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Abstract: We examined the differences in the decomposition rate and fungal 

biomass in the litter of Hylocomium splendens among forests under different climatic 

conditions. The samples were collected from one boreal forest in Canada, three 

subalpine forests on Mt. Fuji and one cool temperate forest on Mt. Tsurugi, Shikoku 

in Japan. The decomposition rate in the cool temperate forest was much faster than 

those in the boreal and subalpine forests. Ergosterol, which is a component of fungal 

cell membranes, was used as an indicator of fungal biomass. Ergosterol was detected 

not only from brown moss litter but also from green shoots of the moss. In spite of 

the faster decomposition rate, ergosterol content of the moss litter of the cool 

temperate forest was about one half of those of the boreal and subalpine forests. The 

results suggest that the relationship between fungal biomass and decomposition rate 

differs significantly among forest types. 
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Introduction 

It has been reported that mosses represent a significant proportion of the biomass 
production and subsequently contribute to litter formation in boreal and polar ecosys
tems (Longton, 1984, 1992). In addition, there is some evidence that the moss layer 

plays an important role in nutrient cycling in ecosystems (e.g. Longton, 1984). Mosses 
are known to efficiently absorb nutrients contained in precipitation and throughfall 

(Bates, 1992). Since moss litter decomposes more slowly than that of vascular plants 
(Rosswall et al., 1975; Berg, 1984), the moss layer can act as a reservoir of potentially 
available nutrients. Therefore, decomposition rates of moss litter may have a profound 
influence on the rate of nutrient cycling in the ecosystem. 

The decomposition rate of litter is determined largely by climatic condition, litter 
quality and the nature of decomposers (species composition, biomass, activity etc.). 
The effects of climatic condition and litter quality on the decomposition of moss litter 
have been studied by several authors (e.g. Berg, 1984; Nakatsubo et al., 1997). On the 
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other hand, information about the decomposer of moss litter is rather limited. A few 

studies so far reported indicate that fungi play a major role in litter decomposition 

(Parke and Linderman, 1980; Grasso and Scheirer, 1981; Redhead, 1981). 

Microbial biomass levels are known to be important in determining the decomposi

tion rate of soil organic matter (Berg and Soderstrom, 1979; Anderson and Domsch, 

1980; Mishima et al., 1999). Uchida et al. (2000) examined the decomposition rates 

and fungal biomass of organic substrates (filter paper and wood chips) in an altitudinal 

climatic gradient. They suggested that the altitudinal difference in decomposition rates 

is determined not only by climatic condition but also by difference in fungal biomass. 

It is expected, therefore, that fungal biomass has a significant correlation with the 

decomposition rate of moss litter. 

In order to examine the relationship between the fungal biomass and decomposition 

rate of moss litter, we measured the fungal biomass of Hylocomium splendens (Hedw.) 

B.S.G. growing in forests under different climatic conditions. Ergosterol, which is a 

component of the fungal cell membrane, was measured as a biomaker for fungi in the 

litter. 

Materials and methods 

Study sites 

The samples of H. splendens were collected from one boreal forest in Canada, and 

three subalpine forests and one cool temperate forest in Japan. 

The Canadian boreal forest was situated near Candle Lake in Saskatchewan, 

Canada ( 53
°

50'N, 105
°

30'W; about 500 m a.s.l.). This study site was dominated by 

black spruce (Picea mariana (Mill.) B.S.P.) with a few aspen (Populus tremuloides 

Michx.) individuals. A thick moss layer, mainly composed of H. splendens, covered 

the ground surface. A detailed description of this study site appeared in Uchida et al. 

(1998). 

The study sites in the subalpine forests were set at three different altitudes (2400, 

2200 and 1700 m) on the north-western slope of Mt Fuji (35
°

23'N, 138
°

42-43'£). The 

smallest distance between sites was 1.5 km. The dominant tree species were Tsuga 

diversifolia (Maxim.) Masters and Abies veitchii Lindley. Further descriptions of the 

forest are given by Nakatsubo et al. (1997). 

One study site was set in the Fagus crenata Blume forest of Mt. Tsurugi (33
°

52'N, 

134
°

05'£; about 1350 m a.s.l.) in Ehime Prefecture. The forest floor was dominated by 

bamboo grass (Sasa nipponica Makino et Shibata). H. splendens was found mainly on 

large rocks and fallen trees on the forest floor. 

Monthly mean air temperatures at the study sites were estimated from data 

recorded at nearby weather stations (cf. Nakatsubo et al., 1997). Temperatures at the 

Mt. Tsurugi study site were estimated from data recorded at the summit of Mt. Tsurugi 

(33
°

5 l 'N, 134
°

06'£; 1945 m a.s.l.) for 30 years (1961-1990) using the local en

vironmental lapse rate of 0.60
°

C 100 m 1 Locations and climatic conditions of these 

study sites are shown in Table 1. 
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Table 1. Location, temperature, dominant tree species and annual mass loss 

rates of Hylocomium splendes litter at each study site. 

Site 
Altitude Mean annual air Dominant tree Annual mass 

(m) temperature (
°

C)a species loss rate (%) 

Candle Lake 500 0.6 Picea mariana 18 .6b 

Mt. Fuji 2400 1. 2 Tsuga diversifolia 10. lb 

Mt. Fuji 2200 2.3 Tsuga diversifolia 14. lb 

Mt. Fuji 1700 5.2 Abies veitchii 22.9b 

Mt. Tsurugi 1350 7.8 Fagus crenata 24.5 

a Values are estimated from data recorded at nearby weather stations. 
b Data from Nakatsubo et al. (1997). 

Mass loss rate 

73 

Six or seven almost pure stands of H. splendens were selected at each study site. 

Part of each stand, 15 X 15 cm in surface area, was cut vertically to the FH layer, and a 

moss block composed of green shoots and the L layer was collected. The shoots were 

divided into segments of each age class (see below) . Then, these segments and the 

moss litter in the L layer were freeze-dried to obtain their dry weight. 

The annual mass loss rate of the moss litter was calculated by the simple model 

proposed by Nakatsubo et al. (1997) assuming constant litter production (L) and a 

constant litter mass loss rate (k ') on an annual basis. H. splendens produces a new, 
readily identifiable segment each year (e. g. Tamm, 1953). Each segment increases its 

weight for 1 or 2 years to attain its full size. These fully grown segments constitute the 

largest age class. If the annual net production rate and annual mass loss rate are 

constant, the biomass of the largest age class corresponds to the annual litter production 

L (Skre and Oechel, 1979). The amount of litter, including the largest age class, in the 
steady state (Mm) is given by the following simple equation (Jenny et al., 1949). 

Mm
= L/k' k'= L!Mm , (1) 

Mass loss rates at the study sites of Candle Lake, and Mt. Fuji (2400, 2200 and 
1700 m a.s. l.) were given by Nakatsubo et al. (1997). Moss blocks of Mt. Tsurugi were 

collected in November 1998 and the mass loss rate was estimated as described above. 

Ergosterol content 

Ergosterol content in each segment of the H. splendens litter was measured 

according to Newell et al. ( 1988) as modified by Kasai and Horikoshi ( 1997). Samples 

of boreal, subalpine and cool temperate forests were collected in July 1995, June 1998 

and November 1998, respectively. For comparison, samples of needle litter ( composed 
mainly of Tsuga diversifolia or Abies veitchii) were also collected from the forest floor at 

subalpine sites in July 1997. 

The samples were cut fine by after dividing them into segments of each age class. 

For samples collected from the boreal site, a portion of the sample (ca. 40-I80 mg dry 
matter) and 20 ml methanol were put in a 30-ml bottle and capped. The sample was 

brought to Japan and stored in a refrigerator at 5
°

C until the measurement (within 1 
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month). The rest of the sample (ca. 80 -150 mg) was dried to constant weight at 

80
°

C to obtain the dry weight. For samples collected from other sites (subalpine and 

cool temperate forests), freeze-dried moss litter ( 10 -500 mg dry matter) was placed in 

20 ml methanol and stored in a refrigerator at 5
°

C until the measurement (within 1 

week). 

Quantitative determination of ergosterol was performed by reversed-phase HPLC 

analysis (Shimadzu Co. , Kyoto, Japan) by using a main column 25 cm by 4.6 mm 

Shim-pack HRC-ODS with a 5 µm gasket with a mobile phase of methanol, a 1.0 ml 

min··· 1 flow rate and UV detection at 282 nm. Retention of ergosterol with this system 

is about 15 min. 

Results and discussion 

Figure 1 shows shoots of Hylocomium splendens collected from the study sites in 

the Canadian boreal forest, subalpine forests of Mt. Fuji and cool temperate deciduous 

forest of Mt. Tsurugi. In all samples, the current year (0-year-old) and 1-year-old 

segments were green. The 2-year-old segments in the boreal and subalpine forest 

samples were also green, while those from Mt. Tsurugi were yellow and appeared to be 

senescing. In the boreal and subalpine forests, decomposition of old segments ( older 

than 3-year-old segment) appeared to be slow (Fig. l a-c). For example, at the highest 

study site on Mt. Fuji (2400 m a.s.l.), the dry weight of the 5-year-old segment was 

nearly 80% of the weight of the largest segment. On the other hand, old segments from 

Mt. Tsurugi rapidly decomposed so that the 5-year-old segments almost totally lost their 

leaves and branches (Fig. l d). The dry weight of the 5-year-old segment was less than 

one half of the weight of the largest segment at Mt. Tsurugi (data not shown). 

The high decomposition rate at the Mt. Tsurugi study site was confirmed by the 

litter mass loss rate estimated by the model. The annual mass loss rate at Mt. Tsurugi 

Fig. 1. Shoots of Hylocomium splendens. 

(a) Canadian boreal forest. (b) Subalpine forest on Mt. Fuji (2200m a.s.l.). (c) Subalpine 

forest on Mt. Fuji (1700m a.s.l.). (d) Cool temperate forest on Mt. Tsurugi. Arrows indicate 

the 5 -year-old segments. Scale bar = 10mm. 
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Fig. 2. Light microscopy of Hylocomium splendens at the site on Mt. Fuji (2400 m a.s.l. ). 
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(a) The 4-year-old segment. (b) The 1-year-old segment. Arrows indicate filamentous fungi. 

Scale bar = 200µm. 

(25%) was larger than the rates at the boreal and subalpine sites (10-23%; Table 1) . 

Figure 2 shows the microscopic observation of H. splendens of a different age class. 

The brown shoots were densely colonized by filamentous fungi (Fig. 2a) . A few 

filamentous fungi were also observed in green shoots (Fig. 2b) . 

Fungal colonization in green shoots was also confirmed by ergosterol analysis. A 

significant amount of ergosterol was detected from green shoots for all sites (Table 2). 

The samples collected from the five study sites showed similar patterns of change in 

ergosterol content with age. Ergosterol content tended to increase with segment age 

for 3 years. Then, no significant difference in the ergosterol content was detected 

between ages 4 and 5 (Tukey-Kramer P>0.05). Ergosterol content of the moss litter 

(older than 3-year-old segment) was within the range from 54 to 201µg g 1 dry matter 

which is similar to or less than that of litter of salt marsh plants (202-392µg g 1 dry 

matter) (Newell, 1988). 

The ergosterol content of the 3-year-old segments collected from the study sites on 

Mt. Fuji was within the range from 99 to 138 µg g 1 dry matter (Table 2, Fig. 3) . The 

relationship between the ergosterol content and mean annual air temperature was not 

necessarily clear, but the ergosterol content of the 3-year-old segments at the highest 

altitude (2400 m a.s.1., mean annual air temperature; l .2
°

C) was significantly lower than 

those at lower altitudes on Mt. Fuji (Tukey-Kramer P<0.05). The ergosterol content 

of the 2-year-old segments showed a similar tendency of altitudinal change as those for 
3-year-old segments (Table 2) . The ergosterol content of the sample collected from the 

boreal site was similar to those collected from the subalpine sites (Table 2) . 

On the other hand, in spite of higher temperature condition, the ergosterol content 

of the Mt. Tsurugi samples was about one half of those from the boreal and subalpine 

sites (Table 2, Fig. 3) . This result is in contrast with the result of Uchida et al. (2000), 

who reported that fungal biomass in decomposing organic matter tended to decrease 

with increasing altitude ( decreasing temperature) in the subalpine zone. They also 
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Table 2. Ergosterol content of Hylocomium splendens at the 

study sites. 

Ergosterol content (µg g- 1 dry matter) 

Segment Mt. Fuji 
age Candle Mt. Tsurugi 

Lake 
24 00m 22 00m 1700m 

0,1 31 (5) 35 (5) 55 (8) 55 (6) 6 (2) 

2 74 ( 19) 59 (6) 92 (14) 83 (7) 26 (4) 

3 166 ( 11) 99 (7) 138 (11) 137 (14) 54 (6) 

4 186 (17) 150 (10) 158 (7) 201 (25) 79 (6) 

5 193 (12) 142 (15) 155 (12) 16 0 (10) 94 (9) 

Values are means with SE in parentheses; n = 6 ( Candle Lake) or 7 

( other sites). 
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• Mt. Fuji 

+ 
... Mt. Tsurugi 

150 

f 
100 

50 

0 .__ _ _._ __ ..._ _ __._ _______________ ___, 
0 2 3 4 5 6 7 8 

Mean annual air temperature (°C) 

Fig. 3. The relationship between mean annual air temperature and ergosterol content of the 3-year-old 

segments of Hylocomium splendens. Each value is the mean of 6 (Candle Lake) or 7 (other 

sites) samples with SE. 

reported that significant increase of the ergosterol content occurred mainly from spring 

to summer. Therefore, it is expected that the ergosterol content of litter determined in 

autumn is larger than that in early summer. Nevertheless, the ergosterol content on 

Mt. Tsurugi in November was much smaller than that at other sites which were 

determined in June or July. 

One possible explanation of this inconsistency is that the quality ( composition) of 

decomposers differs among forest types. Mishima et al. (1999) reported that there are 

significant differences in metabolic quotient (respiration rate per unit biomass) among 

forests dominated by different tree species. Although the species of litter examined in 
our study is common to all study sites (H. splendens), the forest type on Mt. Tsurugi is 

quite different from those at the other sites ( deciduous broad-leaved forest vs. evergreen 



Decomposition and fungal biomass of moss litter 77 

coniferous forests). 

It is also possible that the higher ergosterol contents at boreal and. subalpine study 

sites are partly due to the external hypha of ectomycorrhizal fungi. External hypha of 

mycorrhizal fungi constitutes a considerable proportion of the total fungal biomass in 

forests dominated by ectomycorrhizal trees (e. g. Fogel and Hunt, 1983). Although all 

genuses of dominant tree species at the study sites, i.e. Picea, Tsuga, Abies and Fagus, are 

known to be ectomycorrhizal (Maeda, 1954; Harley and Harley, 1987; Allen, 1992; Li, 

1996; Smith and Read, 1997), the ratio of saprophytic to mycorrhizal fungi may differ 

significantly among forest types. At present, however, there is no reliable method to 

distinguish the biomass of mycorrhizal fungi from that of saprophytic fungi (e.g. 

Colpaert et al., 1992). 

The results of this study indicate that fungal biomass in moss litter can vary widely 

among forest types even if the moss species are the same. It is also suggested that the 

relationship between fungal biomass and decomposition rates differ significantly among 

forest types. 

Ergosterol contents of the needle litter collected at the study sites on Mt. Fuji were 

within the range from 193 to 293 µg g 1 dry matter. These values were similar to the 

ergosterol content of the 4-year-old segments of H. spl endens determined in this study 

(150-201µg g 1 dry matter). It has been reported that decomposition of moss litter 

was much lower than that of needle litter (Berg, 1984). However, the data of the 

present study suggest that the moss layer is important as a growth substrate of 

saprophytic and/or mycorrhizal fungi. 
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