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Use of Electrical or Magnetic Stimulation for Generating Hip Flexion Torque 1 

ABSTRACT 2 

Objective: The purpose of this study was to investigate the most suitable site and method to effectively 3 

generate isometric hip flexion torque (torque value) using transcutaneous electrical or magnetic 4 

stimulation. 5 

Design: Eleven healthy volunteers underwent torque value and pain degree measurements during 6 

magnetic stimulation of the iliopsoas using 3 coil placements. Following that, the peak torque values 7 

generated under 3 conditions of electrical stimulation of the sartorius, tensor fasciae latae, and rectus 8 

femoris, or that generated by magnetic stimulation of the iliopsoas were recorded at maximum tolerance 9 

intensity. 10 

Results: No significant differences in torque values were observed among the 3 coil placements. 11 

Magnetic stimulation of a point below the inguinal ligament caused significantly more pain than the other 12 

points. Magnetic stimulation of the iliopsoas generated significantly higher torque values than electrical 13 

stimulation of the 2 hip flexor muscles together.  14 

Conclusions: The hip joint was one of the most suitable regions for application of magnetic stimulation, 15 

as an alternative method to electrical stimulation. 16 

Key Words: Magnetic Stimulation, Transcutaneous Electrical Stimulation, Torque, Pain 17 
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INTRODUCTION 18 

The presence of brain plasticity in adults has been of particular interest in recent neurological research. 19 

Many studies have shown that neuromuscular electrical stimulation of muscles was a useful treatment for 20 

motor paralysis caused by central nervous system damage. The Japanese Guidelines for the Management 21 

of Stroke (2009) have recommended electrical stimulation as an adjunct therapy with the usual 22 

rehabilitation exercises, as a result of much evidence.
1
 23 

Transcutaneous functional electrical stimulation (FES) techniques applied for improving gait are 24 

roughly divided into 2 trials: single-channel and multi-channel stimulation. Trials using single-channel 25 

stimulation primarily focused on controlling the peripheral ankle joint.
2, 3, 4

 Patients with severe 26 

hemiplegia, who had low muscle tone, are excluded from application of single-channel stimulation. On 27 

the other hand, multi-channel stimulation technique was applied for restoring patient’s walking ability and 28 

demonstrated several outstanding effects.
5- 9

 However, this method was not clinically widespread because 29 

of the technical difficulty in the control of multiple joints using only electrical stimulation. In addition, the 30 

stimulation apparatus was very large and expensive for use in clinical settings and skilled techniques were 31 

required to operate the stimulus system. These factors have prevented the application of this method in 32 

clinical sites. Transcutaneous FES has also fatal limitation that this method cannot contract the iliopsoas 33 

(IL), the prime mover of hip joint flexion, because the IL is located too deep to be directly stimulated by 34 

surface electrodes. Normal persons walking at their preferred speed may display no significant flexor 35 
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muscle action after initiating the first step
10

 while the patients with severe paralysis are likely to need 36 

more efforts to induce hip flexional motion because of the lack of pendulum movement in lower 37 

extremities. The IL which has the most extensive cross-sectional area in hip flexors is useful to induce hip 38 

flexion movement effectively. 39 

Recently, some studies have reported the use of not only electrical stimulation but also magnetic 40 

stimulation as external stimulations for muscle contractions. The studies have described the application of 41 

magnetic stimulation of the lower extremities via the femoral nerve
11

 or quadriceps femoris muscles
12, 13

; 42 

the knee extension torque was measured to investigate the effect of this new application. Although 43 

magnetic stimulation is minimally invasive and can induce inner muscle contraction, no reports have 44 

stated that it was useful for stimulating the IL, which generates hip flexion torque. 45 

In the clinical gait training of severe hemiplegic patients, knee-ankle-foot orthoses (KAFO) are used to 46 

compensate for the loss of stability in the paralytic lower extremities, and therapists assist the swing of the 47 

paralyzed lower extremities using their own feet to compensate for the loss of voluntary movements. 48 

However, it is difficult for a therapist to precisely assist the swing of the paralyzed lower extremity during 49 

gait training because the amount of the therapist’s assistance is sometimes excessive to keep a patient 50 

standing by him or herself. Circumduction gait with external rotation of the hip joint is a typical abnormal 51 

gait pattern for hemiplegic patients. External rotation of the hip joint is caused secondarily by posterior 52 

rotation of the pelvis in the stance phase and is thought to be a negative effect of motor learning. 53 



 - 5 - 

Therapists must repeatedly provide normal movement patterns and avoid abnormal movement patterns as 54 

much as possible from the first exercise. 55 

The present study provides fundamental research to assist the swing of paralyzed lower limbs and to 56 

model a normal swing pattern during gait training from the point of view that control of a proximal single 57 

joint using electrical or magnetic stimulation is practical. The purpose of this study was to determine the 58 

most suitable method to effectively generate hip flexion torque using external stimulation. Therefore, we 59 

first compared maximum isometric hip flexion torque (torque value) and the degree of pain in different 60 

coil placements for magnetic stimulation. Furthermore, we compared torque values generated by 3 61 

electrical stimulations of the superficial hip flexor muscles with magnetic stimulation of the IL to 62 

determine the most suitable technique for hip flexion.  63 

 64 

SUBJECTS AND METHODS 65 

Measurement method of torque values 66 

Eleven healthy young men with neither neurological nor orthopedic disabilities in their lower 67 

extremities and trunks participated in this study. The mean ± standard deviation values for age, height, 68 

and weight were 19.9 ± 1.3 years, 168.3 ± 3.9 cm, and 61.0 ± 5.8 kg, respectively. Before the study began, 69 

all participants were adequately explained the study’s purpose and methods before participation, and each 70 

of them provided written informed consent. The study was approved by our institution’s research ethics 71 
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committee for human subjects. 72 

After the identification of the stimulus sites for magnetic and electrical stimulation in the supine 73 

position as described below, torque values of the right hip flexors were randomly measured thrice in each 74 

participant during external stimulation. The participants rested for 2.5 min between individual tests. An 75 

isokinetic dynamometer (BIODEX SYSTEM 3; Sakai Medical Co. Ltd., Japan) was used to measure the 76 

torque value in the standing position (Figure 1).
14

 The truncal forward and backward moments were 77 

prevented using a monitor of BIODEX SYSTEM3 as the feedback method of torque waves during rest 78 

period. The participants were ordered not to contract the hip flexors voluntarily during external 79 

stimulation. The averages of 3 torque values acquired from individual measurements were analyzed. 80 

Determination of the most suitable site for magnetic stimulation 81 

To determine the most suitable sites on the IL for magnetic stimulation, 3 stimulus points of the IL were 82 

selected according to the needle electrode insertion sites used in clinical electromyography
15

 and 83 

palpation placement (Figure 2).
16

 Point (1) and point (2) were located by palpation, and their midpoint 84 

was considered as point (3). Magnetic stimulation was administered by a repetitive magnetic stimulator 85 

(MagPro; Medtronic Inc., USA). A round magnetic coil with a 10-mm inner radius and a 60-mm outer 86 

radius (DANTEC Medical Inc., Denmark) was used. To inhibit coil heating during measurements, the 87 

stimulation frequency was set at 25 Hz with an on-time of 2 sec and an off-time of 15 sec. Since peak 88 

eddy current was reported to flow through near the center of the coil in the manufacturer’s instruction 89 
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book, the center of the coil was placed on the 3 stimulus points of the IL and stuck to the skin surface as 90 

closely as possible. The site of nerve excitation was reported to depend on the direction of the nerve fibers 91 

and the coil geometry.
17, 18, 19

 Accordingly, we examined optimal directions of the coil to get strong 92 

reactions and not to disturb the torque measurements. After the maximum tolerable intensity was 93 

determined for the 3 coil placements by increasing the intensity in 15-A/µs intervals, the lowest of the 3 94 

intensities was selected for measurement of torque values. As a result, the stimulation intensity was set at 95 

60 A/µs for all participants. Three times of stimulations were delivered at each placement of the coil. In 96 

addition, the degree of pain during magnetic stimulation was evaluated using the Wong-Baker FACES 97 

pain rating scale (face scale)
20

 after each measurement. Face 5 indicated “hurts as much as you can 98 

imagine,” whereas face 0 indicated “no hurt.” To confirm whether the femoral nerve was excited or not by 99 

magnetic stimulation, we tried to record compound muscle action potentials (CMAPs) from the sartorius 100 

(SA) and the rectus femoris (RF) as a preliminary experiment. In fact, the amplitudes of CMAPs were 101 

detected on the recording electrodes placed on these muscles especially during the stimulation of point (1). 102 

Consequently, to generate the highest hip flexion torque had priority over other things in the current study. 103 

Comparisons of electrical and magnetic stimulation 104 

After the adequate placement of the coil was determined, the torque values generated by electrical and 105 

magnetic stimulation were compared. Electrical stimulation was delivered using a stimulator (ES-510; Ito 106 

Co. Ltd., Japan), after 2 self-adhesive electrodes (5 × 9 cm) were placed at 3 different conditions (Figure 107 
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3).
14

 The motor points of the SA, RF, and tensor fasciae latae (TF) were previously searched for using 108 

another stimulator (CX-3; OG Giken Co. Ltd., Japan) in the supine position to determine the most 109 

contractible sites by electrical stimulation. 110 

The parameters of the external stimulation procedure were frequency, 30 Hz; on-time, 2 sec; and 111 

off-time, 15 sec, as described by Han et al.
12

 and Szecsi et al.
13

 The intensity of each stimulation was 112 

increased in a stepwise manner in 5-mA increments for electrical stimulation and 15-A/µs increments for 113 

magnetic stimulation until the participants could no longer tolerate the pain (maximum tolerable intensity). 114 

The stimulus site of the IL, at which the maximum torque value was produced in the first half of the 115 

present study, was adopted as a representative IL site to compare torque values between electrical and 116 

magnetic stimulation. Prior to the torque measurement during magnetic stimulation, the torque 117 

measurements during electrical stimulation were conducted. The stimulation sequence under the 3 118 

electrical stimulus conditions was random. 119 

Statistical Analysis 120 

SPSS 15.0J for Windows (SPSS Japan Inc., Japan) was used for statistical analysis. A one-way 121 

repeated-measures analysis of variance was used to compare torque values among the 3 coil placements 122 

and those between electrical and magnetic stimulation methods. The Friedman test was used to compare 123 

the degrees of pain experienced. The multiple comparison tests were performed when significant 124 

differences were found. Values of P < 0.05 were considered statistically significant. 125 
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 126 

RESULTS 127 

Investigation of the most suitable site for magnetic stimulation 128 

The individual torque value data obtained with the 3 coil placements are presented in Table 1. The 129 

mean torque values for point (3) were the highest, followed by point (1) and point (2). Peak torque was 130 

induced in 5 participants each at point (1) and point (3) and in 1 participant at point (2). Thus, there were 131 

no significant differences in torque values among the 3 coil placements (Table 2). With regard to the 132 

degree of pain, we found that magnetic stimulation of point (1) caused significantly more pain than that at 133 

point (2). However, significant differences were not observed among other stimulus sites (Table 2). The 134 

maximum pain ratio among all participants was face 4 (“hurts a whole lot”). 135 

Comparisons of hip flexion torque generated by electrical and magnetic stimulation 136 

Point (3) was selected as the site for magnetic stimulation of the IL. The mean torque value and 137 

standard deviation of SA + TF, SA + RF, RF + TF, and IL were 12.8 ± 6.0 Nm, 10.8 ± 4.4 Nm, 12.0 ± 4.4 138 

Nm, and 19.2 ± 8.8 Nm, respectively (Table 3). Magnetic stimulation of the IL generated significantly 139 

higher torque values than electrical stimulation of the SA + RF, RF + TF (P < 0.01), and SA + TF (P < 140 

0.05), although the pain induced by magnetic stimulation was same degree as that induced by electrical 141 

stimulation. No significant differences were noted among other conditions. 142 

 143 
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DISCUSSION 144 

Investigation of the most suitable site for magnetic stimulation 145 

Magnetic stimulation is known to induce eddy currents in vivo using time-varying magnetic fields and 146 

to excite nerves and muscles without stimulating skin nociceptors.
21, 22

 In the present study, magnetic 147 

stimulation was used to contract the IL, which was difficult to stimulate by transcutaneous FES. Although 148 

the peak torque was generated in 5 participants at point (1) or point (3), it was generated in only 1 149 

participant at point (2). Thus, no significant differences in torque values were observed among the 3 150 

different coil placements. The femoral nerve runs between the psoas and the iliacus muscles in the 151 

proximal part of the inguinal ligament and reaches the anterior part of the thigh through the muscular 152 

space. It branches off and innervates the psoas major and iliacus in the minor pelvis.
23

 Because the motor 153 

point of the IL is located in the upper part of the inguinal ligament, it was anticipated that point (2) or 154 

point (3) were suitable sites for coil placement in the case of IL stimulation. However, the torque value at 155 

point (2) tended to be lower than that at the other stimulation sites. Contraction of the rectus abdominis 156 

seemed to be stronger than that of the IL by observation because point (2) was the nearest position to the 157 

rectus abdominis and, moreover, might be the farthest position from the IL due to structural feature of 158 

pelvis. The rectus abdominis should be suppressed to contract in order not to cause new gait disturbance 159 

by use of magnetic stimulation. These causes therefore seemed to indicate that point (2) was the 160 

unsuitable site of stimulation. 161 
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Regarding the degree of pain, stimulation of point (1) was more likely to induce pain than the other 162 

points. The pain factor caused by magnetic stimulation directly stimulated some nociceptors: A-delta 163 

myelinated heat nociceptors and C-fiber nociceptors in the muscle, tendon, and fascia. Han et al.
12

 and 164 

Szecsi et al.
13

 have reported that magnetic stimulation caused not only muscle contraction but also some 165 

degree of stimulation-induced pain. The stimulus intensity of the thigh muscles reported in previous 166 

studies was higher than that of the lower abdomen reported in this study. This indicated that pain 167 

sensitivity varied with the stimulation site and that the number of nociceptors affected the degree of pain 168 

during magnetic stimulation. Therefore, it is assumed that the number of nociceptors under the epidermis 169 

of point (1) was higher than that of other stimulus points. 170 

The round coil used in this study had a diameter of 14 cm; therefore, it was difficult to exclude the 171 

influence of its stimulation on other sites. Future research involving mapping of the motor points of the IL 172 

should be performed using an 8-figure coil to investigate the best stimulation site. 173 

Application of magnetic stimulation 174 

Electrical stimulation of the quadriceps femoris muscle was reported to generate larger knee extension 175 

torque than magnetic stimulation in patients with a spinal cord injury and complete sensory loss.
13

 176 

However, the torque value generated during magnetic stimulation was larger than that generated during 177 

electrical stimulation in patients with partial sensory loss or without sensory disturbances.
12, 13

 The 178 

participants in the present study were healthy and had no sensory problems, and hence, 179 
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stimulation-induced pain appeared to be a major factor restricting generating torque. The results of this 180 

study are consistent with those of previous studies, suggesting that magnetic stimulation is a low-invasive 181 

method
21, 22

 even if the stimulus intensity is set at the maximum tolerance intensity of the individual 182 

subjects. 183 

The advantage of electrical stimulation is that it can simultaneously stimulate plural muscles in the 184 

superficial layer, whereas magnetic stimulation can induce deep muscle contraction. In this study, 185 

magnetic stimulation of the IL generated larger torque values than electrical stimulation of the 2 hip flexor 186 

muscles in the superficial layer together. Our results suggested that the hip joint was one of the most 187 

suitable sites for magnetic stimulation as an alternative to electrical stimulation. 188 

With regard to inducing the paralyzed lower extremity ahead during the swing phase, previous studies 189 

have reported that hip flexion increases when the action of plantar flexion decreases.
24, 25

 During gait 190 

training of patients with severe hemiplegia, the ankle joint is usually controlled by ankle-foot orthosis 191 

(AFO) or by KAFO. Because of the weight of an orthosis and the compensation of planter flexion torque, 192 

the hip flexion torque required in the early swing phase might be greater for patients using an orthosis 193 

compared to those not using it. The mean torque value generated in this study was 19.2 ± 8.8 Nm. It may 194 

be inadequate to induce the lower extremity ahead because the KAFO weight and the abnormal muscle 195 

tone cause difficulty of affected hip flexion at the swing phase. The use of a combined method of 196 

electrical stimulation to the SA, TF, and RF, and magnetic stimulation should be considered in the future. 197 
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Impairment of patients with hemiplegia is much more severe in distal parts than in proximal parts.
26

 198 

Hip and plantar flexion greatly influence an individual’s walking speed.
27, 28

 The use of electrical and 199 

magnetic stimulation to hip flexors in patients with severe hemiplegia is anticipated to strengthen the 200 

weak hip flexors or to augment motor control aside from the application during gait training. For the 201 

purpose of clinical use, more trials to find the best spot for increasing the hip flexion torque and to 202 

decrease pain by moving the stimulation coil on each subject must be needed. Additionally, we should 203 

consider the kinematic and kinetic action of the hip flexors during gait and, moreover, investigate subjects 204 

and therapeutic protocols of magnetic stimulation in the future. 205 

 206 
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 268 

FIGURE LEGENDS 269 

Figure 1. Measurement of torque value 270 

The participants first stood on a 10-cm high platform, and the hip joint axis was matched to the machine’s 271 

dynamometer axis. They were then told to stand half upright on their left leg. The distal part of the right 272 

thigh was fixed to the attachment with the right leg raised above the floor. 273 

Figure 2. Stimulus sites on the iliopsoas for placement of magnetic stimulation coils 274 

Point (1) was located at a distance of 2-fingers width lateral to the femoral artery (F. A.) and 1-finger 275 

width below the inguinal ligament (Ing. Lig.). Point (2) was located on the line connecting the navel with 276 

the anterior superior iliac spine (ASIS), beside the lateral site of the right rectus abdominis muscle. Point 277 
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(3) was the midpoint of point (1) and point (3). 278 

Figure 3. Locations of the surface electrodes 279 

The 2 electrodes were placed over individual motor points of 2 separate muscles. The following 3 280 

conditions were selected for electrode placement. Conditions: 281 

 (1) The individual motor points of the sartorius and the tensor fasciae latae (SA + TF) 282 

 (2) The individual motor points of the sartorius and the rectus femoris (SA + RF) 283 

 (3) The individual motor points of the rectus femoris and the tensor fasciae latae (RF + TF) 284 


