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Abstract: Shoot growth chronology of alpine dwarf pine (Pinus pumila) was

examined near the summit of Mount Norikura in central Japan, in relation to shoot size

and climatic conditions. Shoot growth was investigated in 1* shoots with various

shoot lengths between +2 and ,1- cm, and the examined 1* shoots were divided into

three size classes (shoot length �1* cm, 1*�+.* cm, and �+.* cm). A shoot growth

chronology was developed for each of the three size classes, but was not statistically

di#erent among them. It is suggested that the size dependency of shoot growth

chronology was rather weak or negligible. Thus, a single shoot growth chronology

was developed again, irrespective of shoot size. Climatic factors a#ecting the shoot

growth were analyzed by using monthly climatic data (mean temperature, insolation

duration and sum of precipitation). The shoot growth chronology was positively

correlated with the June temperature of the current year, suggesting that the high

temperature of this month increases the shoot growth by prolonging the growing

season. The shoot growth chronology was also positively correlated with the temper-

atures from July to October of the previous year, suggesting that the growth of

P. pumila largely depends on the photosynthetic production of the previous year. The

mean temperature during July to October of the previous year explained -*� of the

variation of the shoot growth chronology. These results showed that the shoot

growth of P. pumila is largely regulated by temperature during the growing season,

irrespective of shoot size.
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Introduction

High altitudes and high latitudes are harsh environments for plant growth and

survival because of low temperature, strong winds, heavy snow and short growing

season (Hadley and Smith, +32-, +220; Körner, +333; Kajimoto et al., ,**,). There-

fore, climatic change will significantly a#ect plant communities in high altitudes and

high latitudes (Henry and Molau, +331; Chapin et al., ,**.; Takahashi, ,**/). For

example, many dendrochronological studies have revealed that radial growth of trees

near timberline increased in mild years with higher than average temperatures (Ettl and

Peterson, +33/; Gostev et al., +330; Buckley et al., +331; Peterson and Peterson, ,**+;
Wilson and Hopfmueller, ,**+). Growth of plants is largely influenced not only by
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climatic conditions but also by size (or age) and competition with neighboring plants

(Weiner, +32.; Hara, +33-; Takahashi, +330; Takahashi et al., ,**-). Dendrochronol-

ogy is e#ective for the evaluation of relationships between tree growth and climatic

conditions because this method can remove e#ects of size (or age) and competition by

well-established standardization techniques (Fritts, +310; Cook and Peters, +32+). In

terms of e#ects of tree age on growth-climate relationships, Szeicz and MacDonald

(+33/) showed that the radial growth response of Picea glauca (Moench) Voss to

climatic conditions varied with tree age. Therefore, it is important for the analysis of

climate-growth relationships to reduce e#ects of other factors than climatic conditions.

The alpine dwarf pine (Pinus pumila Regel) is widely distributed in the alpine zone

in Japan (Tatewaki, +3/2; Wardle, +311). Although there is concern about the upward

distribution shift of P. pumila due to global warming (cf. Kajimoto et al., +330),
information about the relationship between shoot growth of P. pumila and climatic

conditions is still limited. Shoot growth of P. pumila has been observed to be positively

correlated with summer temperatures of the previous year (Sano et al., +311; Okitsu,
+322; Takahashi, ,**-a). However, these studies examined the relationship between

climatic conditions and shoot growth only in short periods (+/ to ,/ years). Short

chronologies cannot give robust results. For example, Okitsu (+322) found few

statistically significant relationships of the shoot growth chronologies of P. pumila with

any climatic factors, probably due to its short shoot growth chronology (only +/ years).

Thus, long shoot growth chronologies are necessary for the examination of e#ects of

climatic conditions on the shoot growth of P. pumila. In addition, these previous

studies did not take account of other factors than climatic conditions, such as competi-

tion and plant size (or age). However, the e#ect of competition on shoot growth of

P. pumila seems to be small because P. pumila forms dwarf scrub without vertical

stratification structure. Therefore, the e#ect of shoot size should be taken into account

in evaluating the relationship between climatic conditions and shoot growth of

P. pumila.

The purpose of this study was to examine the shoot growth chronology of P. pumila

in relation to shoot size and climatic conditions by investigating various sized shoots for

as long a period as possible.

Materials and methods

Study site

This study was carried out on Mount Norikura (-0�*0�N, +-1�--�E, summit ele-

vation -*,0m above sea level) in central Japan. Betula ermanii Cham. and four

conifers (Abies veitchii Lindl., Abies mariesii Mast., Picea jezoensis var. hondoensis

Rehder, and Tsuga diversifolia Mast.) were dominant between approximately +0**m
and ,/**ma.s.l. in the subalpine zone. Alpine dwarf pine scrub (Pinus pumila) was

distributed in the alpine zone.

The study site was located at ,2**ma.s.l. near the summit of Mount Norikura.

Mean annual temperature at this study site was estimated to be �,.-�C from the

temperature recorded at Nagawa Weather Station (+*02ma.s.l., approximately ++ km
from the study site) using the standard lapse rate of �*.0�C for each �+**m altitude.
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Mean monthly temperatures in the coldest month of January and the hottest month of

August were estimated to be �+-.3 and 3.3�C, respectively.

Field methods

Interannual fluctuation of shoot growth of P. pumila was examined from +- to +/
September ,**.. Annual shoot growth rate was measured from bud scars using a ruler.

In order to examine the size dependency of shoot growth rate, shoot growth was

investigated in a total of 1* shoots with shoot lengths between +2 and ,1- cm.

P. pumila regenerates by vegetative growth such as layering, and therefore, above

ground shoots usually connect to other shoots (Kajimoto, +33,). In this study, shoot

length was defined as the length from the shoot tip to the shoot base that appeared on

the ground, i.e., this study did not include the below ground shoot length.

Data analysis

The span of shoot growth chronologies di#ered among the examined 1* shoots from

0 to /, years because of the large variation in the shoot length. Each shoot growth

chronology was verified against a master dating series (mean of all series) for cross

dating, on the basis of correlation coe$cients. Of the examined 1* shoots, shoots that

showed low correlations with the master dating series were eliminated from further

analyses.

In order to examine whether the shoot growth of P. pumila in response to climate

varies with shoot size, each shoot growth chronology was disaggregated into three size

classes (shoot length �1* cm, 1*�+.* cm, and �+.* cm, Fig. +a). All of the shoot

sections for each size class were then combined to produce a single chronology for each

of the three size classes (Fig. +b, c). Each size-corrected shoot growth chronology of

each size class was developed by averaging shoot growth rates among the shoots

examined in each year. The number of samples that were used to develop a size-

corrected shoot growth chronology di#ered in each year because of the di#erence in the

measured periods among the examined shoots. More than five shoots were used in each

year for the development of each chronology. Shoot growth chronologies were deter-

mined for the periods +31-�,**., +30+�,**. and +310�,**. for the small (shoot length

�1* cm), the medium (1*�+.* cm) and the large size classes (�+.* cm), respectively.

Shoot growth chronologies were then compared among the three size classes by t-test for

the period +310�,**. that was common to all three size classes.

A simple correlation test was used to show what climatic factors a#ect the shoot

growth of P. pumila. The nearest weather station was Nagawa (-0�*/�N, +-1�.+�E,
+*02ma.s.l., ca. ++ km from the study area). However, the available meteorological

data at Nagawa started in +313 (i.e., the recording period at Nagawa was shorter than

shoot growth chronologies of P. pumila). In contrast, a long-term record was available

at Matsumoto Weather Station (-0�+/�N, +-1�/2�E, 0+*ma.s.l., approximately .* km
from the study site). Thus, this study used climatic data recorded at Matsumoto for

the correlation test. Monthly mean temperature, insolation duration and sum of

precipitation were used. The shoot growth chronology of P. pumila was compared

with the meteorological data from the beginning of the previous growth period to the

end of the current growth period. The growing season of P. pumila at this study site
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was determined as June to September because the mean monthly temperature exceeded

/�C, an e#ective temperature for plant growth (Kira, +3.2), during this period (total +0
months). Bonferroni correction of P-values was done for the correlation tests.

Results and discussion

The shoot growth rate was positively correlated with shoot length (P�*.**+, Fig.

,). Thus, larger shoots tended to grow faster. However, the variation in the shoot

growth rate was large, and the shoot length could explain only +.� of the variation.

Of the examined 1* shoots of P. pumila, /3 shoots were well correlated with the master

dating series, and were used to develop the shoot growth chronology for each of

the three size classes (shoot length �1* cm, 1*�+.* cm, and �+.* cm). Uncorrelated

shoots varied in shoot length from short to long shoots. Therefore, low correlations of

these shoots were ascribed to measurement errors. The shoot growth chronology was

not significantly di#erent among the three size classes for the period +310�,**. (t-test,

P�*.*/), although the shoot growth rate in the smallest size class seems to be lower

during +33/ to ,**. compared with the two other size classes (Fig. -). It is suggested

that the size dependency of the shoot growth chronology was rather weak or negligible.

This study showed that the shoot growth chronology did not di#er among the three

size classes. In order to produce the shoot growth chronology of the smallest size class,

data of “current small shoots” and those of “past small shoots” were combined.

Growth rates of current smaller shoots were actually lower than those of larger shoots

after +33/ (Figs. ,, -a), suggesting the size dependency of shoot growth. However, the

growth of “past” small shoots was similar to that of current large shoots before +33/
(Fig. -a). Although the data of current small shoots were taken from isolated seed-

derived seedlings, those of the past small shoots (i.e., current long shoots) were taken

Fig. ,. Relationship between shoot growth rate and shoot length in ,**.. The regression equation is

Y�*.**0+ X�,.,3 (F+, 02�++.3, adjusted r,�*.+-0, P�*.**+), where Y is the shoot growth

rate (cm/year) and X is the shoot length.
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from shoots in scrub. Shoots in scrub were probably vegetative-growth individuals.

One of the possible reasons for the lack of a significant di#erence in the shoot growth

chronology among the three size classes was due to this methodology. Generally,

growth rate of shoots derived from vegetative reproduction, such as sprouts and root

suckers, is higher than that of seed-derived individuals because vegetative sprouts are

supported by mother plants in terms of water, nutrients and photosynthetic production

Fig. -. Size-corrected shoot growth chrono-

logies of Pinus pumila (thick solid lines) for

the shoot length �1* cm (a), 1*�+.* cm (b),

and �+.* cm (c). A dotted line in each fig-

ure indicates the overall mean chronology

without the size correction. A thin line in

each figure represents the sample depth.

Fig. .. Correlation coe$cients between annual

shoot growth of Pinus pumila (+3/3�,**.)
and monthly climatic data (temperature, inso-

lation duration and precipitation). Shaded

bars indicate significant correlations (P�*.*/
by the Pearson correlation test with Bonfer-

roni correction).
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(Stuefer et al., +33.). Okitsu and Ito (+32-) found that shoot growth rate was higher

in the vegetative-growth shoots than in the seed-derived shoots. Therefore, the lack of

significant di#erence in the shoot growth chronology among the three size classes was

attributable to the vegetative growth trait of P. pumila, and this result does not mean the

absence of size-dependent growth rate for seed-derived individuals of P. pumila.

A single shoot growth chronology was developed again by using the /3 shoots that

showed good correlations with the master dating series, irrespective of size, for the

period +3/3�,**.. The .0-year span of the chronology is considerably longer, as com-

pared with previous studies (+/�,/ years) (Sano et al., +311; Okitsu, +322; Takahashi,
,**-a). Climatic factors a#ecting shoot growth were analyzed by the simple correla-

tion test. However, no significant correlations were detected with the insolation

duration and precipitation of any months (Fig. .). In terms of precipitation, Taka-

hashi (,**-b) observed that drought stress hardly occurred in summer for P. pumila

because of frequent rain events in the alpine zone.

The shoot growth chronology was positively correlated with the June temperature

of the current year (Fig. .). June is the start month of the growing season. The

growth period for plants is rather short in the alpine zone, and therefore, high tem-

perature in early summer is e#ective for the tree growth and production by prolonging

the duration of growing season (Camarero et al., +332; Menzel and Fabian, +333; Grace

et al., ,**,). Gostev et al. (+330) and Solomina et al. (+333) also showed that early

summer temperature of the current year was positively correlated with the tree-ring

growth of Dahurican larch (Larix cajanderi Mayr.) on the Kamchatka Peninsula, the

Fig. /. (a) Fluctuation of annual shoot growth rate of Pinus pumila during +3/3 to ,**. (solid line)

and mean temperature between July and October of the previous year (dotted line), and (b)

the sample depth of the shoot growth chronology.
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Russian Far East. Thus, it is suggested that high temperature in June increases the

growth of P. pumila by prolonging the growing season.

The shoot growth chronology was positively correlated with the temperatures from

July to October of the previous year (Fig. .). This is because P. pumila grows using

the photosynthetic production accumulated in the previous year (Kibe and Masuzawa,

+33,). The previous studies also revealed that the shoot growth rate of P. pumila was

positively correlated with the summer temperatures of the previous year (Sano et al.,

+311; Okitsu, +322; Takahashi, ,**-a). Therefore, the result of the long chronology of

this study was in accordance with that of the short chronology of the previous studies.

Therefore, it is suggested that a relationship between the shoot growth of P. pumila and

summer temperature of the previous year is evident. Annual fluctuation of the shoot

growth rate of P. pumila and that of mean temperature during July to October of the

previous year were synchronousl (Fig. /). The mean temperature during July to

October of the previous year explained -*� of the variation of the shoot growth

chronology by the regression model Y�*..,/X�/.-+2 (F+, ..�,*.., adjusted r,�*.-*+,
P�*.**+), where Y is the shoot growth rate (cm/year) and X is the mean temperature

during July to October of the previous year.

This study concluded that the size-dependency of shoot growth chronology was

rather weak or negligible, and that the shoot growth rate of P. pumila was strongly

regulated by the summer temperature of the previous year, irrespective of shoot size.

The results of this study will contribute to the prediction of shoot growth of P. pumila

in future, i.e., global warming can increase the shoot growth of P. pumila by increasing

temperatures during the growing season and by prolonging the growing season.
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