3.14*BW (μ m) ² *L (μ m))/6)*10 ⁻⁶	[1]

Table 3. Conversion factors between Carbon weight (CW), Dry weight (DW), Wet weight (WW), Body length (L),

[1]: Wet weight was calculated from the volume of the ellipsoid body (Specific gravity = 1). [2]: Wet weight was calculated from the (1996). [7]: Sato et al. (2001). [8]: Ikeda (1990). [9]: Ikeda and Imamura (1996). [10]: Dumont et al. (1975). [11]: Iguchi and Ikeda

3. 結果と考察

3.1. 湿重量値の再評価

第 14 次隊から第 48 次隊において 330 µm のネットで採集された 38 標本を精査し, さらに は植物プランクトンの湿重量を測定した結果を表 4 に示した. 10 mm 以上の動物プランクト ンは線虫類 (Nematods), ヒドロ虫類 (Hydrozoans), 腹足類 (Gastropods), 頭足類 (Cephalopods), 多毛類 (Polychaetes), ヨコエビ類 (Amphipods), オキアミ類 (Euphausiids), 十脚類 (Decapods), 毛顎類 (Chaetognaths), サルパ類 (Salps), 魚類 (Fishies) の 11 分類群が出現した. 全身が 重量測定に用いた換算式一覧 BH: 傘高, BD: 傘径, SL: 殻長, TL: 躯幹長, BW: 体幅 Bell height (BH), Bell diameter (BD), Shell length (SL), Trunk length (TL) and Body width (BW) used in this study.

			_
Conversion factors of dry weight		Conversion factors of carbon weight	
logDW (mg)=-2.333+1.268logBH (mm)+1.125(logBH (mm))^2	[9]		
$\log DW (\mu g) = -7.67 + 2.75 \log BD (\mu m)$	[5]		
DW $(\mu g) = 8.83 \times 10^{-5} \text{ L} (\mu m)^{-1.14}$	[10]		
$\log DW (\mu g) = -5.10 + 2.46 \log SL (\mu m)$	[5]		
	[6]		
$\log DW(\mu g) = -2.70 + 1.4/\log L(\mu m)$	[5]		
$\log DW(\mu g) = -5.68 + 2.10 \log L(\mu m)$	[5]		
$\log DW(\mu g) = -13.77 + 4.99 \log SL(\mu m)$	[5]		
$\log DW (\mu g) = -9.59 + 3.41 \log L (\mu m)$	[5]		
$\log DW (\mu g) = -6.05 + 2.10 \log L (\mu m)$	[5]		
$\log DW (\mu g) = -7.59 + 2.88 \log L (\mu m)$	[5]		
$\log DW (\mu g) = -6.45 + 2.43 \log L (\mu m)$	[5]		
$\log DW (\mu g) = -5.59 + 2.25 \log L (\mu m)$	[5]		
$\log DW (\mu g) = -9.07 + 3.26 \log L (\mu m)$	[5]		
$\log DW (\mu g) = -9.59 + 3.41 \log L (\mu m)$	[5]		
DW $(\mu g) = CW (\mu g)/0.457$	[5]	CW (ng) = $1.51*10^{-5*L} (\mu m)^{2.94}$	[6]
$\log DW (\mu g) = -13.77 + 4.99 \log SL (\mu m)$	[5]		
$\log DW(\mu g) = -6.54 + 2.65 \log L(\mu m)$	[5]		
DW (mg)=9.954*10^-4*L (mm)^3.156	[11]		
$DW(\mu g) = CW(\mu g)/0.407$	[5]	CW (ng) = $1.51*10^{-5*L} (\mu m)^{2.94}$	[6]
$\log DW(\mu g) = -0.553 + 2.79 \log L (mm)$	[5]		
$\log DW (\mu g) = -6.94 + 2.54 \log L (\mu m)$	[5]		_
DW $(\mu g) = CW (\mu g)/0.442$	[5]	$\log CW (\mu g) = -7.58 + 2.83 \log TL (\mu m)$	[7]

volume of the cone (Specific gravity = 1). [3]: Beers (1966). [4]: Ikeda (1970). [5]: 日本海洋学会 (1986). [6]: Uye et al. (1999).

矢のように細長い形状をしている毛顎類は, すべての観測点で 10 mm 以上の個体が出現していた. 次いでオキアミ類が 20 観測点, ヨコエビ類が 15 観測点と出現頻度が高かった. 一方で, 腹足類は第 41 次隊の Stn. 3 でのみ出現し, 線虫類と十脚類は第 46 次隊の Stn. 2 のみで観測された. またヒドロ虫類においては, 出現頻度は 4 観測点と低かったが, 第 32 次隊の Stn. 3 と第 34 次隊の Stn. 4 において高い湿重量値が観測された.

動物プランクトンの湿重量は10mm以上が平均9.0±10.2 (mg/m³), 10mm 未満が90.3± 77.2 (mg/m³) であった. このことから, 動物プランクトンの総湿重量における10mm以上

E類,C	Ga: 腹瓦	麦 4 第 14 次隊~第 48 次隊における 330 µm 標本の湿重量	≧類, Ce:頭足類, Po:多毛類, Am: ヨコエビ類, Eu: オキアミ類, De: 十脚類, Ch:毛顎類, Sa: サルパ類, Fi:魚類	Table 4 Wet weight of 330 um samules from 14RE-14 to 14RE-48
	Ga: 腹足類, C	表4 第14次隊	e: 頭足類, Po: 多毛	Table 4 Wet weigh
Iy:ヒドロ虫類,			Ne: 線虫類, H	

Table 4. Wet weight of 330 μm samples from JARE-14 to JARE-48. Ne: Nematods, Hy: Hydrozoans, Ga: Gastropods, Ce: Cephalopods, Po: Polychaetes, Am: Amphipods, Eu: Euphausiids, De: Decapods, Ch: Chaetognaths, Sa: Salps, Fi: Fishies.

Cruise	Station	wel weight			VY C1 V	יט וונצוטע	/ 1/ 11/11	מו רמריז	cooptatin	ביומי ווטו	Sory (mg/	(11		wel weight	1 otal 200p.	Phyto.	2000. + Phyto.	wet wei	ţţ
	number	of >10 mm (mg/m ³)	Ne	Hy	Ga	Ce	Po	Am	Eu	De	Ch	Sa	E	of < 10 mm (mg/m ³)	Wet weight (mg/m ³)	Wet weight (mg/m ³)	Wet weight (mg/m ³)	from prev reports (mg	mo /
ARE-14	5	4.1							1.20		0.40	2.40		83.0	87.1	159.3	246.5	362.1	Ľ
	9	1.5							0.17		1.33			8.7	10.2	46.2	56.4	1402.3	Ξ
	7	10.6		5.43					1.76		3.46			214.5	225.2	823.6	1048.7	1375.0	Ξ
	8	2.2					0.36				1.86			22.3	24.6	15.6	40.2	1000.0	Ξ
ARE-17	ŝ	19.0					0.71		0.52		17.76			180.8	199.8	20.8	220.6	129.0	Ξ
	4	16.7							0.41		16.28			343.5	360.2	64.2	424.4	421.5	<u>ب</u>
	5	11.2						4.53			6.04		0.60	98.8	109.9	77.4	187.3	704.6	·
ARE-18	4	6.7					0.92	1.84			3.90			320.3	327.0	21.8	348.8	285.1	-
ARE-29	6	9.2						0.78	0.53		7.69		0.23	104.1	113.3	3.9	117.2	261.3	نت ،
	c.	6.4							3.10		3.31			108.5	114.9	61.7	176.6	372.4	÷
	4	2.3						0.43			1.86			110.9	113.2	5.3	118.5	180.1	
ARE-30	0	4.4				0.85	0.18	0.36	1.42		1.60			72.0	76.4	3.5	79.9	126.4	
	ę	15.9						0.45			11.68		3.74	73.0	88.9	2.9	91.8	241.8	
	4	0.8									0.84			42.5	43.3	0.9	44.3	102.5	
ARE-32	6	13.1							1.39		11.71			22.6	35.7	13.2	48.9	64.9	-
	ŝ	51.7		36.59				1.91			13.18			35.0	86.7	77.3	164.0	186.2	· <u>· ·</u>
	4	0.5									0.53			54.4	54.9	1.8	56.7	6.99	_
ARE-34	4	35.8		27.51					0.65		1.46	6.19		121.4	157.2	31.1	188.2	1300.4	_
ARE-35	Э	13.9						0.58			13.36			6.99	80.8	12.2	93.0	209.7	-
	4	4.7					4.54				0.19			70.7	75.4	9.5	84.9	201.8	_
ARE-36	2	4.6						0.75	2.37		1.50			28.0	32.6	35.9	68.4	59.7	نے
	4	2.1									2.11			113.3	115.4	6.8	122.3	180.7	<u>ت</u>
	s	1.6							0.33		1.03	0.20		35.2	36.7	12.0	48.7	290.4	÷
ARE-38	3	12.1						9.08			2.98			31.5	43.6	164.9	208.5	173.3	÷
ARE-40	4	19.7							0.86		18.89			59.0	78.8	6.2	85.0	57.9	
	S	0.1									0.06			3.8	3.9	4.7	8.6	34.1	÷
ARE-41	ę	15.9			4.00		0.22	5.65	4.10		1.84		0.12	194.2	210.1	1756.0	1966.1	1526.9	_
	4	0.3									0.27			29.9	30.2	4.0	34.2	64.6	ت
ARE-42	7	5.1							0.35		4.72			14.4	19.5	0.5	20.0	65.3	<u> </u>
	m	1.0					0.31				0.61		0.10	37.9	38.9	1.8	40.7	74.8	÷
ARE-44	61	2.3							0.15		2.13			37.9	40.2	1.6	41.8	71.6	-
	e	8.0						0.72			7.22			94.6	102.5	6.1	108.6	314.8	_
ARE-45	4	12.8				0.11		0.28	0.59		10.86		1.01	112.9	125.7	8.1	133.8	148.0	_
	ę	7.7							1.21		6.23		0.29	130.5	138.2	142.7	280.9	678.6	-
	4	8.5							0.86		5.94	1.44	0.26	143.9	152.4	68.9	221.4	509.3	-
ARE-46	7	1.7	0.10						0.63	0.15	0.79			107.8	109.4	15.1	124.6	64.5	Ě
	e	6.3						5.65			0.62			67.1	73.4	108.5	181.9	346.6	, Ľ
ARE-48	2	3.2		0.00				0.76			11 0			347	37.9	2.0	39.9	787	<u> </u>

Zoop: Zooplankton [1]: Fukuchi and Tanimura (1981), [2]: Takahashi *et al.* (1997), [3]: Sawabe *et al.* (2005), [4]: Takahashi *et al.* (2008).

Cruise & station number

図 2 精査した 38 標本における, 総湿重量中に占める植物プランクトンの割合. 平均値も示す. Fig. 2. Percentage of the wet weight of phytoplankton to the total wet weight in all the samples examined and average value.

の大型動物プランクトンの割合は 10% 程度であり,約 90% を 10 mm 未満の動物プランクトンが占めていることが明らかとなった.

一方で植物プランクトンの湿重量は、標本間に 0.5-1756.0 mg/m³ の差があり、平均湿重量 は 100.0±307.4 (mg/m³) であった.今回精査したことによって得られた動物プランクトン の湿重量と植物プランクトンの湿重量の合計では、第 14 次隊の Stn. 7 と第 41 次隊の Stn. 3 の 2 観測点で 1000 mg/m³ を超える値となった.それぞれの植物プランクトン湿重量は 826.6 mg/m³ と 1756.0 mg/m³ であり、また動物プランクトンの総湿重量の平均が 99.3±79.9 (mg/m³) であったことから、今回精査した中で 1000 mg/m³ を超える標本では、植物プラン クトンの大量の混入が総湿重量値を大きくしていることが示された.精査した標本の総湿重 量中に含まれる植物プランクトンの割合は、標本間において 2.1-89.3%の変動が見られたが、 平均値は 26.7% であった(図 2). このことから、これまでに動物プランクトンの湿重量と して報告されていた数値が、動物相のみをターゲットとした 330 µm の採集標本においても、 植物プランクトンの混入によって平均で 30% 程度、過大評価をしていたことが明らかとなっ た.

図 3 本研究で精査した湿重量値と過去に報告された同標本の湿重量値との比較 Fig. 3. Comparison of the wet weight data collected in this study and in previous reports.

ー次解析を実施した Takahashi *et al.* (1998) では, 1000 mg/m³を超える湿重量値は解析か ら除外されている.本研究で精査した全38標本のうち,過去に報告された総湿重量値(Fukuchi and Tanimura, 1981; Takahashi *et al.*, 1997; Sawabe *et al.*, 2005; Takahashi *et al.*, 2008) で 1000 mg/ m³を超えていたのは5 観測点あり,今回精査により得られた湿重量値は過去の報告値と比 べて平均 67%に減耗していた(図 3).

ホルマリン固定保存によるプランクトン標本の減耗はすでに報告されている(Postel *et al.*, 2000). 一般に, ホルマリン固定された動物プランクトン標本の湿重量は, 体が縮んだり, 体液が漏出したりするために, 時間の経過とともに減少していく. 採集された動物プランクトン標本の湿重量は, ホルマリン固定によって, 1週間で急激に減少する. 採集直後の生の動物プランクトンの湿重量を 100% とすると, 固定後 1週間の間におよそ 80-75% まで減少 することが知られている (Omori, 1978). また, Omori (1978) によれば, その後も湿重量 は少しずつ減少していくが, およそ 1ヵ月後からはほとんど減少することがなくなり安定する.

過去に実施した湿重量の測定は、いずれの標本も採集後1カ月以上経過してから実施している.したがって、今回再測定した湿重量値は、過去の測定値とあまり変わらない(あるいは変わってもごくわずかの減少である)ことが期待される.それにもかかわらず、今回の測定値は過去のデータより平均で30%以上も減少していた.一方で、38標本中8標本では、過去の報告と比べて総湿重量値は増加していた.両者の大幅な違いは、時間経過による減耗だけでは説明ができない.

この原因としては、むしろ、分割作業などの一連の標本処理過程の不備(たとえば、分割 作業時に植物プランクトンの集塊が均等に分割されなかった)や、秤量時における十分な水 分の除去が行われなかった等の、人為的な影響によるものである可能性がある。あるいはま た、分割標本に含まれる大型動物プランクトンやゼラチン質プランクトンの有無が湿重量値 の増減に影響した可能性も考えられる。

JARE の南極観測船による NORPAC ネット採集は、1日1回,緯度にして約5° おきに実施されてきた.そこで精査した標本データの植物プランクトンの混入の程度に、空間的な差があるかを確認した(図4,表5).そのために、標本データをグループ1の45°S 付近(Stn. 2)の9 観測点、グループ2の50°S 付近(Stn.3)の12 観測点、グループ3の55°S 付近(Stn. 4)の8 観測点、グループ4の60°S 付近(Stn.5)の4 グループに区分した.この解析では 水深 200 m から試料採集を実施した第14 次隊の4 観測点におけるデータは除外した.

植物プランクトンが多量に含まれる標本が目立ったのはグループ2の50°S付近の観測点 で(図4),総湿重量値に占める割合の平均値は34.3%と4つのグループの中で最も高い値 を示した(表5).110°Eにおける50°S付近には極前線(Polar Front)が存在しており,極前 線付近では動物プランクトンを始め,生物活性が高いことが知られている(Atkinson and Sinclair, 2000; Froneman *et al.*, 1995; Hosie *et al.*, 2003; Lutjeharms *et al.*, 1985).現存する植物プ ランクトン量に応じて,混入する割合も増加したことが考えられた.実際に第39次隊と第 40次隊で行われた,船底8mから連続揚水された海水(表層連続採水)からの,NGG54規 格のプランクトンネット(目合い315µm)による動物プランクトン群集の連続採集におい ても,極前線付近で採られた試料中に大型の群体をつくる珪藻類が混在していたことが観測 されている(工藤ほか, 2001).一方で,同じ極前線付近で採られた標本でも,植物プラン クトンが数%程度しか混入していない標本も見られることから,平均値を用いて過去の報 告値を再評価することは困難であると考えられた.

図4 各緯度グループにおける動物・植物プランクトンの割合 横軸には再精査した,第14次隊~第48次隊で得られた330µmネット標本を,便宜的に左から 45°S付近,50°S付近,55°S付近および60°S付近の4つの緯度グループに配列して示した. *Fig. 4. Relative abundance of plankton in each latitudinal group.*

The horizontal axis is arranged in four latitudinal groups for convenience according to the sampling positions of re-examined 38 samples collected with 330 µm net from JARE-14 to JARE-48.

Group	Sample number	Sampling Latitude (S)	Wet weight of >10 mm (mg/m ³)	Wet weight of \leq 10 mm (mg/m ³)	Total Zoop. Wet weight (mg/m ³)	Phyto. Wet weight (mg/m ³)	Zoop. + Phyto. Wet weight (mg/m ³)	Composition ratio of phytoplankton (%)
Group 1	9	44-47	6.3± 4.4	59.4 ± 40.0	65.6 ± 41.0	9.3± 11.2	74.9± 41.5	13.0±16.7
Group 2	12	49-53	14.5 ± 12.9	113.6 ± 90.0	128.2 ± 90.6	201.6 ± 492.7	329.8 ± 525.2	34.3 ± 30.5
Group 3	8	54-56	6.9 ± 12.0	$85.9\pm$ 41.8	$92.8\pm$ 48.9	16.1 ± 23.4	108.8± 67.9	10.8 ± 9.6
Group 4	5	57-60	$7.8\pm$ 8.0	103.4 ± 126.1	111.3 ± 127.1	24.4 ± 30.3	135.7 ± 136.4	26.9 ± 21.3
All	34	44-60	9.6 ± 10.6	91.2± 76.7	$100.8\pm~79.1$	81.0±298.9	181.8 ± 329.0	22.0 ± 23.7

表 5 各緯度グループにおける, 総湿重量に占める植物プランクトンの割合 Table 5. Average wet weight and composition ration of phytoplankton at each latitudinal group.

Phyto.: Phytoplankton

Zoop.: Zooplankton

3.2. 330 µm と 100 µm の比較

第50次隊から第54次隊において、330 μ m と100 μ m の双方のネットで採集された96標 本を精査した結果を表6と表7に示した.10 mm 以上の動物プランクトンは両方のネット地 ともに、ヒドロ虫類 (Hydrozoans),腹足類 (Gastropods),頭足類 (Cephalopods),多毛類 (Polychaetes),アミ類 (Mysids),ヨコエビ類 (Amphipods),オキアミ類 (Euphausiids),十 脚類 (Decapods),毛顎類 (Chaetognaths),サルパ類 (Salps),魚類 (Fishies)の11分類群 が出現した.毛顎類はほとんどの標本で10 mm 以上の個体が出現しており、ヨコエビ類、 オキアミ類,魚類の出現頻度が高かった.

第 50 次隊の Stn. 7 ではサルパ類が大量に採集され, 330 μm では 786.8 mg/m³, 100 μm で は 1036.1 mg/m³ であった. この影響により, 第 50 次隊の Stn. 7 はそれぞれのネット地の標 本の中で最大の総湿重量値を記録した. また, 第 52 次隊の Stn. L3 においては, 330 μm の 標本ではサルパ類が 273.7 mg/m³ と高い値で観測されたのに対し, 100 μm ではまったく採集 されなかった. この結果はツインフレームでの同時採集にもかかわらず, パッチ状分布の影 響で片方のネットのみに大量のサルパ類が採集されたことを示している. これらのことより, 過去に報告されてきた湿重量値のばらつきの原因は, サルパ類の有無が一因であることが考 えられた.

精査した動物プランクトン湿重量を用いて,双方のネット標本間で比較を試みた.サルパ 類が大量に採集された標本は,この解析からは除外して行った.動物プランクトンの総湿重 量値では,100µmの標本が330µmのおよそ2倍となる関係式が導かれた(図5).10mm 以上の動物プランクトン湿重量で比較するとほぼ同重量であり,10mm未満の動物プランク トン湿重量は約2.1倍となることから,双方のネット間での総湿重量の差は10mm未満の採 集効率によるものであることが明らかとなった.Makabe et al. (2012)は330µmと100µm のネット地により,カイアシ類のノープリウス幼生や小型カイアシ類(例えば,Oithona sp., Oncaea sp., Ctenocalanus citer, Microcalanus pygmaeus)で,採集効率が有意に異なることを報 告している.また330µmで採集されたオイソナ属のカイアシ類は100µmで採集されたも **表**6 第 50 次隊~第 54 次隊 Hy: ヒドロ虫類, Ga: 腹足類, Ce: 頭足類, Po: 多毛類, My: アミ類, Am: *Table 6. Wet weight of 330* µm samples

Hy: Hydrozoans, Ga: Gastropods, Ce: Cephalopods, Po: Polychaetes, My: Mysids,

Cruise	Station	Wet weight			Wet w	/eight of $>$	10 mm at
	number	of >10 mm (mg/m ³)	Ну	Ga	Ce	Ро	Му
JARE-50	1 2 3 4 5 6 7 8 9 10	3.7 12.2 120.2 30.2 57.2 20.0 796.3 3.7 37.5 30.2 32.5					
JARE-51	L1 L2 L3 L4 L5 L6 L7 L10	17.5 19.4 23.7 23.6 5.5 11.5 13.0 20.1		1.15		1.74	0.12
JARE-52	L1 L2 L3 L4 L5 L6 L7 L8 L9 L10	13.6 22.0 314.9 18.6 15.7 8.3 19.6 37.8 9.5 3.1	7.67 14.84 0.33			1.28 2.27	
JARE-53	L01 L02 L03 L04 L05 L05' L04' L03' L02' L01'	2.4 4.5 4.7 16.5 4.7 3.8 3.7 31.0 1.7 0.0	1.83		0.44		
JARE-54	L01 L02 L03 L04 L05 L06 L08 L09 L10	3.8 34.1 28.5 12.3 14.9 31.3 38.7 20.9	2.73			0.25	0.13

における 330 µm 標本の湿重量

ヨコエビ類, Eu: オキアミ類, De: 十脚類, Ch: 毛顎類, Sa: サルパ類, Fi: 魚類 *from JARE-50 to JARE-54*.

Am: Amphipods, Eu: Euphausiids, De: Decapods, Ch: Chaetognaths, Sa: Salps, Fi: Fishies.

each zoopla	ankton cate	gory (mg/r	n3)			Wet weight of $\leq 10 \text{ mm}$	Total Wet weight
Am	Eu	De	Ch	Sa	Fi	(mg/m^3)	(mg/m ³)
0.62	0.19		2.86		0.03	3.0	6.7
			12.23			7.7	19.9
3.14	2.05		114.98			121.9	242.0
7.47			21.57		1.15	219.9	250.1
36.31			20,88			292.2	349.4
8.43			11.57			36.3	56.3
7.88			1.68	786.78		26.4	822.7
			3.70			25.6	29.3
	3,97		33,51			50.9	88.4
	10.26		19.95			40.1	70.3
	30.67		1.78			1.9	34.3
0.49	0.41		14.91			57.2	74.7
			17.42		1,85	61.3	80.7
6.99	0.25		15.95		0.49	46.8	70.5
3.15			20.47			47.1	70.7
			4.32		0.05	47.3	52.8
5.54	0.35		5,66			58.0	69.6
4.93			8.05			71.2	84.2
	20.13					0.4	20.5
		0.10	4.52			52.4	66.0
3.29	1.10		17.37		0.26	26.2	48.2
1.48			24.41	273.68	0.53	120.1	435.0
3.46			15,13			59,3	77.9
1.00	0,33		12,88		0,25	137.5	153.3
1.83	0.08		6.35			155.8	162,1
2.50			19.57			70.9	90.4
2.39	0.91		23.17		0.19	21.7	09.7
	0.81		0.47	2,78	0.18	2.2	5.5
			0.61			33.9	36.3
	1.58		1 40		1 47	27.2	31.6
3 47			1.26			30.7	35.4
2.89	1.90		11.65		0.10	74.8	91.3
	0.13		4.61			10.5	15.2
1.07			2.69			53.2	57.0
2.43			1.27			33.4	37.1
5.87	1.21		21.44		2.02	19.7	50.6
	1.46		0.25			3.9	5.6
						1.2	1.2
			3.64			7.8	11.6
0.92	0,60		32,60			128.2	162.3
4.53	0.46		21.69	1.49	0.29	74.6	103.1
0.74			8.75		0.08	90.6	102.9
	0.36		14.32			152.1	167.1
28.18	0.70		0.99	1.42		63.5	94.8
	1.28		37.17		0.21	34.1	72.8
6.26	5.49		9,17			12.5	33.5
0.89			0.08			3.7	6.8

表 7 第 50 次隊~第 54 次隊 Hy: ヒドロ虫類, Ga: 腹足類, Ce: 頭足類, Po: 多毛類, My: アミ類, Am: Table 7. Wet weight of 100 μm samples Hy: Hydrozoans, Ga: Gastropods, Ce: Cephalopods, Po: Polychaetes, My: Mysids,

number of $> 10 \text{ mm}$ (mg/m ³) Hy Ga Ce Po My JARE-50 1 2.0 2 33.6 3 94.3 4 25.2 5 42.0 6 14.7 7 1045.1 8 4.0 9 58.0 10 33.6 11 31.9 JARE-51 L1 4.3 0.66 14.7 0.66 14.7 10.45.1 8 4.0 9 58.0 10 33.6 11 31.9 14ARE-51 L1 4.3 0.66 14.7 1.2 18.3 0.66 16 <	n at
JARE-50 1 2.0 2 33.6 3 94.3 4 25.2 5 42.0 6 14.7 7 1045.1 8 4.0 9 58.0 10 33.6 11 31.9 JARE-51 L1 4.3 0.66 L2 18.3	y
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
5 42.0 6 14.7 7 1045.1 8 4.0 9 58.0 10 33.6 11 31.9 IARE-51 L1 4.3 0.66 L2 18.3	
6 14.7 7 1045.1 8 4.0 9 58.0 10 33.6 11 31.9 IARE-51 L1 4.3 0.66 L2 18.3	
7 1045.1 8 4.0 9 58.0 10 33.6 11 31.9 IARE-51 L1 4.3 0.66 L2 18.3	
8 4.0 9 58.0 10 33.6 11 31.9 IARE-51 L1 4.3 0.66 L2 18.3	
9 58.0 10 33.6 11 31.9 IARE-51 L1 4.3 0.66 L2 18.3	
10 33.6 11 31.9 JARE-51 L1 4.3 0.66 L2 18.3	
11 31.9 IARE-51 L1 4.3 0.66 L2 18.3	
JARE-51 L1 4.3 0.66 L2 18.3	
L2 18.3	
L3 20.5 1.47 0.48	
L4 15.3	
L5 3.3 0.06	
L6 11.8	
L7 33.4 14.96	
L10 39.9	
JARE-52 L1 12.3 7.48 0.67	
L2 32.7 0.96	
L3 51.8	
L4 9.5	
L5 33.8 20.71 1.74	
L6 8.3	
L7 66.3 48.08	
L8 41.1	
L9 4.6	
L10 7.5	
JARE-53 L01 0.6	
L02 4.7	
L03 6.9	
L04 0.1	
L05 1.2	
L05' 1.6	
L04' 53.5 52.56	
L03' 12.3	
L02' 2.1 0.35 0.	.37
L01' 0.3	
JARE-54 L01 3.3	
L02 31.8 0.66 1.32	
L03 56.1	
L04 9.2	
L05 18.7 0.38 1.51	
L06 38.0	
L08 15.8	
L09 31.3	
L10 0.6	

のより一桁低い値となることも観測されている(Hwang et al., 2007).

また、本研究による精査において、これまで植物プランクトンが混在することにより、ソー ティングが困難であった小型種については、体サイズから換算式により湿重量を算出した (表 3). 10 mm 未満の動物プランクトン湿重量値の中で、換算式により算出した 1 mm 以下 における 100 µm 標本の湿重量

ヨコエビ類, Eu: オキアミ類, De: 十脚類, Ch: 毛顎類, Sa: サルパ類, Fi: 魚類 from JARE-50 to JARE-54.

Am: Amphipods, Eu: Euphausiids, De: Decapods, Ch: Chaetognaths, Sa: Salps, Fi: Fishies.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	each zoop	lankton cate	egory (mg/i	n3)			Wet weight	Total
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			<u> </u>				of $< 10 \text{ mm}$	Wet weight
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Am	Eu	De	Ch	Sa	Fi	(mg/m^3)	(mg/m ³)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.25		0.71		0.03	12.9	14.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.45		33.11			15.9	49.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.26		94.06			11.6	105.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				25.23			73.0	98.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		22,66		19,14		0.25	116.9	158.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10.67		4.00			73.8	88.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8.24		0.81	1036.08		16.7	1061.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				3.96			38.3	42.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				58.03			85.2	143.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.93	1.66		15.05			72.7	106.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11.69		20.21			6.7	38.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				3.35		0.31	21.4	25.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.60		15.49		1.26	101.1	119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.09			9.21		0.28	221.8	242.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.14			13.16			171.5	186.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.69		2,58			136.4	139.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.50			3.29			110.9	122.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.56	0.05		15.84			251,1	284.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.06	38.79					3.8	43.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.12	4.05			117.9	130.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.22	2.71		24.00		0.85	41.7	74.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.49			51.34			208.3	260.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.27			6.24			119,6	129,1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				11.29		0.08	162.2	196.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.07	0.00		0.21			333.5	341.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				16.41		1.78	341.8	408.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				41.06			101.5	142.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				4.57			47.0	51.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					7.47		55.1	40.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.60			72.3	72.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.63	0.58		2.56		0.94	40.2	44.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.85			6.08			83.4	90.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.14			76.0	76.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.24			53.2	54.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.61			156.6	158.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.05	1.20		0.95			63.2	116.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.87	1.29		4.19			151,2	163,6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.25		0.08			13.0	15.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.30		0.03			16.5	18.0
1.67 27.96 0.24 229.3 261.2 2.70 19.45 33.97 45.6 101.8 101 7.20 6.22 100.2 100.2		1.00		3.32			10.1	13.4
2.70 19.45 33.97 45.6 101.8	- -	1.67		27.96	33 07	0.24	229.3	261.2
	2.70			19.45	33.97	0.25	45.6	101.8
1.54 7.28 0.35 426.9 436.1	1.54			1.28		0.35	426.9	450.1
10.82 231.6 250.3	22.62			10.82	0.22		231.6	250.3
52.05 5.09 0.55 82.5 120.4 0.42 15.41 08.2 114.0	32.03	0.42		5.09	0.55		82.3	120.4
0,42 15,41 98,2 114,0 7,43 7,42 15,63 0.86 22.0 64.2	7 43	0.42		15,41		0.84	90,2	64.2
0.61 10.0 10.6	7.43	1.42		0.61		0.60	10.0	10,6

の動物プランクトンの割合は平均で45.3%であった.これは動物プランクトン総湿重量の およそ3割程度に値する数値であり、これまで湿重量による生物量では評価が出来なかった 小型種の寄与を明らかにすることも可能となった.

本研究に用いた標本は南極観測船の往路と復路で採集されたものであるため、採集効率に

図 5 第 50 次隊~第 54 次隊に採集された 330 µm と 100 µm のネット間での湿重量値の比較 Fig. 5. Relationships between the zooplankton wet weights in samples caught with 330 µm nets and 100 µm nets from JARE-50 to JARE-54.

表 8 Tukey's test を用いた平均湿重量値の比較. 有意差 (P<0.05) が認められるものを * で示す.

Table 8. Results of Tukey's test of wet weight average at each mesh size are shown. Significant differences (P < 0.05) are marked by asterisks (*).

Sample	Mesh size (µm)	Wet weight of >10 mm \pm SD (mg/m ³)	Wet weight of $< 10 \text{ mm}$ $\pm \text{SD} (\text{mg/m}^3)$	Total Wet weight \pm SD (mg/m ³)
All	330 100	17.1±12.9 19.9±18.1	$44.3 \pm 40.3 \\ * \\ 106.3 \pm 99.6$	59.5 ± 44.9 * 128.5 ± 105.4
Dec.–Jan.	330 100	17.0 ± 12.4 16.7 ± 15.0	$57.1 \pm$ 44.6 $_{*}$ 124.1 \pm 100.1	$^{66.5\pm}$ 49.2 $_{*}$ 136.6±105.6
Feb.–Mar.	330 100	17.2 ± 13.7 13.6 ± 20.7	$35.9 \pm 36.9 \ _{*}$ 99.7 ± 100.0	53.1 ± 40.8 * 121.3 ± 107.2

季節的な差異が存在するかを検証する目的で,Tukey's test による平均値の差の検定を行った (表 8). 往路(12-1月),復路(2-3月)ともに10mm以上の動物プランクトン湿重量値に 330 µmと100 µmのネット間で差は見られなかった.一方で,10mm未満では往復路ともに 有意な差が見られたが,およそ2倍である比率に差は認められなかった.つまり,両ネット 間に生じる採集効率の差に季節的な変動はないことが明らかとなった.

4. おわりに

動物プランクトンはその出現の普遍性から比較的採集が容易である一方で、標本処理過程 においては、顕微鏡下でのソーティングといった緻密で労力と時間のかかる作業を要する. 湿重量は動物プランクトンの生物量を評価する指標としては、最も測定が容易であるため、 JAREのモニタリング観測では、継続的に湿重量値が報じられてきた.しかしながら、もと もと不均一な分布特性をもつ動物プランクトンの生物量を湿重量で評価する上では、大型の 植物プランクトンの混入による過大評価や、混在する植物プランクトンにより小型(特に 1 mm 以下)の動物プランクトンのソーティングが困難となること、さらには湿重量値に大 きな影響を与える大型動物プランクトンやゼラチン質プランクトンの有無といった問題が指 摘されてきた.

本研究で用いた精査方法により、上記にあげた問題点を解決、あるいは改善する成果を得 ることができた.はじめに大型種をソーティングし、湿重量を測定したことで、高い湿重量 値の原因種を特定することが可能となった.一方で、小型種においてはソーティングこそ困 難であるものの、体サイズ測定から換算式により湿重量値を求めることで、これまで評価さ れてこなかった1mm以下の動物プランクトン群集の分布特性や生物量の変動も捉えること が可能となるだろう.植物プランクトンが大量に混在する標本については、本研究の精査方 法により、動物プランクトンのみの湿重量として測定することが可能となった.一方で、過 去に測定された湿重量値については,植物プランクトンが混入する割合のバラつきが非常に 大きいため,将来的には全標本を精査し,再度湿重量を測定しなおす必要があると思われる.

謝 辞

NORPAC ネット標本の精査にあたり,日本海洋生物研究所の皆さまにご協力いただいた. ご支援に心より感謝いたします.NORPAC ネットを用いた本研究モニタリング観測は,日 本南極地域観測隊基本観測課題「生態系変動モニタリング」(AMB-2)の一部として実施さ れたものである.また,本研究課題は科学研究費補助金「南極海動物プランクトン群集組成 の中長期的変化の研究」(基盤研究 B,研究課題番号 23310013)により行われた.

文 献

- Atkinson, A. and Sinclair, J.D. (2000): Zonal distribution and seasonal vertical migration of copepod assemblages in the Scotia Sea. Polar Biol., 23, 46–58, doi: 10.1007/s003000050007.
- Beers, J.R. (1966): Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea off Bermuda. Limnol. Oceanogr., 11, 520–528.
- Dumont, H.J., van de Velde, I. and Dumont, S. (1975): The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia, 19, 75–97, doi: 10.1007/BF00377592.
- Froneman, P.W., McQuaid, C.D. and Perissinotto, R. (1995): Biogeographic structure of the microphytoplankton assemblages of the south Atlantic and Southern Ocean during austral summer. J. Plankton Res., 17, 1791– 1802.
- Fukuchi, M. and Tanimura, A. (1981): Plankton samplings on board Fuji in 1972–1980. JARE Data Rep., 60 (Mar. Biol. 1), 1–27.
- Hosie, G.W., Fukuchi, M. and Kawaguchi, S. (2003): Development of the Southern Ocean Continuous Plankton Recorder survey. Prog. Oceanogr., 58, 263–283, doi: 10.1016/j.pocean.2003.08.007.
- Hwang, J.-S., Kumar, R., Dahms, H.-U, Tseng, L.-C. and Chen, Q.-C. (2007): Mesh size affects abundance estimates of *Oithona* spp. (Copepoda, Cyclopoida). Crustaceana, 80, 827–837.
- Iguchi, N. and Ikeda, T. (1999): Production, metabolism and *P:B* ratio of *Euphausia pacifica* (Crustacea: Euphausiacea) in Toyama Bay, southern Japan Sea. Plankton Biol. Ecol., **46**, 68–74.
- Ikeda, T. (1970): Relationship between respiration rate and body size in marine plankton animals as a function of the temperature of habitat. Hokkaido Daigaku Suisan Gakubu Kenkyu Iho (Bull. Fac. Fish. Hokkaido Univ.), 21, 91–112.
- Ikeda, T. (1990): A growth model for a hyperiid amphipod *Themisto japonica* (Bovallius) in the Japan Sea, based on its intermoult period and moult increment. Nippon Kaiyo Gakkaishi (J. Oceanogr. Soc. Japan), 46, 261– 272.
- Ikeda, T. and Imamura, A. (1996): Abundance, vertical distribution and life cycle of a hydromedusa *Aglantha digitale* in Toyama Bay, southern Japan Sea. Nihon Purankuton Gakkaiho (Bull. Plankton Soc. Japan), **43**, 31–43.
- 工藤 栄・伊倉千絵・高橋晃周・西川 淳・石川 輝・鷲山直樹・平譯 享・小達恒夫・渡辺研太郎・ 福地光男 (2001): JARE-39, -40「しらせ」航路に沿った夏季南大洋インド洋区における表層水中の 動物プランクトン現存量. 南極資料, 45, 279–296.
- Lutjeharms, J.R.E., Walters, N.M. and Allanson, B.R. (1985): Oceanic frontal systems and biological enhancement. Antarctic Nutrient Cycles and Food Webs, ed. by W.R. Siegfried, P.R. Condy and R.M. Laws. Berlin ; New York, Springer, 11–21, doi: 10.1007/978–3–642–82275–9_3.
- Makabe, R, Tanimura, A. and Fukuchi, M. (2012): Comparison of mesh size effects on mesozooplankton collection efficiency in the Southern Ocean. J. Plankton Res., 34, 432–436, doi: 10.1093/plankt/fbs014.
- 日本海洋学会(1986):動物プランクトン調査.沿岸環境調査マニュアル 底質・生物篇,日本海洋学会編.

東京, 恒星社厚生閣, 177-216.

- Omori, M. (1978): Some factors affecting dry weight, organic weight and concentration of carbon and nitrogen in freshly prepared and in preserved zooplankton. Int. Rev. Ges. Hydrobio. Hydrogr., 63, 261–269, doi: 10.1002/ iroh.19780630211.
- Postel, L., Fock, H. and Hagen, W. (2000): Biomass and abudance. ICES Zooplankton Methodology Manual, ed. by R. Harris, P. Wiebe, J. Lenz, H.R. Skjoldal and M. Huntley. San Diego ; Tokyo, Academic Press, 83–192, doi: 10.1016/B978–012327645–2/50005–0.
- Sato, R., Tanaka, Y. and Ishimaru, T. (2001): House production by *Oikopleura dioica* (Tunicata, Appendicularia) under laboratory conditions. J. Plankton. Res., 23, 415–423, doi: 10.1093/plankt/23.4.415.
- Sawabe, E., Takahashi, K.T., Umeda, H. and Fukuchi, M. (2005): Plankton sampling on board *Shirase* in 1997–2001 NORPAC standard net samples—. JARE Data Rep., 284 (Mar. Biol. 32), 1–16.
- Takahashi, K., Tanimura, A. and Fukuchi, M. (1997): Plankton sampling on board Shirase in 1983–1996 NORPAC standard net samples—. JARE Data Rep., 224 (Mar. Biol. 28), 1–35.
- Takahashi, K., Tanimura, A. and Fukuchi, M. (1998): Long-term observation of zooplankton biomass in the Indian Ocean sector of the Southern Ocean. Mem. Natl. Inst. Polar Res., Spec. Issue, 52, 209–219.
- Takahashi, K.T., Sawabe, E., Tsujimoto, M. and Fukuchi, M. (2008): Plankton sampling on board Shirase in 2002–2008 —NORPAC standard net samples—. JARE Data Rep., **306** (Mar. Biol. **38**), 1–26.
- Uye, S., Nagano, N. and Tamaki, H. (1996): Geographical and seasonal variations in abundance, biomass and estimated production rates of microzooplankton in the Inland Sea of Japan. J. Oceanogr., 52, 689–703, doi: 10.1007/BF02239460.
- Watanabe, K., Nakajima, Y., Ino, Y., Sasaki, H. and Fukuchi, M. (1984): Plankton samplings on board the Fuji in 1980–1983. JARE Data Rep., 90 (Mar. Biol. 5), 1–11.