GRAVITY SURVEY IN LÜTZOW-HOLM BAY AND THE MIZUHO PLATEAU, EAST ANTARCTICA, 1981

Katsutada KAMINUMA

(National Institute of Polar Research, Itabashi-ku, Tokyo 173)

and

Toshiyasu NAGAO

(Earthquake Research Institute, University of Tokyo,

Bunkyo-ku, Tokyo 113)

1. Introduction

The gravity is one of the most important and fundamental geophysical data in Antarctica. Since the International Geophysical Year of 1957-58, many gravity measurements have been carried out by the expeditions of various countries in Antarctica.

The 6th Japanese Antarctic Research Expedition (JARE-6) established a pendulum gravity station at Syowa Station using the GSI pendulum gravimeter (Harada <u>et al.</u>, 1963). JARE-9 made the round-trip gravity measurements between Syowa Station and the South Pole by the use of a LaCoste-Lomberg gravimeter (Yanai and Kakinuma, 1971). In the Mizuho Plateau, many gravity measurements were made by the JARE field parties along the glaciological traverse routes (Yoshida and Yoshimura, 1972; Abe, 1975). Kaminuma <u>et al.</u> (1980) reported the gravity

-59-

measurements in ice-free areas at Cape Ryûgû and around Syowa Station (East and West Ongul Islands).

From April to December 1981, gravity measurements were carried out by the JARE-22 in the Lützow-Holm Bay region using LaCoste-Lomberg Model G gravimeter (No. G-183), and a total of 304 gravity stations were established. 117 stations out of 304 ones were in the ice-free areas around the Sôya Coast, 118 stations in the Mizuho Plateau and the Yamato Mountains, and 68 stations on sea ice in Lützow-Holm Bay. The results are tabulated in this report.

2. Measurements

The measurements were carried out in the following regions; 1) the ice-free areas around Lützow-Holm Bay, 2) on fast ice of Lützow-Holm Bay and 3) the Mizuho Plateau (on Syowa Station - Mizuho Station - the Yamato Mountains traverse routes and in the Yamato Mountains area).

Figure 1 shows gravity stations on fast ice and in small ice-free areas in Lützow-Holm Bay. The stations in the larger ice-free areas and the vicinity are given in Figs. 2-5. There are 41 gravity stations in the Ongul Islands (Fig. 2), 19 stations in Langhovde (Fig. 3), 23 stations in Skarvsnes (Fig. 4) and 7 stations in Skallen (Fig. 5). 27 stations are located in other small islands and the rock exposures on the Antarctic continental edge as shown with LUT01-28 in Fig. 1.

In ice-free areas around Lützow-Holm Bay, measurements were mostly made in the one-way round-trip along the

-60-

measurement route. However, at triangulation stations, measurements were made by the round-trip along the route or repeated twice measurements at the same station. The number of measurements was 250 times, while the number of gravity stations on the ice-free areas was 117 points.

Gravity measurements on sea ice were made from September 24th to October 6th, 1981. The gravity station was established usually every 4 km along the routes in echo-sounding survey of the submarine topography (Moriwaki and Yoshida, 1983). The number of stations on sea ice was 68 points, and the number of measurements was 71 times.

In the Mizuho Plateau, gravity measurements were made at every 10 km along the traverse routes from Mikaeri Terrace (S-16) to the Yamato Mountains through Mizuho Station, from November 22nd to December 25th, 1981. The number of gravity stations along the traverse routes was 68 points, and the number of measurements was 75 times. In the Yamato Mountains area, 50 gravity stations were established, and the number of measurements was 66 times.

3. Instrumental Drift

Drifts of the instrument were less than $30 \mu \text{gal/day}$ in most trips in ice-free areas in Lützow-Holm Bay. Before the start and after the end of the each measurement trip in the field, measurements were made at the gravity base point of Syowa Station. If the reading gravity values difference between the start and the end at Syowa Station was over

-61-

100 μ gal, it was inferred that tear might have occurred during the measurements, and the gravity was re-measured.

In the measurements on sea ice, as mentioned in Section 6.1, the maximum error of measurements was estimated to be about 2 mgal. This value was much larger than the value of the drift. Therefore, the accuracy of data measured on sea ice is considerably low in comparison with the data in other areas.

In the measurements in the Mizuho Plateau, the drift of the gravimeter was -543 μ gal/34days (-16.0 μ gal/day) throughout all the measurements. The drift was assumed to have increased negative-linearly as time elapsed.

Corrections of drift of the instrument and the earth tide were made by the LaCoste Gravimetric Correction Program of Kyoto University (LGCP; Fukuda, personal communication).

4. Determination of Altitude

In coastal ice-free areas, many triangulation points were set up by the Geographical Survey Institute (G.S.I.) of Japan and the altitudes of these points were measured with the accuracy of centimeter. Triangulation points are shown with solid triangles in Figs. 1-5. In Figs. 1-5, an altitude value at a solid circle was estimated from the topographic maps and that at an open circle was determined by a hand-levelling compass.

In the measurements on sea ice, the altitude of the measurement point was always assumed to be 0 m, because all

-62-

measurements were made just on the surface of sea ice which was usually 5 to 10 cm above sea surface at that time.

From Mikaeri Terrace (S-16) to Mizuho Station, the altitudes of the measurement points were based on the results of the triangulation survey by JARE-14 (Naruse and Yokoyama, 1975), and the altitudes were determined by the Paulin barometric altimeters from Mizuho Station to the Yamato Mountains. In the Yamato Mountains, the altitudes were determined from the maps of Geographical Survey Institute. In the Minami-Yamato Nunataks and the Kabuto Nunatak, the altitudes determined by a barometric altimeter (Yokoyama, 1976) were used.

5. Data Reduction

The gravity value at Syowa gravity standard station was determined as 982525.6 mgal in the Japan gravity standardization net 1975 (JGSN75; Suzuki, 1976). All gravity values obtained from the measurements by JARE-22 were determined by referring to the gravity at the Syowa gravity standard station. No terrain correction was applied for data reduction. The normal gravity Y was calculated from the following equation of Gravity Formula 1967:

 $\gamma = (A \cdot GE \cdot \cos^2 \phi + B \cdot GP \cdot \sin^2 \phi) / SQRT (A^2 \cos^2 \phi + B^2 \sin^2 \phi)$

where

A=6378.14(km)(equatorial radius of the earth)
B=A ·(1-1/298.257)(polar radius of the earth)
GE=978031.846(mgal)(gravity value at the equator)
GP=983217.728(mgal)(gravity value at the poles)
\$\phi\$: geographic latitude.

Free air anomaly Δg_0 and simple Bouguer anomaly $\Delta g_0''$ were calculated by the following equations:

$$\Delta g_0 = g_{-\gamma} + 0.3086 \cdot H + 0.87 - 0.0000965 \cdot H$$

$$\Delta g_0'' = \Delta g_0 - 0.0419 \cdot \rho_1 \cdot H \qquad ; \text{ in ice-free area}$$

$$\Delta g_0'' = \Delta g_0 - 0.0419 \cdot \rho_1 \cdot (H - IC) - 0.0419 \cdot \rho_2 \cdot IC \qquad ; \text{ in the Mizuho Plateau}$$

$$\Delta g_0'' = \Delta g_0 + 0.0419 \cdot \rho_3 \cdot DPT \qquad ; \text{ on sea ice}$$

where g is the gravity value corrected after the instrumental drift and the earth tide at a gravity station in mgal, H the altitude of a gravity station in meters, ρ_1 the density of bedrock (2.67 g/cm³), IC the thickness of the ice sheet at a gravity station in meters, ρ_2 the density of ice (0.90 g/cm³), ρ_3 the density difference between sea water and bedrock (1.64 g/cm³), DPT the depth of the sea (Moriwaki and Yoshida, 1983). 0.87-0.0000965·H is a term of atmospheric correction. The results are given in Tables 1, 2 and 3. Table 1 is the gravity measurements on sea ice in Lützow-Holm Bay, Table 2 in ice-free areas in the Lützow-Holm Bay region

and Table 3 in the Mizuho Plateau and the Yamato Mountains. The letters A, B and C in remarks in Table 2 indicate the degree of the accuracy in the altitude determination at each station. "A" is the triangulation points. "B" shows that the altitude was determined from the topographic map and "C" by a hand-levelling compass. Figures 8-21 show the distribution of free air and simple Bouguer anomalies.

6. Accuracy

6.1. Accuracy of the gravity measurements

As mentioned before, the drift and the earth tide corrections were made by the LGCP. The standard deviation of determined gravity values is 52μ gal in ice-free areas and 222 µgal in the Mizuho Plateau. These values are equal to the degree of accuracy of gravity value in each area.

The crosshair of gravimeter kept moving slowly during measurements on sea ice due perhaps to tidal effect. The accuracy of the gravity measurements was estimated to be within 2 mgal from the amplitude of the crosshair movement.

6.2. Accuracy of free air and simple Bouguer anomaly

The altitude in ice-free areas was measured with three different methods, as mentioned before. The altitude at a triangulation point was determined by the optical levelling referring to the mean sea level and its accuracy was an order of 1 cm. This value causes an error of about 3 µgal in both free air and Bouguer anomalies. It is very small in

-65-

comparison with standard deviation of solutions. Therefore, the total accuracy of gravity anomaly values at a triangulation point is the same order of the standard deviation of solutions (52 μ gal). The maximum error was estimated to be 0.5 m in determination of altitudes according to the topographic maps or by the hand-levelling compass surveying. This value causes an error of about 0.15 mgal in both free air and simple Bouguer anomalies.

The most difficult problem in the determination of gravity anomaly in the ice plateau of Antarctica is a large error in the altitude measurement at each station.

In the Mizuho Plateau, the altitude was measured by a Wild T2 theodolite or a barometric altimeter, the data was adopted for the gravity data reduction. Therefore, the maximum error of altitude at the gravity stations in the Mizuho Plateau might have reached an order of 10 m. This value causes an error of about 3.1 mgal in free air anomaly. Furthermore, it is necessary to know the ice thickness for determing the simple Bouguer anomaly. The ice thickness was partly determined by radio echo sounding (Naruse and Yokoyama, 1975) from Syowa Station to Mizuho Station. But the accuracy of the ice thickness seems to be several tens of meters. If the density contrast between the ice sheet and bedrock is assumed 1.77 g/cm³, an error of 100 m in the ice thickness causes about an error of about 7.4 mgal in simple Bouguer anomaly.

-66-

Acknowledgments

The authors express their thanks to Prof. Y. Yoshida, the leader of JARE-22, for his critical reading of the manuscript and to all members of JARE-22 for their kind assistance in field operations. The authors also thank Dr. Y. Fukuda, Faculty of Science, Hirosaki University, for permitting the use of his gravity data correction program.

References

- Abe, Y. (1975): Gravity data. JARE Data Rep., <u>28</u> (Glaciol. 3), 114-119.
- Harada, Y., Kakinuma, S. and Murata, I. (1963): Pendulum determination of the gravity differences between Tokyo, Mowbray and Syowa Base. Nankyoku Shiryô (Antarct. Rec.), 17, 35-50.
- Kaminuma, K., Kunimi, T. and Ohtaki, S., (1980): Nankyoku Ryûgû Misaki to Syowa Kiti fukin de no jûryoku kansoku (Gravity survey in Cape Ryûgû and Syowa Station, Antarctica). Nankyoku Shiryô (Antarct. Rec.), <u>70</u>, 149-157.
- Moriwaki, K. and Yoshida, Y. (1983): Submarine topography of Lützow-Holm Bay, Antarctica. Mem. Natl Inst. Polar Res., Sepc. Issue, 28, 247-258.
- Naruse, R. and Yokoyama, K. (1975): Position, elevation and ice thickness of stations. JARE Data Rep., <u>28</u> (Glaciol. 3), 7-47.

- Suzuki, H. (1976): Kokusai jûryoku kijunmô 1971 to nippon jûryoku kijunmô 1975 (The international gravity standardization net 1971 and the Japan gravity standardization net 1975). Sokuchi Gakkai Shi (J. Geod. Soc. Jpn.), 22 (2), 112-129.
- Yanai, K. and Kakinuma, S. (1971): Measurement of gravity along the traverse route Syowa-South Pole. JARE Sci. Rep., Spec. Issue, <u>2</u>, 131-150.
- Yokoyama, K. (1976): Geomorphological and glaciological survey of the Minami-Yamato Nunataks and the Kabuto Nunatak, East Antarctica. Nankyoku Shiryô (Antact. Rec.), 56, 14-19.
- Yoshida, M. and Yoshimura, A. (1972): Gravimetric survey in the Mizuho Plateau-West Enderby Land area, East Antarctica, 1969-1971. JARE Data Rep., <u>17</u> (Glaciol. 1), 168-203.

Fig. 1. The location of gravity stations in Lützow-Holm Bay. Stations from A-1 to D-109 are on sea ice and LUT01 to LUT28 in ice-free areas.

Fig. 2. Gravity stations in the Ongul Islands.

Fig. 5. Gravity stations in the Skallen and the Skallevikhalsen areas.

Fig. 6. Gravity stations along the traverse route in the Mizuho Plateau.

Fig. 8. Free air gravity anomaly in Lützow-Holm Bay. The data correspond to those in Table 1 and Table 2.

Fig. 9. Simple Bouguer gravity anomaly in Lützow-Holm Bay. The data correspond to those in Table 1 and Table 2.

Fig. 10. Free air gravity anomaly in the Ongul Islands. The data correspond to those in Table 2.

Fig. 11. Simple Bouguer gravity anomaly in the Ongul Island. The data correspond to those in Table 2.

Fig. 16. Free air gravity anomaly in the Skallen and the Skallevikhalsen areas. The data correspond to those in Table 2.

Fig. 17. Simple Bouguer gravity anomaly in the Skallen and the Skallevikhalsen areas. The data correspond to those in Table 2.

Fig. 18. Free air gravity anomaly in the Mizuho Plateau. The data correspond to those in Table 3.

Fig. 19. Simple Bouguer gravity anomaly in the Mizuho Plateau, The data correspond to those in Table 3.

-78-

Fig. 21. Simple Bouguer gravity anomaly in the Yamato Mountains. The data correspond to those in Table 3.

STATION NAME	GRAVITY VALUE (M-GAL)	FREE AIR ANOMALY (M-GAL)	BOUGUER ANOMALY (M-GAL)	LATITUDE DEG.MIN.	LONGITUDE DEG.MIN.	DEPTH (M)	NORMAL GRAVITY (M-GAL)
A- 1	982523.900	-26.903	-20.031	69 2.5	39 14.5	100	982551.673
A- 5	982519.8ØØ	-31.003	-19.665	69 2.5	39 8.1	165	982551.673
A- 9	982514.000	-36.8Ø3	-10.278	69 2.5	39 2.1	386	982551.673
A- 13	982520.100	-30.703	-15.Ø36	69 2.5	38 56.1	228	982551.673
A- 15	982520.800	-30.003	-18.Ø46	69 2.5	38 53.Ø	174	982551.673
A- 2Ø	982511.100	-39.7Ø3	-20.737	69 2.5	38 45.3	276	982551.673
A- 23	982510.400	-40.403	-12.916	69 2.5	38 41.1	400	982551.673
A- 25	982505.400	-45.403	-10.358	69 2.5	38 37.9	51Ø	982551.673
A- 27	982496.400	-54.403	-13.242	69 2.5	38 34.7	599	982551.673
A- 31	982492.5 <i>00</i>	-58.303	-1Ø.958	69 2.5	38 28.8	689	982551.673
A- 35	982484.300	-66.5Ø3	-17.3Ø2	69 2.5	38 22.8	716	982551.673
A- 39	982480.100	-70.703	-18.96Ø	69 2.5	38 16.5	753	982551.673
A- 43	982476.8 <i>00</i>	-74.003	-22.397	69 2.5	38 10.9	751	982551.673
A- 46	982477.7ØØ	-73.608	-26.194	69 3.Ø	38 7.8	69Ø	982552.178
A- 47	982484.6 <i>00</i>	-67.315	-26.016	69 3.6	38 7.8	6ø1	982552.785
A- 6Ø	982490.700	-68.070	-29.933	69 1Ø.4	38 6.0	555	982559.64Ø
A- 72	982508.200	-54.388	-22.160	69 14.2	37 53.6	469	982563.458
A- 73	982508.500	-54.0/88	-22.135	69 14.2	37 52.5	465	982563.458
A- 75	982508.300	-54.288	-19.93Ø	69 14.2	37 49.6	500	982563.458
A- 81	982510 400	-52.188	-1.9, 135	69 14.2	37 40.4	481	982563.458
A- 85	982509.300	-53.288	-22.091	69 14.2	37 34.3	454	982563.458
A- 88	982509.900	-53.490	-23, 255	69 15 0	37 28.2	449	982564.260
A- 90	982510 600	-52 890	-22.862	69 15.1	37 26.8	437	982564.36Ø
		52.000	-12.660	60 15 1	27 28 4	568	982564 360
A- 94	982510.800	-52.690	-13.686	60 15 1	37 20.4	500	982564 360
A- 98	982514.100	-49.390	-12.696	69 15.1	37 15.7	452	982564.360
A-182	982517.900	-45.590	-14.531	69 15.1	37 9.0	452	992564 260
A-108	982509.300	-54.190	-2.447	69 15.1	37 0.4	733	982564.360
A-11Ø	982522.100	-41.390	7.123	69 15.1	36 57.3	700	002565 062
A-112	982521.900	-42.292	-10.719	69 15.8	36 55.9	600	902505.002
A-117	982524.200	-39.992	-Ø.549	69 15.8	36 48.0	5/4	982565.062
A-119	982525.900	-37.59Ø	10.547	69 15.1	36 45.5	555	982564.360
A-121	982526.300	-36.288	-2.136	69 14.2	36 41.9	497	982503.458
A-124	982526.600	-35.084	4.221	69 13.3	36 39.7	572	982562.554
A-126	982515.800	-45.181	2.3Ø1	69 12.6	36 37.2	691	982561.851
A-128	982518.100	-42.881	8.312	69 12.6	36 34.0	745	982561.851
A-13Ø	982522.000	-38.981	3.554	69 12.6	36 41.5	619	982561.851
A-136	982523.100	-37.881	-1.462	69 12.6	36 49.0	53ø	982561.851
A-138	982521.500	-4Ø.385	Ø.776	69 13.5	36 49.4	599	982562.755
A-14Ø	982521.800	-41.189	-Ø.784	69 14.6	36 5Ø.1	588	982563.859
A-142	982525.ØØØ	-39.192	-2.773	69 15.8	36 50.5	53ø	982565.062
D- 4	982524.200	-4Ø.894	3.Ø84	69 16.7	36 54.8	64Ø	982565.964
D- 8	9825Ø1.1ØØ	-65.596	-8.562	69 18.3	36 59.6	830	982567.566
D- 1Ø	982517.900	-49.496	-2.9Ø7	69 19.Ø	37 2.1	678	982568.266
D- 13	982526.400	-4Ø.996	-8.631	69 19.Ø	37 5.7	471	982568.266
D- 16	982526.8 <i>ØØ</i>	-40.596	-10.842	69 19.Ø	37 1Ø.4	433	982568.266
<u>D- 18</u>	982526,700	-40.696	-Ø.841	69 19.Ø	37 13.6	58Ø	982568.266

Table 1. The results of gravity measurements on sea ice in Lützow-Holm Bay.

STATION NAME	GRAVITY VALUE (M-GAL)	FREE AIR ANOMALY (M-GAL)	BOUGUER ANOMALY (M-GAL)	LATITUDE DEG.MIN.	LONGITUDE DEG.MIN.	DEPTH (M)	NORMAL GRAVITY (M-GAL)
D- 2Ø	982525.2 <i>00</i>	-42.096	-11.449	69 18.9	37 16.4	446	982568.166
D- 24	982516.4 <i>00</i>	-5Ø.896	-20.524	69 18.9	37 22.9	442	982568.166
D- 26	982516.8ØØ	-5Ø.496	-22.529	69 18,9	37 25.7	4Ø7	982568.166
D- 29	982518.8 <i>00</i>	-48.697	-24.371	69 19.1	37 28.9	354	982568.367
D- 31	982528.5ØØ	-39.297	-21.Ø18	69 19.4	37 32.1	266	982568.667
D- 32	982529.300	-38.597	-26.915	69 19.5	37 33.9	17Ø	982568.767
D- 34	982515.3 <i>00</i>	-52.096	-26.534	69 19.Ø	37 36.1	372	982568.266
D- 38	982517.100	-49.796	-21.279	69 18.5	37 41.8	415	982567.766
D- 42	982513.600	-54.696	-23.499	69 19.9	37 44.8	454	982569.166
D- 44	982518.400	-50.996	-27.289	69 21.Ø	37 44.8	345	982570.266
D- 5Ø	982514.600	-55.395	-28.527	69 21.6	37 53.2	391	98257Ø.865
D- 64	982508.400	-55.692	-23.808	69 15.7	38 Ø.4	464	982564.962
D- 68	982496.400	-67.692	-31.685	69 15.7	38 6.Ø	524	982564.962
D- 7Ø	982497.ØØØ	-67.192	-30.910	69 15.8	38 9.2	528	982565.062
D- 76	982494.600	-69.693	-30.387	69 15.9	38 18.5	572	982565.163
D- 88	982484.100	-8Ø.493	-37.271	69 16.2	38 36.6	629	982565.463
D- 92	982482.100	-82.593	-3Ø.575	69 16.3	38 42.9	757	982565.563
D- 95	982476.000	-88.794	-27.Ø18	69 16.4	38 47.2	899	982565.664
D- 97	982474.100	-90.794	-27.Ø25	69 16.5	38 5Ø.4	928	982565.764
D- 99	982477.ØØØ	-87.994	-30.135	69 16.6	38 53.3	842	982565.864
D-1Ø2	982487.200	-77.894	-33.778	69 16.7	38 57.9	642	982565.964
0-109	982506.300	-59.095	-27.623	69 17.Ø	39 8.7	458	982566.265

STATION NAME	GRAVITY VALUE (M-GAL)	FREE AIR ANOMALY (M-GAL)	BOUGUER ANOMALY (M-GAL)	LATITUDE DEG.MIN.	LONGITUDE DEG.MIN	HEIGHT (M)	NORMAL GRAVITY (M-GAL)	REMARKS
EAS51	982525.553	-19.282	-20.602	69 Ø.2	39 34.3	11.8Ø	982549.346	В
EAS52	982525.325	-23.Ø45	-23.156	69 Ø.4	39 37.Ø	1.00	982549.548	B MIHARASI
EAS53	98252Ø.539	-16.7Ø8	-20.707	69 Ø.Ø	39 34.7	35.74	982549.143	A NESOVA NO.12
EAS54	982521.164	-15.338	-19.533	68 59.8	39 34.6	37.5Ø	982548.941	B NESOYA
EAS55	982524.102	-18.533	-20.504	68 59.8	39 35.6	17.62	982548.941	A NESOYA NO.1Ø16
EAS56	982524.522	-15.Ø65	-18.141	68 59.8	39 35.Ø	27.5Ø	982548.941	B NESOVA
EAS57	982517.3Ø8	-20.210	-24.551	69 1.2	39 36.4	38.8Ø	98255Ø.358	A POLLHOLMEN
WE SØ4	982522.286	-12.995	-18.33Ø	69 1.7	39 31.6	47.69	982550.864	A NO.8
WESØ5	982522.Ø32	-15.555	-19.797	69 1.Ø	39 32.6	37.92	98255Ø.155	A NO.7
WE SØ6	982523.544	-12.934	-17.688	69 1.3	39 31.1	42.5Ø	98255Ø.459	A NO.35
WESØ7	982524.253	-13.Ø13	-17.555	69 1.5	39 30.9	40.60	98255Ø.661	В
WESØ8	982527.99Ø	-14.209	-16.815	69 1.1	39 3Ø.5	23.3Ø	98255Ø.257	В
WES 1Ø	982529.212	-13.842	-16.1Ø2	69 1.Ø	39 30.0	20.20	98255Ø.155	В
WES11	982525.219	-12.99Ø	-17.Ø8Ø	69 1.2	39 29.9	36.56	98255Ø.358	A NO.1Ø
WES12	982524.749	-13.813	-17.885	69 1.5	39 31.1	36.4Ø	98255Ø.661	В
WES13	982528.193	-14.551	-17.18Ø	69 1.7	39 30.5	23.5Ø	98255Ø.864	В
WES14	982528.262	-14.777	-17.372	69 1.9	39 3Ø.5	23.2Ø	982551.Ø66	A NO.34
WES15	982525.545	-14.4Ø9	-18.123	69 1.9	39 31.Ø	33.20	982551.ø66	В
WES16	982527.Ø93	-16.141	-18.445	69 1.3	39 32.Ø	20.60	98255Ø.459	В
WES17	982525.Ø42	-14.692	-18.339	69 1.5	39 31.6	32.6Ø	98255Ø.661	В
WES18	982522.643	-13.763	-18.764	69 1.9	39 31.9	44.7Ø	982551.Ø66	В
WES19	982527.457	-15.815	-18.399	69 2.1	39 31.4	23.1Ø	982551.268	В
WES2Ø	982528.317	-16.177	-18.135	69 1.6	39 29.3	17.5Ø	98255Ø.763	B MAME-ZIMA
WES21	982528.328	-2Ø.766	-21.2Ø2	69 2.Ø	39 35.1	3.9Ø	982551.167	В
KALØ1	982526.256	-17.485	-19.532	69 1.1	39 26.Ø	18.30	98255Ø.257	В
KALØ2	982529.349	-16.247	-17.768	69 1.5	39 27.7	13.6Ø	98255Ø.661	В
KALØ3	982527.Ø76	-17.471	-19.373	69 1.5	39 25.9	17.00	98255Ø.661	В
KALØ4	982528.831	-15.897	-17.587	69 1.1	39 26.9	15.10	98255Ø.257	В
KALØ5	982524.231	-14.4Ø3	-18.376	69 1.3	39 26.5	35.51	98255Ø.459	A NO.114
KALØ6	982526.Ø64	-15.464	-18.351	69 1.2	39 26.1	25.8Ø	98255Ø.358	В
TE OØ 1	982519.852	-17.3Ø2	-22.435	69 3.Ø	39 34.9	45.88	982552.178	A NO.1Ø3
TE OØ2	982526.189	-23.489	-23.971	69 2.7	39 36.1	4.3Ø	982551.875	В
TEOØ3	982526.696	-18.478	-20.593	69 2.7	39 33.6	18.9Ø	982551.875	В
TEOØ4	982530.222	-19.Ø33	-19.7Ø4	69 2.8	39 33.2	6.00	982551.976	В
TE OØ 5	982531.27Ø	-18.4Ø3	-18.996	69 3.Ø	39 32.7	5.3Ø	982552.178	В
TE 0Ø6	982529.589	-17.47Ø	-19.Ø48	69 3.1	39 31.8	14.10	982552.279	В
TEOØ7	982531.Ø16	-18.177	-18.871	69 2.8	39 31.3	6.2Ø	982551.976	В
TE OØ8	982525.818	-16.6Ø5	-20.010	69 3.5	39 32.2	30.44	982552.684	A NO.113
TE 0Ø9	982529.556	-19.231	-20.182	69 3.1	39 33.8	8.5Ø	982552.279	В
TEO1Ø	982526.895	-22.125	-23.Ø65	69 3.3	39 35.Ø	8.4Ø	982552.481	в
TEOII	982526. 4 6Ø	-23.951	-24.533	69 3.7	39 36.2	5.20	982552.886	В

Table 2. The results of gravity measurements in ice-free areas in and around Lützow-Holm Bay.

STATION NAME	GRAVITY VALUE (M-GAL)	FREE AIR ANOMALY (M-GAL)	BOUGUER ANOMALY (M-GAL)	LATITUDE DEG.MIN.	LONGITUDE DEG.MIN	HE IGHT (M)	NORMAL GRAVITY (M-GAL)	REMARKS
LAN11	982531.684	-19.612	-23.415	69 13.4	39 41.7	34.00	982562.655	в
LAN12	982534.629	-22.839	-24.586	69 13.9	39 41.8	15.62	982563.157	- A R~7
LAN13	982532.179	-18,686	-22.937	69 14.2	39 40.7	38.00	982563.458	B
LAN14	982531.374	-23,111	-26.304	69 14.9	39 39.8	28.54	982564.160	A NO.117
LAN15	982533 107	-23,997	-26.459	69 15 5	39 39 6	22.00	982564.762	R
LAN16	982533.735	-22.567	-25,028	69 14 7	39 41 .0	22.00	982563 959	R
LAN17	982534.755	-23.514	-25.080	69 14.2	39 43 6	14.99	982563.458	B
	982531.484	-16 533	-21 344	69 12 9	39 43 0	13 88	982562 153	R
LAN19	982533.933	-20 663	-23,124	69 13.8	39 43.0	22.00	982562 253	B
	982524 352	-31 794	-33 584	69 12 7	39 37 8	16 89	982561 952	D
LAN21	092529 270	-24 122	-26 471	69 19 5	29 41 6	21 44	002550 741	B
LAN22	982475 461	-24.122	-22 0.471	69 12 6	50 44 2	21.00	902559.741	B
LAN23	982459 183	6 169	-32.250	69 12 5	20 45 6	252 00	982562 755	B A B-2
LAN24	982459.103	• 2 668	-22 012	69 13 6	20 46 5	210 00	982562.956	R K-2
1 4 8 2 5	002526 070	-24 145	-32.013	60 12 0	39 40.3	310.00	982562.856	в
LAN26	982520.978	-24.145	-26 142	69 12.0	39 37.7	50.00	982561.249	в
	902334.109	-20.814	-26.947	69 18.7	39 38.8	-0.00	982559.942	в
	982495.160	-17.789	-30.807	69 17.0	39 42.5	1/0.00	982566.265	в
LANZY	982485.919	-8.523	-34.325	69 17.2	39 42.5	230.64	982566.465	A NU.124
LAN3Ø	982531.781	-25.092	-28.000	69 16.5	39 38.4	26.00	982565.764	B
SKVØ1	982500.940	-4.291	-29.764	69 27.1	39 42.6	227.70	982576.347	A NU.132
SKVØ2	982544.612	-26.934	-28.612	69 27.8	39 39.9	15.00	982577.043	В
SKVØ3	982544.987	-26.959	-28.456	69 27.7	39 39.1	13.38	982576.944	A NO.14Ø
SKVØ4	982544.73Ø	-26.448	-27.79Ø	69 26.5	39 4Ø.9	12.ØØ	982575.75Ø	В
SKVØ5	982545.652	-27.148	-28.155	69 27.2	39 45.9	9.00	982576.446	В
SKVØ6	982547.317	-26.937	-27.164	69 26.5	39 33.Ø	2.Ø3	982575.75Ø	C HUNAZOKO CAMP
SKVØ7	982545.954	-33.898	-34.256	69 32.5	39 42.4	3.20	982581.71Ø	с
SKVØB	982545.919	-31.649	-31.828	69 29.7	39 40.9	1.6Ø	982578.931	с
SKVØ9	982485.764	-12.219	-41.Ø78	69 29.2	39 39.4	257.96	982578.435	A NO.135
SKV1Ø	982534.Ø32	-25.420	-32.132	69 29.6	39 41.Ø	60.00	982578.832	В
SKV11	982537.749	-28.26Ø	-32.846	69 3Ø.3	39 38.1	41.00	982579.527	B TRILLINGOVANE
SKV12	982544.841	-32.357	-32.67Ø	69 29.7	39 34.1	2.8Ø	982578.931	с
SKV13	982544.38Ø	-29.634	-30.417	69 27.8	39 38.4	7.00	982577.Ø43	C NOKKELOYA
SKV14	982546.152	-27.782	-28.342	69 27.1	39 31.4	5.00	982576.347	с
SKV15	982537.276	-31.354	-33.368	69 25.8	39 28.7	18. <i>ØØ</i>	982575.Ø53	В
SKV16	982543.736	-26.446	-27.789	69 25.5	39 32.9	12.00	982574.754	В
SKV17	982545.Ø49	-28.744	-29.102	69 26.4	39 37.1	3.20	982575.65Ø	с
SKV18	982544.336	-27.27Ø	-27.8Ø7	69 24.7	39 35.Ø	4.8Ø	982573.957	с
SKV19	982538.8Ø2	-27.935	-29.948	69 23.9	39 29.3	18. <i>ØØ</i>	982573.16Ø	B NOKKELHOLMANE
SKV2Ø	982541.500	-29.209	-30.216	69 25.1	39 44.7	9.00	982574.356	В
SKV21	982521.396	-29.724	-37.4Ø1	69 23.9	39 47.6	68.62	982573.16Ø	A NO.139 TANKOBU
SKV22	982523.513	-28.898	-35.383	69 21.9	39 45.1	57.97	982571.164	A NO.119
SKV23	98253Ø.545	-22.3Ø6	-28.124	69 2 <i>ø</i> .5	39 46.2	52.Ø1	982569.766	A NO.12Ø

•

STATION NAME	GRAVITY VALUE (M-GAL)	FREE AIR ANOMALY (M-GAL)	BOUGUER ANOMALY (M-GAL)	LATITUDE DEG.MIN.	LONGITUDE DEG.MIN	HE IGHT (M)	NORMAL GRAVITY (M-GAL)	REMARKS
SKLØ1	982555.371	-31.459	-32.119	69 4<i>8</i>.4	39 24.5	5.9Ø	982589.528	A SN-18
SKLØ2	98253Ø.771	-18.56Ø	-32.89Ø	69 4ø.6	39 27 .Ø	128.09	982589.718	A NO.109
SKLØ3	982553.947	-31.323	-32.441	69 40.1	39 27.3	10.00	982589.225	в
SKLØ4	982552.103	-32.408	-33.694	69-39.8	39 28.8	11.50	982588.929	В
SKLØ5	98255Ø.Ø2Ø	-32.714	-34.001	69 38.Ø	39 14.8	11.50	982587.152	B HJARTOY
SKLØ6	982546.977	-27.234	-32.828	69 41.4	39 18.6	50.00	982590.506	В
SKLØ7	982552.363	-29.685	-32.258	69 40.9	39 19.3	23. <i>00</i>	982590.013	В
LUTØ1	982522.316	-15.857	-17.57Ø	68 54.7	39 49.7	15.31	982543.767	A NO.13 TOTTUKI
LUTØ2	982526.321	-15.919	~16.599	68 55.9	39 37.Ø	6.Ø8	982544.985	A NO.229 KITA-ZIM
LUTØ3	982525.Ø55	-16.191	-17.342	68 56.2	39 30.3	10.29	982545.29Ø	A NO.141 UTHOLMEN
LUTØ4	982524.Ø99	-18.272	-19.457	68 57.4	39 38.9	10.59	982546.508	A NO.154 NAKA-ZIM
LUTØ5	982524.619	-19.266	-20.233	68 58.3	39 34.7	8.64	982547.421	A NO.152 MUMEINOS
LUTØ6	982524.252	-16.857	-18.83Ø	68 58.3	39 3Ø.8	17.64	982547.421	A NO.137 MEHOLMEN
LUTØ8	982521.465	-18.417	-2Ø.725	68 58.Ø	39 44.6	20.63	982547.116	A NO.228 MITU-IWA
LUTØ9	982518.066	-24.486	-26.671	69 Ø.3	39 42.6	19.53	982549.447	A NO.155
LUT1Ø	982516.446	-20.261	-24.271	68 59.5	39 37.6	35.85	982548.637	A NO.151 IWA-ZIMA
LUT11	982525.573	-19.966	-20.810	68 59.6	39 34.6	7.55	982548.738	C HATUSIMA
LUT12	982524.291	-19.ØØ3	-2Ø.772	68 59.9	39 32.2	15.81	982549.042	A NO.136 ONDORI-Z
LUT13	982528.487	-19.Ø72	-19.441	69 Ø.3	39 32.3	3.3Ø	982549.447	B MENDORI-ZIMA
LUT14	98252Ø.571	-21.696	-24.6Ø8	69 2. <i>0</i> /	39 42.2	26.Ø3	982551.167	A NO.142 MUKAI RO
LUT15	982518.100	-22.6Ø8	-26.892	69 4.2	39 37.2	38.29	982553.391	A NO.115 ONGULGAL
LUT16	982528.Ø39	-20.948	-22.Ø1Ø	69 3.6	39 28.9	9.49	982552.785	A NO.103
LUT17	982524.Ø24	-19.585	-22.193	69 2.5	39 15.2	23.32	982551.673	A NO.105 BENTEN-Z
LUT18	982525.735	-23.984	-25.4Ø3	69 5.3	39 31.2	12.68	982554.5Ø1	A NO.102 HIDARI-Z
LUT19	982527.136	-25.52Ø	-26.6Ø5	69 7.3	39 28.1	9.7 <i>Ø</i>	982556.518	A NO.1Ø7 MIGI-ZIM
LUT2Ø	982518.944	-23.856	-29.027	69 8.7	39 24.3	46.22	982557.929	A NO.108 RUMPA
LUT22	982513.784	-29.62Ø	-34.498	69 8.5	39 46.Ø	43.61	982557.728	Α
LUT23	982499.603	-22.936	-35.417	69 8.6	39 46.4	111.57	982557.828	Α
LUT24	982516.195	-22.336	-29.894	69 11.Ø	39 32.9	67.56	98256Ø.243	A NO.124 INDREHOV
LUT25	982519.379	-22.310	-28.577	69 1 <i>0</i> .6	39 26.9	56.Ø2	982559.841	A NO.146 SIGAREN
LUT26	982531.089	-27.332	-28.406	69 13.Ø	39 26.9	9.6Ø	982562.253	C YTREHOVDEHOLMEN
LUT27	982533.913	-27.942	-28.971	69 16.3	39 33.8	9.2 <i>Ø</i>	982565.563	C UNGANE
LUT28	982533.695	-28.329	-29.515	69 16.9	39 26.Ø	10.60	982566.165	C SYSTERFLESENE
LUT29	982531.805	-31.515	-32.231	69 16.9	39 36.2	6.4Ø	982566.165	C NABBOYA

Table 3. The results of gravity measurements in the Mizuho Plateau and the Yamato Mountains. Term of **** of ICE THICKNESS, which shows that ice thickness is unknown.

STATION NAME	GRAVITY VALUE (M-GAL)	FREE AIR ANOMALY (M-GAL)	80UGUER ANOMALY (M~GAL)	LATITUDE DEG.MIN.	LONGITUDE DEG.MIN.	HE IGHT (M)	ICE THICKNESS (M)	NORMAL GRAVITY (M-GAL)	REMARKS
\$19	982342.328	3.447	26.564	69 1.3	40 10.7	683.00	1 342	98255ø.459	
\$25	982297.598	15.ø82	-0.890	69 2.Ø	40 28.1	868.00	1Ø94	982551.167	
\$3Ø	982260.348	13.841	-Ø.277	69 3.Ø	40 42.2	988.ØØ	1300	982552.178	
H48-1	982221.796	14.271	-6.576	69 8.7	4Ø 57.3	1133.00	1428	982557.929	
H74-1	98221Ø.873	22.Ø54	-6.478	69 12.8	41 7.4	1207.00	1 4 3 6	982562.Ø52	
H94	982184.165	11.371	-34.296	69 16.2	41 16.7	1270.00	1300	982565.463	
H113-1	982166.199	10.389	-29.Ø54	69 2Ø.5	41 27.6	1339.00	1488	982569.766	
H137	982155.176	11.664		69 25.8	41 38.9	1396.00	****	982575.Ø53	
H155	982136.424	10.022	~55.Ø87	69 3Ø.Ø	41 47.5	1465.00	1332	982579.229	
H174	982112.985	Ø.719	-5Ø.966	69 34.1	41 57.3	1524.00	16Ø2	982583.295	
H1 93	982Ø94.287	-10.618		69 38.2	42 7.5	1561.00	****	982587.349	
H213	982Ø93.446	1.478	~1Ø7.334	69 42.6	42 18.Ø	1617.ØØ	972	982591.688	
H231	982Ø95.296	15.Ø16		69 46.4	42 27.6	1667.ØØ	****	982595.425	
H237	982Ø96.574	20.165		69 47.8	42 3Ø.7	1684.00	****	982596.799	
H251-1	982Ø91.Ø55	27.65Ø		·69 5Ø.9	42 37.8	1736.00	****	982599.837	
H256	982Ø89.423	26.988		69 51.8	42 4Ø.7	1742.00	****	982600.718	
H275-1	982Ø96.318	49.004	-31.336	69 55.9	42 51.9	1804.00	1638	9826Ø4.724	
H295	982Ø86.481	58.343		7ØØ.6	43 1.1	1881.00	****	9826Ø9.3Ø3	
S-122	982Ø78.963	59.Ø91	-37.928	7Ø 1.3	43 9.4	1910.00	1573	9826Ø9.983	
Z 2	982Ø77.6ØØ	61.790	-38.873	70 2.2	43 11.1	1926.00	1548	982610.858	
Z11-1	982Ø48.7Ø4	46.9Ø7		70 6.2	43 19.4	1984.00	***	982614.738	
Z22-1	982034.299	35.899		70/11.3	43 28.0	2011.00	****	982619.670	
Z33	982032.274	45.695	-55.722	7Ø 16.Ø	43 36.1	2064.00	1746	982624.200	
Z42-1	982016.922	36.393		70 20.3	43 43.5	2097.00	****	982628.331	
Z6Ø-1	982007.716	29.739		70 24.4	43 5Ø.7	2118.00	****	982632.258	
Z75	981967.461	-1.974		70 28.7	43 58.6	2159.00	****	982636.364	
Z85	981983.488	10.576		70/33.0	44 7.1	2161.00	****	982640.458	
294	981991.486	22.206		70 37.3	44 12 9	2186.00	****	982644 539	
7102-1	981986.899	21 855		70 41.3	44 18 3	2212 00	****	982648 324	
MIZUHO	981982.639	22.581		70/41.9	44 19 9	2230 00	****	982648 891	MITINO STATION
F6	981991.887	24.261		70 46 0	44 9.2	2218 00	****	982652 757	HIZONO STRATON
F1Ø	982003.032	37.508		70 47.7	43 56 7	2230 00	****	982654 357	
F16	981998.423	23, 093		70 51 9	43 30.7	2211 00	****	982658 301	
F 2 1	982006.045	28 451		7ø 53 ø	43 30 0	2207 00	****	982659 332	
F23	982007.968	25 771		78 56 6	43 24 4	2203 00	****	982662 700	
F29	982010.009	33,120		71 67 5	43 10.0	2232 88	****	982666 338	
F 3 3	982028 670	34 338		71 D.J	43 10.0	2183 00	****	002660 665	
F 38	982031 222	45 455		71 5.0	42 35.2	2221 90	****	002671 022	
F 4 3	982829 983	43.433		71 0.4	42 24 2	2222 44	****	002674 707	
F 4 8	982057 372	44.074 66 670		71 3.0	42 34.2	2233.00	****	902074.707	
F 5 Ø	982038 899	61 373		71 12.4	42 22.5	2223.00	****	982877.378	
F52	982010 267	34 1072		71 14 7	42 17 5	2203.00	****	JO20/0.391	
F56	982008 564	22 725		71 14.7	42 12.0	2251 00	****	3820/3.498	
F61	982026 580	10 070		71 10 0	41 46 6	2250 00	***	302002.0/0	
F66	982011 076	4E 202		71 21 5	41 40.0	2233.00	****	982884.281	
F71	982041.070	43.393		71 22 4	41 30.4	2234.00	****	982883./49	
F75	982844 784	40.710		71 24 2	41 14.4 A1 A 1	2231 00	***	38288/.490	
F8Ø	982Ø47.23Ø	47.337		71 26.1	40 48.5	2234.00	****	982689.96Ø	

STATION NAME	GRAVITY VALUE (M-GAL)	FREE AIR ANOMALY (M-GAL)	BOUGUER ANOMALY (M-GAL)	LATITUDE DEG.MIN.	LONGITUDE DEG.MIN.	HEIGHT (M)	ICE THICKNESS (M)	NORMAL GRAVITY (M-GAL)	REMARKS
F 85	982Ø52.533	57.383		71 28.Ø	4Ø 31.5	2255.ØØ	****	982691.695	
F 9Ø	982Ø46.739	59.400		71 3Ø.6	48 17.9	2288.ØØ	***	982694.065	
F 9 5	982046.305	64.368		71 32.8	4Ø 3.4	2312.00	***	982696.Ø67	
F98	982Ø45.483	57.5Ø1		71 34.7	39 56.6	2298.ØØ	***	982697.793	
F1Ø3	982Ø5Ø.Ø25	64.Ø39		71 35.9	39 42.Ø	2308.00	***	982698.882	
F1Ø8	982048.591	69.74Ø		71 37.9	39 25.7	2337.ØØ	****	9827ØØ.694	
F113	982Ø49.254	74.816		71 39.5	39 9.4	2356.00	****	9827Ø2.142	
F118	982Ø56.161	81.Ø75		71 4 Ø.9	38 53.1	2358.ØØ	***	9827Ø3.4Ø7	
F122	982Ø56.994	85.542		71 42.Ø	38 41.1	2373.00	****	9827Ø4.4Ø1	
F127	982Ø53.218	89.45Ø		71 43.4	38 25.7	2402.00	***	9827Ø5.664	
F13Ø	982Ø56.943	95.591		71 43.8	38 21.4	2411.00	***	982706.024	
F136	982Ø65.235	1Ø7.981		71 46.1	38 2.6	2431.00	****	9827Ø8.Ø96	
F142	982Ø49.464	100.965		71 47.Ø	39 48.Ø	2462.00	****	9827Ø8.9Ø5	
F148	982Ø46.92Ø	98.358		71 48.1	37 27.3	2465.00	***	9827Ø9.894	
F154	982Ø51.Ø26	1Ø8.4Ø3		71 48.7	37 8.4	2486.ØØ	****	982710.432	
F16Ø	982Ø48.76Ø	100.096		71 48.9	36 46.4	2467.00	***	982710.612	
F166	982Ø69.Ø61	119.181		71 5Ø.6	36 35.3	2468.00	****	982712.137	
F169-1	982Ø82.32Ø	114.568		71 49.2	36 21.5	2406.00	***	98271Ø.881	
F175	982Ø8Ø.299	96.595		71 49.1	36 13.8	2354.00	***	98271Ø.792	
F179	982136.312	131.845		71 46.8	36 7.9	2280.00	***	9827Ø8.725	
YMTØ1	982229.10/8	103.010		71 14.7	35 16.3	1791.00	***	982679.498	MORAINE
YMTØ2	982245.222	99.638	-94.462	71 17.1	35 37.2	1735.00		982681.7Ø8	MASSIF G
YMTØ3	982247.400	121.Ø35	-80.001	71 17.Ø	35 49.Ø	1797.ØØ		982681.616	MASSIF G
YMTØ3-1	982243.175	110.764		71 17.2	35 48.5	1778.00	***	982681.800	CIRQUE
YMT#3-2	982241.224	1Ø8.846		71 17.5	35 48. Ø	1779.ØØ	***	982682.076	CIRQUE
YMT#3-3	982243.251	111.523		71 17.8	35 47.5	1782.00	***	982682.352	CIRQUE
YMTØ3-4	982232.223	94.476		71 17.3	35 42.5	1761.00	***	982681.892	CIRQUE
YMTØ3-5	982227.201	88.344		71 17.5	35 42.5	1758.ØØ	***	982682.ø76	CIRQUE
YMT#3-6	982216.163	77.739		71 17.7	35 42.5	1760.00	***	982682.26Ø	CIRQUE
YMTØ4	982251.827	119.298	-79.836	71 18.Ø	35 47.Ø	1780.00		982682.536	MASSIF F
YMTØ5	982194.313	132.923	-92.7Ø8	71 20.1	35 48.9	2Ø16.85		982684.465	NO.2Ø6
YMTØ6	982191.567	140.496	-88.844	71 2Ø.Ø	35 46.Ø	2050.00		982684.373	MASSIF E
YMTØ7	982265.34Ø	1Ø4.959	-85.673	71 22.8	35 29.Ø	17Ø4.ØØ		982686.941	NIZI NO KUBO
YMTØ7-1	982252.443	92.154		71 22.7	35 3Ø.Ø	17Ø4.ØØ	***	982686.849	CIRQUE
YMTØ7-2	982245.387	87.132		71 22.5	35 31.2	1710.00	***	982686.666	CIRQUE
YMTØ7-3	982244.442	85.753		71 22.3	35 32.4	17Ø8.ØØ	**	982686.483	CIRQUE
YMTØ7-4	982256.62Ø	99.257		71 22.2	35 33.6	1712.00	***	982686.391	CIRQUE
YMTØ8	982266.318	107.147		71 23.5	35 28.7	1710.00	***	982687.582	D BASE CAMP
YMTØ9	982172.277	148.481	-92.046	71 23.9	35 34.3	2150.00		982687.948	MASSIF D
YMT1Ø	982251.463	123.731	-82,116	71 33.0	35 32.2	1840.00		982696.249	MASSIF C
YMT11	982257.Ø37	141.989	-68.556	71 33.3	35 33.9	1882.00		982696.521	MASSIF C
YMT12	982155.199	160.403	-93.881	71 33.7	35 4ø.1	2272.97		982696.885	NO.174
YMT13	982187.610	155.459	-85.18Ø	71 33.4	35 4 1.Ø	2151.00		982696.612	NO.174 EAST
YMT14	982165.944	88.877		71 35.3	35 52.4	2011.00	***	982698.337	JARE 4 NUNATAKS
YMT15	982198.113	67.Ø37		71 41.8	35 29.7	1855.00	****	9827Ø4.22Ø	B BASE CAMP
YMT16	982252.184	1Ø7.845	-92.967	71 36.Ø	35 38.5	1795.ØØ		982698.972	B AKAKABE
YMT16-1	982253.684	108.420		71 36.Ø	35 38.5	1792.00	***	982698.972	CIRQUE
YMT16-2	982252.831	1Ø5.Ø99		71 36.Ø	35 38.5	1784.ØØ	* **	982698.972	CIRQUE

STATION NAME	GRAVITY VALUE (M~GAL)	FREE AIR ANOMALY (M-GAL)	BOUGUER ANOMALY (M-GAL)	LATITUDE DEG.MIN.	LONGITUDE DEG.MIN.	HEIGHT (M)	ICE THICKNESS (M)	NORMAL GRAVITY (M-GAL)	REMARKS
VMT16-3	982247.Ø68	1ø3.655		71 36.Ø	35 38.5	1798.00	****	982698.972	CIRQUE
VMT16-4	982244.884	104.247		71 36.Ø	35 38.5	1807.00	****	982698.972	CIRQUE
VMT16-5	982244.249	1Ø4.846		71 36.Ø	35 38.5	1811.00	****	982698.972	CIRQUE
VMT16-6	982244.295	105.201		71 36.Ø	35 38.5	1812.00	****	982698.972	CIRQUE
VMT16-7	982244.Ø63	1ø3.899		71 36.5	35 32.Ø	1810.00	****	982699.426	CIRQUE
VMT16-8	982223.985	95.544		71 36.5	35 32.Ø	1848.00	****	982699.426	CIRQUE
YMT16-9	982212.158	84.642		71 36.5	35 32.Ø	1851.00	***	982699.426	CIRQUE
VMT17	982240.601	105.823	-100.359	71 41.8	35 29.7	1843.00		9827Ø4.22Ø	MASSIF B
YMT18	982123.622	162.105	-1ø5.267	71 36.8	35 36.1	2389.96		982699.698	NO.176
VMT19	982210.197	132.189		71 37.7	35 44.Ø	2015.00	****	982700.513	MASSIF B
VMT2Ø	9822Ø7.238	116.366		71 43.4	35 44.Ø	1990.00	****	9827ø5.664	MASSIF A
VMT21	9822Ø6.Ø17	146.921		71 43.4	35 46.3	2093.00	****	9827ø5.664	MASSIF A
VMT22	982138.338	142.239		71 47.1	36 10.5	2308.00	****	9827Ø8.995	MOTOI IWA BASE CAMP
VMT23	982156.504	152.513	-102.893	71 47.3	36 12.4	2283.00		9827Ø9.175	214 SUBPOINT
VMT24	982146.443	160.416	-101.504	71 47.3	36 12.4	2341.23		9827Ø9.175	NO.214
YMT25	982194.774	68.295		71 48.Ø	34 44.Ø	1888.00	****	9827Ø9.8Ø4	KABUTO NUNATAK
VMT26	982171.471	75.4 <i>0</i> 5	-146.775	71 47.8	34 45.8	1986.00		9827Ø9.624	KABUTO PEAK
MYTØ1	982176.217	134.959	-110.826	71 59.3	35 8.2	2197.00		982719.910/	NO.29
MVTØ2	982180.231	97.147		71 59.5	35 1Ø.9	2062.00	****	982720.088	KURAKAKE BASE CAMP
MYTØ3	982165.541	129.516	-118.618	72 Ø.7	35 10.9	2218.00		982721.156	KURAKAKE
MYTØ4	982151.887	128.618	-125.333	72 4.4	35 13.3	2270.00		982724.442	KUWAGATA
MYTØ5	982156.620	136.699	-118.596	72 4.8	35 11.5	2282.00		982724.796	KUWAGATA