Polar Geosci., 15, 1-16, 2002
(© 2002 National Institute of Polar Research

Peak temperatures of ultra-high temperature metamorphism
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Abstract: In the Mt. Ruser-Larsen area of the Archaean Napier Complex, an
ultra-high temperature (UHT) metamorphic complex, Enderby Land, East Antarc-
tica, meta-ultramafic rocks occur as blocks and pods embedded 1n orthopyroxene
felsic gneiss or garnet felsic gneiss and as thin layers intercalated with orthopyrox-
ene felsic gneiss. They consist mainly of olivine, orthopyroxene, clinopyroxene
and spinel with or without phlogopite. On the basis of the modal proportion of
oltvine and pyroxene, they are classified into peridotite and minor pyroxenite.
These constituent minerals are generally medium- to coarse-grained with granular
texture. Furthermore, some samples also contain coarse-grained but porphyro-
clastic clino- and orthopyroxenes that are sometimes armored locally by neoblastic
pyroxenes. Chemical compositions of granular pyroxenes are similar to those of
neoblastic varieties, which are, however, different from those of porphyroclastic
pyroxenes; porphyroclastic clinopyroxenes are rich in ALO; but poor n CaO as
compared with granular and neoblastic clinopyroxenes. The pyroxene thermom-
eter yields 600-650°C for granular and neoblastic pyroxenes, while porphyroclastic
pyroxenes indicate about 1130°C. The former lower temperatures are interpreted
as representing a closure temperature of the thermometer, while the latter higher
temperatures indicate a peak metamorphic temperature of the Napier UHT
metamorphism.

key words: meta-ultramafic rocks, Mt. Ruser-Larsen, Napier Complex, peak
temperatures, porphyroclastic pyroxenes

1. Introduction

Widespread occurrences of unique metamorphic minerals and mineral associations
such as osumilite, inverted pigeonite, sapphirine+ quartz, spinel + quartz, and sillimanite+
orthopyroxene-garnet are characteristic of the Mt. Riiser-Larsen area in the Archaean
Napier Complex, Enderby Land, East Antarctica (Fig. 1) (e.g., Ishizuka er al., 1998;
Ishikawa er al., 2000). Phase relations and related experiments provide unequivocal
evidence that such unique minerals and mineral associations are stable under extremely
high temperature conditions above 1000°C, which is generally referred to as ultra-high
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Fig. 1. Locality map of the Mt Riiser-Larsen area, Enderby Land, East Antarctica.

temperature (UHT) metamorphism (e.g., Spear, 1993; Harley, 1998). Studies on UHT
metamorphism possibly lead to the recognition of several fundamental attributes such as
physico-chemical conditions during stabilization of the continental crust. It is, however,
very hard to estimate quantitatively the peak metamorphic conditions of UHT metamor-
phism, especially the peak metamorphic temperature, by the thermometric approach using
chemical compositions of constituent minerals, because the low-temperature chemical
re-equilibration has been generally attained during the retrograde stage that masks or
obliterates the mineral compositions related to the peak metamorphic stage. Such
approaches for the Napier Complex have been done only by Sandiford and Powell (1986,
1988), Harley (1987), Harley and Motoyoshi (2000) and Hokada (2001). In the course of
petrographical work on meta-ultramafic rocks from the Mt. Ruser-Larsen area, we have
found the pyroxenes that retain compositions equilibrated under the peak metamorphic
temperatures. The following is the petrographical description of the newly found
meta-ultramafic rocks along with the discussion of their significance in evaluating the
thermal conditions of the Napier UHT metamorphism.

2. Field occurrence and sample description

The Mt. Riiser-Larsen area is located in the western part of the Napier Complex (Fig.
), and is underlain by UHT metamorphic rocks and unmetamorphosed doleritic intrusive
rocks  The generalized geology of the area has been recently given by Ishizuka er al
(1998) and Ishikawa er al. (2000), showing that its lithology is largely divided into the
layered gneiss series and massive gneiss series (Fig. 2).  The layered gneiss series. occurring
in the central to northwestern part of the area, 1s characterized by the development of
various-sized layers of garnet felsic gneiss, orthopyroxene felsic gneiss, pelitic and mafic
gneisses, metamorphosed impure quartzite, and metamorphosed quartz-magnetite rock.
The massive gneiss series 1s predominant in the southern to southeastern part and consists
mainly of the massive orthopyroxene felsic gneiss, in which the layering structure is not
conspicuous and the lithology is rather monotonous. However, these two gneiss series are
not mutually exclusive, and indeed, transitional varieties referred to as the transitional
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Fig. 3. Field occurrences and photomicrographs of meta-ultramafic rocks. A: Blocks of
meta-ultramafic rocks (yvellow-colored rocks) embedded within orthopyroxene felsic
gneiss, B: Thin layer of meta-ultramafic rocks (yellow-colored rocks) interlayered with
orthopyroxene felsic gneiss, C: Granular texture of meta-ultramafic rocks composed of
olivine (OL), orthopyroxene (OPX) and clinopyroxene (CPX) (width=4.0 mm), D:
Porphyroclastic pyroxene (PPY) and neoblastic pyroxene (NPY) of meta-ultramafic
rocks (width= 4.0 mm).

gneiss series (Ishizuka et al., 1998) occur between the two gneiss series.

Meta-ultramafic rocks to be described in detail herein occur characteristically in or
near the transitional gneiss series, as mappable- to unmappable-sized blocks or pods in
orthopyroxene felsic gneiss or garnet felsic gneiss, and as thin layers intercalated with
orthopyroxene felsic gneiss (Fig. 3A and 3B). They are commonly massive with pale
yellow in color, but rarely display weak metamorphic foliation defined by elongated
orthopyroxene. Petrographically, the meta-ultramafic rocks generally exhibit medium- to
coarse-grained granular texture. Constituent minerals include olivine, orthopyroxene,
clinopyroxene with minor amounts of spinel. Modal proportions of olivine and pyroxene
classify the meta-ultramafic rocks mainly as peridotite with minor pyroxenite. Granular
pyroxenes sometimes contain pronounced exsolution lamellae. Phlogopite is sometimes
present but as small amounts. Of particular interest is the rare development of porphyro-
clastic ortho- and clinopyroxenes, which are found in only two samples, the phlogopite-free
and -bearing peridotites. The porphyroclastic pyroxenes are sometimes armored locally by
neoblastic ortho- and/or clinopyroxenes (Fig. 3C and 3D), in which crystal orientation as
defined by cleavage is different between neoblastic and porphyroclastic pyroxenes. No
replacement texture by neoblastic pyroxenes 1s found along or around porphyroclastic
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pyroxenes. Neoblastic pyroxenes sometimes exhibit exsolution lamellae, but porphyro-
clastic pyroxenes show little evidence of exsolution.

3. Mineral compositions

Chemical analyses of constituent minerals by using EPMA (JEOL-8600M) at Kochi
University were performed for 12 samples of meta-ultramafic rocks, 7 peridotite samples
and 5 pyroxenite samples. Sample localities are shown in Fig. 2, and representative
mineral analyses are listed in Tables 1 to 5. Of these samples, two peridotites, phlogopite-
free (No. 7010801) and -bearing (No. 7012101) peridotites, contain porphyroclastic pyrox-
enes. In the Tables and the following description, FeO*means total iron as FeO, XMg
represents the Mg/(Mg+ Fe?™) ratio of minerals, and, for spinel analyses, FeO and Fe,O;
were calculated from total iron assuming ideal spinel formula.

Phlogopite (Fig. 44). The XMg of phlogopites from the peridotites with no porphyro-
clastic pyroxenes ranges from 0.93 to 0.96, and their TiO, contents are of 1.0 to 5.3 wt%.
As compared with these phlogopite compositions, phlogopites from the peridotite (No.
7012101) with porphyroclastic pyroxenes have similar XMg (about 0.94) but lower TiO,

Table I  Representative chemical compositions of phlogopites.

Peridotite Pyroxenite

7010803 7011301 7012101  6123105D 7012102  701070X
S102 40.15 39.96 41.11 41.15 41.82 41.49
TiO2 3.27 3.40 0.95 2.81 2.48 1.53
Al2O3 13.75 15.70 16.28 13.68 13.43 15.03
Cr203 0.25 1.27 0.64 0.35 0.11 0.47
FeO* 2.10 3.04 3.02 1.94 2.69 3.04
MnO 0.02 0.01 0.06 0.00 0.07 0.01
MgO 25.84 24.51 26.15 25.66 26.54 25.32
NiO 0.09 0.15 0.21 0.12 0.23 0.42
CaO 0.05 0.02 0.01 0.01 0.00 0.03
Na20 0.40 0.14 0.09 051 0.28 0.16
K20 10.31 8.68 7.96 10.08 9.54 8.84
P20s 0.10 0.05 0.00 0.01 0.02 0.06
Total 96.30 96.90 96.47 96.33 97.20 96.42
0=22.0
Si 5.612 5.519 5.650 5.727 5.761 5.740
Ti 0.343 0.353 0.098 0.294 0.257 0.160
Al 2.266 2.556 2.637 2.245 2.182 2.452
Cr 0.028 0.139 0.069 0.039 0.012 0052
Fe* 0.246 0.351 0.347 0.225 0.310 0.352
Mn 0.003 0.001 0.007 0.000 0.008 0.002
Mg 5.383 5.045 5.355 5.323 5.450 5.221
N1 0.010 0.016 0.023 0.014 0.025 0.047
Ca 0.007 0.003 0.001 0.002 0.000 0.005
Na 0.107 0.037 0.023 0.138 0.076 0.043
K 1.838 1.529 1.396 1.790 1.676 1.561
P 0.011 0.006 0.000 0.001 0.002 0007
Total 15.853 15.555 15.608 15.799 15.758 15.640

XMg 0.96 0.94 0.94 0.96 0.95 0.94
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Fig. 4. Compositions of phlogopite (A), spinel (B) and olivine (C) from meta-ultramafic rocks.

contents (0.8-1.0 wt%). The phlogopite-bearing pyroxenites have phlogopites with XMg
of 0.93 to 0.95 and TiO, contents of 1.3 to 2.5.

Spinel (Fig. 4B): The XMg and Cr/(Cr-+ Al+Fe') ratios of spinels range in
peridotites from 0.71 to 0.90 and from 0.05 to 0.12, respectively, while spinels from
pyroxenites have XMg of 0.61 to 0.71 and a Cr/(Cr+ Al+Fe**) ratio of 0.05 to 0.21. A
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high Cr/(Cr+ Al4 Fe’™) ratio (0.3-0.4) is also found in one peridotite sample with low
XMg of 0.54 to 0.61.

Olivine (Fig. 4C): There 1s no sign of compositional heterogeneity in olivines of the

analyzed samples. In the samples with no porphyroclastic pyroxenes, there is no distinct
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difference in olivine composition (XMg=091-0.94, NiO=0.34-0.72 wt%) between the
phlogopite-free and -bearing peridotites, while olivines from the pyroxenites have XMg of
0.87 to 0.90 and NiO of 0.16 to 0.59 wt%. As compared with these data, the sample No.
7010801 (phlogopite-free) has olivines with the similar XMg (0.93-0.94) and NiO content
(0.42-0.60 wt%), while olivines from the sample No. 7012101 (phlogopite-bearing) have the
slightly lower XMg (about 0.90) but similar NiO content (0.41-0.52 wt%).

Orthopyroxene (Fig. 5): No chemical heterogeneity is detected within individual
grains in analyzed orthopyroxenes. There is no distinct difference in composition among
granular orthopyroxenes in peridotites without porphyroclastic pyroxenes; XMg—=0.89-
0.94, Ca0=0.1-0.7 wt%, and Al,O;=0.8-4.9 wt%. Ascompared with these orthopyroxene
compositions, granular and neoblastic orthopyroxenes of the phlogopite-free peridotite
with porphyroclastic texture (No. 7010801) have similar XMg (0.92-0.94), and CaO (0.2-
0.6 wt%) and Al,O; (0.8-4.1 wt%) contents, while those of the phlogopite-bearing peridotite
with porphyroclastic texture (No. 7012101) are slightly low in XMg (0.89-0.90) but similar
in CaO (0.3-0.5 wt%) and ALOs (2.9-4.0 wt%). Orthpyroxenes forming exsolution lamel-
lae in granular and neoblastic clinopyroxenes are similar in composition to those of
exsolution-free granular and neoblastic orthopyroxenes, respectively. Porphyroclastic
orthopyroxenes have similar XMg to granular and neoblastic varieties in the same samples,
but their CaO and ALQO; contents are apparently enriched; ie, CaO=1.7-2.5 wt% and
AlLO;=4.8-52 wt% in No. 7010801, and CaO=1.3-1.8 wt% and ALO;=4.1-4.8 wt% in
No. 7012101. Orthopyroxenes in pyroxenites are lower in XMg (0.78-0.88) than those in
peridotites, and their CaO and Al,O; contents range from 0.1 to 0.6 and from 1.0 to 5.7 wt%,
respectively.

Clinopyroxene (Fig. 5): Clinopyroxenes analyzed here are also commonly homogene-
ous in composition within individual grains. No compositional difference is found
among granular clinopyroxenes in peridotites with no porphyroclastic texture; XMg=
0.90-0.95, Ca0=21.1-234 wt%, and AlLO;=2.1-4.8 wt%. As compared with these
clinopyroxene compositions, granular and neoblastic clinopyroxenes of the phlogopite-free
peridotite with porphyroclastic texture (No. 7010801) have similar XMg (0.94-0.95), and
CaO (21.7-22.3 wt%) and ALQO; (2.8.-3.5 wt%) contents, while those of the phlogopite-
bearing peridotite with porphyroclastic texture (No. 7012101) are slightly low in XMg
(0.89-0.92) but similar in CaO (22.2-244 wt%) and ALO; (2.6-3.7 wt%). Exsolution
clinopyroxenes in granular and neoblastic orthopyroxenes have similar compositions to
those of exsolution-free granular and neoblastic clinopyroxenes. Porphyroclastic clinopy-
roxenes are similar in XMg to granular and neoblastic varieties in the same samples, but
their CaO content is apparently depleted and their AL,O, content is enriched; ie., CaO=
18.5-189 wt% and ALO;=5.8-69 wt% in No. 7010801, and CaO=18.8-19.6 wt% and
ALO;=4.8-62 wt% in No. 7012101. Clinopyroxenes in pyroxenites are lower in XMg
(0.84-0.93) than those in peridotites, and their CaO and Al,O; contents range from 20.3 to
24.3 wt% and 1.9 to 6.8 wt%, respectively.

4. Pyroxene thermometry

As described previously, the chemical compositions of granular and neoblastic
pyroxenes are similar to each other, but they are apparently different from porphyroclastic
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varieties. This means that the thermal history or finally equilibrated conditions of
granular and neoblastic pyroxenes are different from the conditions of porphyroclastic
varieties. Compositions of other minerals in peridotites are similar to each other, and
those in pyroxenites are also similar to each other; the difference in mineral compositions
between peridotites and pyroxenites may be attributed to the difference in bulk rock
compositions.

Conventional multi-component two-pyroxene thermometers (Wood and Banno, 1973;
Wells, 1977) based on combinations of simple system experiments and empirical Fe-
corrections have been superseded by projection-based quadrilateral pyroxene thermometry
(Lindsley, 1983), which 1s used here as shown in Fig. 5. At the relevant pressures of 10
kbar (e.g., Harley and Motoyoshi, 2000), the estimated temperatures make two clusters;
high temperatures (up to 1130°C) as recorded by porphyroclastic pyroxenes and low
temperatures (650-700°C) as indicated by granular as well as neoblastic pyroxenes are
apparent from Fig. S.

5. Discussion and conclusion

Although the geochemical study suggested that the precursors of phlogopite-free and
phlogopite-bearing meta-peridotites are depleted mantle peridotites and related komatiitic
rocks, respectively (Suzuki er al., 1999), the original textures such as spinifex texture of
these rocks were perfectly modified by metamorphism, and then, most of these rocks now
display granular textures. It is, therefore, likely that granular minerals have been once
equilibrated under the peak metamorphic temperature of UHT metamorphism, and
subsequently they were chemically re-equilibrated during the retrograde stage to lower
temperature compositions.  The occurrence of porphyroclastic minerals with high temper-
ature (up to 1130°C) compositions, as described previously, suggests that the retrograde
redistribution of elements occurred perfectly in most of the rocks, but rarely it was local and
produced a porphyroclastic texture that resulted in the retention of high-temperature
compositions.  The formation of porphyroclastic minerals helps to keep the high tempera-
ture compositions, and the high temperatures estimated from the compositions of porphyro-
clastic pyroxenes are interpreted as a temperature avoiding low-temperature re-
equilibration.  Although the mechanism of formation of porphyroclastic texture is still in
dispute, we interpret this higher temperature as a peak metamorphic temperature of the
Napier UHT metamorphism. On the other hand, the lower temperatures (650-700°C) as
obtained by the compositions of granular and neoblastic pyroxenes could represent the
temperature equilibrated during the retrograde stage after the peak metamorphism, at which
time redistribution of elements in pyroxenes, probably accompanied by the formation of
exsolution lamellae, may have been diminished. It is, therefore, possible that the lower
temperature means that a lower limit was imprinted in pyroxene compositions. The
formation of neoblastic pyroxenes may have been attributed to a kind of deformation
process during the retrograde stage; ie., if porphyroclastic pyroxenes locally evaded such a
process and preserved the compositions of the peak metamorphic temperature, then
neoblastic pyroxenes would have been formed along or around the porphyroclastic
pyroxenes during that process. Inasmuch as exsolution lamellae develop characteristically
in neoblastic pyroxenes, this process may have also been related to the low-temperature
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redistribution of elements.

Previous thermometric approaches using chemical compositions of constituent min-
erals for the Napier Complex include Sandiford and Powell (1986, 1988), Harley (1987),
Harley and Motoyoshi (2000) and Hokada (2001).  Of these, Sandiford and Powell (1986,
1988) and Harley (1987) have deduced metamorphic temperatures of up to 1020°C for the
Napier UHT metamorphism based on the study of inverted pigeonite in meta-ironstone,
and Harley (1987) estimated 890-990°C based on the compositions of porphyroclastic
pyroxenes in ultramafic granulites. Harley and Motoyoshi (2000) used the alumina content
of porphyroblastic orthopyroxene from the sapphirine+orthopyroxene+quartz granulite
to deduce a temperature in excess of 1120°C. Hokada (2001) observed feldspar with
perthite or antiperthite texture, calculated the compositions of one-phase feldspar that had
been once stable at peak temperature, and then estimated the temperature to have been
about 1100°C by using the feldspar thermometer. The peak temperatures estimated in the
present study are generally consistent with these previous studies, indicating again evidence
for UHT (> 1000°C) metamorphism in the Napier Complex.

Although the approach of the present study is similar to Harley (1987), the present
results (up to 1130°C) indicate higher temperature than those (890-990°C) of Harley (1987).
The porphyroclastic pyroxenes described by Harley (1987) occur on East Tonagh Island,
about 50 km southwest of the Mt. Riiser-Larsen area (Fig. 1). Also, Harley (1987)
described inverted pigeonite from meta-ironstone in the same area, and estimated about
980°C, which is also lower than the temperature (about 1100°C) estimated from composi-
tions of inverted pigeonite from the Mt. Riiser-Larsen area (Ishizuka et al., in prep.). A
recent detailed study of Tonagh Island, several km northwest of East Tonagh Island
(Osanai ef al., 1999), showed rare occurrences of osumilite and sapphirine+ quartz that are
diagnostic of UHT metamorphism. It follows that the peak metamorphic temperature
may be different between East Tonagh Island and the Mt. Riiser-Larsen area, although
Hokada (2001), who estimated temperatures by mineral compositions of mesoperthitic
alkali feldspar from Tonagh Island and the Mt. Riiser-Larsen area, indicated no significant
difference in peak metamorphic temperature between these two areas. Further compara-
tive study is needed to elucidate the regional difference or similarity in peak metamorphic
conditions of the Napier UHT metamorphism.
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