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Abstract: Asuka-881757 with a gabbro-like texture is from lunar mare. It is 

different from other known lunar mare basaltic meteorites. It is coarse-grained basalt 

with symplectite texture in mesostasis. It is composed mainly of pyroxene and 

maskelynite (An90-An96), Most ilmenites, troitites and some Fe-Ni metals are 

surrounded by symplectite. One of the symplectites consists of very fine-grained 

Fe-rich olivine (Fa93) and silica phase in pyroxene host around troilite. However, the 

troilite and primary pyroxene did not react to form the symplectite. The coexisting 

fayalite, hedenbergitic pyroxene and silica phase suggest that they crystallized from the 

primary melt at a pressure lower than 1.15 GPa, indicating formation near the lunar 

surface. 

1. Introduction 

The symplectites in lunar rocks are reported by many investigators (e.g. , Bell et al., 

1975; Gooley et al., 1974). Yanai and Kojima (1991) reported that symplectite is one 

of the most characteristic features of the Asuka-31 ( official name: Asuka-881757). 

Asuka-881757 was studied by many investigators (Takeda et al., 1992, 1993a,b; Koeberl 

eta[., 1993; Warren and Kallemeyn, 1993; Arai etal., 1996). Takeda eta/. (1992) 

suggested that the Asuka-881757 is not cumulate gabbro because of the abundance of 

mesostasis-like symplectites and the lack of detectable exsolution in pyroxene. It is 

classified as coarse-grained VL T basalt with symplectite texture in mesostasis (Takeda et 

al., 1992). 

Yanai and Kojima ( 1991) reported that symplectite is composed mainly of very 

fine-grained olivine, pyroxene, apatite, plagioclase, Fe-Ni metal and silica phase 

(quartz?). The olivine is Fe-rich, ranging from Fa86.6 to Fa94.6· 

Bowen and Schairer ( 1935) reported that ferrosilite decomposed to fayalite and 

quartz at low pressure. Lindsley et al. ( 1964) determined that ferrosilite is stable at 

temperatures between 1150
°
C and 1400

°
C and 18 and 45 kbar, respectively. Ferrosilite 

has been synthesized by Akimoto et al. (1964, 1965) under pressure-temperature condi­

tions ranging from 12 to 73 kbar and 620
°
C to 1270

°
C. They determined the equation 

for the boundary curve of fayalite +quartz = ferrosilite. Lindsley ( 1981) reported that 

at low pressure the low-Ca pyroxene decomposes to Hdss + fayalite + quartz, while the 

three-pyroxene assemblage orthoferrosilite-pigeonite-hedenbergite is on the CaFeSh 

06-Fe2 Si2 06 join at pressures above 1.15 G Pa and below 2 G Pa. 
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2. Petrography and mineralogy 

Asuka-881757 is a coarse-grained and unbrecciated rock, consisting mainly of 

pyroxene (60%) and maskelynite (30%) with small amounts of ilmenite and troilite, 

and traces of olivine, apatite, silica phase and Ni-Fe metal. Most ilmenites, chromian 
ulvospinels, troilites and some Fe-Ni metals are surrounded by symplectite. Symplectic 

intergrowths of olivine and pyroxene or silica phase occur commonly along pyroxene­

maskelynite or pyroxene-pyroxene grain boundaries. The majority of symplectites was 
observed in the pyroxene side of the boundary of minerals. 

Pyroxene occurs as subhedral crystals (3-5 mm in length) showing wavy extinction. 

Yanai and Kojima ( 1991) reported that the composition of the pyroxene is heterogene­
ous, ranging from En1.s to En43.6, Fs30.1 to Fs6s.2, Wo11.6 to Wo40_9. Plagioclase is 

completely maskelynitized (1-4mm in length), and its composition ranges from An 88 to 

An96. Some symplectites are observed at the boundary of pyroxene and troilite or Fe 
metal. Olivine and silica phase are scattered 10-30µm blebs in pyroxene. 
Backscattered electron (BSE) photograph shows the symplectite in Fig. 1. 

The analyses of minerals in the symplectite were performed using energy dispersive 

X-ray spectrometer (EDS) (Oxford: Link-ISIS) at Joetsu University of Education. 

They are given in Table 1. The bulk chemical compositions of four symplectites are 

shown in Table 2. They are analyzed by EDS in a beam area of a 100 µm 2. 

The chemical composition of fine-grained olivine is fayalitic (Fa 93) (Fig. 2). 

Fig. 1. Backscattered electron (BSE) image of symplectite in Asuka-881757. Troilite is surrounded 

by a symplectite halo. Symplectite is composed of olivine (01: light gray), pyroxene (Px: 

dark gray), silica phase (Si: black) and troilite (Tr: white). 
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Table 1. The chemical compositions of pyroxene, olivine, silica phase and maskelynite. 

Px Px Px Px 01 Silica phase Mask.elynite 

near in in primary in in 
troilite symplectite symplectite symplectite symplectite 

------·----------------·---------------------"-

Si0
2 47.3 48.5 48.3 46.8 30.0 98.5 44.6 

Ti0
2 

0.98 1.30 0.78 1.24 0.21 0.31 0.15 

Alp3 0.23 1.34 1.35 2.41 0.57 0.32 34.3 

FeO 29.8 27.4 28.3 31.4 65.1 0.80 0.39 

MnO 0.15 0.37 0.28 0.56 0.75 * 0.02 

MgO 3.18 3.49 4.01 6.66 2.49 0.16 0.45 

eao 17.4 17.3 17.6 10.5 0.36 0.28 19. 7 

Nap 0.38 0.19 0.29 0.12 0.31 0.34 0.52 

Total 99.42 99.89 100.91 99.69 99.79 100. 71 100.13 
·--------------------------------------�------··------------

oxygens 6 6 6 6 4 

Atomic fonnulae 
""" ______ "" _______ 

Si 1.952 1.959 1.943 1.899 0.993 

Al 0.011 0.064 0.064 0.115 0.022 

Ti 0.030 0.040 0.024 0.038 0.005 

Fe 1.030 0.927 0.951 1.065 1.803 

Mn 0.005 0.013 0.010 0.019 0.021 

Mg 0.196 0.210 0.240 0.403 0.123 

Ca 0. 771 0.750 0.759 0.455 0.013 

Na 0.030 0.015 0.023 0.009 0.020 

Total 4.028 3.978 4.014 4.003 3.000 
-------------· -----------�------------------------------·-------- -------

Fe/(Fe+Mg) 0.840 0.815 0.798 0.725 0.936 

* not detected 

2 8 

0.985 2.066 

0.004 t.8n 

0.002 0.005 

0.007 0.015 

* 0.001 

0.002 0.031 

0.003 0.978 

0.007 0.047 

1.010 5.016 
·----------------

An;95 
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Olivine compositions from Asuka-881757 are tightly clustered and are much more 
Fe-rich than olivines from most lunar mare basalts (Fig. 2). The chemical composition 
of the pyroxene ranges from Wo20.2Enn.0Fs62.s to Wo31.sEn13_sFS49_1 (Fig. 3). Pyroxenes 
in symplectite are hedenbergitic as compared to host pyroxenes. 

3. Discussion 

Ferrosilite is not stable at low pressure, and it is stable at high pressure. Lindsley 
et al. ( 1964) showed by experiment that ferrosilite is stable at temperatures between 
1150

°
C and 1400°C and 18 and 45 kbar, respectively (Fig. 4). Akimoto et al. (1964, 
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Table 2. The bulk compositions of symplectites. 

2 3 4 

Si0
2 

51.7 45.3 49.2 46.8 

Ti0
2 

0.24 0.83 * 0.77 

Alp3 
0.12 0.63 * 0.81 

FeO 39.1 31.8 37.1 32.3 

MnO 0.28 0.42 0.23 0.39 

MgO 2.15 2.81 1.86 3.21 

CaO 4.02 9.41 4.88 8.71 

N�O 0.13 * 0.22 0.08 

KP 0.13 0.06 0.02 0.20 

Total 97.87 91.26 93.51 93.27 
-- ---------

Atomic formulae 6 oxygens 
---�------�---� 

Si 2.144 2.025 2.141 2.036 

Al 0.006 0.033 * 0.041 

Ti 0.007 0.028 * 0.025 

Fe 1.358 1.188 1.352 1.178 

Mn 0.010 0.016 0.008 0.014 

Mg 0.133 0.187 0.121 0.208 

Ca 0.179 0.451 0.228 0.406 

Na 0.010 * 0.019 0.007 

K 0.007 0.003 0.001 O.Oll 

Total 3.854 3.931 3.870 3.926 
----�----- - ··-------------·------------- ----------------------

Fe/(Fe+Mg) 0.911 

* not detected 

0.864 0.918 0.850 
- ··--�-------------------�------ ----

1965) reported the boundary curve for the reaction: l/2 (Fe2Si04) + l/2Si02 =FeSi03 
under pressure-temperature conditions ranging from 12 to 73 kbar and 620

°
C to 1270 

°
C. The equation for the curve is: 

Abars = 2.7+0.014T (
°
C). (1) 

The presence of troilite in Asuka-881757 indicates that after troilite crystalliza­
tion the rock was not heated above the melting temperature 1200

°
C of troilite ( Kullerud, 

1967). The maximum pressure estimated by the eq. (1) is about 2 GPa in subsolidus. 

Thus, the coexistence of fayalite and silica phase indicates that the pressure of crystaliza-
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Fig. 2. Chemical compositions of olivine from lunar samples and lunar meteorite Asuka-881757. Filled 
blocks are olivines from the lunar basalts reported by Lofgren et al. (1981). Hatched blocks with 
an oblique line are olivines from lunar meteorite Aska-881757 in the present study. 
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Fig. 3. Pyroxene compositions of Asuka-881757. Open circles are pyroxenes from rim of primary grain, 
and solid circles are pyroxenes in symplectites. Open squares are the bulk compositions of the 
symplectites. Solid squires indicate pyroxene rim. Numbers are the same as in Table 2. 

tion of fayalite and silica phase is below 2 G Pa. Lindsley (1981) reported that at low 
pressure the low-Ca pyroxene decomposes to Hdss+fayalite+quartz on the CaFeSii06-
FeizSiz06 join at pressures below 1.15 GPa. 

Takeda et al. ( 1992) found the evidence of rapid growth and cooling of zoned 
pyroxene in Asuka-881757. Takeda et al. (1993a) suggested on the basis of the micro­
textures of pyroxene that Asuka-881757 cooled more slowly than samples near the 
surface of a lava flow, but more rapidly than those crystallized near the surface in 
disequilibrium growth condition of true plutonic gabbroes. Arai et al. (1996) con­
cluded on the basis of chemical variations of chromian ulvospinel that it may have 
crystallized from a residue at the last stage of crystallization. They suggested that 
Asuka-881757 was cooled more slowly than typical mare basalts, probably near the 
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Fig. 4. Stability relations of ferrosilite (after Lindsley et al., 1964) 

center of an uncommonly thick lava flow. The assemblage Fe-rich olivine (fayalite)­

silica phase in the symplectite also indicates that the symplectite formed at low pressure. 

Si contents of four symplectites are higher than 2 of stoichiometric pyroxene. The 
fact shows that the symplectite is not formed by the chemical reaction of troilite and 

pyroxene. If the troilite and primary pyroxene reacted to form the symplectite, Si 

content of symplectite is lower than that of the primary pyroxene by Fe supplied from 

troilite. 

The chemical compositions of the symplectites and pyroxene are similar except for 

the Si0 2 content. The chemical compositions of four symplectites are plotted in Fig. 3. 
The symplectite 1 around troilite is plotted near the corner of Fs. Fe-rich low Ca 

pyroxene decomposes into fayalite, hedenbergite and silica phase at low pressure 

( Lindsley, 1981, 1983). Symplectite formed at the boundary of pyroxene and other 
minerals, and it is observed at the rim of pyroxene. Takeda et al. ( 1993b) reported that 

pyroxene approaching the mesostasis display the trend towards hedenbergitic composi­

tion. As shown in Fig. 3, pyroxene in the symplectite has hedenbergitic composition. 
For example the bulk composition of symplectite 1 is plotted near Fe-rich low Ca 

pyroxene. At low pressure fayalite and silica phase are stable on the ferrosilite-like bulk 
composition. As FeO content of pyroxene increase at the last stage of crystallization, 

Fe-rich pigeonitic pyroxene is not stable at low pressure. Fe-rich pigeonitic pyroxene 

decomposed to hedenbergitic pyroxene, fayalite, and silica phase as symplectitec texture. 
A majority of symplectites occurs at rim of pyroxene. Alternatively the residual liquid 
composition is so Fe-enriched that pyroxene crystallization was replaced by crystalliza­

tion of silica and fayalite. The presence of minor amounts of feldspar and apatite in 
some symplectites supports this hypothesis. 

In conclusion, the coexisting fayalite, hedenbergitic pyroxene and silica phase 

suggest that they crystallized at pressure lower than 1.15 GPa, indicating formation near 
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the lunar surface. 
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