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Abstract: This paper describes the petrographic and chemical features of 

opaque minerals in an unequilibrated enstatite chondrite, Yamato-691, and dis­

cusses the genetic relations among opaque minerals. Most of them occur in and/or 

around Fe-Ni metal. Opaque minerals formed from the primary metal alloy 

through various reactions such as exsolution and reaction with surrounding sulfur 
gas. The sequence of the formation is graphite, schreibersite, troilite with perryite 

and sphalerite in metal alloy. Niningerite and oldhamite formed independently 

and attached to the metal alloy at the high temperatures. The primary metal 

alloy had condensed in the nebula under a very low oxygen fugacity condition, 

and included P, Si, Cr, Mn and Ti, in addition to Fe, Ni and Co. The conden­

sation sequences of minerals calculated previously under the oxygen depletion 
condition agree with the results obtained here in general. Fe-Ni metal frequently 

contains silicate inclusions which are mostly silica minerals. They formed later 

through the oxidization process of Fe-Ni metal under slightly more oxidizing con­

ditions than the primary stage. 

1. Introduction 

Enstatite chondrites show several unique features which distinguish them from 

ordinary and carbonaceous chondrites. These indicate that enstatite chondrites formed 

under an extraordinarily reduced condition. The opaque minerals in particular have 

unique compositions and characterize the unique condition of the origin of these chon­

drites. 

At present a few unequilibrated enstatite chondrites, such as Qingzhen and Yamato-

691 (Y-691 hereafter), are known. OKADA (1975), NAGAHARA (1985) and others have 

already studied Antarctic Y-691 chondrite petrologically. They clarified various features 

and the formation condition of the constituent units in it. In addition to such results, 

this paper describes especially opaque minerals in it in detail, and discusses the genetic 

relations among opaque minerals and their formation condition. 

2. Petrography of Y-691 

Y-691 chondrite, as well as Qingzhen, is classified as E3 (PRINZ et al., 1984). It 

contains sharply defined chondrules (OKADA, 1975), and does not show evidence for 

severe shock metamorphism and weathering. All these features show that Y-691 relates 

its primitive nature. 
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Fig. 1. Thin section of Y-691. Sharply defined chondrules and fragments 

are abundant. Long dimension of photograph, 2.5 mm. 

Y-691 chondrite consists of chondrules, silicate and opaque mineral fragments and 

matrix (Fig. 1 ). Such a classification of chondrite units is after KIMURA ( 1983). Opaque 

minerals in Y-691 studied here are Fe-Ni metal, graphite, perryite, schreibersite, troilite, 

niningerite, oldhamite, sphalerite, daubreelite, djerfisherite and alkali-Cr-sulfide. Silicate 

phases are pyroxene, olivine, plagioclase, glass, silica mineral and roedderite. 

Chondrules in Y-69 I show mainly irregular to ellipsoidal shapes. Pyroxene-porphy­

ritic chondrules are most common in chondrules. Silicate mineral fragments (SMF's 

hereafter) are subhedral to anhedral pyroxene, olivine, plagioclase and silica mineral. 

They fill the interstices among chondrules and coarse opaque mineral fragments. Chon­
drules and SMF's frequently contain opaque minerals. The kind and mode of occurrence 

of them are similar to those in opaque mineral fragments. 

Opaque minerals in Y-691 are assembled in fragments whose size and shape vary 

widely. However, the size, shape and constituent minerals change gradually from 

coarse to fine fragments. Therefore, all these assemblages are called opaque mineral 

fragments (OMF's hereafter) in this paper. Some coarse prominent OMF's are called 

"nodules" by NAGAHARA (1985). The matrix of this chondrite consists of fine-grained 

silicate and opaque minerals filling the interstices among fragments and chondrules. 

3. Petrography and Mineralogy of OMF 

Sixteen hundred OMF's whose sizes are above 50 microns, were observed in order 

to describe the phase assemblages and mode of occurrence. Although they vary in 

size and shape, most of OMF's are fine-grained and irregular-shaped, some OMF's 

(so-called nodules) are coarse, up to 0.6 mm in size, and round or ellipsoidal in shape. 

Many fragments consist of Fe-Ni metal and troilite with minor amounts of other 

opaque minerals. Coarse fragments tend to contain many kinds of minerals. The most 
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representative assemblage of OMF's is Fe-Ni metal, troilite, perryite and schreibersite. 

OMF's often include fine-grained silicate minerals (silicate inclusions). 

3.1. Opaque minerals in OMF's 

Figure 2 shows the petrographic relations between opaque minerals in OMF's. 

Fe-Ni metal, chiefly kamacite, is the most common opaque mineral in OMF's. This is 

usually accompanied by other opaque minerals which occur around Fe-Ni metal and 

as inclusions within it. Table I shows the average chemical compositions of opaque 

minerals in Y-691. The chemical compositions of minerals vary somewhat from OMF 

to OMF, although minerals within a given OMF are homogeneous in composition and 

hardly show chemical zoning. The compositions of opaque minerals, up to several 

microns in size, are not different from those of OMF's in matrix. 

Fe-Ni metals in Y-69 l contain Si as in the other enstatite chondrites. Their P­

contents are lower than those in equilibrated enstatite chondrites (KEIL, 1968). 

Perryite is common accessory mineral in OMF's and it is necessarily included and/or 

Graphite 

,-----1 D a u b r e e 1 i t e I 
.------_....__, :-

r
----c'

-1.,
F_e_--.-N..--i 

-r-r---__,._----"L,.;.,..;.._..:;.,..;;;....;;.l ,_;.i
:.....;;.t....;

e
:;...J,i--------. D i e r f i s h e r i t e 

'l L-----------, i� S p h a 1 e r i t e I 
,.___,._.__.__ _ ___, 

S c h r e i b e r s i t e P e r r y i t e 

:----------------------- N i n i n g e r i t e .c--------------1 
', 

- I n c 1 u s i o n 
,, 

L------------------------ O 1 d h a m i t e ------------------- <--------- A t t a c h i n g 

L a m e 1 1 a e 

Fig. 2. Summary of the petrographic relations between opaque minerals in OM F's. 

Table I. 
---�--- ----------�---

Data Mg 
- ---�------ ----

Fe-Ni metal 

Troilite 

Perryite 

Schreibersite 

Niningerite 

Oldhamite 

203 

85 

58 

43 

16 30.53 
I. 21 

9 0.40 
0.08 

Chemical compositions of opaque minerals in OM F's (wt%). 

Si p s Ca 

2.07 0.03 
0.22 0.05 

36.08 
0.65 

11. 45 2.79 
0. 36 0.59 

0. 15 14.53 
0.05 0.48 

49.06 0.36 
I. 27 0.06 

43. 78 52.96 
0.48 0. 62 

Ti Cr Mn Fe 

- - --··· ------- --· 

Co 

94.50 0.35 
1.20 0.14 

Ni 

2.82 
0. 63 

0.22 1.30 0.03 61.43 
0.09 0. 74 0.04 I. 05 

9.06 0.01 75. 71 
I. 66 0. 04 I. 73 

70. 25 0. 13 14.87 
I. 48 0. 12 1. 45 

0. 17 5. 64 13. 26 
0.06 0.44 I. 20 

0.07 0.54 
0.04 0.24 

Zn Total 

99. 77 

99.06 

99.02 

99.93 

99.02 

97. 75 

Sphalerite 7 0. 79 34.27 I. 74 27. 58 0.36 33. 71 98.45 
0. 14 0.28 

Upper: wt%. Lower: standard deviation. 

0.65 1. 05 0.35 0. 79 
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Fig. 3. An OMF consisting of 

Fe-Ni metal (M), troilite (T) 

and perryite (P). Perryite occurs 

as thin band along the boundary 

between Fe-Ni metal and troilite. 

Reflected light. Long dimension 

of photograph, 0.25 mm. 

Fig. 4. Intergrowth of Fe-Ni metal 

(M), troilite (T), schreibersite 

(S), niningerite (N) and old­

hamite (0) in an OMF. Ninin­

gerite and o/dhamite attach to 

Fe-Ni metal. Niningerite in­

cludes fine spherules, whereas 

oldhamite does not include them. 

Troilite surrounds metal and 

schreibersite. Reflected light. 

Long dimension of photograph, 

0.5 mm. 

Fig. 5. Intergrowth of troilite (T) 

and sphalerite (S) in Fe-Ni metal 

(M) in an OMF. Troilite co­

exists with perryite (P), too. 

Reflected light. Long dimension 

of photograph, 0.4 mm. 
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Fig. 6. An OMF consisting of 
Fe-Ni metal (M), troilite (T) 
and perryite (P). Metal contains 
fine-grained silica mineral in­
clusions (S), distributed in the 
peripheral part of Fe-Ni metal. 
Reflected light. Long dimension 
of photograph, 0.5 mm. 
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attached in Fe-Ni metal or troilite. Three modes of occurrence of perryite are found. 

The most common occurrence is as a complex intergrowth with troilite, as observed by 

REED (1968). The second occurrence is as fine-grained perryites which are independently 

included in Fe-Ni metal. Rare perryites occur as thin bands along the boundary between 

Fe-Ni metal and troilite in a few OMF's (Fig. 3). Such occurrences were also observed 

in Qingzhen (RAMBALDI et al., 1986a). 

Schreibersite, as well as perryite, does not occur independently and is mainly 

included and/or attached in Fe-Ni metal. The mode of intergrowth with troilite is 

different from perryite. Although both troilite and schreibersite often occur in a 

given OMF, intimate intergrowths between them are rarely found. Schreibersite is 

occasionally surrounded by troilite in some OMF's (Fig. 4). Schreibersites and perryites 

are homogeneous in general within a given OMF, although they show compositional 

variability (Fe/Ni ratio) on the whole in Y-691. 

Fine-grained graphite is always included in Fe-Ni metal and is irregular to elJipsoidal 

in shape. Graphite occurs in various OMF's, in spite of their size and mineral assem­

blage. 
Troilites are abundant next to Fe-Ni metal in opaque minerals in Y-691. They 

occur around Fe-Ni metal in OMF's and are present in metal with intimate intergrowth 

with perryite and sphalerite. Some irregular-shaped OMF's comprise mostly troilite 

with perryite and so on. Troilites contain small amounts of Ti and Cr. 

Niningerite is the next most common sulfide mineral after troilite as shown by 

KEIL (1968), and is typically attached to Fe-Ni metal and troilite (Fig. 4). In a few 

OMF's it occurs along the boundary between Fe-Ni metal and troilite. Occasionally 

niningerites are surrounded by troilite. Fine spherical inclusions, up to several microns, 

are often found in some niningerites, as already found by OKADA ( 1975). They are 

Fe-Ni metal and schreibersite, whose chemical compositions are not different from the 

other ones in OMF's. The Fe-contents in niningerites in Y-691 are lower than those in 

EH4 chondrites (KEIL, 1968). 
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The mode of occurrence of oldhamite is similar to that of niningerite, although old­

hamite is less common. Oldhamite often attaches to OMF's with niningerite (Fig. 4). 

Rarely niningerite surrounds oldhamite. Inclusions of the other minerals is not yet 

found in oldhamite, in contrast with niningerite. 

Although sphalerite is not a common mineral, irregular-shaped sphalerites, up to 

l O microns in size, are often included in OM F's, where they occur intimately with 

troilite and perryite (Fig. 5). Sphalerites contain small amounts of Mg and Mn. 

Qualitative analysis shows that these sphalerites contain very little Ga, different from 

some sphalerites in Qingzhen (RAMBALDI et al., 1986a). 

The abundance of daubreelite is low, and it occurs in troilite as thin exsolution 

lamella. Such an occurrence is different from that in equilibrated enstatite chondrites, 

such as Y-74370 (EH4) (KIMURA, unpublished data), in which coarse-grained daubreelites 

are often intergrown with troilite. 

Rare djerfisherites, irregular in shape, are always included in troilite. Their chemical 

compositions are 0.9-1. 1 wt% Na, 6.9-7.3 K, 45-46 Fe, 0.9-1.0 Ni, 3.7-4.8 Cu, and 

33. 8-34.4 S, which agrees roughly with those in St. Marks (FUCHS, 1966) and Qingzhen 

(EL GoRESY et al., 1983). 

Fine-grained alkali-Cr-sulfide occurs as inclusion with troilite, Fe-Ni metal and 
perryite in a few OMF's . The compositions are 0.8-l .3 wt% Na, 1.6-1.9 K, 1.7-3. l 

Cu, 34.0-36.5 Cr, 0.5-1.0 Fe and 42. 1-43.8 S. This composition does not correspond to 

Na-Cr-sulfides in Qingzhen (EL GoRESY et al., 1983). In addition, these minerals contain 

about 13 wt% oxygen, which was determined by semi-qualitative analysis. However, 

fluorine, nitrogen and chlorine are not detected. Their contents of Cr, S and O are 

similar to those of dark gray phase in the Norton County enstatite achondrite which 
was interpreted as a terrestrial weathering product from caswellsilverite (OKADA and 

KEIL, 1982). OKADA et al. ( 1985) called this mineral schollhornite. 

The above-mentioned minerals in Y-691 are mostly observed in Qingzhen (EH3). 

The chemical compositions and occurrence of opaque minerals are also similar to those 

in Qingzhen of RAMBALDI et al. ( 1983) and EL GoRESY et al. ( 1983), especially such as 

the Cr content in troilite, P in Fe-Ni metal and Fe in niningerite except for Mn in 

niningerite, and clearly different from those in equilibrated enstatite chondrites (KEIL, 

1968). 

3.2. Silicate minerals in OMF's 

OMF's often contain several silicate inclusions, up to about 10 microns in size 
(Fig. 6). Silicate inclusions are present in Fe-Ni metal, and they usually form less than 

about l vol% in OMF's. Whether the inclusion is present or not does not depend 

on the opaque mineral assemblage; coarse OMF's frequently contain silicate inclusions. 

These silicate minerals, irregular to ellipsoidal in shape, comprise mostly a silica mineral 

and pyroxene, with minor amounts of al bi tic plagioclase and roedderite. All inclusions, 

above about a few microns in size, were analyzed in order to obtain not only the 

chemical compositions but also the abundance of minerals. Figure 7 shows the relative 

abundance of them, which probably reflects the modal composition of silicate inclusions 

in OMF's. Silica mineral is more abundant, in comparison with pyroxene, and olivine 

and glass are not found in OMF's, which is eiifferent from the modal composition of 
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Fig. 7. The diagram/or the abundance of silicate minerals in OMF's 
and chondrules (vol%, after OKADA, 1975). Figures in OMF's 
show percentages of grains. Total number of grains in 
OMF's is 113. Px: pyroxene, 01: olivine, Pl: plagioclase, 
SI: silica minerals, GI: glass, Ro: roedderite. 

Table 2. Chemical compositions of silicate minerals in OMF's (wt%). 

Data Si02 Ti02 AI2os Cr2os FeO MnO MgO CaO Na20 
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K20 Total 
---�- ----�--------- - -�--�-�-------

Pyroxene 14 57. 15 0.07 1. 11 0. 18 
2.01 0.05 1. 18 0. 17 

Plagioclase 2 67.92 18.40 
2.60 0.95 

Roedderite 6 69.06 0.94 
1. 10 0.24 

---- -·----

Upper: wt%. Lower: standard deviation. 

3.61 
2.04 

0.88 
0.08 

2.47 
0.56 

0.11 36.20 0. 78 0.20 99.41 
0.07 2.93 0.88 0. 19 

0.02 0.06 0.08 11. 52 0.11 98.99 
0.03 0.01 0.06 0. 75 0.04 

20.23 0.08 3.28 3. 77 99. 83 
0.89 0.07 0. 15 0.23 

-----�--------�-------�--·-----�- -----------

chondrules (OKADA, 1975). Roedderite is present as only silicate inclusions in OMF's. 

The chemical compositions of pyroxene, roedderite and plagioclase are shown in 

Table 2. The composition of pyroxenes (En86_98) is consistent with those in chondrules 

and SMF's (En79_99). Plagioclase is almost pure albite. Roedderite has a lower average 

atomic Na/(Na+K) ratio (0.56) than that (0.65) of FUCHS et al. (1966), but similar 

to that in Qingzhen (RAMBALDI et al., 1986b). RAMBALDI et al. found roedderite within 

metal or sulfide in Qingzhen which is connected by oxide and silicate veins to the sur­

rounding matrix. However, roedderites in Y-691 are completely included within Fe-Ni 

metal. 

3.3. Modal and bulk compositions of OMF's 

The modal compositions of some representative OMF's are estimated from the 

areas of minerals in each OMF (Table 3). These OMF's (nodule) are coarse in size, 

and spherical or ellipsoidal in shape, and consist of common opaque minerals as men­

tioned above. Fe-Ni metals are dominant in every OMF, and the other minerals vary 

widely in amount. Table 3 shows the bulk compositions of some OMF's obtained 

from the modal and average mineral compositions. These bulk compositions exclude 

the compositions of very small amounts of silicate inclusions. The bulk compositions 

are not related to whether or not OMF's contain silicate inclusions and graphite. 



58 Makoto KIMURA 

OMF 

[Mode] 

51  

Table 3. Modal and chemical compositions of OMF's (wt%). 

85 104 105 178 182 242 249 279 285 3 19 407 

Fe-N"i Inetal 93.63 92.09 92.03 95. 12 59. 76 88. 14 89.36 89.9 1 74.82 93.93 88.36 92.46 
Troilite 2. 19 0. 00 0. 79 0. 30 22. 78 2. 82 10. 32 4. 54 0. 00 2. 36 4. 44 1. 74 

Perryite 0. 37 3. 73 1. 53 3. 54 16. 14 2. 78 0. 31 4. 10 7. 65 1. 81 7. 20 5. 81  
Schreibersite 3. 8 1  0. 92 4. 31  1 .  04 0. 00 5. 54 0. 00 1. 44 17. 53 1. 43 0. 00 0. 00 
Sphalerite 0. 00 1. 49 0. 00 0. 00 1. 32 0. 00 0. 00 0. 00 0. 00 0. 47 0. 00 0. 00 
Graphite 0. 00 1. 77 1. 35 0. 00 0. 00 0. 73 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 

[Bulk] 
Si 
p 

Ti 
Cr 

Fe 
Co 

Ni 

s 

Zn 

C 

Total 

OMF 

[Mode] 

1.93 2.22 2. 1 1  2.55 3. 1 1  2.00 1.91 2.34 2.35 2. 18 2.65 2.62 
0.55 0.26 0.66 0.24 0.35 0.88 0.0 1 0. 12 2. 70 0.27 0.23 0. 16 
0.00 0.00 0.00 0.00 0.05 0.0 1 0.02 0.0 1 0.00 0.0 1 0.0 1 0.01 
0.02 0.00 0.01 0.00 0.24 0.03 0. 14 0.05 0.00 0.02 0.04 0.03 

91.96 87.49 9 1.55 90.53 71.98 88. 72 91.25 88.60 84.68 9 1.56 87.3 1 89.04 
0.40 0.34 0. 19 0.41 0.22 0.3 1 0.31 0.4 1 0.3 1 0.36 0.22 0.32 
4.08 5.66 3. 78 5.46 14.05 5.53 2.43 5.58 10.50 4.44 7.49 7. 75 
0.81 0.5 1 0.29 0. 1 1  8.69 1.04 3.69 1.65 0.00 1.0 1 1.60 0.62 
0.00 0.51 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0. 16 0.00 0.00 
0.00 J. 77 1.35 0.00 0.00 0. 73 0.00 0.00 0.00 0.00 0.00 0.00 

99. 76 98. 76 99.95 99.30 99. 13 99.26 99. 76 98. 76 100.53 100.00 99.55 100.53 

440 461 468 494 512 627 629 669 730 758 774 488 

Fe-Niinetal 79.9 1 70.39 92.56 84.90 96.64 84.87 87.63 86.83 95. 16 75.62 6 1.42 67. 77 
Troilite 12. 33 20. 15 2. 51  0. 00 0. 00 0. 00 6. 65 5. 22 2. 39 1 1. 52 34. 86 25. 63 
Perryite 0.63 9. 12 3. 73 3.55 3.36 8.38 3.84 1.8 1 0.63 5.06 3. 7 1  0.00 
Schreibersite 7. 13 0. 00 1. 20 1 1. 55 0. 00 6. 75 1. 87 5. 95 0. 48 7. 80 0. 00 6. 60 
Sphalerite 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 19 0. 00 0. 00 0. 00 0. 00 
Graphite 0. 00 0. 34 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 1. 34 0. 00 0. 00 0. 00 

[Bluk] 
Si 
p 

Ti 
Cr 

1. 78 2.51 2.20 2. 17 2.66 2.59 2.23 1. 75 1.94 2. 17 1. 77 1.51 
1.02 0.34 0.3 1 1.8 1 0. 13 1.30 0.41 0.85 0.02 1.31 0. 1 1  0.96 
0.04 0.05 0.01 0.00 0.0J 0.00 0.01 0.02 0.0 1 0.02 0.09 0.09 
0. 16 0.25 0.03 0.00 0.00 0.00 0.08 0.09 0.03 0. 1 1  0.35 0.39 

Fe 87.42 80.39 9 1.64 89. 13 92.48 86. 79 88.91 88.33 92.53 84.59 79.44 84.65 
Co 

Ni 

s 

Zn 

C 

0.23 0.20 
4.02 8.54 
4.34 7.33 
0.00 0.00 
0.00 0.34 

0. 12 0.30 
5.54 6.80 
0.90 0.00 
0.00 0.00 
0.00 0.00 

0. 28 
4.69 
0.00 
0.00 
0.00 

0.26 0.32 0.38 0.29 
9.24 5.44 3.85 2.85 
0.00 2.42 1.96 0.87 
0.00 0.00 0.06 0.00 
0.00 0.00 0.00 1.34 

0.20 0.22 0.23 
7.54 4.84 2.68 
4.20 12.51 9. 14 
0.00 0.00 0.00 
0.00 0.00 0.00 

Total 98.99 99.94 100. 74 100.20 100.24 100. 18 99.83 97.29 99.88 100. 14 99.33 99.66 
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Table 3 (continued). 
-----

OMF 804 973 1000 11 1 1  1 178 1287 13 13 1317 1321 1370 1481 

[Mode] 
Fe-Ni metal 84.0 1 59.57 75.49 79.51 97.45 84.30 82.6 1 75.73 90.28 94.13 95.79 
Troilite 13.80 36. 71 12.40 10.99 1. 0 1  14.51 9.50 15.58 6.63 2.63 0.45 
Perryite 0.53 1.18 1.45 1. 30 0.30 0.72 2.05 2.15 0.23 0.65 0.00 
Schreibersite 1.42 1. 96 10.66 8.21  1.24 0.47 5.85 6.54 2.15 2.59 3.77 
Sphalerite 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Graphite 0.00 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.00 0.00 

[Bluk] 
Si 2.02 1. 2 1  1.48 1.69 2.07 1. 71 1.66 1. 70 1. 65 2.06 1. 87 
p 0.23 0.32 1. 6 1  1.  23 0.18 0.00 0.84 0.97 0.00 0.39 0.53 
Ti 0.06 0.09 0.03 0.04 0.00 0.03 0.02 0.04 0.00 0.00 0.00 
Cr 0.16 0.39 0.15 0.15 0.01  0.15 0.10 0.15 0.07 0.03 0.00 
Fe 88.81 8 1. 32 87. 83 88.28 93.45 88.98 88.28 86.54 90.55 93.3 1 94.24 
Co 0.29 0.19 0.28 0.33 0.25 0.35 0.27 o. 18 0.17 0.41 0.25 
Ni 2.92 2.41 4.55 3.59 3.43 2.09 3.08 2.70 2.01 3.57 3.22 
s 5.07 13.28 4.58 4.06 0.37 5.30 3.37 5.53 2.35 0.95 0.16 
Zn 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C 0.00 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.00 0.00 

---- · 

Total 99.64 99.80 100.52 99.37 99.76 98.62 97.63 97.80 97.52 100.73 100.27 
---- ------

4. Phase Relations between OMF Minerals 

4.1 .  Formation of opaque minerals 

The origin of opaque minerals in OMF's can be estimated from the above results 

and the experimental phase equilibria. Since most of the opaque minerals occur in or 

around Fe-Ni metal, the origin of these minerals must be considered as associated with 

the formation of Fe-Ni metal . 

The common occurrence of graphite is as an inclusion in Fe-Ni metal. It is difficult 

to estimate from the mode of occurrence whether graphite is the decomposition product 

of cohenite or not, and whether graphite (cohenite?) was primarily included in metal 

or a secondary product from C-bearing metal. However, we can understand the phase 

relations between Fe-Ni metal and graphite in OMF's, using the bulk compositions, 

and the Fe-C (BRETT, 1 967) and Fe-Ni-C systems of ROMIG and GOLDSTEIN ( 1978). 

Whether graphite or cohenite is primarily present or not, only C-bearing taenite is 
present, if the system is held at about I 000-1200°C. Later graphite (cohenite?) is ex­

solved from taenite at about 900°C. Finally the assemblage of kamacite + graphite forms. 

Schreibersite is included in Fe-Ni metal. The bulk compositions of OMF's contain 

0.6 wt % P on an average. Accordingly, schreibersites were exsolved from Fe-Ni metal 

at about 700°C on the basis of the Fe-Ni-P phase diagram (DOAN and GOLDSTEIN, 1 970 ; 

ROMIG and GOLDSTEIN, 1 980). 
The occurrence of troilites suggests that they were originated around metal in 

OMF's. Since troilites surround schreibersite in a few OMF's, it is evident that troilite 

formed after the formation of schreibersite at about 700°C. Troilites formed through 

the reaction between Fe-Ni metal and sulfur gas below 700°C. 
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Since perryites are typically intergrown with troilite, it is probable that most of 

them formed simultaneously with troilite. Especially, the thin band of perryite along 

the boundary between troilite and Fe-Ni metal supports this idea. It is probable that 

Ni and Si from Fe-Ni metal formed perryite with Fe and P when troilite formed around 

Fe-Ni metal. However, some perryites are independently included in Fe-Ni metal. It 

is possible that these perryites were directly exsolved from Fe-Ni metal, although the 

temperature is uncertainty. 

Sphalerites in Y-691 accompany troilite in OMF's and the origin of sphalerite 

seems to be related to that of troilite. When primitive metal alloy reacted with sulfur 

gas, sphalerite probably formed. From the phase diagram of Fe-Zn-S (BARTON and 

TOULMIN, 1966), the sequence of the formation of sphalerite and troilite is Zn-bearing 

metal alloy, through metal+ sphalerite, to metal+ sphalerite + troilite with increasing 

sulfurization. The equilibration temperature of sphalerite with Fe-Ni metal and troilite 

in Y-691 is estimated at about 300-400°C from the method of HUTCHISON and ScoTT 

(1983), assuming low total pressure. However, this temperature is the final equilibration 

temperature and does not indicate the formation temperature of sphalerite. 

The occurrence of daubreelite shows that it was exsolved from troilite. EL GoRESY 

and KuLLERUD (1969) showed the phase equilibria of Fe-Cr-S system at 700 and 600°C. 

Even at 600°C troilite may contain comparatively high levels of Cr. Therefore, although, 

the exsolution temperature of daubreelite cannot be determined accurately, it is prob­

able that daubreelite formed at temperatures lower than 600°C. 

FUCHS (1 966) suggested that djerfisherite with pyroxene, metal and silica mineral 

formed through the reaction between roedderite and troilite. However, the occurrence 

of djerfisherite in Y-691 exlcudes such a reaction. Djerfisherite necessarily accompanies 

troilite, which suggests that it formed through troilite, alkali-bearing phase and Cl­

bearing phase. 

Niningerite and oldhamite seem to have directly condensed from nebular gas and 

attached to primitive Fe-Ni metal, judging from their occurrence. The evidences for 

the other reactions such as between Mg-bearing silicate and S-phase are not observed. 

Troilite often surrounds niningerite. Troilite and perryite are not found in niningerite 

as inclusions like Fe-Ni metal and schreibersite. Therefore, niningerite must have 

formed after the formation of schreibersite at about 700°C, and before the formation 

of troilite and perryite. The equilibration temperature of niningerite and troilite is 

below about 400°C from the phase equilibria of (Ca, Mg, Mn, Fe)S of SKINNER and 

LUCE (1971). This temperature is lower than those of the other EH4-5 chondrite 

(SKINNER and LucE, 1971). This is also not a primary formation temperature of 

niningerite. 
Oldhamite is often surrounded by niningerite. This suggests that the former con­

densed before the latter, which is consistent with the suggestion that oldhamite does 

not contain inclusions like niningerite. Oldhamite probably formed simultaneously 

with or before metal formation. 

4.2. Origin of silicate inclusions 

The modal abundance of silicate inclusions in OMF's is evidently different from 
that of chondrules (Fig. 7). Especially the abundance of the silica mineral in OMF's 
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i s  too high for OMF's to have been derived from chondrules. Two possibilities on 

its origin are considered. One is that silica mineral is a primary condensate. How­

ever, this is unexpected from condensation theory of LARIMER and BARTHOLOMAY ( 1979) 

and SEARS ( 1980). In the silicate portions of Y-69 1 ,  evidence for the condensation of 

silica mineral is not found. Therefore, silica mineral in OMF's may not be condensate. 

Alternatively, it is possible that the silica mineral formed through the oxidation of 

Fe-Ni metal. This is consistent with the fact that silica mineral inclusions are found 
only in Fe-Ni metal. Since the amount of silica mineral present in OMF's is small, 

the primary Si-content of metal was similar to the present content. 

5. Formation of O MF 

Figure 8 summarizes the genetic relations among all these opaque minerals in Y-

69 1 .  Most of opaque minerals originated on Fe-Ni metal. It is, therefore, concluded 

that the primitive metal alloy had included P, Si , Zn, Cr, Mn and Ti, in addition to 

Fe, Ni and Co. The condensation of Cr and Mn, and Si into metal alloy at the high 

temperatures is expected from the calculation of GROSSMAN and OLSEN ( 1974) and 

SEARS (1 980), respectively. Mg is contained only in sphalerite in OMF's. (Although 

niningerite attaches to Fe-Ni metal of OMF's, it is not considered to have been derived 

from metal .) Sphalerite shows the low temperature equilibration. Therefore, it is also 

possible that Mg was removed from the other phases (niningerite?) to sphalerite at lower 

temperatures. 

The primary metal alloy was formed under very low oxygen fugacity. The silicon 

was dissolved in the metallic state and a silica mineral was not present before the for­

mation of schreibersite and troilite, because silica minerals are not found in them. 

Oxygen fugacity at this primary stage is, therefore, calculated to be below about log 

P02 = -2 1  atm at 1 500 K for example, on the basis of Si-contents in OMF's and the 

equation and activity coefficient for Si in metal of LARIMER and BUSECK (1 974). 

Although the cause of the reducing conditions of formation of the enstatite chon­

drites is a question under debate, the condensation sequence for several minerals in 
enstatite chondrites under such reduced conditions has been calculated by some authors 

1 4 0 0 1 2 0 0 1 0 0 0 8 0 0 8 0 0 4 0 0  C K >  

O l d h a m i t e  

N i n i n g e r i t e  

G r a p. h i t  e 

S c h r e i b e r s i t e  

F e - N i  m e t a l  

D j e r f i s h e r i t e  

D a u b r e e l l t e  

T r o i l i t e  

P e r r y i t e  

S p h a l e r i t e  

Fig. 8. Schematic diagram for the genetic relations between opaque minerals in OM F's. 



62 Makoto KIMURA 

as mentioned below. These condensation sequences are tested with the result obtained 

here. According to LARIMER and BARTHOLOMAY (1 979), Ti condenses as TiN under 

high-C/0 ratio, or as perovskite under low-C/0 ratio from the nebula. However, these 

phases are not observed in Y-691 . Alternatively, it is probable that Ti partly condenses 

into metal alloy. FEGLEY and LEWIS ( 1980) and GROSSMAN and OLSEN (1 974) calculated 

that P condenses as Fe3P at about 1200 or 1 400K under 1 0-a  atm total pressure. How­

ever, their occurrence does not support this idea. Furthermore, even if this condensation 

takes place, P immediately forms metal alloy at such temperatures and primary schrei­

bersite is lost. Alternatively, P condenses into metal alloy. 

SEARS ( 1980) suggested that the condensation temperature of troilite is about 700 K. 

This temperature is not inconsistent with the estimated temperature of troilite in  OMF's 

as mentioned before. According to LARIMER and BARTHOLOMAY ( 1979), the condensation 

temperatures of oldhamite and graphite depend on the nebular C/0 ratio. The conden­

sation sequence agrees with the results here in the case of C/0 > 1 .0, i.e., metal and 

oldhamite condense in a narrow temperature range. This is consistent with the esti­

mation of the formation of oldhamite as mentioned before. LATTIMER et al. ( 1978) 

calculated the condensation sequences including niningerite under various gas compo­

sitions, and showed that niningerite always condenses later than oldhamite. This agrees 

with the observation of the mode of occurrence of oldhamite and niningerite. 

Thus, the results obtained here in Y-691 are not inconsistent with the calculation 

under high C/0 nebula for the formation of some minerals of OMF's. However, this 

does not necessarily mean that the enstatite chondrites formed under high C/0 in the 

nebula, because oxygen-depletion is also expected by lithophile element fractionation 

(SEARS, 1 980) or refractory and H20 fractionation (BAEDECKER and WASSON, 1975). It 

is not yet explained why oxygen-depletion took place in the region of enstatite chondrite 

formation. 

The formation of a secondary silica mineral in Fe-Ni metal suggests that the oxygen 

fugacity around OMF's increased later. Thus, the redox state for enstatite chondrite 
formation changed slightly from the primary condensation stage. Fine-grained OMF's 

consist of similar minerals and compositions to those of coarse-grained OMF's. There­
fore, the fine-grained ones were later derived from coarse-grained ones, by fragmentation. 

6. Conclusions 

( 1 )  Y-691 is an unequilibrated enstatite chondrite, and was not heated above 

about 400°C in the parent body. 

(2) Primary metal alloy (Fe, Ni and Co) condensed in the nebula and included 

P, Si, Cr, Mn and Ti. Niningerite and oldhamite condensed and attached to this metal 

condensate. Such condensation occurred under very low oxygen fugacity. 
(3) Opaque minerals in  OMF's except for Fe-Ni metal, formed through various 

reactions such as exsolution and reaction with gas. The order of formation is graphite, 

schreibersite, troilite with perryite and sphalerite. 

( 4) Although the cause of oxygen-depletion is not evident, the condensation se­

quence of minerals calculated previously under oxygen-depletion condition generally 

agrees with the results obtained here. 



Origin of Opaque Minerals in Y-69 1 Chondrite 63 

(5) A silica mineral formed later through the oxidation of Fe-Ni metal. This re­

action occurred under slightly higher oxygen fugacity near the Si-Si02 reaction boundary. 
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