Geodetic Survey in Antarctica by the Fourth Japanese Antarctic Research Expedition，1959－60

Shinichi OHASHI＊，Eiichi INBE＊＊and Seiichi KAKINUMA＊＊＊

> 南極地域における測地観測について大橋伸一＊•印部英一＊＊•柿沼清一＊＊＊

要	旨	オイヤ島に 1 点，昭和基地西南方大陸上に 3 点，
第4次観測に於で	点 1 点，基線 5 本を	パッダ島内に 3 点（らち一点は天測点）で，基線
合出合計12点の基準点	置した．その内訳は西	は東オングル島より，西オングル島に向って1本，
ングル島内に 4 点，	杨島に1点，	虚に向って3本，合計 4 点を設置した

Introduction

The geodetic survey team，organized to establish the control points for the aero－ photogrammetry，participated in the first，second and fourth expeditions．

At the first expedition，the geodetic survey team set up one astronomical station and eight triangulation stations in East Ongul Island，whereby the $1 / 5000$ map of East Ongul Island and $1 / 1000$ map of Syowa Base and its vicinity were made up．

At the second expedition，the reobservation at the astronomical station in East Ongul Island by meridian transit telescope（the accuracy is $\pm 0.2^{\prime \prime}$ ）and the triangu－ lation connecting East，West Ongul Islands and the Antarctic continent were scheduled， but not realized at all owing to the extremely bad ice field conditions．

At the third expedition，the coastal area between $39^{\circ} 30^{\prime} \mathrm{E}$ to $42^{\circ} 15^{\prime} \mathrm{E}$ ，the length and the width of which were 130 km and 4.25 km respectively，was aerophotographed． Two $1 / 100,000$ maps of Prince Olav Coast were compiled referring to two astronomical stations， $40^{\circ} 11.4^{\prime} \mathrm{E}, 68^{\circ} 48.4^{\prime} \mathrm{S}$ and $41^{\circ} 23.8^{\prime} \mathrm{E}, 68^{\circ} 28.5^{\prime} \mathrm{S}$ set up by the first wintering team 1956－57．At the same time，the other two $1 / 100,000$ maps of Prince Harald Coast，which were mere enlargement of Norwegian $1 / 250,000$ map made by H．E． Hansen，in 1937，were revised by applying the astronomical station in East Ongul Island．

In the fourth expedition，we could set up twelve control points including one astronomical station and five base line with the aid of big size helicopter as shown in

[^0]

Fig．1．Control points around Syowa Base．

Fig．1；but we had unlucky obstacles two times which prevented farther developement of our project．The first was caused by the sudden growth of thick fog before leaving the helicopter off Soya to Syowa Base where we were to stay with the helicopter for about ten days and proceed the survey project at the beginning of January 1960．The second was caused by the damage of the two helicopters at the same time before leaving off Soya to Prince Olav Coast of $45^{\circ} \mathrm{E}$ to set up astronomical station．

Fig. 2. Location of base line.

Development
Date; Jan. 16, 1960
Observation and observers;
E. Inbe and S. Kakinuma-triangulation at Nos. 1, 7, 8, 9 and 10.
S. Ohashi, S. Kakinuma and T. Kitamura-base line measurement between No. 18 and No. 1, and between No. 15 and No. 1, and triangulation at No. 1, No. 18 and No. 15.
Instrument;
Wild T-2 transits and tellurometers.

* Helicopter "Sikorsky S-58" was used for the transportation of observers and instruments.
Date; Jan. 17, 1960
Observation and observers;
E. Inbe-triangulation at Nos. 1, 7, 8, 9, 10 and 12.
S. Ohashi and S. Kakinuma-base line measurement and triangulation between No. 1 and No. 8.
Instrument;
Wild T-2 transits and tellurometers.
Date; Jan. 18, 1960
Observation and observer;
E. Inbe-triangulation at Nos. 1, 7, 8, 9, 10 and 12.

S．Ohashi and S．Kakinuma－base line measurement between No． 1 and No． 13.

Instrument；
Wild T－2 transits and tellurometers．
＊Observer was supported by R．Haga for booking of base line measurement at No． 13.
＊Helicopter＂Sikorsky S－58＂was used for the transportation of observers and instruments．
Date；Feb．2， 1960
Observation and observers；
E．Inbe－astronomical survey and triangulation at No． 20.
S．Ohashi and S．Kakinuma－base line measurement between No． 20 and No． 14 and triangulation at No．20，No． 21 and No． 14.
Instrument；
Wild T－2 transits and tellurometers．
＊Observers are supported by T．Suenaga and Y．Matsumoto for booking and transportation of the instruments．
＊Helicopter＂Sikorsky S－58＂was used for the transportation of observers and instruments．
Date；Feb．3， 1960
Observation and observer；
E．Inbe－triangulation at Nos．1，7，8，9， 10 and 12.
Instrument；
Wild T－2 transit．

Results of observation

Observation station（1）＊（East Ongul Island）
Latitude：$B=-69^{\circ} 0^{\prime} 35^{\prime \prime} 793 \quad$ Coordinates

Longitude：$\quad L=39^{\circ} 35^{\prime} 11^{\prime \prime} 219$

Height：

True bearing：
Astronomical station：
Iwajima：
（13）
（18）
（15）
（10）
（8）
（12）
（9）
$-0^{\circ} 0^{\prime} 12^{\prime \prime}$
182236
36270
413840
$12747 \quad 5$
170295
2125722
2304050
2482315
3434444
2534859
$X=-427.42$
$Y=-141.99$
$H=43.42$
Logarithmic distance
2.653587
3.422351
4.164 469＊
3.773 620＊
4.302 246＊
3.568077
3.491336^{*}
3.272308
3.089881
3.568361

Observation station (12) (Nesöya Island)

$$
\begin{aligned}
& B=-68^{\circ} 59^{\prime} 57^{\prime \prime} 686 \\
& L=39^{\circ} 34^{\prime} 40^{\prime \prime} 252
\end{aligned}
$$

True bearing:
Iwajima:
(1)
(8)
(7)
(9)
$-0^{\circ} 0^{\prime} 41^{\prime \prime}$
634220
1634444
213849
2164427
2352541
$X=+753.35$
$Y=-486.25$
$H=35.74$
Logarithmic distance
3.329705
3.089881
3.574748
3.368084
3.590944

Observation station (7) (West Ongul Island)

$$
\begin{aligned}
& B=-69^{\circ} 0^{\prime} 58^{\prime \prime} 021 \\
& L=39^{\circ} 32^{\prime} 34^{\prime \prime} 513
\end{aligned}
$$

True bearing:
(12)
(1)
(10)
(8)
(9)
$0^{\circ} 2^{\prime} 38^{\prime \prime}$
364427
682315
1862524
2071734
2591916
$X=-1116.93$
$Y=-1882.39$
$H=\quad 37.92$
Logarithmic distance
3.368084
3.272308
3.385512
3.156655
3.266292

Observation station (9) (West Ongul Island)

$$
\begin{aligned}
& B=-69^{\circ} 1^{\prime} \quad 8^{\prime \prime} 995 \\
& L=39^{\circ} 29^{\prime} 51^{\prime \prime} 112
\end{aligned}
$$

True bearing:
(12)
(1)
(8)
(10)
$-0^{\circ} 5^{\prime} 11^{\prime \prime}$
552541
734859
791916
1285245
$14320 \quad 9$
$X=-1459.05$
$Y=-3696.67$
$H=\quad 36.56$
Logarithmic distance
3.590944
3.568361
3.266292
3.171934
3.412156

Observation station (8)* (West Ongul Island)

$$
\begin{aligned}
& B=-69^{\circ} 1^{\prime} 39^{\prime \prime} 137 \\
& L=39^{\circ} 31^{\prime} 35^{\prime \prime} 176
\end{aligned}
$$

True bearing:
(7)
(12)
(1)
(10)
(9)
$-0^{\circ} 3^{\prime} 34^{\prime \prime}$
271734
$33 \quad 849$
504050
1611730
3085245
$X=-2391.60$
$Y=-2540.09$
$H=47.69$
Logarithmic distance
3.156655
3.574748
3.491 336*
3.080308
3.171934

Observation station (10) (West Ongul Island)

$$
B=-69^{\circ} 2^{\prime} 15^{\prime \prime} 924
$$

$X=-3531.15$

$$
L=39^{\circ} 32^{\prime} \quad 9^{\prime \prime} 849
$$

True bearing：
（7）
（1）
（9）
（8）
$-0^{\circ} 3^{\prime} 1^{\prime \prime}$
62524
325722
$32320 \quad 9$
3411730

Observation station（13）＊（Prince Olav Coast）

$$
\begin{aligned}
& B=-68^{\circ} 54^{\prime} 43^{\prime \prime} 012 \\
& L=39^{\circ} 49^{\prime} 40^{\prime \prime} 935
\end{aligned}
$$

True bearing：
（1）
$+0^{\circ} 13^{\prime} 19^{\prime \prime}$
2213840
Observation station（18）＊（Prince Olav Coast）

$$
\begin{aligned}
& B=-69^{\circ} 2^{\prime} 33^{\prime \prime} 060 \\
& L=39^{\circ} 42^{\prime} 14^{\prime \prime} 230
\end{aligned}
$$

True bearing：
（1）
Observation station（15）＊（Lang－Hovde）

$$
\begin{aligned}
& B=-69^{\circ} 11^{\prime} 14^{\prime \prime} 056 \\
& L=39^{\circ} 40^{\prime} 11^{\prime \prime} 978
\end{aligned}
$$

True bearing：
（1）
$+0^{\circ} 4^{\prime} 29^{\prime \prime}$
350295
Observation station（Iwajima）

$$
B=-68^{\circ} 59^{\prime} 27^{\prime \prime} 132
$$

$$
L=39^{\circ} 37^{\prime} 32^{\prime \prime} 534
$$

True bearing：
$+0^{\circ} 2^{\prime} 0^{\prime \prime}$
Observation station（20）＊（Padda Island）
$B=-69^{\circ} 36^{\prime} 43^{\prime \prime} 000$
$L=38^{\circ} 16^{\prime} 27^{\prime \prime} 000$

True bearing：
（14）
（21）
$+0^{\circ} 0^{\prime} 0^{\prime \prime}$
104584
176556
Observation station（14）＊（Padda Island）

$$
\begin{aligned}
& B=-69^{\circ} 37^{\prime} 21^{\prime \prime} 762 \\
& L=38^{\circ} 23^{\prime} 24^{\prime \prime} 529
\end{aligned}
$$

True bearing：
（21）
（20）
265833
284584
$Y=-2154.19$
$H=$
43.14

Logarithmic distance
3.385512
3.568077
3.412156
3.080308
$X=+10485.83$
$Y=+9562.39$
$H=\quad 15.31$
Logarithmic distance
4.164 469＊
$X=-4065.45$
$Y=+4550.70$
$H=\quad 36.29$
Logarithmic distance
3.773 620＊
$X=-20 \quad 207.60$
$Y=+3173.49$
$H=\quad 339.76$
Logarithmic distance
4.302 246 *
$X=+1699.79$
$Y=+1429.20$
$H=\quad 37.14$
$X=-0 \begin{gathered}\mathrm{m} \\ 0.00\end{gathered}$
$Y=-0.00$
$H=109.63$
Logarithmic distance
3.669 078＊
3.199684
$X=-1205.49$
$Y=+4509.07$
$H=\quad 49.75$
Logarithmic distance
3.647370
3.699 078＊

Observation station (21) (Padda Island)
$B=-69^{\circ} 37^{\prime} 34^{\prime \prime} 032$
$L=38^{\circ} 16^{\prime} 34^{\prime \prime} 885$

True bearing:
(14)

$$
\begin{array}{ccc}
+0^{\circ} & 0^{\prime} & 7^{\prime \prime} \\
85 & 8 & 33 \\
356 & 55 & 6
\end{array}
$$

$X=-1581.45$
$Y=+\quad 85.14$
$H=\quad 208.26$
Logarithmic distance
3.647370
3.199684

Note: * Base line station measured by Tellurometers.
Nos. $1 \sim 13,15,18$ are referred to the astronomical station in East Ongul Island coordinately. Nos. 14, 21 are referred to the astronomical station No. 20 coordinately.

Results of first expedition team (East Ongul Island)

Observation station, Astronomical station
$B=-69^{\circ} 0^{\prime} 22^{\prime \prime} 000$
$L=39^{\circ} 35^{\prime} 24^{\prime \prime} 000$

True bearing:
(4)
(1)
(2)
(3)
$0^{\circ} 0^{\prime} 0^{\prime \prime}$
1743018
1982236
2214251
2503146
$X=-0_{0}^{\mathrm{m}} .00$
$Y=-0.00$
$H=29.18$
Logarithmic distance
3.108473
2.653587
3.123432
2.410877

Observation station (1)
$B=-69^{\circ} 0^{\prime} 35^{\prime \prime} 793$
$L=39^{\circ} 35^{\prime} 11^{\prime \prime} 219$

True bearing:
Astronomical station:
(5)
(6)
(4)
(2)
(3)
$-0^{\circ} 0^{\prime} 12^{\prime \prime}$
182236
$X=-427.42$
$Y=-141.99$
$H=43.42$
Logarithmic distance
2.653587
3.062032
2.956887
2.949740
2.969606
2.551626

Observation station (2)
$B=-69^{\circ} 0^{\prime} 54^{\prime \prime} 003$
$L=39^{\circ} 34^{\prime} 4^{\prime \prime} 397$

True bearing:
(3)

Astronomical station:
(1)
(4)

| -0° | 1^{\prime} | $14^{\prime \prime}$ |
| ---: | ---: | ---: | ---: |
| 35 | 17 | 35 |
| 41 | 42 | 51 |
| 52 | 44 | 46 |
| 105 | 51 | 11 |

$X=-991.85$
$Y=-884.15$
$H=33.34$
Logarithmic distance
3.045328
3.123432
2.969606
3.019905

Observation station (3)

$$
B=-69^{\circ} \quad 0^{\prime} 24^{\prime \prime} 770
$$

$X=-85.85$
$L=39^{\circ} 35^{\prime} \quad 2^{\prime \prime} 145$

True bearing：
Astronomical station：
（5）
（6）
（4）
（1）
（2）
$-0^{\circ} 0^{\prime} 20^{\prime \prime}$
703146
903230
1163451
1625629
163338
2151735
$Y=-242.83$
$H=33.31$
Logarithmic distance
2.410877
3.081409
3.045434
3.095809
2.551626
3.045328

Observation station（4）
$B=-69^{\circ} 1^{\prime} \quad 3^{\prime \prime} 237$
$L=39^{\circ} 35^{\prime} 35^{\prime \prime} 069$

True bearing：
（6）
（2）
（1）
（3）
Astronomical station：
$+0^{\circ} 0^{\prime} 10^{\prime \prime}$
42322
2855111
3424150
3425629
3543018
$X=-1277 .{ }^{m} .83$
$Y=+122.93$
$H=\quad 35.38$
Logarithmic distance
2.971401
3.019905
2.949740
3.095809
3.108473

Observation station（5）
$B=-69^{\circ} 0^{\prime} 25^{\prime \prime} 132$
$L=39^{\circ} 36^{\prime} 50^{\prime \prime} 697$

True bearing：
（6）
（1）
（3）
$+0^{\circ} 1^{\prime} 21^{\prime \prime}$
2034239
253225
2703230
$X=-97.25$
$Y=+963.29$
$H=41.20$
Logarithmic distance
2.724410
3.062032
3.081409

Observation station（6）
$B=-69^{\circ} \quad 0^{\prime} 40^{\prime \prime} 800$
$L=39^{\circ} 36^{\prime} 31^{\prime \prime} 523$

True bearing：
（5）
（4）
（1）
（3）
$X=-582.66$
$Y=+750.10$
$H=40.70$
Logarithmic distance
2.724410
2.971401
2.956887
3.045434

Investigation of the results

The position of our astronomical station in Padda I．on the revised $1 / 100,000$ map is read as
whereas our result is

$$
\begin{array}{ll}
\varphi=69^{\circ} 33^{\prime} 5 \mathrm{~S}, & \lambda=38^{\circ} 11^{\prime} 0 \mathrm{E}, \\
\varphi^{\prime}=69^{\circ} 36^{\prime} 7 \mathrm{~S}, & \lambda^{\prime}=38^{\circ} 16^{\prime} 4 \mathrm{E} .
\end{array}
$$

So that

$$
\begin{aligned}
& \varphi^{\prime}-\varphi=3^{\prime} 2 \ldots \ldots . \text { approx. } 6 \mathrm{~km} \\
& \lambda^{\prime}-\lambda=5^{\prime} 4 \ldots \ldots . \text { approx. } 4 \mathrm{~km} .
\end{aligned}
$$

The discrapancy shows that the position of Padda Island is displaced from it's true position about 6 km northward and 4 km westward on the map.

In Padda Island, as the level is referred to the surface of the shelf ice, it should be corrected by the thickness of the shelf ice above mean sea level in the future, but there may remain an ambiguity of about 0.5 m .

The height in the vicinity of Syowa Base are triangulated referring to approximate mean sea level.

We painted yellow crosses of 2 m on the rocky places as the signals for the aerophotogrammetry, but some of them were hardly recognized on the photograph taken from the helicopter flying about $50-100 \mathrm{~m}$ high. Incidently we found the cotton sheets put on the rocky places by the first wintering team for the same purpose but not used. They are, however, presumed to be more distinctive than paints.

For the triangulation, as the atomospheric transparency was extremely good, we could recognize the station mark (a half redish and half white flag) separated about 20 km . It is considered that the stations separated more than 30 km can be sighted without heliotrope.

Tellurometer is an electronic microwave distance meter. The nominal accuracy is $3 \times 10^{-6} \pm 2$ inches and the weight is about 60 kg including battery and accessaries.

Judging from the good uniformity of the atomospheric conditions, the accuracy of 10^{-5} seemed to be attained though there was no way to prove it, except the base line between No. 1 (astronomical station in East Ongul I.) and No. 18 (the nearest rocky place in the continent from Syowa Base) owing to the ambiguity of the reduction of the centre on the part of No. 18. The ambiguity is about 0.5 m .

It takes about nine hours to accomplish the observations at one group of control points. Two teams consisted of three persons each are necessary to do the work.

The items are:
The time;
Transportation of the instruments from helicopter
to the station............... .2 hours (average)
Distant measuremet 2.5 hours
Levelling 4 hours
Total 8.5 hours.

* The astronomical observation is done concurrently.

The number of workers;
One person is for astronomical observation or levelling.
One person is for distant measurement.
One person is for booking and supplementary work.
Total Three persons.

[^0]: ＊Geographical Survey Institute．Member of the Japanese Antarctic Research Expeditions， 1957－58 and 1959－60．
 ＊＊Geographical Survey Institute．Member of the Japanese Antarctic Research Expedition， 1956－57．
 ＊＊＊Geographical Survey Institute．Member of the Japanese Antarctic Research Expeditions， 1957－58 and 1958－59．

