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Abstract: Small high-centered polygons, -�+/ m in diameter, dominate moraine fields

in an inland cold desert of the S�r Rondane Mountains, Antarctica. They mainly

occur on moraine fields at two stages younger than + Ma. The polygons on the younger

moraine (�*./ Ma) generally have an ice wedge surrounded by ice-cemented perma-

frost, although the ice wedge cracking is inactive or too slow to be detectable. The

polygons on the older moraine (*./�+ Ma) have either an ice wedge or ice-free wedge.

The ice-free wedge underlies a subsided trough and consists entirely of loose and coarse

sediments with vertically-oriented clasts, which represents an ice-wedge cast probably

originating from long-term sublimation of an ice wedge. These observations suggest

that flat-top polygons with ice wedges form in wet permafrost when located close to the

ice sheet surface, but that the subsequent ice sheet lowering separates the polygons

from the moisture source, and finally long-term ice sublimation leads to domed poly-

gons with ice-wedge casts enclosed in dry permafrost.
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+. Introduction

Polygons accompanied by ice or soil wedges (frost wedges) widely occur in ter-

restrial polar regions underlain by continuous permafrost (e.g. French, +330; Mackay,

,***), including cold deserts in inland Antarctica (e.g. Berg and Black, +300). Partic-

ular attention has recently been paid to similar features on the Martian surface, because

they possibly indicate the existence of present or past ground ice (e.g. Mellon, +331;

Seibert and Kargel, ,**+).

In broad terms, frost wedges are classified into ice wedges composed mainly of ice

and ice-free wedges filled with sediments (soil, sand or gravel). The latter group in-

volves active layer soil wedges, primary sand wedges and ice-wedge casts. In previous

research on the Antarctic polygons, sand wedges were first highlighted (Peÿweÿ, +3/3)

since the hyper-arid climate is considered to prevent the formation of ground ice.

Later excavations demonstrated that ice wedges are also common even on this dry per-

mafrost terrain (Berg and Black, +300; Bockheim, ,**,; Marchant et al., ,**,). The

ice wedges may reflect, in addition to the presence of (at least a minimum amount of)
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meltwater, the lack of wind-driven sand particles, which would explain the absence of

sand filling in thermal contraction cracks. In fact, recent Antarctic investigations have

reported the coexistence of ice (-filled) and ice-free wedges within a small area (e.g.

Bockheim, ,**,).

However, uncertainties still remain regarding Antarctic frost wedges. First, the

identification of wedge types is unclear. Although shallow active layers are generally

unfavorable for the development of active layer soil wedges, distinction is often di$cult

between primary sand wedges and ice wedge casts. The second problem is the age and

duration of thermal contraction cracking. Few wedge structures have been dated.

Also, environmental changes that may have contributed to degradation of ice wedges are

rarely evaluated.

High-centered polygons, either dome or flat-top with marginal troughs, occur on

moraine fields in the S�r Rondane Mountains, Dronning Maud Land. Matsuoka and

Hirakawa (+33-) first described the dimensions and internal structure of these polygons.

Recent dating using in situ produced +*Be and ,0Al has allowed estimation of the expo-

sure ages of the glaciated mountains (Nishiizumi et al., +33+, +332; Matsuoka et al.,

,**0). The purpose of this paper is to compare wedge structures between polygons

with di#erent exposure ages and to propose a process of ice wedge formation and

degradation. The focus is on the transition from wet to dry permafrost associated with

the lowering of the ice sheet. A field measurement of contemporary cracking activity

is also reported.

,. The study area

,.+. Present periglacial environments

The S�r Rondane Mountains are ice-free mountains covering an area ,** km wide

(,,�,2�E) and +** km long (1+./�1,./�S), the center being located about ,** km south

of the nearest coast (Fig. +). The ice-free mountains (the highest at about -*** m ASL)

protrude above the Antarctic ice sheet, the surface elevation of which decreases from

about ,/** m at the southern end to about +*** m at the northern end. The mountains

consist of Late Proterozoic to Paleozoic metamorphic and plutonic rocks (e.g. Shiraishi

et al., +331).

Meteorological data at Asuka Station (30/ m ASL) located at the northern margin of

the mountain massif show that the mean annual air temperature (MAAT) is �+2..�C,

the summer air temperature approaches but rarely exceeds *�C, and the winter air

temperature falls below�.*�C. On north-facing slopes and flat terrain, strong insola-

tion in summer daytime raises the ground surface temperature above *�C. As a result,

thawing occurs frequently on a daily basis, producing an ephemeral active layer shal-

lower than +/ cm in wet soils and .* cm in dry soils (Matsuoka and Moriwaki, +33,).

The active layer depth controls the thickness of debris derived from weathering of the

underlying bedrock (Matsuoka, +33/). Deeper deposits result from glacial and, locally,

aeolian sedimentation. Whereas younger moraine fields close to the present ice sheet

level are underlain by wet (ice-cemented) permafrost, older moraine fields at higher

elevations typically display dry (ice-free or partly ice-cemented) permafrost below a dry

active layer.
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Measurable soil displacements (e.g. frost heave and creep) occur only on wet slopes

having an active layer with a gravimetric water content reaching above /� (Matsuoka

and Moriwaki, +33,). Such wet ground lies exclusively along the ice margin. In other

words, cryoturbation rarely contributes to active layer deformation on most of the

ground. Polygonal ground is virtually the only periglacial form indicative of perma-

frost in the study area, because the shallow bedrock, lack of moisture and very cold

permafrost generally hamper frost heave, cryoturbation and permafrost creep.

,.,. Glacial history

The ice sheet chronology of the S�r Rondane Mountains has been reconstructed by

a combination of tills and trimlines at di#erent levels (Hirakawa et al., +322; Moriwaki

et al., +33,), the weathering index (Moriwaki et al., +33+, +33.) and cosmogenic expo-

sure ages (Nishiizumi et al., +33+). These studies identify five glacial stages: the stage

number increases with elevation above the present ice level and exposure age. Stage +
tills mostly constitute thin (�,* cm), supraglacial debris underlain by massive glacier ice

and lie within -* m above the present ice surface. Stage , tills, located within +** m

above the ice level, are often thicker than + m but in places still ice-cored. The

thickness further increases in older tills that have so far shown no evidence of an ice

core. Stage - tills generally cover an area of +**�-** m above the present ice surface,

Fig. +. The location map of the So�r Rondane Mountains, indicating the excavated polygons (SR+�0).

Symbols: +�Ice-free mountains; ,�Ice-cored moraine fields; -�Ice sheet.
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while Stage . covers an area of ,**�//* m. The highest ice level (Stage /) is identified

at higher than 0** m above the present level. Since this maximum glaciation the ice

level has lowered with minor fluctuations.

A combination of -, cosmogenic (+*Be and ,0Al) exposure ages (Nishiizumi et al.,

+33+, +332) and the elevations of the sampling sites constrained the minimum ages of the

five glacial stages as�*.,/ Ma (Stage +), *./�+.0 Ma (Stage ,), +.0�- Ma (Stage -),

-�. Ma (Stage .) and�. Ma (Stage /). Recently, corrections have been suggested to

the older stages: *./�+ Ma (Stage -), +�, Ma (Stage .) and�, Ma (Stage /) (Matsuoka

et al., ,**0), as regards the low atmospheric pressures in Antarctica (Stone, ,***).

Accordingly, Stage , is considered to be younger than *./ Ma, and Stage + is also much

younger than *.,/ Ma.

-. Wedge structures

-.+. General features

Polygonal ground occurs widely on moraine fields at Stages +�- (Moriwaki and

Hirakawa, +33,; Matsuoka and Hirakawa, +33-). Polygons with distinct geometry

develop mostly on Stage ,�- moraines composed of gravelly sand commonly thicker

than + m. In contrast, indistinct or irregular patterns dominate on Stage + moraines

composed of thin gravelly sand or mud (+*�.* cm thick) underlain by massive glacier

ice. The latter patterns may be immature or deformed by decaying ice cores.

Polygons are generally small, commonly -�+/ m in diameter (Matsuoka and Hira-

kawa, +33-), and most of them display high-centered vertical profiles (dome or flat-top

with marginal troughs). Troughs delimiting the polygons are commonly about /* cm

wide and +* cm deep. The troughs are rarely surrounded by a pair of distinct ridges (i.e.

low-centered) that are common on wet ground in Arctic regions (e.g. Mackay, ,***).

Polygons with distinct surface geometry are investigated at six sites in four areas

(Fig. +): northern Brattnipene (SR+, -), Wider�efjellet (SR,), northern Mefjell (SR.)

and northern Walnumfjella (SR/�0). A representative trough at each site was exca-

vated with an engine cutter. The polygonal patterns and wedge structures are sum-

marized in Table +. Five troughs (SR+�/) are underlain by ice wedges while one (SR0)

is accompanied by an ice-free (permafrost soil) wedge.

-.,. Polygons on Stage , moraines

All excavated polygon troughs on Stage , moraines (SR+�.) have ice wedges

(Table +). The ice wedges have dimensions of up to 3* cm wide and 2* cm in the

vertical dimension and underlie dry ice-free debris +/�-* cm thick (Figs. ,�-). Be-

cause the debris thickness only slightly (�+/ cm) exceeds the active layer thickness at

the excavation, these ice wedges are considered to be active or to have not been subjected

to a warmer climate since being inactivated. The bottom of the ice wedges lies at 0*�
+,* cm depth from the ground surface (Table +), the depth being nearly proportional to

the diameter of the adjacent polygons (Matsuoka and Hirakawa, +33-). New, open

cracks were not observed in the ice wedge troughs.

The active layer and permafrost of the ice wedge polygons contrast in the moisture

(water or ice) content. The active layer is very dry, typically having a gravimetric
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water content of �.� that increases downward, while the uppermost part of perma-

frost surrounding the ice wedges is considerably wet (i.e. ice-cemented) with a gra-

vimetric ice content of �+/� (see Figs. ,B and -B).

-.-. Polygons on Stage - moraines

Two kinds of polygons, of di#erent dimensions and shapes, coexist on a Stage -
moraine field in an upland dry valley, the up-valley of which ends with a wind gap falling

-** m toward an outlet glacier (Fig. .B). Small flat-top polygons (SR/) occur along

Table +. Wedge structures below excavated polygon troughs.

Fig. ,. Flat-top polygons and an excavated ice wedge on a Stage , moraine field at SR+, northern

Brattnipene. (A) Polygon diameters are /�+* m. A man at the left-lower corner gives scale.

(B) The vertical scale is + m long. The figures indicate the gravimetric water content of the

active layer and ice content of the permafrost when excavated.
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the northern margin of the valley floor, while larger high-centered (domed) polygons

with deeper troughs (SR0) occur at the center of the valley floor (Fig. .A). The for-

mer are -�/ m in diameter and delimited by shallow troughs. Excavation of a trough

displays under the dry active layer a miniature ice wedge 0 cm in the top width and

,* cm in the vertical dimension, surrounded by ice-cemented permafrost (Fig. /). The

bottom of the wedge lies at /0 cm depth. Perhaps this is one of the smallest ice wedges

ever reported.

The ice-free wedge (SR0) occurs adjacent to the miniature ice wedge (SR/). The

Fig. -. Flat-top polygons and an excavated ice wedge on a Stage , moraine field at SR., Mefjell. (A)

Polygon diameters are .�2 m. (B) The vertical scale is + m long. The figures indicate the

gravimetric water content of the active layer when excavated. Note that the boundary between

the light and dark layers indicates the frost table on excavation, which lies +* cm above the top

of the ice wedge.

Fig. .. (A) Two types of high-centered polygons, flat-top (SR/, -�/ m in diameter) and dome (SR0,

/�+* m in diameter) on a Stage - moraine field, northern Walnumfjella. The arrows indi-

cate the excavated troughs. (B) SR/�0 polygons are located in a dry valley, the upper end of

which constitutes a wind gap located -** m above Jenningsbreen glacier.
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ice-free wedge underlies a trough fringing slightly domed polygons (Fig. .A). The poly-

gons are nearly the largest (+*�+/ m in diameter) observed in the study area and their

morphology is similar to that of the mature stage (sand wedge) polygons in McMurdo

Dry Valleys (Marchant et al., ,**,; Sletten et al., ,**-). The bottom of the wedge,

lying at +,. cm from the surface, penetrates well into the permafrost. The wedge is

composed of poorly sorted gravelly sand dominated by vertically oriented clasts (Fig.

0). The whole wedge filling consists of coarse and loose materials compared to the host

material, while a concentration of fine debris indicative of a sand wedge is not observed

in the wedge. When excavated, the active layer, wedge and uppermost part of the host

permafrost display dry surfaces devoid of any visible ice (Fig. 0A). In contrast, the

Fig. /. A miniature ice wedge at SR/. (A) The hammer is -- cm long. Note the dark (ice-cemented)

permafrost surrounding the wedge. (B) The average diameter of two adjacent polygons S, the

depth of the wedge-tip (arrow) and the frost table when excavated (FT) are indicated.

Fig. 0. An ice-free wedge at SR0. (A) The scale is + m long. Note the coarse and loose debris with

vertically-oriented clasts in wedge and the surrounding dry debris. (B) The average diameter

of two adjacent polygons S, the depth of the wedge-tip (arrow) and the frost table when

excavated (FT) are indicated.

High-centered polygons in S�r Rondane Mountains 195



deeper permafrost partly showed a dark, ice-cemented face. Although snow is occa-

sionally trapped in the marginal troughs when an intensive blizzard has passed, most of

the snow seems to sublimate before melting and percolating in the ground.

.. Cracking activity

Contemporary cracking activity was evaluated by a simple field measurement of the

growth of polygon troughs at two ice wedge sites, SR+ and SR. (Figs. ,�-). A pair of

iron rods, , cm in diameter and ,* cm in length, were installed vertically across an ice

wedge trough. The distance between the two rods was measured with a steel tape at

intervals of +�. years. The top , cm of the rods was exposed above the ground surface.

A small hollow + mm in diameter marked on the top surface of the rods ensured the

accuracy of the measurement. The bottoms of the rods were not anchored in perma-

frost, but the dry sandy sediments hamper the movement of the rods by frost heave and/

or cryoturbation in the active layer (cf. Matsuoka and Moriwaki, +33,). Accordingly,

the technical error and/or disturbance by the active layer deformation is considered,

in most cases, to be less than , mm. The measurement was undertaken at ice wedge

troughs near the excavated troughs using six pairs of rods at SR+ and four pairs at

SR. (Fig. 1).

At both sites, changes in the distance between the two rods were negligible (within

the technical error) in the four year period (+321�+33+). An exception was a decrease

(closing of the trough) of / mm recorded at +E (Table ,), although this value is ques-

tionable, because the large distance between the rods (ca. +., m) may have significantly

lowered the accuracy. Even though the measurement was accurate, the troughs failed

to demonstrate significant widening indicative of ice wedge growth. Our measure-

ments imply either present-day inactivity or extremely slow growth of the ice wedges,

although at least a few decades of measurements are required to obtain a significant

conclusion (e.g. Mackay, +33,, ,***).

Fig. 1. Polygonal patterns at SR+ and SR., indicating the locations of the distance measurement

across ice wedge troughs.
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/. Discussion and conclusions

/.+. Polygon geometry and wedge structure

One of the characteristics of the polygonal ground in the S�r Rondane Mountains

is the small diameters (-�+/ m), which are minimum of the typical polygons (/�-* m)

in both Arctic regions (e.g. Black, +31.) and Antarctica (Berg and Black, +300;

Marchant et al., ,**,; Pringle et al., ,**-). The predominance of small polygons may

reflect the material, climate or age. The glacial deposits at Stages ,�- in the study area

are coarse but well consolidated compared with younger and finer soils at typical Arctic

ice wedge sites (e.g. Mackay, ,***). In the frozen state, the former material probably

has larger resistance to thermal stress than the latter. Such resistant frozen ground may

produce a shallower crack and narrower stress relief resulting in a smaller polygonal

spacing (Lachenbruch, +30,; Pringle et al., ,**-). In addition, episodic cold temper-

ature with rapid cooling induces high tensile stress (e.g. Lachenbruch, +30,; Matsuoka,

+333) that can generate new cracks and subdivide the polygons (Plug and Werner, ,**,).

The lack of snow cover, shallow active layer and/or very cold uppermost permafrost in

the study area favor such rapid cooling. Furthermore, the long-term exposure for more

than +** ka in the study area, increases the chances for episodic cold winters and thus

for subdivision of polygons.

Small polygons with a diameter of less than / m usually lack ice wedges but have

only active layer soil wedges in most polar regions (e.g. Jahn, +32-). This is because

such small polygons are usually accompanied by shallow thermal contraction cracks that

do not reach the underlying permafrost. Cold summer with a very shallow active layer

(�-* cm) in the S�r Rondane Mountains favors ice wedge formation despite the shallow

thermal contraction cracks (Matsuoka and Hirakawa, +33-).

Table ,. Widening of ice wedge troughs at SR+ and SR. (in mm).
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/.,. Origin of the ice-free wedge

An ice wedge accompanies all of the excavated polygons developed on Stage ,
moraines. Whereas the active layer is dry (gravimetric water content usually �.�),

the uppermost part of the permafrost is ice-cemented (gravimetric ice content�+/�).

The ice wedges occur in the ice-cemented permafrost. The ice wedge growth was not

detectable within four years, which implies contemporary inactivity or very slow growth.

These conditions suggest that ice wedges grow when minimum supply of snow and

subsequent melting take place following rapid cooling that induces thermal contraction

cracking. In contrast, regardless of present-day activity, sublimation has not yet con-

sumed a large part of the ice in the uppermost permafrost including the ice wedge. As

a result, ice wedges are preserved in wet permafrost. Stage , moraines appear to favor

the ice wedge preservation, because of the location close to the moisture source (snow-

covered ice sheet), the relatively short exposure age (�*./ Ma), or both.

A Stage - moraine has polygons fringed by deep troughs and an underlying ice-free,

gravelly wedge with vertically oriented clasts (SR0). Two origins, monogenetic and

polygenetic, are suggested for this morphology and structure. In the monogenetic pro-

cess, a sand wedge develops by repetitive thermal contraction cracking coeval with

sublimation of the underlying glacier ice under a long-term arid climate (Marchant et

al., ,**,), which is regarded as a kind of primary sand wedge (i.e. Murton et al., ,***).

This process leads to a wedge with primary filling sand in the lower part and loose

gravelly debris in the upper part. The polygenetic origin includes ice wedge growth

under a relatively wet condition and subsequent ice melting under a warm climate or ice

sublimation under a cold-arid climate, thus producing an ice-wedge cast.

At SR0, polygenetic origin is plausible. This is because the whole wedge consists

of loose gravelly debris with vertically oriented clasts, which implies the falling of the

active layer into the space produced by ice wedge degradation, while clasts, where

present, must be concentrated near the tops of sand wedges (Murton et al., ,***). In

addition, the wedge structure lacks primary filling fine debris either laminated, or

massive and well-sorted (Murton et al., ,***). However, the hypothesis that the ice

wedge cast at SR0 has resulted from melting of permafrost is ruled out, because it

requires an episodically warm period having produced an active layer deeper than +,.
cm during the last few +** ka. Antarctic nunataks surrounded by the huge ice sheet are

unlikely to have experienced such deep melting that requires several months of contin-

uously positive temperatures, although the presence of large gypsum crystals on Stage ,
moraines implies a past warm period that produced at least a salty water reservoir

(Moriwaki and Hirakawa, +33,).

A more plausible process of ice consumption is sublimation under a cold-dry cli-

mate (e.g. Marchant et al., ,**,; Bockheim, ,**,). When located close to the ice sheet

level, the polygons may have developed in wet permafrost that promoted ice wedge

formation. The subsequent ice lowering and predominance of colder and drier condi-

tions, possibly aided by the valley morphology susceptible to passage of dry wind, may

have gradually induced ice sublimation from both the ice wedge and the host permafrost

over the last few +** ka, which eventually produced the ice-wedge cast surrounded by

dry permafrost. The high permeability of the wedge filling debris may promote sub-

limation around the wedge (e.g. Marchant et al., ,**,).
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The coexistence of the miniature ice wedge (SR/) and ice-wedge cast (SR0) in the

same valley is problematic. The two wedges contrast in the dimensions of polygons and

wedge structures, wedge types and permafrost humidity. The contrast may indicate

that the smaller polygons are much newer features and/or have not experienced signi-

ficant subsidence due to ice sublimation, possibly because they are situated in a less

windy location (a margin of the valley floor).

/.-. Rates of ice wedge formation and degradation

In the McMurdo Dry Valleys, measurements of widening of polygon troughs for -3
years show that sand wedges have grown at a mean growth rate of *.0 mm a�+(Sletten

et al., ,**-; measurements initiated by Berg and Black, +300). Inward tilting of the

rods due to uplift of the wedge periphery may lead to slight underestimation of the

actual growth rates. Another measurement in the Dry Valleys, automatic monitoring

of sand wedge widening for four years, shows a mean growth rate of +.. mm a�+(Sletten

and Hallet, ,**-). On the assumption that ice wedges grow at a rate similar to sand

wedges, extrapolation with a conservative rate of *.0 mm a�+ accounts for the width of

typical ice wedges in the S�r Rondane Mountains (.*�3* cm) by about + ka of con-

tinuous thermal contraction cracking. This estimation implies that individual ice

wedges formed within a short period during a long exposure history (�+** ka).

The growth of ice wedges terminates when the active layer dries up or climate

change decreases intensive cooling events. However, polygons and the underlying ice

wedges are still preserved until sublimation or melting of permafrost completely con-

sumes the wedge ice. As discussed above, the ice wedge cast at SR0 most likely resulted

from sublimation of the uppermost part of the permafrost.

The rate of sublimation of massive ice beneath the glacial drift has been estimated

using cosmogenic nuclides of clasts in the drift to be a few meters to several decameters

per Ma (Schäfer et al., ,***; Marchant et al., ,**,; Ng et al., ,**/). This suggests

that an ice wedge about + m in the vertical dimension would disappear within a few +**
ka by sublimation, although the rate of sublimation of wedge ice surrounded by ice-rich

permafrost may slightly di#er from that of massive ice. These conditions lead to a con-

clusion that ice wedges in the S�r Rondane Mountains develop in a short period under

a relatively wet and cold environment close to the ice sheet level, and they are preserved

under a drier climate until the wedge ice completely sublimates by long-term exposure

for more than a few +** ka and finally turns into ice-wedge casts.
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