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Abstract: Primitive clasts in the polymict ureilite Dar al Gani (DaG) -+3 include
dark clasts, sulfide- or metal-rich clasts, and unusual chondritic fragments. The dark

clasts consist mainly of phyllosilicates, sulfides and magnetite with or without fayalitic

olivine. The sulfide-rich clasts consist of a silicate-rich matrix and heterogeneously

distributed sulfide. The metal-rich clasts consist of a silicate-rich matrix with variable

amounts of metal. The unusual chondritic fragments are chondrule and equilibrated

chondrite fragments.

Oxygen isotopic compositions of the silicate-rich matrices in the sulfide-rich or

metal-rich clasts plot on the carbonaceous chondrite anhydrous mineral (CCAM)

mixing line between Allende matrix and a dark clast in the Nilpena polymict ureilite.

Their oxygen isotopic compositions are similar to those of the monomict ureilites.

Considering its chondritic composition and oxygen isotopic composition, the silicate-

rich matrix of the sulfide-rich clasts is the best candidate for the ureilite precursors.

However, the matrix has an Mg/(Mg�Fe) ratio (mg ratio) of *./0 and is too ferroan
to produce the monomict ureilites with mg ratios of *.1.�*.3/. Therefore, it may

have experienced various degrees of reduction to produce precursors with the mg

ratios, needed to form the monomict ureilites as residues during fractional melting.

Oxygen isotopic compositions of the unusual chondritic fragments plot near the

ordinary chondrites on a --isotope diagram, suggesting that they have no direct genetic
relationship to the monomict ureilites. They were projectiles that collided with the

ureilite parent body (UPB).

key words: ureilites, DaG -+3 polymict ureilite, primitive clasts, oxygen isotopes of
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+. Introduction

Ureilites are the second largest group of achondrites, next to the HED meteorites.

They are classified into two major types, monomict and polymict. The monomict

ureilites are more common and have simple mineral assemblages of olivine, pigeonite,

and dark interstitial material containing carbonaceous materials, metal, sulfide and

minor silicates, although some monomict ureilites have augite or orthopyroxene instead

of pigeonite (Goodrich, +33,). The polymict ureilites are relatively rare, with five or

more currently known (Cole et al., ,**,), and are more complex meteorites than
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monomict ureilites. They are clastic matrix breccias, as defined by Stö%er et al.

(+313), containing a variety of lithic clasts, including ureilitic clasts, igneous clasts, and
primitive clasts (Jaques and Fitzgerald, +32,; Prinz et al., +32-, +320, +321; Ikeda et al.,

,***).
Dar al Gani (DaG) -+3 is a polymict ureilite found from the Libya desert and is the

main focus of this study. Although ureilitic clasts are dominant in DaG -+3, primitive
(chondritic in composition) and igneous clasts are minor but important components.

The primitive and igneous clasts never occur in monomict ureilites and provide critical

clues to understanding ureilite petrogenesis.

One of the traditional problems concerning the origin of ureilites is whether they

were produced by partial melting of chondritic precursors or by fractional crystalliza-

tion of basaltic magmas (Goodrich, +33,). This problem has been discussed by many

authors (Boynton et al., +310; Wasson et al., +310; Berkley et al., +32*; Mittlefehldt,
+320; Goodrich et al., +321; Takeda, +321; Rubin, +322; Kurat, +322; Warren and

Kallemeyn, +323; Scott et al., +33,; Walker and Grove, +33-) and in our companion
paper (Ikeda and Prinz, ,**+), which dealt with igneous clasts in DaG -+3. Recently,

Singletary et al. (,**,) presented new evidence from melting experiments supporting a

fractional melting origin of monomict ureilites, and Goodrich et al. (,**,) discussed a
new model for polymict ureilites representing a regolith breccia developed on a

reassembled parent body. Another major issue is deciphering the precursor material

from which ureilites formed. Oxygen isotopic compositions of whole rock monomict

ureilites do not form a mass fractionation line, and instead form a mixing line which is

an extension of the CCAM mixing line of the Allende meteorite (CV-). This suggests

that they are relatively unprocessed, primitive materials (Clayton and Mayeda, +322).
However we do not know what kind of chondritic materials they are related to. In this

paper we examine primitive lithic clasts in the DaG -+3 polymict ureilite, which may be
relicts of the ureilite precursors.

,. Analytical method

Chemical compositions of constituent minerals and glass were analyzed by an

electron-probe microanalyzer (EPMA), using a focused beam at an accelerating voltage

of +/ kV. A beam current of - nA and a counting time of +* s were used for glass,
carbonates, phosphates, and phyllosilicates to suppress evaporation of volatile compo-

nents such as alkalis, and +* nA and ,* s were used for ferromagnesian silicates, oxides,
metal and sulfides. The detection limits for the former condition are shown in Ikeda et

al. (,***), and those for the latter case are about *.*/wt� for TiO,, Cr,O-, FeO, MnO,

CaO, Na,O, and K,O, and about *.*,wt� for SiO,, Al,O- and MgO. Analyses except

metal and sulfides were corrected using the Bence and Albee (+302) method, and metal
and sulfides using the standard ZAF method.

A defocused beam with a diameter of /* mm was employed for bulk analyses of

primitive clasts. The primitive clasts consist of silicate-rich materials with variable

amounts of metal and sulfides, and the silicate-rich portions were analyzed. The

silicate-rich materials in some primitive clasts (sulfide-rich or metal-rich clasts, and

equilibrated chondrite fragments) are coarse-grained with grain sizes larger than several
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microns, and they are larger in size than the depth of X-ray emission area of a few

microns during defocused beam analyses of EPMA. Therefore, these analyses were

corrected by the method of Ikeda (+32*). The other primitive clasts (dark clasts)

consist mainly of fine-grained minerals with grain sizes smaller than a few microns.

Defocused EPMA data for these dark clasts were corrected using the Bence and Albee

method, and the special correction for the defocused beam analyses was not applied.

A beam current of +* nA and a counting time of ,* s were used for the defocused beam

analyses. The detection limits are dependent upon conditions of grain boundaries and

fractures in clasts and amounts of tiny opaque minerals (sulfides or metal) that can not

be avoided from the defocused beam, and may be about +* times larger than those for

the focused beam analyses above stated. More than +* points were analyses for a clast,

and they are averaged.

Oxygen isotopic compositions of clasts were measured with a high sensitivity and

high resolution SIMS (secondary ion mass spectrometer, IMS-+,1*) at the Geological

Survey of Japan. Cs� primary ion (�,* kV) was shaped as a +* mm spot on the sample

surface with �*.1 nA ion intensity. The secondary ion of O� was sputtered from a

sample surface (�+* kV). An incident electron gun (�+* kV) was used for charge

compensation. The mass resolution power was set to ./** in order to separate OH�

molecular interference fully from +1O. All three oxygen isotopes were measured with

three Faraday cup detectors simultaneously by combining two multi-collectors and the

mono collector. The secondary +0O ion intensity was set to �0�+*2 cps (or +�+*�+*

A) and the stability of baseline of Faraday detectors were as low as +*- cps. The

internal errors of single analysis were *.-� and +� for d +2O and d +1O, respectively.

The instrumental fractionation factors of the SIMS were estimated by measuring

terrestrial olivine and pyroxene standards with known d +2O. Repeated analysis of

terrestrial standards gave the reproducibility of *.-�*./� for d +2O within a day.

-. Petrology of primitive clasts in DaG -+3

DaG -+3 consists mainly of lithic clasts and isolated mineral fragments. Six thin

sections of DaG -+3 were prepared, and more than ,** lithic clasts were inspected in

details. Most clast types are ureilitic, and they are large up to + cm across. Primitive

clasts are minor in DaG -+3.
Primitive clasts are classified into three types: dark clasts, sulfide- or metal-rich

clasts, and unusual chondritic fragments, and each type is further subdivided into two

subtypes. They are listed in Table +, where each type is designated by letters D (Dark

clasts), E (sulfide- or metal-rich clasts), or F (unusual chondritic fragments), and the

subtypes are designated with numbers, for example D+ and D,. There are more than

-* dark clasts and +* unusual chondritic clasts in the six thin sections inspected. But

sulfide- and metal-rich clasts are very rare, and each is a few in number. Brief

descriptions of primitive clasts in DaG -+3 are presented by Ikeda et al. (,***), and
detailed petrography and mineralogy are given below.

-.+. Dark clasts (D)

The dark clasts are aggregates consisting mainly of phyllosilicates, magnetite, and
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sulfide (Fig. +A). They are angular in shape and range from a few hundred micro-

meters to a few millimeters in size. Dark clasts in DaG -+3 are subdivided into two

types, Fa-free and Fa-bearing (Table +). The Fa-free subtype is enriched in

phyllosilicates and often contains phyllosilicate veins. The Fa-bearing subtype contains

small fayalitic olivine grains in the matrix, and phyllosilicates occur in small amounts.

No phyllosilicate veins occur in this subtype.

-.+.+. Fa-free subtype (D+ in Table +)
The Fa-free subtype appears to be completely hydrated, consisting mainly of a

phyllosilicate-rich matrix with variable amounts of opaque minerals (sulfides and

magnetite), carbonate fragments, and phyllosilicate nodules (Fig. +A). Some clasts of

this subtype contain anhydrous silicates such as olivine, pigeonite and rhyolitic glass

(Ikeda et al., ,***), which may be exotic minerals that were mechanically mixed into

the dark clasts after they formed. The matrix is dominated by phyllosilicates and

contains fine grains of euhedral to subhedral pyrrhotite, subrounded magnetite, and tiny

(�+ mm) phosphate. In some cases, the matrix shows pseudomorphic textures of

previous anhydrous minerals which were replaced by phyllosilicates (Fig. +B).
Phyllosilicate veins occur in some Fa-free clasts (Ikeda et al., ,***). Thus, the

phyllosilicates of DaG -+3 occur as matrix, nodules, and veins. Chemical compositions

of the phyllosilicates are shown in Table , and Fig. ,. They seem to be a mixture of a

large amount of serpentine and a small amount of smectite accompanied by Fe oxides or

sufides. The Al,O- contents of the phyllosilicates range from *./ to 0.*wt�; low-Al

phyllosilicates with Al,O-�-./wt� are more abundant than the high-Al phyllosilicates

with Al,O-�-./wt�. High-Al phyllosilicate veins cut low-Al phyllosilicate veins,

suggesting that high-Al ones formed later. Low-Al ones may be mostly serpentine, and

high-Al ones may be smectite-rich. Magnetite in some clasts occurs as subrounded or

Table +. Classification of lithic clasts in polymict ureilites.

(�) Ureilitic Clasts

(A) Coarse-grained Mafic Clasts

(B) Fine-grained Mafic Clasts

(�) Igneous Clasts

(C) Felsic Clasts

(�) Primitive Clasts

(D) Dark Clasts

(Dl) Fa-free Type

(D,) Fa-bearing Type

(E) Sulfide or Metal-rich Clasts

(E l) Sulfide-rich Clasts

(E,) Metal-rich Clasts

(F) Unusual Chondritic Fragments

(F l) Chondrule Fragments

(F,) Equilibrated Chondrite Fragments

(�) Isolated Mineral Clasts

(G) Mineral Clasts

Ureilitic (�) and igneous (�) clasts are described in Ikeda et

al. (,***) and Ikeda and Prinz (,**+).
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framboidal grains, and is poor in MnO and MgO (�*./wt�). Ilmenite also occurs

rarely in the Fa-free subtype, and it is rich in MnO (.�/wt�) and poor in MgO (�*./
wt�) in comparison with those in the igneous felsic clasts (+.*�+./wt� MnO and -.*�
../wt�MgO). Carbonates in the Fa-free subtype consist of dolomite and magnesite,

and are rich in MnO, being similar to those in the CI chondrites (Ikeda et al., ,***).
Calcite veins, several micrometers wide, cut through many lithic clasts and the matrix,

indicating that they formed after the formation of the DaG -+3 polymict ureilite. It is

likely that these calcite veins are products of terrestrial alteration.

The Fa-free subtype is similar to dark inclusions that occur in some carbonaceous

chondrites. However, the dark clasts in DaG -+3 do not contain chondrules, unlike

some chondrule-bearing dark inclusions in carbonaceous chondrites. Brearley and

Prinz (+33,) concluded that phyllosilicate-rich dark clasts in Nilpena are texturally

similar to CI chondrites, but di#er to some extent from CI chondrites in mineralogy.

They suggested that the CI-like dark clasts represent a component of a late-accreting

veneer on the UPB. The Fa-free dark clasts in DaG -+3 may be a kind of CI chondrite,

supporting the conclusion of Brearley and Prinz (+33,). However, the dark clasts

contain abundant phyllosilicate veins and nodules, which are not common in typical CI

chondrites such as the Orgueil meteorite.

-.+.,. Fa-bearing subtype (D, in Table +)
Fa-bearing subtype of dark clasts consists mainly of a silicate-rich matrix with

opaque minerals (sulfides and magnetite) and exotic fragments (Fig. +C). The matrix

is mainly composed of phyllosilicate, with minor amounts of fayalitic olivine (Fa�1*)

and tiny (mm-size) opaque minerals (magnetite and sulfide). The chemical composi-

tions of the matrix phyllosilicate and fayalite are shown in Table , and Figs. , and -.
In comparison with the matrix phyllosilicates in the Fa-free subtype, ferroan

phyllosilicates, smaller than *.1mg ratios, are dominant in Fa-bearing subtype, and

minor magnesian phyllosilicates with mg ratios �*.1 are more enriched in SiO, and

Al,O- (Fig. ,). These data suggests that the phyllosilicates in the Fa-bearing dark

clasts contain a larger amount of smectite component than those in the Fa-free type.

The matrix of the Fa-bearing type is more porous than that of the Fa-free type, and

appears to be ill crystalline. Some of the fayalitic olivine shows reverse zoning from

ferroan core (Fa 3*�+**) to less-ferroan rims (Fa 1/�3*).

The Fa-bearing subtype contains exotic rock and mineral fragments. They may be

either igneous rock fragments or chondrule fragments (Fig. +C, D), and their derivative

mineral fragments, as well as forsterite fragments of Fo�31. Generally speaking,

chondrules are defined to be rounded-shaped silicate melt droplets. However, the

exotic rock fragments in the Fa-bearing subtype are angular in shape. Therefore, it is

not clear whether they are fragments of picritic basalts or peridotites or fragments of

chondrules.

Some exotic rock fragments contain olivine phenocrysts, which show normal

zonation from magnesian cores (Fo 2/�3*) to ferroan rims (Fo 1/�2*) and rarely have a core

of relict forsteritic olivine (Fo31�+**). The groundmass contains phyllosilicate and

minor amounts of fayalite, as well as fine-grained augite and olivine with compositions

of Fo/*�0* (Fig. +D). The fragment was slightly hydrated, and the groundmass glass

was altered to phyllosilicates associated with minor amounts of fayalitic olivine and
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magnetite, showing the same mineral assemblage as matrix in the host Fa-bearing clasts.

The hydration of the groundmass in the exotic rock fragments may have taken place at

the same time with that of the Fa-bearing clasts, after its incorporation with the host

clasts. An exotic rock fragment consists mainly of olivine of Fo2,�2/ and orthopyroxene

with minor amounts of augite and is peridotitic. The chemical compositions of olivine

Fig. +. Back scattered electron (BSE) images of primitive lithic clasts in DaG -+3.
(A) Fa-free dark clast consisting mainly of phyllosilicate-rich matrix (Mat), phyllosilicate nodules

(Nod) and small grains of sulfide or magnetite (white dots). Field of view�-mm.
(B) Enlarged BSE image of a Fa-free dark clast, showing phyllosilicate-rich matrix (Mat) and

pseudomorphs (Pdm) replaced by fine-grained aggregates of phyllosilicates and Fe-phases.

Pyrrhotite (Pyrr) often shows elongated euhedral forms and calcite (Cc) is a terrestrial

weathering product. Field of view�+,* mm.

(C) A Fa-bearing dark clast is surrounded by a chain of open triangles. It contains exotic rock

fragments (picritic basalt or chondrule (Bas), peridotite or chondrite (Per), and forsterite

(Fo)) set in phyllosilicate-rich matrix (Mat). Fayalitic olivine occurs in the matrix. Field of

view�+.3mm.
(D) Enlarged BSE image of an exotic rock fragment (picritic basalt or chondrule) in (C),

consisting of phenocrystic olivine (Ol) and groundmass (Gdm). The phenocrystic olivine often

shows normal zoning from magnesian cores to ferroan rims, and a lower left olivine grain

shows remarkable zonation. The groundmass is hydrated, consisting mainly of phyllosilicates

and magnetite with minor fayalite, as well as primary anhydrous groundmass minerals such

as olivine and pyroxenes. Field of view�+,* mm.
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in the exotic rock fragment are shown in Table , and Fig. -. Chemical compositions of

some forsterite fragments in the Fa-bearing clast are also shown in Fig. -. The CaO

content of the forsterite is high, in comparison with olivine (Fo�3*) in the exotic rock

fragments. This Fa-bearing subtype seems to represent an early stage of hydration of

chondritic materials. Nearly pure fayalitic olivines were described in the oxidized CV

chondrites (Kaba, Bali,Mokoia) which experienced hydration (Hua and Busec, +33/;
Weisberg et al., +332; Krot et al., +332,,***; Choi et al., ,***). The fayalites in dark

clasts in DaG -+3 may have been produced by a similar formational mechanism to those

in the CV chondrites. They might be a new type of chondrule-free carbonaceous

chondrites related to CV chondrites.

Fig. + (continued).

(E) Sulfide-rich clast consisting mainly of silicate-rich matrix (Mat), large olivine grains (Ol), and

sulfide (white phase). Field of view�-.2mm.

(F) Metal-rich clast consisting mainly of enstatite (En), kamacite (Ka), and a silica mineral (Si).

Field of view�+mm.

(G) A chondrule fragment consisting mainly of radial orthopyroxene (Opx), devitrified glass (Gl),

sulfide (white spots in the chondrule), and minor olivine occurring at the edge. Tiny metal

are rarely included in orthopyroxene. Field of view�+.-0mm.

(H) Equilibrated chondrite fragment consisting mainly of olivine (Ol), augite (Aug), plagioclase

(Pl), chromite and sulfide. Field of view�+mm.
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-.,. Sulfide or metal-rich clasts (E)

Sulfide-rich and metal-rich clasts are very rare in DaG -+3, but they stand out in

thin section because of their abundant sulfide or metal. Although the sulfide or metal

constitutes more than ,* vol�, it is heterogeneously distributed in the clasts, and their

modal abundances are variable among clasts.

-.,.+. Sulfide-rich clasts (E+ in Table +)
Sulfide-rich clasts consist mainly of a silicate-rich matrix and sulfides (Fig. +E).

The silicate-rich matrix is dominated by olivine grains and is porous; it is similar in

texture to the Allende (CV-) chondrite matrix, but the former is coarser than the latter.

Olivine shows normal chemical zoning from magnesian core (Fo2*�3*) to ferroan

rim (Fo/*�1*). The CaO and Cr,O- contents of the olivine in the sulfide-rich clasts

(Table ,, Fig. .) are di#erent from those in ureilitic lithologies (CaO of *.,�*..wt�
and Cr,O- of *..�*.1wt�) with mg ratios of *.1/�*.3* (Ikeda et al., ,***). Troilite

Table ,. Average chemical compositions of minerals in primitive lithic clasts in DaG -+3.

Fa-free Dark Clast Fa-bearing Dark Clast Sulfide-rich Clast

vein-PS
lowAl PS

vein-PS
highAl PS

Mat-PS
highAl PS

Fayalite Exotic frag
Fa32 (Fo2/-3*)

Fo-frag
Fo+**

ferroan Ol
(Fo.2-/+)

Mg-Ol
(Fo3*-2/)

SiO ,

TiO,

Al,O -

Cr,O -

FeO

MnO

MgO

CaO

Na,O

K,O

Total

-24-.
bd

,4,2
+4,/

+.4+/
*4+-

,243*
*41+
*40,
bd

204-2

-0421
bd

.42+
*4/,

+240*
*4,*

,-4/0
*43,
*43,
*4/+

2043+

.*4-+
*4*0
/4*-
*4.-

+04./
*4+.

,,4-.
*411
*42+
*4.3

2042-

,341-
bd

*4*.
bd

01411
*4//
*421
*4*,
bd

bd

32432

.+4*2
bd

bd

*4--
++4,+
*4,2

.042*
*4+*
bd

bd

3342*

.-4*+
bd

bd

*4+1
*4.1
*4*/

//43,
*4-*
bd

bd

3343,

-.4-/
bd

*4*,
*4*1

.*42/
*4-1

,,42.
*4+3
bd

bd

32403

.*42.
bd

bd

*4,+
+,4+2
*4+1

.04/-
*4*/
*4*/
bd

+**4*-

Metal-rich Clast Chondrule Fragment Eq. Chondrite Frag

Relic Ol
Fo2, En

homog. Ol
Fo1,

zoned Ol
(Fo31-3/)

zoned Ol
(Fo2*-1-)

homog. Ol
Fo02

homog. Ol
Fo/3

SiO ,

TiO,

Al,O -

Cr,O -

FeO

MnO

MgO

CaO

Na,O

K,O

Total

.*4+.
bd

bd

*4,*
+040/
*4.2

.-4*+
*4+.
bd

bd

+**40,

/3432
bd

*4*1
*4*/
*410
*4*+

-340+
*4*2
bd

bd

+**4/0

-14/+
bd

bd

bd

,/4*/
*4.-

-04/*
*4*/
bd

bd

334/.

.,42+
bd

*4*-
*4/*
-4.1
*4,,

/,420
*4+2
bd

bd

+**4*1

-34/1
bd

bd

*4,/
,*4,1
*4.+

-34.+
*4++
bd

bd

+**4*,

-14,.
bd

bd

bd

,1423
*4.,

--410
*4*1
bd

bd

334-2

-14+,
bd

bd

bd

-/4*+
*4-2

,24+.
bd

bd

bd

+**40/

Abbreviation: fayalite (Fa), phyllosilicates (PS), low-Al (lowAl), high-Al (highAl), matrix

(Mat), fragments (frag), forsterite (Fo), magnesian olivine (Mg-Ol), enstatite (En),

equilibrated (Eq.), homogeneous (homog), and below detection (bd).
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is the major phase in this type of clasts and it is disseminated into the silicate-rich

portions (Fig. +E). Metal is rare and it is high-Ni metal with Ni�+*�,-wt�, which

may be metastable.

-.,.,. Metal-rich clasts (E, in Table +)
Metal-rich clasts consist mainly of enstatite and metal with variable amounts of a

Fig. ,. Chemical compositions of phyllosilicates occurring as veins, nodules, and matrix in the

Fa-free dark clasts, as well as matrix phyllosilicates in the Fa-bearing dark clasts.

Compositional ranges of smectite and serpentine are shown for reference.
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Fig. -. Fayalites in a Fa-bearing dark clast are shown together with olivines (Ol, mg�*.1/�*.3*) in

exotic rack fragments (basaltic and peridotitic), as well as forsterite (Fo, mg�*.31)

fragments in the dark clast.
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Fig. .. Olivines (Ol) in two sulfide-rich clasts (a and b) show chemical zoning from magnesian core

to ferroan rims, and enstatites (En) in two metal-rich clasts (a., and a..) are plotted at the

left end of the horizontal axes with reference of relic olivines in a metal-rich clast (a.,).

Primitive clasts in the Dar al Gani -+3 polymict ureilite 115



silica mineral, plagioclase, sulfide, and rarely olivine (Fig. +F). They are fine-grained,

grain sizes ranging from several to several tens of micrometers. Some large enstatite

grains (several tens of micrometers) in the fine-grained type contain aggregates of

submicrometer-size minerals in their cores. Broad beam analyses by an EPMA show

that the aggregates have a chemical composition of hypersthene, suggesting that they

may be mixtures of tiny enstatite, metal and silica. In one clast, a few small grains of

Fe-bearing olivine (Fo 13�2-) occur completely enclosed by sulfide. Since the clast is

enriched in a silica mineral, these olivine grains may be relic crystals. Compositions of

the enstatite and relic olivine in the metal-rich clasts are shown in Table , and Fig. ..
The major metal phase is kamacite with Si�,�.wt�, but most of it has been altered to
limonitic weathering products. The major sulfide phase is troilite, with Cr�*.. to 1.*
wt�; pentlandite, with Ni up to ,*wt� and negligible Cr, is a minor phase.

-.-. Unusual chondritic fragments (F)

Unusual chondritic fragments in DaG -+3 include chondrule and equilibrated

chondrite fragments. They are called unusual, because they have oxygen isotopic

similarities to the ordinary chondrites as discussed later, but the equilibrated chondritic

fragments have highly ferroan silicates similar to R chondrites, as shown below. The

chondrule fragments contain clear or devitrified glass, whereas equilibrated chondrite

fragments contain plagioclase. The chondrule fragments are similar in texture and

mineralogy to chondrules in ordinary chondrites.

-.-.+. Chondrule fragments (F+ in Table +)
The chondrule fragments in DaG -+3 (Fig. +G) include barred olivine, porphyritic

olivine, porphyritic olivine-pyroxene, and radial pyroxene chondrules. The major

minerals are olivine and/or low-Ca pyroxene with minor amounts of augite. Olivine in

some chondrules shows normal zoning from magnesian core to ferroan rim, but those in

other chondrules are homogeneous in compositions (Table , and Fig. /). The CaO,

MnO and Cr,O - contents of olivines in the chondrule fragments are similar to those of

olivine in chondrules from type - ordinary chondrites (Brearley and Jones, +332). The

groundmass is devitrified or glassy and albitic in composition, and it is similar to

chondrule mesostasis in ordinary chondrites (Ikeda, +32*). Troilite is a minor compo-

nent in the chondrule fragments in DaG -+3, and metal is rare, occurring as tiny grains
included in silicates. The tiny metal grains contain +*�,*wt� Ni. The chondrule

fragments in DaG -+3 are similar in texture and mineral composition to chondrules in
ordinary chondrites.

-.-.,. Equilibrated chondrite fragments (F, in Table +)
The equilibrated chondrite fragments consist mainly of olivine, orthopyroxene,

augite, and plagioclase with minor amounts of sulfide (Fig. +H). Olivine is the

dominant mineral in the chondrite fragments, and pyroxene is minor. Both are

homogeneous in composition, and the olivines are Fo/3�02 although they di#er among
fragments (Table , and Fig. /). The CaO, MnO, and Cr,O- contents of olivine are

similar to those in equilibrated ordinary chondrites, as shown in Fig. /, but their mg
ratios are smaller than the latter (*.02�*.2.). The plagioclase occurs interstitially to

olivine and pyroxene grains, and is similar in texture to plagioclase in equilibrated

ordinary chondrites (Van Schmus and Ribbe, +302). It is An 0�++ Or/�2, and the grain
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Fig. /. Composition of olivines (Ol) in four chondrule fragments (barred Ol, porphyritic Ol-pyroxene,

porphyritic Ol, and radial pyroxene chondrules) and in two equilibrated chondrite fragments

(a and b). Compositional ranges of olivines in some equilibrated ordinary chondrites

(Y-1..3, (H0), Y-1.*+. (H0), ALH-11,1, (L0), Y-1.++2 (L0), Y-1.0.0 (LL0)) are shown
for reference by dotted boxes.
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size is several to a few tens of microns. The grain size is smaller than that in type 0 of

ordinary chondrites, suggesting that it may correspond to a lower petrological type

(. or /). Chromite occurs in an equilibrated chondrite fragment, and both the Al,O-

and TiO, are about /�0wt�. The Al,O - content is similar to that in ordinary

chondrite chromite, but the TiO, content is slightly higher than that in ordinary

chondrite chromite with TiO, of ,�.wt�. Sulfide is troilite and pentlandite, and is

very scarce in the equilibrated chondrite fragments, in comparison with ordinary

chondrites. The pentlandite has high Ni contents of -,�-.wt�. Metal and magnet-

ite are absent in the chondrite fragments.

Olivine in the equilibrated chondrite fragments in DaG -+3 has mg ratios similar to

that in R and CK group chondrites. However, plagioclase in CK is more calcic than

that in the equilibrated chondrite fragments in DaG -+3, and magnetite is absent in the

fragments, suggesting the equilibrated chondrite fragments di#er from the CK chondrite

group. The equilibrated chondrite fragments in DaG -+3 are similar in petrology to R

chondrites. Olivine in the R group is ferroan with Fo/2�0-, their plagioclase is sodic with

An 1�+,, the amount of sulfides is very little, their chromian spinel contains high TiO,

(/�0wt�), and metals and magnetite were not detected in R group (Rubin and

Kallemeyn, +323; Weisberg et al., +33+; Bischo# et al., +33.). Then, the equilibrated

chondrite fragments have textures and mineral compositions similar to R chondrites.

.. Bulk compositions of the primitive clasts

Major elemental chemical compositions of the silicate-rich portions in some prim-

itive clasts in DaG -+3 were obtained by a defocused beam EPMA technique. One to

ten clasts were measured for each subtype, and they were averaged to obtain a

representative composition for the subtype.

..+. Dark clasts

The bulk compositions of ten Fa-free clasts were obtained, and the average value is

shown in Table - and Fig. 0. The S is contained in about +wt�, because tiny grains

of sulfide occur in the matrix. The Si-normalized composition is similar to that of CI

chondrite (Fig. 0), but the Na content of the Fa-free type is depleted in comparison with

CI chondrite.

Average composition of matrices in two Fa-bearing clasts is shown in Table - and

Fig. 0. It is very similar in composition to the matrix of the Fa-free subtype, but the S

content is higher, probably due to abundant tiny sulfide grains in the matrix of the

Fa-free type. The Na and K contents of the matrix in the Fa-bearing type are richer

than those in the Fa-free type (Table -).

..,. Sulfide-rich and metal-rich clasts

Chemical compositions of the silicate-rich matrices in two sulfide-rich clasts were

measured, and the average is shown in Table - and Fig. 0. It is very similar in major

element composition to CI chondrite. Chemical compositions of silicate-rich matrices

in a metal-rich clast were also obtained. Their average composition is poor in Ca, Mn,

Fe, and Ni in comparison with the silicate-rich matrices of the other clast type. This
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Fig. 0. Bulk chemical compositions of primitive lithic clasts are normalized to Si and CI chondrites

with compositions of the Orgueil matrix, the Murchison matrix and the Allende matrix taken

from McSween and Richardson (+311; M&R). Abbreviations: silicate-rich matrix (Silicates)

in sulfide-rich clasts (S-rich clasts) and metal-rich clasts (M-rich clasts), and two

equilibrated chondrite fragments (Eq. Chond. Frag. (a) and (b)).

Table -. Average chemical compositions of silicate-rich portions (obtained using broad-beam EPMA) in

primitive clasts in DaG -+3. The chemical composition of the Allende matrix obtained by

McSween and Richardson (+311), using broad beam EPMA, is shown for comparison.

Dark clasts Sulf-rich clasts
Sil-rich matrix

Met-rich clasts
Sil-rich matrix

Eq. chondrite fragments Allende
matrixFa-free Fa-bearing (a.-A) (b,,B)

SiO,

TiO,

Al,O-

Cr,O-

FeO

NiO

MnO

MgO

CaO

Na,O

K,O

P,O/

S

Total

-*4+
*4+
+43
*4/

,.43�

+4-��

*4,
+342
+40
*4,
*4+
*4-
+4*

2,4*

-,4*
*4*
,41
*4.

,042�

+4/��

*4,
,*41
+40
*4/
*4,
*4-
,4.

234-

-/4+
*4+
,4/
*42

-,4+�

*41��

*4-
,,40
,4*
*41
*4+
*4/
*4/

324*

.34,
*4*
+4*
*4/

+-4,�

*4/��

*4+
-+41
*4-
*4/
*4*
*4*
*42

3142

.*42
*4*
+4-
*4-

,/4/
*42��

*4-
,/4,
+4/
*4/
*4+
*4+
*4/

3043

-141
*4*
,4+
*4.

,342
*41��

*4-
,.4*
+4-
*42
*4+
*4+
*4-

3140

,24*
*4*3
,4-*
*4-2

-+43
+42-
*4,+

,*4,
,4-1
*4,,
*4*+

�
+4+-

2240.

Silicate-rich (Sil-rich) matrix of sulfide-rich and metal-rich clasts and equilibrated (Eq) chondrite

fragments were corrected by method of Ikeda (+32*), because they are coarse-grained multi-phase
aggregates.
�Fe may be partly in magnetite, sulfide, or metal phases in addition to silicates, ��Ni is mainly in sulfide

or metal phases, and S in sulfide phases. Total wt� of dark clasts are low, because of the

water-bearing phyllosiicates.
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may be due to enrichment of Si in the silicate-rich matrices of the metal-rich clast.

..-. Equilibrated chondrite fragments

Major element compositions were determined for two equilibrated chondrite frag-

ments, and their average compositions are similar to each other (Table - and Fig. 0).
Although some major elements (Al, Cr and Ni) seem to be slightly depleted in

comparison with CI chondrite, they may be related to ordinary or R chondrites (Fig. 0).

/. Oxygen isotopic compositions

The oxygen isotopic compositions of primitive clasts in DaG -+3 have been

obtained by SIMS (Table .) and are plotted in Fig. 1. Most ureilites plot on an

extension of the CCAM mixing line of the Allende meteorite (Clayton and Mayeda,

+322). A dark clast in Nilpena falls at the heavier ( +0O-poor) oxygen end of the line

(Clayton and Mayeda, +322; Brearley and Prinz, +33,).
The type I and type II ureilitic clasts (usual and unusual monomict ureilitic clasts,

respectively; Ikeda et al., ,***) in DaG -+3 have oxygen isotopic compositions identical

to the monomict ureilites (Kita et al., ,***).

/.+. Sulfide-rich and metal-rich clasts

Oxygen isotopic compositions of olivine from two sulfide-rich clasts (a-,A and

b,0A) were measured. One is a homogeneous grain in b,0A and is Fo 10�11, the other

is zoned olivine in a-,A and ranges Fo 01�13. The d +1O of b,0A is lower than that of

a-,A. Olivine in two sulfide-rich clasts and enstatite in one metal-rich clast plot on the

CCAM mixing line between the Allende matrix and the Nilpena dark clast (Fig. 1),

Table .. Oxygen isotopic composition of primitive clasts in the DaG--+3 polymict ureilite.
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suggesting a genetic relationship with the usual monomict ureilites. Enstatite in the

metal-rich clast plots near the Allende matrix with the lowest d +1O (Fig. 1).

/.,. Chondrule and equilibrated chondrite fragments

The chondrule and equilibrated chondrite fragments in DaG -+3 have oxygen
isotopic compositions very similar to those of ordinary chondrites. It is di$cult to
distinguish them from H, L, or LL compositions because of relatively large error in the

data. They plot at the lower end of the ordinary chondrite trend (Fig. 1), indicating
that they might be a sample of ordinary chondritic material, but not exactly the same as

ordinary chondrites. However, the average olivine compositions of the chondrite frag-

ments in DaG -+3 suggest that they might be related to a more ferroan chondrite group.

0. Discussion

0.+. Precursors of ureilites

The Fa-bearing dark clasts su#ered weak hydration, and their matrix contains

Fig. 1. Three-isotope plot for oxygen in the silicate-rich matrices in the metal-rich and sulfide-rich

clasts (M- & S-rich Clast) and unusual chondritic fragments (Chondrule Fragment and

Equilibrated Chondrite Fragment), as well as the Nilpena dark clast and the Allende matrix.

Compositional ranges of ordinary chondrites (OC), R chondrites (R), and the terrestrial

fractionation line (TF) are shown for reference. Usual monomict ureilites (small dots;

Clayton and Mayeda, +322) are plotted along the extension (dashed line) of the Allende

mixing line with CCAM (carbonaceous chondrite anhydrous minerals).
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ferroan phyllosilicates. The groundmass of the exotic rock fragment in the Fa-bearing

dark clast also contains fine-grained ferroan hydrated phyllosilicates with minor

amounts of fayalite, suggesting that the groundmass may have su#ered hydration at the
same time as the host matrix of the Fa-bearing dark clast. The Fa-bearing dark clast

probably represent surficial materials from the ureilite parent body (UPB).

The Fa-free dark clasts experienced intense hydration. The common occurrence

of phyllosilicate veins in the clasts indicates that the hydration took place in an asteroidal

body and not in the nebula. However, it is not clear whether the asteroidal setting is

the UPB that produced the DaG -+3 polymict breccia or not. The Fa-free dark clasts

in DaG -+3 are texturally similar to the Nilpena clast, and they may have similar bulk
oxygen isotopic compositions. Since the dark clast in Nilpena plots on the heavier

( +0O-poor) extension of the CCAM mixing line, the dark clasts in both Nilpena and

DaG -+3 might have a genetic relationship to the UPB. Young and Russell (+332)
discussed the mass fractionation trajectory of altered melilites, and their oxygen isotopic

compositions are coincident with the CCAM mixing line: the anhydrous melilites were

originally on a slope-+ mixing line which is di#erent from the CCAM line, and they

deviated toward the CCAM mixing line during the hydration. If the dark clasts in

DaG -+3 experienced similar hydration temperatures, their anhydrous precursors may
have been on a slope-+ mixing line which di#ers from the CCAM. This would suggest

that the anhydrous precursors of the dark clasts might not have a direct genetic

relationship to the precursors of the usual monomict ureilites. However, further study

of dark clasts in polymict ureilites is needed to decipher their genesis.

The sulfide-rich clasts consist of anhydrous silicate-rich matrix with disseminated

sulfide. The matrix has an oxygen isotopic compositions that plots along the CCAM

mixing line, near the region of most ureilitic clasts in DaG -+3 (Kita et al., ,***),
suggesting that the silicate-rich matrix may represent the precursors of the ureilitic clasts

at a moderate depth in the UPB. If so, these clasts escaped the partial melting which

produced the monomict ureilites, and later su#ered sulfurization elsewhere in the UPB.
The metal-rich clasts consist mainly of reduced anhydrous silicates with dis-

seminated metal and sulfide. The silicates have oxygen isotopic compositions that plot

along the CCAM mixing line, near Allende matrix, suggesting that the silicates may

represent precursors of monomict ureilites having lighter oxygen compositions at a

deeper region in the UPB. They also escaped partial melting, and later su#ered
metal-sulfide dissemination, possibly due to impact-induced shock events on the UPB.

The bulk composition of the silicate-rich matrix in the metal-rich clasts is enriched

in SiO,, as already discussed. This SiO,-enrichment can be explained by addition of Si

from Si-bearing metallic phases which were disseminated into the metal-rich clasts.

The addition of Si may take place by the following reaction:

Si � ,FeO � SiO, � ,Fe. (+)
in Metal in Matrix in Matrix in Metal

Some of the Si in the metallic phases was used for reduction of FeO in the matrix by eq.

(+) to produce enstatite or the silica mineral that commonly occurs in the metal-rich
clasts. The rest of Si remained in the metallic phases, explaining that the kamacite in

the metal-rich clasts still contains a few wt� of Si.
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0.,. Reduction and partial melting residues

Ikeda and Prinz (,**+) discussed the origin of ureilites and concluded that the

monomict ureilites were produced as residues by fractional partial melting of chondritic

precursors. The total partial melting degree may not exceed -*� (Kita et al., ,**+).
The following discussion assumes that the monomict ureilites are residues of the

fractional partial melting.

The precursors of ureilites are considered to have a genetic relationship with a kind

of carbonaceous chondrite (Tomeoka and Takeda, +33*). The chondritic precursor

may be similar to the sulfide-rich and metal-rich clasts in DaG-+3 or their silicate-rich

matrices, as well as Allende matrix-like materials. Since the matrix of the metal-rich

clasts may have su#ered Si-addition from metallic phases, the silicate-rich matrix of the

sulfide-rich clasts is a better candidate for the ureilite precursors. However, it has an

mg ratio of *./0 and is too ferroan to produce the monomict ureilites. It would have

had to experience reduction prior to partial melting to produce ureilites as residues.

Carbonaceous materials (hydrocarbons) in the precursors may have acted as reducing

agents. The reduction may have taken place at moderate depth in the UPB, with

increasing temperatures, due to short-live radioisotopes, as well as heating due to impact

bombardment (Scott et al., +33,,+33-). The reduction reaction may be expressed by

the simplified equation:

CH.�-FeO�-Fe�CO�,H,O. (,)

For simplicity, we consider the case that half (+0.*/wt�) of original FeO (-,.+*wt�,

Table -) in the silicate-rich matrix in the sulfide-rich clasts is reduced by eq. (,). The

reduced, silicate-rich matrix has an mg ratio of *.1+ (Table /). This reduction is at

least necessary for precursors of usual monomict ureilites, because the lowest mg ratio

of usual monomict ureilites is *.1. (Goodrich, +33,). Fractional partial melting of

more highly reduced precursors may result in formation of olivine-pigeonite residues

with mg ratios larger than *.1.. The MnO contents of the reduced and original

matrices are plotted against their FeO contents in Fig. 2, connected by a dashed line

with an arrow. This reduction trend is consistent with the fact that most monomict

ureilites fall on a reduction trend shown by a solid line in Fig. 2.
The reduction of FeO (+0.*/wt�) of the matrix in the sulfide-rich clasts by eq. (,)

may have consumed �+wt� hydrocarbons (for simplicity, CH.). As ureilites contain

*., to 0wt� of carbon (Grady et al., +32-), the original matrix of the sulfide-rich clasts

must have contained more than a fewwt� carbonaceous materials. The +�,wt� was

used for the reduction to produce reduced precursors with variable mg ratios, and the

rest of the carbonaceous materials may have been used to form the graphitic materials

in the ureilite residues (Berkley and Jones, +32,). Reduction by eq. (,) may have

taken place pervasively at depth in the UPB, but reduction by eq. (+) may have been

localized to where the Si-bearing metallic phases were disseminated.

0.-. Projectiles

Unusual chondritic fragments (chondrule and equilibrated chondrite fragments)

have oxygen isotopic compositions that di#er from the CCAM mixing line, indicating

that they have no direct genetic relationship to the usual monomict ureilites. They
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were derived from outside of the UPB, and were exotic projectiles that collided with the

surface of the UPB to produce clastic matrix breccias or regolith breccias, such as

polymict ureilites. The chondrule fragments have the oxygen isotopic compositions

similar to the equilibrated chondrite fragments, indicating that both subtypes have a

genetic relationship to each other. As already shown, they may be a new type of

chondrite that is di#erent from the known chondrite groups.

Table /. Chemical composition (wt�) of a reduced

precursor of ureilites estimated from silicate-rich

matrix of sulfide-rich clasts. Right column is

recalculated to +** wt� oxides.

Reduced precursor

SiO,

TiO,

Al,O-

Cr,O-

FeO

MnO

MgO

CaO

Na,O

K,O

P,O /

-/4+.
*4+-
,4/*
*41/

+04*/
*4-,

,,4/0
+432
*41*
*4*2
*4/+

.-4/-
*4+0
-4+*
*43-

+3422
*4.*

,143/
,4./
*421
*4+*
*40-

�Subtotal� �2*41,� �+**4**�
Fe

Ni

S

+,4.2

*4//

*4.0

�
�
�
�
�

metal

&

sulfide

Total 3.4,+

mg *41+

Fig. 2. MnO contents of the silicate-rich matrix in the sulfide-rich clasts

(solid star) and a reduced precursor (see text, open star) with a

dashed arrow are plotted against their FeO contents. The

normalized FeO content (Table /; +3.22 wt�) of the reduced

precursor is used here. Usual monomict ureilites (solid circles) with

a regression line are shown for reference. Ureilite data sources:

Boynton et al. (+310), Takeda (+321, +323), and Jarosewich (+33*).
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1. Conclusions

(+) Fa-free dark clasts consist mainly of phyllosilicates, sulfide, magnetite, and
carbonates, and they experienced intense hydration in an asteroidal body. Fa-bearing

dark clasts contain exotic rock fragments, and the matrix of the Fa-bearing clasts and

the groundmass of the exotic fragment su#ered weak hydration to produce smectite-rich
ferroan phyllosilicates.

(,) The silicate-rich matrices of the sulfide-rich and metal-rich clasts, as well as the
Allende matrix-like materials, which are chondrule free and anhydrous, are good

candidates to be the precursors of monomict ureilites. They fall on the CCAM mixing

line, and may represent di#erent strata ranging from a deep region to the surface of the

UPB. Fine-grained materials similar to the Allende matrix can be from the deepest

regions, the silicate-rich matrices of the metal-rich and sulfide-rich clasts can be from an

intermediate depth, and the dark clasts can be from the surface. The silicate-rich

matrix of the sulfide-rich clasts is the best candidate for the parental precursors of the

usual monomict ureilites.

(-) Unusual chondritic fragments (chondrules and equilibrated chondrites)

have no direct genetic relationship with the ureilites, and may be a new type of

chondrite. They were projectiles that collided with the UPB to produce the polymict

ureilites such as DaG -+3.
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