Electron microprobe technique for U-Th-Pb and REE chemistry of monazite, and its implications for pre-, peak- and postmetamorphic events of the Lützow-Holm Complex and the Napier Complex, East Antarctica

Tomokazu Hokada^{1,2*} and Yoichi Motoyoshi^{1,2}

¹National Institute of Polar Research, Kaga 1-chome, Itabashi-ku, Tokyo 173-8515 ²Department of Polar Science, School of Multidisciplinary Sciences, The Graduate University for Advanced Studies, Kaga 1-chome, Itabashi-ku, Tokyo 173-8515 *Corresponding author. E-mail: hokada@nipr.ac.jp

(Received March 24, 2006; Accepted June 29, 2006)

Abstract: Monazites in high-grade metapelites from the Lützow-Holm Complex and Napier Complex have been examined in terms of U, Th, Pb and rare earth element (REE) chemistry using an electron microprobe. The studied samples include four granulite-facies garnet-biotite-bearing metapelites from Skallen within the Lützow-Holm Complex, and a re-hydrated garnet-sillimanite gneiss from the Mt. Riiser-Larsen area within the UHT zone of the Napier Complex.

Two out of four garnet-bearing metapelitic samples from Skallen gave simple 560–500 Ma monazite U-Th-Pb ages, whereas the other two samples yielded two age populations, *i.e.*, 560–500 Ma and 650–580 Ma. The younger age group is consistent with the 550–520 Ma metamorphic ages reported by SHRIMP. The older >580 Ma monazites are relatively enriched in Nd, Sm, Gd, Dy (MREE) and depleted in Si (Ca and Th) compared with the younger (560–500 Ma) ones. These older monazites possibly formed through M-HREE-enriched conditions such as garnet-free conditions, suggesting that the growth of these monazites pre-dated the peak metamorphism.

Garnet-sillimanite gneiss from the Mt. Riiser-Larsen area shows various post-UHT re-hydration textures such as biotite-sillimanite aggregates, and fine-grained biotite flakes around or intracrystalline fractures within garnet porphyroblasts. Monazites enclosed within garnet cores have 2480–2440 Ma U-Th-Pb ages consistent with the reported zircon and monazite SHRIMP dates. On the other hand, those associated with re-hydrated zones gave fluctuating 2200–700 Ma ages. These younger ages are thought to reflect the incomplete chemical disturbance during the post-UHT crustal processes.

key words: Lützow-Holm Complex, monazite, Napier Complex, rare earth element/ REE, U-Th-Pb age

1. Introduction

Electron microprobe (EMP) dating of U-Th-bearing minerals such as monazite, zircon and xenotime, developed from the pioneering work of Suzuki *et al.* (1991) and Suzuki and Adachi (1991), who established the Th-U-total Pb *Chemical Isochron*

Method (CHIME), has proven to be a powerful tool for estimating geologic ages of igneous and metamorphic rocks, and is now used in laboratories worldwide (e.g., Montel et al., 1996; Yokoyama and Saito, 1996; Cocherie et al., 1998; Williams et al., 1999; Cocherie and Albarede, 2001; Williams and Jercinovic, 2002; Pyle et al., 2002, 2005; Jercinovic and Williams, 2005). However, numerous factors (type of spectrometer/detector, detector gas, standard materials/compositions, matrix correction, peak/background positioning, accelerating voltage, correction of peak interferences, etc.) affect U-Th-Pb quantification, and, consequently, age estimates (e.g., Pyle et al., 2002, 2005; Jercinovic and Williams, 2005). Differences of analytical protocol between different laboratories makes it difficult to make inter-laboratory comparisons. Apart from age determinations, measurement of rare earth elements (REE) and other elements (P, Si, Ca, U, Th) in monazite is important in understanding accessory phase behavior and geochemistry.

Zhu and O'Nions (1999) suggest that monazite REE chemistry is strongly affected by coexisting phases, especially in the presence of garnet, which controls the heavy rare earth element (HREE) content of monazite. Several studies (*e.g.*, Yokoyama and Saito, 1996; Scherrer *et al.*, 2000; Hokada *et al.*, 2004) have dealt with full elemental (P+Si+Ca+REE+Y+Th+Pb) chemical analysis for the monazite dating. Such complete analyses are essential to check the reliability of age estimations and to examine consistency with other dating techniques. We have been developing this technique using an electron microprobe (JEOL JXA-8800 with 5ch wavelength dispersive spectrometers) at the National Institute of Polar Research. In this paper, a detailed analytical protocol for U-Th-Pb chemical dating and quantitative REE measurement is described.

The Lützow-Holm Complex and the Napier Complex are high-grade metamorphic terranes located in East Antarctica. These are excellent subjects to examine monazite behavior during high temperature deep crustal processes. U-Pb zircon chronology has been applied to the Lützow-Holm Complex and has demonstrated the age of high-grade metamorphism at 550–520 Ma (Shiraishi *et al.*, 1994, 2003). Monazite ages 534 ± 14 Ma and 537 ± 9 Ma obtained by the electron microprobe (EMP) U-Th-Pb chemical isochron method (CHIME) have been reported for two garnet-biotite gneisses from the Lützow-Holm Complex (Asami et al., 1997, 2005), and are in the same age brackets with zircon ages. U-Th-Pb and isotopic dating methods, such as Sm-Nd, Rb-Sr and Ar-Ar, have been applied to rocks from the Napier Complex, along with monazite ages, and indicate the occurrence of late Archaean to early Proterozoic (>2590-2450 Ma) UHT and younger Proterozoic (2400-700 Ma) events (Asami et al., 1998, 2002; Carson et al., 2002; Grew et al., 2001; Harley et al., 2001; Hokada et al., 2004; Kelly and Harley, 2005; Suzuki et al., 2006). This paper provides monazite ages combined with chemistry and petrographic context, which make it possible to discuss the pre-, peakand post-peak metamorphic histories of these terranes.

2. Analytical technique

2.1. Electron microprobe analytical settings

Monazite grains were analyzed in polished thin sections using a JEOL JXA-8800M

					Detector	Time	Peak	BG-	BG+	Base L.	Window	Interference
No.	Element	X-ray	Channel	Crystal	gas	(s)	(mm)	(mm)	(mm)	(V)	(V)	correction
1	Р	Ka	2	PET	Xe (sealed)	10	196.76	- 7.4	+ 3.5			
2	Si	Κα	2	PET	Xe (sealed)	10	227.76	- 4.7	+ 3.4			
3	Ca	Κα	2	PET	Xe (sealed)	10	107.37	- 4.0	+ 4.0			
4	Y	Lα	2	PET	Xe (sealed)	10	206.15	- 3.8	+ 1.5			
5	La	La	4	LIF	Xe (sealed)	10	185.33	- 4.5	+ 2.7			
6	Ce	Lα	4	LIF	Xe (sealed)	10	178.10	- 3.5	+ 2.8			
7	Pr	Lβ	4	LIF	Xe (sealed)	10	157.05	- 1.3	+ 4.8			
8	Nd	Lβ	4	LIF	Xe (sealed)	10	150.66	- 6.2	+ 5.1			
9	Sm	Lβ	4	LIF	Xe (sealed)	10	138.93	- 3.7	+ 5.6			
10	Gd	Lβ	4	LIF	Xe (sealed)	10	128.38	- 1.3	+ 6.7			
11	Dy	La	4	LIF	Xe (sealed)	10	132.70	- 5.6	+ 2.4			
12	Er	La	4	LIF	Xe (sealed)	10	124.06	- 1.4	+ 3.2			
13	Yb	Lα	4	LIF	Xe (sealed)	10	116.22	- 4.4	+ 1.7			
14	U	Μβ	1	PET	Ar (flow)	240	118.95	- 3.8	+1.4	2.5	3	from Th
15	Th	Μα	2	PET	Xe (sealed)	120	132.21	- 3.6	+ 3.6	2.5	3	
16	Pb	Μβ	3	PETH	Xe (sealed)	240	162.38	- 2.6	+ 3.0	2	3.5	from U

Table 1. Electron microprobe analytical settings for monazite. See text for detail.

electron microprobe (EMP) with a 5ch wavelength-dispersive X-ray analytical system (WDS) at the National Institute of Polar Research. Analytical conditions were maintained at 15 kV accelerating voltage, 200 nA probe current, and $2\mu m$ probe diameter (with an estimated area of analysis of $< 6\mu$ m). Natural and synthesized minerals and oxides were used as calibration standards. Prz (modified ZAF) correction (and occasionally ZAF correction) was applied to analyses. Sixteen elements (P, Si, Ca, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb, U, Th and Pb) were analyzed with 3 PET and 1 LIF crystals. Elements and X-ray spectral settings are listed in Table 1. The choices of X-ray peak and background position are based on full WDS scan of natural monazites and interference-free standard materials. Some of the X-ray peaks were measured using a β line to avoid or minimize the element interferences. The position of the U M β peak is near the absorption edge of the Ar detector gas; it is essential for the high-background position to be less than 2 mm from the peak position. The spectral interferences of Th on the U M β line and U on the Pb M β line were corrected on the basis of ratios measured on overlap-free X-ray peaks in standard materials. Recent and detailed discussion of analytical techniques for EMP monazite dating can also be seen in Pyle et al. (2002, 2005), Jercinovic and Williams (2005), Suzuki (2005), and references therein.

2.2. Age calculation and evaluation of uncertainty

The theoretical basis of EMP chemical dating essentially follows the Th-U-total Pb isochron method (CHIME) described in Suzuki *et al.* (1991) and Suzuki and Adachi (1991). Suzuki and Adachi (1991) obtained an age from linear regression on a PbO-ThO₂* (=the sum of ThO₂ and the ThO₂ equivalent of UO₂) diagram, assuming that initial PbO is homogeneously distributed in the mineral. The initial Pb (common lead) abundances in monazite are generally small relative to radiogenic Pb (*e.g.,* Jercinovic and Williams, 2005; Pyle *et al.*, 2005), and ages in this study have been

Fig. 1. Comparison of electron microprobe (EMP) chemical ages at NIPR with other reported ages —Pilbara granites: SHRIMP zircon ages by Kiyokawa et al. (2002), Napier granitic gneiss: SHRIMP monazite ages by Suzuki et al. (2006), Namaqualand monazite vein: SHRIMP zircon ages by Knoper et al. (2000), Kitakami and Unazuki granitic rocks: EMP monazite ages by Yokoyama (personal com.), Takidani granites: SHRIMP zircon ages by Sano et al. (2002). Error of each analysis is less than the size of the symbol.

calculated with the assumption that initial PbO is negligible. As chemical analysis using WDS is strongly affected by the choice of the X-ray line for each element, the X-ray matrix correction model (prz or ZAF), background positioning, and choice of standard materials, we have chosen the combination of these factors most suitable for obtaining U-Th-Pb ages consistent with ages reported by SHRIMP U-Pb or other techniques. Figure 1 shows the comparison of several different age determination using our EMP technique with other reported ages. We have calculated the error propagation for each age determination simply from X-ray counting statistics only. As a few percent of shift is inevitable due to the daily drift of machine conditions, we have checked the reproducibility of an age reference monazite (1033 Ma; Knoper *et al.*, 2001) from Namaqualand, South Africa. The drift of the reference age monazite analyses is less than 1% (Fig. 2).

3. Sample description

3.1. Pelitic gneisses from Skallen, Lützow-Holm Complex

The Lützow-Holm Complex (LHC) is an amphibolite to granulite-facies (up to ultrahigh temperature/UHT) metamorphic belt which extends 400 km along the Prince Olav Coast and the eastern coast of Lützow-Holm Bay (Fig. 3). The age of high-grade metamorphism has been well constrained at 550–520 Ma by SHRIMP zircon analysis

Fig. 2. Drift of EMP ages analyzed for Namaqualand monazite (1033 Ma) at NIPR over a month period (19th/June/2004 to 23rd/July/2004).

Fig. 3. Geological sketch map of the coastal region of Antarctica from 35–60°E. The locations of EMP dating samples are plotted as open stars.

(Shiraishi *et al.*, 1994, 2003). High-grade lithologies have experienced near-isothermal decompression (Hiroi *et al.*, 1991; Motoyoshi and Ishikawa, 1997) and subsequent cooling to $\sim 300^{\circ}$ C at *c*. 500 Ma (Fraser *et al.*, 2000).

Metapelitic samples used in this study were collected at Skallen, which is located within the granulite-facies zone. Skallen is the third largest outcrop along the Sôya Coast, and is underlain by various kinds of high-grade metamorphic rocks and three types of pre- to syn-metamorphic and post-metamorphic intrusive rocks (Osanai *et al.*, 2004; Fig. 4). Metamorphic lithologies are subdivided into four main categories:

Sample No.	Abb.	Qtz	Pl	Kfs	Bt	Grt	Sil	Spl	Ар	Zrn	Mnz	Opq	note
Skallen, Lütze	ow-Holn	n Con	plex	ĸ									
A97122303A	2303A	+	+	+	-	+			+	-	-	Ilm	
A97121901A	1901A	+	+	-	-	+			+	-	-	Ilm	
A97121901B	1901B	-	+	+	-	+		+		-	+	Ilm	Spl is not in contact with Qtz
A97121901E	1901E	+	+	-	+	+			-	-	+	Ilm	
Mt. Riiser-La	rsen, Na	pier C	Comp	olex		1	1						
1197021409	21409	т	т 				т					-	

Table 2. Mineral assemblages of the analyzed samples. Mineral abbreviations are after Kretz (1983).

+: present, -: minor

pelitic and quartzo-feldspathic rocks, mafic and intermediate rocks, calc-silicate rocks, and granitic rocks. Five pelitic gneiss samples used in this study (A97121901A, A97121901B, A97121901E and A97122303A, abbreviated as 1901A, 1901B, 1901E and 2303A hereafter; Table 2), with mineral assemblages including garnet, biotite, quartz, plagioclase and alkali feldspar (plus spinel in sp.1901B), occur as thin layers in alternation with quartzo-feldspathic, calc-cilicate and mafic gneisses (Fig. 4). No reaction relations of constituent minerals are observed in these gneisses.

3.2. Pelitic gneiss from Mt. Riiser-Larsen, Napier Complex

The Napier Complex is an Archaean to Early Proterozoic granulite terrane covering a coastal area between 46° – $57^{\circ}E$ longitude in East Antarctica (Fig. 3). It consists of tonalitic-granodioritic orthogneisses, garnet-bearing peraluminous granitic gneiss and mafic-ultramafic granulites with subordinate amounts of quartzo-feldspathic, siliceous and aluminous paragneisses, metamorphosed at granulite-facies, partly UHT $(>900-1100^{\circ}C)$, conditions. The earliest recorded event in the complex is c. 3800 Ma tonalitic magmatism, followed by multiple igneous (c. 3300-2630 Ma) and metamorphic (c. 2840 Ma, ~2590–2460 Ma, and younger) events (e.g., Sheraton et al., 1987; Harley and Black, 1997; Carson et al., 2002; Hokada et al., 2003; Kelly and Harley, 2005; Suzuki et al., 2006, and references therein). The timing of the UHT event is still debated as either 2480-2460 Ma or > 2590-2550 Ma (Kelly and Harley, 2005, and references therein), but monazite ages typically give 2480 Ma or younger ages (e.g., Hokada et al., 2004; Suzuki et al., 2006). This at least implies that major thermal events (including UHT metamorphism) terminated c. 2480 Ma. Post-2480 isotopic ages for the Napier Complex have been reported by several methods (2200 Ma, 1700 Ma and 700 Ma xenotime or monazite ages by Grew et al., 2001; 1557 and 1897 Ma Sm-Nd garnet-whole rock ages by Owada et al., 2001; 2200 Ma Sm-Nd internal isochron age by Suzuki et al., 2001; ~2380 Ma Sm-Nd internal isochron age by Suzuki et al., 2006). One of our aims for monazite dating is to interpret these post-UHT ages.

Metapelitic samples used in this study were collected from the Mt. Riiser-Larsen area, located on the northeast coast of Amundsen Bay in the UHT zone of the Napier Complex (Fig. 5). The study area is mainly composed of orthopyroxene-bearing orthogneiss with tonalitic-granodioritic compositions, garnet-bearing felsic gneiss with granitic compositions and two-pyroxene-bearing mafic granulite (Ishizuka *et al.*, 1998; Ishikawa *et al.*, 2000). Subordinate pelitic, psammitic, siliceous, aluminous and ferru-

Fig. 4. Geological map of Skallen, Lützow-Holm Complex (Osanai et al., 2004) with EMP sample localities.

ginous paragneisses, pyroxenite and ultramafic granulite are also present. These gneisses contain almost totally anhydrous mineral assemblages consistent with the UHT metamorphic conditions, and secondary hydrous minerals, mostly biotite, are occasionally formed. The analyzed metapelitic sample (sp. TH97021409, denoted as 21409 hereafter) was collected from an outcrop of layered gneiss. It is composed of quartz, plagioclase, garnet, sillimanite with minor biotite, monazite and opaque minerals. Quartz and plagioclase form granoblastic grains 0.2-2 mm in diameter. Garnet is porphyroblastic and occasionally up to 1 cm in diameter. Prismatic sillimanite 1-2 mm in length is occasionally aligned to form a foliation. Fine-grained (<0.1 mm) biotite

Fig. 5. Geological map of Mt. Riiser-Larsen, Napier Complex (simplified after Ishikawa et al., 2000) with EMP sample locality.

occurs commonly around and in fractures within garnet, or as fine-grained aggregates with sillimanite.

4. Results of EMP analyses

4.1. Monazite chemical data

Representative electron microprobe data of monazites from Skallen and the Mt. Riiser-Larsen area are listed in Tables 3 and 4, and summarized in Table 5. For Skallen samples, averaged compositions (with standard deviations) are presented in Table 3 for each domain/grain, from a total of 566 analytical spots on 157 monazite grains. For the Mt. Riiser-Larsen sample, all analytical data (38 analytical spots on 13 monazite grains) are listed in Table 4. Monazite favors light rare earth elements (LREE) over heavy rare earth elements (HREE), and Nd/La and Gd/Nd ratios are typically 0.3–0.5 and < 0.3, respectively. Apparent U-Th-Pb chemical ages have been calculated on the basis of measured U:Th:Pb ratios. Age errors given in Tables 3, 4 and 5, and Fig. 6, are at 1-sigma (67.8% confidence level) and derived from X-ray counting statistics only. Errors calculated for weighted average ages using the computer program ISOPLOT provided by K.R. Ludwig at Barkley Geochemistry Center of University of California (Ludwig, 2001) are at 2-sigma (95% confidence level).

4.2. Monazite ages and chemistry from the Lützow-Holm samples Most U-Th-Pb chemical ages range from 660 Ma to 500 Ma. Two samples (2303A)

	Table 3.	Represei	ntative .	chemical	composii	ions of m	onazites	in pelitic	gneisses	from SI	callen, I	ützow-H	olm Con	1plex, Ea	st Antar	ctica.	
Sample		SK2303A		SK2303A		SK2303A		SK2303A		SK2303A		SK2303A		SK1901A		SK1901A	
Grain #		mnz-#1		mnz-#1		mnz-#1		mnz-#1		mnz-#1		mnz-#1		mnz-#2		mnz-#3	
spot		zone-I		zone-II		zone-III		zone-IV		zone-V		zone-VI					
	detection limit	average	s.d	average	s.d.	average	s.d	average	s.d.	average	s.d.	average	s.d.	average	s.d	average	s.d
wt%		n=4		n=4		n=4		n=4		<i>n=6</i>		n=4		n=ll		n=ll	
P2O5		27.23	0.32	27.45	0.40	27.40	0.31	26.01	0.36	24.70	0.54	22.50	0.29	29.13	0.64	29.41	1.44
SiO_2		1.80	0.06	1.52	0.07	1.33	0.05	1.56	0.04	2.43	0.28	3.61	0.21	2.19	0.39	2.40	0.72
CaO		0.74	0.01	0.69	0.01	0.63	0.02	0.70	0.02	0.77	0.04	0.87	0.01	0.84	0.07	0.86	0.10
γ_{2O_3}	0.03	0.03	0.03	d.l.		0.05	0.03	d.l.		d.l.		d.l.		d.l.		d.l.	
La2O3	0.05	16.82	0.10	17.28	0.20	16.87	0.39	17.13	0.08	16.02	0.49	14.18	0.20	17.10	0.51	16.89	0.64
Ce2O3	0.04	29.80	0.27	30.38	0.31	30.77	0.34	29.71	0.37	28.48	0.89	25.15	0.17	29.35	0.69	28.86	1.27
PrzO ₃	0.09	3.30	0.14	3.33	0.12	3.45	0.15	3.19	0.15	3.10	0.15	2.80	0.16	3.12	0.10	3.10	0.15
Nd2O3	0.07	9.53	0.07	9.53	0.09	9.90	0.22	9.48	0.14	8.93	0.13	8.51	0.06	9.02	0.26	9.03	0.46
Sm2O3	0.07	0.87	0.07	0.93	0.08	1.01	0.02	0.98	0.07	0.77	0.05	0.85	0.11	0.63	0.10	0.63	0.10
Gd2O3	0.07	0.29	0.12	0.34	0.10	0.34	0.07	0.35	0.11	0.27	0.16	0.32	0.11	0.18	0.09	0.09	0.10
Dy2O3	0.04	d.l.		d.l.		0.04	0.03	d.l.		d.l.		d.l.		d.l.		d.l.	
Er2O3	0.04	d.l.		d.l.		d.l.		d.l.		d.l.		d.l.		d.l.		d.l.	
Yb2O3	0.05	d.l.		d.l.		d.l.		d.l.		d.l.		d.l.		d.l.		d.l.	
UO_2	0.007	0.092	0.006	0.092	0.005	0.106	0.010	0.097	0.012	0.116	0.017	0.149	0.006	0.155	0.019	0.175	0.043
ThO_2	0.006	9.865	0.136	8.700	0.227	7.878	0.137	9.250	0.287	13.248	1.241	19.450	0.755	11.703	1.500	12.594	2.624
PbO	0.004	0.237	0.009	0.212	0.008	0.184	0.007	0.224	0.004	0.316	0.030	0.463	0.019	0.279	0.039	0.299	0.067
Total		100.89	0.45	100.72	0.76	100.21	0.43	99.05	0.41	99.49	0.52	99.09	0.74	103.99	0.42	104.63	0.62
Cations (0	()=4)																
Р		0.922	0.004	0.930	0.006	0.934	0.005	0.910	0.005	0.872	0.012	0.816	0.009	0.938	0.015	0.938	0.030
Si		0.072	0.002	0.061	0.003	0.053	0.002	0.065	0.002	0.101	0.012	0.155	0.008	0.083	0.015	0.091	0.029
Ca		0.032	0.001	0:030	0.000	0.027	0.001	0.031	0.00I	0.034	0.002	0.040	0.001	0.034	0.003	0.035	0.004
Y		Q.001	0.001	ı		0.001	0.001				•	,				•	,
La		0.248	0.002	0.255	0.004	0.250	0.005	0.261	0.002	0.246	0.007	0.224	0.004	0.240	0.007	0.235	0.005
Ce		0.436	0.004	0.445	0.004	0.453	0.005	0.449	0.004	0.435	0.013	0.395	0.005	0.409	0.008	0.398	0.011
Pr		0.048	0.002	0.049	0.002	0.051	0.002	0.048	0.002	0.047	0.002	0.044	0.002	0.043	0.001	0.043	0.001
PN		0.136	0.001	0.136	0.002	0.142	0.004	0.140	0.002	0.133	0.003	0.130	0.001	0.122	0.003	0.121	0.004
Sm		0.012	0.001	0.013	0.001	0.014	0.000	0.014	0.00I	0.011	0.001	0.013	0.002	0.008	0.001	0.008	0.001
Gd		0.004	0.002	0.004	0.001	0.005	0.001	0.005	0.001	0.004	0.002	0.005	0.001	0.002	0.00I	0.001	0.001
Dy				•	•	000.0	0.000						•		•	•	
Er			•	•	•				•	•			•	•		•	,
γЪ				•	•	•	•	•	•	•		•	•	•		·	,
D		0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000
Th		0.090	0.001	0.079	0.002	0.072	0.001	0.087	0.003	0.126	0.012	0.190	0.007	0.101	0.013	0.108	0.024
Pb		0.003	0.000	0.002	0.000	0.002	0.000	0.002	0.000	0.004	0.000	0.005	0.000	0.003	0.000	0.003	0.001
Iotal		2.009	500.0	600.7	c00.0	110.2	0.004	2.019	0.002	170.7	0.004	170.7	600.0	166.1	0.002	1.980	cuu.u
Nd/La		0.295	0.003	0.288	0.003	0.306	0.014	0.289	0.005	0.291	0.012	0.313	0.004	0.275	0.006	0.279	0.007
Gd/Nd		0.072	0.029	0.082	0.025	0.080	0.014	0.086	0.026	0.071	0.042	0.088	0.029	0.047	0.024	0.023	0.025
U02*		3.19	0.05	2.82	0.07	2.58	0.05	3.00	0.10	4.28	0.40	6.26	0.23	3.83	0.49	4.13	0.86
ThO_{2}^{*}		10.17	0.15	9.01	0.22	8.23	0.15	9.57	0.30	13.63	1.26	19.94	0.74	12.22	1.55	13.17	2.76
Th/U		110.19	5.95	96.62	6.92	76.20	6.95	98.94	11.43	119.12	20.34	134.09	10.68	77.34	6.02	74.44	5.69
Age [Ma]		550	24	554	21	528	12	553 10	13	548	σ.	547	ŝ	538	20	534	II I
+/- Ma		18	0	20	0	22	0	19	-	13	-	6	0	٤I	7	14	n
	d.l.: below a	etection limit															

126

1			1																																			1					
			s.d.		0.14	0.25	0.34	0.65	0.38	01.0	0.23	0.22	0.26	0.14			0.308	1518	0.024	0.54	0.008	00000	00000	110.0	0.007	0.009	0.004	0.002	0.004	0.003	0.004	0.002		,	0.003	0.014	0.000	0.003	0.021	0.057	1.06	11.39	ω 20 m
SK1901B	ш 4-	(in grt)	average	n=10	2/-40 0.40	1.58	0.26	15.11	29.17	3.48	10.79	1.50	0.65	0.13	d.l.	d.I.	0.576	7.380	0.228	99.14	0.047		070.0	0.069	0.006	0.227	0.436	0.052	0.157	0.021	600.0	0.002		,	0.005	0.069	0.003	2.027	0.373	0.140	930	18.11	20 20 20
			s.d.		650	041	0.24	0.81	0.92	0.07	0.27	0.23	030	0.11			0.197	2.428	0.050	0.42	6100	710.0	600.0	0.018	0.005	0.011	0.012	0.001	0.003	0.003	0.004	0.002	,		0.002	0.023	0.001	0.004	0.017	090.0	2.47	8.57	6 6
SK1901B	m-3	(in grt)	average	n=8	2/:48	5 7 7 7	0.48	15.21	29.81	3.58	11.32	1.73	0.91	0.19	d.l.	d.l.	0.427	6.050	0.187	99.59	0.047	100	0.014	960.0 010	0.010	0.228	0.444	0.053	0.165	0.024	0.012	0.003	ı	ì	0.004	0.056	0.002	2.029	0.389	0.186	7.47	16.56	600 27
			s.d.		200	0.37	0.55	0.68	0.65	0.13	0.28	0.25	0.36	0.18	0.05		0.303	2.289	0.036	0.70	0000	2000	000.0	010.0	0.012	0.009	0.008	0.002	0.003	0.003	0.005	0.002	0.001		0.003	0.021	0.000	0.004	0.012	0.073	1.69	7.23	e4 E4 0
SK1901B	m-2		average	n=16	C6.12	103	0.82	15.94	29.82	3.62	11.30	1.77	1.03	0.32	0.05	d.l.	0.728	4.226	0.168	99.53	0.057	110.0	110.0	0.045	0.018	0.238	0.442	0.053	0.163	0.025	0.014	0.004	0.001		0.007	0.039	0.002	2.024	0.370	0.211	6.65	8.42	600 31
			s.d.		C7 0	910	0.12	0.47	09.0	0.07	0.21	0.14	0.18	0.06			0.351	0.763	0.037	0.49	0.005	10000	0.004	/00/0	0.003	0.007	0.009	0.001	0.003	0.002	0.002	0.001	,	,	0.003	0.007	000.0	0.003	0.017	0.039	1.06	5.27	31 2
SK1901B	m-1		average	n=15	2/36	1.67	0.21	14.69	29.07	3.53	11.07	1.59	0.72	0.09	d.I.	d.I.	0.860	7.274	0.244	99.14	0.046	0100	0.010	0.0/3	0.005	0.221	0.435	0.052	0.162	0.022	0.010	0.001		ı	0.008	0.068	0.003	2.029	0394	0.152	10.13	10.51	565 19
			s.d.	0	0.48	0.16		0.56	0.82	0.13	0.42	0.11	0.15				0.011	1.771	0.038	0.38	0100	00000	600.0	0.00/		0.007	0.011	0.002	0.005	0.001	0.002	,	,		000.0	0.015	000.0	0.003	0.00	0.036	1.80	13.02	30 17
SK1901A	6#-zum		average	n=9	52.65 0.61	0.52	dl.	19.05	32.74	3.52	10.27	0.79	0.19	d.l.	d.l.	d.l.	0.103	4.089	0.101	104.94	1 000	0001	770.0	07070	ı	0.257	0.438	0.047	0.134	0.010	0.002	,		ı	0.001	0.034	0.001	1.981	0.281	0.043	4.43	39.72	\$£
			s.d.		020	210		030	0.71	0.12	030	0.07	0.09				0.006	1.081	0.022	0.37	0.007	10000	0.000	<i>cuu.u</i>		0.004	0.009	0.002	0.004	100.0	0.001	,	,	1	000.0	0.00	000.0	0.003	0.007	0.022	1.08	11.46	77
SK1901A	8#-zum		average	n=9	32.30 0.61	0.59	d.l.	19.05	32.61	3.46	10.31	0.78	0.19	d.l.	d.l.	d.l.	0.102	4369	0.109	104.79	1 005	C007	770.0	0.023		0.258	0.439	0.046	0.135	0.010	0.002	,	Ţ	,	0.001	0.037	0.001	1.984	0.282	0.043	4.71	4 20 7	551 41
			s.d.		0.05	0.15		0.51	1.07	0.18	0.42	0.13	0.09				0.007	2.021	0.048	0.44	0.012	CT0.0	610.0	0.000		0.005	0.013	0.002	0.005	0.002	0.001		ı	ı.	0.000	0.017	0.000	0.002	0.008	0.021	2.03	18.86	06 10
SK1901A	9#-zum		average	n=7	51.85 0.01	0.66	d.l.	18.67	32.19	3.42	10.03	0.75	0.16	d.l.	d.1.	d.l.	0.101	5.780	0.139	104.93	0 003	660.0	0.034	0.026	,	0.254	0.434	0.046	0.132	00.0	0.002			ı	0.001	0.049	0.001	1.985	0.280	0.037	6.12	58.09	89 E8
			s.d.		0.71	0.00		0.42	0.78	0.07	0.18	0.07	01.0				0.027	1.484	0.035	0.43	0.015	CT0.0	610.0	0.003	ı.	0.005	0.009	0.001	0.002	0.001	0.001		,	,	0.000	0.013	0.000	0.003	0.006	0.025	1.55	11.71	10 2
SK1901A	mnz-#5		average	n=9	71 c	180	d.l.	16.75	29.67	3.17	9.21	09.0	0.12	d.l.	dl.	d.l.	0.115	11.520	0.280	104.38	0.046	04000	190.0	0.034	ı	0.233	0.409	0.044	0.124	0.008	0.002	ı	ı	ı	0.001	660.0	0.003	1.987	0.287	0.031	11.90	105.54	555 15
			s.d.	1	/0.0	100		0.00	133	0.19	0.36	0.09	0.09				0.012	2.248	0.049	0.71	6100	710.0	710.0	0.008	ı.	010.0	0.014	0.002	0.004	0.001	0.001	,	,		0.000	0.019	0.000	0.002	600.0	0.022	2.28	19.48	19
<u>SK1901A</u>	mnz-#4		average	n=16	32.02 0.74	15 0	d.l.	11.01	32.89	3.49	10.07	0.72	0.14	d.l.	d.l.	d.l.	0.100	4.749	0.114	104.98	0000	5000	/70.0	0.023	ı	0.259	0.443	0.047	0.132	0.00	0.002	,	ı	ı	0.001	0.040	0.001	1.986	0.275	0.033	5.08	47.19	¥ 8
Sample	Grain #	spot		Wt%	P2O5 8:0-	CaO	Y ₂ O ₃	La2O3	Ce2O3	Pr2O3	Nd2O3	Sm2O ₃	Gd2O3	Dy2O3	Er2O3	Yb_2O_3	UO_2	ThO ₂	PbO	Total	Cations (0=4)	- 3	N 0	Ca	Υ	La	Ge	Pr	PN	Sm	Gd	Dy	Εr	$\mathbf{Y}\mathbf{b}$	n	Th	$^{\mathrm{Pb}}$	Total	Nd/La	Gd/Nd	ThO_{2}^{*}	U/IL	Age [Ma] +/- [Ma]

Cample action for the strong stron		0100171		0171001710		01001710		012100110		01/100110		6171001D		01100120		017100110		017100110	
point (inight) <	Grain #	m-5		01061Nc		diverse		anverace 8-m		diverse m-9		m-102		m-103		m-104		m-105	
$ \begin{array}{{ccccccccccccccccccccccccccccccccccc$	spot	(in grt)				(with zm)				(in grt)									
Wife $n=7$ $n=22$ $n=42$ $n=12$ n=12 n=12 <td>-</td> <td>average</td> <td>s.d.</td>	-	average	s.d.	average	s.d.	average	s.d.	average	s.d.	average	s.d.	average	s.d.	average	s.d.	average	s.d.	average	s.d.
PEOS 77.47 0.34 77.88 0.28 77.64 0.74 0.75	Wt%	n=7		n=22		n=4		n=12		n=4		n=5		n=13		n=8		n=7	
SiO: 0.35 0.12 0.77 0.06 0.44 0.27 0.06 0.27 </td <td>P2O5</td> <td>27.47</td> <td>0.34</td> <td>27.38</td> <td>0.28</td> <td>27.63</td> <td>0.17</td> <td>27.37</td> <td>030</td> <td>27.86</td> <td>0.35</td> <td>26.92</td> <td>0.35</td> <td>27.21</td> <td>0.35</td> <td>27.15</td> <td>0.42</td> <td>27.98</td> <td>0.38</td>	P2O5	27.47	0.34	27.38	0.28	27.63	0.17	27.37	030	27.86	0.35	26.92	0.35	27.21	0.35	27.15	0.42	27.98	0.38
	SiO ₂	0.35	0.12	0.37	0.06	0.45	0.04	0.79	0I.0	0.40	0.04	0.51	0.05	039	0.14	0.43	0.14	0.42	0.21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CaO	1.04	0.31	1.42	0.11	1.02	0.07	1.51	0.09	0.87	0.06	1.52	0.12	136	0.15	1.27	0.16	1.14	0.54
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Y_{2O_3}	0.31	0.24	0.21	0.04	0.54	0.05	0.10	0.03	0.19	0.04	0.27	0.18	0.24	0.23	0.21	0.14	0.34	0.32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	La2O3	16.19	0.44	15.46	0.25	16.26	0.16	15.47	0.38	16.83	0.17	14.69	0.38	15.33	0.28	15.59	0.32	16.03	0.87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ce2O3	30.55	101	29.54	0.34	30.58	030	29.53	0.36	30.98	0.32	29.04	0.40	29.90	0.47	30.01	0.45	30.32	0.87
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pr2O3	3.65	0.26	3.61	01.0	3.54	0.0	3.46	0.12	3.66	01.0	3.65	0.07	3.64	0.13	3.59	0.09	3.68	0.14
	Nd2O3	11.14	0.86	11.09	0.13	11.04	0.03	10.45	0.16	11.02	0.18	11.24	0.17	11.22	0.28	11.15	0.21	11.22	0.49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sm2O3	1.64	0.28	1.70	0.11	1.64	11.0	1.17	0.12	1.61	0.04	1.52	0.06	1.56	0.20	1.61	0.14	1.63	0.26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gd2O3	0.78	0.13	0.84	01.0	0.87	0.06	0.42	11.0	0.77	0.16	0.61	0.13	0.77	0.25	0.84	0.18	0.75	0.35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dy2O3	0.11	01.0	0.10	0.04	0.21	0.02	d.l.		0.12	0.04	0.08	0.07	0.11	0.10	0.0	0.08	0.14	0.13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Er2O3	d.l.		d.l.		d.l.		d.l.		d.I.		d.l.		d.l.		0.04	0.03	dl.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Yb_2O_3	d.l.		d.l.		0.04	0.03	d.l.		d.l.		d.l.		d.l.		d.l.		d.l.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UO2	0.622	0.234	0.804	0.093	0.745	0.013	0.234	0.081	0.311	0.028	0.634	0.159	0.478	0.117	0.634	0.121	0.703	0.299
	ThO_2	4.679	1.680	6.121	0.561	4.780	0.227	8.784	0.777	4.570	0.420	7390	0.689	6.240	1.003	5.868	1.200	5.193	3.169
	PbO	0.164	0.052	0.223	0.015	0.198	010.0	0.219	0.017	0.148	0.006	0.221	0.018	0.189	0.022	0.193	0.018	0.174	0.051
	Total	99.04	0.62	99.20	0.44	100.00	0.23	99.85	0.45	99.76	0.25	98.53	0.29	98.99	0.38	00.06	0.47	100.06	0.43
P 0.550 0.004 0.007 0.004 0.005 0.947 0.006 0.947 0.006 0.004 0.005 0.004 0.006 0.0	Cations $(0=4)$																		
Si 0014 0005 0015 0005 0018 0002 0038 0002 0004 0038 0001 0002 0000 0004 00 Ca 0046 0013 0062 0005 0044 0243 0003 0251 0000 0004 0000 0006 0004 00 La 0244 0008 0233 0004 0243 0003 0231 0006 0251 0003 0224 0006 02 Ce 0457 0005 0442 0004 0143 0003 0231 0005 0251 0003 0249 0007 04 Nd 0163 0012 0004 0154 0002 0160 0051 0002 0159 0003 0146 0003 01 Sm 0023 0004 0021 0001 0001 0001 0012 0001 0156 0003 01 Sm 0023 0004 0002 0100 0116 0002 0100 0022 0001 01 Sm 0023 0004 0001 0001 0001 0001 0002 0000 0159 0002 0001 00 H 0010 0001 0001 0001 0001 0000 0000 0002 0002	Ρ	0.950	0.006	0.947	0.005	0.947	0.004	0.939	0.005	0.954	0.006	0.940	0.006	0.945	0.007	0.944	0.009	0.954	010.0
Ca 0.046 0.013 0.067 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.003 0.001 0.	Si	0.014	0.005	0.015	0.002	0.018	0.002	0.032	0.004	0.016	0.002	0.021	0.002	0.016	0.006	0.018	0.006	0.017	0.00
Y 0007 0005 0005 0001 0012 0001 0002 0001 0004 0001 0006 0004 000 La 0244 0008 0233 0004 0243 0003 0231 0006 0257 0003 0349 0006 02 Pr 0054 0004 0054 0002 0052 0001 0055 0001 0055 0001 00 Nd 0163 0002 0002 0002 0002 0151 0002 0002 0003 0145 0001 0055 0001 00 Gd 0011 0002 0001 0001 0001 0001 0002 0000 0022 0000 0022 0001 00 Dy 0001 0001 0001 0001 0001 0000 0000 - 0002 0000 0002 0001 0001	Ca	0.046	0.013	0.062	0.005	0.044	0.003	0.066	0.004	0.038	0.003	0.067	0.006	0.060	0.007	0.056	0.007	0.049	0.023
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Y	0.007	0.005	0.005	0.001	0.012	100.0	0.002	0.001	0.004	0.001	0.006	0.004	0.005	0.005	0.005	0.003	0.007	0.007
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	La	0.244	0.008	0.233	0.004	0.243	0.003	0.231	0.006	0.251	0.003	0.224	0.006	0.232	0.004	0.236	0.004	0.238	0.012
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ce	0.457	0.015	0.442	0.004	0.453	0.005	0.438	0.005	0.459	0.003	0.439	0.007	0.449	0.007	0.451	0.007	0.447	0.012
Nd 0.163 0.012 0.163 0.002 0.166 0.003 0.166 0.003 0.166 0.003 0.166 0.003 0.	Pr	0.054	0.004	0.054	0.002	0.052	0.001	0.051	0.002	0.054	0.001	0.055	0.001	0.054	0.002	0.054	0.001	0.054	0.002
Sm 0.023 0.004 0.024 0.001 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.	Nd	0.163	0.012	0.162	0.002	0.160	000.0	0.151	0.002	0.159	0.002	0.166	0.003	0.164	0.003	0.163	0.003	0.161	0.007
Gd 0011 0.002 0.011 0.002 0.012 0.002 0.003 0.002 0.003 0.001 0.0	Sm	0.023	0.004	0.024	0.001	0.023	0.002	0.016	0.002	0.022	0.000	0.022	0.001	0.022	0.003	0.023	0.002	0.023	0.004
Dy 0.001 0.	Gd	0.011	0.002	0.011	0.001	0.012	100.0	0.006	0.002	0.010	0.002	0.008	0.002	0.010	0.003	0.011	0.002	0.010	0.005
Hz .	Dy	0.001	100.0	0.001	0.001	0.003	000.0	ı	ı	0.002	0.000	0.001	0.001	0.001	100.0	0.001	0.001	0.002	0.002
Yb ·	Ē	,	ı	ı	,	ı	ł	ı	,	ı	,	ı	,	1	,	0.000	0.000	ı	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Yb			ı		0.000	0.000	,	,	,	,	'		,		,			,
Th 0.043 0.015 0.057 0.005 0.004 0.005 0.007 0.002 0.0007 0.003 2.002 0.0003 2.003	U	0.006	0.002	0.007	0.001	0.007	0.000	0.002	0.001	0.003	0.000	0.006	0.001	0.004	0.001	0.006	0.001	0.006	0.003
Pb 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 2.003 0.002 0.002 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 2.003 0.003 0.016 0.33 2.01 0.015 0.33 0.016 0.33 2.01 0.015 0.33 0.016 0.33 0.016 0.33 0.117 0.02 0.003 0.016 0.33 0.015 0.016 0.34	Th T	0.043	0.015	0.057	0.005	0:0	0.002	0.081	0.007	0.042	0.004	0.069	0.007	0.058	0.010	0.055	0.011	0.048	0.029
Total 2.027 0.003 2.027 0.003 2.024 0.002 2.022 0.003 2.030 0.003 2.003 2.030 0.003 2.003 2.030 0.003 2.003 2.030 0.003 2.003 2.003 2.030 0.003 0.033 0.127 0.026 0.117 0.026 0.117 0.026 0.117 0.026 0.117 0.026 0.117 0.026 0.117 0.026 0.117 0.026 0.117 0.026 0.117 <th< td=""><td>Pb</td><td>0.002</td><td>0.001</td><td>0.002</td><td>0.000</td><td>0.002</td><td>0.000</td><td>0.002</td><td>0.000</td><td>0.002</td><td>0.000</td><td>0.002</td><td>0.000</td><td>0.002</td><td>0.000</td><td>0.002</td><td>0.000</td><td>0.002</td><td>0.001</td></th<>	Pb	0.002	0.001	0.002	0.000	0.002	0.000	0.002	0.000	0.002	0.000	0.002	0.000	0.002	0.000	0.002	0.000	0.002	0.001
NdLa 0.339 0.031 0.374 0.007 0.354 0.004 0.332 0.010 0.341 0.005 0.399 0.016 0.3 NdLa 0.165 0.035 0.175 0.022 0.184 0.025 0.127 0.23 0.163 0.399 0.016 0.3 ThO2* 6.75 1.91 8.80 0.49 7.27 0.21 9.56 0.68 5.61 0.46 9.49 0.50 7.3 177 0.21 9.56 0.68 5.61 0.46 9.49 0.50 7.3 131 110.56 15.09 1.50 1.77 4.15 133 131 144 133 135 132 0.26 7.3 7.41 131 135 132 132 0.40 131 131 131 131 131 131 131 131 133 132 132 132 132 132 132 132 132 132 132 132 133	Total	2.027	0.003	2.029	0.003	2.027	0.003	2.024	0.002	2.022	0.003	2.030	0.003	2.030	0.003	2.030	0.003	2.023	0.003
NdLa 0.359 0.031 0.374 0.007 0.354 0.004 0.352 0.010 0.341 0.005 0.399 0.016 0.3 GdNd 0.165 0.035 0.175 0.022 0.184 0.012 0.095 0.025 0.163 0.035 0.127 0.026 0.1 ThO2* 6.75 1.91 8.80 0.49 7.27 0.21 9.56 0.68 5.61 0.46 9.49 0.50 7 ThUU 8.89 6.20 7.96 1.79 6.57 0.40 4.151 1.0.56 1.5.09 1.50 1.27 4.47 13: ThUI 571 4.7 597 1.9 6.57 0.40 4.151 1.0.56 1.5.09 1.50 1.2.7 4.47 13:																			
Gd/Nd 0.165 0.035 0.175 0.022 0.184 0.012 0.095 0.025 0.163 0.035 0.127 0.026 0.1 ThO2* 6.75 1.91 880 0.49 7.27 0.21 9.56 0.68 5.61 0.46 9.49 0.50 7.3 ThO2* 6.75 1.91 880 0.49 7.27 0.21 9.56 0.68 5.61 0.46 9.49 0.50 7.3 ThU1 889 6.20 7.96 6.57 0.40 41.51 10.56 15.09 15.09 1.50 1.31 3.47 131 Aven Mai 571 4.7 541 17 541 17 543 35 548 35 548 35 55 55 55 55 55 55 55 55 55 132 75 548 35 55 55 55 55 55 55 55 548 35	Nd/La	0.359	0.031	0.374	0.007	0.354	0.004	0.352	010.0	0.341	0.005	0.399	0.016	0.382	010.0	0.373	0.006	0.365	0.00
ThO2* 6.75 <i>191</i> 8.80 0.49 7.27 0.21 9.56 0.68 5.61 0.46 9.49 0.50 7. ThUU 8.89 6.20 7.96 1.79 6.57 0.40 4.151 10.56 1.50 1.50 1.2.7 4.47 13: Ave:NAi 571 4.2 577 1.9 1.7 541 1.7 541 2.7 575 548 2.3 5.	Gd/Nd	0.165	0.035	0.175	0.022	0.184	0.012	0.095	0.025	0.163	0.035	0.127	0.026	0.158	0.051	0.176	0.036	0.153	0.065
ThiU 889 620 7.96 1.79 6.57 0.40 41.51 10.56 1.509 1.50 12.77 4.47 13: Ave Mai 571 4.2 597 19 642 17 541 12 622 25 548 23 5	ThO_{2}^{*}	6.75	161	8.80	0.49	7.27	0.21	9.56	0.68	5.61	0.46	9.49	0.50	7.83	1.23	7.98	0.99	7.53	2.46
Aoe IMa] 571 42 597 19 642 17 541 12 622 25 548 23 5	Th/U	8.89	6.20	7.96	1.79	6.57	0.40	41.51	10.56	15.09	1.50	12.77	4.47	13.96	4.02	10.08	4.10	96.6	6.77
	Age [Ma] ±/_fMa1	<i>5</i> 71 31	42	597 21	1 61	642 2,42	17	541 19	12	622 33	25	8 <u>7</u> 87 8	23	574 24	48 4	573 24	35 3	551 29	23

128

			1																																							
		s.d.		0.15	20.0	100	0.28	0.11	0.07	0.13	0.06	10.0	0.05	0.04		0.031	0.317	0.009	0.32		0.003	0.002	0.003	0.000	0.003	0.001	0.001	0.001	0.001	0.000	100.0	ı		0.000	0.003	0.000	0.001	0.007	0.003	0.42	0.12	15 2
SK1901E mnz-#7	core	average	n=3	31.99	/C.U	0.06	16.27	30.70	3.65	11.41	1.49	09.0	0.05	0.04	d.l.	0.538	4.703	0.167	103.36		1.008	0.021	0.034	0.001	0.223	0.418	0.050	0.152	0.019	0.007	0.001	ı	,	0.004	0.040	0.002	1.984	0.366	0.123	6.49	8.94	606 29
		s.d.		0.53	00.0	0.02	0.20	030	0.14	0.26	0.10	0.16				0.022	0.684	0.013	0.45		0.007	0.003	0.003	0.000	0.002	0.005	0.002	0.003	0.001	0.002	,	•		0.000	0.006	000.0	0.004	0000	0:030	0.66	1.24	43 10
SK1901E mnz-#4		average	<i>y=u</i>	32.33	CC-0	100	16.99	32.83	3.89	12.45	1.42	0.49	d.l.	d.l.	d.l.	0.580	1.807	0.087	104.03		1.012	0.012	0.016	0.001	0.232	0.445	0.052	0.164	0.018	0.006			ī	0.005	0.015	0.001	1.986	0.382	0.093	3.73	3.20	55 54
		s.d.		0.14	00.0	10.0	0.02	0.08	0.03	0.04	0.13	0.06				0.015	0.028	0.001	0.12		0.002	0.000	100.0		0.000	0.002	0.001	000.0	0.002	0.001	,		,	0.000	0.000	0.000	0.001	100.0	0.012	0.08	0.24	1
SK1901E mnz-#2	in in	average	n=2	31.70	00.0	d.l.	17.28	31.56	3.67	11.23	1.21	0.43	d.l.	d.l.	d.l.	0.484	4.640	0.136	103.93		0.999	0.025	0.027	d.l.	0.237	0.430	0.050	0.149	0.015	0.005	,	ı	,	0.004	0.039	0.001	1.987	0.339	060.0	6.24	9.80	514 30
		s.d.		0.57	200	00.0	0.62	0.77	0.07	0.26	0.15	0.17				0.082	1.520	0.043	0.41		0.012	0.012	0.004		0.008	0.00	0.001	0.003	0.002	0.002	,	,	,	0.001	0.013	0.000	0.002	0.012	0.035	1.68	3.99	4 20
SK1901E mnz-#2	mantle	average	n=12	30.80	0.05	d.l.	16.36	30.54	3.48	10.68	0.89	0.21	dl.	d.I.	.Lb	0.427	7.713	0.212	103.77		0.979	0.045	0.038	d.l.	0.226	0.420	0.048	0.143	0.011	0.003		1	ı	0.004	0.066	0.002	1.989	0.341	0.045	9.13	18.81	545 21
		s.d.		0.69	0.00	0.02	0.49	0.40	0.16	0.11	0.02	0.13				0.012	0.369	0.020	1.02		0.008	0.003	0.002	0.000	0.004	0.004	0.002	0.002	000.0	0.002	,	,	,	0.000	0.004	000.0	0.004	0.008	0.027	0.41	0.46	1
SK1901E mnz-#2	core	average	n=3	31.55	20.0	90.0	15.64	30.68	3.58	11.42	1.16	0.33	d.I.	d.l.	d.l.	0.614	6.297	0.208	103.70		0.994	0.035	0.038	0.001	0.215	0.418	0.049	0.152	0.015	0.004	,	ī	ī	0.005	0.053	0.002	1.985	0.381	0.068	8.34	10.49	586 22
		s.d.		0.27	270	00.0	0.21	0.21	0.08	0.36	0.19	0.14				0.140	0.984	0.022	0.40		0.006	0.008	0.003		0.004	0.003	0.001	0.005	0.002	0.002	,	ı		0.001	0.008	0.000	0.002	0100	0.028	0.94	5.60	17 7
SK1901E mnz-#1	uin .	average	<i>y=u</i>	31.28	CL-1	d.l.	16.28	30.61	3.54	11.18	1.12	0.31	d.l.	d.I.	ЧЛ.	0.608	6.633	0.211	104.10		0.986	0.043	0.033	d.l.	0.224	0.417	0.048	0.149	0.014	0.004		ı		0.005	0.056	0.002	1.985	0358	0.063	8.65	12.13	574 22
		s.d.		0.49	510	0110	0.56	0.32	0.05	01.0	0.03	0.06				0.039	1.358	0.036	0.44		0.011	0.008	0.006	0.001	0.007	0.003	0.001	0.001	000.0	0.001	,	,	,	0.000	0.012	000.0	0.003	110.0	0.012	1.49	1.59	10
SK1901E mnz-#1	mantle	average	n=4	31.99	16.0	C.V	15.90	30.81	3.59	11.38	1.26	0.42	d.l.	d.l.	d.l.	0.621	6.185	0.208	104.60		0.997	0.034	0.037	0.001	0.216	0.415	0.048	0.150	0.016	0.005	,	ı	,	0.005	0.052	0.002	1.983	0.373	0.085	8.25	10.10	595 23 23
		s.d.		0.14	0.02 20.02	0.02	0.05	0.21	0.04	0.05	0.04	0.05				0.030	0.261	0.012	0.53		0.001	0.001	0.002	0.000	0.002	0.003	0.001	000.0	0.001	0.001	,	,	,	0.000	0.002	000.0	0.001	0.002	0.00	0.36	0.16	10
SK1901E mn2-#1	core	average	n=3	32.79	0/02	0.05	16.51	30.49	3.64	11.38	1.45	0.63	d.l.	d.l.	d.l.	0.545	5.660	0.194	105.36		1.008	0.028	0.037	0.001	0.221	0.405	0.048	0.148	0.018	0.008		ı	ı	0.004	0.047	0.002	1.980	0.360	0.130	7.48	10.63	611 25
		s.d.		0.39	11.0	0.14	0.46	0.72	0.18	0.33	0.29	0.17	0.05			0.141	1.099	0.031	0.76		0.005	0.004	0.009	0.003	0.008	0.012	0.003	0.004	0.004	0.002	100.0		,	0.001	010.0	0.000	0.002	0.017	0.032	1.04	6.10	с С
SK1901B m-106	(with zm)	average	n=9	27.35	07-0 1-70	0.32	15.32	29.66	3.59	11.04	1.52	0.74	0.13	d.l.	d.l.	0.542	6.473	0.202	99.13		0.946	0.018	0.061	0.007	0.231	0.444	0.053	0.161	0.021	0.010	0.002	ı	,	0.005	0.060	0.002	2.028	0.376	0.156	8.28	13.54	574 23
Sample Grain #	spot		Wt%	P205		Y303	La2O3	Ce2O ₃	Pr2O3	Nd2O3	Sm2O3	Gd2O3	Dy2O3	Er2O3	Yb_2O_3	UO2	ThO_2	PbO	Total	Cations $(0=4)$	Р	Si	Ca	Y	La	Ce	Pr	Nd	Sm	Gd	Dy	Ēr	Yb	D	Th	Pb	Total	Nd/La	Gd/Nd	ThO_{2}^{*}	Th/U	Age [Ma] +/- [Ma]

								Table	3 (conti	nued).								
Sample Grain #	SK1901E mnz-#7		SK1901E mn2-#7		SK1901E mnz-#8		SK1901E mnz-#10		SK1901E mnz-#10		SK1901E mnz-#10		SK1901E mnz-#10		SK1901E mnz-#10		SK1901E mnz-#11	
spot	mantle		цi				core-1		core-2		mantle-1		mantle-2		nin		core	
	average	s.d.	average	s.d.	average	s.d.	average	s.d.	average	s.d.	average	s.d.	average	s.d.	average	s.d.	average	s.d.
Wt%	n=3		n=3		9=u		n=5		n=4		l = l		<i>9=u</i>		u=7		n=13	
P2O5	31.19	0.36	31.18	0.26	31.11	0.58	32.08	0.23	31.72	0.28	30.90	0.21	31.56	0.38	31.98	0.47	32.07	0.27
SiO_2	1.10	0.03	0.87	0.04	1.03	0.38	0.52	10.0	0.76	0.13	1.29	0.04	1.02	0.13	0.86	0.15	0.74	0.13
CaO	1.05	0.04	0.93	0.01	0.91	0.06	0.73	0.04	0.93	0.09	0.98	0.04	0.91	0.06	0.84	0.07	0.95	0.05
Y_{2O_3}	0.04	0.04	0.03	0.02	0.04	0.02	d.l.		0.04	0.01	d.I.		d.l.		d.l.		0.08	0.03
La2O3	15.47	0.05	16.64	0.08	16.11	0.27	16.51	0.18	16.20	0.19	16.23	0.20	16.76	0.18	16.91	0.20	15.67	0.23
Ce2O3	29.87	0.15	31.04	0.09	30.48	0.72	31.52	0.22	30.78	0.13	30.60	0.29	30.98	0.44	31.19	0.66	30.48	0.33
Pr2O3	3.61	0.03	3.60	0.11	3.58	0.18	3.74	0.08	3.67	0.07	3.56	60:0	3.59	0.11	3.60	0.07	3.63	0.13
Nd2O3	11.16	0.02	11.12	0.07	11.14	0.25	11.78	61.0	11.39	0.13	10.39	0.20	10.68	0.20	11.03	0.17	11.70	0.13
Sm2O ₃	1.21	0.12	1.00	0.12	1.16	0.33	133	0.07	1.18	0.11	0.68	0.07	0.86	0.15	0.97	01.0	1.53	0.12
Gd2O3	0.40	0.02	0.30	0.16	0.40	0.22	0.42	0.14	0.25	0.10	0.16	01.0	0.11	0.15	030	0.09	0.63	0.14
Dy_2O_3	d.l.		dl.		d.l.		d.l.		d.l.		d.l.		d.l.		d.l.		d.I.	
Er2O3	dl.		d.l.		d.l.		d.I.		d.l.		d.l.		d.l.		d.l.		d.l.	
Yb_2O_3	d.l.		d.l.		d.l.		Чl.		d.l.		d.l.		d.l.		d.l.		.Lb	
UO_2	0.669	0.014	0.452	0.084	0.508	0.142	0.572	0.016	0.638	0.047	0.225	0.095	0.317	0.056	0.392	0.083	0.621	0.036
ThO_2	7.557	0.085	6.150	0.197	6.903	1358	4.096	0.162	5.730	0.217	8.452	0.200	6.917	0.377	5.974	0.84I	5.864	0.462
PbO	0.244	0.006	0.171	0.003	0.206	0.038	0.159	0.006	0.193	0.008	0.211	0.013	0.179	0.012	0.166	0.016	0.204	0.012
Total	103.87	0.43	103.78	0.15	103.85	0.47	103.81	0.50	103.76	0.49	103.95	0.36	104.27	0.26	104.49	0.51	104.48	0.40
Cations (0=4)																		
Р	0.986	0.003	0.988	0.005	0.985	0.013	1.008	0.003	0.999	0.005	0.978	0.003	166.0	0.007	0.998	0.008	1.002	0.005
Si	0.041	0.001	0.033	0.001	0.039	0.015	0.019	0.000	0.028	0.005	0.048	0.001	0.038	0.005	0.032	0.006	0.027	0.005
Ca	0.042	00.00	0.037	0.001	0.037	0.003	0.029	0.002	0.037	0.004	0.039	0.001	0.036	0.002	0.033	0.003	0.038	0.002
Y	0.001	0.001	0.001	0.000	0.001	0.000	0.000	0.001	0.001	0.000	d.l.		d.l.		d.l.		0.001	0.001
La	0.213	0.002	0.230	0.002	0.222	0.004	0.226	0.003	0.222	0.003	0.224	0.003	0.229	0.003	0.230	0.002	0.213	0.003
Ce	0.408	0.005	0.425	0.003	0.417	0.008	0.428	0.002	0.419	0.004	0.419	0.004	0.420	0.007	0.421	0.007	0.412	0.005
Pr	0.049	0.000	0.049	0.002	0.049	0.002	0.051	0.001	0.050	0.001	0.049	0.001	0.048	0.002	0.048	0.001	0.049	0.002
PN	0.149	0.001	0.149	00.00	0.149	0.003	0.156	0.003	0.151	0.002	0.139	0.003	0.141	0.002	0.145	0.002	0.154	0.002
Sm	0.016	0.002	0.013	0.001	0.015	0.004	0.017	0.001	0.015	100.0	600.0	0.001	0.011	0.002	0.012	100.0	0.019	100.0
Gd	0.005	0.000	0.004	0.002	0.005	0.003	0.005	0.002	0.003	0.001	0.002	0.001	0.001	0.002	0.004	0.001	0.008	0.002
Dy Dy				,		,	, ·			,		,		,	,			
5			ı				I						I.			·		
Y b				,					, . , .	, ,				, ,			, .	
	0.006	0.00.0	0.004	100.0	0.004	100.0	0.005	0.000	0.005	0.000	0.002	100.0	0.003	0.000	0.003	100.0	0.005	0.000
e i	0.064	100.0	0.052	0.002	0.059	0.012	0.035	100.0	0.049	0.002	0.072	200.0	9CU.U	0.003	0.000	/00.0	0.049	0.004
Pb	0.002	0.000	0.002	00000	0.002	000.0	0.002	0.000	0.002	0.000	0.002	0.000	0.002	0.000	0.002	0.000	0.002	000.0
Total	1.986	0.002	1.990	0.003	1.988	0.002	1.985	0.002	1.986	0.003	1.987	0.002	1.985	0.002	1.983	0.002	1984	0.001
Nd/La	0.376	0.002	0.349	0.004	0.361	010.0	0.372	0.006	0.367	0.006	0.334	0.00	0.332	0.008	0.340	0.004	0390	0.007
Gd/Nd	0.083	0.005	0.063	0.034	0.084	0.044	0.082	0.028	0.051	0.020	0.035	0.021	0.023	0.033	0.063	0.019	0.125	0.028
ThO_{2}^{*}	9.78	0.13	7.65	0.09	8.59	1.65	6.00	0.21	7.85	0.33	9.20	0.50	7.97	0.47	7.27	0.70	7.93	0.56
U/IT	11.55	0.15	14.30	2.99	14.62	4.02	732	0.15	9.22	0.56	41.88	9.05	22.77	3.57	16.40	4.72	9.65	0.46
Age [Ma]	587	~ ~	529	00	267 33	сс г	625 31	13	579 24	4 -	542 20	12	531 33	20	538 76	15 2	606 24	، ۱۱
+/-1 M d	7	د	5	د	11	<i>.</i>	1	-	5	-	3	-	3	-	3	4	5	1

			s.d.		0.31	0.05	0.05		0.24	030	0.09	0.25	0.12	0.13	0.02	10.0		0.052	0.344	0.006	0.43		0.005	0.002	0.002		0.003	0.005	0.001	0.003	0.002	0.002	0.000	0.000		0.000	0.003	0.000	0.002	0.009	0.024	0.22	1.79	21
K1901E	nnz-#24	nim	iverage	n=7	31.81	0.51	0.51	d.l.	17.24	32.01	3.68	11.89	1.30	44.0	0.02	0.01	d.l.	0.478	3.300	0.111	103.55		1.004	610.0	0.020	1	0.237	0.437	0.050	0.158	0.017	0.005	0.000	0.000	,	0.004	0.028	0.001	1.986	0.360	0.086	4.88	7.23	537
s	I		s.d. ı		0.48	0.26	0.04		0.55	0.67	0.11	0.27	0.15	0.0	0.02	0.02		0.257	1.015	0.049	0.58		010.0	0.010	0.002	ı	0.007	0.008	0.001	0.004	0.002	0.001	0.000	0.000		0.002	0.009	0.001	0.002	0.014	0.020	1.72	10.00	25
SK1901E	mnz-#24	mantle-1	average	n=9	30.70	1.31	0.98	d.l.	16.22	30.21	3.51	10.47	0.81	0.22	0.01	0.01	d.l.	0.470	8.261	0.229	103.72		0.976	0.049	0.039	ī	0.225	0.415	0.048	0.140	0.010	0.003	0.000	0.000		0.004	0.071	0.002	1.988	0.337	0.049	9.82	22.37	546
			s.d.		0.66	0.20	0.18		0.47	0.54	0.11	0.43	0.24	0.17	10:0	0.03		0.145	1.189	0.029	0.72		110.0	0.008	0.007	ı	0.006	0.007	0.001	0.005	0.003	0.002	0.000	0.000		0.001	0100	0.000	0.003	0.015	0.035	125	4.86	34
SK1901E	mnz-#24	core	average	n=10	31.48	0.82	0.96	d.l.	16.39	30.79	3.61	11.12	1.09	0.29	0.01	0.02	Ч.I.	0.559	6.066	0.194	103.69		100.0	0.031	0.038	ī	0.226	0.421	0.049	0.148	0.014	0.004	0.000	0.000		0.005	0.052	0.002	1.987	0354	0.061	7.93	12.02	580
			s.d.		0.37	0.18	0.05		0.26	0.24	0.11	0.15	01.0	0.09				0.087	0.694	0.024	0.55		100.0	0.00/	0.002	Ţ	0.003	0.002	0.001	0.001	0.001	0.001		,		0.001	0.006	0.000	0.001	100.0	0.020	0.88	1.52	7
SK1901E	mnz-#19	nim	average	n=5	30.03	1.66	1.00	d.I.	15.61	29.58	3.44	10.39	0.78	0.16	d.I.	d.l.	d.I.	0.735	9.452	0.289	103.36		0.963	0.063	0.041	ı	0.218	0.410	0.047	0.141	0.010	0.002	,	,	,	0.006	0.081	0.003	1.988	0.347	0.036	11.89	13.27	572
			s.d.		0.24	0.09	0.11		0.26	0.44	0.14	0.22	01.0	0.13				0.056	0.688	0.020	0.42		0.003	0.003	0.005		0.004	0.006	0.002	0.003	0.001	0.002		,		0.000	0.006	0.000	0.002	0.005	0.026	0.85	0.55	61
SK1901E	mnz-#19	core	average	n=13	31.79	0.76	0.94	d.l.	16.20	30.93	3.64	11.34	1.11	0.28	d.l.	d.l.	d.l.	0.596	5.751	0.192	103.84		666.0	0.028	0.037	ī	0.222	0.421	0.049	0.150	0.014	0.003		,		0.005	0.049	0.002	1.985	0365	0.057	7.73	986	587
			s.d.		0.24	0.03	0.04		0.15	0.30	0.07	0.17	0.07	0.10				0.053	0.126	0.006	0.64		0.003	100.0	0.002	,	0.002	0.004	0.001	0.002	0.001	0.001	,	,	,	0.000	0.001	0.000	0.002	0.007	0.021	0.13	2.05	13
SK1901E	mnz-#11	nim	average	n=12	31.93	0.79	0.92	d.I.	16.65	31.22	3.62	11.05	1.01	0.29	d.I.	d.l.	d.l.	0.424	6.133	0.172	104.50		866.0	0.029	0.036	ı	0.227	0.422	0.049	0.146	0.013	0.004	,			0.003	0.052	0.002	1.985	0.346	0.060	7.54	15.03	537
			s.d.		0.17	0.05	0.02		0.10	0.24	0.14	0.16	0.06	0.10				0.014	0.111	0.006	0.50		0.003	0.002	0.001		0.002	0.003	0.002	0.002	100.0	0.001	,	,	,	0.000	0.001	0.000	0.002	0.004	0.022	0.13	0.81	12
SK1901E	mnz-#11	mantle-2	average	n=9	31.27	1.17	0.89	d.l.	16.52	31.36	3.49	10.56	0.76	0.15	d.l.	d.l.	d.l.	0.361	7.550	0.201	104.57		0.983	10.0	0.036	d.l.	0.226	0.426	0.047	0.140	0.010	0.002	,		,	0.003	0.064	0.002	1.986	0.334	0.034	8.75	21.39	543
			s.d.		0.23	0.05	0.03		0.27	0.31	01.0	0.13	0.07	0.12				0.121	0.225	0.00	0.43		0.004	0.002	0.001		0.003	0.004	0.001	0.002	100.0	0.001	,		,	0.001	0.002	0.000	0.002	0.008	0.026	0.36	7.10	10
SK1901E	mnz-#11	mantle-1	average	n=l l	31.08	134	1.00	d.I.	15.80	30.55	3.52	10.61	0.81	0.21	d.I.	d.l.	d.I.	0.417	8.594	0.232	104.47		876.0	0.050	0.040	d.l.	0.217	0.416	0.048	0.141	0.010	0.003		,	,	0.003	0.073	0.002	1.985	0.350	0.047	9.98	22.91	6 1 2
Sample	Grain #	spot		Wt%	P2O5	SiO ₂	CaO	Y_{2O_3}	La2O3	Ce2O3	Pr2O3	Nd2O3	Sm2O ₃	Gd2O3	Dy2O3	Er203	Yb_2O_3	UO2	ThO ₂	PbO	Total	Cations (0=4)	ч ;	N.	Ca	Y	La	Ce	Pr	PN	Sm	Gd	Dy	Ē	Yb	D	Th	Pb	Total	Nd/La	Gd/Nd	ThO_{2}^{*}	Th/U	Age [Ma]

Table 3 (continued).

Table	4. CI	iemica	l compo	ositions	iot moi	nazites	in pelit	ic gnei	ss (214	19) froi	m Mt.	Rüser-	Larsen,	Napieı	r Comp	lex, Ea	ıst Anto	arctica.	
Sample Grain # spot	21409 m1 17 EA	21409 m1 18 EA	21409 m1 19 EA	21409 m1 20 EA	21409 m1 21 EA	21409 m2 EA EA	21409 m2 EA	21409 m2 EA EA	21409 m2 EA EA	21409 m2 26 EA	21409 m3 27 *	21409 m4 28 EA	21409 m4 29 EA	21409 m4 <i>EA</i>	$21409 \\ m4 \\ 31 \\ EA \\ EA$	21409 m5 32 EA	21409 m5 33 EA	21409 m6 34 <i>I</i>	21409 m7 35 IA
We% Processors Processors Cao Cao Cao Sanooj Otacoj Dysoj Dysoj Dysoj Dysoj Dysoj Trato Total Total	30.07 1.19 1.19 1.10 d.l. 32.33 32.33 32.33 32.33 0.97 0.14 d.l. d.l. d.l. d.l. d.l. 10.78 0.14 d.l. 10.78 0.14 d.l. 10.78 10.778 10.78 10	2982 097 120 004 13.79 32.66 32.66 33.07 11.61 0.94 0.17 d.1. d.1. d.1. d.1. 0.25 0.17 360 0.300 7.360 10.360 10.360 10.360 10.360 11.61 1	29.80 1.13 1.13 1.13 1.3.71 3.3.31 3.3.6 0.0.4 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	2931 1.19 1.22 d.1. 1.33 3.13 1.123 3.13 3.13 3.13 1.123 0.84 d.1. d.1. d.1. d.1. d.1. 1.22 0.20 0.20 0.20 0.16 d.1. 1.22 1.22 1.22 1.22 1.22 1.22 1.22	2980 1.56 1.31 1.35 1.395 0.04 1.395 3.255 3.255 3.255 3.255 0.04 d.1 0.87 0.19 0.20 0.19 0.20 0.19 0.20 0.19 0.20 10.3755 10.3755 10.3755 10.3755 10.3755 10.3755 10.3755 10.3755 10.37	29.85 0.78 1.07 d.l. 14.93 31.96 2.97 11.52 1.69 0.65 0.13 d.l. d.l. d.l. 0.385 0.3850 0.541 0.541 0.541 0.541 0.541 0.541 0.541 0.541 0.541 0.551 0.551 0.551 0.551 0.552 0.5550 0.5550 0.5550 0.5550 0.5550 0.55500000000	29.76 1.02 1.02 1.09 d.l. 1.461 1.165 1.294 1.165 1.294 1.165 0.72 0.72 0.72 0.385 0.385 0.589 0.580 0.580	30.65 0.57 1.07 0.06 0.06 1.1480 3.2.59 3.2.59 3.2.59 0.13 d.1. d.1. d.1. 0.225 5.550 0.225 103.08	2931 154 126 d.l. 13.61 31.92 31.92 31.92 0.19 0.19 0.19 0.19 0.19 0.293 0.293 0.293 0.293 0.293 0.293	30.19 30.19 1.09 32.19 32.19 32.19 11.57 1.74 11.57 0.67 0.14 d.l. d.l. d.l. 0.56 0.560 0.5060 1.400 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74	29.25 1.19 1.19 1.10 0.03 0.03 0.13 3.17 11.30 0.20 0.13 d.1. d.1. d.1. 0.337 0.13 d.1. 0.13 d.1. 17.920 0.1301011253	30.10 0.92 0.06 0.06 0.06 3.14 1.12 3.14 1.09 0.15 d.l. 0.15 d.l. 0.15 0.16 0.15 0.585 0.5	30.58 0.53 1.17 0.08 14.79 32.21 2.97 11.58 11.58 0.13 d.1. d.1. d.1. d.1. d.1. 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0	29.94 1.19 1.19 1.19 1.12 1.12 3.08 3.08 3.03 1.05 1.05 0.18 d.l. d.l. d.l. 0.18 d.l. 0.18 d.l. 10.55 1103.55 1103.55	30.64 0.59 1.13 1.14.69 1.4.69 1.14.69 3.181 2.96 1.1.69 1.1.69 1.1.60 0.12 d.1. d.1. d.1. 0.297 0.479 0.479 0.479	30.48 30.48 1.16 1.16 1.15.17 3.220 3.220 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.7	30.23 0.85 1.08 1.08 0.04 3.24 1.31 1.31 1.31 0.43 0.43 0.43 0.43 0.43 0.43 0.10 d.1. d.1. 0.10 0.10 0.10 0.10 0.10	30.00 1.68 1.68 0.08 0.08 3.057 3.057 11.43 11.45 11.45 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43	30.26 30.26 1.31 0.04 1.32.00 2.98 11.60 0.14 0.15 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Cations (O=4) Si Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	0.967 0.045 0.053 0.053 0.450 0.045 0.045 0.013 0.013 0.003 0.003 0.002 0.002 0.004 1.998	0.969 0.037 0.0459 0.0459 0.459 0.459 0.0459 0.012 0.003 0.002 0.002 0.002 0.005 2.001	0.966 0.043 0.053 0.053 0.045 0.045 0.045 0.045 0.045 0.045 0.001 0.001 0.000 0.000 0.000 2.001 2.001	0.957 0.046 0.056 0.056 0.199 0.457 0.041 0.011 0.001 0.003 0.000 0.000 0.000 0.000 2.004 2.004	$\begin{array}{c} 0.955\\ 0.059\\ 0.053\\ 0.001\\ 0.015\\ 0.0451\\ 0.0451\\ 0.0451\\ 0.001\\ 0.001\\ 0.002\\ 0.000\\$	0.973 0.030 0.044 0.0451 0.0451 0.0451 0.022 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.003	0.969 0.035 0.045 0.0446 0.0446 0.0446 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.985 0.021 0.044 0.044 0.207 0.453 0.045 0.045 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.950 0.059 0.052 0.052 0.0447 0.0447 0.0411 0.0011 0.0011 0.002 0.002 0.000 0.002 0.000 2.002 2.002	0.980 0.025 0.045 0.045 0.045 0.045 0.045 0.023 0.002 0.002 0.002 0.000 0.002 0.000 2.000 2.000	$\begin{array}{c} 0.957\\ 0.046\\ 0.054\\ 0.051\\ 0.061\\ 0.458\\ 0.0458\\ 0.0458\\ 0.0458\\ 0.001\\ 0.001\\ 0.000\\$	0.971 0.035 0.054 0.001 0.200 0.044 0.0153 0.014 0.0153 0.014 0.004 0.004 0.004 0.006 0.004 0.006	0.984 0.020 0.047 0.041 0.448 0.448 0.041 0.157 0.053 0.000 0.000 0.000 0.000 1.988 1.998	0.963 0.056 0.048 0.048 0.199 0.154 0.014 0.014 0.014 0.014 0.004 0.002 0.002 0.002 0.002 0.002 2.001	0.986 0.022 0.046 0.044 0.206 0.443 0.044 0.159 0.010 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.001 0.000 1.988 0.001 0.0000 0.001 0.0000 0.00000000	0.980 0.024 0.047 0.041 0.212 0.212 0.212 0.212 0.041 0.158 0.002 0.000 0.002 0.000 0.002 0.000 2.000 2.000	0.977 0.032 0.044 0.001 0.202 0.453 0.045 0.045 0.017 0.017 0.017 0.017 0.005 0.001 0.002 1.988	0.972 0.037 0.069 0.069 0.186 0.156 0.018 0.018 0.018 0.018 0.005 0.000 0.002 0.000 0.003 2.006	0.976 0.033 0.0354 0.054 0.197 0.197 0.197 0.197 0.197 0.197 0.016 0.006 0.006 0.0002 0.0002 0.0002 0.0002 0.0002 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.00000000
Nd/La Gd/Nd ThO2* Th/U Age [Ma] +/- [Ma]	0.384 0.055 9.42 12.25 1018 14 d.l.: below	0.439 0.051 8.43 25.10 1377 15 15	0.433 0.049 8.87 25.44 1485 15 15 15	0.419 0.042 9.26 24.53 1944 14	0.419 0.039 9.20 25.21 1566 14	0.402 0.131 7.27 15.52 1704 18	0.416 0.144 7.22 15.35 1860 1860	0.416 0.130 6.31 25.24 761 21	0.424 0.041 10.44 32.62 1975 13	0.405 0.135 6.97 15.65 1338 19	0.434 0.042 9.24 24.02 24.02 2212 14	0.412 0.063 9.50 10.61 1423 1423	0.408 0.136 7.06 19.79 942 18	0.415 0.064 9.31 15.02 1842 14	0.415 0.159 7.21 15.15 15.15 15.30 1530	0.400 0.139 7.16 17.25 792 18	0.436 0.083 7.24 20.55 693 18	0.452 0.087 9.78 9.78 2498 12	0.431 0.088 9.40 8.10 2118 14
	I: inclusio	n in garnı	et or sillin	ianite, IA.	inclusion	ı in alteret	1 garnet, I	A: edge o	of altered §	garnet, BS	: with bio	tite-sillim	anite aggr	egate, *: c	other				

132

Sample	21409	21409	21409	21409	21409	21409	21409	21409	21409	21409	21409	21409	21409	21409	21409	21409	21409	21409	21409
Grain #	ľ.	<u>_</u>	<u>_</u>	'n/	m8	m8	200	em	m10	mIO	m1 0	mll	mll	mll	mll	m12	m12	m12	m13
spot	36	37	38	39	9	41	4	6	4	45	4	47	8	49	<i>S</i> 0	51	52	23	2
	IA	IA	IA	IA	*	*	*	*	BS	BS	BS	1	1	1	1	*	*	¥	*
Wt%																			
P2O5	30.17	29.87	29.07	29.24	29.37	29.90	28.68	31.15	30.48	30.36	30.34	29.53	29.53	28.56	30.19	29.19	29.00	30.06	28.16
SiO ₂	0.82	1.01	1.40	1.03	1.47	1.31	1.62	0.35	0.29	0.22	0.25	1.14	1.23	131	1.20	1.65	1.73	0.94	2.24
CaO	130	132	130	132	1.10	0.91	1.12	0.07	0.25	0.24	0.23	1.61	1.43	136	1.56	1.21	1.11	0.94	1.30
Y_{2O3}	d.l.	0.06	0.09	0.05	d.l.	d.l.	0.05	d.l.	d.l.	d.l.	0.04	0.03	d.I.	0.07	d.l.	d.l.	d.l.	0.08	d.l.
La2O3	13.91	13.57	13.52	13.57	13.32	13.83	13.22	16.62	15.18	15.62	15.76	12.31	12.78	12.82	12.60	13.10	13.44	14.46	12.51
Ce2O ₃	32.05	32.05	31.62	32.27	32.48	33.18	32.27	32.89	34.10	34.22	3435	31.12	31.48	31.73	31.53	31.73	32.36	32.18	31.37
PrO	3.05	3.08	3 01	3 07	3 20	3.78	3 10	3 20	545	3 38	۲ ۲ ۲	415	3 19	315	3 16	3 19	3 27	3 03	3 12
Nd-O-	11 75	17.11	11 30	11.67	11 34	12 10	11 24	16.49	15.61	15.21	15.30	12 20	12.08	11 96	12 18	11.84	11 30	11 06	11.21
SmoO.	C/ 11	1/11	0000	0.05	010	01.71	510	1 50	10.01	13.01	90 I	101	101	0.08	01.21	5 2	020	1 60	1011
511CO	70 I	01.1	0.0	66.0	61.0	0.10	1.0	201	33	32	01 C	10.1	10.1	02.0	11.1	5 9	61.0	1.07	0.00
Gd2U3	0.38	0.50	0.70	0.24	0.11	01.0	c1.0	<u>67.0</u>	17.0	67.0	/1.0	67.0	0.28	0.76	0.78	0.18	0.21	00	0.23
Dy2O3	0.14	0.16	0.16	0.18	0.21	0.16	0.19	d.l.	d.l.	d.l.	d.l.	0.18	0.16	0.18	0.17	0.16	0.18	0.16	0.25
Er2O3	d.l.	d.I.	d.I.	d.l.	d.l.	d.l.	d.l.	d.l.	d.l.	d.l.	d.l.	d.l.	d.I.	d.I.	d.I.	d.L	d.l.	d.I.	dl.
$Yb_{2}O_{3}$	d.l.	d.l.	d.I.	d.l.	d.l.	d.l.	d.l.	d.l.	d.l.	d.l.	d.l.	d.l.	d.I.	d.l.	d.I.	d.l.	d.l.	d.l.	d.l.
UO2	0.879	0.728	0.341	0.355	0.186	0.207	0.184	0.138	0.228	0.190	0.199	0.265	0.266	0.246	0.265	0.256	0.194	0.298	0.182
ThO2	6.360	7.230	8.840	7.550	8.890	7.080	9.050	0.114	1.121	0.994	0.957	8.630	8.470	8.640	8.560	8.820	8.840	5.710	11 500
DHO	0.938	0.740	0.811	040	0.524	0.478	0 523	0.045	0 165	0 143	0 177	1 065	1 040	1 044	1 065	0.706	0.810	0.603	0.012
Totol	102.00	102 00	1100 65	100 46	100 001	102 42	1001	100.001	100.26	0100	100 44	100 50	102.06	102 27	102 00	102 10	CT0:0	0.000	71/-0
10141 C-4 (0 4)	20.001	00.001	CO.701	04:701	66.701	107-70	01.201	76.701	00701	107.701	10771	60.701	102.201	70701	100.001	01.CU1	70.001	10.201	60° COT
Canons (U=4)	1000	0.000		01000		0.000	0100		0000	0000		0.000	0.00		0.000	0100		0100	0100
ч. і	C/60	0.908	166.0	969.0	1 26.0	796.0	0.945	/66.0	989.U	066.0	/96.0	796.0	0.96.0	#6.0	0.906	846.0	0.942	276.0	616.0
Si	0.031	0.038	0.054	0.040	0.056	0.050	0.063	0.013	0.011	0.008	0.010	0.044	0.047	0.051	0.045	0.063	0.066	0.036	0.086
Ca	0.053	0.054	0.054	0.055	0.045	0.037	0.047	0.003	0.010	0.010	0.010	0.066	0.059	0.057	0.063	0.050	0.045	0.039	0.054
Υ	,	0.001	0.002	0.001			0.001	,		,	0.001	0.001		0.001	,			0.002	
La	0.196	0.192	0.193	0.194	0.188	0.194	0.189	0.232	0.215	0.222	0.223	0.175	0.181	0.185	0.176	0.185	0.190	0.204	0.178
Ce	0.448	0.449	0.447	0.458	0.456	0.462	0.459	0.455	0.479	0.482	0.483	0.438	0.442	0.454	0.436	0.445	0.455	0.450	0.443
Pr	0.042	0.043	0.042	0.043	0.045	0.045	0.044	0.044	0.048	0.047	0.048	0.044	0.045	0.045	0.044	0.045	0.045	0.042	0.044
Nd	0.160	0.160	0.156	0.161	0.155	0.164	0.156	0.223	0.214	0.209	0.210	0.168	0.166	0.167	0.164	0.162	0.156	0.163	0.156
Sm	0.017	0.015	0.012	0.013	0.010	0.010	0.010	0.021	0.017	0.016	0.017	0.014	0.013	0.013	0.014	0.014	0.010	0.022	0.011
Gd	0.005	0.004	0.003	0.003	0.001	0.002	0.002	0.003	0.003	0.003	0.002	0.004	0.003	0.003	0.004	0.002	0.003	0.00	0.003
Dy	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.000	0.000	0.000	0.000	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003
Er	0.000	0.000	0.000	0.000	0.000	0.000	0.000					0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Yb		,	,	,	,		,	,	,		,		,	,	,	,		,	,
U	,	,		,	,				,	ī	,			,	,	,		,	,
Th	0.055	0.063	0.078	0.067	0.078	0.061	0.080	0.001	0.010	0.00	0.008	0.076	0.074	0.077	0.074	0.077	0.077	0.050	0.101
Pb	0.010	0.008	0.008	0.010	0.005	0.005	0.005	0.000	0.002	0.001	0.001	0.011	0.011	0.011	0.011	0.007	0.008	0.006	0.00
Total	2.002	2.003	2.005	2.009	1.999	1.998	2.003	1.994	1.999	2.000	2.001	2.007	2.006	2.012	2.002	2.003	2.003	1.998	2.008
Nd/La	0.441	0.450	0.436	0.449	44.0	0.456	0.443	0.518	0.536	0.508	0.506	0.517	0.493	0.487	0.504	0.471	0.442	0.431	0.472
Gd/Nd	0.075	0.060	0.054	0.048	0.023	0.031	0.032	0.036	0.032	0.036	0.027	0.056	0.053	0.050	0.053	0.035	0.043	0.136	0.048
ThO_{2}^{*}	9.78	9.92	10.12	8.97	9.55	7.82	9.70	0.62	1.98	1.71	1.69	9.70	9.5	9.63	9.63	9.76	9.57	6.85	12.17
U/4T	7.40	10.16	26.48	21.73	48.83	34.94	50.35	0.84	5.04	5.36	4.92	33.27	32.61	35.89	33.04	35.27	46.70	19.56	64.79
Age [Ma]	2172	1710	1831	2384	1272	1411	1250	1659	1905	1905	1721	2467	2452	2439	2484	1660	1949	2004	1717
+/- [Ma]	13	13	13	15	4	17	13	211	99	11	F	4	4	4	4	13	4	16	=
	I: inclusi	on in garn	tet or silli	manite, IA	: inclusio	n in altere	d garnet,	EA: edge	of altered	garnet, BS	S: with bio	tite-sillim	anite aggi	regate, *:	other				

Sample	Age populations	Total # of analytical spots and monazite grains in a thin section	Calculated age*	Type**
Skallen, Lütz	zow-Holm Complex			
2303A	550-520 Ma	27 spots on 2 monazite grains	547+/-6 Ma	Α
1901A	560-530 Ma	74 spots on 9 monazite grains	540+/-5 Ma	Α
1901B	640-530 Ma	149 spots on 23 monazite grains	553+/-6 Ma	В
1901E	630-510 Ma	172 spots on 29 monazite grains	543+/-4 Ma	В
Mt. Riiser-L	arsen, Napier Compl	ex		
21409	2500-700 Ma	38 spots on 13 monazite grains	2470+/-30 Ma	

 Table 5.
 Summary of EMP monazite ages of garnet-bearing pelitic gneisses from the Lützow-Holm

 Complex and the Napier Complex, East Antarctica.

* Weighted average age (2-sigma error) calculated for major age group.

** See text for detail of type A and B classification.

Fig. 6. EMP monazite U-Th-Pb apparent ages of garnet-biotite-bearing metapelites from Skallen, Lützow-Holm Complex and garnet-sillimanite gneiss from Mt. Riiser-Larsen, Napier Complex. Errors are at 1-sigma (67% confidence) uncertainty.

Fig. 6 (continued).

and 1901A: hereafter named as group-A) yield a single 560-500 Ma age population, whereas the other two samples (1901B and 1901E: named as group-B) suggest the presence of at least two (560-500 Ma and 650-580 Ma) age populations (Fig. 6). The weighted averages of the younger age populations (540 ± 5 Ma $\sim 553\pm 6$ Ma; mainly from higher-BEI luminescence rim or structureless or homogeneous grain) are consistent in all four samples (Table 5 and Fig. 6). Weighted averages of older ages in group-B samples could not be statistically defined, although age data lie within a range of 650-

Fig. 7. EMP U-Th-Pb ages versus chemical composition of monazite in metapelite from Skallen.

580 Ma, in many cases, from a lower-BEI luminescence core or structureless or homogeneous grain. The numbers of monazite grains found in one thin section are different between group-A (2 and 9 grains in each sample; Table 5) and group-B samples (23 and 29 grains in each); hence, the *group-A* samples have numbers of monazite grains less than $1/10\sim1/3$ of *group-B* samples.

Age-chemistry relations of analyzed monazite are shown in Fig. 7. Monazite has a relatively large compositional variation within each sample. For group-A samples

Fig. 7 (continued).

Fig. 8. Backscattered-electron image (BEI) of monazite grain-#1, sample 2303A (group-A), from Skallen. Six distinct zones give consistent c. 550 Ma ages.

(2303A and 1901A), backscattered electron images of relatively coarse monazite grains (e.g., grain #1 of 2303A; Fig. 8) show five distinct zones (from inner zone (I) to outer zone (V)), along with a bright-BEI patchy zone (VI). Compositional changes from zone-(I) to zone-(VI) are mainly controlled by substitution between ThSiO₄ (huttonite) and (La, Ce, Pr, Nd)PO₄ (REE monazite), with brighter BEI zones corresponding to higher huttonite contents. No association, however, is observed between age and monazite composition.

For group-B samples (1901B and 1901E), slight compositional differences between 650-580 Ma and 560-500 Ma monazites can be seen: older (650-580 Ma) monazite has higher Nd, Sm, Gd, Dy and lower Si (and possibly Ca and Th) contents than younger (560-500 Ma) domains and/or grains (Fig. 7). Compositional change of monazite from 650-580 Ma to 560-500 Ma corresponds to the following substitutions among the end member components (monazite: (La, Ce)PO₄, huttonite: ThSiO₄, brabantite: ThCa (PO₄)₂) from left to right:

Fig. 9 (opposite). Modes of occurrence of monazite grains (A, C) and BEI of monazites (B, D-H) in garnetbiotite-bearing metapelitic (group-B) samples from Skallen. Bright symbol indicates 560–500 Ma domains/ grains and dark symbol is older 650–580 Ma domains/grains. A. Monazite (grain-#4) on garnet edge. Plane-polarized light. B. BEI of monazite grain-#4. C. Fine-grained monazite (grain-#102) enclosed within spinel. Plane-polarized light. D. BEI of monazite grain-#102. E-F-G-H. BEI of monazite grains.

139

Fig. 9.

REE+P (monazite) = Th+Si (huttonite), 2REE (monazite) = Th+Ca (brabantite).

There is no systematic relationship between monazite age and mode of occurrence; 650–580 Ma monazite domains and grains are present as both inclusions in garnet and in the matrix (Fig. 9). Older (650–550 Ma) cores are occasionally enclosed by 550–500 Ma overgrowths (Fig. 9).

4.3. Monazite ages and chemistry of the Napier Complex sample

Thirteen monazite grains were examined in a thin section of sample 21409, and can be classified into the following modes of occurrence (Fig. 10): (1) 2 grains as inclusions in garnet or sillimanite; (2) one grain as inclusion on an intracrystal fracture in garnet; (3) one grain in biotite-sillimanite aggregate; (4) 4 grains associated with biotite-bearing alteration zones at the edge of garnet porphyroblasts, and (5) 5 grains at grain boundaries of various minerals.

Monazite inclusions in unfractured garnet or sillimanite without any fracturing suggest 2500-2440 Ma ages, consistent with previously reported monazite ages. Monazite associated with biotite-bearing textural domains, biotite-bearing coronas arround garnet, intracrystalline fractures within garnet, or aggregates of fine-grained

Fig. 10. BEI of monazite grains in garnet-sillimanite gneiss from Mt. Riiser-Larsen. A. Monazite included in garnet porphyroblast. B. Monazite in fine-grained biotite-sillimanite aggregate. C. Monazite grains around altered garnet porphyroblasts. D. Monazite included in garnet with intracrystalline fractures.

Fig. 11. EMP U-Th-Pb ages versus chemical composition of monazite in metapelite from Mt. Riiser-Larsen area.

biotite-sillimanite yield wider ranging ages from 2400 Ma to 700 Ma. The 2500-2440 Ma monazite has lower La and Ce and higher Ca content than other contexts (Fig. 11). This suggests a change of monazite composition from *c*. 2500 Ma- to younger ages involving substitution of a brabantite component:

2REE (monazite) = Th + Ca (brabantite).

It is not known what causes this compositional change, which may be controlled by changes in coexisting solid or fluid phases. Younger monazite grains (*e.g.*, grain-#10) in biotite-sillimanite aggregates have distinctively high La, Ce, Nd and Sm (L-MREE) contents and yield 1910–1720 Ma U-Th-Pb chemical ages.

5. Discussion

5.1. Pre- and peak metamorphic processes in the Lützow-Holm Complex On the basis of SHRIMP U-Pb analyses with detailed CL imaging of zircon grains, Shiraishi et al. (2003) demonstrated that amphibolite to granulite-facies metamorphism occurred in the Lützow-Holm Complex at 550-520 Ma. These 550 Ma~ SHRIMP zircon dates are identical with the younger age group $(540\pm5 \,\text{Ma} \sim 554\pm14 \,\text{Ma})$ of our EMP monazite analyses. In contrast, zircon growth at 650–580 Ma, corresponding to older monazite dates, has not been reported (Shiraishi et al., 2003). REE chemical features of 650-580 Ma monazite, such as higher Nd, Sm, Gd and Dy (MREE) contents, indicate changes of the conditions of monazite growth between 650-580 Ma and 550-500 Ma. Such compositional changes may have been controlled by changes in coexisting REE-bearing phases. All of the analyzed samples include garnet, which is one of the major minerals formed in the amphibolite to granulite-facies conditions, and is stable at peak metamorphic temperatures. Relatively M-HREE depleted younger 560-500 Ma monazites were possibly in equilibrium with garnet, which favors M-HREE, whereas MREE-enriched 650-580 Ma monazite may have been stable in garnet-absent assemblages. Some of the \leq 560 Ma monazite grains included in or surrounded by garnet (e.g., mnz-4 of A97121901B; Fig. 9B) are suggestive of this interpretation. The MREEenriched >580 Ma monazites may have been formed as the breakdown of other earlierstage REE-bearing phases such as apatite or allanite.

Dissolution and crystallization mechanisms of monazite are not fully-understood. Phosphorous and LREE solubility in melt (e.g., Green and Watson, 1982; Rapp and Watson, 1986) is a factor that controls the stability of monazite in partially-molten metamorphic rocks. During the prograde heating to temperatures above the solidus, monazite tends to be dissolved due to phosphorous and LREE solubility in anatectic melt. Monazite can be precipitated from melt during cooling, which causes a decrease in solubility of phosphorous and LREE in melt. Although it is not easy to investigate monazite dissolution-crystallization mechanisms quantitatively, our observation that older 650-580 Ma monazite is absent in the monazite-poor group-A samples, but has been preserved widely in the monazite-rich group-B samples (Table 5), is consistent with the interpretation, although it is merely hypothetical, that the monazite-poor group-A samples have never exceeded the phosphorous and LREE saturation in melt. In contrast, in monazite-rich group-B samples, a certain amount of monazite grains have been possibly retained without being completely dissolved in melt, even at the peak of metamorphism, because of excess of phosphorous and LREE over saturation levels in anatectic melt.

According to the above interpretation, the formation of 560–500 Ma monazite is related to peak-T metamorphism. Older 650–580 Ma monazite may have formed in the absence of garnet, and hence pre-dates the formation of garnet under amphibolite to granulite-facies conditions. Fraser (1997) reported the ~620 Ma zircon overgrowth in the garnet-sillimanite-orthopyroxene-bearing pelitic gneiss determined by SHRIMP. It is, however, difficult to determine its exact age and the significance of this event. Similar c. 670 Ma ages in the Lützow-Holm Complex have been implied by Sm-Nd whole rock isochron ages interpreted as magmatism (Nishi *et al.*, 2002; Shibata *et al.*, 1986). The formation of 650–580 Ma monazite in our study may be related to such magmatism, although we could not exclude the possibility of these monazite grains being derived from detrital grains in exotic sediments.

It is known that Pan-African events vary widely in age, from 700 to 500 Ma (e.g.,

Jacobs *et al.*, 2003; Meert, 2003). In the East Antarctic sector, most Pan-African metamorphism occurred in a range of 550–520 Ma (*e.g.*, Shiraishi *et al.*, 1994; Asami *et al.*, 2005; Boger *et al.*, 2002; Jacobs *et al.*, 2003; Meert, 2003). It has also been implied that the area including the Lützow-Holm Complex is the conjugate position of two different (700–550 Ma and 550–520 Ma) orogenic belts (Meert, 2003). Further investigation is essential to assess the mutual relationships of pre- and syn- 550–520 Ma events in this area and their regional tectonic implications.

5.2. Peak- and post-peak metamorphism of the Napier Complex

Timing of UHT metamorphism of the Napier Complex has been discussed by many authors (e.g., Harley and Black, 1997; Grew, 1998; Carson et al., 2002; Kelly and Harley, 2005), and broadly constrained to an age range of 2590-2480 Ma. Monazite ages presented here are 2480 Ma or younger, and demonstrate monazite growth or re-equilibration after peak UHT metamorphism. The 2480-2440 Ma monazite dates in the sample studied are indicative of crystallization at or during the cooling stage of the UHT metamorphism. Other 2400-700 Ma younger monazites more or less relate with biotite-bearing re-hydration textures. Such hydrous minerals (mostly biotite) are common in the intracrystal fractures of garnet, and we suggest that monazite inclusions in garnet are also affected by isotopic disturbance. Isotopic ages younger than 2400 Ma for the Napier Complex have been reported by several authors (2200 Ma, 1700 Ma and 700 Ma xenotime or monazite ages by Grew et al., 2001; 1557 and 1897 Ma Sm-Nd garnet-whole rock ages by Owada et al., 2001; 2200 Ma Sm-Nd internal isochron age by Suzuki et al., 2001; ~2380 Ma Sm-Nd internal isochron age by Suzuki et al., 2006). Our monazite age data presented here, even though scattered, imply the possibility of c. 1900–1700 Ma related with biotite-sillimanite grade event; isotopic disturbance also occurred at c. 700 Ma.

6. Conclusions

Monazite U-Th-Pb chemical dating with full REE chemical analysis using electron microprobe (EMP) is a potentially powerful tool for obtaining age estimates with chemically contextual information in monazite.

This study reports 650–580 Ma ages, significantly older than 550–520 Ma ages reported by SHRIMP zircon analysis, for the first time from the Lützow-Holm Complex. The younger 560–500 Ma ages apparently relate to metamorphic events in which monazite grew in the presence of garnet, and older 650–580 Ma ages are interpreted on the basis of M-HREE-enriched chemistry to metamorphic growth in garnet-absent assmblages, hence, pre-dating the peak metamorphism in this region.

Monazites from garnet-sillimanite gneiss yield 2500–2440 Ma ages from garnet inclusions and 2400–700 Ma ages from the altered domains. Incomplete monazite chemical disturbance makes it difficult to indicate a certain age event, but, at least, incomplete isotopic resetting at 1900–1700 Ma (biotite-sillimanite-grade ?), and pervasive chemical alteration at 700 Ma, are similar to ages previously reported by Grew *et al.* (2001) and Owada *et al.* (2001).

Acknowledgments

The electron microprobe analytical technique for monazite U-Th-Pb chemical dating was developed with the assistance of Dr. K. Yokoyama at the National Science Museum, Japan. We acknowledge Prof. K. Shiraishi and Dr. D. Dunkley for their valuable comments and discussion for U-Th-Pb dating. Samples used in this study were collected by TH during the 1996–1997 and 1997–1998 Japanese Antarctic Research Expeditions (JARE), and the members of JARE, especially Profs. H. Ishizuka, Y. Osanai, Drs. M. Ishikawa, S. Suzuki, T. Toyoshima, M. Owada, T. Tsunogae and W. A. Crowe are thanked for their support during the field work. Constructive reviews by Prof. K. Suzuki and Dr. D. Dunkley improved the manuscript. This study was financially supported by a Grant-in-Aid for Scientific Research to TH from the Ministry of Education, Culture, Sports, Science and Technology No. 16740298.

References

- Asami, M., Suzuki, K. and Adachi, M. (1997): Th, U and Pb analytical data and CHIME dating of monazites from metamorphic rocks of the Rayner, Lützow-Holm, Yamato-Belgica and Sør Rondane Complexes, East Antarctica. Proc. NIPR Symp. Antarct. Geosci., 10, 130–152.
- Asami, M., Suzuki, K., Grew, E.S. and Adachi, M. (1998): CHIME ages for granulites from the Napier Complex, East Antarctica. Polar Geosci., 11, 172–199.
- Asami, M., Suzuki, K. and Grew, E.S. (2002): Chemical Th-U-total Pb dating by electron microprobe analysis of monazite, xenotime and zircon from the Archean Napier Complex, East Antarctica: Evidence for ultra-high-temperature metamorphism at 2400 Ma. Precambrin Res., 114, 249–275.
- Asami, M., Suzuki, K. and Grew, E.S. (2005): Monazite and zircon dating by the chemical Th-U-total Pb isochron method (CHIME) from Alasheyev Blight to the Sør Rondane Mountains, East Antarctica: A reconnaissance study of the Mozambique suture in eastern Queen Maud Land. J. Geol., 113, 59– 82.
- Boger, S.D., Carson, C.J., Fanning, C.M., Hergt, J.M., Wilson, C.J.L. and Woodhead, J.D. (2002): Pan-African intraplate deformation in the northern Prince Charles Mountains, east Antarctica. Earth Planet. Sci. Lett., 195, 195–210.
- Carson, C.J., Ague, J.J. and Coath, C.D. (2002): U-Pb geochronology from Tonagh Island, East Antarctica: implications for the timing of ultra-high temperature metamorphism of the Napier Complex. Precambrin Res., 116, 237–263.
- Cocherie, A. and Albarede, F. (2001): An improved U-Th-Pb age calculation for electron microprobe dataing of monazite. Geochim. Cosmochim. Acta, **65**, 4509–4522.
- Cocherie, A., Legendre, O., Peucat, J.J. and Kouamelan, A.N. (1998): Geochronology of polygenetic monazites constrained by *in situ* electron microprobe Th-U-total lead determination: Implications for lead behavior in monazite. Geochim. Cosmochim. Acta, 62, 2475–2497.
- Fraser, G.L. (1997): Geochronological constraints on the metamorphic evolution and exhumation of the Lützow-Holm Complex, East Antarctica. Ph.D. Thesis, The Australian National University, 254 p.
- Fraser, G.L., McDougall, I., Ellis, D.J. and Williams, I.S. (2000): Timing and rate of isothermal decompression in Pan-African granulites from Rundvågshetta, East Antarctica. J. Metamorph. Geol., 18, 441– 454.
- Green, T.H. and Watson, E.B. (1982): Crystallization of apatite in natural magmas under high-pressure hydrous conditions, with particular reference to orogenic rock series. Contrib. Mineral. Petrol., 79, 96–105.
- Grew, E.S. (1998): Boron and beryllium minerals in granulite-facies pegmatites and implications of beryllium pegmatites for the origin and evolution of the Archaean Napier Complex of East Antarctica. Mem. Natl Inst. Polar Res., Spec. Issue, 53, 74–93.

- Grew, E.S., Suzuki, K. and Asami, M. (2001): CHIME ages of xenotime, monazite and zircon from beryllium pegmatites in the Napier Complex, Khmara Bay, Enderby Land, East Antarctica. Polar Geosci., 14, 99–118.
- Harley, S.L. and Black, L.P. (1997): A revised Archaean chronology for the Napier Complex, Enderby Land, from SHRIMP ion-microprobe studies. Antarct. Sci., 9, 74–91.
- Harley, S.L., Kinny, P.D., Snape, I. and Black, L.P. (2001): Zircon chemistry and the definition of events in Archaean granulite terrains. Fourth International Archaean Symposium, Extended abstract, AGSO Geoscience Australia Record 2001/37, 511–513.
- Hiroi, Y., Shiraishi, K. and Motoyoshi, Y. (1991): Late Proterozoic paired metamorphic complexes in East Antarctica, with special reference to the tectonic significance of ultramafic rocks. Geological Evolution of Antarctica, ed. by M.R.A. Thomson *et al.* Cambridge, Cambridge Univ. Press, 83–87.
- Hokada, T., Misawa, K., Shiraishi, K. and Suzuki, S. (2003): Mid to Late Archaean (3.3–2.5 Ga) tonalitic crustal formation and high-grade metamorphism at Mt. Riiser-Larsen, Napier Complex, East Antarctica. Precambrin Res., 127, 215–228.
- Hokada T., Misawa K., Yokoyama K., Shiraishi K. and Yamaguchi A. (2004): SHRIMP and electron microprobe chronology of UHT metamorphism in the Napier Complex, East Antarctica: implications for zircon growth at >1000°C. Contrib. Mineral. Petrol, 147, 1-20.
- Holmes, A. (1931): Radioactivity and geological time. Physics of the Earth—IV The Age of the Earth, ed. by A. Knopf. Washington D.C., The National Research Council of the National Academy of Sciences, 124–459 (Bull. Natl Res. Counc. (U.S.)).
- Ishikawa, M., Hokada, T., Ishizuka, H., Miura, H., Suzuki, S. and Takada, M. (2000): Geological map of Mt. Riiser-Larsen, Enderby Land, Antarctica. Antarct. Geol. Map Ser., Sheet 37 (with explanatory text 23 p.). Tokyo, Natl. Inst. Polar Res.
- Ishizuka, H., Ishikawa, M., Hokada, T. and Suzuki, S. (1998): Geology of the Mt. Riiser-Larsen area of the Napier Complex, Enderby Land, East Antarctica. Polar Geosci., **11**, 154–171.
- Jacobs, J., Bauer, W. and Fanning, C.M. (2003): Late Neoproterozoic/early Palaeozoic events in central Dronning Maud Land and significance for the southern extension of the East African Orogen into East Antarctica. Precambrin Res., 126, 27–53.
- Jercinovic, M.J. and Williams, M.L. (2005): Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: background acquisition, interferences, and beam irradiation effects. Am. Mineral., 90, 526–546
- Kelly, N.M. and Harley, S.L. (2005): An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica. Contrib. Mineral. Petrol., 149, 57–84.
- Kiyokawa, S., Byrne, T., Taira, A., Sano, Y. and Bowring, S. (2002): Structural evolution of the middle Archean, coastal Pilbara terrane, Western Australia. Tectonics, DOI 10.1029/2001TC001296.
- Kretz, R. (1983): Symbols for rock-forming minerals. Am. Mineral., 68, 277-279.
- Knoper, M., Armstrong, R.A., Andreoli, M.A.G. and Ashwal, L.D. (2001): The Steenkampskraal monazite vein: a subhorizontal stretching shear zone indicating extensional collapse of Namaqualand at 1033 Ma? J. Afr. Earth Sci., 30 (Suppl.), 38–39.
- Ludwig, K.R. (2001): Iwoplot/Ex rev. 2.49: a geochronological tool kit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 1a, 55 p.
- Meert, J.G. (2003): A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics, **362**, 1–40.
- Montel, J.M., Foret, S., Veschambre, M., Nicollet, C. and Provost, A. (1996): Electron microprobe dating of monazite. Chem. Geol., 131, 37–53.
- Motoyoshi, Y. and Ishikawa, M. (1997): Metamorphic and structural evolution of granulites from Rundvågshetta, Lützow-Holm Bay, East Antarctica. The Antarctic Region: Geological Evolution and Processes, ed. by C.A. Ricci. Siena, Terra Antarct. Publ., 65–72.
- Nishi, N., Kawano, Y. and Kagami, H. (2002): Rb-Sr and Sm-Nd isotopic geochronology of the granitoid and hornblende biotite gneiss from Oku-iwa Rock in the Lützow-Holm Complex, East Antarctica. Polar Geosci., 15, 46–65.
- Osanai, Y., Toyoshima, T., Owada, M., Tsunogae, T., Hokada, T., Crowe, W.A., Ikeda, T., Kawakami, T.,

Kawano, Y., Kawasaki, T., Ishikawa, M., Motoyoshi, Y. and Shiraishi, K. (2004): Geological map of Skallen, Antarctica (Revised Edition). Antarct. Geol. Map Ser., Sheet 39 (with explanatory text 23 p.). Tokyo, Natl. Inst. Polar Res.

- Owada, M., Osanai, Y., Tsunogae, T., Hamamoto, T., Kagami, H., Toyoshima, T. and Hokada, T. (2001): Sm-Nd garnet ages of retrograde garnet bearing granulites from Tonagh Island in the Napier Complex, East Antarctica: a preliminary study. Polar Geosci., 14, 75–87.
- Pyle, J.M., Spear, F.S., and Wark, D.A. (2002): Electron microprobe analysis of REE in apatite, monazite, and xenotime: protocols and pitfalls. Phosphates: Geochemical, Geobiological, and Materials Importance, ed. by M. J. Kohn *et al.* Washington, D.C., Mineralogical Society of America, 337–362 (Rev. Mineral. Geochem. Ser. 48).
- Pyle, J.M., Spear, F.S., Wark, D.A., Daniel, C.G. and Storm, L.C. (2005): Contribution to precision and accuracy of chemical ages of monazite. Am. Mineral., 90, 547–577.
- Rapp, R.P. and Watson, E.B. (1986): Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib. Mineral. Petrol., 94, 309–316.
- Sano, Y., Tsutsumi, Y., Terada, K. and Kaneoka, I. (2003): Ion microprobe U-Pb dating of Quaternary zircon: implications for magma cooling and residence time. J. Volcanol. Geotherm. Res., 117, 285– 296.
- Scherrer, N.C., Engi, M., Gnos, E., Jokob, V. and Liechti, A. (2000): Monazite analysis; from sample preparation to microprobe age dating and REE quantification, Schweiz. Mineral. Petrogr. Mitt., 80, 93–105.
- Sheraton, J.W., Tingey, R.J., Black, L.P., Offe, L.A. and Ellis, D.J. (1987): Geology of Enderby Land and western Kemp Land, Antarctica. BMR Bull., 223, 51 p. (with geological map).
- Shibata, K., Yanai, K. and Shiraishi, K. (1986): Rb-Sr whole-rock ages of metamorphic rocks from eastern Queen Maud Land, East Antarctica. Mem. Natl Inst. Polar Res., Spec. Issue, 43, 133–148.
- Shiraishi, K., Ellis, D.J., Hiroi, Y., Fanning, C.M., Motoyoshi, Y. and Nakai, Y. (1994): Cambrian orogenic belt in East Antarctica and Sri Lanka: Implications for Gondwana Assembly. J. Geol., 102, 47–65.
- Shiraishi, K., Hokada, T., Fanning, C.M., Misawa, K. and Motoyoshi, Y. (2003): Timing of thermal events in eastern Dronning Maud Land, East Antarctica. Polar Geosci., 16, 76–99.
- Steiger, R.H. and Jäger, E. (1977): Subcommision on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36, 359–362.
- Suzuki, K. (2005): CHIME (Chemical Th-U-total Pb isochron method) dating on the basis of electron microprobe analysis. J. Geol. Soc. Jpn., 111, 509–526 (in Japanese with English abstract).
- Suzuki, K. and Adachi, M. (1991): Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in South Kitakami terrane, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochem. J., 25, 357–376.
- Suzuki, K., Adachi, M. and Tanaka, T. (1991): Middle Precambrian provenance of Jurassic sandstone in the Mino Terrane, central Japan: Th-U-total Pb evidence from an electron microprobe monazite study. Sediment. Geol., 75, 141–147.
- Suzuki, S., Kagami, H., Ishizuka, H. and Hokada, T. (2001): Sm-Nd mineral isochron age of sapphirinequartz gneiss from the Mt. Riiser-Larsen area in the Napier Complex, East Antarctica. Polar Geosci., 14, 88–98.
- Suzuki, S., Arima, M., Williams, I.S., Shiraishi, K. and Kagami, H. (2006): Thermal history of UHT metamorphism in the Napier Complex, East Antarctica: Insights from zircon, monazite and garnet ages. J. Geol., 114, 65-84.
- Williams, M.L. and Jercinovic, M.J. (2002): Microprobe monazite geochronology: putting absolute time into microstructural analysis. J. Struct. Geol., 24, 1013–1028.
- Williams, M.L., Jercinovic, M.J. and Terry, M.P. (1999): Age mapping and dating of monazite on the electron microprobe: deconvoluting multi-stage histories. Geology, **27**, 1023–1026.
- Yokoyama, K. and Saito, Y. (1996): Petrological study of pre-Tertiary sandstones in the South Kitakami Massif, Northeast Japan. Mem. Natl Sci. Mus., 29, 9–24.
- Zhu, X.K. and O'Nions, R.K. (1999): Monazite chemical composition: some implications for monazite geochronology. Contrib. Mineral. Petrol., 137, 351–363.

Appendix Theoretical basis and error propagation of U-Th-Pb age determination

A detailed explanation of U-Th-Pb age calculation is given in Suzuki (2005) and references therein, and is briefly summarized in this appendix. Long-lived isotopes of uranium and thorium decay to isotopes of Pb with half lives of 4470 million years (238 U), 704 million years (235 U) and 1.4 billion years (232 Th) as follows (n=numbers of isotope, t=year, and λ =decay constant after Steiger and Jäger, 1977):

$$\begin{array}{ll} n_{206} p_{\rm b} = n_{138} (\exp(\lambda_{238} t) - 1), & \lambda_{238} = 1.55125 \times 10^{-10} \\ n_{207} p_{\rm b} = n_{235} (\exp(\lambda_{235} t) - 1), & \lambda_{235} = 9.8485 \times 10^{-10} \\ n_{208} p_{\rm b} = n_{232} p_{\rm h} \{\exp(\lambda_{232} t) - 1\}, & \lambda_{232} = 4.9475 \times 10^{-11} \end{array}$$

An electron microprobe allows not isotopic analysis but chemical analysis, and the measured total of U, Th and Pb oxide weight percentages can be converted to the sum of the numbers of isotopes as follows (w=oxide wt% and M=molecular weight):

$$n_{235_{\rm U}} + n_{238_{\rm U}} = \text{total } n_{\rm U} = \frac{w_{\rm UO_2}}{M_{\rm UO_2}},$$

$$n_{235_{\rm Th}} = \text{total } n_{\rm Th} = \frac{w_{\rm ThO_2}}{M_{\rm ThO_2}},$$

$$n_{208_{\rm Pb}} + n_{207_{\rm Pb}} + n_{206_{\rm Pb}} = \text{total } n_{\rm Pb} = \frac{w_{\rm PbO}}{M_{\rm PbO}}.$$

Assuming no isotopic fractionation of uranium $(^{238}U/^{235}U=137.88$: present value after Steiger and Jäger, 1977), age (t) can be calculated using the following equation:

$$\text{Total} n_{\text{Pb}} = n_{\text{Pb,initial}} + n_{\text{Th}} \left\{ \exp(\lambda_{232} t) - 1 \right\} + n_{\text{U}} \left\{ \frac{\exp(\lambda_{235} t) + 137.88 \exp(\lambda_{238} t)}{138.88} - 1 \right\}$$

The initial Pb is normally below the detection limit of electron microprobe analysis, and the above equation can be re-written as:

$$\frac{w_{\rm PbO}}{M_{\rm PbO}} = \frac{w_{\rm ThO_2}}{M_{\rm ThO_2}} \left\{ \exp(\lambda_{232}t) - 1 \right\} + \frac{w_{\rm UO_2}}{M_{\rm UO_2}} \left\{ \frac{\exp(\lambda_{235}t) + 137.88 \exp(\lambda_{238}t)}{138.88} - 1 \right\}$$

Error propagation of U-Th-Pb age is based on X-ray counting statistics of electron microprobe analysis. The following three different methods have been applied in this study (w (s.d.)=standard deviation based on X-ray counting statistics):

A1. Error propagation simply by the root mean square of U, Th, Pb X-ray counting errors (%)

Age-error-1(Ma) =
$$t(Ma) \times \frac{Age-error-1(\%)}{100}$$

where Age-error-1 (%) can be calculated by the following equation:

Age-error-1(%) = $\sqrt{(\text{error-U}(\%))^2 + (\text{error-Th}(\%))^2 + (\text{error-Pb}(\%))^2}$,

error-U(%) =
$$\frac{w(s.d.)_{UO_2}}{w_{UO_2}} \times 100$$
,
error-Th(%) = $\frac{w(s.d.)_{ThO_2}}{w_{ThO_2}} \times 100$,
error-Pb(%) = $\frac{w(s.d.)_{PbO}}{w_{PbO}} \times 100$.

A2. Error propagation by the root mean square of U, Th and Pb contributions to age errors (Ma) converted by the X-ray counting errors (%)

Age-error-2(Ma) = $\sqrt{(\text{error-U}(Ma))^2 + (\text{error-Th}(Ma))^2 + (\text{error-Pb}(Ma))^2}$,

where error-U, error-Th and error-Pb can be estimated by solving the following equations:

$$\begin{aligned} \frac{w_{\text{PbO}}}{M_{\text{PbO}}} &= \frac{w_{\text{ThO}_2}}{M_{\text{ThO}_2}} \left\{ \exp(\lambda_{232} \operatorname{error-U(Ma)}) - 1 \right\} \\ &+ \frac{w(\text{s.d.})_{\text{UO}_2}}{M_{\text{UO}_2}} \left\{ \frac{\exp(\lambda_{235} \operatorname{error-U(Ma)}) + 137.88 \exp(\lambda_{238} \operatorname{error-U(Ma)})}{138.88} - 1 \right\}, \\ \frac{w_{\text{PbO}}}{M_{\text{PbO}}} &= \frac{w(\text{s.d.})_{\text{ThO}_2}}{M_{\text{ThO}_2}} \left\{ \exp(\lambda_{232} \operatorname{error-Th}(Ma)) - 1 \right\} \\ &+ \frac{w_{\text{UO}_2}}{M_{\text{UO}_2}} \left\{ \frac{\exp(\lambda_{235} \operatorname{error-Th}(Ma)) + 137.88 \exp(\lambda_{238} \operatorname{error-Th}(Ma))}{138.88} - 1 \right\}, \\ \frac{w(\text{s.d.})_{\text{PbO}}}{M_{\text{PbO}}} &= \frac{w_{\text{ThO}_2}}{M_{\text{ThO}_2}} \left\{ \exp(\lambda_{232} \operatorname{error-Pb}(Ma)) - 1 \right\} \\ &+ \frac{w_{\text{UO}_2}}{M_{\text{UO}_2}} \left\{ \frac{\exp(\lambda_{235} \operatorname{error-Pb}(Ma)) - 1 \right\} \\ &+ \frac{w_{\text{UO}_2}}{M_{\text{UO}_2}} \left\{ \frac{\exp(\lambda_{235} \operatorname{error-Pb}(Ma)) + 137.88 \exp(\lambda_{238} \operatorname{error-Pb}(Ma))}{138.88} - 1 \right\}. \end{aligned}$$

A3. Error propagation by the root mean square of U, Th and Pb contributions to age errors (Ma) converted by the X-ray counting errors (%) based on the simplified age (T) calculation equation

Age-error-3 is similar with age-error-2, but is based on the rather simple age calculation equation proposed by Holmes (1931) as follows:

$$T(\text{Ma}) = \frac{n_{\text{Pb}}}{n_{\text{U}} + 0.36 n_{\text{Th}}} \times 7600.$$

Based on the above equation, age error propagation is calculated by differentiating partially with respect to U, Th and Pb as follows:

 $Age\text{-}error\text{-}3(Ma) = \sqrt{(error\text{-}U(Ma))^2 + (error\text{-}Th(Ma))^2 + (error\text{-}Pb(Ma))^2}$

$$= \sqrt{\left(\frac{\partial T}{\partial w_{\text{UO}_2}}w(\text{s.d.})_{\text{UO}_2}\right)^2 + \left(\frac{\partial T}{\partial w_{\text{ThO}_2}}w(\text{s.d.})_{\text{ThO}_2}\right)^2 + \left(\frac{\partial T}{\partial w_{\text{PbO}}}w(\text{s.d.})_{\text{PbO}}\right)^2}$$

$$= \left[\left\{-\left(\frac{w_{\text{PbO}}}{M_{\text{PbO}}}\right) / \left(\frac{w_{\text{UO}_2}}{M_{\text{UO}_2}} + 0.36 \times \frac{w_{\text{ThO}_2}}{M_{\text{ThO}_2}}\right)^2\right\}$$

$$+ \left\{-\left(\frac{w_{\text{PbO}}}{M_{\text{PbO}}} / 0.36\right) / \left(\frac{w_{\text{UO}_2}}{M_{\text{UO}_2}} / 0.36 + \frac{w_{\text{ThO}_2}}{M_{\text{ThO}_2}}\right)^2\right\}$$

$$+ \left\{1 / \left(\frac{w_{\text{UO}_2}}{M_{\text{UO}_2}} + 0.36 \times \frac{w_{\text{ThO}_2}}{M_{\text{ThO}_2}}\right)^2\right\}\right]^{1/2}.$$

Appendix-1. Comparison of three different calculations of error propagation based on X-ray counting statistics. 'Age-error-1' commonly overestimates the contribution of U onto the error propagation (error-U) due to relatively lower UO₂ than ThO₂ in monazite. 'Age-error-2' and 'Age-error-3' yield similar values with each other, and the 'error-3' is used in this study. See 'Appendix' for detail.

		Nam	aqualand r	nonazite		Napier mon	azite
spot		#-1	#-2	#-3	#-1	#-2	#-3
UO2	(wt%)	0.218	0.205	0.221	0.413	0.424	0.365
ThO ₂	(wt%)	8.110	8.110	8.240	10.070	9.940	4.250
PbO	(wt%)	0.393	0.395	0.398	1.282	1.282	0.612
ThO2*	(wt%)	8.863	8.819	9.002	11.740	11.656	5.715
Age (t)	(Ma)	1033	1043	1030	2455	2471	2413
Age-error-1	(Ma)	38	40	37	44	43	55
error	(%)	3.7	3.9	3.6	1.8	1.7	2.3
error-U	(Ma)	33	36	33	42	41	46
error-Th	(Ma)	2	2	2	4	4	10
error-Pb	(Ma)	18	18	18	13	13	28
Age-error-2	(Ma)	18	18	18	14	14	29
error-U	(Ma)	3	3	3	6	6	11
error-Th	(Ma)	2	2	2	4	4	7
error-Pb	(Ma)	18	18	18	13	13	26
Age-error-3	(Ma)	21	21	20	17	18	37
error-U	(Ma)	3	3	3	5	5	11
error-Th	(Ma)	2	2	2	5	5	10
error-Pb	(Ma)	20	21	20	16	16	34
Age (T)	(Ma)	1150	1161	1146	2913	2940	2962

Age (T): age calculation by the relatively simple equation proposed by Holmes (1931)

Appendix-2. Comparison of the different matrix correction methods of electron micropobe analysis, and their longterm drift. ZAF correction gives consistently 4.5% younger ages than prz correction.

comparison	
and	
monazite,	
Namaqualand	
of	
analysis	
microprobe	
electron	
representative	
of	
deviation	and the sum of
standard	JAL Pres
nd	1
ва	1
Averag	Potentia a
Appendix-3.	

Matrix cor. prz prz Date $2004-6-19$ $2004-6-25$ PrO: $2004-6-19$ $2004-6-25$ PrO: $areroge$ $areroge$ SO: $1/102$ 0.04 SO: $1/102$ 0.04 SO: $1/102$ 0.04 SO: $1/12$ 0.01 SO: $1/12$ 0.01 PrO: 2.34 0.05 2.34 Nado. $1/109$ 0.11 $1/108$ 0.61 Dyso. 0.61 0.17 $1/2.09$ 0.04 Dyso. 0.16 0.04 0.07 0.04 Dyso. 0.16 0.04 0.01 0.01 Dyso. $0.11/10$ 0.01 0.01 0.02 Dyso. 0.06 0.04 0.01 0.01 Dyso. 0.01 0.01 0.01 0.01 Dyso. 0.01 0.01 0.01 0.01	25 26 27 26 26 26 26 26 26 26 26 26 27 26 26 27 26 26 27 26 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27	$\begin{array}{c} \frac{\text{prz}}{2004-06-26},\\ \frac{\text{average}}{\pi},\\ \frac{\text{average}}{27,91},\\ 1.02,\\ 1.02,\\ 1.02,\\ 1.03,\\ 1.04,\\ 1.24,\\ 1.24,\\ 1.24,\\ 1.26,\\ 1.21,\\ 1.21,\\ 1.21,\\ 1.21,\\ 1.21,\\ 1.21,\\ 1.21,\\ 0.65,\\ 0.16,\\ 0.07,\\ 0.07,\\ 0.040,\\ 0.040,\\ 0.042,\\ 0.040,\\ 0.042,\\ 0.040,\\ 0.042,\\ 0$	s.d. 0.62 0.06 0.15 0.15 0.15 0.16 0.16 0.10 0.06	$\begin{array}{c} \begin{array}{c} \text{pr}\\ \text{pr}\\ \text{c}\\ 200 + 07 - 02\\ \text{average}\\ n=20\\ n=20\\ 31.32\\ 31.32\\ 1.09\\ 1.11\\ 2.42\\ 1.11\\ 2.42\\ 1.2.95\end{array}$	s.d.	prz 2004-07-09 average	s.d.	prz 2004-07-23 <i>mieradae</i>	s.d.	prz* 2004-06-11		ZAF* 2004-06-11 average	
Matrix cor. Prz Prz Prz Date $2004-6-19$ $2004-6-19$ $2004-6-19$ VP(6) $n=31$ $n=1/2$ $nerage$ VP(6) $n=31$ $nerage$ $nerage$ SiO1 1.02 0.04 238.16 CaO 1.12 0.10 1.12 CaO 1.12 0.10 1.12 CaO 1.12 0.17 1.223 CaO 1.12 0.17 1.233 CaO 1.12 0.10 1.123 CaO 1.130 0.28 2.733 CaO 1.130 0.28 2.733 CadeO 1.74 0.07 1.108 SindO 0.21 0.17 0.164 Diot 0.01 0.01 0.01 Diot 0.01 0.01 0.01 Diot 0.01 0.01 0.001 Diot 0.02 0.04	25 25 25 26 26 27 26 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20	$\begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	s.d. 0.62 0.06 0.15 0.15 0.15 0.06 0.06 0.00 0.00	$\begin{array}{c} prz \\ 2004-07-02 \\ average \\ n=20 \\ 31.32 \\ 1.09 \\ 1.11 \\ 2.42 \\ 1.295 \end{array}$	s.d.	prz 2004-07-09 average	s.d.	prz 2004-07-23 <i>mieradie</i>	s.d.	prz [*] 2004-06-11		ZAF* 2004-06-11 average	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ic s.d 04 0.05 04 0.06 04 0.06 04 0.06 04 0.06 05 0.01 06 0.07 07 0.01 06 0.07 07 0.01 08 0.07 09 0.01 00 0.01 00 0.01 00 0.01 00 0.01 00 0.01 00 0.01 00 0.01 00 0.01 00 0.01 00 0.01 00 0.01 00 0.01 00 0.01 00 0.01 00 0.01 00 0.01 00 0.01 00 0.02 00 0.03 00 0.03 00	$\begin{array}{c} \begin{array}{c} \mbox{areage} \\ n=16 \\ 27.91 \\ 1.07 \\ 1.07 \\ 1.07 \\ 1.07 \\ 1.24 \\ 3.44 \\ 11.06 \\ 1.21 \\ 1.21 \\ 1.21 \\ 1.21 \\ 0.16 \\ 0.17 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.042 \end{array}$	<u>s.d</u> 0.62 0.06 0.14 0.15 0.36 0.06 0.06 0.00 0.09	n=20 n=20 31.32 1.09 1.11 2.42 12.95	s.d.	average	s.d.	ann ann a	s.d.			average	
WP6 $n=31$ $n=12$ $n=11$ $n=12$ $n=11$ $n=12$ $n=11$ $n=12$ $n=11$ $n=12$ <th> 14 14 14 14 1005 14 1005 14 1005 14 1005 14 1005 14 1007 14 1007 14 1007 14 1007 100</th> <th>n=16 27.91 1.02 1.07 1.07 1.07 13.09 27.43 3.44 11.06 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.2</th> <th>0.62 0.06 0.14 0.15 0.15 0.36 0.10 0.06 0.09</th> <th>n=20 31.32 1.09 1.11 2.42 12.95</th> <th></th> <th></th> <th></th> <th>urerugu</th> <th></th> <th>average</th> <th>s.d.</th> <th></th> <th>s.d.</th>	 14 14 14 14 1005 14 1005 14 1005 14 1005 14 1005 14 1007 14 1007 14 1007 14 1007 100	n=16 27.91 1.02 1.07 1.07 1.07 13.09 27.43 3.44 11.06 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.2	0.62 0.06 0.14 0.15 0.15 0.36 0.10 0.06 0.09	n=20 31.32 1.09 1.11 2.42 12.95				urerugu		average	s.d.		s.d.
P.O. 29.03 0.61 23.16 YiO. 1.02 0.07 0.34 YiO. 1.12 0.10 0.14 YiO. 1.12 0.10 0.14 CaO 1.12 0.10 0.14 Prov. 13.23 0.17 112.23 Prov. 27.33 0.23 0.112 0.12 Nido. 11.09 0.17 11.23 0.12 Drov. 11.74 0.12 0.04 1.73 Drov. 0.16 0.04 0.16 0.10 Drov. 0.16 0.04 0.04 0.04 Drov. 0.16 0.04 0.04 0.04 Total 10.169 0.83 0.04 0.04 Total 0.112 0.01 0.01 0.04 Total 0.10 0.01 0.01 0.01 Total 0.10 0.01 0.01 0.01	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	27.91 1.02 1.07 1.07 2.24 2.24 1.06 1.171 1.71 1.71 1.71 1.71 1.71 1.71 1.	0.62 0.06 0.14 0.15 0.16 0.10 0.06 0.00 0.09	31.32 1.09 1.11 2.42 12.95		n= 18		n= 16		n=15		n=15	
SNU3 LLA D D YAO 1.12 0.07 0.33 LadO 1.12 0.07 1.12 LadO 13.02 0.11 2.24 NidO 13.02 0.17 12.39 NidO 13.02 0.15 11.08 DirO 0.15 0.17 11.08 DirO 0.12 0.04 0.16 DirO 0.16 0.04 0.16 DirO 0.16 0.04 0.05 DirO 0.16 0.04 0.06 DirO 0.16 0.04 0.06 DirO 0.06 0.04 0.06 DirO 0.06 0.04 0.06 Dial 101.69 0.83 1004 Dial 101.69 0.83 1004 Dial 101.69 0.83 0.03 PO 0.44 0.07 0.04 PO 0.40 0.01 0.04	24 0.00 24 0.05 25 0.01 25 0.01 26 0.07 26 0.07 26 0.07 26 0.07 26 0.07 26 0.07 26 0.07 20 0.07 27 0.07 28 0.07 20 0.07 29 0.07 20	1.02 1.07 2.24 1.07 2.743 3.44 1.106 1.171 1.71 1.71 1.71 1.71 1.71 1.71 1.	0.00 0.14 0.15 0.16 0.10 0.10 0.10	1.05 1.11 2.42 12.95	0.59	28.42	1.42	26.88	0.76	29.43	0.54	30.27	0.58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 0.05 25 0.07 25 0.07 26 0.07 26 0.07 26 0.07 26 0.07 26 0.07 26 0.07 26 0.07 27 0.07 28 0.03 29 0.07 20	2.24 13.09 3.44 3.44 11.06 11.06 11.06 1.17 11.17 11.17 11.06 1.16 0.65 0.05 0.05 0.05 0.05 0.07 0.040 0.21 0.40 0.21 0.40 0.21 0.42 0.342 0.342 0.343 0.343 0.343 0.343 0.343 0.343 0.3440 0.3440 0.3440 0.3440000000000	0.14 0.15 0.06 0.06 0.09	2.42	0.07	1.10	0.04 0.00	51.1	0.07	71.1	0.08	1 16	0.0%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23 0.11 23 0.18 23 0.18 26 0.07 26 0.09 26 0.04 26	13.09 27.43 3.44 11.06 1.71 1.71 1.71 1.71 1.71 0.65 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	0.15 0.36 0.10 0.06 0.09	12.95	0.06	2.27	0.08	2.66	0.09	2.52	0.05	2.42	0.04
$ \begin{array}{cccc} CecO, & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	333 0.18 44 0.07 76 0.07 76 0.07 76 0.07 76 0.07 76 0.07 76 0.07 76 0.07 76 0.07 76 0.04 76 0.04 76 0.04 76 0.04 76 0.04 76 0.04 76 0.04 76 0.07 76 0.04 76 0.07 76 0.07 76 0.07 77 0.07 79 0.07 79 0.07 79 0.07 79 0.07 79 0.07 79 0.07 79 0.07 79 0.07 79 0.07 79 0.07 79	27.43 3.44 11.06 11.71 1.71 1.71 1.71 0.65 0.16 0.07 0.07 0.21 8.29 8.29 0.40 100.42 0.942	0.36 0.06 0.10 0.06 0.09		0.17	12.91	0.17	12.89	0.16	12.93	0.10	13.15	0.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 0.07 38 0.08 38 0.08 38 0.07 34 0.07 35 0.08 36 0.07 36 0.07 36 0.07 36 0.07 36 0.07 36 0.07 36 0.07 36 0.07 36 0.07 36 0.07 37 0.07 37 0.07 38 0.03 39 0.03	3.44 11.06 11.06 1.21 1.21 0.63 0.16 0.16 0.21 8.29 8.29 0.40 100.42 0.40	0.06 0.10 0.09 0.09	27.46	0.21	26.62	0.33	26.73	0.19	27.27	0.21	27.73	0.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 0.08 76 0.07 54 0.04 54 0.04 16 0.04 15 0.04 16 0.04 16 0.04 15 0.04 16 0.04 16 0.04 16 0.04 16 0.04 16 0.04 16 0.07 16 0.06 17 0.007 18 0.55 19 0.003	11.06 1.71 1.21 0.63 0.16 0.07 0.16 0.21 8.29 8.29 0.40 100.42 0.942	0.10 0.06 0.09	3.49	0.09	3.35	0.08	3.40	0.08	3.49	0.07	3.64	0.07
	76 0.07 20 0.10 56 0.04 56 0.04 55 0.04 55 0.04 55 0.04 55 0.05 55 0.0	1.71 1.21 0.63 0.16 0.07 0.21 8.29 0.40 100.42 0.942	0.06 0.09	11.10	0.13	10.87	0.13	10.98	0.10	10.89	0.15	11.02	0.15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20 0.10 21 0.04 21 0.04 22 0.04 25 0.04 26 0.05 26 0.05 26 0.05 26 0.05 27 0.007 27 0.007 29 0.007 29 0.007 29 0.007 29 0.007 29 0.007 29 0.007 29 0.007 29 0.007 20 00	1.21 0.63 0.16 0.07 0.07 0.21 8.29 0.40 0.40 0.942	0.09	1.76	0.08	1.68	0.07	1.67	0.07	1.79	0.06	1.89	0.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54 0.04 16 0.04 25 0.04 26 0.05 40 0.06 41 0.007 57 0.003 59 0.003	0.63 0.16 0.07 0.07 0.21 8.29 0.40 0.40 0.942		1.20	0.09	1.19	0.11	1.19	0.13	1.17	0.11	1.22	0.11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16 0.04 25 0.04 26 0.05 26 0.05 41 0.005 43 0.55 44 0.003 49 0.003	0.16 0.07 0.21 8.29 0.40 100.42 0.942	0.04	0.63	0.04	0.61	0.05	0.62	0.04	0.63	0.06	0.65	0.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 0.04 20 0.01 26 0.05 40 0.05 41 0.007 43 0.003 49 0.003	0.07 0.21 8.29 0.40 100.42 0.942	0.03	0.15	0.03	0.18	0.03	0.19	0.03	0.16	0.03	0.16	0.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 0.01 26 0.05 40 0.00 45 0.55 47 0.007 49 0.003	0.21 8.29 0.40 100.42 0.942	0.04	0.06	0.03	0.06	0.03	0.07	0.03	0.05	0.04	0.05	0.04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26 0.05 40 0.00 45 0.55 47 0.007 47 0.003 49 0.003	8.29 0.40 100.42 0.942	0.01	0.20	0.01	0.20	0.01	0.15	0.02	0.22	0.01	0.23	0.01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40 0.00 45 0.55 47 0.007 49 0.003	0.40 100.42 0.942	0.14	8.35	0.07	8.30	0.10	8.57	0.11	8.31	0.09	8.66	0.09
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15 0.55 17 0.007 19 0.003	100.42 0.942	0.01	0.40	0.01	0.40	0.01	0.40	0.01	0.41	0.01	0.41	0.01
$\begin{array}{c} \mbox{Cations} ({\it O}{-4}) & 0.956 & 0.08 & 0.947 \\ \mbox{P} & 0.040 & 0.047 & 0.049 & 0.0497 \\ \mbox{Ca} & 0.043 & 0.047 & 0.049 & 0.047 \\ \mbox{V} & 0.043 & 0.007 & 0.049 \\ \mbox{La} & 0.043 & 0.002 & 0.059 \\ \mbox{La} & 0.187 & 0.002 & 0.050 \\ \mbox{La} & 0.187 & 0.002 & 0.050 \\ \mbox{Pr} & 0.049 & 0.002 & 0.050 \\ \mbox{Nd} & 0.154 & 0.002 & 0.051 \\ \mbox{Nd} & 0.0154 & 0.002 & 0.002 \\ \mbox{Cd} & 0.016 & 0.002 & 0.002 \\ \mbox{Dy} & 0.002 & 0.002 & 0.002 \\ \mbox{Dy} & 0.002 & 0.002 & 0.002 \\ \mbox{Pr} & 0.002 & 0.002 & 0.002 \\ \mbox{Pr} & 0.002 & 0.002 & 0.002 \\ \mbox{Pr} & 0.002 & 0.000 & 0.001 \\ \mbox{Pr} & 0.001 & 0.001 \\ \mb$	47 0.007 37 0.003 49 0.003	0.942	0.82	104.19	0.81	99.64	1.39	99.25	0.85	102.02	0.71	104.24	0.76
P 0.956 0.008 0.941 Si 0.040 0.073 0.037 Y 0.041 0.043 0.043 Y 0.044 0.043 0.044 La 0.187 0.047 0.185 La 0.187 0.047 0.185 Pr 0.187 0.046 0.185 Nd 0.154 0.002 0.197 Sim 0.0154 0.002 0.135 Sim 0.0154 0.002 0.102 Dy 0.016 0.002 0.002 Vb 0.001 0.002 0.002 Vb 0.001 0.002 0.002	47 0.007 37 0.003 49 0.003	0.942											
Si 0.040 0.073 0.037 Y 0.047 0.049 0.049 La 0.187 0.049 0.048 Fr 0.048 0.007 0.189 Fr 0.049 0.076 0.189 Nd 0.154 0.007 0.157 Sm 0.015 0.007 0.0157 Sm 0.016 0.002 0.002 Er 0.002 0.000 0.002 Fr 0.001 0.000 0.002 Fr 0.001 0.000 0.002	37 0.003 19 0.003		0.009	0.983	0.006	0.955	0.019	0.925	0.011	0.960	0.007	0.965	0.007
Ca 0.047 0.004 0.049 Y 0.048 0.001 0.043 Ce 0.389 0.006 0.398 Pr 0.049 0.002 0.050 Nd 0.154 0.002 0.157 Nd 0.0154 0.002 0.016 Dy 0.001 0.001 0.0016 Dy 0.002 0.0016 Dy 0.002 0.0016 Vh 0.001 0.000 0.001	49 0.003	0.041	0.002	0.040	0.003	0.040	0.002	0.047	0.003	0.043	0.003	0.040	0.003
Y 0.048 0.001 0.047 La 0.187 0.003 0.189 Pr 0.049 0.005 0.189 Nd 0.154 0.002 0.155 Sm 0.0154 0.002 0.157 Gd 0.016 0.002 0.002 Dy 0.008 0.001 0.002 Er 0.002 0.000		0.046	0.003	0.044	0.002	0.047	0.003	0.050	0.003	0.046	0.003	0.047	0.004
La 0.187 0.003 0.189 Pr 0.189 0.005 0.189 Nd 0.154 0.002 0.157 Sm 0.049 0.002 0.037 Sm 0.016 0.001 0.001 Dy 0.002 0.001 Er 0.002 0.002 Vh 0.001 0.000 0.001	47 0.00 <i>1</i>	0.047	0.003	0.048	0.001	0.048	0.001	0.058	0.002	0.052	0.001	0.049	0.001
Cc 0.389 0.006 0.398 Pr 0.049 0.072 0.051 Nud 0.154 0.002 0.154 Sm 0.015 0.001 0.015 Gd 0.016 0.002 0.016 Dy 0.002 0.001 0.001 Vh 0.002 0.001 0.002 Vh 0.001 0.001 0.002	39 0.003	0.192	0.003	0.177	0.003	0.189	0.006	0.193	0.003	0.184	0.003	0.183	0.003
Pr 0.049 0.002 0.030 Nd 0.154 0.002 0.157 Sm 0.015 0.002 0.157 Gd 0.016 0.002 0.016 Dy 0.002 0.016 0.002 Er 0.002 0.001 0.002 Vh 0.001 0.000 0.001	98 0.004	0.400	0.006	0.373	0.005	0.387	0.013	0.398	0.007	0.385	0.005	0.382	0.005
Nd 0.154 0.002 0.157 Sm 0.023 0.007 0.024 Dy 0.008 0.002 0.002 Er 0.002 0.002 0.002 Vh 0.001 0.002 0.002	50 0.001	0.050	0.001	0.047	0.001	0.049	0.002	0.050	0.001	0.049	0.001	0.050	0.001
Sm 0.023 0.007 0.024 Gd 0.016 0.002 0.016 Dy 0.008 0.007 0.008 Er 0.002 0.000 0.002 Vh 0.001 0.000	57 0.002	0.158	0.003	0.147	0.003	0.154	0.004	0.159	0.004	0.150	0.003	0.148	0.003
Gd 0.016 0.016 0.002 0.016 Dy 0.008 0.001 0.008 Er 0.002 0.000 0.002 Vb 0.001 0.001 0.002	24 0.001	0.024	0.001	0.022	0.001	0.023	0.001	0.023	0.001	0.024	0.001	0.025	0.001
Dy 0.008 0.001 0.008 Er 0.002 0.000 0.002 Vh 0.001 0.000 0.001	16 0.001	0.016	0.001	0.015	0.001	0.016	0.002	0.016	0.002	0.015	0.001	0.015	0.001
Er 0.002 0.000 0.002 Vh 0.001 0.000 0.001	0.001	0.008	0.001	0.007	0.000	0.008	0.001	0.008	0.000	0.008	0.001	0.008	0.001
Vb 0.001 0.000 0.001	0.001	0.002	0.000	0.002	0.000	0.002	0.000	0.002	0.000	0.002	0.000	0.002	0.000
00000 011	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.001	0.001	0.001
U 0.002 0.000 0.000	0.000	0.002	0.000	0.002	0.000	0.002	0.000	0.001	0.000	0.002	0.000	0.002	0.000
Th 0.074 0.002 0.075	75 0.001	0.075	0.002	0.070	0.001	0.075	0.003	0.079	0.002	0.073	0.001	0.074	0.001
Pb 0.004 0.000 0.004	0.000	0.004	0.000	0.004	0.000	0.004	0.000	0.004	0.000	0.004	0.000	0.004	0.000
Total 2.007 0.004 2.014	14 0.005	2.015	0.005	1.989	0.004	2.007	0.011	2.024	0.007	2.003	0.004	2.001	0.005
Nd/La 0.444 0.007 0.447	17 0.006	0.441	0.004	0.447	0.009	0.439	0.008	0.44	0.01	0.44	0.01	0.44	0.01
Gd/Md 0.254 0.029 0.253	100 23	0 254	0 020	0.757	0.018	0.755	0.025	0.75	0.03	0.75	0.02	0.76	0.02
ThO,* 9139 01/0 8966	290 0 000	9 005	0.172	9.039	0.008	9 004	0 122	0.07	0.15	0.07	0.11	9.46	0 11
Th/II 40.514 1.687 41.774	1 1 7 3 7	40.696	1 570	42 954	1 055	41 827	2 558	61 55	10.78	18.86	7 20	18 30	216
Age [Ma] 1075 1/4 1033	191 19	1028	11	1034	14	1030	23	1025	14	1053	23	1008	22
+/- [Ma] 20 21		20		20		20	1	20		20	1	19	
	1	1	CC	1		J	1	TL1-	1 4-4-1	1 41 11			