A Brief Note on Diatom Flora of Antarctic Inland Waters

Hiroshi Fukushima

Biological Institute, Yokohama Municipal University, Yokohama, Japan

Abstract: We examined diatom flora of Kasumi Rock and Shinnan Rocks around Syowa Station, and found that Kasumi Rock had 31 species of diatoms including 14 endemic species, and Shinnan Rocks had 32 species of diatoms including 6 endemic species. Comparing with total number of species, the number of endemic ones was rather small. On the other hand, at Cape Royds near McMurdo Station, the total number of species was 21, including 13 endmic species. At Cape Evans, the total number of species was 15, including 9 endemic species. At Cape Barne, the total number was 11, including 9 endemic species, and near McMurdo Station the total number was 16, including 10 endemic species. Although the total number of species around McMurdo Station is small, the rate of endemic species is much higher.

Dominant species near Syowa Station were Hantzschia amphioxys, Navicula cryptocephala, Nitzschia palea and Tropidoneis leavissima, and cosmopolitan species were more but endemic species were less. Around McMurdo Station, dominant species were Tropidoneis laevissima, Pinnularia cymatopleura, Navicula muticopsis and Navicula peraustralis, but these were all endemic species and there were no cosmopolitan species.

These facts indicate that around Syowa Station, cosmopolitan species were more numerous than endemic species and there was not so Antarctic vegetation, but that around McMurdo Station located in latitude 80° S, which is 10° higher than Syowa Station almost all species were endemic species and few cosmopolitan species were found and there was almost completely Antarctic vegetation. We found that the difference of only 10° in latitude causes such remarkable variation of diatom flora.

Introduction

Fresh-water diatom flora of Antarctica was studied by E. F. FRISTCH, W. and G. S. WEST, G. W. F. CARLSON and others, but their reports dealt merely with taxonomical descriptions or lists of the species found, and referred very little to ecology of the species. The present writer has been investigating the inland water diatoms of Antarctica and neighbouring islands, with a hope to clarify their distribution and dominant species. The purpose of this report is to summarize the facts so far obtained by the writer.

The materials used in the investigation were a part of those collected by the writer himself when he participated in the 3rd, 5th and 7th Japanese Antarctic Research Expeditions as a member in charge of biological research, and when

HIROSHI FUKUSHIMA

he visited McMurdo Station as an observer under the Antarctic Treaty. The materials of South Georgia were those collected by the late Captain TAKEHARU KUMAGORI *et al.*, the materials of Mirny Station were those collected by Dr. TA-TSURO MATSUDA of the National Science Museum, and the materials of Cape Barne in Ross Island were those collected by Mr. MASSON of California University. The writer expresses his grateful acknowledgements to these people who supplied him with the materials for study.

South Georgia (34°13′S, 36°33′W)

The writer found forty-nine taxa of diatoms. Among these, endemic species

Speci	Lake number	1	2	3	4
	Achnanthes brevipes v. intermedia	rr			rr
	Asterionella gracillima		rr		rr
	Caloneis bacillum f. fontinalis				rr
	Ceratoneis arcus				rr
	Cyclotella comta	rr			
	Cymbella tumida		r		
	C. ventricosa				rr
	Diatoma hiemale				rr
	Eunotia pectinalis v. minor	rr			
(A•M)	Fragilariopsis antarctica	1	rr		rr
(A•M)	F. cylindrus	1			rr
(A•M)	F. obliquecostata		rr		rr
	Frustulia rhomboides v. saxonica	rr	rr		
(A)	Gomphonema kerguelensis ?		rr		
	G. olivaceum		rr		
	G. parvulum		rr		
	Hantzschia amphioxys v. maior	+	rr		rr
	Navicula cryptocephala	rr	rr		rr
	N. gibbula				+
(A)	N. muticopsis	rr	rr		rr
	Nitzschia amphibia	rr	r		
	N. palea	rr	+		
	N. romana		rr		
	Pinnularia borealis				rr
	Rhopalodia gibba		rr		
	R. gibberula v. van heurckii	rr			
	Stauroneis anceps	rr	rr	rr	rr
	Surirella angustata?		rr		
	Synedra affinis			1	rr
	S. ulna				rr
<	S. u. v. oxyrhynchus		rr		
(A)	Tropidoneis laevissima	rr	rr	rr	rr

Table 1. Diatoms from Shinnan Rocks	Table 1.	Diatoms	from	Shinnan	Rocks.
-------------------------------------	----------	---------	------	---------	--------

A: Endemic species; M: Marine species.

254

of this island was Achnanthes mulleri only, and that of this island and Terra del Fuego was Navicula megacuspidata only. Antarctic endemic species was Navicula muticopsis only, but the writer found that South Georgia is the north limit of this diatom's distribution.

From the above fact, one can see that fresh-water diatoms of South Georgia have a slight Antarctic factor and a very few endemic species, and they are occupied for the most part by cosmopolitan species.

Shinnan Rocks $(67^{\circ}57'S, 44^{\circ}29'E)$

The writer found thirty-two species of diatoms, of which six were Antarctic endemic species. CARLSON (1913) already reported that marine diatoms are often found in Antarctic inland fresh waters. Dominant species in the four lakes were *Hantzschia amphioxys*, *Navicula gibbula* and *Nitzschia palea*, all being cosmopolitan species.

In the diatoms of Shinnan Rock, cosmopolitan species were larger in the number of species and individuals than Antarctic endemic species. It can be assumed, therefore, that fresh-water diatom flora of Shinnan Rocks has a slight Antarctic factor.

Kasumi Rock $(67^{\circ}57'S, 49^{\circ}29'E)$

The writer found thirty-three species of diatoms in eight lakes. Among them, fourteen were Antarctic endemics species and others were cosmopolitan species. Among the fourteen Antarctic endemic species, four were inland water species and the remaining ten were salt-water species.

From the fact that four marine cosmopolitan species were included, it can be said that fourteen out of the thirty-three were salt-water species and that saltwater species constitute the greater part. This seems to be related to the fact that the water of most of the lakes examined at this time contained much salt. Dominant species were Navicula muticopsis, Tropidoneis laevissima and Navicula cryptocephala, and the first two species were Antarctic endemic species whereas the last species was cosmopolitan. Of the eight lakes examined, one was of the Navicula muticopsis association, six were of the Navicula cryptocephala-Tropidoneis laevissima association, and one was of the association in which dominant species could not be determined.

Judging from the above, it seems that in Kasumi Rock, cosmopolitan species and Antarctic endemic species are evenly distributed.

Molodezhnaya Station $(67^{\circ}40'S, 45^{\circ}50'E)$

Among the five identified species, three were Antarctic endemic species and two were cosmopolitan species. In one of the two lakes examined, dominant species was cosmopolitan *Stauroneis perminuta*, but in the other no dominant species could be determined.

From the above fact, it can be assumed that around Molodezhnaya Station, the cosmopolitan factor is predominant, although the Antarctic endomic factor

HIROSHI FUKUSHIMA

Table 2.	Diatoms	from	Kasumi	Rock.
----------	---------	------	--------	-------

Spe	Lake number	1	2	3	4	5	6	7	8
	Achnanthes brevipes			r	rr	r		rr	rr
	A. b. v. intermedia Amphora angusta v. ventricosa	+	rr						1
	Asterionella gracillima Charcotia australis Cocconeis schuettii v. minor		rr +	rr				rr	
(M•A) (M•A)	C. placentula v. euglypta C. imperatrix Coscinodiscus minimus		rr rr	r	rr	÷	rr	rr r	
	Cyclotella comta C. kützingiana C. sterigella	rr	rr					rr rr	
(M)	Diatoma hiemale y. mesodon Diploneis subcincta Eucampia balaustium f. balaustium			rr rr		rr		rr rr	
M• A)	Fragilariopsis antarctica F. curta F. cylindrus	rr	rr	rr		rr	rr	rr	
M•A) M•A) A)	F. obliquecostata F. rhombica Gomphonema kamtschatica v. antarctica	rr	rr rr r	rr rr		rr rr	rr rr	rr rr	
)	-								
M) M•A)	Hantzschia amphioxys v. maior Melosira sol M. s. v. omma f. polaris	rr rr	rr	r r	rr	rr	rr	rr rr	
A)	Navicula cryptocephala N. directa v. incus N. muticopsis	rr c	cc r	cc rr	с	c rr	с	cc rr rr	r
••)	N. quadrata		1	••		••		rr	I
M)	N. radiosa Synedra aderiae						rr	rr rr	
M)	Tracyneis aspera Tractidancia lacuiacima		,	rr		rr	rr	rr	
(A) (A)	Tropidoneis laevissima T. l. f. nagatae	rr	+	сс	+	+	С	cc rr	

also exists.

Mirny Station (66°33'S, 93°01'E)

Among the ten identified species, six were Antarctic endemic species, in which four were Antarctic Ocean endemic species. The materials in which dominant species could be determined were three, two of them were of the Antarctic endemic *Navicula muticopsis* association and one was of the cosmopolitan *Pinnularia borealis* association. In the locality of Mirny Station, the Antarctic endemic factor seems predominant, but the cosmopolitan factor also predominates.

	Lake number		1			2		
Spe	Sample number	640	641	642	643	644	645	.646
	Achnanthes sp.		r	r			1	
(M •A)	Fragilariopsis antarctica							rr
(M •A)	F. obliquecostata		rr					
	Navicula sp.	rr	rr	rr	rr		rr	rr
(A)	N. muticopsis							rr
	Pinnularia sp.				r			
	Stauroneis anceps			rr		rr		
	S. perminuta	с	с	сс			r	r

Table 3. Diatoms from Molodezhnaya Station.

Table 4. Diatoms from Mirny Station.

Spec	San	pple number 1	2	3	4	5
	Cymbella sp.	rr				f
(M •A)	Fragilariopsis curta	rr				
(M •A)	F. cylindrus	rr				
(M •A)	F. obliquecostata	rr				rr
(M •A)	F. rhombica	rr				
	Navicula sp.				rr	
	N. cryptocephala	rr				
(A)	N. muticopsis	+	r	rr	r	+
(A)	N. m. v. capitata					rr
	Nitzschia sp.	rr				1 - -
	Pinnularia borealis			+	rr	rr

McMurdo Station on Ross Island (77°32'S, 166°12'E)

Thirteen taxa were identified, among which eight were Antarctic endemic species and five were cosmopolitan. In the first material in which dominant species could be found, Antarctic endemic *Navicula muticopsis* was dominant. Thus, it may be stated that diatoms found around McMurdo Station have a stronger Antarctic endemic factor than a cosmopolitan factor.

Cape Barne of Ross Island $(77^{\circ}32'S, 166^{\circ}12'E)$

Among the eleven diatoms found, nine were Antarctic endemic species. In one of the two materials in which the dominant species could be found, Navicula peraustralis was dominant and in the other Tropidoneis laevissima was dominant,

Lake	number		Statio	on l				Statio	on 2		_
Species Sample nu	ımber	43	44	45	46	47	48	49	50	51	52
Achnanthes brevipes v. inte	rmedia		rr	'							
Hantzschia amphioxys v. 1	naior	rr	rr	r	rr	rr	rr	rr			rı
Navicula sp.				rr	rr	rr	1		rr		
N. cryptocephala			rr								
(A) N. muticopsis		rr		+	rr	rr	r	rr	rr	1	
(A) N. m. f.				rr							
(A) N. m. f. capitata				r r				: 			
(A) N. m. f. evoluta							rr	rr			
(A) N. m. v. murrayi			(ĺ	rr				
(A) N. peraustralis		rr	rr	r	rr						
(A) N. shackletonii						r r					
Nitzschia palea		:	1		rr						
(A) Pinnularia cymatopleura					1	rr	r		rr	rr	r
Stauroneis anceps		rr	rr	r	rr	1 1		1			
(A) Synedra sp.					rr	1					

Table 5. Diatoms from McMurdo Station.

Table 6. Diatoms from Cape Barne.

Spe	Sample number	1	2	3	4
(M •A)	Fragilariopsis antarctica	rr			
	Hantzschia amphioxys v. maior		r		
(A)	Navicula molesta		rr		
(A)	N. muticopsis	rr	rr		rr
(A)	N. m. f. capitata				rr
(A)	<i>N. m.</i> f.				rr
(A)	N. peraustralis		+		
(A)	N. shackletonii			rr	
(A)	Pinnularia cymatopleura	rr		rr	rr
	Stauroneis anceps	rr			
(A)	Tropidoneis laevissima			+	

both being Antarctic endemic species. Thus, it can be stated that diatoms of Cape Barne have a strong Antarctic endemic factor and very little of a cosmo-

politan factor.

Cape Evans of Ross Island $(77^{\circ}32'S, 166^{\circ}12'E)$

Among the fifteen diatoms found, nine were Antarctic endemic species. Dominant species were determined in seven lakes.

The Navicula muticopsis – Pinnularia cymatopleura association was recognized in three lakes and the Tropidoneis laevissima association was recognized in four lakes. Thus, it can be said that diatoms of Cape Evans are mostly of the Antarctic endemic factor and very few are of the cosmopolitan factors.

Spe	Lake number	10	11	12	13	14	15	16	17	18	19	20
	Achnanthes brevipes v. intermedia	rr		rr	rr	rr	rr					
	Cyclotella comta	rr	rr	rr		rr			rr			
(A)	Fragilaria tenuicola v. antarctica	rr		rr		rr	1					
(M•A)	Fragilariopsis antarctica	rr	rr				ļ					
(M•A)	F. curta	rr										
	Hantzschia amphioxys v. maior	rr		rr	rr	rr	rr		rr			
	Navicula cryptocephala	rr										
(A)	N. muticopsis	+	rr	rr	rr	+	+-		rr	rr	rr	
(A)	N. m. f. capitata	rr		rr		rr						
(A)	N. m. f. murrayi	rr				1	2					
(A)	N. shackletonii	rr		rr								
	Nitzschia palea	rr				ĺ						
(A)	Pinnularia cymatoplula	+		rr	rr	+	+			rr		
	Stauroneis anceps	r	rr	rr	1	rr						į.
(A)	Tropidoneis laevissima	rr	+	rr	+	rr	rr	rr	с	+	rr	rr

Table 7. Diatoms from Cape Evans.

Cape Royds of Ross Island (77°32'S, 166°12'E)

The writer identified twenty-one species of diatoms in seven lakes. Among them, twelve were Antarctic endemic species and nine were cosmopolitan species. Dominant species were determined in three lakes; they were *Navicula muticopsis*-*Pinnularia cymatopleura*, *Nitzschia* sp. and *Tropidoneis laevissima*, all being supposedly Antarctic endemic species. Thus, it can be stated that diatoms of Cape Royds are mostly of the Antarctic endemic factor and a few are of the cosmopolitan factor.

Distribution of Cosmopolitan Species and Antarctic Endemic Species

Table 9 shows the locations and the number of cosmopolitan species and Antarctic endemic species found at each locality.

	Locality	Home Lake		Green Lake	Coast Lake	Clear Lake		Blue Lake
Spe	cies	Home	Lake	Greer	Coast	Clear	Lake	Blue
	Achnanthes brevipes v. intermedia	rr			rr	rr	rr	rr
$(M \cdot A)$	Cocconeis imperatrix			rr	rr			
	Cyclotella comta				rr			
	C. Kützingiana	rr						
(M •A)	Fragilariopsis curta	rr	rr	ĺ	rr			
(M •A)	F. cylindrica	rr						
(M •A)	F. obliquecostata	rr	rr	rr				rr
(M •A)	F. rhomboides	rr						
	Frustulia rhomboides	rr	rr					
	Hantzschia amphioxys v. maior			rr	rr	rr	rr	rr
	Navicula gothlandica				rr			
(A)	N. molesta	rr			rr			rr
(A)	N. muticopsis	rr		rr	с	rr	rr	rr
(A)	N. m. f. murrayi				rr			
	N. salinarum						rr	
(A)	N. shackletonii				rr			
(A)	<i>N</i> . sp.						с	rr
(A)	Nitzschia antarctica	rr				rr	rr	rr
(A)	Pinnularia cymatopleura			rr	с	rr	rr	rr
	Stauroneis anceps			rr	rr			rr
	Surirella ovata	rr			rr			
(A)	Tropidoneis laevissima	rr	rr	с	rr	rr	+	rr

Table 8. Diatoms from Cape Royds.

At South Georgia, Shinnan Rocks and Kasumi Rock, cosmopolitan species were remarkably more abundant than Antarctic endemic species; whereas at Molodezhnaya Station, Mirny Station, McMurdo Station, Cape Evans, Cape Barne and Cape Royds, Antarctic endemic species were much more abundant than cosmopolitan species. In view of the number of individuals, however, cosmopolitan species were abundant at South Georgia, Shinnan Rocks, Kasumi Rock, Molodezhnaya Station, and Mirny Station, whereas Antarctic endemic species were abundant at McMurdo Station, Cape Evans, Cape Barne and Cape Royds. At South Georgia, Shinnan Rocks, Kasumi Rock, Molodezhnaya Station and Mirny Station, cosmopolitan species were often dominant, whereas at McMurdo Station, Cape Evans, Cape Barne and Cape Royds, they were rarely dominant. In all cases Antarctic endemic species were the dominant species.

Thus, the cosmopolitan factor is predominant at South Georgia, Shinnan Rocks, Kasumi Rock, Molodezhnaya Station and Mirny Station, and at McMurdo Station, Cape Evans, Cape Barne and Cape Royds the Antarctic factor is noticeably predominant.

Diatoms of Antarctic inland waters are, as mentioned above, divided into two types, those growing in the area where the cosmopolitan factor is predominant and those growing in the area where the Antarctic endemic factor is remarkably predominant. The former can be distinguished from the latter by the ice-bound period when the lakes are frozen and by the difference of temperature which is ascribed to the difference in height from sea-level and in latitude. However, since the places where the materials examined this time were collected were all located near the seashore, difference in temperature can be represented by difference in latitute.

The south limit of predominance of the cosmopolitan factor lies at 67°57'S, at Shinnan Rocks and Kasumi Rock, and the ice-free area of Ross Island where the Antarctic factor is predominant lies at 77°32'S. Therefore, the boundary between the area where the cosmopolitan factor is predominant and the area where

			Cosmopolita	n species	Endemic	species	
	Latitude	Longitude	Fresh-water	Marine	Fresh-water	Marine	Totals
South Georgia	54–16S	36-30W	43 (92%)	0	3 (6%)	1 (2%)	47
Shinnan Rocks	67–57S	44–29E	26 (82%)	0	3 (9%)	3 (9%)	32
Kasumi Rock	67–57S	49–29E	11 (34%)	9 (27%)	5 (15%)	8 (24%)	33
Molodezhnaya	67-40S	45–50E	2 (40%)	0	1 (20%)	2 (40%)	5
Mirny	66-33S	93-01E	2 (25%)	0	2 (25%)	4 (50%)	8
McMurdo	77–32S	93-01E	5 (40%)	0	8 (60%)	0	13
Cape Barne	77-32S	93-01E	2 (18%)	0	8 (73%)	1 (9%)	11
Cape Evans	77–32S	93-01E	6 (40%)	0	7 (47 <i>%</i>)	2 (13%)	15
Cape Royds	77–32S	93-01E	8 (38%)	1 (5%)	7 (33%)	5 (24%)	21

 Table 9. The location and respective number of cosmopolitan species

 and Antarctic endemic species found in each locality.

HIROSHI FUKUSHIMA

the Antarctic factor is predominant is considered to lie between 68°S and 77°S.

Dominant Species

One-hundred and fifty-three materials were used in this investigation. Dominant species could be determined in sixty-four materials out of the one-hundred and fifty-three, but in the others there were not a sufficient number of diatoms. Table 10 shows the associations and the number of samples in each association found in the fifty-seven materials. The symbol (*) before the specific name denotes Antarctic endemic species. As seen in the table, the Navicula cryptocephala association was most frequently observed, occurring in eleven materials; the Navicula muticopsis association, Tropidoneis laevissima association, and Navicula cryptocephala – Tropidoneis laevissima association were found in ten materials; the Pinnularia cymatopleura association was found in four materials; and the Nitzschia sp. association, Stauroneis perminuta association and Pinnularia cymatopleura-Navicula muticopsis associations, were found in three materials.

Navicula cryptocephala was dominant, or one of the dominant species, in twenty-one materials. As this species has the largest quantity, it can be regarded as

Locality Sample	Shinnan Rocks	Kasumi Rock	Molodezhnaya	Mirny	McMurdo	Cape Evens	Cape Barne	Cape Royds	Totals
Diatoms community	28	30	7	5	10	40	4	29	153
Achnanthes brevipes v. intermedia –*Navicula muticopsis Hantzschia amphioxys v. maior	1	1					·		1
Navicula cryptocephala		11							11
N. c. – *Synedra sp.		1					:		1
N. c. – *Tropidoneis laevissima		10	1		1				10
N. gibbula	I								1
*N. muticopsis		1	ĺ	2	1			6	10
*N. m. – Stauroneis anceps						1	1		1
*N. peraustralis							1		1
Nitzschia palea	3								3
Pinnularia borealis				1					1
*P. cymatopleura			I			4			4
*P. c. – N. muticopsis						3			3
Stauroneis perminuta			3						3
*Tropidoneis laevissima		1				6	12		19
* Endemic species.						·····			

Table 10. Diatom communities in Antarctica.

262

the most numerous species among the ones examined this time. This is probably due to the fact that the materials examined were collected mostly from the brackish-water lakes on the sea shore.

Antarctic endemic *Tropidoneis laevissima* was dominant, or one of the dominant species, in twenty materials. This species is nearly as numerous as *Navicula crypto-cephala*. This species, as will be mentioned later, is especially abundant in Antarctic brackish-waters.

Antarctic endemic Navicula muticopsis was dominant, or one of the dominant species, in fifteen materials. As this species occurs in abundance in fresh waters it can be regarded as the most common species in Antarctic fresh waters.

Antarctic endemic *Pinnularia cymatopleura* was dominant, or one of the dominant species, in seven materials. As this species is also seen in fresh waters, it can be considered a common species in Antarctica, along with *Navicula muticopsis*.

Salt Density and Dominant Species

The water of a few lakes was examined for the salinity, as well as for the diatom vegetation. For correlation of the salinity of lake water with diatom vegetation, available data were very few. Table 11 shows the salinity of water of a few lakes and the dominant species of diatoms in these lakes.

The Navicula muticopsis (inclusive of varieties and forms) association, Pinnularia cymatopleura association and Stauroneis anceps association were found in water of less than 535 mg Cl/l in salinity.

mg Cl/l		126		358		535	1,	033	3,0)17	5,17	76	13,687
Diatom assosiation			333		532		622	1,3	65	4,9	52	9,5	23
Navicula cryptocephala Ass.													
N. c. – *Synedra sp. Ass.												-	
N. c. – * Tropidoneis laevissima Ass.										-			
*N. muticopsis Ass.													
*N. m. f. capitata Ass. *N. m. – Achnanthes brevipes v. intermedia Ass.													
*N. m *N. m. f. capitata Ass.													
*N. m. – Pinnularia cymatopleura Ass.													
*N. m. – Stauroneis anceps Ass.						*****							
*Nitzschia sp. Ass.									-				
*Pinnularia cymatopleura Ass.													
*Tropidoneis laevissima Ass.													
*T. l *Nitz. sp. Ass.													

Table 11. Salinity of water and dominant species of diatoms.

^{*} Endemic spesies.

Hiroshi Fukushima

The Tropidoneis laevissima association was found in water of 622-13,687 mg Cl/l in salinity which correspondes to areas of brackish water to salt water.

The Navicula cryptocephala association was found in the saline water of 4952–9523 mg Cl/l.

From the above, it can be concluded that Navicula muticopsis and Pinnularia cymatopleura are dominant in the fresh-water areas, and Tropidoneis laevissima and Navicula cryptocephala are dominant in the areas of brackish water or salt water.

Summary

The examination was made on the diatom vegetation at South Georgio, Shinnan Rocks, Kasumi Rock, Molodezhnaya Station, Mirny Station, McMurdo Station, Cape Evans, Cape Barne and Cape Royds.

In the diatoms of South Georgia, Shinnan Rocks, Kasumi Rock, Molodezhnaya Station and Mirny Station, the cosmopolitan factor was predominant, whereas in the diatoms of McMurdo Station, Cape Evans, Cape Barne and Cape Royds, the Antarctic factor was remarkably predominant. The line dividing these two areas seems to lie between 68°S and 77°S.

The most common species in the Antarctic fresh water areas were Navicula muticopsis and Pinnularia cymatopleura. The most common species in brackish water or inland salt water areas were cosmopolitan Navicula cryptocephala and Antarctic endemic Tropidoneis laevissima.

References

- BOURRELLY, P. et E. MANGUIN: Contribution á la flore algae d'eau douce des Iles Kerguelen. Mém. Inst. Scent. Madagascar., 5, 1-58, 1954.
- BUNT, J. S.: A comparative account of the terrestrial diatoms of Macquarie Island. Proc. Linn. Soc. N. S. W., 74 (1-2), 34-57, 1954.
- CARLSON, G. W. F.: Süsswasseralgen aus der Antarktis, Südgeorgien und den Falkland Inseln. Wiss Ergebn. Schwed. Südpolarexped. 1901–1903, 4 (14), 1–94, 1913.
- FUKUSHIMA, H.: Diatoms from the Shinnan Rock ice-free area, Prince Olav Coast, the Antarctic Continent. Antarctic Rec., 14, 80-91, 1962.
- FUKUSHIMA, H.: Notes on diatom vegetation of the Kasumi Rock ice-free area. Prince Olav Coast, Antarctica. Antarctic Rec., 15, 39-52, 1962.
- FUKUSHIMA, H.: Diatoms from Bybog Osane and Ongul Kalven Island. Antarctic Rec., 17, 56-58, 1963.
- FUKUSHIMA, H.: Diatoms vegetation on ice-free area of Cape Royd, Antarctica. Antarctic Rec., 22, 1-13, 1964.
- FUKUSHIMA, H.: Preliminary report on diatoms from South Georgia. Antarctic Rec., 24, 18-30, 1965.
- FUKUSHIMA, H.: Diatoms from Molodezhnaya and Mirny Station, Antarctica. Antarctic Rec., 27, 13-17, 1966.
- HIRANO, M.: Notes on some algae from the Antarctic collected by Japanese Antactic Research Expedition. Biol. Res. Jap. Antarc. Res. Exped., 3, 1-13, 1952.
- REINSCH, P. F.: Die Suesswasseralgenflora von Süd-Georgien. Über die Ergebn. Dt. Polar-Exped., 329-365, 1890.
- WEST. W. and G. H. WEST: Freshwater algae. British Antarctic Expedition 1907-9. Rep. Scient. Invest., 1 (7), 263-298, 1911.