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Abstract: The initial incorporation of phytoplankton into young ice was examined 
on February 25-28, 1998 in Saroma Ko lagoon, Hokkaido, Japan to test our hypothesis 
that some physical selection would occur to establish the ice algal assemblages during 
the formation of young sea ice and the development of fast sea ice. An open pool (2  
X 2 m) was employed for the experiment. Young sea ice was collected for a 24  hr 
experiment. Relative brine volume in the young sea ice might be related to air 
temperature. Incorporated contents of chlorophyll a, biogenic silica, particulate 
organic carbon and nitrogen were directly related to the relative brine volume. The 
larger than 2µm fractions of chlorophyll a and biogenic silica were 95% and 78%, 
respectively. The most abundant species incorporated into the young sea ice were 
Navicula transitans (33%) and Achnanthes taeniata ( 12%). Those species were 
originated from a water column where they were released from the bottom surface of 
seasonal sea ice in the vicinity of the experimental pool. Cell density of the incorpo­
rated phytoplankton ranged from 46 to 154 cells ml -i into the young sea ice and 17± 
5 cells ml·- 1 in the sea water under the young sea ice. Those microscopic observations 
suggested the selective incorporation of phytoplankton into the young sea ice at the 
beginning of ice formation and it might accelerate selective development to establish 
the ice algal assemblages with the growth of fast sea ice. 
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Introduction 

In polar and subpolar regions, dense development of ice algal assemblages has been 

reported on the bottom surface of sea ice (e.g. Bunt and Wood, 1963; Grossi et al., 1984; 

Grossi and Sullivan, 1985; Watanabe, 1987; Garrison, 1991). Ice algae plays an 

important role in primary production at high latitudes (Poulin, 1990). Primary 

production in sea ice is high although light is intercepted by overlying snow and ice 

(Satoh et al., 1989; Smith et al., 1990). Primary production in a water column under 

the sea ice is usually insignificant due to little light and hydrostatic instability of the 

water column (Subba Rao and Platt, 1984; Fukuchi et al., 1989). Ice algal assemblages 

continue to develop in the brine pockets and channels as long as the sea ice grows 

(Horner, 1990). The brine volume in the sea ice is habitable space for organisms; it 

varies with various processes during ice growth. As a consequence, the size of the ice 
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algal biomass is also variable with ice condition and brine volume (Gleitz and Thomas, 

1993). Ice algal assemblages are eventually released into a water column when the sea 

ice melts and breaks (Ackley et al., 1979; Palmisano and Sullivan, 1983; Garrison and 

Buck, 1991; Taguchi et al., 1997). These released ice algal cells either immediately sink 

to the bottom (Riebesell et al., 1991; Taguchi et al, 1997) or act as a seed population for 

surface phytoplankton along the ice edge (Garrison et al., 1987). However, studies of 

the initial establishment of ice algal assemblages in fragile sea ice (young ice) are very 

limited due to lack of logistic support (Garrison et al., 1983, 1989). Cooling of surface 

water induces thermal convection and when the water temperature falls below the 

freezing point, ice crystals begin to form in the upper layer with a several meter 

thickness (Weeks and Ackley, 1982). Langmuir circulation cells, which are formed by 

winter wind, transport ice crystals throughout the upper water column (Lange et al., 
1989). The buoyancy of ice crystals results in accumulation at the sea surface (Eicken 

and Lange, 1989). The physical mechanism of young ice formation may involve a 

selection processes of algal cells due to the buoyancy of algal cells with ice crystals rising 

to the surface and aggregation of ice crystals ( Clarke and Ackley, 19 84; Garrison et al., 
1989). 

Saroma Ko lagoon is a semi-closed enbayment located in the northeastern part of 

Hokkaido, Japan. It is connected to Sea of Okhotsk by two open channels (Fig. 1). 

The sea surface freezes during winter and ice algal assemblages form at the under 

surface of seasonal sea ice (Hoshiai and Fukuchi, 1981). The amount of chlorophyll a 
reached higher than 100 mg chlorophyll a m �i in the bottom 3 cm of sea ice in March 

1992 (Robineau et al., 1997). After the sea ice melts and breaks, ice algae are released 

into the water column; it contributes about 20% of the total algal population in the 

spring bloom (Taguchi, 1993). 

The purpose of this study was to test whether some physical selection of 

phytoplankton would occur or not in the formation of young ice. The physical 

selection might influence the characteristic ice algal assemblages with sea ice growth. 

Unfortunately, it was logistically difficult to collect young ice at the beginning of sea ice 

formation. The present experiment was designed to study the process of incorporation 

of phytoplankton into the sea ice in the open pool that formed in the middle of the ice 

season. Young ice was collected and analyzed to study its chemical properties and the 

species compositions of ice algal assemblages to test our hypothesis. 

Materials and methods 

Sampling 

The experimental site was located near the coast of Sakae-ura in Saroma Ko lagoon, 

Hokkaido, Japan (Fig. 1 ). The thickness of sea ice was 65 cm with 5 cm of overlying 

snow. A square pool was made and polycarbonate plates were placed along the side 

wall of sea ice to prevent contamination directly from the exposed ice algal layer in the 

side wall of the sea ice. The pool was divided into four sections by polycarbonate 

plates. The area of each section was about 104 cm2 • After sea ice was completely 

removed from the surface, new ice formation experiments were initiated on February 

25, 26, and 27, 1998, respectively; they lasted for 24 hr each. The experiment con-
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Fig. 1. Location of experiment and sampling station in Saroma Ko, lagoon, Hokkaido, 

Japan. 
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ducted from February 25 to 26 was referred to as Exp. 1, that from February 26 to 27 

as Exp. 2, and that from February 27 to 28 as Exp. 3. Sea ice samples were collected 

from the same subarea in all experiments. Surface sea water was collected by a 

NISKIN bottle from the ice-water interface. An ice core was obtained from the 

vicinity of the pool on February 26, using a CRREL core sampler (Rand and Mellor, 

1985) and the bottom 0-3 cm section of core was collected. Photosynthetically avail­

able radiation was measured in air and water with and without the young ice by a 

LICOR 2 n sensor model LI-190SB. Water and ice temperature were monitored every 

two minutes from 1700 on February 25 to 0900 on February 28, 1998 with the 

NICHIYU GIKEN KOGYO underwater thermometer Model NWT-SN, which was 

placed in the sea ice immediately above the sea surface. All ice samples were placed in 

the 3.2% NaCl solution and allowed to melt at < 20
°

C. Salinity was determined on an 

AT AGO salinity refractometer Model S/Mill-E. Brine volume ( Vb) was estimated by 

the following equation, 

Vb (ml) =Sampling area (cm 2) X Ice thickness (cm) X Sea ice density 

-Volume of melted young sea ice (ml), ( 1) 

where sea ice density, 0.945 (-2
°
C, lO?'oo), was used to convert the ice volume into 
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water volume (Tabata, 1977). Vb was divided by melted sea ice volume to obtain the 

relative brine volume. 

Subsamples were filtered onto Whatman glass fiber filters (type GF/F) for analysis 

of chlorophyll pigments, and precombusted Whatman glass fiber filters (type GF/F) for 

particulate organic carbon and nitrogen. Second subsamples were filtered onto mem­

brane filters for analysis of biogenic silica. Third subsamples were filtered through 

Millipore Millex HV filters for analysis of macronutrients. Fourth subsamples were 

preserved in 2% buffered Formalin solution for microscopic observation. 

Analysis of Chlorophyll Pigments, Macro Nutrients, Biogenic Silica, and Particulate 

Organic Carbon and Nitrogen 

Chlorophyll pigments were extracted with N, N-dimethylfolmamide (DMF) in 

opaque vials (Suzuki and Ishimaru, 1990) and measured on a TURNER DESIGN 

fluorometer Model 10-AU with the method recommended by Holm-Hansen et al. 

(1965). Macronutrients including nitrate, nitrite, phosphate and silicate were analyzed 

on a BRAN LUBBE Autoanalyzer Model AACS-11. Biogenic silica was determined 

spectrophotometrically by the method of Paasche_ (1980). Particulate organic carbon 

and nitrogen were analyzed on a FISON elemental analyzer Model NA 1500 NCS 

standardized by acetanilid. Means were calculated from duplicate samples for all 

analysis. 

Microscopic observation 

Taxonomical identification and enumeration of algal species were carried out by 

light microscopy. A total of > 1000 cells was enumerated to avoid the influence of 

sample size on the index values of species diversity. Taxonomy was based on Tomas 

(1997); diatom systematics was based on Round et al. (1990). Percent similarity was 

calculated by the method of Whittaker (1952). 

Results 

Chemical and physical characteristics of young ice and seawater under the sea ice during 

the experiments 

Water and ice temperature varied between -1.0 and -2. 7
°
C during the experiment 

(Fig. 2). Temperature did not change and stayed at -l.2
°
C for Exp. 1, decreased 

from -1.0 to 2.7
°
C for Exp. 2, and increased from 2.7 to -l.2

°

C for Exp. 3. The 

sea ice grew to 3.6 cm in thickness for Exp. 1 and 2 but only 1.2 cm in thickness in Exp. 

3 (Table 1). A sudden increase of temperature might have been responsible for the 

formation of thin ice in Exp. 3 although the development of ice thickness was related to 

air temperature (Shirasawa, 1993). Estimated relative brine volume in the young ice 

ranged from 7.5% to 55% during the present experiment (Table 1). Salinity of the 

young ice was about 13.3 in Exp. 1 and 2 and 22.9 in Exp. 3 (Table 1). However, not 

all macronutrients in the sea ice and in the water column show similar trend to salinity 

among the experiments. Nutrient concentrations in the sea ice did not show much 

variability in any of the experiments (Table 1). They were 0.5+0.06µM for nitrite, 10 

+o.7 µM for nitrate, 0.8+0. lµM for phosphorus and 39+ l .9µM for silicate in the sea 
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Fig. 2. Water and ice temperature during three consecutive experiments. Arrows point to 

sampling times of each experiment. 

Table 1 . Thickness and volume of ice collected during the 24 hr experiment with estimated 

brine volume. Salinity, nitrate, nitrite, phosphate and silicate in the young ice and 

surface sea water under the sea ice. 

Samples Young ice 

Experiment 2 3 

Sea water 

2 3 

19 

Date Feb. 26 Feb. 27 Feb. 28 Feb. 26 Feb. 27 Feb. 28 

Thickness of ice (cm) 3. 6 3. 6 1. 2 

Volume of sea ice (cm) 31120 29340 7230 

Estimated brine volume (Vb)(m/) 1476 3438 3696 

Relative brine volume (Vrb) 0. 047 0. 12 0. 51 

Salinity (PSU) 13. 4 13. 3 22. 9 25. 2 25. 0 24. 0 

Nitrate (µM) 9. 3 10. 4 10. 5 24. 2 24. 3 11. 5 

Nitrite (µM) 0. 44 0. 54 0. 52 0. 61 0. 53 0. 51 

Phosphate (µM) 0. 70 0. 70 0. 87 0. 22 0. 31 0. 27 

Silicate (µM) 38. 7 36. 7 40. 5 101. 6 71. 6 76. 8 

ice. Nitrate and silicate were diluted to about 40% in the young ice. Nitrite did not 

show much difference between the young ice and the seawater under the sea ice. 

However, phosphorus indicated some accumulation, by a factor of 2.8, in the young ice. 

These results might indicate that nitrate and silicate were consumed rapidly by micro­

algae incorporated into the young ice. 
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Table 2. Pigments, biogenic silica, particulate organic carbon (POC) and nitrogen (PON) and 

ratios of particulate matter in the young ice and surface sea water under the sea ice. 

Samples Young ice Sea water 

Experiment 2 3 2 3 

Date Feb. 26 Feb. 27 Feb. 28 Feb. 26 Feb. 27 Feb. 28 

Chlorophyll a (ng cm- 3) 0. 93 1. 16 2. 61 0. 34 0. 38 0.51 

Pheopigments (ng cm- 3) 0.43 0. 43 3. 46 0. 42 0. 27 0. 36 

Biogenic silica (ng cm - 3) 14. 1 16. 3 30. 0 5. 1 17.3 3. 0 

POC (ng cm 3) 1025 1055 1440 400 293 285 

PON (ng cm·· 3) 47 75 114 68 44 46 

Chl a/Chl a+ Pheopigments 0. 68 0. 73 0. 43 0. 45 0. 58 0. 58 

C/Chlorophyll a 1105 912 552 1179 765 559 

C/N 22 14 13 5. 9 6. 6 6. 1 

BioSi/Chl a 15. 2 14. 1 11. 5 14. 9 45. 3 5. 8 

BioSi/C 73 65 48 78 17 95 

C/N, C/Chl a, BioSi/Chl a and BioSi/C indicate mass ratios of carbon to nitrogen, carbon to 

chlorophyll a, and biogenic silica to chlorophyll a, respectively. 

Table 3. Relative abundance (%) of sizes such as > 10, 10-2, and 2-0. 2µm 

for chlorophyll a and biogenic silica. 

Samples Chlorophyll a Biogenic silica 

Experiment 2 3 2 3 

Date Feb. 26 Feb. 27 Feb. 28 Feb. 26 Feb. 27 Feb. 28 

>lOµm 84. 2 86. 1 70. 9 39.3 52. 2 56. 6 

10-2.0µm 12. 2 9.3 22. 7 33. 2 23. 3 29. 0 

2. 0-0. 2µm 3. 6 4. 6 6. 5 27. 5 24. 5 14. 5 

Incorporated chemical constituents 

Concentrations of chlorophyll a and pheopigments in the young ice were similar 

between Exp. 1 and Exp. 2 but about 2.5 and 2.3 times higher in Exp. 3 than Exp. 1 and 

2 (Table 2). Chlorophyll a contents were 3 in Exp. 1 and 2, and 5 times higher in the 

young ice, although chlorophyll a concentrations in sea water varied little with 0.41 + 

0.09 ng Chl a cm- 3 (Table 2). Most chlorophyll a was observed in the size fraction 

larger than 2.0µm with a mean of 95.1 + 1.5% of total chlorophyll a in the young ice 

(Table 3). The pigment ratios defined as chlorophyll a divided by chlorophyll a plus 

pheopigments in the young ice were about 0. 7 in Exp. 1 and Exp. 2 but 0.4 in Exp. 3 

(Table 2). The pigment ratios in seawater did not change in any of the experiments, 

with 0.54 +0.08 (Table 2). 

Concentrations of biogenic silica in the young ice showed a similar trend to those 

of chlorophyll pigments. Concentration of biogenic silica ranged from 14.1 to 30 ng 

cm- 3 in the young ice (Table 2). Biogenic silica contents in the size fraction larger 

than 2.0µm accounted for 77.9+6.9% of the total concentration of biogenic silica 

(Table 3). Concentrations of biogenic silica in sea water varied from 2.97 to 17.3 ng 

cm- 3 (Table 2). Biogenic silica contents were enhanced by 3 to 10 times in the young 
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Table 4. Cell density and relative abundance ( % ) of abundant taxa occurred in the young ice 
and sea water under the sea ice. 

Exp. 1 
Feb. 26 

Cell density 

Navicula transitans 

Achnanthes taeniata 

Detonula confervacea 

Thalassiosira spp. 

Pinnularia quadratarea 
var. constricta 

Young ice 

(cells ml 1) 
46 

Relative 
abundance 

(%) 

27.9 

18.5 

13. 1 

4.4 

4.0 

Exp. 3 
Feb. 28 

Cell density 

Navicula transitans 

Gymnodiniales 

Euglenophyceae 

Achnanthes taeniata 

Peridiniales 

(cells ml 1) 
154 

Relative 
abundance 

(%) 

37.7 

14.7 

10.5 

6 .0 

4.9 

Sea water 

Exp. 1-3 
Feb. 26-28 

Cell density 

Achnanthes taeniata 

Navicula transitans 

Detonula confervacea 

Fragilariopsis cf. oceanica 

Euglenophyceae 

(cells ml !) 
170.0± 5 

Relative 
abundance 

(%) 

29. 8±3.06 

21. 7±6 .02 

11. 8±3. 86 

7.4±4.31 

4. 9± 1. 86 

Fig. 3. Light micrographs of Navicula transitans (A, C) and scanning electron micrographs of 
Achnanthes taeniata (B, D, E). Scale bars represent lOµm. 

ice, although almost no enhancement was observed in Exp. 2. 
Concentrations of POC and PON in the young ice also indicated a similar trend to 

those of chlorophyll pigments, ranging from 1025 ng cm- 3 to 1440 ng cm- 3 and 47 ng 
cm- 3 to 114ng cm-- 3

, respectively (Table 2). Highest concentrations of POC and PON 
were observed in Exp. 3. The concentrations of POC and PON in sea water did not 
show much variability, with means of 326 +64ngC cm- 3 and 52.8 +13 ngN cm- 3

, 

respectively. Contents of POC and PON were 2 to 4 times higher than in sea water. 
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Table 5. Relative abundance of abundant taxa found in the bottom 
3 cm layer of the ice core on February 26, 1998. 

Species 

Navicula transitans 

Achnanthes taeniata 

Odontella aurita 

Detonula confervacea 

Thalassiosira spp. 

Pinnularia quadratarea var. cf. constricta 

Melosira arctica 

Nitzschia frigida 

Pinnularia quadratarea var. cf. minor 

Entomoneis sp. 

Microscopic observation 

(%) 

51 

25 

7 

6 

3 

3 

2 

2 

0.4 

Cell density of the species identified in the present study was about 20 cells ml - 1 in 
sea water under the young ice. But it ranged from 46 cells ml- 1 for Exp. 1 to 154 cells 
m1-- 1 for Exp. 3 in the young ice (Table 4). The dominant species was Navicula 
transitans in the young ice in Exp. 1 (27.9%) and in Exp. 3 (37.7%) while it was the 
second in sea water (21.7+6.0%) under the young ice (Table 4, Fig. 3). The most 
abundant species in the water column under the young ice wasAchnanthes taeniata (29.8 
+3.1%), which was second (18.5%) in the young ice in Exp. 1 and fourth (6.0%) in 
Exp. 3 (Table 4, Fig. 3). 

Navicula transitans (51%) andAchnanthes taeniata (25%) were the most abundant 
species in the bottom 0-3 cm layer of the sea ice in the vicinity of the pool obtained on 
February 27 (Table 5). 

Discussion 

Brine is produced in sea ice from the beginning of sea ice formation although its 

volume is variable due to temperature (Table 1, Fig. 2). Those values might be 
overestimated, since air bubbles produced in the young ice were not considered. Brine 
volume is considered as one of the limiting factors for the ice algal community since it 
is to the only habitable space found in the sea ice (e.g. Horner, 1990; Weissenberger et 
al., 1992; Gleitz and Thomas, 1993). This consideration is supported by the regression 
model among the incorporated chemical components and the relative brine volume (Vrb) 

determined in the presented study as follows; 

Chl a =3.55 Vrb+0.65, 
BioSi = 33. 7 Vrb + 11.5, 
POC = 899 Vrb + 94.2, 
PON = 125 Vrb+46.5. 

r2
= 0.999 

r2 0.999 
r2

= 0.994 
r2

= 0.914 

(2) 
(3) 
(4) 
(5) 
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Significant relationships were obtained among concentrations of chlorophyll a, biogenic 
silica, POC and PON and relative brine volume in the young ice (p < 0.05). This 
observation may suggest that brine volume in the young ice is the important factor 
which controls the incorporated biomass. Concentrations of chlorophyll a and bio­
genic silica were 5 and 10 times higher than those in a water column at maximum, 
respectively. Those accumulation factors were similar to those obtained in the Antarc­
tic (Garrison et al., 1983). Contents of POC and PON were 2 to 5 times higher than 
those in sea water. Comparison of C/N ratios indicated that POC was more efficiently 
harvested into the sea ice than PON (Table 2). Other ratios did not suggest similar 
accumulation. These observations in the present study may indicate dissimilar incorpo­
ration among chemical constituents during the young ice formation, although a consid­
erable carbon contribution was not expected in the young ice due to the results of 
nonselective harvesting and concentration of organisms and detritus (Garrison and 
Close, 1993). 

The source of seed population for microalgae incorporated into the young ice could 
be either phytoplankton in the water column or ice algae released from the bottom 
surface of the sea ice surrounding the pool. Ice algae have been reported to be released 
continuously from the bottom surface of even well developed seasonal sea ice (Carey, 
1987; Taguchi et al., 1997). This is also confirmed by the simultaneous occurrence of 

Navicula transitans and Achnanthes taeniata in the bottom 0-3 cm layer of the ice core 
taken from the vicinity of the pool (Table 5) and the water column beneath the young 
ice (Table 4). Once ice algal cells are released into the water column, they play the role 
of seed population for ice algae incorporated into young ice. This is also evidenced by 
the two abundant species in the young ice, particularly in Exp. 1 (Table 4) and a 
relatively strong similarity in the species composition between the water column and 
young ice (Fig. 4). Pennate diatoms have a characteristic linkage among cells by 

Sea water 
samples 

Young ice 
samples 

l Exp.2 

Exp.3 

Exp.1 

{ 
Exp.1 

Exp.3 

Bottom section 
(0-3cm) of sea ice 

100 90 80 

-

Percent similarity(%) 

70 60 50 40 30 20 10 0 

Fig. 4. A dendrogram of cluster analysis on similarity of microalgal populations in the new sea ice and 
sea water samples. Percent similarity index was calculated by the method recommended by 
Whittaker (1952). 
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mucilage (e.g. Lewin, 1958). A large amount of mucilage secretion may play a possible 
role in harvesting and concentration of organisms during aggregation of ice crystals. 
However, other motile species which belong to Gymnodiniales and Euglenophyceae 
have come to be dominant in the young ice in Exp. 3 than those two common species, 
which gave the lowest similarity of species composition in the water column in the 
present study (Fig. 4). Gymnodiniales and Euglenophyceae are known as phototactic 
(Halldal, 1962) so that they seem to be attracted to the lit area underneath young thin 
sea ice in the water column and phytoplankton cells are harvest (McPhee, 1990; 
Garrison et al., 1989). Centric diatoms, Odonthella aurita from one of the abundant 
species at the bottom of the ice core collected from the vicinity of the pool in the present 
study (Table 5) but this species is not incorporated into the young ice (Table 4 ). 

These observations also support the hypothesis of selective incorporation of 
phytoplankton into the young ice. 

Nitzschia frigida has been reportedly developed significantly in the ice algal assem­
blage (Takahashi, 1981 ), reaching 55 1 cells ml- 1 as the winter season progresses in 
Saroma Ko lagoon (Kudoh, 1994). N. frig ida corresponded to only 4% of the total 
population incorporated into the young ice in Exp. 1 and 0.8% in Exp. 3. · The cell 

abundance contributed only 2% to the total number of cells at the sea ice bottom (Table 
5). These observations may suggest that predominant species of ice algae are incorpo­
rated from the beginning of young ice. 

Achnanthes taeniata is observed as one of the abundant species in the incorporated 
population during this experiment; however, this species has not been reported yet in 
Saroma Ko lagoon (Takahashi, 1981; Kawanobe and Kudoh, 1995) but is found as 
plankton commonly in the Arctic (Hasle, 1990; Krammer and Lange-Bertalot, 199 1) 
and as ice algae in the Arctic (Horner, 1985). A. taeniata has been probably confused 
with other species such as forming ribbon like community (Hasle, 1997). 

In conclusion, the ice algal population can be harvested in the young ice from 
available phytoplankton species in the water column and developed selectively in the 
available brine space due to physiological differences such as differential tolerance to 
chemical variations among species (Gleitz and Thomas, 1992; Grossmann and Gleitz, 
1993; Gleitz et al., 1996) and the ecological difference in a trophic relation with grazers 
(Garrison and Buck, 199 1; Thomsen et al., 199 1; Garrison and Close, 1993). Howev­
er, the interpretation of the present experimental approach should be cautious since an 
artificial pool is a prototype of a small scale of polynya where physical properties and 
biological activity are quite different from those in open water at the beginning of young 
ice formation (Muench, 1990). 

Further effort is needed to characterize the ice algal dynamics by which the 
incorporated algae become seeding for ice algae and the species composition changes 
with young ice growth. 
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