Rb-Sr, Sm-Nd ages of the Phalaborwa Carbonatite Complex, South Africa

Masaki Yuhara^{1*}, Yuka Hirahara^{2†}, Naoko Nishi² and Hiroo Kagami²

 ¹Department of Earth System Science, Faculty of Science, Fukuoka University, 8–19–1, Nanakuma, Jonan-ku, Fukuoka 814-0180
 ²Graduate School of Science and Technology, Niigata University, 2–8050, Ikarashi, Niigata 950-2181
 [†]Present address: Institute for Research on Earth Evolution, Japan Agency for

Marine-Earth Science and Technology, 2–15, Natsushima, Yokosuka 237-0061 *Corresponding author. E-mail: yuhara@fukuoka-u.ac.jp

(Received February 7, 2005; Accepted May 30, 2005)

Abstract: We analyzed Rb-Sr and Sm-Nd isotopic compositions of whole-rock and minerals from syenite, biotite gneiss xenolith, dolerite dyke, phoscorite, and carbonatite from the Phalaborwa Carbonatite Complex located in northeastern Transvaal, South Africa. Syenite does not give significant Rb-Sr and Sm-Nd whole-rock and mineral isochron ages. Dolerite gives an Rb-Sr whole-rock and mineral isochron age of $2062\pm$ 74 Ma. This age overlaps with the timing of the magmatism of the Phalaborwa Carbonatite Complex. Biotite gneiss and phoscorite do not also give significant Rb-Sr and Sm-Nd isochrons. The Rb-Sr whole-rock and mineral isochron of phoscorite, however, gives an age of 2013 ± 93 Ma. The age is clearly the cooling age of this complex. Carbonatites are divided into two groups, having low and high initial Sr isotopic ratios. This coordinates with the result of S.C. Eriksson (Carbonatites, ed. by K. Bell, 1989). In addition, these groups indicate different initial Nd isotopic ratios. These suggest that carbonatite and related rocks were formed by mixing of two source magmas having different Sr and Nd isotopic compositions.

key words: Rb-Sr and Sm-Nd isochron age, phoscorite, carbonatite, Phalaborwa, South Africa

1. Introduction

In the Phalaborwa Carbonatite Complex located in northeastern Transvaal, South Africa, there is a world-wide Cu deposit (Fig. 1). Copper sulphides, magnetite, baddeleyite, apatite and uranoan thorianite have been mined from this deposit. Minor Ni, Au, Pt group metals, Ag, Se, Te, Th and U are also mined from this complex.

The geology of the Phalaborwa Carbonatite Complex has been well studied because of its high economic interest. Numerous geological, petrological, mineralogical and chronological reports have been presented for the clinopyroxenites, phoscorites and carbonatites composing the main complex (*e.g.* Hall, 1912a,b; Shand, 1931; Hanekom *et al.*, 1965; Palabora Mining Company, 1976; Eriksson, 1984, 1989; Reischmann, 1995).

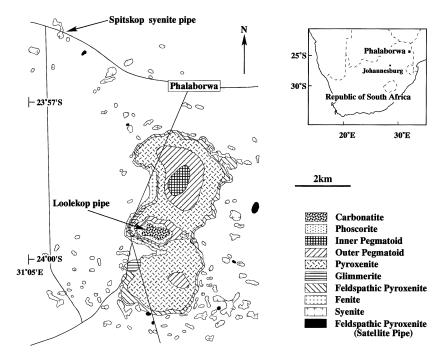


Fig. 1. Generalized geological map of the Phalaborwa Carbonatite Complex, South Africa (after Eriksson, 1984) with locations of the Spitskop syenite pipe and Loolekop pipe.

In contrast, the syenites that surround the main complex and appear as pipes have not been studied extensively, and therefore, there are few reports about the satellite bodies. Therefore, Yuhara *et al.* (2003) reported whole-rock isotopic compositions of syenite from the Spitskop pipe (Fig. 1), one of the satellite bodies of the Phalaborwa Carbonatite Complex. These syenites and related rocks are dispersed in Rb-Sr and Sm-Nd whole-rock isochron diagrams, and did not give clear whole-rock isochron ages. This suggests the necessity of whole-rock and mineral isochron ages.

In this paper, we report whole-rock and mineral Sr and Nd isotopic compositions of syenite, biotite gneiss xenolith, and dolerite from this syenite pipe, and phoscorite and carbonatite from the Loolekop pipe (Fig. 1).

2. Geological setting

The Phalaborwa Carbonatite Complex was formed by continuous intrusion of pyroxenite, syenite, ultramafic pegmatites and carbonatite into an Archaean terrain (Hall, 1912a,b; Shand, 1931; Hanekom *et al.*, 1965; Palabora Mining Company, 1976; Eriksson, 1984). The main complex is an elongated pipe-like body (Fig. 1). The Palabora Mining Company open pit (Fig. 2A), whose diameter is about 2 km, is located at the Loolekop pipe that crops out near the center of the Phalaborwa Carbonatite Complex (Fig. 1). This pipe is composed of phoscorite (a local name on the

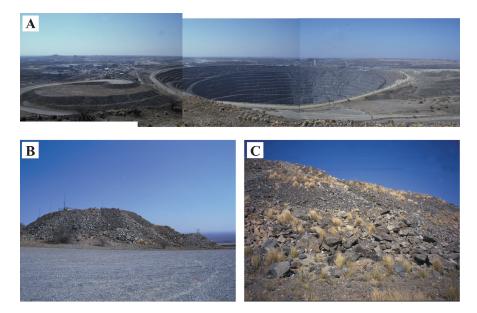


Fig. 2. Photographs of the open pit and waste of the Phalaborwa Copper Mine.
A: Whole view of open pit. B: Whole view of waste. C: Close up view of the waste (photo B).

Phalaborwa Carbonatite Complex), banded carbonatite, and transgressive carbonatite (Palabora Mining Company, 1976). The phoscorite alternates with the banded carbonatite. The transgressive carbonatite is a dike like body cutting across these rocks. Satellite bodies are concentrated on or near the periphery of the main complex, but some occur away from the main complex, several kilometers to the northeast and northwest (Fig. 1). The rock types of satellite bodies include feldspathic pyroxenite, peralkaline syenite, peralkaline quartz syenite, peralkaline granite and trachyte. Northeast-southwest trended dolerite dykes of various sizes intruded into the main complex and satellite bodies.

It has been proposed that the timing of magmatism of the Phalaborwa Carbonatite Complex is about 2000 Ma, on the basis of an Rb-Sr isochron age of 2012 ± 19 Ma on phlogopites (Eriksson, 1984), and an U-Pb age between 2047 and 2061 Ma (Eriksson, 1984; Heaman and LeCheminant, 1993; Reischmann, 1995; Horn *et al.*, 2000; Wingate and Compston, 2000; French *et al.*, 2002) (Table 1). It has also been proposed that the activity of some of the dolerite dykes is about 1900 Ma (Briden, 1976) deduced from palaeomagnetic data. More detailed work of Briden (1976) confirms that most cross-cutting dykes in the Phalaborwa Complex are Precambrian (Palabora Mining Company, 1976; Eriksson, 1989). Eriksson (1989) showed the existence of large fenitized dolerite xenoliths and truncated dolerite dykes in the main complex, and suggested that dolerite magmatism commenced before formation of the main complex. Thus, magmatism of the dolerite continued intermittently for a long time.

M. Yuhara, Y. Hirahara, N. Nishi and H. Kagami

Rock type	Age	Method	Reference
clinopyroxenite, carbonatite and phoscorite	2012 ± 19	Rb-Sr phlogopite	Eriksson (1984)
carbonatite and phoscorite	2047 + 11 / - 8	U-Pb thorianite and baddeleyite	Eriksson (1984)
carbonatite	2059.8 ± 0.8	U-Pb baddeleyite	Heaman and LeCheminant (1993)
	2060.6 ± 0.5	U-Pb baddeleyite	Reischmann (1995)
	2057 ± 8	U-Pb baddeleyite	Horn et al . (2000)
	2057.1 ± 2.6	SHRIMP baddeleyite	Wingate and Compston (2000)
	2059.6 ± 0.4	U-Pb baddeleyite	French et al . (2002)
	2026 + 46 / - 47	U-Th-total Pb baddeleyite	French et al . (2002)

Table 1. Radiometric ages of the Phalaborwa Carbonatite Complex.

3. Analyzed samples

Fine-grained syenite and biotite gneiss have been taken from the Spitskop pipe (Fig. 1; Yuhara *et al.*, 2003). The phoscorite and carbonatite of the Loolekop pipe have been taken at the waste site near the observatory commanding a view of the whole open pit (Figs. 2B, C).

Fine-grained syenite is characterized by porphyritic texture. It consists mainly of alkali-feldspar, quartz, clinopyroxene, amphibole, and accessory titanite, opaque minerals, apatite, zircon and monazite. This syenite has a modal composition of alkalifeldspar syenite (Yuhara *et al.*, 2003). Phenocrystic alkali-feldspar is euhedral to subhedral, up to 4 mm in diameter.

The biotite gneiss, which is a xenolith in the Spitskop syenite pipe, shows a banded structure (Fig. 3), with lepidoblastic and granoblastic texture (Fig. 4). It consists mainly of quartz, plagioclase, biotite, alkali-feldspar and accessory titanite, apatite, zircon, opaque minerals, and amphibole.

The phoscorite alternates with the banded carbonatite, and the boundary between both is complex (Fig. 5). They include each other. The phoscorite is holocrystalline —rock consisting mainly of olivine, apatite, magnetite, phlogopite, and a small amount

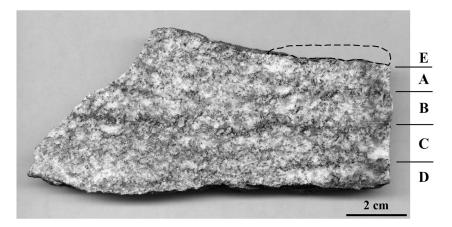


Fig. 3. Photograph of slab of biotite gneiss xenolith (98081501G) from the Spitskop syenite pipe.

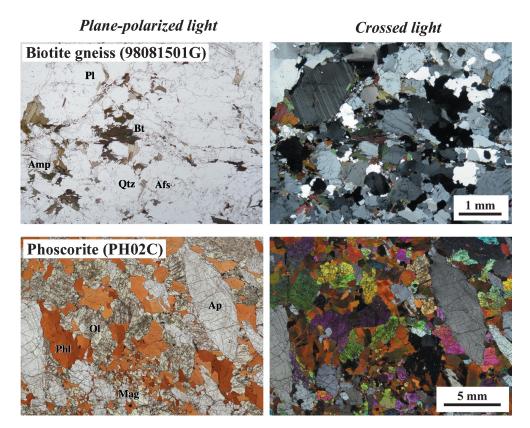


 Fig. 4. Photomicrographs of biotite gneiss and phoscorite.
 Pl: plagioclase, Qtz: quartz, Amp: amphibole, Bt: biotite, Afs: alkali-feldspar, Ap: apatite, Ol: olivine, Phl: phlogopite, Mag: magnetite.

of calcite (Fig. 4). Proportions of the constituent minerals of phoscorite vary considerably (Figs. 5B, C, D) from 100% magnetite to 100% olivine (Eriksson, 1989). Size of minerals also varies considerably (Figs. 5B, C, D). The size of euhedral to anhedral apatite is biggest, up to 5 cm in diameter. Euhedral to anhedral magnetite is up to 2.5 cm. Euhedral to anhedral phlogopite and olivine are less than 1 cm and 0.5 cm, respectively. Phoscorite PH03 was divided into six domains A: apatite rich domain, B: domain including apatite megacryst, C: olivine+apatite+phlogopite domain, D: mainly apatite+phlogopite domain, E: domain including magnetite megacryst, F: phlogopite+ apatite+olivine domain, for analysis (Fig. 5D).

The Carbonatite consists mainly of calcite, dolomite, and a small amount of magnetite and phlogopite. PH06 is a member of banded carbonatite alternating with phoscorite. PH04 and PH05 might be members of transgressive carbonatite (Figs. 5A, B), because they do not alternate with phoscorite and include very little magnetite and phlogopite.

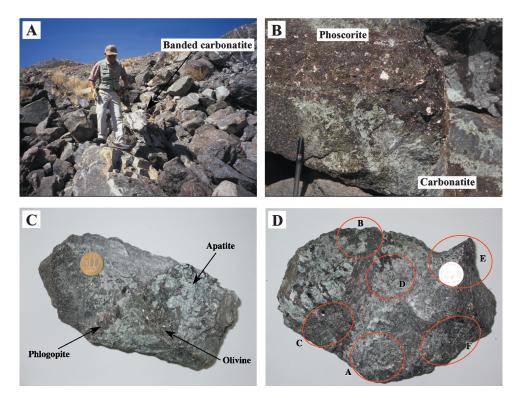


Fig. 5. Photographs of phoscorite and carbonatite. A: Mode of occurrence of rolling stones at waste. B: Rolling stone of banded carbonatite. C: Minerals of phoscorite (PH02). D: Domains of analyzed phoscorite (PH03).

4. Chemistry

4.1. Analytical procedures

The major and trace element concentrations of samples were analyzed using the XRF (RIGAKU ZSX100e) at Fukuoka University by the method of Yuhara and Taguchi (2003a,b), Yuhara *et al.* (2004) and Takamoto *et al.* (2005). Their chemical compositions are given in Table 2. As, Ga, Pb, S and Th concentrations of the samples (syenites and related rocks) reported by Yuhara *et al.* (2003) were also analyzed. New data are given in the Appendix.

Clinopyroxene, amphibole, felsic fractions (mixtures of feldspars and quartz) from the fine-grained syenite and dolerite were separated with the help of an isodynamic separator and heavy liquids. Phlogopite and apatite were separated from phoscorite by hand picking. The biotite gneiss was divided into five layers (A–E) (Fig. 3).

Isotopic separation was performed at Saga University using the experimental procedure of Kawano *et al.* (1999). Isotopic analyses were performed on the thermal ionization mass spectrometer (MAT262) equipped with nine dynamic faraday cups at Niigata University. ⁸⁷Sr/⁸⁶Sr ratios and ¹⁴³Nd/¹⁴⁴Nd ratios were normalized to

140				-			_	
Sample No.	PH-02F	PH-02C	PH-03A	PH-03B	PH-03C	PH-03D	PH-03E	PH-03F
SiO ₂ (wt.%)	44.86	27.98	24.74	35.40	36.78	24.78	29.31	25.29
TiO ₂	0.87	0.78	1.33	0.87	0.72	1.35	0.83	1.00
Al_2O_3	3.94	3.60	2.79	3.80	2.97	3.81	1.87	4.89
Fe ₂ O ₃	8.04	6.28	5.60	7.57	7.18	6.82	8.08	6.40
MnO	0.12	0.08	0.08	0.09	0.10	0.08	0.13	0.07
MgO	16.91	11.64	10.12	14.27	14.68	11.73	15.89	12.55
CaO	16.70	27.01	30.06	22.15	23.07	26.71	24.83	24.87
Na ₂ O	0.21	0.00	0.00	0.06	0.09	0.00	0.03	0.00
K ₂ O	4.05	3.85	3.07	4.02	3.45	4.13	2.34	5.20
P_2O_5	2.15	16.51	19.21	9.72	7.95	17.93	14.35	17.79
L.O.I.	0.95	0.93	1.02	0.97	2.22	1.19	1.06	0.79
Total	98.80	98.66	98.02	98.92	99.21	98.53	98.72	98.85
As(ppm)	<4	8	21	4	<4	13	8	7
Ba	762	711	773	706	608	851	429	895
Cr	158	138	240	170	154	410	617	235
Cu	n.d.	n.d.	<4	32	332	73	54	<4
Ga	7	5	<3	7	6	4	3	6
Nb	4	10	54	<5	<5	39	28	10
Ni	55	41	37	47	46	38	59	39
Pb	6	26	105	9	14	78	54	24
Rb**	254	247	194	255	209	298	139	353
S	28	58	75	57	166	89	81	46
Sr**	588	2531	2687	1432	1547	2934	2110	2333
Th	36	232	730	97	84	544	376	198
v	31	26	34	32	28	33	27	28
Y	30	139	216	79	72	185	134	144
Zn	76	57	42	65	53	54	59	57
Zr	196	3062	11670	862	251	5444	2491	1429
						-		
Sample No.	98081501G					•		
	Α	В	С	D	Е	_		
SiO ₂ (wt.%)	70.45	72.87	72.77	73.07	69.69			
			0.20	0.27	0.40			
TiO ₂	0.39	0.15	0.28	0.27	0.40			
TiO_2 Al_2O_3	0.39 15.34	0.15 15.42	14.84	14.46	0.40 15.48			
Al_2O_3	15.34	15.42	14.84	14.46	15.48			
Al_2O_3 Fe_2O_3	15.34 2.57	15.42 0.97	14.84 1.76	14.46 1.74	15.48 2.71			
Al ₂ O ₃ Fe ₂ O ₃ MnO	15.34 2.57 0.02	15.42 0.97 0.01	14.84 1.76 0.01	14.46 1.74 0.01	15.48 2.71 0.02			
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO	15.34 2.57 0.02 0.83	15.42 0.97 0.01 0.34	14.84 1.76 0.01 0.57	14.46 1.74 0.01 0.58	15.48 2.71 0.02 0.87			
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O	15.34 2.57 0.02 0.83 2.23	15.42 0.97 0.01 0.34 2.24	14.84 1.76 0.01 0.57 2.20	14.46 1.74 0.01 0.58 2.09	15.48 2.71 0.02 0.87 2.21			
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O	15.34 2.57 0.02 0.83 2.23 5.82 1.48	15.42 0.97 0.01 0.34 2.24 6.04 1.05	14.84 1.76 0.01 0.57 2.20 5.70 1.15	14.46 1.74 0.01 0.58 2.09 5.57	15.48 2.71 0.02 0.87 2.21 5.83			
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅	15.34 2.57 0.02 0.83 2.23 5.82	15.42 0.97 0.01 0.34 2.24 6.04	14.84 1.76 0.01 0.57 2.20 5.70	14.46 1.74 0.01 0.58 2.09 5.57 1.14	15.48 2.71 0.02 0.87 2.21 5.83 1.57			
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17	15.42 0.97 0.01 0.34 2.24 6.04 1.05 0.13	14.84 1.76 0.01 0.57 2.20 5.70 1.15 0.15	$14.46 \\ 1.74 \\ 0.01 \\ 0.58 \\ 2.09 \\ 5.57 \\ 1.14 \\ 0.16$	15.48 2.71 0.02 0.87 2.21 5.83 1.57 0.26			
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17 0.40 99.70	15.42 0.97 0.01 0.34 2.24 6.04 1.05 0.13 0.30 99.52	14.84 1.76 0.01 0.57 2.20 5.70 1.15 0.15 0.33 99.76	14.46 1.74 0.01 0.58 2.09 5.57 1.14 0.16 0.37 99.46	15.48 2.71 0.02 0.87 2.21 5.83 1.57 0.26 0.53 99.57	-		
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As(ppm)	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17 0.40 99.70 <4	15.42 0.97 0.01 0.34 2.24 6.04 1.05 0.13 0.30 99.52 <4	14.84 1.76 0.01 0.57 2.20 5.70 1.15 0.15 0.33 99.76	14.46 1.74 0.01 0.58 2.09 5.57 1.14 0.16 0.37 99.46 n.d.	15.48 2.71 0.02 0.87 2.21 5.83 1.57 0.26 0.53 99.57 <4	-		
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As(ppm) Ba	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17 0.40 99.70 <4 478	15.42 0.97 0.01 0.34 2.24 6.04 1.05 0.13 0.30 99.52 <4 439	14.84 1.76 0.01 0.57 2.20 5.70 1.15 0.15 0.33 99.76 <4 418	14.46 1.74 0.01 0.58 2.09 5.57 1.14 0.16 0.37 99.46 n.d. 435	15.48 2.71 0.02 0.87 2.21 5.83 1.57 0.26 0.53 99.57 <4 525	-		
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As(ppm) Ba Cr	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17 0.40 99.70 <4 478 <4	15.42 0.97 0.01 0.34 6.04 1.05 0.13 0.30 99.52 <4 439 n.d.	14.84 1.76 0.01 0.57 2.20 5.70 1.15 0.15 0.33 99.76 <4 418 6	14.46 1.74 0.01 0.58 2.09 5.57 1.14 0.16 0.37 99.46 n.d. 435 <4	15.48 2.71 0.02 0.87 2.21 5.83 1.57 0.26 0.53 99.57 <4 525 <4	-		
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As(ppm) Ba Cr Cr Cu	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17 0.40 99.70 <4 478 <4 6	15.42 0.97 0.01 0.34 2.24 6.04 1.05 0.13 0.30 99.52 <4 439 n.d. 5	14.84 1.76 0.01 0.57 2.20 5.70 1.15 0.15 0.33 99.76 <4 418 6 5	14.46 1.74 0.01 0.58 2.09 5.57 1.14 0.16 0.37 99.46 n.d. 435 <4 9	15.48 2.71 0.02 0.87 2.21 5.83 1.57 0.26 0.53 99.57 <4 525 <4 11	-		
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O, L.O.I. Total As(ppm) Ba Cr Cu Ga	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17 0.40 99.70 <4 478 <4 6 18	15.42 0.97 0.01 0.34 2.24 6.04 1.05 0.13 0.30 99.52 <4 439 n.d. 5 16	14.84 1.76 0.01 0.57 2.20 5.70 1.15 0.15 0.33 99.76 <4 418 6 5 16	14.46 1.74 0.01 0.58 2.09 5.57 1.14 0.16 0.37 99.46 n.d. 435 <4 9 16	15.48 2.71 0.02 0.87 2.21 5.83 1.57 0.26 0.53 99.57 <4 525 <4 525 <4 11 19			
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₃ O P ₂ O ₅ L.O.I. Total Ba Cr Cu Ga Nb	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17 0.40 99.70 <4 478 <4 6 18 <5	15.42 0.97 0.01 0.34 6.04 1.05 0.13 0.30 99.52 <4 439 n.d. 5 16 n.d.	$\begin{array}{c} 14.84\\ 1.76\\ 0.01\\ 0.57\\ 2.20\\ 5.70\\ 1.15\\ 0.15\\ 0.33\\ 99.76\\ \hline\\ <4\\ 418\\ 6\\ 5\\ 16\\ <5\\ \end{array}$	14.46 1.74 0.01 0.58 2.09 5.57 1.14 0.16 0.37 99.46 n.d. 435 <4 9 16 <5	15.48 2.71 0.02 0.87 2.21 5.83 1.57 0.26 0.53 99.57 <4 525 <4 11 19 5			
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O, L.O.I. Total As(ppm) Ba Cr Cu Ga	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17 0.40 99.70 <4 478 <4 6 18	15.42 0.97 0.01 0.34 2.24 6.04 1.05 0.13 0.30 99.52 <4 439 n.d. 5 16 n.d. 6	$\begin{array}{c} 14.84\\ 1.76\\ 0.01\\ 0.57\\ 2.20\\ 5.70\\ 1.15\\ 0.15\\ 0.33\\ 99.76\\ \hline\\ <4\\ 418\\ 6\\ 5\\ 16\\ <5\\ 7\\ \end{array}$	$\begin{array}{c} 14.46\\ 1.74\\ 0.01\\ 0.58\\ 2.09\\ 5.57\\ 1.14\\ 0.16\\ 0.37\\ 99.46\\ \end{array}$ n.d. $\begin{array}{c} 435\\ <4\\ 9\\ 16\\ <5\\ 7\\ \end{array}$	$15.48 \\ 2.71 \\ 0.02 \\ 0.87 \\ 2.21 \\ 5.83 \\ 1.57 \\ 0.26 \\ 0.53 \\ 99.57 \\ <4 \\ 525 \\ <4 \\ 11 \\ 19 \\ 5 \\ 6 \\ \end{cases}$	-		
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₃ O P ₂ O ₅ L.O.I. Total Ba Cr Cu Ga Nb	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17 0.40 99.70 <4 478 <4 6 18 <5	15.42 0.97 0.01 0.34 6.04 1.05 0.13 0.30 99.52 <4 439 n.d. 5 16 n.d.	$14.84 \\ 1.76 \\ 0.01 \\ 0.57 \\ 2.20 \\ 5.70 \\ 1.15 \\ 0.15 \\ 0.33 \\ 99.76 \\ <4 \\ 418 \\ 6 \\ 5 \\ 16 \\ <5 \\ 7 \\ 10 \\ $	$14.46 \\ 1.74 \\ 0.01 \\ 0.58 \\ 2.09 \\ 5.57 \\ 1.14 \\ 0.16 \\ 0.37 \\ 99.46 \\ \hline n.d. \\ 435 \\ <4 \\ 9 \\ 16 \\ <5 \\ 7 \\ 11 \\ \hline $	15.48 2.71 0.02 0.87 2.21 5.83 1.57 0.26 0.53 99.57 <4 525 <4 11 19 5 6 12	-		
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As(ppm) Ba Cr Cu Ga Nb Ni	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17 0.40 99.70 <4 478 <4 6 18 <5 5	15.42 0.97 0.01 0.34 2.24 6.04 1.05 0.13 0.30 99.52 <4 439 n.d. 5 16 n.d. 6	$\begin{array}{c} 14.84\\ 1.76\\ 0.01\\ 0.57\\ 2.20\\ 5.70\\ 1.15\\ 0.15\\ 0.33\\ 99.76\\ \hline\\ <4\\ 418\\ 6\\ 5\\ 16\\ <5\\ 7\\ \end{array}$	$\begin{array}{c} 14.46\\ 1.74\\ 0.01\\ 0.58\\ 2.09\\ 5.57\\ 1.14\\ 0.16\\ 0.37\\ 99.46\\ \end{array}$ n.d. $\begin{array}{c} 435\\ <4\\ 9\\ 16\\ <5\\ 7\\ \end{array}$	$15.48 \\ 2.71 \\ 0.02 \\ 0.87 \\ 2.21 \\ 5.83 \\ 1.57 \\ 0.26 \\ 0.53 \\ 99.57 \\ <4 \\ 525 \\ <4 \\ 11 \\ 19 \\ 5 \\ 6 \\ \end{cases}$	-		
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As(ppm) Ba Cr Cu Ga Nb Ni Pb	$15.34 \\ 2.57 \\ 0.02 \\ 0.83 \\ 2.23 \\ 5.82 \\ 1.48 \\ 0.17 \\ 0.40 \\ 99.70 \\ <4 \\ 478 \\ <4 \\ 6 \\ 18 \\ <5 \\ 5 \\ 11 \\ $	15.42 0.97 0.01 0.34 2.24 6.04 1.05 0.13 0.30 99.52 <4 439 n.d. 5 16 n.d. 6 13	$14.84 \\ 1.76 \\ 0.01 \\ 0.57 \\ 2.20 \\ 5.70 \\ 1.15 \\ 0.15 \\ 0.33 \\ 99.76 \\ <4 \\ 418 \\ 6 \\ 5 \\ 16 \\ <5 \\ 7 \\ 10 \\ 53.0 \\ \end{cases}$	$14.46 \\ 1.74 \\ 0.01 \\ 0.58 \\ 2.09 \\ 5.57 \\ 1.14 \\ 0.16 \\ 0.37 \\ 99.46 \\ \hline n.d. \\ 435 \\ <4 \\ 9 \\ 16 \\ <5 \\ 7 \\ 11 \\ \hline $	15.48 2.71 0.02 0.87 2.21 5.83 1.57 0.26 0.53 99.57 <4 525 <4 11 19 5 6 12			
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As(ppm) Ba Cr Cu Ga Nb Ni Pb Rb** S	$15.34 \\ 2.57 \\ 0.02 \\ 0.83 \\ 2.23 \\ 5.82 \\ 1.48 \\ 0.17 \\ 0.40 \\ 99.70 \\ \hline \\ <4 \\ 478 \\ <4 \\ 6 \\ 18 \\ <5 \\ 5 \\ 11 \\ 73.9 \\ 29 \\ 100$	15.42 0.97 0.01 0.34 2.24 6.04 1.05 0.13 0.30 99.52 <4 439 n.d. 5 16 n.d. 6 13 35.9 16	$14.84 \\ 1.76 \\ 0.01 \\ 0.57 \\ 2.20 \\ 5.70 \\ 1.15 \\ 0.15 \\ 0.33 \\ 99.76 \\ <4 \\ 418 \\ 6 \\ 5 \\ 16 \\ <5 \\ 7 \\ 10 \\ 53.0 \\ 16 \\ $	$14.46 \\ 1.74 \\ 0.01 \\ 0.58 \\ 2.09 \\ 5.57 \\ 1.14 \\ 0.16 \\ 0.37 \\ 99.46 \\ \hline n.d. \\ 435 \\ <4 \\ 9 \\ 16 \\ <5 \\ 7 \\ 11 \\ 55.6 \\ 31 \\ \hline $	15.48 2.71 0.02 0.87 2.21 5.83 1.57 0.26 0.53 99.57 <4 525 <4 11 19 5 6 12 80.7 58	-		
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As(ppm) Ba Cr Cu Ga Nb Ni Pb Rb** S Sr**	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17 0.40 99.70 <4 478 <4 6 18 <5 5 11 73.9 29 594	15,42 0.97 0.01 0.34 2.24 6.04 1.05 0.13 0.30 99.52 <4 439 n.d. 5 16 n.d. 6 13 35.9 16 657	$\begin{array}{c} 14.84\\ 1.76\\ 0.01\\ 0.57\\ 2.20\\ 5.70\\ 1.15\\ 0.15\\ 0.33\\ 99.76\\ \hline\\ <4\\ 418\\ 6\\ 5\\ 16\\ <5\\ 7\\ 10\\ 53.0\\ 16\\ 588\\ \hline\end{array}$	$\begin{array}{c} 14.46\\ 1.74\\ 0.01\\ 0.58\\ 2.09\\ 5.57\\ 1.14\\ 0.16\\ 0.37\\ 99.46\\ \hline \\ n.d.\\ 435\\ <4\\ 9\\ 16\\ <5\\ 7\\ 11\\ 55.6\\ 31\\ 581\\ \end{array}$	$15.48 \\ 2.71 \\ 0.02 \\ 0.87 \\ 2.21 \\ 5.83 \\ 1.57 \\ 0.26 \\ 0.53 \\ 99.57 \\ <4 \\ 525 \\ <4 \\ 11 \\ 19 \\ 5 \\ 6 \\ 12 \\ 80.7 \\ 58 \\ 640 \\ \end{cases}$	-		
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₃ O P ₂ O ₅ L.O.I. Total As(ppm) Ba Cr Cu Ga Nb Ni Pb Rb** S Sr** Th	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17 0.40 99.70 <4 478 <4 6 18 <5 5 11 73.9 29 594 24	15.42 0.97 0.01 0.34 6.04 1.05 0.13 0.30 99.52 <4 439 n.d. 5 16 n.d. 6 13 35.9 16 657 39	$14.84 \\ 1.76 \\ 0.01 \\ 0.57 \\ 2.20 \\ 5.70 \\ 1.15 \\ 0.15 \\ 0.33 \\ 99.76 \\ <4 \\ 418 \\ 6 \\ 5 \\ 16 \\ <5 \\ 7 \\ 10 \\ 53.0 \\ 16 \\ 588 \\ 18 \\ 18 \\ $	$\begin{array}{c} 14.46\\ 1.74\\ 0.01\\ 0.58\\ 2.09\\ 5.57\\ 1.14\\ 0.16\\ 0.37\\ 99.46\\ \hline \\ n.d.\\ 435\\ <4\\ 9\\ 16\\ <5\\ 7\\ 11\\ 55.6\\ 31\\ 581\\ 23\\ \end{array}$	$15.48 \\ 2.71 \\ 0.02 \\ 0.87 \\ 2.21 \\ 5.83 \\ 1.57 \\ 0.26 \\ 0.53 \\ 99.57 \\ <4 \\ 525 \\ <4 \\ 11 \\ 19 \\ 5 \\ 6 \\ 12 \\ 80.7 \\ 58 \\ 640 \\ 26 \\ \end{cases}$	-		
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As(ppm) Ba Cr Cu Ga Nb Ni Pb Rb** S sr** Th V	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17 0.40 99.70 <4 478 <4 6 18 <5 5 11 73.9 29 594 24 13	15.42 0.97 0.01 0.34 6.04 1.05 0.13 0.30 99.52 <4 439 n.d. 5 16 n.d. 6 13 35.9 16 657 39 5	$\begin{array}{c} 14.84\\ 1.76\\ 0.01\\ 0.57\\ 2.20\\ 5.70\\ 1.15\\ 0.15\\ 0.33\\ 99.76\\ \hline\\ <4\\ 418\\ 6\\ 5\\ 16\\ <5\\ 7\\ 10\\ 53.0\\ 16\\ 588\\ 18\\ 12\\ \end{array}$	$14.46 \\ 1.74 \\ 0.01 \\ 0.58 \\ 2.09 \\ 5.57 \\ 1.14 \\ 0.16 \\ 0.37 \\ 99.46 \\ \hline n.d. \\ 435 \\ <4 \\ 9 \\ 16 \\ <5 \\ 7 \\ 11 \\ 55.6 \\ 31 \\ 581 \\ 23 \\ 10 \\ \hline $	15.48 2.71 0.02 0.87 2.21 5.83 1.57 0.26 0.53 99.57 <4 525 <4 11 19 5 6 12 80.7 58 640 26 13			
Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₃ O P ₂ O ₅ L.O.I. Total As(ppm) Ba Cr Cu Ga Nb Ni Pb Rb** S S Sr** Th	15.34 2.57 0.02 0.83 2.23 5.82 1.48 0.17 0.40 99.70 <4 478 <4 6 18 <5 5 11 73.9 29 594 24	15.42 0.97 0.01 0.34 6.04 1.05 0.13 0.30 99.52 <4 439 n.d. 5 16 n.d. 6 13 35.9 16 657 39	$14.84 \\ 1.76 \\ 0.01 \\ 0.57 \\ 2.20 \\ 5.70 \\ 1.15 \\ 0.15 \\ 0.33 \\ 99.76 \\ <4 \\ 418 \\ 6 \\ 5 \\ 16 \\ <5 \\ 7 \\ 10 \\ 53.0 \\ 16 \\ 588 \\ 18 \\ 18 \\ $	$\begin{array}{c} 14.46\\ 1.74\\ 0.01\\ 0.58\\ 2.09\\ 5.57\\ 1.14\\ 0.16\\ 0.37\\ 99.46\\ \hline \\ n.d.\\ 435\\ <4\\ 9\\ 16\\ <5\\ 7\\ 11\\ 55.6\\ 31\\ 581\\ 23\\ \end{array}$	$15.48 \\ 2.71 \\ 0.02 \\ 0.87 \\ 2.21 \\ 5.83 \\ 1.57 \\ 0.26 \\ 0.53 \\ 99.57 \\ <4 \\ 525 \\ <4 \\ 11 \\ 19 \\ 5 \\ 6 \\ 12 \\ 80.7 \\ 58 \\ 640 \\ 26 \\ \end{cases}$	-		

Table 2. Whole-rock chemical compositions of the phoscorite and biotite gneiss.

 Zr
 98
 201

 L.O.I., loss on ignition; n.d., not detected.
 **Determined by isotope dilution.

287

81

54

⁸⁶Sr/⁸⁸Sr=0.1194 and ¹⁴⁶Nd/¹⁴⁴Nd=0.7219, respectively. The normalized ⁸⁷Sr/⁸⁶Sr ratios were corrected using the NBS-987 standard of ⁸⁷Sr/⁸⁶Sr=0.710241. The ¹⁴³Nd/ ¹⁴⁴Nd ratios were corrected with the Japanese standard JNdi-1 (Nd isotopic reference of the Geological Survey of Japan) of ¹⁴³Nd/¹⁴⁴Nd=0.512106, which has been well-documented using the international standard La Jolla of ¹⁴³Nd/¹⁴⁴Nd=0.511849 (Tanaka *et al.*, 2000). Sm, Nd, Rb and Sr concentrations were determined by an isotope dilution method using ⁸⁷Rb-⁸⁴Sr and ¹⁴⁹Sm-¹⁴⁵Nd mixed spikes. Rb-Sr and Sm-Nd isochron ages and initial Sr and Nd isotope ratios were calculated by the computer program of Kawano (1994) which used the equation of York (1966) and the decay constants λ^{87} Rb=1.42×10⁻¹¹/y (Steiger and Jäger, 1977) and λ^{147} Sm=6.54×10⁻¹²/y (Lugmair and Marti, 1978). Analytical errors for ⁸⁷Rb/⁸⁶Sr and ⁸⁷Sr/⁸⁶Sr ratios were 0.1% (1 σ) and 0.01% (1 σ), respectively. Detailed isotopic analytical procedures were reported by Miyazaki and Shuto (1998). The Rb-Sr and Sm-Nd isotopic data are given in Table 3.

Sample No.	Rb(ppm)	Sr(ppm)	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr(2\sigma)*	Sm(ppm)	Nd(ppm)	147Sm/144Nd	¹⁴³ Nd/ ¹⁴⁴ Nd(20)*
Fine-grained syeni	te							
98081501B	339	87.3	11.58	1.02098(1)	6.55	66.9	0.05830	0.510824(14)
98081501B-Cpx	13.0	143	0.2649	0.71763(1)	4.07	15.2	0.1615	0.511917(13)
98081501B-Amp	165	92.5	5.248	0.85006(1)	6.95	62.1	0.06762	0.510929(14)
98081501B-F.f.	585	54.9	33.49	1.58854(1)	0.73	4.10	0.1079	0.511437(13)
Dolerite								
98081501F-Cpx	73.2	38.0	5.670	0.88053(1)	6.57	25.9	0.1532	0.511850(13)
98081501F-Hb	34.3	83.0	1.201	0.74470(1)	8.60	34.2	0.1522	0.511861(14)
98081501F-F.f.	500	57.2	30.19	1.59344(2)	0.757	3.93	0.1166	0.511506(12)
Biotite gneiss								
98081501G-A	73.9	594	0.3603	0.71586(1)	7.51	82.4	0.05507	0.509915(14)
98081501G-B	35.9	657	0.1582	0.70991(1)	9.47	110	0.05187	0.509826(14)
98081501G-C	53.0	588	0.2609	0.71236(1)	5.65	61.2	0.05581	0.509902(14)
98081501G-D	55.6	581	0.2768	0.71313(1)	7.17	80.4	0.05394	0.509883(14)
98081501G-Е	80.7	640	0.3656	0.71681(1)	7.60	80.2	0.05721	0.509925(14)
Phoscorite								
PH02F	254	588	1.251	0.73317(1)	26.8	143	0.1135	0.511239(12)
PH02C	247	2531	0.2824	0.71579(1)	161	935	0.1038	0.511119(12)
PH02-Phl	630	81.8	23.75	1.38990(1)	6.44	31.8	0.1235	0.511314(13)
PH02-Ap	0.7360	5536	0.000385	0.70709(1)	454	2690	0.1020	0.511069(51)
PH03A	194	2687	0.2087	0.71483(1)	254	1349	0.1138	0.511239(10)
PH03B	255	1432	0.5151	0.72034(1)	96.5	554	0.1052	0.511102(13)
PH03C	209	1547	0.3918	0.71766(1)	86.9	504	0.1043	0.511099(9)
PH03D	298	2934	0.2946	0.71698(1)	261	1433	0.1101	0.511156(10)
PH03E	139	2110	0.1911	0.71384(1)	151	860	0.1062	0.511106(13)
PH03F	353	2333	0.4381	0.71976(1)	186	1058	0.1062	0.511091(14)
Carbonatite								
PH04	2.01	4843	0.001198	0.71078(1)	40.6	209	0.1173	0.511206(14)
PH05	0.411	5182	0.000229	0.71090(1)	43.7	216	0.1222	0.511285(13)
PH06	0.240	8397	0.000083	0.70568(1)	58.0	337	0.1040	0.511133(9)

 Table 3.
 Rb-Sr and Sm-Nd isotopic data of rocks and minerals from the Phallaborwa Carbonatite Complex.

*bracket number indicates 2σ error in the isotopic ratio.

Cpx: clinopyroxene, Amp: amphibole, F.f.: felsic-fractions, Hb: hornblende, Phl: phlogopite, Ap: apatite.

4.2. Major and trace elements

The phoscorite has SiO₂ content ranging from 24.7 wt% to 44.9 wt% (Table 2). Variations of P_2O_5 , Cr, Cu, Nb, Pb, S, Sr, Th, Y, Zr are large. The SiO₂ content of each layer of the biotite gneiss ranges from 69.7 wt% to 73.1 wt% (Table 2). Variation of each element is small except for Rb, Zr.

4.3. Nd-Sr isotopes

Clinopyroxene, amphibole, felsic-fractions, and whole-rock sample separated from the fine-grained syenite (98081501B) give a Rb-Sr whole-rock and mineral isochron age of 1843 ± 24 Ma and Sm-Nd whole-rock and mineral isochron age of 1664 ± 180 Ma. Hornblende, clinopyroxene, and felsic-fractions separated from dolerite (98081501F) give a Rb-Sr mineral isochron age of 2062 ± 74 Ma (Fig. 6) and a Sm-Nd mineral isochron age of 1471 ± 147 Ma. Phlogopite, apatite, and whole-rock sample separated from phoscorite (PH-02) give an Rb-Sr whole-rock and mineral isochron age of 2013 ± 93 Ma (Fig. 6) and a Sm-Nd whole-rock and mineral isochron age of 1639 ± 382 Ma. Each domain of phoscorite gives an Rb-Sr isochron age of 1381 ± 285 Ma and Sm-Nd isochron ages. The Nd model ages calculated using DM (Depleted Mantle: parameters for calculation are ¹⁴³Nd/¹⁴⁴Nd (present)=0.51315 and ¹⁴⁷Sm/¹⁴⁴Nd (present)=0.2136) are in narrow range from 3.09 to 3.12 Ga (T_{DM}).

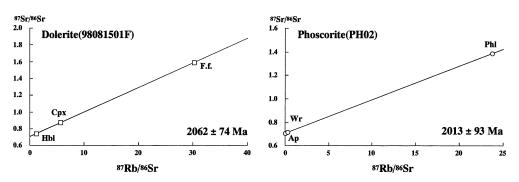


Fig. 6. Rb-Sr mineral isochron diagrams of the dolerite and phoscorite. Hbl: hornblende, Cpx: clinopyroxene, F.f.: felsic-fractions, Wr: whole-rock, Phl: phoscorite, Ap: apatite.

Carbonatites are divided into two groups in terms of Sr isotopic ratios (Table 3). One has a high Sr isotopic ratio (0.71078 of PH04 and 0.71090 of PH05), another has a low Sr isotopic ratio (0.70568 of PH06) (Table 3). The Nd isotopic ratio of the former is higher than that of the latter (Table 3).

5. Discussion

Rb-Sr and Sm-Nd whole-rock and mineral isochron ages of the fine-grained syenite $(1843\pm24 \text{ Ma} \text{ and } 1664\pm180 \text{ Ma})$ are younger than the timing of magmatism of the Phalaborwa Carbonatite Complex (about 2050Ma). The large age error of Sm-Nd

whole-rock and mineral isochron ages is caused by the small variation of the 147 Sm/ 144 Nd ratio. Thus, these ages are greatly influenced by the magmatism of dolerite dykes, probably indicating an age younger than 1900 Ma, and do not indicate the timing of syenite magmatism.

Rb-Sr mineral isochron age of dolerite $(2062\pm74 \text{ Ma: Fig. 6})$ overlaps the timing of the Phalaborwa Carbonatite Complex magmatism. Therefore, it is hypothesized that this dolerite dyke intruded immediately after the syenite activity. The Sm-Nd mineral isochron age $(1471\pm147 \text{ Ma})$ is far younger than that, and has a large error caused by the small variation of the ¹⁴⁷Sm/¹⁴⁴Nd ratio. This age is of low reliability, and can not indicate the timing of activity.

The Rb-Sr whole-rock and mineral isochron age of phoscorite $(2013\pm93 \text{ Ma: Fig.})$ 6) is nearly coincident with the Rb-Sr mineral isochron age of 2012 ± 19 Ma (Eriksson, 1984) involving phlogopites obtained from clinopyroxenites, carbonatite, and phoscorite (Eriksson, 1989). The closure temperature for the Rb-Sr isotope system of biotite is 300-330°C (Wagner et al., 1977; Harrison et al., 1979). Thus, these ages indicate the cooling age, when the body cooled down under 300°C. The U-Pb age between 2047 and 2061 Ma, therefore, indicates the time of magmatism of the Phalaborwa Carbonatite Complex (Eriksson, 1989). Thus, the timing of magmatism of the Phalaborwa Carbonatite Complex is about 2050 Ma. The Sm-Nd whole-rock and mineral isochron age of phoscorite (1639 ± 382 Ma) is far younger than that, and has a large error caused by the small variation of the ¹⁴⁷Sm/¹⁴⁴Nd ratio. The Rb-Sr isochron age obtained by each domain of phoscorite $(1381\pm285 \text{ Ma})$ is far younger than Rb-Sr whole-rock and mineral isochron age, and has large error caused by dispersion. The Sm-Nd isochron age of phoscorite $(2202\pm609 \text{ Ma})$ is slightly older than that, and has large error caused by small variation of ¹⁴⁷Sm/¹⁴⁴Nd ratio. These ages are of low reliability. Thus, these isochrons should be considered pseudo-isochrons.

The biotite gneiss was brought from Archean terrane. Each layer of the biotite gneiss does not give clear Rb-Sr and Sm-Nd isochron ages. This is caused by the thermal effect of syenite for the Rb-Sr and Sm-Nd systems and by the small variation of 147 Sm/ 144 Nd ratio for Sm-Nd system. The T_{DM} of the biotite gneiss is in the narrow range from 3.09 to 3.12 Ga. This is consistent with the biotite gneiss having been brought from Archean terrane.

Two groups of carbonatite have initial Sr isotopic ratios (SrI) of 0.71074 to 0.71089 and 0.70569 calculated at 2050 Ma, respectively. Eriksson (1989) indicated that most of the SrI of carbonatite ranges from 0.70393 to 0.70680, except for one sample which has an SrI of 0.71022. The result of this study is consistent with that of Eriksson (1989). Eriksson (1989) proposed that at least two carbonatite source magmas form the carbonatites and pyroxenites, one with an SrI < 0.7039 and another with a high SrI >0.710. Initial Nd isotopic ratios (NdI) of the two groups are 0.509623 to 0.509636 and 0.509729, respectively. SrI and NdI of carbonatites are plotted in the compositional range indicated by Eriksson (1989) (Fig. 7). SrI and NdI of phoscorite, which has an interbanded relationship, range from 0.70513 to 0.70867 and from 0.509658 to 0.509718, respectively, except for SrI of PH02F. These are isotopic data encompassed within the above two carbonatite groups (Fig. 7). The mode of occurrence of phoscorite suggests that the phoscorite is a cogenetic product with carbonatite

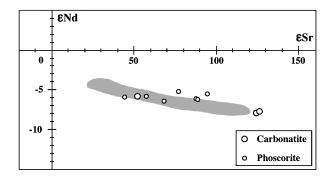


 Fig. 7. Initial ESr vs. ENd diagram of carbonatite and phoscorite. Chondritic Uniform Reservoir (CHUR) parameters for calculation of initial ESr and ENd values: ⁸⁷Sr/⁸⁶Sr(present) =0.7045, ⁸⁷Rb/⁸⁶Sr(present) =0.0827, ¹⁴³Nd/¹⁴⁴Nd(present) = 0.512638, ¹⁴⁷Sm/¹⁴⁴Nd(present) =0.1966. The gray area is the compositional range of carbonatite reported by Eriksson (1989).

magmatism (Eriksson, 1989). Thus, these isotopic data suggest that carbonatite and related rocks obtained in this area were formed by mixing of two source magmas having different Sr and Nd isotopic compositions. Eriksson (1989) showed that the clinopyroxinite, carbonatite and phoscorite could not be the result of magmatic differentiation alone, but involve complicated magmatic processes. Our result is consistent with his interpretation.

Acknowledgments

We thank Mr. Nick Baglow (Council for Geoscience, South Africa) for support during the field survey. Thanks are also due to Dr. Y. Kawano (Saga University) for help with isotopic separation. We also thank Drs. H. Wada (Shizuoka University) and M. Owada (Yamaguchi University) for their critical reading and invaluable comments. This study was supported mainly by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Science, Sports and Culture to Dr. K. Shiraishi (No. 0904116) for the field survey.

References

- Briden, J.C. (1976): Application of palaeomagnetism to proterozoic tectonics. Philos. Trans. R. Soc. London, 280, 405–416.
- Eriksson, S.C. (1984): Age of carbonatite and phoscorite magmatism of the Phalaborwa Complex (South Africa). Isotope Geosci., 2, 291–299.
- Eriksson, S.C. (1989): Phalaborwa: a saga of magmatism, metasomatism & miscibility. Carbonatites, ed by K. Bell. New York, Unwin Hyman, 221–254.
- French, J.E., Heaman, L.M. and Chacko, T. (2002): Feasibility of chemical U-Th-total Pb baddeleyite dating by electron microprobe. Chem. Geol., 188, 85–104.
- Hall, A.L. (1912a): The Palabora plutonic complex of the low country and its relationship to the pegmatites of the Leydsdorp mics-fields. Trans. Geol. Soc. S. Afr., 15, 4–17.

- Hall, A.L. (1912b): The crystalline metamorphic limestone of Lulukop and its relationship to the Palabora Plutonic Complex. Trans. Geol. Soc. S. Afr., **15**, 18–25.
- Hanekom, H.J., van Staden, C.M., Smit, P.J. and Pike, D.R. (1965): The geology of the Palabora Igneous Complex. S. Afr. Geol. Surv., Mem., 54, 179 p.
- Harrison, T.M., Armstrong, R.L., Naeser, C.W. and Harakal, J.E. (1979): Geochronology and thermal history of the Coast Plutonic Complex near Prince Repeat, British Columbia. Can. J. Earth Sci., 16, 400–410.
- Heaman, L.M. and LeCheminant, A.N. (1993): Paragenesis and U-Pb systematics of Baddeleyite (ZrO₂). Chem. Geol., **110**, 95–126.
- Horn, I., Rudnick, R.L. and McDonough, W.F. (2000): Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation - ICP-MS: application to U-Pb geochronology. Chem. Geol., 164, 281–301.
- Kawano, Y. (1994): Calculation program for isochron ages of Rb-Sr and Sm-Nd systems using personal computer. Geoinformatics, 5, 13–19 (in Japanese with English abstract).
- Kawano, Y., Nishi, N. and Ishisaka, T. (1999): Preparation of samples for Sr and Nd isotopic analysis at petrochemical laboratory. J. Fac. Cul. Edu. Saga Univ., 4, 139–146 (in Japanese with English abstract).
- Lugmair, G.W. and Marti, K. (1978): Lunar initial ¹⁴³Nd/¹⁴⁴Nd: differential evolution of the Lunar crust and mantle. Earth Planet. Sci. Lett., 39, 349–357.
- Miyazaki, T. and Shuto, K. (1998): Sr and Nd isotope ratios of twelve GSJ rock reference samples. Geochem. J., **32**, 345–350.
- Palabora Mining Company Limited Mine, Mine Geological and Mineralogical Staff (1976): The geology and the economic deposits of copper, iron, and vermiculite in the Palabora Igneous Compex: A brief review. Econ. Geol., 71, 177–192.
- Reischmann, T. (1995): Precise U/Pb age determination with baddeleyite (ZrO₂), a case study from the Phalaborwa Igneous Complex, South Africa. S. Afr. J. Geol., **98**, 1–4.
- Shand, S.J. (1931): The granite-syenite-limestone complex of Palabora, eastern Transvaal, and the associated apatite deposits. Trans. Geol. Soc. S. Afr., 34, 81–105.
- Steiger, R.H. and Jäger, E. (1977): Subcommision on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36, 359–362.
- Takamoto, N., Yuhara, M. and Furukawa, N. (2005): Areal distribution of 26 elements in the Ima River and Harai River basins in the eastern part of Fukuoka Prefecture, Southwest Japan. Fukuoka Univ. Sci. Rep., 35 (2) (in press) (in Japanese with English abstract).
- Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H. and other 14 authors (2000): JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol., 168, 279–281.
- Wagner, G.A., Reimer, G. and Jäger, E. (1977): Cooling ages derived by apatite fission track, mica Rb-Sr and K-Ar dating: the uplift and cooling history of the Central Alps. Mem. Inst. Geol. Mineral., Univ. Padova, 30, 1–27.
- Wingate, M.T.D. and Compston, W. (2000): Crystal orientation effects during ion microprobe U-Pb analysis of baddeleyite. Chem. Geol., 168, 75–97.
- York, D. (1966): Least-squares fitting of a straight line. Can. J. Phys., 44, 1079-1086.
- Yuhara, M. and Taguchi, S. (2003a): Major and trace element analyses of silicate rocks using X-ray fluorescence spectrometer ZSX100e. Fukuoka Univ. Sci. Rep., 33 (1), 25–34 (in Japanese with English abstract).
- Yuhara, M. and Taguchi, S. (2003b): X-ray fluorescence analysis of Co and S of silicate rocks using glass beads by ZSX100e. Fukuoka Univ. Sci. Rep., 33 (2), 77–81 (in Japanese with English abstract).
- Yuhara, M., Kohno, M., Kagami H., Hiroi, T. and Tsuchiya, N. (2003): Geochemistry of syenite of the Phalaborwa Carbonatite Complex, South Africa. Polar Geosci., 16, 176–195.
- Yuhara, M., Furukawa, N. and Taguchi, S. (2004): X-ray fluorescence analysis of trace elements in silicate and carbonate rocks using powder pellets by RIGAKU ZSX100e. Fukuoka Univ. Sci. Rep., 34 (1), 43-49 (in Japanese with English abstract).

Sample No.	98081501	98081502	98081503	98081504	98081505	98081501A
Rock facies	C.Sy.	A.G.	C.Sy.	F.Sy.	M.R.	C.Sy.
As(ppm)	<4	n.d.	<4	<4	<4	<4
Ga	30	19	27	28	19	24
Pb	27	17	22	31	94	29
S	110	23	92	69	26	83
Th	62	<4	32	100	135	38
Sample No.	98081501B	98081501C	98081501D	98081501E	98081501F	
Rock facies	F.Sy.	M.R.	M.R.	A.G.	Do.	
As(ppm)	<4	<4	<4	n.d.	<4	
				m.c.		
Ga	26	23	20	19	18	
Ga Pb						
	26	23	20	19	18	

Appendix. Whole-rock chemical compositions of the syenite and related rocks.

A.G.: alkali-feldspar granite, F.Sy.: fine-grained syenite, C.Sy.: coarse-grained syenite, M.R.: melanocratic rock, Do.: dolerite. n.d.: not detected.