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Abstract: Solar cycle variations of auroral kilometric radiation (AKR) observed by

the Akebono satellite have been compared with the variations of F+*.1 and solar wind

dynamic pressure. F+*.1 and solar wind dynamic pressure show di#erent solar cycle

variations: F+*.1 increases during solar maximum and decreases during solar mini-

mum. Solar wind dynamic pressure suddenly increases in the declining phase of solar

activity and gradually decreases. The pressure minimum occurs during solar maxi-

mum. Statistical analysis of the Akebono data has shown that AKR occurrence

minimum occurs during solar maximum, however AKR occurrence maximum coin-

cides not with solar wind dynamic pressure peak but with F+*.1 minimum. Up-

flowing ion (UFI) events and ambient plasma density, which are associated with

generation conditions of AKR, also show similar behavior. They are dependent not

on solar wind dynamic pressure but on F+*.1. These results suggest the anti-

correlation between discrete aurora and solar activities, which has been never

recognized through the studies on secular variations of auroral phenomena mainly

based on old auroral records obtained in mid-latitude regions.
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+. Introduction

The correlation between auroral activity and solar activity has been recognized

since the +2th century. In +1+0, aurora came back again to Europe after long absence

and surprised people in the era. The year coincides with the end of grand minimum of

sunspot number and solar activity, which is called Maunder Minimum. It is now

known that there were some grand minimum periods of solar activity, such as Wolf

Minimum (+,3*�+-/*), Sporer Minimum (+./*�+/.*), Maunder Minimum (+0./�
+1+/), Dalton Minimum (+13*�+2,/), and Modern Minimum (+3*+�+3+-) (Dalton,

+2*-, +2-.; Wolf, +2/0, +202; Sporer, +223; Maunder, +23.; Eddy, +310a, b). It has

been also reported that aurora occurrence decrease during those periods (De Mairan,

+1--; Fritz, +21-; Eddy, +310a, b; Siscoe, +32*). The ++-year variation of sunspot

number was discovered in the middle of the +3th century (Schwabe, +2.-). Soon after

that, it was also pointed out that aurora occurrence shows the similar ++-year variation
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(Loomis, +21-; Tromholt, +3*,). Therefore, it is now widely accepted that auroral

phenomena becomes active when the solar activity increases.

However, recent statistical studies have reported seasonal variations of auroral

phenomena; electron precipitation (Newell et al., +330, +333; Morooka and Mukai,
,**-), auroral kilometric radiation (Kasaba et al., +331; Kumamoto and Oya, +332),
upflowing ions (Collin et al., +332; Morooka and Mukai, ,**-), auroral UV emissions
(Liou et al., +331, ,**+), electromagnetic electron cyclotron (EMIC) waves (Elandson
and Zanetti, +332), cosmic radio noise absorption (CNA) events (Yamagishi et al.,

+332), and AE index (Lyatsky et al., ,**+; Benkevitch et al., ,**,). They all are quiet

in the summer polar region and active in the winter polar region. Therefore it is

suggested that auroral phenomena are a#ected not only by solar activity but also by the
ionospheric conditions. In addition, based on the long-term observation by the

Akebono satellite, it has been clarified that occurrence frequency of auroral kilometric

radiation (AKR) becomes small not during solar minimum but during solar maximum

(Kumamoto, ,***; Kumamoto et al., ,**-). AKR is known as the phenomena, which

are closely related to discrete auroral arcs (Gurnett, +31.; Kurth and Gurnett, +31/;
Benson and Akasofu, +32.; Hu# et al., +322) and the auroral electron acceleration
processes (Green et al., +313). Close correlations between AKR activity and geomag-

netic indices such as AE, Kp and Dst have been also pointed out by previous studies

(Gurnett, +31.; Voots et al., +311; Murata et al., +331; Kurth and Gurnett, +332).
The results by the Akebono satellite seem to contradict the common knowledge that

activities of aurora and AKR show in-phase relation with solar activity. Therefore,

explanations for the results have come to be needed. As for the control mechanisms,

we have suggested that increase of ambient plasma density during solar maximum

hinders the development of field aligned potential di#erences (Kumamoto et al., ,**-),
which is also suggested as control mechanism of AKR seasonal variation (Kumamoto

and Oya, +332; Kumamoto, ,***; Kumamoto et al., ,**+, ,**-). However, it is also

pointed out as another candidate that AKR is controlled by solar wind dynamic pressure

which becomes minimum not during solar minimum but in solar maximum. Based on

the long-term observations by IMP 2 and Voyager ,, solar wind dynamic pressure
minimum is near solar maximum and the peak pressure occurs +�, years later

(Richardson et al., +33/; Richardson and Wang, +333).
In this paper, we have investigated solar cycle variation of AKR observed by the

Akebono satellite and compared them with solar cycle variations of F+*.1 and solar
wind dynamic pressure. Furthermore, the solar cycle dependences of up-flowing ion

(UFI) events and ambient plasma density, which are associated with generation con-

ditions of AKR, have been also analyzed. Then, control factors of solar cycle varia-

tions of them have been discussed based on the results. In Section ,, we describe the data
sets and the analysis method of AKR, UFI, and ambient plasma density. The results

are presented in Section -, and the discussion and conclusions are given in Section ..

,. Data sets and methods of analysis

The occurrence probability of AKR in the summer and winter polar regions were

calculated based on the Akebono plasma wave and sounder (PWS) data obtained from
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+323 to ,**,. The PWS instrumentation has been described by Oya et al. (+33*).
The wave data observed in geomagnetic latitudes higher than ./� in a sector from +/**
to *-**MLT were utilized. Frequency range from +** kHz to + MHz was divided into
-, frequency range bins, and an occurrence probability of AKR was calculated for each

frequency bin. An occurrence of AKR was defined by an intensity larger than �+/*
dBW/m,Hz. The intensity level is su$ciently large to exclude other wave components
such as solar radio bursts. However, saturation components of AKR in lower frequen-

cy range are di$cult to be excluded from the analysis. Therefore, it is supposed that

occurrence probabilities are slightly overestimated especially in high frequency range.

Assuming AKR is generated in the electron cyclotron frequency at the source and

propagates upward, the wave data below the electron cyclotron frequency at the satellite

were not utilized for the analysis. Since it has been clarified that AKR occurrence

probability shows distinct seasonal dependence (Kumamoto and Oya, +332; Kumamoto,
,***; Kumamoto et al., ,**+), the data observed in the summer and winter polar region
were analyzed separately. In this paper, the summer and winter seasons are defined as

the +,* day intervals around the solstice.
The occurrence probabilities of UFI events in the summer and winter polar regions

were calculated based on Akebono low energy particle (LEP) data obtained from +323
to +331. The LEP instrumentation has been described by Mukai et al. (+33*). Based

on the early observations (Shelley et al., +310; Ghielmetti et al., +312; Gorney et al.,

+32+), UFI events have been known as the phenomena that H�, O� and other ions in
energy range up to a few keV are upflowing from auroral and polar cap ionosphere.

They are divided into two categories: ion beam components with small pitch angle and

ion conic components with large pitch angle. Depending on whether to focus on,

various identification criteria were used for the statistical studies of UFI (Yau et al.,

+32., +32/; Collin et al., +322, +332; Morooka and Mukai, ,**-). In this paper,

focusing on auroral ion beam components produced by the field-aligned potential drops,

UFI events were identified using the following method. First, the energetic ion data

were divided into +/ bins for three pitch angle ranges and five energy ranges, as shown
in Table +. Then, the average number flux of each bin was calculated to identify UFI

events using the following criteria; (+) average number flux of greater than +.,, keV ions
in the upgoing sector (U., U/) is greater than +..�+*0 eV/(cm,s ·sr ·eV), (,) in the
upgoing sector, average number flux of greater than +.,, keV ions (U., U/) is +.- times
greater than that of lower energy ions (U+, U,, U-), and (-) average number flux of

Table +. Fifteen data bins, divided into three pitch angle ranges

and five energy ranges, used to calculate average

number fluxes of energetic ions.

*�-*�
(Up)

-*�0*�
(Perp.)

0*�3*�
(Down)

-.40�+,. eV
+,.�-.- eV
-.- eV�+4,, keV
+4,,�-4-3 keV
-4-3�+,4+ keV

U+

U,

U-

U.

U/

P+

P,

P-

P.

P/

D+

D,

D-

D.

D/
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upgoing ions in energy range greater than +.,, keV (U., U/) is +.- times greater than
that of ions with downgoing (D., D/) or perpendicular (P., P/) pitch angle. Energetic

ion data observed in invariant latitude ranges from 0/ to 1/� in a sector from +2** to
,.**MLT below an altitude of 1*** km were utilized.

Ambient plasma densities in the summer and winter polar regions were derived

from the Akebono PWS data obtained in invariant latitude ranges from 0/ to 1/� in a
sector from +2** to ,.**MLT. Upper limit frequencies of upper hybrid resonance
(UHR) waves and whistler waves were utilized for determination of plasma frequencies

at the observation points. Then, number density of ambient plasma was derived from

plasma frequency at each observation point.

-. Results

In Fig. +, solar cycle variations of +-month averaged sunspot number and F+*.1,
--month averaged solar wind dynamic pressure, and occurrence probability of AKR in
the summer and winter polar regions are displayed. Solar wind dynamic pressure was

calculated from ion number density and plasma flow speed. In Fig. +d and +e, total
occurrence probabilities of summer and winter AKR in a frequency range from +** to
/** kHz for each year are displayed by histograms. Gray indicates the year in which
total observation time is shorter than +** hour. In Fig. +f and +g, the left and right
vertical axis respectively indicate AKR emission frequency and AKR source altitude

determined by assuming that AKR is generated in electron cyclotron frequency in the

source regions located in an invariant latitude of 1*�. The occurrence probabilities of
AKR are shown by color scale. Black indicates no data coverage. Sunspot number

and F+*.1 clearly show the similar ++-years variations: They increase during solar
maximum (around +323 and ,***) and decrease during solar minimum (around +33.�
+33/). As shown by Richardson et al. (+33/), solar wind dynamic pressure shows
di#erent ++-year variation: The pressure peak occurs in declining phase of solar activity
and gradually decreases. It becomes minimum around solar maximum. The solar

cycle variations of AKR occurrence shown in Fig. + are basically similar with results of
Kumamoto et al. (,**-). It may appear that AKR occurrence becomes minimum
when solar wind dynamic pressure is minimum. However the AKR occurrence maxi-

mum does not coincide with the pressure maximum in declining phase of solar activity.

It seems more reasonable to interpret the variation as an anti-correlation with sunspot

number and F+*.1.
The vertical profiles of UFI occurrence probability in the three periods, +323�+33,

(solar maximum), +33+�+33. (declining phase of solar activity), and +33.�+331 (solar
minimum), are shown in Fig. ,. In the both summer and winter polar regions,
occurrence probabilities of UFI events during solar maximum are smaller than those

during solar minimum in all altitude range, as shown by Kumamoto et al. (,**-).
However, extreme vertical profiles are not seen during the declining phase of solar

activity, when the solar wind dynamic pressure peak appears. It suggests that vertical

distribution of auroral particle acceleration region depends not on solar wind dynamic

pressure but on the solar flux indicated by F+*.1.
Figure - shows vertical profiles of ambient plasma density during +323�+33, (solar
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Fig. +. Solar cycle variations of (a) +-month averaged sunspot number, (b) +-month averaged F+*.1,

(c) --month averaged solar wind dynamic pressure, and (d�g) occurrence probability of AKR in

the summer and winter polar regions. In Fig. +d and +e, total occurrence probabilities of sum-

mer and winter AKR in a frequency range from +** to /** kHz for each year are displayed by

histograms. Gray indicates the year in which total observation time is shorter than +** hour.

In Fig. +f and +g, the left and right vertical axis respectively indicate the emission frequency of

AKR and AKR source altitude determined by assuming that AKR are generated in electron

cyclotron frequency in the source regions located in an invariant latitude of 1*�. The occur-

rence probabilities of AKR are shown by color scale. Black indicates no data.
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maximum), +33+�+33. (declining phase of solar activity), and +33.�+331 (solar mini-

mum). Ambient plasma densities during solar minimum shows knee-like profile which

consists of ionospheric cold plasma component and magnetspheric hot plasma compo-

nent, as reported by previous studies (Mozer et al., +313; Hilgers, +33,; Persoon et al.,

+33-; Kletzing and Torbert, +33.; Kletzing et al., +332). During solar maximum, on

the other hand, ambient plasma densities are so scattered to large values that knee-like

profile almost disappears. However, extreme profiles are not seen in the declining phase

of solar activity, which is di#erent from the behavior of solar wind dynamic pressure but

similar to the behaviors of AKR, UFI and F+*.1. It is also pointed out that the solar

cycle variation of ambient plasma density occurs not only in the ionosphere but also up

to an altitude about 2*** km, where AKR sources and auroral particle acceleration

regions are mainly generated.

.. Discussion and conclusions

The results shown in this paper distinctly suggest that the solar cycle variations of

AKR and UFI are caused not by the variation of solar wind dynamic pressure but by the

variation of solar flux indicated by sunspot number and F+*.1. During solar maxi-

mum, when solar flux increases, occurrence probabilities of AKR and UFI decrease in

the both summer and winter polar regions. Ambient plasma density also shows clear

solar cycle dependence. During solar maximum, ambient plasma density not only in

the ionosphere but also up to an altitude about 2*** km, where AKR sources and

auroral particle acceleration regions are generated, becomes large probably due to

Fig. ,. The vertical profiles of UFI occurrence probability in the (a) summer and (b)

winter polar regions. “Max.”, “Dec.”, and “Min.” indicate the periods of

+323�+33, (solar maximum), +33+�+33. (declining phase of solar activity),

and +33.�+331 (solar minimum), respectively.
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increase of upwelling plasma from the ionosphere. Therefore, it is strongly suggested

that dense ambient plasma hinder the generation process of AKR sources and field

aligned potential di#erences during solar maximum. Based on cyclotron maser insta-

bility (CMI) theory, it is di$cult to grow intense R-X mode AKR in dense ambient

plasma (Wu and Lee, +313; Hewitt et al., +32,). In addition, assuming that field-

aligned currents J is constant, it is expected that field-aligned drift velocity vd�J/Ne
decreases when ambient plasma density N increases. Then, plasma waves, such as

ion-acoustic waves and electrostatic ion cyclotron (EIC) waves, can not be unstable

Fig. -. Vertical profiles of ambient plasma density during (a, b) +323�+33, (solar maximum), (c, d) +33+�
+33. (declining phase of solar activity), and (e, f) +33.�+331 (solar minimum). The left and right

plots indicate the profiles in the (a, c, e) summer and (b, d, f) winter polar regions, respectively.
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(Kindel and Kennel, +31+), and can not generate large field aligned potential di#er-
ences. It has been suggested that the presence of a field aligned potential drop is

important for generation of intense R-X mode AKR via CMI process (Fung and Vinas,

+33.; Ergun et al., ,***).
As for the other auroral phenomena, there have been reported some statistical

analysis results which suggest anti-correlation with solar activity. Silverman (+33,)
has performed statistical analysis of auroral records in Greenland from +2.+ to +30* and
pointed out that long-term variations of aurora occurrence in high-latitude regions are

complicated and do not show simple in-phase relation with solar activity. In Fig. ,+ of
Silverman (+33,), there are seen some aurora occurrence minima around +22., +23.,
and +3*,, which correspond to solar maximum. Statistical studies of all sky camera
data obtained in Northern Finland during +31.�+330 also show the results which
suggest the anti-correlation between aurora occurrence and solar activity (Nevanlinna

and Pulkkinen, +332). In Fig. ,a of Nevanlina and Pulkinen (+332), occurrence of
“quiet arcs” seems to decrease during solar maximum and increase during solar

minimum. The authors did not pointed out the result because they mainly focused on

in-phase relation between active aurora occurrence and solar activity. However, it

suggests that AKR sources, UFI events, and auroral particle acceleration regions are

mainly linked to stable discrete auroral arcs rather than to unstable active aurora.

There are also some evidences which support the anti-correlation between auroral

particle acceleration processes and solar activity. Newell et al. (+332) have reported
that the occurrence area size of electron precipitations decreases during solar maximum

based on +, years of energetic electron data obtained by the DMSP satellite. Yau et

al. (+32/) have carried out the statistical analysis of UFI based on . years of energetic
ion data obtained by the DE-+ satellite, and concluded that there is not seen clear solar
cycle dependence of H� and O� except for O� conics components, which increase

during solar maximum. However, as seen in Fig. 0 of Yau et al. (+32/), H� and O�

with pitch angles of +0*�+2*� during solar minimum seem slightly larger than those
during solar maximum. Cattell et al. (+33+) have carried out statistical analysis of
electrostatic shocks observed by the S--- satellite, and pointed out that occurrence
probability of electrostatic shocks with ion beams decrease in solar maximum. They

also shows the solar cycle dependence of vertical profiles of electrostatic shocks with ion

beams (Fig. /a of Cattlell et al., +33+), which are consistent with UFI vertical profiles
in our results. The solar cycle dependence of AL index clarified by Nakai and Kamide

(+333) suggests the solar cycle dependence of auroral electrojets. During solar maxi-
mum, AL index becomes di$cult to increase even when the solar wind parameter V ,Bz

becomes large.

It seems inconsistent with the common knowledge that aurora phenomena become

active during solar maximum. However, it is not discrepancy. The positive correla-

tion between aurora occurrence and solar activity, known since the +2th century, has
been established through the studies of aurora secular variations based on the auroral

occurrence records in Europe, Northern America, East Asia, and Russia since ancient

times (Lovering, +201, +202; Fritz, +21-; Matsushita, +3/0; Link, +30,, +30.; Keimatsu,
+310; Stothers, +313; Dall’Olmo, +313; Loysha, +323). Most of them were, however,
made by naked-eye observations in the mid-latitude regions (�0*� in geomagnetic
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latitude). They probably include the both di#use aurora generated by soft electrons
with an energy range below a few +** eV and discrete aurora generated by accelerated
electrons with an energy range larger than a few keV, and mainly reflect the character-

istics of the di#use aurora in mid-latitude regions. On the other hand, AKR is mainly

associated with discrete auroral arcs which are produced by accelerated auroral elec-

trons. It does not seem strange that their solar cycle dependences are di#erent. It

should be noted that there is no contradiction between the results in this paper and

previous studies which reported close correlation of AKR with geomagnetic indices such

as AE, Kp and Dst. Based on the results by Lyatsky et al. (,**+) and Benkevitch et al.

(,**,), which shows seasonal dependence of AE index, AE index is controlled by the

ionospheric conditions. Therefore, it is assumed that AE index, or activity of auroral

electrojets, shows anti-correlation with solar activity just as AKR, UFI and stable

discrete auroral arcs. Relation between AKR activity and Kp/Dst indices is probably

indirect. The results by Murata et al. (+331) were based on GEOTAIL wave data
obtained in +33-. The question on long-term correlation between AKR activity and

Kp/Dst indices is deferred to future investigations. More than .* years has passed
since the scientific measurements in the polar region and from the space were started.

The paradigm of positive correlation between auroral occurrence and solar activity

should be reinvestigated through the statistical studies based on the long-term observa-

tion data sets obtained by the methods in the new era.
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