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Abstract

A progenitor is an infinite semi-direct product of the form m∗n : N , where

N ≤ Sn and m∗n : N is a free product of n copies of a cyclic group of order m. A

progenitor of this type, in particular 2∗n : N , gives finite non-abelian simple groups and

groups involving these, including alternating groups, classical groups, and the sporadic

group. We have conducted a systematic search of finite homomorphic images of numerous

progenitors. In this thesis we have presented original symmetric presentations of the

sporadic simple groups, M12, J1 as homomorphic images of the progenitor 2∗12 : (2×A5),

M22 and M22 : 2 as homomorphic images of 2∗14 : (23 : 7) and J2 as a homomorphic image

of 2∗160 : PSL(2, 11). We have also given original symmetric presentations of a number

of alternating and classical groups and symmetric groups such as PSL(2, 7), PSL(2, 19),

PSL(2, 41), PSL(2, 8), A8, S7, and S8. We have also searched for finite homomorphic

images of the monomial progenitor: 23 : 3 :m 23 : A6 and found the original symmetric

presentations of the image 26 : Sym(5). We construct the following images by using

our technique of double coset enumeration: 34 : (22 : S3) over (33 : (3 : 2)),J1 over

(2× A5),(2
4) : (S5 : 2) over S5, 7

3 : S3 : 2 over (21× (S6),2
7 : PSL(2, 7) over PSL(2, 7),

and 27 : (7 : 3) over (23 : (7 : 3). In addition, we give isomorphism class of each image

that we have discovered.
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Chapter 1

Introduction

Some of the most beautiful mathematical objects are the sporadic simple groups,

but gaining familiarity with these groups presents problems for two reasons. Firstly, they

are discovered in many different ways, so to understand their constructions in depth, one

needs to study many different techniques. Secondly, since each of them is, in a sense,

recording some exceptional symmetry in space of certain dimensions, they are by their

nature highly complicated objects with a rich underlying combinatorial structure [Cur07].

The main purpose of this thesis is to demonstrate a concise but informative

alternative method for representing group elements of finite simple groups. A finite

simple group is any group G, having a finite number of elements that does not have any

normal subgroups except for the trivial group and G itself [Rot94]. This method will

be useful for the sporadic groups, the 26 exceptional groups found in the classification

of finite simple groups. Five of the sporadic groups were discovered by Mathieu in the

1860s and the other 21 were found between 1965 and 1975. Several of these groups were

predicted to exist before they were constructed. Most of the groups are named after the

mathematician(s) who first predicted their existence [Cur07].

In order to determine the original symmetric presentations of some of these

groups, we will search various progenitors, including permutation, wreath product, and

monomial progenitors, and to do this we first need to know some important definitions.

To find finite images of any group, we add additional relations to the semi-direct product.

In an introduction to the theory of groups, Alexandroff uses the example of three people:

David, John, and Peter who are sitting in an order from left to right. They can regroup
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in six different ways, and the change from one seating-arrangement to another is called

a permutation [Ale54]. There are two methods that are commonly used to represent

elements of finite groups as permutations: left and right regular representation. In left

regular representation of G, the degree of the permutation representation is |G|. In this

representation, if |G| = 1000 then G is a permutation of 1000 letters. According to the

left regular representation, every group of order n is isomorphic to a subgroup of Sn. On

the other hand, to represent Sn on the right coset H, every element of G can be written

as nw, where n is a permutation on n letters and w is a word in at most n letters.

We will use manual double coset enumeration to construct these images and

show by hand that the images are finite, then, if G is an image of a progenitor with

control group N , then G = NeN ∪Ng1N ∪Ng2N ∪ ..., where gi’s are words in ti’s. Now

N acts on the right cosets of N in G by conjugation. If a progenitor is generated by

⟨x, y, t⟩ then we can say G ∼= ⟨fx, fy, ft⟩ [Has06]. We will decompose the group G as right

cosets of N in G, then we need to find all double cosets [w] and find out how many single

cosets each of them contain, where [w] = {Nwn|n ∈ N}.
This thesis presents our discovery of some original symmetric presentations and

constructions of important finite groups. In particular, in the second chapter, we provide

some main definitions that will help the reader to grasp our work. The construction by

hand of wreath product of Z3 by S3 and the magma verification is in chapter three. We

include some symmetric presentations in chapter four such as, 210 on (52 : 22), 210 on

Sym(6), 212 on (25 : S3), and 224 on (25 : 3). In chapter five, we write a linear map that

generates PSL(2, 23) using α, β, γ. Then we compute the linear fractional maps and see

what they give us using the induced permutations that magma gives us. In chapter six,

we evaluate each image of the progenitor G that is noted to be faithful. There are four

types of extension. Direct product such as (A5×A5×A5×A5×A5) : ((2×A5) : 2) and

(A5xA5) : 4. Semi-direct product such as 52 : 4 and 52 : 25. Also, mixed extension such

as 3 :· PGL(2× 9) and 55 : (27 : 5).

Chapter seven has many examples about constructing Double Coset Enumer-

ation such as 34 : (22 : S3) over (33 : (3 : 2)), 34 : (23 : S3) over (33 : (3 : 2)),

53 : (2 × A5) over A5 × 2 A5 × A5 over A5 × 2, (2 : A5 × A5) over (A5 × 2), J1 over

(2 × A5), (3 : 24) : (S5 : 2) over S5, (2
4) : (S5 : 2) over S5, (2

2 : 3) : (24 : (7 : 3)) over

(21 × (S6), (2
6 : S6)(7 : 3) over (21 × (S6)), 7

3 : S3 : 2 over (21 × (S6), 2
6 : PSL(2, 7)
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over PSL(2, 7), 27 : PSL(2, 7) over PSL(2, 7). In the same chapter, we show how to use

Lemma 3.3 in the process of constructing 2∗7 : (7 : 3)) over (23 : (7 : 3). Chapter eight

includes one example of double coset enumeration involving maximal subgroup, S5 over

24 : A4 and 24 : 3. In chapter nine, we discuss a different type of progenitors called the

monomial progenitors. We use magma to view the character table of each group with the

goal of writing the monomial representation of each group such as, 37∗2 :m (23 : S3) and

37∗2 :m 23 : S3. We also include linear lifting characters of 5∗6 :m (G) and 5∗10 :m (G) in

the same chapter. We list composition charts in chapter ten, and show the isomorphic

images of some of our progenitors that mostly do not produce a good image.

In our last chapter, we include some unsuccessful progenitors. Although we

wish that all of our progenitors produce images, we have some fail such as Sym(84) and

Sym(160).
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Chapter 2

Preliminary Information

Preliminary Definitions

Definition 2.1. A binary operation on a nonempty set G is a function µ : G×G → G

[Rot94].

Definition 2.2. A semi-group (G, ∗) is a nonempty set G equipped with an associative

operation (∗) [Rot94].

Definition 2.3. A group is a semi-group G containing an element e such that

(i) e ∗ a = a = a ∗ e, ∀a ∈ G

(ii) For every a ∈ G, there is an element b ∈ G, with a ∗ b = e = b ∗ a [Rot94].

Definition 2.4. A nonempty subset S of a group G, is a subgroup of G if s ∈ G implies

s−1 ∈ G and s, t ∈ G imply st ∈ G [Rot94].

Definition 2.5. A subgroup K ≤ G is a normal subgroup denoted by K△G. If

gKg−1 = K for every g ∈ G [Rot94].

Definition 2.6. A subgroup H ≤ G is a maximal normal subgroup of G if there is

no normal subgroup N of G with H < N < G [Rot94].

Definition 2.7. If X is a subset of a group F , then F is a free group with basis X if,

for every group G and every function f : X → G, there exists a unique homomorphism

ϕ : F → G extending f [Rot94].
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Definition 2.8. A group G ̸= 1 is Simple if it has no normal subgroups other than G

and 1 [Rot94].

Definition 2.9. Let (G, ∗ and (H, ◦) be groups. A function f : G → H is a homomor-

phism if, for all a, b ∈ G, f(a ∗ b) = f(a) ◦ f(b) [Rot94].

Definition 2.10. An isomorphism is a homomorphism that is also a bijection. We say

that G is isomorphic to H, denoted by G ∼= H, if there exists an isomorphism f : G → H

[Rot94].

Definition 2.11. Sx is a group with composition as operation; it is called the symmetric

group on X. When X = {1, 2, ..., n}, then Sx is denoted by Sn and it is called the

symmetric group on n letters [Rot94].

Definition 2.12. If a, b ∈ G, the commutator of a and b, denoted by [a, b], is [a, b] =

aba−1b−1 [Rot94].

Definition 2.13. A pair of elements a and b in a semi-group commutes if a ∗ b = b ∗ a.
A group (or a semi-group) is abelian if every pair of its elements commutes [Rot94].

Definition 2.14. If X is a set and G is a group, then X is a G-set if there is a function

α : G×X → X called an action denoted by α : (g, x) → gx, such that:

(i) 1x = x for all x ∈ X

(ii) g(hx) = (gh)x for all g, h ∈ G and x ∈ X.

One also says that G acts on X. If |X| = n, then n is called the degree of the G− set

X [Rot94].

Definition 2.15. If X is a G− set and x ∈ X, then the G-orbit of x is

O(x) = {gx : g ∈ G ⊂ X}. One often denots the orbit O(x) by Gx [Rot94].

Definition 2.16. A G − set X is transitive if it has only one orbit; that is, for every

x, y ∈ X, there exists σ ∈ G with y = σx [Rot94].

Definition 2.17. If S is a subgroup of G and if t ∈ G, then a right coset of S in G is

St = {st|s ∈ S}. A left coset of S is tS = {ts|s ∈ S}. One calls t a representative of

St and also tS [Rot94].
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Definition 2.18. A normal series of a group G is a sequence of subgroups G = G0 ≥
G1 ≥ ... ≥ Gn = 1 in which Gi+1△Gi for all i. The factor groups of this normal series

are the groups Gi
Gi+1

for i = 0, 1, ..., n− 1 [Rot94].

Definition 2.19. A composition series is a normal series G = G0 ≥ G1 ≥ ... ≥ Gn =

1, in which, for all i, either Gi+1 is a maximal normal subgroup of Gi or Gi+1 = Gi. The

factor groups of a composition series are called the composition factors of that group

[Rot94].

Definition 2.20. If S ≤ G, then index of S in G, denoted by [G : S], is the number of

right cosets of S in G [Rot94].

Definition 2.21. If H ≤ G and g ∈ G, then the Conjugate gHg−1 is {ghg−1 : h ∈ H}.
The conjugate gHg−1 is often denoted by Hg [Rot94].

Definition 2.22. If X is a G− set and x ∈ X, then the Stabilizer of x, denoted by Gx

is the subgroup Gx = {g ∈ G|gx = x} [Rot94].

Definition 2.23. If X is a nonempty subset of a group G, then a Word on X is an

element ω ∈ G of the form ω = xe11 xe22 ...xenn where xi ∈ X, ei = ∓1 , and n ≥ 1 [Rot94].

Definition 2.24. Let ω be a word in the ti’s, then the (Point-Stabilizer): of Nω =

{n ∈ N |ωn = ω} [Rot94].

Definition 2.25. Let ω be a word in the ti’s then N (ω) = {n ∈ N |Nωn = Nω} is called

the Coset-Stabilizing group of the coset Nω [Rot94].

Definition 2.26. The infinite semi-direct product of the form m∗n : N , where m∗n is

a free product of n cyclic groups generated by ti, where 1 ≤ i ≤ n, of order m is called

Progenitor. The elements of a progenitor can be written as nω, where n ∈ N and ω is

a word in the ti’s [Rot94].

Definition 2.27. If X is a nonempty set, a permutation of X is a bijection α : X → X.

We denote the set of all permutations of X by Sx [Rot94]

Definition 2.28. Let G acts on X, then there exists a homomorphism αn : G → Sx

g ↔ α ∈ Sx such that αx = gx

αn is called The Permutation Representation of G on X. |x| is called the degree
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of the permutation representation.

Note: αn is faithful if kerαn = 1, also every group G has a permutation of degree |G|
[Rot94].

Definition 2.29. Magma is a mathematical computer program that is designed for com-

putations in algebra, number theory and many other algebraic fields.

Preliminary Theorems and Lemmas

Theorem 2.30. First Isomorphism Theorem - FIT: Let f : G → H be a homomor-

phism with kernel K. Then K is a normal subgroup of G and G/K ∼= im(f) [Rot94].

Theorem 2.31. Lagrange’s Theorem: If G is a finite group and S ≤ G, then |S|
divides |G| and [G : S] = |G|

|S| [Rot94].

Theorem 2.32. 2∗n:N
ti,tj

∼= 2n : N where 1 ≤ i ≤ j ≤ n [Rot94].

Lemma 2.33. GrindStaff/ Factorng Lemma: Factoring the progenitor m∗n : N by

(ti, tj) for 1 ≤ i ≤ j ≤ n gives the group mn : N [Led77]
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Prove an Example of a Theorem 2∗n:Sn

t1t2t1=(1,2)
∼= Sn+1

We have S7, where n = 7 and is generated by ⟨(1, 2, 3, 4, 5, 6, 7), (1, 2)⟩ where x =

(1, 2, 3, 4, 5, 6, 7) and y = (1, 2). By using magma we can find the following

S:=Sym(7);

xx:=S!(1,2,3,4,5,6,7);

yy:=S!(1,2);

N:=sub<S|xx,yy>;

N1:=Stabiliser(N,1);

N1;

/*

Permutation group N1 acting on a set of cardinality 7

Order = 720 = 2^4 * 3^2 * 5

(2, 3)

(3, 4)

(4, 5)

(5, 6)

(6, 7)

*/

Then we try to find which relations can give us these permutations. We check,

yyxx = (2, 3)

yy(xx
2) = (3, 4)

yy(xx
3) = (4, 5)

yy(xx
4) = (5, 6)

yy(xx
5) = (6, 7)

Then we check if these permutations are equal to N1 by using the command:

N1 eq sub<N|yy^(xx),yy^(xx^2),yy^(xx^3),yy^(xx^4),yy^(xx^5)>;

true

We start writing the group by using the command FPGroup(N) which gives:

NN<a,b>:=Group<a,b|a^7,b^2,

(a * b * a^-2 * b * a)^2,

(a^-1 * b)^6, (a^-1 * b * a * b)^3,

#NN;

5040

Then to test the progenitor by adding some relations after replacing a by x and b by y

and put t to the order of the group which is 2 in this case.
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G<x,y,t>:=Group<x,y,t|x^7,y^2,(x * y * x^-2 * y * x)^2,

(x^-1 * y)^6, (x^-1 * y * x * y)^3,

t^2,

(t,(y^(x))),(t,y^(x^2)),(t,y^(x^3)),(t,y^(x^4)),(t,y^(x^5)),

(t,t^y)>;

#G;

645120

Index(G,sub<G|x,y>);

128

The order of G must be |27 : S7| = 5040 × 128 = 645120. Thus our progenitor is

good. Now we need to find the DCE of G over N where G = 2(∗7):S8

t1t2t1=(12 and N = S8

First Double Coset [*]

NeN = {Nen|n ∈ N} = {N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The formula for the number of the right coset in N is |N |
|N | =

5040
5040 = 1.

Since N is transitive on X = {1, 2, 3, 4, 5, 6, 7}, we need only to determine the double

coset of the right coset Nt1.

Thus seven ti’s extend the double coset [∗] to the double coset Nt1N = [1].

Cayley Diagram

Figure 2.1: Cayley Diagram for G over S7

Second Double Coset [1]

[1] = Nt1N = {N(t1)
n|n ∈ N}

= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7}.
Note that the point stabiliser N1 are the elements that fix 1, and the coset stabiliser N (1)
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are the elements that fix Nt1. In this case N (1) = ⟨e, (2, 3, 4, 5, 6, 7)⟩.
This shows that there are 7 single cosets in the double coset Nt1.

The number of distinct right cosets is calculated by the formula:
|N |

|N(1)| =
5040
720 = 7

Nt1t2 belongs to [1] since our relation is Nt1t2t1 = Nt(12) =⇒ Nt1t2 = N(12)t1 ∈ [1].

Cayley Diagram

Figure 2.2: Cayley Diagram for G over S7

We have |G| ≥ |1× |N |+ 7× |N | = 1× 5040 + 7× 5040.

G acts on X = {N,Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7},
and lets us find permutation representation of < x, y, t >.
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Conjugate with x

x = (1, 2, 3, 4, 5, 6, 7)

Conjugate by X

Labeling Element Conjugate x Element Labeling

(1) N N (1,2,3,4,5,6,7) N (1)

(2) Nt1 Nt
(1,2,3,4,5,6,7)
1 Nt2 (3)

(3) Nt2 Nt
(1,2,3,4,5,6,7)
2 Nt3 (4)

(4) Nt3 Nt
(1,2,3,4,5,6,7)
3 Nt4 (5)

(5) Nt4 Nt
(1,2,3,4,5,6,7)
4 Nt5 (6)

(6) Nt5 Nt
(1,2,3,4,5,6,7)
5 Nt6 (7)

(7) Nt6 Nt
(1,2,3,4,5,6,7)
6 Nt7 (8)

(8) Nt7 Nt
(1,2,3,4,5,6,7)
7 Nt1 (2)

Table 2.1: Conjugation of Nt by x

which leads us to f(x) ∼ (2, 3, 4, 5, 6, 7, 8).

Conjugate with y

y = (1, 2)

Conjugate by y

Labeling Element Conjugate y Element Labeling

(1) N N (1,2) N (1)

(2) Nt1 Nt
(1,2)
1 Nt2 (3)

(3) Nt2 Nt
(1,2)
2 Nt1 (2)

(4) Nt3 Nt
(1,2)
3 Nt3 (4)

(5) Nt4 Nt
(1,2)
4 Nt4 (5)

(6) Nt5 Nt
(1,2)
5 Nt5 (6)

(7) Nt6 Nt
(1,2)
6 Nt6 (7)

(8) Nt7 Nt
(1,2)
7 Nt7 (8)

Table 2.2: Conjugation of Nt by y

thus f(y) ∼ (2, 3).

Before the conjugating table of t is computed, we will conjugate our relation t1t2t1 = (1, 2)
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by the following permutations (1, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7).

Which gives us:

α(1, 2) : (t1t2t1 = (1, 2))(1,2) = t2t1t2 = (2, 1)

β(2, 3) : (t1t2t1 = (1, 2))(2,3) = t1t3t1 = (1, 3)

γ(2, 4) : (t1t2t1 = (1, 2))(2,4) = t1t4t1 = (1, 4)

δ(2, 5) : (t1t2t1 = (1, 2))(2,5) = t1t5t1 = (1, 5)

ζ(2, 6) : (t1t2t1 = (1, 2))(2,6) = t1t6t1 = (1, 6)

η(2, 7) : (t1t2t1 = (1, 2))(2,7) = t1t7t1 = (1, 7)

Conjugate with t

t = t1

Conjugate by t1

Labeling Element Conjugate t1 Element Labeling

(1) N N ∗ t1 Nt1 (2)

(2) Nt1 Nt1 ∗ t1 Nt21 = N (1)

(3) Nt2 Nt2 ∗ t1 Nt2t1 by α (3)

(4) Nt3 Nt3 ∗ t1 Nt3t1by β (4)

(5) Nt4 Nt4 ∗ t1 Nt4t1 by γ (5)

(6) Nt5 Nt5 ∗ t1 Nt5t1 by δ (6)

(7) Nt6 Nt6 ∗ t1 Nt6t1 by ζ (7)

(8) Nt7 Nt7 ∗ t1 Nt7t1 by η (8)

Table 2.3: Conjugation of Nt by t1

Thus f(t) ∼ (1, 2)

G < x, y, t > is homomorphic to permutation representation f(x), f(y), f(t). G
kerϕ is

homomorphic to ⟨f(x), f(y), f(t)⟩ = ⟨(2, 3, 4, 5, 6, 7, 8), (2, 3), (1, 2)⟩ order 40320, where
|G|

|kerϕ| = 40320, which means |G| = 5040|kerϕ|, which means |G| ≥ 40320 but Cay-

ley shows that |G| ≤ 40320. Therefore, |G| = 40320. Now G is homomorphic to

⟨f(x), f(y), f(t)⟩ and
f(t) = (1, 2),

f(tx) = ((f(t)f(x)) = (12)(2,3,4,5,6,7,8) = (13),

f(t(x
2)) = (f(t)f(x

2)) = (12)(2,4,6,8,3,5,7) = (14),



13

f(t(x
3)) = (f(t)f(x

3)) = (12)(2,5,8,4,7,3,6) = (15),

f(t(x
4)) = (f(t)f(x

4)) = (12)(2,6,3,7,4,8,5) = (16),

f(t(x
5)) = (f(t)f(x

5)) = (12)(2,7,5,3,8,6,4) = (17),

f(t(x
6)) = (f(t)f(x

6)) = (12)(2,8,7,6,5,4,3) = (18).

f(t(x
7)) = (f(t)f(x

7)) = (12)(Id) = (12).

|⟨f(x), f(y), f(t)⟩| = 40320. But f(t), f(tx), f(tx
2
) ∈ ⟨f(x), f(y), f(t)⟩

=⇒ (12), (13), (14), (15), (16), (17), (18) ∈ ⟨f(x), f(y), f(t)⟩
=⇒ S8 belongs to ⟨f(x), f(y), f(t)⟩.
Using magma we confirm the following:

S:=Sym(8);

f(x):=S!(2,3,4,5,6,7,8);

f(y):=S!(2,3);

f(t):=S!(1,2);

G1:=sub<S|fx,fy,ft>;

#G1 eq Factorial(8);

true

sub<G1|(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8)> eq G1;

true

IsIsomorphic(G1,Sym(8));

true

We conclude that 2∗n:Sn
t1t2t1=(1,2)

∼= Sn+1
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Chapter 3

Wreath Product

3.1 Constructing Wreath Product of Z3 by S3 denote by

Z3 ≀ S3 by hand

The wreath product of the given groups H by K, denoted H ≀K is a semi-direct product

composed of as many copies of H as the number of letters on which the permutation

group K acts on. We define the wreath product below.

Definition 3.1. Let X and Y be non-empty sets. Let H be a permutation group on X

and K on Y . Let Z = X × Y , then The wreath product is a semi-direct product of

X and Y . We define a permutation group on Z such that we let γ ∈ H and define a

permutation of γ(y) of Z by

γ(y) =

(x, y1) → (γ(x), y1) if y1 = y

(x, y1) → (x, y1) if y1 ̸= y


Also, for k ∈ K, define K∗ : (x; y) = (x; (y)K) such that B = Xy∈Y H(y) is a direct

product of the group generated by the y’s. Thus, G = B : K∗ is called a wreath product

of H and K, where H is normal subgroup, denoted by H ≀K. [Der96].

ConsiderH = ⟨(1, 2, 3)⟩ ∼= 3 andK = ⟨(4, 5, 6), (4, 5)⟩ ∼= S3 which are permutation groups

on X = {1, 2, 3} and Y = {4, 5, 6}, respectively.
We will construct permutation generators using wreath product H ≀ K of H and K, as

well as give its presentation.
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Let H be on 3 letters and K be on 3 letters, then

|H ≀K| = |H|m × |K|
S3 = ⟨x, y|x3 = y2 = (x ∗ y)2 = 1⟩
We have X = {1, 2, 3} and Y = {4, 5, 6}. Then,
Z = X × Y = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}
Now, 3 ≀ S3 is a permutation group on Z.

|x× y| = |X||Y | = 3× 3 = 9.

Let γ ∈ H define the permutation γ(y1) where y1 ∈ Y as follows.

We will assign γ to all the elements in K. Using wreath product definition we let

γ = (123) ∈ H and y ∈ Y we will compute γ(4), γ(5), γ(6)

γ(y) =

(x, y1) → (γ(x), y1) if y1 = y

(x, y1) → (x, y1) if y1 ̸= y


Notice by definition this application of γ(4) will only change elements which contain 1,

2, and 3 as the x-coordinate and 4 as the y-coordinate.

Compute γ(4)

Labeling Element Compute γ Element Labeling

(7) (1, 4) (γ(1), 4) (2, 4) (8)

(8) (2, 4) (γ(2), 4) (3, 4) (9)

(9) (3, 4) (γ(3), 4) (1, 4) (7)

(10) (1, 5) (γ(1), 5) (1, 5) (10)

(11) (2, 5) (γ(2), 5) (2, 5) (11)

(12) (3, 5) (γ(3), 5) (3, 5) (12)

(13) (1, 6) (γ(1), 6) (1, 6) (13)

(14) (2, 6) (γ(2), 6) (2, 6) (14)

(15) (3, 6) (γ(3), 6) (3, 6) (15)

Table 3.1: Compute γ(4)

Thus, we get

γ(4) = (7, 8, 9).

By definition this computation of γ(5) will only change elements which contain 1, 2, and
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3 as the x-coordinate and 5 as the y-coordinate.

Compute γ(5)

Labeling Element Compute γ Element Labeling

(7) (1, 4) (γ(1), 4) (1, 4) (7)

(8) (2, 4) (γ(2), 4) (2, 4) (8)

(9) (3, 4) (γ(3), 4) (3, 4) (9)

(10) (1, 5) (γ(1), 5) (2, 5) (11)

(11) (2, 5) (γ(2), 5) (3, 5) (12)

(12) (3, 5) (γ(3), 5) (1, 5) (10)

(13) (1, 6) (γ(1), 6) (1, 6) (13)

(14) (2, 6) (γ(2), 6) (2, 6) (14)

(15) (3, 6) (γ(3), 6) (3, 6) (15)

Table 3.2: Compute γ(5)

Thus, we get

γ(5) = (10, 11, 12).

By definition this computation of γ(6) will only change elements which contain 1, 2, and

3 as the x-coordinate and 6 as the y-coordinate.



17

Compute γ(6)

Labeling Element Compute γ Element Labeling

(7) (1, 4) (γ(1), 4) (1, 4) (7)

(8) (2, 4) (γ(2), 4) (2, 4) (8)

(9) (3, 4) (γ(3), 4) (3, 4) (9)

(10) (1, 5) (γ(1), 5) (1, 5) (10)

(11) (2, 5) (γ(2), 5) (2, 5) (11)

(12) (3, 5) (γ(3), 5) (3, 5) (12)

(13) (1, 6) (γ(1), 6) (2, 6) (14)

(14) (2, 6) (γ(2), 6) (3, 6) (15)

(15) (3, 6) (γ(3), 6) (1, 6) (13)

Table 3.3: Compute γ(6)

Thus, we get

γ(6) = (13, 14, 15).
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Let k ∈ K then define the permutation k∗1 and k∗2 of z as follows:

Now we have K = ⟨(4, 5, 6), (4, 5)⟩ ∼= S3. Let k1 = (4, 5, 6) and k2 = (4, 5). Then as the

definition shows, k∗1, k
∗
2 will change all Y elements. Let us compute k∗1 then we will get:

Action of k∗1

Labeling Element Action k∗1 Element Labeling

(7) (1, 4) (1, k∗1(4)) (1, 5) (10)

(8) (2, 4) (2, k∗1(4)) (2, 5) (11)

(9) (3, 4) (3, k∗1(4)) (3, 5) (12)

(10) (1, 5) (1, k∗1(5)) (1, 6) (13)

(11) (2, 5) (2, k∗1(5)) (2, 6) (14)

(12) (3, 5) (3, k∗1(5)) (3, 6) (15)

(13) (1, 6) (1, k∗1(6)) (1, 4) (7)

(14) (2, 6) (2, k∗1(6)) (2, 4) (8)

(15) (3, 6) (3, k∗1(6)) (3, 4) (9)

Table 3.4: Action of k∗1

So, k∗1 = (7, 10, 13), (8, 11, 14), (9, 12, 15)
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Then computing k∗2 we will get

Action of k∗2

Labeling Element Action of k∗2 Element Labeling

(7) (1, 4) (1, k∗2(4)) (1, 5) (10)

(8) (2, 4) (2, k∗2(4)) (2, 5) (11)

(9) (3, 4) (3, k∗2(4)) (3, 5) (12)

(10) (1, 5) (1, k∗2(5)) (1, 4) (7)

(11) (2, 5) (2, k∗2(5)) (2, 4) (8)

(12) (3, 5) (3, k∗2(5)) (3, 4) (9)

(13) (1, 6) (1, k∗2(6)) (1, 6) (13)

(14) (2, 6) (2, k∗2(6)) (2, 6) (14)

(15) (3, 6) (3, k∗2(6)) (3, 6) (15)

Table 3.5: Action of k∗2

So, k∗2 = (7, 10), (8, 11), (9, 12)

H ≀K = (H1 ×H2 ×H3) : K
∗

We have formed B = {< r(4) > × < r(5) > × < r(6) >}
where H1 =< r(4) >,H2 =< r(5) >,H3 =< r(6) >

Now we will write the presentation of this group. We will label them as follows,

a = (7, 8, 9),

b = (10, 11, 12),

c = (13, 14, 15),

d = (7, 10, 13), (8, 11, 14), (9, 12, 15),

e = (7, 10), (8, 11), (9, 12)

We will conjugate the elements from H with the elements from K such as,

ad = (7, 8, 9)(7,10,13),(8,11,14),(9,12,15) = (10, 11, 12) = b

ae = (7, 8, 9)(7,10),(8,11),(9,12) = (10, 11, 12) = b

bd = (10, 11, 12)(7,10,13),(8,11,14),(9,12,15) = (13, 14, 15) = c

be = (10, 11, 12)(7,10),(8,11),(9,12) = (7, 8, 9) = a

cd = (13, 14, 15)(7,10,13),(8,11,14),(9,12,15) = (7, 8, 9) = a
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ce = (13, 14, 15)(7,10),(8,11),(9,12) = (13, 14, 15) = c

Thus, we will use the result in our presentation.

wrp<a,b,c,d,e>:=Group<a,b,c,d,e|

a^3,b^3,c^3,

(a,b),(a,c),(b,c),d^3,e^2,(d*e)^2,

a^d=b,a^e=b,

b^d=c, b^e=a,

c^d=a, c^e=c>.

Then in magma we will compute the order of wreath product by the following command,

# wrp

162

We know that the order of 162 is correct, since X, Y , and Z are all of order three we can

write them as 33 and our K is of order 6.

Thus to find the order of our group we will have the order of 33 × 6 = 162.

Next we will find the isomorphism type of the wreath product and N by putting the

following command into magma,

N:= WreathProduct(CyclicGroup(3) , Sym(3))

True

That will conclude our construction by hand. We give a symmetric presentation for the

progenitor 2∗9 : 3 ≀ S3
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3.2 Wreath Product : Z3 ≀ S3 using Magma

In this section, we will build our presentation using magma. We will use the following

code to find the permutaion of group N :

FPGroup(N);

x^3,

y^6,

y * x * y^-1 * x^-1 * y^-1 * x * y

Next we want to find our stabiliser of N with respects to 1, and input them into our

presentation. Therefore in magma we input the following:

N1:=Stabiliser(N,[1]);

N1;

(y^2 * x^-1 * y^-1)

(x^-1 * y^2 * x * y^-1 * x * y^-1 * x * y^-1 * x * y^-1 * x * y^-2)

Next we add the stabilisers into our presentation which gives us:

G<x,y,t>:=Group<x,y,t| x^3, y^6,

y * x * y^-1 * x^-1 * y^-1 * x * y,

t^2,

(t,(y^2 * x^-1 * y^-1)),

(t,(x^-1 * y^2 * x * y^-1 * x * y^-1 * x * y^-1 * x * y^-1 * x * y^-2))>;

Lastly, to know if our presentation is correct we will apply GrindStaff’s lemma. To do

so, we will look at the orbits of N with respects to 1, and pick an orbit representative

and raise 1 by powers of x and y to get the respected orbit representative.

Orbits(N1s);

{1}, {2}, {3}, {4, 8, 6, 9, 7, 5}

Selecting the following orbit representatives we have the following

1y
2
= 2

1y
5
= 3

1y = 6

Therefore, we will add (t, t(y
2)), (t, t(y

5)), (t, t(y)) to our presentation.

G<x,y,t>:=Group<x,y,t|x^3, y^6,

y * x * y^-1 * x^-1 * y^-1 * x * y,

t^2,

(t,(y^2 * x^-1 * y^-1)),

(t,(x^-1 * y^2 * x * y^-1 * x * y^-1 * x * y^-1 * x * y^-1 * x * y^-2)),

(t,t^{(y^2)}),(t,t^{(y^5)}),(t,t^{(y)})>
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The order of G must be 82944 which can be derived from the order of N being 162× 29,

where 29 comes from t2 = e and Sym(9). Thus in magma we input:

G<x,y,t>:=Group<x,y,t| x^3, y^6,

y * x * y^-1 * x^-1 * y^-1 * x * y,

t^2,

(t,(y^2 * x^-1 * y^-1)),

(t,(x^-1 * y^2 * x * y^-1 * x * y^-1 * x * y^-1 * x * y^-1 * x * y^-2)),

(t,t^(y^2)),(t,t^(y^5)),(t,t^(y))>;

#G;

82944

2^9*162;

82944

Thus, our presentation is correct.

Next we begin the process to make a progenitor. We begin by checking the number of

classes of N , which we find to be 22 classes by using the following code in magma:

For i in [2..#C] do i, C[i][3]; word (C[i][3]);

Orbits(Centraliser(N,C[i][3]));end for;

2 (1, 4)(2, 5)(3, 6)

y^3

[

GSet{@ 7, 9, 8 @},

GSet{@ 1, 4, 6, 3, 2, 5 @}

]

3 (1, 2, 3)(4, 5, 6)(7, 8, 9)

x * y * x^-1 * y * x * y^-2

[

GSet{@ 1, 9, 6, 5, 7, 2, 8, 4, 3 @}

]

4 (1, 3, 2)(4, 6, 5)(7, 9, 8)

x * y^-1 * x^-1 * y^2 * x^-1 * y^-1

[

GSet{@ 1, 9, 6, 5, 7, 2, 8, 4, 3 @}

]

5 (1, 2, 3)(4, 5, 6)(7, 9, 8)

y^2

[

GSet{@ 7, 9, 8 @},

GSet{@ 1, 2, 4, 3, 5, 6 @}

]

6 (1, 3, 2)(4, 6, 5)(7, 8, 9)
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y^-2

[

GSet{@ 7, 8, 9 @},

GSet{@ 1, 3, 4, 2, 6, 5 @}

]

7 (1, 2, 3)(7, 8, 9)

(x * y^-1)^2

[

GSet{@ 4, 6, 5 @},

GSet{@ 1, 2, 9, 3, 7, 8 @}

]

8 (1, 3, 2)(7, 9, 8)

(y * x^-1)^2

[

GSet{@ 4, 6, 5 @},

GSet{@ 1, 3, 9, 2, 8, 7 @}

]

9 (7, 8, 9)

x^-1 * y^3 * x^-1 * y^-1

[

GSet{@ 7, 8, 9 @},

GSet{@ 1, 2, 4, 3, 5, 6 @}

]

10 (7, 9, 8)

x * y^3 * x * y

[

GSet{@ 7, 9, 8 @},

GSet{@ 1, 2, 4, 3, 5, 6 @}

]

11 (1, 3, 2)(7, 8, 9)

x^-1 * y^-1 * x^-1 * y

[

GSet{@ 1, 3, 2 @},

GSet{@ 4, 6, 5 @},

GSet{@ 7, 8, 9 @}

]

12 (1, 9, 5)(2, 7, 6)(3, 8, 4)

x

[

GSet{@ 1, 9, 8, 5, 4, 6, 3, 2, 7 @}

]

13 (1, 6, 2, 4, 3, 5)(7, 8, 9)

y

[
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GSet{@ 7, 8, 9 @},

GSet{@ 1, 4, 6, 3, 2, 5 @}

]

14 (1, 5, 3, 4, 2, 6)(7, 9, 8)

y^-1

[

GSet{@ 7, 9, 8 @},

GSet{@ 1, 4, 5, 2, 3, 6 @}

]

15 (1, 8, 2, 9, 3, 7)

x * y^-1

[

GSet{@ 4, 5, 6 @},

GSet{@ 1, 8, 2, 9, 3, 7 @}

]

16 (1, 7, 3, 9, 2, 8)

y * x^-1

[

GSet{@ 4, 6, 5 @},

GSet{@ 1, 7, 3, 9, 2, 8 @}

]

17 (1, 5)(2, 6)(3, 4)(7, 9, 8)

y^2 * x^-1 * y^-1 * x^-1

[

GSet{@ 7, 9, 8 @},

GSet{@ 1, 5, 2, 6, 3, 4 @}

]

18 (1, 5)(2, 6)(3, 4)(7, 8, 9)

x * y * x * y^-2

[

GSet{@ 7, 8, 9 @},

GSet{@ 1, 5, 2, 6, 3, 4 @}

]

19 (1, 2, 3)(4, 7, 6, 9, 5, 8)

y^2 * x^-1 * y

[

GSet{@ 1, 2, 3 @},

GSet{@ 4, 9, 7, 5, 6, 8 @}

]

20 (1, 3, 2)(4, 8, 5, 9, 6, 7)

y^-1 * x * y^-2

[

GSet{@ 1, 3, 2 @},

GSet{@ 4, 9, 8, 6, 5, 7 @}
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]

21 (1, 6, 8, 2, 4, 9, 3, 5, 7)

y^2 * x^-1

[

GSet{@ 1, 6, 8, 2, 4, 9, 3, 5, 7 @}

]

22 (1, 8, 4, 3, 7, 6, 2, 9, 5)

y * x * y^-2 * x * y^-1

[

GSet{@ 1, 8, 4, 3, 7, 6, 2, 9, 5 @}

]

After using the following code to find the name of the respective ts[i]:

for j in [2..#N] do for i in [1..#Setseq(Set(N))] do if 1^Setseq(Set(N))[i]

eq j then j, word(Setseq(Set(N))[i]); break;end if; end for;end for;

2 y^2

3 x * y * x^-1 * y * x

4 x^-1 * y^-1 * x^-1

5 y * x * y^-2 * x^-1

6 x * y^-2 * x^-1 * y^-1

7 x * y^-2

8 y^-1 * x^-1 * y^-1

9 x

We will build a first order relation which is composed of a representative of a class of

N and a ts[i] representative. For example, we will use the following information from

the class 21 which has the representative (y2 ∗ x−1). Next we will multiply the class

representative by a ts[i] representative which we will choose to be ts[2] that has the

representative of t(y
2).

Thus with this information we can build the following first order relation ((y2∗x−1)∗t(y2)).
By constructing different first order relations we can build a progenitor as follows:

for a,b,c,d,e,f,g,h,i,j in [0..10] do

G<x,y,t>:=Group<x,y,t| x^3, y^6,

y * x * y^-1 * x^-1 * y^-1 * x * y,

t^2,

((y^3)*t^( x * y^-2 * x^-1 * y^-1))^a,

((x * y * x^-1 * y * x * y^-2)*t^( x))^b,

((y^-2)*t^( x * y * x^-1 * y * x))^c,

(((y * x^-1)^2)*t^( y^2))^e,

((x^-1 * y^-1 * x^-1 * y)*t^( x * y^-2))^f,

((x)*t^( x * y * x^-1 * y * x))^g,
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((x * y^-1)*t^( y * x * y^-2 * x^-1))^h,

((y * x^-1)*t^( x * y^-2 * x^-1 * y^-1))^i,

((y^2 * x^-1 * y^-1 * x^-1)*t^( x * y * x^-1 * y * x))^j>;

a,b,c,d,e,f,g,h,i,j, Index(G,sub<G|x,y>); end for; end for;

Now our progenitor is ready to put in magma to produce homomorphic images that we

can use to construct the double coset enumeration which we will introduce later.
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Chapter 4

Symmetric Presentations

Transitive progenitors of the form m∗n : N require N to be transitive. First, we find the

number of transitive groups on n letters. Second, we choose a group i from the sequence

to investigate further. The group is stored as N := TransitiveGroup(n, i). Then we find

the generators of N to begin writing the progenitor.

4.1 Symmetric Presentation of 210 : (52 : 22)

To write a symmetric presentation for the progenitor determined by T (10, 9) we imple-

ment GrindStaff’s lemma. Then we add additional relations to this progenitor and run

it interactively to determine finite images.

Let N = (52 : 22) where N is of order 100 and generated by x ∼ (1, 5)(4, 10)(6, 8)(7, 9)

and y ∼ (1, 2, 7, 6, 3, 10, 9, 4, 5, 8). We are able to build a progenitor for our N . We write

symmetric presentation for the progenitor 210 : (52 : 22). A presentation for N is,

G<x,y,t>:=Group<x,y,t|x^2,

(y * x * y)^2, y^10,

t^2 >;

We need to find the stabilisers of (N, 1) meaning we need to find permutations contained

in N , that fix 1. We find the following permutations stabilise 1,

(2, 8, 4, 10, 6) = y ∗ x ∗ y−1 ∗ x ∗ y2, and
(3, 9)(4, 10)(5, 7)(6, 8) = x ∗ y−1 ∗ x ∗ y ∗ x ∗ y−2

We will add these additional words into our progenitor to complete it.
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G<x,y,t>:=Group<x,y,t|x^2, (y * x * y)^2, y^10,

t^2,

(t, (y * x * y^-1 * x * y^2)),

(t, (x * y^-1 * x * y * x * y^-2))>;

To check if we build the correct progenitor, we apply Grindstaff’s Lemma, where we look

at the orbits of N1 and find what word (permutation) takes 1 to an orbit representative

and we continue this process until all orbits are exhausted.

Orbits(N1);

GSet{@ 1 @},

GSet{@ 3, 9 @},

GSet{@ 5, 7 @},

GSet{@ 2, 8, 4, 6, 10 @}

We will choose the following orbit representatives: 2,3, and 5

1(y);

2

1(y
4);

3

1(x);

5

Next we will put the following permutations into a t-cycle and then add them into our

progenitor.

(t, t(x)),

(t, t(y)),

(t, t(y
4))

G<x,y,t>:=Group<x,y,t|x^2, (y * x * y)^2, y^10,

t^2,

(t, (y * x * y^-1 * x * y^2)),

(t, (x * y^-1 * x * y * x * y^-2)),

y^-1 * x * y^-1 * x * y^-1 * x * y^-1 * x * y^-1 *

x * y * x * y * x * y * x * y * x * y^-1 * x,

(t,t^(x)),

(t,t^(y)),

(t,t^(y^4))>;

Index(G,sub<G|x,y>);

1024
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#G;

102400

2^10*100;

102400

This proves that our progenitor is correct. Next we will use Lemma 3.3 to find additional

relations to add to our progenitor. Lemma 3.3 is only applicable to t1t2 where permu-

tations need to be of order two, and need to stabilise t1t2. We will look at the set of

permutations of the centraliser in N of the point-stabiliser in N of t1 and t2. We find the

following permutations:

(1, 2)(3, 10)(4, 9)(5, 8)(6, 7)= y * x * y^-1 * x * y^3,

(3, 9)(4, 10)(5, 7)(6, 8)= x * y^-1 * x * y * x * y^-2,

(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)= (x * y)^5

For the relations found using Lemma 3.3, they are of even or odd power. If they are

of even power, it means that the permutation(s) found do not have (1, 2) contained

in their permutation hence why it is necessary to input t1t2 to be equal to that said

permutation(s). When it comes to adding the permutation to first order relations the

even relation found from Lemma 3.3 is the permutation(s) that contains (1, 2) to be added

into the progenitor. It is the word of that progenitor multiplied by t. After finding the

classes of N , we use all the information we collect to build this progenitor and put it in

magma to find isomorphic images of N :

for a,b,c,d,e,f,g,h,i,j in [0..10] do

G<x,y,t>:=Group<x,y,t|x^2, (y * x * y)^2, y^10,

t^2,

((y^5)*t^(x * y^-1 * x * y * x * y^-1 * x ))^a,

((x * y * x * y * x * y * x * y * x * y^-1)*t^(x * y)^2)^b,

((y * x * y)*t^(x * y * x * y^-1 * x * y ))^c,

((y^2)*t^(x * y * x * y * x * y^-1 * x * y * x ))^d,

(((y * x)^2)*t^(x * y * x * y^-1 * x * y * x * y^-2 ))^e,

((y^-4)*t^(y^2 ))^f,

(((x * y)^4)*t^(x * y * x * y^-4 ))^g,

((x * y * x * y^-1)*t^(y * x * y^-1 * x)^2)^h,

(((x * y * x * y^-1)^2)*t^(x * y^-1 * x ))^i,

((y * x * y * x * y * x * y^-1 * x)*t)^j>;

a,b,c,d,e,f,g,h,i,j, #G; end for;
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4.2 Symmetric Presentation of 210 : Sym(6)

Let N = Sym(6) where N is of order 720 and generated by x ∼ (1, 2, 10)(3, 4, 5)(6, 7, 8),

y ∼ (1, 3, 2, 6)(4, 5, 8, 7), z ∼ (1, 2)(4, 7)(5, 8)(9, 10) and w ∼ (3, 6)(4, 7)(5, 8). We are able

to build a progenitor for our N . We write a symmetric presentation for the progenitor

210 : Sym(6). A presentation for N is:

G<x,y,z,w,t>:=Group<x,y,z,w,t|x^3, y^4,

z^2,w^2,(y^-1 * z)^2,

x^-1 * w * x * w,

(y^-1 * w)^2,(z * w)^2,

y^-2 * x^-1 * y^2 * x^-1,

(z * x^-1)^3,

x^-1 * y^-1 * x^-1 * y^-1 * x^-1 * y * x * y,

(x^-1 * y^-1 * x * z)^3,

t^2>;

We need to find the stabilisers of (N, 1) meaning we need to find permutations contained

in N , that fix 1. We find the following permutations stabilise 1,

(3, 6)(4, 7)(5, 8) = w

(2, 7, 8)(3, 5, 10, 9, 4, 6) = z ∗ x ∗ w ∗ y ∗ x
(2, 7)(4, 10)(5, 6) = w ∗ x−1 ∗ y−1 ∗ x
We will add these additional words into our progenitor to complete it,

G<x,y,z,w,t>:=Group<x,y,z,w,t|x^3, y^4,

z^2,w^2,(y^-1 * z)^2,

x^-1 * w * x * w,

(y^-1 * w)^2,(z * w)^2,

y^-2 * x^-1 * y^2 * x^-1,

(z * x^-1)^3,

x^-1 * y^-1 * x^-1 * y^-1 * x^-1 * y * x * y,

(x^-1 * y^-1 * x * z)^3,

t^2,

(t,w),(t,(z * x * w * y * x)),

(t,(w * x^-1 * y^-1 * x))>;

To check if we build the correct progenitor, we apply Grindstaff’s Lemma, where we look

at the orbits of N1, and find what word (permutation) takes one to an orbit representative

and we continue this process until all orbits are exhausted.

Orbits(N1);

GSet{@ 1 @},

GSet{@ 2, 4, 6, 7, 10, 3, 8, 9, 5 @}
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We will choose the following orbit representative: 2

1(x);

2

Next we will put the following permutations into a t-cycle and then add them into our

progenitor.

(t, t(x))

G<x,y,z,w,t>:=Group<x,y,z,w,t|x^3, y^4,

z^2,w^2,

(y^-1 * z)^2,

x^-1 * w * x * w,

(y^-1 * w)^2,

(z * w)^2,

y^-2 * x^-1 * y^2 * x^-1,

(z * x^-1)^3,

x^-1 * y^-1 * x^-1 * y^-1 * x^-1 * y * x * y,

(x^-1 * y^-1 * x * z)^3,

t^2,

(t,w),(t,(z * x * w * y * x)),

(t,(w * x^-1 * y^-1 * x)),

(t,t^x)>;

Index(G,sub<G|x,y,z,w>);

1024

#G;

737280

2^10*720;

737280

This proves that our progenitor is correct. Next we will use Lemma 3.3 to find additional

relations to add to our progenitor. Lemma 3.3 is only applicable to t1t2 where permu-

tations need to be of order two, and need to stabilise t1t2. We will look at the set of

permutations of the centraliser in N of the point-stabiliser in N of t1 and t2. We find the

following permutations:

(1, 2)(4, 5)(7, 8)= b^2 * d,

Id(C),

(3, 6)(4, 5)(7, 8)(9, 10)= b^2 * c,

(1, 2)(3, 6)(9, 10)=c * d
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For the relations found using Lemma 3.3, they are of even or odd power. If they are

of even power, it means that the permutation(s) found do not have (1, 2) contained

in their permutation hence why it is necessary to input t1t2 to be equal to that said

permutation(s). When it comes to adding the permutation to first order relations the

even relation found from Lemma 3.3 the permutation(s) that contains (1, 2) to be added

into the progenitor. It is the word of that progenitor multiplied by t. After finding the

classes of N . We use all the information we collect to build this progenitor and put it in

magma to find isomorphic images of N :

for a,b,c,d,e,f,g,h,i,j in [0..10] do

G<x,y,z,w,t>:=Group<x,y,z,w,t|x^3, y^4,

z^2,w^2,

(y^-1 * z)^2,

x^-1 * w * x * w,

(y^-1 * w)^2,

(z * w)^2,

y^-2 * x^-1 * y^2 * x^-1,

(z * x^-1)^3,

x^-1 * y^-1 * x^-1 * y^-1 * x^-1 * y * x * y,

(x^-1 * y^-1 * x * z)^3,

t^2,

(w*t^(x * y * z * x * y * z * x^-1 * y^-1))^a,

(z * w*t^(x * y * w))^b,

(z*t^(x * y * z * x * y^-1 * x^-1 * z))^c,

(z * x*t^(y * x^-1))^d,

(z * x * y * x^-1*t^(x * y * z * x * y * w * x^-1))^e,

(z * x * y * x*t^(z * y * x))^f,

(x * z * y * w * x^-1*t^(x * y * x * z * y * w))^g,

(z * x * y*t)^h,

(z * x * w*t^(w * x^-1 * z))^i,

(z * x * w * y * x*t^(x^-1 * y * x * z * x * y))^j>;

a,b,c,d,e,f,g,h,i,j, #G; end for;

4.3 Symmetric Presentation of 212 : (25 : S3)

LetN = (25 : S3) whereN is of order 192 and generated by x ∼ (1, 7, 12, 6)(2, 5, 9, 11)(3, 4, 8, 10)

and y ∼ (1, 2, 7, 8)(3, 6, 9, 12)(4, 10)(5, 11). We are able to build a progenitor for our N .

We write symmetric presentation for the progenitor 212 : (25 : S3). A presentation for N

is:
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G<x,y,t>:=Group<x,y,t|x^4, y^4 ,

x^-1 * y^-1 * x^2 * y^-1 * x^-1 ,

y^-2 * x^-1 * y^-2 * x^-1 * y^2 * x * y^2 * x ,

x^-1 * y^-1 * x^-1 * y^-1 * x^-1 * y^-1 * x * y * x *

y^-1 * x^-1 * y^-1 ,

x^-1 * y * x^-1 * y^-1 * x^-1 * y^-1 * x * y^-1 * x * y * x * y,

t^2 >;

We need to find the stabilisers of (N, 1) meaning we need to find permutations contained

in N , that fix 1. We find the following permutations stabilise 1,

(2, 5, 3, 4)(6, 7)(8, 10, 9, 11) = x ∗ y2,
(2, 10)(3, 11)(4, 8)(5, 9) = y ∗ x ∗ y ∗ x ∗ y−1,
(4, 5)(6, 7)(8, 9) = (x ∗ y−1)3

We will add these additional words into our progenitor to complete it.

G<x,y,t>:=Group<x,y,t|x^4, y^4 ,

x^-1 * y^-1 * x^2 * y^-1 * x^-1 ,

y^-2 * x^-1 * y^-2 * x^-1 * y^2 * x * y^2 * x ,

x^-1 * y^-1 * x^-1 * y^-1 * x^-1 * y^-1 * x * y * x *

y^-1 * x^-1 * y^-1 ,

x^-1 * y * x^-1 * y^-1 * x^-1 * y^-1 * x * y^-1 * x * y * x * y,

t^2,

(t,x * y^2),(t,y * x * y * x * y^-1),

(t,(x * y^-1)^3)>;

To check if we build the correct progenitor, we apply Grindstaff’s Lemma, where we look

at the orbits of N1, and find what word (permutation) takes one to an orbit representative

and we continue this process until all orbits are exhausted.

Orbits(N1);

GSet{@ 1 @},

GSet{@ 12 @},

GSet{@ 6, 7 @},

GSet{@ 2, 5, 10, 3, 9, 4, 11, 8 @}

We will choose the following orbit representative: 2,6, and 12

1(y);

2

1(x
3);

6

1(x
2);
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12

Next we will put the following permutations into a t-cycle and then add them into our

progenitor.

(t, t(y))

(t, t(x
3))

(t, t(x
2))

G<x,y,t>:=Group<x,y,t|x^4, y^4 ,

x^-1 * y^-1 * x^2 * y^-1 * x^-1 ,

y^-2 * x^-1 * y^-2 * x^-1 * y^2 * x * y^2 * x ,

x^-1 * y^-1 * x^-1 * y^-1 * x^-1 * y^-1 * x * y * x *

y^-1 * x^-1 * y^-1 ,

x^-1 * y * x^-1 * y^-1 * x^-1 * y^-1 * x * y^-1 * x * y * x * y,

t^2,

(t,x * y^2),(t,y * x * y * x * y^-1),(t,(x * y^-1)^3),

(t,t^y),(t,t^(x^2)),(t,t^(x^3))>;

Index(G,sub<G|x,y>);

4096

#G;

786432

2^12*192;

786432

This proves that our progenitor is correct. Next we will use Lemma 3.3 to find additional

relations to add to our progenitor. Lemma 3.3 is only applicable to t1t2 where permu-

tations need to be of order two, and need to stabilise t1t2. We will look at the set of

permutations of the centraliser in N of the point-stabiliser in N of t1 and t2. We find the

following permutations:

(4, 5)(6, 7)(8, 9).

For the relations found using Lemma 3.3, they are of even or odd power. If they are

of even power, it means that the permutation(s) found do not have (1, 2) contained in

their permutation hence why it is necessary to input t1t2 to be equal to that said per-

mutation(s). When it comes to adding the permutation to first order relations the even

relation found from Lemma 3.3 the permutation(s) that contains (1, 2) to be added into

the progenitor it is the word of that progenitor multiplied by t. After finding the classes

of N . We use all the information we collect to build this progenitor and put it in magma
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to find isomorphic images of N :

for a,b,c,d,e,f,g,h,i,j in [0..10] do

G<x,y,t>:=Group<x,y,t|x^4, y^4 ,

x^-1 * y^-1 * x^2 * y^-1 * x^-1 ,

y^-2 * x^-1 * y^-2 * x^-1 * y^2 * x * y^2 * x ,

x^-1 * y^-1 * x^-1 * y^-1 * x^-1 * y^-1 * x * y * x *

y^-1 * x^-1 * y^-1 ,

x^-1 * y * x^-1 * y^-1 * x^-1 * y^-1 * x * y^-1 * x * y * x * y,

t^2,

((x * y^2)^2*t^(x * y * x * y^-1 * x^-1 * y^-1))^a,

(x * y * x * y^-1 * x^-1 * y^-1*t^(y * x^-1))^b,

(x^2*t^(y^2 * x * y^-1)^2)^c,

(y^2*t^(y^-1 * x * y^-1 * x^-1 * y^2))^d,

(x * y^-1 * x*t^(x * y^2 * x * y * x^-1))^e,

(x * y^2 * x * y * x * y^-1*t^(x * y^2 * x * y * x^-1))^f,

((y * x)^2*t^(y * x * y^2))^g,

(x * y^2*t^(x * y * x * y^-1 * x^-1 * y))^h,

(x * y^2 * x^-1 * y*t^(y * x * y * x * y))^i,

(x * y^-1 * x * y * x * y*t^(y * x * y^-1 * x * y^2))^j>;

a,b,c,d,e,f,g,h,i,j, #G; end for;
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4.4 Symmetric Presentation of 224 : (25 : 3)

Let N = (25 : 3) where N is of order 96 and generated by

x ∼ (1, 4, 2, 3)(5, 23, 6, 24)(7, 10)(8, 9)(15, 21, 17, 19)(16, 22, 18, 20) and

y ∼ (1, 8, 21)(2, 7, 22)(3, 12, 16)(4, 11, 15)(5, 14, 18)(6, 13, 17)(9, 20, 24)(10, 19, 23).

We are able to build a progenitor for our N . We write symmetric presentation for the

progenitor 224 : (25 : 3). A presentation for N is:

G<x,y,t>:=Group<x,y,t|x^4, y^3 ,

(y^-1 * x^-1)^3 ,

x^-1 * y^-1 * x * y^-1 * x^-1 * y * x^2 * y ,

t^2 >;

We need to find the stabilisers of (N, 1) meaning we need to find permutations contained

in N that fix 1. We find the following permutations stabilise 1,

(7, 9)(8, 10)(11, 13)(12, 14)(15, 16)(17, 18)(19, 20)(21, 22)

(3, 6)(4, 5)(7, 13, 9, 11)(8, 14, 10, 12)(15, 20, 16, 19)(17, 22, 18, 21)

We will add these additional words into our progenitor to complete it.

G<x,y,t>:=Group<x,y,t|x^4, y^3 ,

(y^-1 * x^-1)^3 ,

x^-1 * y^-1 * x * y^-1 * x^-1 * y * x^2 * y ,

t^3,

(t,(y * x * y^-1)^2),

(t,(x * y^-1 * x * y))>;

To check if we build the correct progenitor, we apply Grindstaff’s Lemma, where we look

at the orbits of N1, and find what word (permutation) takes one to an orbit representative

and we continue this process until all orbits are exhausted.

Orbits(N1);

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 23 @},

GSet{@ 24 @},

GSet{@ 3, 6 @},

GSet{@ 4, 5 @},

GSet{@ 7, 9, 13, 11 @},

GSet{@ 8, 10, 14, 12 @},

GSet{@ 15, 16, 20, 19 @},

GSet{@ 17, 18, 22, 21 @}
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We will choose the following orbit representative: 2,3,4,7,8,15,17,23, and 24

1(x
2);

2

1(x
3);

3

1(x);

4

1(y
3∗x2∗y);

7

1(y);

8

1(y
−1∗x−1);

15

1(x∗y
2∗x2);

17

1(y
2∗x2∗y);

23

1(y∗x
3∗y2);

24

Next we will put the following permutations into a t-cycle and then add them into our

progenitor.

(t, t(x
2)),

(t, t(x
3)),

(t, t(x)),

(t, t(y
3∗x2∗y)),

(t, t(y)),

(t, t(y
−1∗x−1)),

(t, t(x∗y
2∗x2)),

(t, t(y
2∗x2∗y)),

(t, t(y∗x
3∗y2))

G<x,y,t>:=Group<x,y,t|x^4, y^3 ,

(y^-1 * x^-1)^3 ,

x^-1 * y^-1 * x * y^-1 * x^-1 * y * x^2 * y ,
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t^3,

(t,(y * x * y^-1)^2),

(t,(x * y^-1 * x * y)),

(t,t^(x^2)),

(t,t^(x^3)),(t,t^(x)),(t,t^(y^3*x^2*y)),

(t,t^(y)),(t,t^(y^-1*x^-1)),

(t,t^(x*y^2*x^2)),(t,t^(y^2*x^2*y)),(t,t^(y*x^3*y^2))>;

#G;

1610612736

2^24*96;

1610612736

This proves that our progenitor is correct. Next we will use Lemma 3.3 to find additional

relations to add to our progenitor. Lemma 3.3 is only applicable to t1t2 where permu-

tations need to be of order two and need to stabilise t1t2. We will look at the set of

permutations of the centraliser in N of the point-stabiliser in N of t1 and t2. We find the

following permutations:

(7, 9)(8, 10)(11, 13)(12, 14)(15, 16)(17, 18)(19, 20)(21, 22),

(3, 6)(4, 5)(7, 11, 9, 13)(8, 12, 10, 14)(15, 19, 16, 20)(17, 21, 18, 22).

For the relations found using Lemma 3.3, they are of even or odd power. If they are

of even power, it means that the permutation(s) found do not have (1, 2) contained in

their permutation hence why it is necessary to input t1t2 to be equal to that said per-

mutation(s). When it comes to adding the permutation to first order relations the even

relation found from lemma 3.3 the permutation(s) that contains (1, 2) to be added into

the progenitor it is the word of that progenitor multiplied by t. After finding the classes

of N . We use all the information we collect to build this progenitor and put it in magma

to find isomorphic images of N ,

for a,b,c,d,e,f,g,h,i,j in [0..10] do

G<x,y,t>:=Group<x,y,t|x^4, y^3 ,

(y^-1 * x^-1)^3 ,

x^-1 * y^-1 * x * y^-1 * x^-1 * y * x^2 * y ,

t^2,

((x * y^-1)^3*t^(y^x))^a,

((y * x * y^-1)^2*t^(x * y^-1)^2)^b,

(x * y * x^-1 * y * x^-1 * y*t^(y^-1 * x * y^-1 * x * y^-1))^c,

(y*t^(x * y * x^2 * y))^d,

(y^-1*t^(y^-1 * x))^e,
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(y * x * y^-1*t^(x * y^-1 * x^-1))^f,

(y * x^-1 * y^-1*t^(y * x^-1 * y))^g,

((x^-1, y^-1)*t^(y^-1))^h,

((y^-1, x^-1)*t^(x * y * x^-1 * y * x^-1 * y))^i,

(y * x^-1*t^(y * x^-1 * y^-1))^j>;

a,b,c,d,e,f,g,h,i,j, #G; end for;
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Chapter 5

Linear Map of PSL(2, 23)

Writing a linear map that generate PSL(2, 23) using α, β, γ where

α : x → x+ 1

β : x → Kx

K is a nonzero square in F23 whose powers give all of the squares of F23

γ : x → −1
x = −x−1.

Starting with α our permutations are:

(∞), (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22).

In order to find β permutations, we need to find all nonzero squares for F23



41

Compute β

square power ∼= 23 Result

02 modulo 23 0

12 modulo 23 1

22 modulo 23 4

32 modulo 23 9

42 modulo 23 16

52 = 25 modulo 23 2

62 = 36 modulo 23 13

72 = 49 modulo 23 3

82 = 64 modulo 23 18

92 = 81 modulo 23 12

102 = 100 modulo 23 8

112 = 121 modulo 23 6

122 = 144 modulo 23 6

132 = 169 modulo 23 8

142 = 196 modulo 23 12

152 = 225 modulo 23 18

162 = 256 modulo 23 3

172 = 289 modulo 23 13

182 = 324 modulo 23 2

192 = 361 modulo 23 16

202 = 400 modulo 23 9

212 = 441 modulo 23 4

222 = 484 modulo 23 1

232 = 529 modulo 23 0

Table 5.1: Compute β

The squares we have are (1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18).

Now we need to find the smallest nonzero squares K whose power gives all of nonzero

squares. We try 2:
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20 = 1,

21 = 2,

22 = 4,

23 = 8,

24 = 16,

25 = 32 = 9,

26 = 64 = 18,

27 = 128 = 13,

28 = 256 = 3,

29 = 512 = 6,

210 = 1024 = 12,

β : x → 2x

1 → 2 → 4 → 8 → 16 → 9 → 18 → 13 → 3 → 6 → 12 → 1

(1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12)

5 → 10 → 20 → 17 → 11 → 22 → 21 → 19 → 15 → 7 → 14 → 5

(5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14)

Thus, β = (1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12)(5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14).

Now we will compute γ.

γ : x → −1
x = −x−1

Thus, we will get (23, 24)(2, 1, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3).

Using magma we will verify our answers by following:

S:=Sym(24);

a:=S!(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22);

b:=S!(1,2,4,8,16,9,18,13,3,6,12)(5,10,20,17,11,22,21,19,15,7,14);

g:=S!(1,22)(2,11)(3,15)(4,17)(5,9)(6,19)(7,13)(8,20)(10,16)(12,21)(14,18);

psl 223:=sub<S|a,b,g>;

IsIsomorphic(PSL(2,23),psl 223);

true Homomorphism of GrpPerm: $, Degree 24, $ Order 2^3 * 3 * 11 * 23 into

GrpPerm: psl223, Degree 24, Order 2^3 * 3 * 11 * 23 induced by

(3, 14, 5, 12, 20, 23, 19, 17, 11, 21, 18)

(4, 7, 15, 22, 13, 24, 9, 6, 16, 10, 8)

|--> (1, 4, 17, 12, 21, 14, 22, 3, 5, 6, 18)

(2, 16, 23, 15, 11, 9, 8, 19, 13, 10, 20)

(1, 13, 2)(3, 11, 18)(4, 6, 17)(5, 20, 14)

(7, 16, 23)(8, 21, 9)(10, 15, 12)(19, 24, 22)
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|--> (1, 4, 12)(2, 17, 19)(3, 6, 18)(5, 11, 13)

(7, 23,24)(8, 21, 20)(9, 22, 10)(14, 15, 16)

5.0.1 Linear Fractional Maps

We need to compute the linear fractional maps and see what they give us using the

induced permutations that magma gives us in the previous isomorphism command.

• (1, 4, 17, 12, 21, 14, 22, 3, 5, 6, 18)(2, 16, 23, 15, 11, 9, 8, 19, 13, 10, 20)

• (1, 4, 12)(2, 17, 19)(3, 6, 18)(5, 11, 13)(7, 23, 24)(8, 21, 20)(9, 22, 10)(14, 15, 16)

We will use the function ax+b
cx+d to calculate all the equations such as:

First equation

a+b
c+d =⇒ a+ b = 4c+ 4d

Second equation

4a+b
4c+d = 17 =⇒ 4a+ b = 68c+ 17d

Third equation

17a+b
17c+d = 12 =⇒ 17a+ b = 204c+ d

Fourth equation

16a+b
16c+d = 0 =⇒ 16a+ b = 0

Solving the system of equations we get the map to be:

A := (PSL(2, 23).1);

B := (PSL(2, 23).2);

Now we will find linear maps for A and B.

A;

(1, 20, 21, 12, 15, 24, 13, 16, 7, 8, 4)

(2, 17, 10, 5, 9, 14, 19, 23, 18, 11, 3)

B;

(1, 19, 10)(2, 11, 4)(3, 22, 6)(5, 8, 23)

(7, 24, 13)(9, 18, 16)(12, 15, 20)(14, 21, 17)

First, we will calculate a linear map for A and check our results.

ax+b
cx+d

x+b
c+d = 20 =⇒ a+ b = 20c+ 20d

20a+b
20c+d = 21 =⇒ 20a+ b = 420c+ 21d
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21a+b
21c+d = 12 =⇒ 21a+ b = 252c+ 12d

12a+b
12c+d = 15 =⇒ 12a+ b = 180c+ 15d

Solving these equations we get the linear map of A to be:

16x+18
3x+1

Now, we will check if the equation works for all elements:
16(2)+18
3(2)+1 = 50

7 = 4
7 = 4 ∗ 7−1 = 4 ∗ 10 = 40 ≡ 23 = 17

True
16(15)+18
3(15)+1 = 258

46 = 5
0 = ∞ = 24

True

Thus, our map for A is true since it works for all elements.

Then, we will find a linear map for B following the same process.

a+b
c+d = 19 =⇒ a+ b = 19c+ 19d

19a+b
19c+d = 10 =⇒ 19a+ b = 190c+ 10d

10a+b
10c+d = 1 =⇒ 10a+ b = 10c+ d.

Solving these system of equations we get the linear map of B to be:

8x+28
13x+1

Let us check if it works for all elements:
8(2)+28
13(2)+1 = 44

27 = 21
4 = 21 ∗ 4−1 = 21 ∗ 6 = 126 ≡ 23 = 11

True
8(11)+28
13(11)+1 = 116

144 = 1
6 = 1 ∗ 6−1 = 1 ∗ 4 = 4

True

Thus, our map for B is true since it works for all elements.
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Chapter 6

Isomorphism Types

Definition 6.1. If H and K are groups. Then their direct product, denoted H ×K, is

the group with elements all ordered pairs (h, k) where h ∈ H, k ∈ K, and with operation

(h, k)(h′, k′) = (hh′, kk′) [Rot94].

Definition 6.2. A group G is a semi-direct product of K by Q,denoted by K ⋊ Q if

K△G and K has a complement of Q1
∼= Q. One also says that G splits over K [Rot94].

Definition 6.3. If K and Q are groups, then an extension of K by Q is a group G

having a normal subgroup K1
∼= K with G

k1
∼= Q [Rot94].

Definition 6.4. A central extension of K by Q is an extension G of K by Q with

K ≤ Z(G) [Rot94].

Definition 6.5. Let G be a group with H ≤ G, N ≤ G, and N△G such that |G| =
|N ||H|. Then G is a mixed extension by H, denoted G ∼= N · : H, if G is formed by

both central extension and semi-direct products [Rot94].

In this chapter, we evaluate each image of the progenitor G that is noted to be faithful

and whose number of subgroups generated by x and y are equal to the order of our control

group N . We will focus on the composition factors to find the rough shape of the images

and regard it as the isomorphism type of the groups. There are four types of extension:

direct and semi-direct product, and mixed and central. We will include examples of some

types using similar steps and most importantly using composition factors and normal

lattice of each group.
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6.1 Direct Product (A5× A5× A5× A5× A5) : ((2× A5) : 2)

We are given G is a transitive group on 25 letters, which is generated by

xx ∼ (1, 4, 3, 5)(6, 25, 20, 10, 21, 18, 8, 24, 16, 9, 22, 19)(7, 23, 17)(11, 15, 12, 13)

and yy ∼ (1, 14, 18)(2, 13, 20, 3, 11, 19)(4, 15, 16, 5, 12, 17)(6, 24, 7, 22)(8, 21, 10, 25)(9, 23).

We will find the isomorphisim type of G by first analyzing the composition factors and

the normal lattice of G as shown below:

N:=sub < S|xx,yy >;

#N;

{186624000000}

CompositionFactors(N);

G

| Cyclic(2)

*

| Alternating(5)

*

| Cyclic(2)

*

| Alternating(5)

*

| Alternating(5)

*

| Alternating(5)

*

| Alternating(5)

*

| Alternating(5)

1
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Normal Lattice

Figure 6.1: (A5×A5×A5×A5×A5) : ((2×A5) : 2)

By looking to the composition factors of G it is not clear what the isomorphism type

may be. After analyzing the normal lattice of G, we see that NL[1] is the largest normal

abelian subgroup. The order of NL[1] is 1 and the order of G is 186624000000. Now

186624000000
1 = 186624000000. However, G has a normal subgroup of order 1. Thus, G is

a direct-product. We write G as follows:

G ∼= (A5×A5×A5×A5×A5) : ((2×A5) : 2).
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6.2 Direct Product (A5 × A5) : 4

We are given G is a transitive group on 25 letters which generated by

xx ∼ (1, 5, 15, 13, 23, 24, 9, 6)(2, 20, 12, 18, 22, 19, 7, 16)(3, 25, 14, 8, 21, 4, 10, 11)

and yy ∼ (1, 22, 9, 20, 3, 12, 6, 25, 4, 17, 8, 15)(2, 7, 10, 5)(11, 21, 24, 19, 18, 13)(14, 16, 23)

The presentation of G is:

G<x,y,t>:=Group<x,y,t| x^8 ,

y^12 ,

(x * y^-3)^2 ,

x * y^2 * x^4 * y^-5 ,

(x * y * x)^4 ,

(x * y * x^-1 * y^-1 * x^-1 * y^-1)^2 ,

(x * y * x^-1 * y * x^-1 * y^-1)^2 ,

y * x * y * x^-1 * y^-1 * x^3 * y^4 * x^2,

t^2 >;

We will find the isomorphisim type of G by first analyzing the composition factors and

the normal lattice of G:

N: = sub < S|xx,yy >;

#N;

{14400}

CompositionFactors(N);

G

| Cyclic(2)

*

| Cyclic(2)

*

| Alternating(5)

*

| Alternating(5)

1
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Normal Lattice

Figure 6.2: (A5×A5) : 4

By looking to the composition factors of G it is not clear what the isomorphism type is.

After analyzing the normal lattice of G, we see that NL[1] is the largest normal abelian

subgroup. The order of NL[1] is 1 and the order of G is 14400. Now 14400
1 = 14400.

However, G has a normal subgroup of order 1. Thus, G is a direct-product. We write G

as follows:

N ∼= (A5xA5) : 4.
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6.3 Direct-Product 54 × 5

Given G a transitive group of 25 letters generated by:

xx ∼ (1, 12, 25, 7, 20, 3, 14, 23, 9, 17, 5, 11, 21, 6, 19, 2, 13, 24, 8, 16, 4, 15, 22, 10, 18), and

yy ∼ (1, 16, 10, 24, 15, 4, 19, 8, 21, 13, 2, 17, 6, 23, 11, 5, 20, 9, 25, 14, 3, 18, 7, 22, 12).

The presentation of G is:

G<x,y,t>:=Group<x,y,t|

y^-1 * x^-1 * y * x^2 * y * x^-1 * y^-1 ,

y * x^5 * y^4 ,

(y^-1 * x^-1)^5 ,

x^-1 * y^-1 * x * y^-1 * x^3 * y * x^-2 * y * x^-1 ,

y * x * y^-1 * x^-1 * y * x^-2 * y^-1 * x^-1 * y^-1 *

x^-1 * y * x^-1,

t^2 >;

We will find the isomorphisim type of G by first analyzing the composition factors and

the normal lattice of G:

CompositionFactors(G);

G

| Cyclic(5)

*

| Cyclic(5)

*

| Cyclic(5)

*

| Cyclic(5)

*

| Cyclic(5)

1
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Normal Lattice

Figure 6.3: 54 · 5

After analyzing the normal lattice of G, we see that NL[6] is the largest normal abelian

subgroup. The order of NL[6] is 625 and the order of G is 3125. Now 3125
625 = 5. We see

that G has a normal subgroup of order 5. Thus, G is a direct product G ∼= 54 × 5
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6.4 Semi-Direct Product 52 : 4

We are given G is a transitive group on 25 letters which generated by

xx ∼ (1, 13, 23, 10, 20)(2, 14, 24, 6, 16)(3, 15, 25, 7, 17)(4, 11, 21, 8, 18)(5, 12, 22, 9, 19)

and yy ∼ (1, 18, 14, 21)(2, 20, 13, 24)(3, 17, 12, 22)(4, 19, 11, 25)(5, 16, 15, 23)(6, 9, 10, 7).

The presentation of G is:

G<x,y,t>:=Group<x,y,t|x^5 ,

y^4 ,

y^-2 * x^-1 * y^2 * x^-1 ,

x^-1 * y^-1 * x^-1 * y^-1 * x^-1 * y * x * y,

t^2>;

We will find the isomorphisim type of G by first analyzing the composition factors and

the normal lattice of G:

G: = sub < S|xx,yy >;

#G;

100

CompositionFactors(G);

G

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(5)

*

| Cyclic(5)

1
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Normal Lattice

Figure 6.4: 52 : 4

By looking to the composition factors of G it is not clear what the isomorphism type is.

After analyzing the normal lattice of G, we see that NL[4] is the largest normal abelian

subgroup. The order of NL[4] is 25 and the order of G is 100. Now 100
25 = 4. But G does

not have a normal subgroup of order 4. Thus, G is an extension of NL[4] by a group

q = G
NL[4] but it is not a direct product because q is not isomorphic to a normal subgroup

of G.

Now, we need to investigate to see whether G is the semi-direct product (split extension)

of NL[4] by q. It is clear that NL[4] is a group with the generator:

A ∼ (1, 21, 16, 12, 7)(2, 22, 17, 13, 8)(3, 23, 18, 14, 9)(4, 24, 19, 15, 10)(5, 25, 20, 11, 6)

B ∼ (1, 15, 22, 6, 18)(2, 11, 23, 7, 19)(3, 12, 24, 8, 20)(4, 13, 25, 9, 16)(5, 14, 21, 10, 17)

Now, q is isomorphic to 52 and its presentation is given below:

IsIsomorphic(NL[4],AbelianGroup(GrpPerm,[5,5]));

True

FPGroup(q);

d^4 ,

c

The group q has two generators q.1, and q.2 of order 4 = 22. We label them C and

d respectively. Our next step is to find the action of the generators C and d on the
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generators A and B of NL[4]. In order to do so, we need to look at the transversals of

NL[4] in G:

ff(T[1]) eq q.1;

/*true*/

ff(T[2]) eq q.2;

/*true*/

Thus, we see ac = b, bc = a4. We will include these results in our presentation of H and

verify it is isomorphic to G to find the presentation of G.

H <a,b,c,d >:= Group <a, b, c,d | a^5, b^5,(a,b),

c, d^4,

a^c=b, b^c=a^4,

a^d=a^4,

b^d=b^4>;

#H;

100

f,H1,k: = CosetAction(H,sub < H|Id(H) >;

IsIsomorphic(H1,G);

True

This true isomorphism tells us that we have a semi-direct product. Now we need to

consider how to write our progenitor. We do so by looking at the order of NL[4] which

was confirmed to us using isomorphism of NL[4] in respects to group permutations to be

52. Next we look at the order of q, which is 4.

Thus we have a semi-direct product G ∼= 52 : 4.
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6.5 Semi-Direct Product 52 : 25

We are given G is a transitive group on 25 letters, which is generated by

xx ∼ (2, 15, 6, 23)(3, 24, 11, 20)(4, 8, 16, 12)(5, 17, 21, 9)(10, 14, 22, 18),

yy ∼ (2, 23, 4, 12, 5, 9, 3, 20)(6, 17, 16, 24, 21, 15, 11, 8)(7, 14, 19, 10, 25, 18, 13, 22),

and zz ∼ (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11, 12, 13, 14, 15)(16, 17, 18, 19, 20)(21, 22, 23, 24, 25) .

The presentation of G is:

G<x,y,z,t>:=Group<x,y,z,t| x^4 ,

y^8 ,

z^5 ,

(x^-1 * y^-1)^2 ,

y * x * y^-1 * x * y^2 ,

x * z^-1 * y * x * z * y ,

y^-1 * x * z^-1 * x^-1 * y * z^-2 ,

z * x^-2 * z^-1 * x^-1 * z^-1 * x^-1 * z,

t^2 >;

We will find the isomorphisim type of G by first analyzing the composition factors and

the normal lattice of G:

CompositionFactors(G);

G

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(5)

*

| Cyclic(5)

1
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Normal Lattice

Figure 6.5: 52 : 25

By looking to the composition factors of G, it is not clear what the isomorphism type is.

After analyzing the normal lattice of G, we see that NL[2] is the largest normal abelian

subgroup. The order of NL[2] is 25 and the order of G is 800. Now 800
25 = 32. But G does

not have a normal subgroup of order 32. Thus, G is an extension of NL[2] by a group say

q = G
NL[2] but it is not a direct product because q is not isomorphic to a normal subgroup

of G.

Now, we need to investigate to see whether G is the semi-direct product (split extension)

of NL[2] by q. It is clear that NL[2] is a cyclic group of order 25 with the generator:

A ∼ (1, 22, 18, 14, 10)(2, 23, 19, 15, 6)(3, 24, 20, 11, 7)(4, 25, 16, 12, 8)(5, 21, 17, 13, 9)

B ∼ (1, 6, 11, 16, 21)(2, 7, 12, 17, 22)(3, 8, 13, 18, 23)(4, 9, 14, 19, 24)(5, 10, 15, 20, 25).

Now, q is isomorphic to 52 and its presentation is given below:

IsIsomorphic(NL[2],AbelianGroup(GrpPerm,[5,5]));

True

q;

x^4,

(x^-1 * y^-1)^2,
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y * x * y^-1 * x * y^2,

z>;

The group q has two generators q.1, and q.2, we label them as D and E respectively. Our

next step is to find the action of the generators D and E on the generators A and B of

NL[2] . In order to do so we need to look at the transversals of NL[2] in G:

ff(T[2]) eq q.1;

/*true*/

ff(T[3]) eq q.2;

/*true*/

ff(T[1]) eq q.3;

/*true*/

Thus, we see ad = a2, bd = a2 ∗ b, ae = a ∗ b2, be = a ∗ b4.
We will include these results in our presentation of H and verify it is isomorphic to G to

find the presentation of G.

H<a,b,d,e>:=Group<a,b,d,e|a^5,b^5,

(a,b), d^4,

(d^-1 * e^-1)^2,

e * d * e^-1 * d * e^2,

a^d=a^2,b^d=a^2*b,a^e=a*b^2,b^e=a*b^4>;

#G;

800

f,H1,k:=CosetAction(H,sub < H|Id(H)>);

IsIsomorphic(H1,G);

True

The true isomorphism tells us that we have a semi-direct product. Now we need to

consider how to write our isomorphism. We do so by looking at the order of NL[2] which

was confirmed to us using isomorphism of NL[2] in respects to group permutation to be

52. Next we look at the order of q which is of order 32 = 25.

Thus, we have the following isomorphism G ∼= (52) : 25.
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6.6 Mixed Extension 3 :· PGL(2× 9)

We are given G is a transitive group on 5 letters, which is generated by:

xx ∼ (1, 2, 3, 4, 6), and

yy ∼ (1, 4)(5, 6).

The presentation of G is:

G<x,y,t>:=Group<x,y,t|x^5,y^2,(y*x^-1)^3,

t^2 >;

We will find the isomorphisim type of G by first analyzing the composition factors and

the normal lattice of G:

CompositionFactors(G);

G

| Cyclic(2)

*

| Alternating(6)

*

| Cyclic(3)

1

Normal Lattice

Figure 6.6: PGL(2× 9)

From the composition factors of G, we see that G must be one of the following: 3 · S6 or

3 ·M10 or 3 · PGL(2, 9). After analyzing the normal lattice of G. we see that NL[2] is
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the largest normal abelian subgroup. The order of NL[2] is 3 and the order of G is 2160.

Now 2160
3 = 720. But G does not have a normal subgroup of order 720. Thus, G is an

extension of NL[2] by a group q = G
NL[2] . But it is not a direct product because q is not

isomorphic to a normal subgroup of G.

Now, we need to investigate to see whether G is the semi-direct product (split extension)

of NL[2] by q. It is clear that NL[2] is a cyclic group of order 3 with the generator:

A = (1, 35, 36)(2, 32, 31)(3, 25, 27)(4, 33, 20)

(5, 21, 30)(6, 34, 28)(7, 17, 15)(8, 12, 26)

(9, 29, 23)(10, 24, 13)(11, 18, 22)(14, 19, 16);

Now q is isomorphic to PGL(2× 9),

IsIsomorphic (q,PGL(2,9));

True

The group q has three generators q.1, q.2, and q.3. We label them as B,C, and D

respectively. Our next step is to find the action of the generators B,C, and D on the

generator A of NL[2]. In order to do so, we need to look at the transversals of NL[2] in

G:

f(T[2]) eq q.1;

true

ff(T[3]) eq q.2;

true

ff(T[4]) eq q.3;

true

A^{T2} eq A;

true

A^{T3} eq A;

true

A^{T4} eq A^2;

true

Thus, we see ab = a, ac = a, ad = a2.

Now, we include these results in our presentation and obtain:

H<a,b,c,d>:=Group<a,b,c,d|a^3,b^5,c^2,d^2,

(c * b^-1)^3,

c * d * c * b^2 * d * b^-2,

(b^-1 * d * b * c)^2,

b^-1 * d * b^-1 * d * c * b * d * c * d * c,

a^b=a,a^c=a,a^d=a^2 >;
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We now find a permutation representation and call it H1 to check if it is isomorphic to

G,

f,H1,k:=CosetAction(H,sub<H|Id(H)>);

IsIsomorphic(H1,G);

False

Since it is false we conclude it is not a semi-direct product.

There must be elements of q that can be written in terms of the generators of NL[2].

The order of b−1 ∗ d ∗ b−1 ∗ d ∗ c ∗ b ∗ d ∗ c ∗ d ∗ c has changed. So, we need to rewrite

b−1 ∗ d ∗ b−1 ∗ d ∗ c ∗ b ∗ d ∗ c ∗ d ∗ c in terms of the generators of NL[2].

T2−1 ∗ T4 ∗ T2−1 ∗ T4 ∗ T3 ∗ T2 ∗ T4 ∗ T3 ∗ T4 ∗ T3 eq A2 ;

True

Thus, We modify the relation T2−1 ∗ T4 ∗ T2−1 ∗ T4 ∗ T3 ∗ T2 ∗ T4 ∗ T3 ∗ T4 ∗ T3 to A2

to get a presentation of G and check our work in magma.

Now, we know it is mixed extension, and our group presentation is:

H<a,b,c,d>:=Group<a,b,c,d|a^3,b^5,c^2,d^2,

(c * b^-1)^3,

c * d * c * b^2 * d * b^-2,

(b^-1 * d * b * c)^2,

b^-1 * d * b^-1 * d * c * b * d * c * d * c = a^2,

a^b = a, a^c = a, a^d = a^2>;

f,H1,K:=CosetAction(H,sub<H|Id(H)>);

IsIsomorphic(H1,G);

True

The true isomorphism tells us that we have a mixed extension G ∼= 3 :· PGL(2× 9).
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6.7 Mixed Extension 55 : (27 : 5)

We are given G is a transitive group on 25 letters, which is generated by:

xx ∼ (1, 2, 4, 3)(6, 22)(7, 25, 10, 24)(8, 23, 9, 21)(11, 19, 14, 17)(12, 20, 13, 16)(15, 18),

yy ∼ (1, 10, 4, 8, 2, 6, 5, 9, 3, 7)(11, 22, 13, 24, 15, 21, 12, 23, 14, 25)(16, 18, 19, 17).

and zz ∼ (2, 5)(3, 4)(6, 21, 7, 22)(8, 23, 10, 25)(9, 24)(11, 20, 13, 16, 15, 17, 12, 18, 14, 19) The

presentation of G is:

G<x,y,z,t>:=Group<x,y,z,t|x^4 , y^20 , z^20 ,

(x^-1 * z^-1)^4 , (x * z^-1)^4 ,

y^3 * x^-2 * y^4 * x^2 * y ,

(x^-1 * z^-3 * y)^2 ,

z^-1 * y^-1 * x^-2 * y * z^-1 * y * x^2 * y^-1 * z^-2,

z^3 * x^-2 * z^4 * x^2 * z ,

y^-1 * x^-1 * y^-1 * x^-2 * y * x^-1 * y * x^2 * z^-1 * x^2 * z ,

y^-1 * x^-1 * y^-1 * z^-1 * x^-1 * y^-1 * x^-1 * z^2 * y^-1 * z^-1 * x^-1 ,

y * z^-1 * y^-1 * z^-1 * x^-1 * y^-1 * x^-1 * y^2 * z^-2 * y ,

(x * z * y^-1 * z^-1 * x^-1 * y^-1)^2 ,

(x^-1 * z^-1 * y * z * x^-1 * y^-1)^2 ,

y^-1 * z^-1 * y * z * x^-1 * y^-1 * x * y * z^-4 ,

(x^-1 * z * y^-1 * z^-1 * x * y^-1)^2 ,

z * y^2 * z^-1 * x * y^-1 * x^-1 * z^-1 * y^-1 * x * z^-1 * x^-1 ,

z^-1 * y * x^-1 * z * x * y^-1 * x^-1 * z * y^-1 * x * y * z^-1 ,

(x * z^-1 * y * z * x * y^-1)^2 ,

y^-1 * z * y * z * x * y^-1 * x * y^-1 * z * x^-1 * z^-1 * x ,

z * x^-1 * z * x^-1 * y^-2 * x * z^-1 * x * z^-1 * y^-2,

z * x * z^-1 * x * y^-2 * x^-1 * z * y * z * x^-1 * y,

(x^-1 * z^-1 * y * x^-1 * z^-1 * y^-1)^2 ,

z^-1 * y^-1 * z * x^-1 * z^-1 * y^-1 * x * z * y^-1 *

z^-1 * y^-1 * z^-1 ,

(x * z^-1 * y^-1)^4 ,

z^2 * y^-1 * x * z^-1 * y^-1 * x^-1 * z^-3 * y^-2 ,

z * x * z * y * z^-1 * y^-1 * x^-1 * y^-1 * z * y * x^-1 * y^-1 ,

x^-1 * z * y^-1 * z^2 * y^-1 * x^-1 * z * x * z * x^-1 * z^-1>;

We will find the isomorphisim type of G by first analyzing the composition factors and

the normal lattice of G:

CompositionFactors(G);

/*

G

| Cyclic(2)

*
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| Cyclic(5)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(5)

*

| Cyclic(2)

*

| Cyclic(5)

*

| Cyclic(2)

*

| Cyclic(5)

*

| Cyclic(2)

*

| Cyclic(5)

*

| Cyclic(2)

*

| Cyclic(5)

1
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Normal Lattice

Figure 6.7: 55 : (27 : 5)

After analyzing the normal lattice of G, we see that NL[2] is the largest normal abelian

subgroup. The order of NL[2] is 3125 and the order of G is 2000000. Now 2000000
3125 = 640.

But G does not have a normal subgroup of order 640. Thus, G is an extension of NL[2]

by a group q = G
NL[2] . But it is not a direct product because q is not isomorphic to a

normal subgroup of G.

Now, we need to investigate to see whether G is the semi-direct product (split extension)

of NL[2] by q. NL[2] is of order 3125 with the generators:

A := N !(16, 17, 18, 19, 20)(21, 25, 24, 23, 22);

B := N !(21, 22, 23, 24, 25);

C := N !(11, 14, 12, 15, 13)(16, 18, 20, 17, 19)(21, 22, 23, 24, 25);

D := N !(1, 5, 4, 3, 2)(11, 14, 12, 15, 13);

E := N !(6, 7, 8, 9, 10)(16, 17, 18, 19, 20);

Now q is isomorphic to 54,

IsIsomorphic(q,AbelianGroup(GrpPerm,[5,5,5,5,5]));

True
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The group q has three generators q.1,q.2, and q.3. We label them as f ,g, and h respec-

tively. Our next step is to find the action of the generators f ,g, and h on the generators

A , B , C , D , and E of NL[2]. In order to do so, we need to look at the transversals of

NL[2] in G:

ff(T[2]) eq q.1;

/*true*/

ff(T[3]) eq q.2;

/*true*/

ff(T[4]) eq q.3;

/*true*/

Thus, we see af = a2∗b4∗c3∗e2, bf = a2∗b2∗e3, cf = a3∗b2∗c∗e3, df = a2∗b4∗c3∗d2, ef =

a4 ∗ b4 ∗ c3,
ag = a2 ∗ b4 ∗ c3, bg = a ∗ b4 ∗ c2, cg = a2 ∗ b3 ∗ c2, dg = a ∗ b4 ∗ e4, eg = a ∗ c ∗ d4,
ah = a ∗ b2 ∗ c4 ∗ e, bh = a ∗ b ∗ e4, ch = a4 ∗ b ∗ c3 ∗ e4, dh = a2 ∗ b ∗ c ∗ d4, eh = a2 ∗ b4 ∗ c4 >;

Now, we include these results in our presentation and obtain:

H<a,b,c,d,e,f,g,h>:=Group<a,b,c,d,e,f,g,h|a^5,b^5,c^5,d^5,e^5,(a,b),

(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),

f^4 , g^4 , h^4 ,

f^-1 * h^-1 * f * h^-1 ,

f^-1 * g^-1 * f^2 * g * f^-1 ,

h^-1 * f^-1 * g^-1 * f^-1 * h * g^-1 ,

h * f^-1 * g^-1 * f * h^-1 * g ,

g^-2 * f^-1 * g^-2 * f^-1 * g^2 * f * g^2 * f ,

g^-1 * f^-1 * g^-1 * f^-1 * g^-1 * f * g^-1 * f * g^-1 *

f^-1,

a^f,b^f,c^f,d^f,e^f,a^g,b^g,c^g,d^g,e^g,a^h,b^h,c^h,d^h,e^h>;

We now find a permutation representation and call it H1 to check if it is isomorphic to

G,

f,H1,k:=CosetAction(H,sub<H|Id(H)>);

IsIsomorphic(H1,G);

False

The false statement tells us that it is not a semi-direct product.

There must be elements of q that can be written in terms of the generators of NL[2].

Thus, We modify some of the relations given in the presentation and have different orders
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than before to get a presentation of G and check our work in magma.

Now, we know it is mixed extension, and our group presentation is:

H<a,b,c,d,e,f,g,h>:=Group<a,b,c,d,e,f,g,h|a^5,b^5,c^5,d^5,e^5,(a,b),

(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),

f^4 , g^4 , h^4 ,

f^-1 * h^-1 * f * h^-1 ,

f^-1 * g^-1 * f^2 * g * f^-1 ,

h^-1 * f^-1 * g^-1 * f^-1 * h * g^-1 ,

h * f^-1 * g^-1 * f * h^-1 * g ,

g^-2 * f^-1 * g^-2 * f^-1 * g^2 * f * g^2 * f ,

g^-1 * f^-1 * g^-1 * f^-1 * g^-1 * f * g^-1 * f * g^-1 *

f^-1,

a^f=a^2*b^4*c^3*e^2,b^f=a^2*b^2*e^3,c^f=a^3*b^2*c*e^3,

d^f=a^2*b^4*c^3*d^2,e^f=a^4*b^4*c^3,

a^g=a^2*b^4*c^3,b^g=a*b^4*c^2,c^g=a^2*b^3*c^2,

d^g=a*b^4*e^4,e^g=a*c*d^4,

a^h=a*b^2*c^4*e,b^h=a*b*e^4,c^h=a^4*b*c^3*e^4,

d^h=a^2*b*c*d^4,e^h=a^2*b^4*c^4>;

f,H1,K:=CosetAction(H,sub<H|Id(H)>);

IsIsomorphic(H1,G);

True

Thus, we have the mixed extension G ∼= 55 : (27 : 5).
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Chapter 7

Double Coset Enumeration

7.1 Construction of 34 : (22 : S3) over (33 : (3 : 2))

Let N ∼= (33 : (3 : 2)) with ⟨x, y⟩ where
x ∼ (1, 9, 5)(2, 7, 6)(3, 8, 4), and

y ∼ (1, 6, 2, 4, 3, 5)(7, 8, 9)

The progenitor 2∗9 : N has symmetric presentation.

G<x,y,t>:=Group<x,y,t|

x^3, y^6,

y * x * y^-1 * x^-1 * y^-1 * x * y,

t^2>;

We want to verify that the presentation given above is correct.

Using the theorem: 2∗n:N
ti,tj

∼= 2n : N where 1 ≤ i ≤ j ≤ n

We will show that 2∗9:N
((y2∗x−1∗y−1∗x−1)∗t(x∗y∗x−1∗y∗x))3

∼= (34 : (22 : S3)) Thus, we will prove

G<x,y,t>:=Group<x,y,t|

x^3, y^6,

y * x * y^-1 * x^-1 * y^-1 * x * y,

t^2,

(t,(y^2 * x^-1 * y^-1)),

(t,(x^-1 * y^2 * x * y^-1 * x * y^-1 * x * y^-1 * x * y^-1 * x * y^-2)),

((y^2 * x^-1 * y^-1 * x^-1)*t^{( x * y * x^-1 * y * x)})^3> ~ (3^4:(2^2:S_3))

We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N . We need to determine all distinct double cosets NwN and find the number

of right cosets in each double coset. It suffices to find the double coset of Nwti for one
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representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw. We

find our index which is the order of G over the order of N . Hence, |G|
|N | =

1944
162 = 12. Now

we know that we have 12 distinct single cosets.

Expanding Relation We will expand our only relation.

((y2 ∗ x−1 ∗ y−1 ∗ x−1) ∗ t(x∗y∗x−1∗y∗x))3

= (y2 ∗ x−1 ∗ y−1 ∗ x−1)t3

= (y2 ∗ x−1 ∗ y−1 ∗ x−1) ∗ t3 ∗ (y2 ∗ x−1 ∗ y−1 ∗ x−1)t3 ∗ (y2 ∗ x−1 ∗ y−1 ∗ x−1) ∗ t3
= (y2 ∗ x−1 ∗ y−1 ∗ x−1)3 ∗ t(y

2∗x−1∗y−1∗x−1)2

3 ∗ t(y
2∗x−1∗y−1∗x−1)

3

= (y2 ∗ x−1 ∗ y−1 ∗ x−1)3 ∗ t3 ∗ t4
=⇒ (y2 ∗ x−1 ∗ y−1 ∗ x−1)3 ∗ t3 = t4

First Double Coset [∗]

NeN = {Nen|n ∈ N} = {N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N . The formula for the number of right coset in N is
|N |
|N | =

162
162 = 1.

Since N is transitive on X = {1, 2, 3, 4, 5, 6, 7, 8, 9}. We need only determine the double

coset of the right coset Nt1. Thus nine ti’s extend the double coset [∗] to the double coset

Nt1N = [1].
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Cayley Diagram

Figure 7.1: Cayley Diagram for G over S9

Second Double Coset [1]

Nt1N = {Ntn1 |n ∈ N} = {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9}.
We now find the Coset Stabilizer N (1). We first find the point stabilizer of 1 in N .

N1 = {n ∈ N |1n = 1} = ⟨(4, 8, 6, 7, 5, 9), (7, 8, 9)⟩
Thus, N (1) ≥ N1 = ⟨(4, 8, 6, 7, 5, 9), (7, 8, 9)⟩.
The number of right cosets in Nt1N is calculated by the formula,
|N |

|N(1)| =
162
18 = 9.

The orbits of N (1) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9} are

{1}, {2}, {3}, {4, 8, 6, 9, 7, 5}.
We will determine the double cosetes by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t1 = Nt21 = N ∈ [∗].
This means one ti takes [1] to [*].

Choose 2 from {2}
Nt1t2 ∈ [12].

This means one ti takes [1] to [12].

Choose 3 from {3}
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Nt1t3 ∈ [13].

This means one ti takes [1] to [13].

Choose 4 from {4, 8, 6, 9, 7, 5}
Nt1t4 ∈ [1].

We have Nt1t4 = y3 t1

This means six ti’s take [1] to [1].

Cayley Diagram

Figure 7.2: Cayley Diagram for G over S9

Third Double Coset [12]

Nt1t2 = {N(t1t2)
n|n ∈ N}.

We now find the Coset Stabilizer N (12). We first find the point stabilizer of 1 and 2 in N .

N12 = {n ∈ N |(12)n = 12}
N12 = ⟨(4, 8, 6, 7, 5, 9), (7, 8, 9)⟩
We find different names of Nt1t2. Now t1t2 = (y−1 ∗ x ∗ y ∗ x)t7t8 =⇒ Nt1t2 = Nt7t8.

We have N(t1t2)
(1,7)(2,8)... = Nt7t8.

But Nt7t8 = Nt1t2 so, N(t1t2)
(1,7)(2,8)... = Nt1t2

=⇒ (1, 7, 2, 8, 3, 9)(4, 5, 6), (1, 7, 6, 2, 8, 4, 3, 9, 5), (1, 7)(2, 8)(3, 9),

(1, 7, 5, 3, 9, 4, 2, 8, 6), (1, 7, 3, 9, 2, 8)(4, 6, 5), (1, 7, 4)(2, 8, 5)(3, 9, 6), (1, 7, 3, 9, 2, 8)(4, 5, 6),



70

(1, 7, 4, 3, 9, 6, 2, 8, 5), (1, 7, 2, 8, 3, 9), (1, 7, 6)(2, 8, 4)(3, 9, 5),

(1, 7)(2, 8)(3, 9)(4, 6, 5), (1, 7, 5, 2, 8, 6, 3, 9, 4), (1, 7)(2, 8)(3, 9)(4, 5, 6),

(1, 7, 5)(2, 8, 6)(3, 9, 4), (1, 7, 3, 9, 2, 8), (1, 7, 4, 2, 8, 5, 3, 9, 6),

(1, 7, 2, 8, 3, 9)(4, 6, 5), (1, 7, 6, 3, 9, 5, 2, 8, 4) ∈ N (12)

Thus N ((12) ≥ ⟨N12, (1, 7, 2, 8, 3, 9)(4, 5, 6),

(1, 7, 6, 2, 8, 4, 3, 9, 5), (1, 7)(2, 8)(3, 9), (1, 7, 5, 3, 9, 4, 2, 8, 6),

(1, 7, 3, 9, 2, 8)(4, 6, 5), (1, 7, 4)(2, 8, 5)(3, 9, 6), (1, 7, 3, 9, 2, 8)(4, 5, 6),

(1, 7, 4, 3, 9, 6, 2, 8, 5), (1, 7, 2, 8, 3, 9), (1, 7, 6)(2, 8, 4)(3, 9, 5),

(1, 7)(2, 8)(3, 9)(4, 6, 5), (1, 7, 5, 2, 8, 6, 3, 9, 4), (1, 7)(2, 8)(3, 9)(4, 5, 6),

(1, 7, 5)(2, 8, 6)(3, 9, 4), (1, 7, 3, 9, 2, 8), (1, 7, 4, 2, 8, 5, 3, 9, 6),

(1, 7, 2, 8, 3, 9)(4, 6, 5), (1, 7, 6, 3, 9, 5, 2, 8, 4)⟩
= ⟨(4, 8, 6, 7, 5, 9), (7, 8, 9), (1, 7, 2, 8, 3, 9)(4, 5, 6),
(1, 7, 6, 2, 8, 4, 3, 9, 5), (1, 7)(2, 8)(3, 9), (1, 7, 5, 3, 9, 4, 2, 8, 6),

(1, 7, 3, 9, 2, 8)(4, 6, 5), (1, 7, 4)(2, 8, 5)(3, 9, 6), (1, 7, 3, 9, 2, 8)(4, 5, 6),

(1, 7, 4, 3, 9, 6, 2, 8, 5), (1, 7, 2, 8, 3, 9), (1, 7, 6)(2, 8, 4)(3, 9, 5),

(1, 7)(2, 8)(3, 9)(4, 6, 5), (1, 7, 5, 2, 8, 6, 3, 9, 4), (1, 7)(2, 8)(3, 9)(4, 5, 6),

(1, 7, 5)(2, 8, 6)(3, 9, 4), (1, 7, 3, 9, 2, 8), (1, 7, 4, 2, 8, 5, 3, 9, 6),

(1, 7, 2, 8, 3, 9)(4, 6, 5), (1, 7, 6, 3, 9, 5, 2, 8, 4)⟩ ∼= 33 : S3.

The number of distinct right cosets in Nt1t2N is calculated by the formula.
|N |

|N(12)| =
162
162 = 1.

The orbits of N (12) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9} is a single orbit

{1, 7, 5, 8, 2, 6, 3, 4, 9} We will determine the double cosetes by selecting one representative

from this orbit such as,

Choose 2 from {1, 7, 5, 8, 2, 6, 3, 4, 9}
Nt1t2t2 = Nt1t

2
2 = Nt1 ∈ [1].

This means nine ti’s take [12] to [1].
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Cayley Diagram

Figure 7.3: Cayley Diagram for G over S9

Fourth Double Coset [13]

Nt1t3 = {N(t1t3)
n|n ∈ N}.

We now find the Coset Stabilizer N (13). We first find the point stabilizer of 1 and 3 in N .

N13 = {n ∈ N |(13)n = 13}
N13 = ⟨(4, 8, 6, 7, 5, 9), (7, 8, 9)⟩
We find different names ofNt1t3. Now t1t3 = (x−1∗y−1∗x−1∗y)t7t9 =⇒ Nt1t3 = Nt7t9.

We have N(t1t3)
(1,7)(2,8)... = Nt7t9.

But Nt7t9 = Nt1t3 so, N(t1t3)
(1,7)(2,8)... = Nt1t3

=⇒ (1, 7, 2, 8, 3, 9)(4, 5, 6), (1, 7, 6, 2, 8, 4, 3, 9, 5), (1, 7)(2, 8)(3, 9),

(1, 7, 5, 3, 9, 4, 2, 8, 6), (1, 7, 3, 9, 2, 8)(4, 6, 5), (1, 7, 4)(2, 8, 5)(3, 9, 6), (1, 7, 3, 9, 2, 8)(4, 5, 6),

(1, 7, 4, 3, 9, 6, 2, 8, 5), (1, 7, 2, 8, 3, 9), (1, 7, 6)(2, 8, 4)(3, 9, 5),

(1, 7)(2, 8)(3, 9)(4, 6, 5), (1, 7, 5, 2, 8, 6, 3, 9, 4), (1, 7)(2, 8)(3, 9)(4, 5, 6),

(1, 7, 5)(2, 8, 6)(3, 9, 4), (1, 7, 3, 9, 2, 8), (1, 7, 4, 2, 8, 5, 3, 9, 6),

(1, 7, 2, 8, 3, 9)(4, 6, 5), (1, 7, 6, 3, 9, 5, 2, 8, 4) ∈ N (13).

Thus N ((13) ≥ ⟨N13, (1, 7, 2, 8, 3, 9)(4, 5, 6),

(1, 7, 6, 2, 8, 4, 3, 9, 5), (1, 7)(2, 8)(3, 9), (1, 7, 5, 3, 9, 4, 2, 8, 6),
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(1, 7, 3, 9, 2, 8)(4, 6, 5), (1, 7, 4)(2, 8, 5)(3, 9, 6), (1, 7, 3, 9, 2, 8)(4, 5, 6),

(1, 7, 4, 3, 9, 6, 2, 8, 5), (1, 7, 2, 8, 3, 9), (1, 7, 6)(2, 8, 4)(3, 9, 5),

(1, 7)(2, 8)(3, 9)(4, 6, 5), (1, 7, 5, 2, 8, 6, 3, 9, 4), (1, 7)(2, 8)(3, 9)(4, 5, 6),

(1, 7, 5)(2, 8, 6)(3, 9, 4), (1, 7, 3, 9, 2, 8), (1, 7, 4, 2, 8, 5, 3, 9, 6),

(1, 7, 2, 8, 3, 9)(4, 6, 5), (1, 7, 6, 3, 9, 5, 2, 8, 4)⟩
= ⟨(4, 8, 6, 7, 5, 9), (7, 8, 9), (1, 7, 2, 8, 3, 9)(4, 5, 6),
(1, 7, 6, 2, 8, 4, 3, 9, 5), (1, 7)(2, 8)(3, 9), (1, 7, 5, 3, 9, 4, 2, 8, 6),

(1, 7, 3, 9, 2, 8)(4, 6, 5), (1, 7, 4)(2, 8, 5)(3, 9, 6), (1, 7, 3, 9, 2, 8)(4, 5, 6),

(1, 7, 4, 3, 9, 6, 2, 8, 5), (1, 7, 2, 8, 3, 9), (1, 7, 6)(2, 8, 4)(3, 9, 5),

(1, 7)(2, 8)(3, 9)(4, 6, 5), (1, 7, 5, 2, 8, 6, 3, 9, 4), (1, 7)(2, 8)(3, 9)(4, 5, 6),

(1, 7, 5)(2, 8, 6)(3, 9, 4), (1, 7, 3, 9, 2, 8), (1, 7, 4, 2, 8, 5, 3, 9, 6),

(1, 7, 2, 8, 3, 9)(4, 6, 5), (1, 7, 6, 3, 9, 5, 2, 8, 4)⟩ ∼= 33 : S3.

The number of right cosets in Nt1t3N is calculated by the formula,
|N |

|N(13)| =
162
162 = 1.

The orbits of N (13) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9} is a single orbit

{1, 7, 5, 8, 2, 6, 3, 4, 9}.
We will determine the double cosetes by selecting one representative from this orbit such

as,

Choose 3 from {1, 7, 5, 8, 2, 6, 3, 4, 9}
Nt1t3t3 = Nt1t

2
3 = Nt1 ∈ [1].

This means nine ti’s take [13] to [1].
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Cayley Diagram

Figure 7.4: Cayley Diagram for G over S9

It is possible that the coset stabiliser of N (w) of the coset Nw increases and therefore
|N |

|N(w)| decreases. Our cayley diagram shows that

G = N ∪Nt1 ∪Nt1t2 ∪Nt1t3

|G| ≤ (|N |+ |N |
|N(1)| +

|N |
|N(12)| +

|N |
|N(13)| × |N |)

|G| ≤ (1 + 9 + 1 + 1 + 1)× 162 =⇒ |G| ≤ 12× 162 =⇒ |G| ≤ 1944.

G acts on 12 cosets that are given in the cayley diagram.

Let X be the set of these 12 cosets.

Now, f : G → Sx is a homomorphism.

G
Kerf

∼= Imf (First Isomorphism Theorem).

=⇒ G
Kerf

∼= ⟨f(x), f(y), f(t)⟩ =⇒ | G
Kerf | = |⟨f(x), f(y), f(t)⟩|

But #⟨f(x), f(y), f(t)⟩ = 1944.

So, | G
kerf | = 1944

This means |G| ≥ 1944. We know |G| ≤ 1944 from cayley diagram.

Therefore, |G| = 1944.

From |G| = 1944× |Kerf | we find |Kerf | = 1

G ∼= ⟨f(x), f(y), f(t)⟩ but, ⟨f(x), f(y), f(t)⟩ ∼= 33 : (3 : 2) =⇒ G ∼= 33 : (3 : 2).



74

7.2 Construction of 34 : (23 : S3) over (33 : (3 : 2))

Let N ∼= (33 : (3 : 2)) with ⟨x, y⟩ where
x ∼ (1, 9, 5)(2, 7, 6)(3, 8, 4), and

y ∼ (1, 6, 2, 4, 3, 5)(7, 8, 9)

The progenitor 2∗9 : N has symmetric presentation.

G<x,y,t>:=Group<x,y,t|

x^3, y^6,

y * x * y^-1 * x^-1 * y^-1 * x * y,

t^2 >;

We want to verify that the presentation given above is correct.

Using the theorem: 2∗n:N
ti,tj

∼= 2n : N where 1 ≤ i ≤ j ≤ n

We will show that 2∗9:N
(x−1∗y−1∗x−1∗y)∗t(x∗y−2))6,((x)∗t(x∗y∗x−1∗y∗x))4

∼= (34 : (23 : 3)) Thus, we

will prove

G<x,y,t>:=Group<x,y,t|

x^3, y^6,

y * x * y^-1 * x^-1 * y^-1 * x * y,

t^2,

(t,(y^2 * x^-1 * y^-1)),

(t,(x^-1 * y^2 * x * y^-1 * x * y^-1 * x * y^-1 * x * y^-1 * x * y^-2)),

(x^-1 * y^-1 * x^-1 * y)*t^{( x * y^-2)})^6,

((x)*t^{( x * y * x^-1 * y * x)})^4> ~ (3^4:(2^3:3)).

We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N . We need to determine all distinct double cosets NwN and find the number

of right cosets in each double coset. It suffices to find the double coset of Nwti for one

representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw, so we

find our index, which is the order of G over the order of N. Hence, |G|
|N | =

3888
162 = 24. Now

we know that we have 24 distinct single cosets.

Expanding Relation We will expand our first relation.

(x−1 ∗ y−1 ∗ x−1 ∗ y) ∗ t(x∗y−2))6

= (x−1 ∗ y−1 ∗ x−1 ∗ y) ∗ t7 ∗ (x−1 ∗ y−1 ∗ x−1 ∗ y) ∗ t7 ∗ (x−1 ∗ y−1 ∗ x−1 ∗ y) ∗ t7 ∗
(x−1 ∗ y−1 ∗ x−1 ∗ y) ∗ t7 ∗ (x−1 ∗ y−1 ∗ x−1 ∗ y) ∗ t7 ∗ (x−1 ∗ y−1 ∗ x−1 ∗ y) ∗ t7
= (x−1∗y−1∗x−1∗y)6∗t(x

−1∗y−1∗x−1∗y)5
7 ∗t(x

−1∗y−1∗x−1∗y)4
7 ∗t(x

−1∗y−1∗x−1∗y)3
7 ∗t(x

−1∗y−1∗x−1∗y)2
7 ∗
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t
(x−1∗y−1∗x−1∗y)
7 ∗ t7
= (x−1 ∗ y−1 ∗ x−1 ∗ y)6 ∗ t9 ∗ t8 ∗ t7 ∗ t9 ∗ t8 ∗ t7
=⇒ (x−1 ∗ y−1 ∗ x−1 ∗ y)6 ∗ t9 ∗ t8 ∗ t7 = t7 ∗ t8 ∗ t9
Expanding Relation we will expand our second relation.

((x) ∗ t(x∗y∗x−1∗y∗x))4

= x ∗ t3 ∗ x ∗ t3 ∗ x ∗ t3 ∗ x ∗ t3
= x4 ∗ tx3

3 ∗ tx2

3 ∗ tx3 ∗ t3
= x4 ∗ t3 ∗ t4 ∗ t8
=⇒ x4 ∗ t3 = t8 ∗ t4

First Double Coset [∗]

NeN = {Nen|n ∈ N} = {N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The formula for the number of right coset in N is |N |
|N | =

162
162 = 1.

Since N is transitive on {1, 2, 3, 4, 5, 6, 7, 8, 9}.
We need only determine the double coset of the right coset Nt1.

Thus nine ti’s extend the double coset [∗] to the double coset Nt1N = [1].
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Cayley Diagram

Figure 7.5: Cayley Diagram for G over S9

Second Double Coset [1]

Nt1N = {Ntn1 |n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9}. We now find the Coset Stabilizer N (1).

We first find the point stabilizer of 1 in N .

N1 = {n ∈ N |1n = 1}
N1 = ⟨(4, 8, 6, 7, 5, 9), (7, 8, 9)⟩.
Thus, N (1) ≥ ⟨(4, 8, 6, 7, 5, 9), (7, 8, 9)⟩
=⇒ (4, 8, 6, 7, 5, 9), (7, 8, 9) ∈ N (1).

The number of right cosets in Nt1N is calculated by the formula, |N |
|N(1)| =

162
18 = 9.

The orbits of N (1) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9} are {1}, {2}, {3}, {4, 8, 6, 9, 7, 5}. We will

determine the double cosetes by selecting one representative from each orbit such as,

Choose 1 from {1}
Nt1t1 = Nt21 = N ∈ [∗].
This means one ti takes [1] to [*].

Choose 2 from {2}
Nt1t2 ∈ [12].

This means one ti takes [1] to [12].

Choose 3 from {3}
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Nt1t3 ∈ [13].

This means one ti takes [1] to [13].

Choose 4 from {4, 8, 6, 9, 7, 5}
Nt1t4 ∈ [14].

This means six ti’s take [1] to [14].

Cayley Diagram

Figure 7.6: Cayley Diagram for G over S9

Third Double Coset [12]

Nt1t2 = {N(t1t2)
n|n ∈ N}.

We now find the Coset Stabilizer N (12). We first find the point stabilizer of 1 and 2 in N .

N12 = {n ∈ N |(12)n = 12}
N12 = ⟨(4, 8, 6, 7, 5, 9), (7, 8, 9)⟩.
We will find different names of Nt1t2. Now, Nt1t2 = (y−1 ∗ x ∗ y ∗ x)t7t8 =⇒ Nt1t2 =

Nt7t8

We have N(t1t2)
(1,2,3)(7,9,8) = Nt7t8. But Nt7t8 = Nt1t2

So, N(t1t2)
(1,2,3)(7,9,8) = Nt1t2
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=⇒ (1, 2, 3)(7, 9, 8) ∈ N (12)

Thus, N (12) ≥ ⟨N12, (1, 2, 3)(7, 9, 8)⟩ = ⟨(4, 8, 6, 7, 5, 9), (7, 8, 9), (1, 2, 3)(7, 9, 8)⟩. The

number of distinct right cosets in Nt1t2N is calculated by the formula.
|N |

|N(12)| =
162
162 = 1.

The orbits of N (12) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9} is a single orbit

{1, 7, 5, 8, 2, 6, 3, 4, 9}. We will determine the double cosetes by selecting one representa-

tive from this orbit such as,

Choose 2 from {1, 7, 5, 8, 2, 6, 3, 4, 9}
Nt1t2t2 = Nt1t

2
2 = Nt1 ∈ [1].

This means nine ti’s take [12] to [1].

Cayley Diagram

Figure 7.7: Cayley Diagram for G over S9

Fourth Double Coset [13]

Nt1t3 = {N(t1t3)
n|n ∈ N}. We now find the Coset Stabilizer N (13). We first find the

point stabilizer of 1 and 3 in N .

N13 = {n ∈ N |(13)n = 13}
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N13 = ⟨(4, 8, 6, 7, 5, 9), (7, 8, 9)⟩.
We will find different names of Nt1t3. Now, Nt1t3 = (x−1 ∗ y−1 ∗ x−1 ∗ y)t3t2 =⇒
Nt1t3 = Nt3t2

We have N(t1t3)
(1,3,2)(7,8,9) = Nt3t2. But Nt3t2 = Nt1t3

So, N(t1t3)
(1,3,2)(7,8,9) = Nt1t3

=⇒ (1, 3, 2)(7, 8, 9) ∈ N (13)

Thus, N (13) ≥ ⟨N13, (1, 3, 2)(7, 8, 9)⟩ = ⟨(4, 8, 6, 7, 5, 9), (7, 8, 9), (1, 3, 2)(7, 8, 9)⟩ The num-

ber of right cosets in Nt1t3N is calculated by the formula,
|N |

|N(13)| =
162
162 = 1.

The orbits of N (13) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9} is a single orbit

{1, 7, 5, 8, 2, 6, 3, 4, 9} We will determine the double cosetes by selecting one representative

from this orbit such as,

Choose 3 from {1, 7, 5, 8, 2, 6, 3, 4, 9}
Nt1t3t3 = Nt1t

2
3 = Nt1 ∈ [1].

This means nine ti’s take [13] to [1].

Cayley Diagram

Figure 7.8: Cayley Diagram for G over S9
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Fifth Double Coset [14]

Nt1t4 = {N(t1t4)
n|n ∈ N}. We now find the Coset Stabilizer N (14). We first find the

point stabilizer of 1 and 4 in N .

N14 = {n ∈ N |(14)n = 14}
N14 = ⟨(7, 8, 9)⟩.
We will find different names of Nt1t4. Now, t1t4 = (x∗y−1∗x∗y∗x−1)t4t9 =⇒ Nt1t4 =

Nt4t9

We have N(t1t4)
(1,4,9)(2,5,7)(3,6,8) = Nt4t9.

But Nt4t9 = Nt1t4. So, N(t1t4)
(1,4,9)(2,5,7)(3,6,8) = Nt1t4

=⇒ (1, 4, 9)(2, 5, 7)(3, 6, 8) ∈ N (14)

Thus N ((14) ≥ ⟨N14, (1, 4, 9)(2, 5, 7)(3, 6, 8)⟩
= ⟨(7, 8, 9), (1, 4, 9)(2, 5, 7)(3, 6, 8)⟩ The number of right cosets in Nt1t4N is calculated by

the formula,
|N |

|N(14)| =
162
18 = 9.

The orbits of N (14) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9} are

{1}, {2}, {3}, {4, 9, 7, 5, 6, 8}
We will determine the double cosetes by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t4t1 ∈ [141]. This means one ti takes [14] to [141].

Choose 2 from {2}
Nt1t4t2 ∈ [142].

This means one ti takes [14] to [142].

Choose 3 from {3}
Nt1t4t3 ∈ [143].

This means one ti takes [14] to [143].

Choose 4 from {4, 9, 7, 5, 6, 8}
Nt1t4t4 = Nt1t

2
4 = Nt1 ∈ [1].

This means six ti’s take [14] to [1].
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Cayley Diagram

Figure 7.9: Cayley Diagram for G over S9

Sixth Double Coset [141]

Nt1t4t1 = {N(t1t4t1)
n|n ∈ N}. We now find the Coset Stabilizer N (141). We first find

the point stabilizer of 1, 4 and 1 in N .

N141 = {n ∈ N |(141)n = 141}
N141 = ⟨(7, 8, 9)⟩.
We will find different names of Nt1t4t1. Now, t1t4t1 = (x−1 ∗ y ∗ x ∗ y−1 ∗ x)t4t8t4 =⇒
Nt1t4t1 = Nt4t8t4.

We have N(t1t4t1)
(1,4,8)(2,5,9)(3,6,7) = Nt4t8t4.

But Nt1t4t1 = Nt4t8t4. So, N(t1t4t1)
(1,4,8)(2,5,9)(3,6,7) = Nt1t4t1

=⇒ (1, 4, 8)(2, 5, 9)(3, 6, 7) ∈ N (141) Thus N ((141) ≥ ⟨N141, (1, 4, 8)(2, 5, 9)(3, 6, 7)⟩
= ⟨(7, 8, 9), (1, 4, 8)(2, 5, 9)(3, 6, 7)⟩ ∼= 33 : S3. The number of right cosets in Nt1t4t1N is

calculated by the formula,
|N |

|N(141)| =
162
162 = 1.

The orbits of N (141) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9} is a single orbit



82

{1, 7, 5, 8, 2, 6, 3, 4, 9} We will determine the double cosetes by selecting one representative

from this orbit such as,

Choose 1 from {1, 6, 7, 8, 3, 2, 9, 5, 4}
Nt1t4t1t1 = Nt1t4t

2
1 = Nt1t4 ∈ [14].

This means nine ti’s take [141] to [14].

Cayley Diagram

Figure 7.10: Cayley Diagram for G over S9

Seventh Double Coset [142]

Nt1t4t2 = {N(t1t4t2)
n|n ∈ N}. We now find the Coset Stabilizer N (142). We first find

the point stabilizer of 1, 4 and 2 in N .

N142 = {n ∈ N |(142)n = 142}
N142 = ⟨(7, 8, 9)⟩.
We will find different names of Nt1t4t2. Now, t1t4t2 = (x ∗ y−1 ∗ x ∗ y ∗ x−1)t4t9t5 =⇒
Nt1t4t2 = Nt4t9t5.

We have N(t1t4t2)
(1,4,9)(2,5,7)(3,6,8) = Nt4t9t5.

But Nt1t4t2 = Nt4t9t5. So, N(t1t4t2)
(1,4,9)(2,5,7)(3,6,8) = Nt1t4t2
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=⇒ (1, 4, 9)(2, 5, 7)(3, 6, 8) ∈ N (142) Thus N ((142) ≥ ⟨N142, (1, 4, 9)(2, 5, 7)(3, 6, 8)⟩
= ⟨(7, 8, 9), (1, 4, 9)(2, 5, 7)(3, 6, 8)⟩ ∼= 33 : S3. The number of right cosets in Nt1t4t2N is

calculated by the formula,
|N |

|N(142)| =
162
162 = 1.

The orbits of N (142) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9} is a single orbit

{1, 7, 5, 8, 2, 6, 3, 4, 9}. We will determine the double cosetes by selecting one representa-

tive from this orbit such as,

Choose 2 from {1, 6, 7, 8, 3, 2, 9, 5, 4}
Nt1t4t2t2 = Nt1t4t

2
2 = Nt1t4 ∈ [14].

This means nine ti’s take [142] to [14].

Cayley Diagram

Figure 7.11: Cayley Diagram for G over S9

Eightieth Double Coset [143]

Nt1t4t3 = {N(t1t4t3)
n|n ∈ N}. We now find the Coset Stabilizer N (143). We first find

the point stabilizer of 1, 4 and 3 in N .

N143 = {n ∈ N |(143)n = 143}
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N143 = ⟨(7, 8, 9)⟩.
We will find different names of Nt1t4t3. Now, t1t4t3 = (y, x−1)t7t3t9 =⇒ Nt1t4t3 =

Nt7t3t9

We have N(t1t4t3)
(1,7,5)(2,8,6)(3,9,4) = Nt7t3t9.

But Nt1t4t3 = Nt7t3t9. So, N(t1t4t3)
(1,7,5)(2,8,6)(3,9,4) = Nt1t4t3

=⇒ (1, 7, 5)(2, 8, 6)(3, 9, 4) ∈ N (143). Thus N ((143) ≥ ⟨N143, (1, 7, 5)(2, 8, 6)(3, 9, 4)⟩
= ⟨(7, 8, 9), (1, 7, 5)(2, 8, 6)(3, 9, 4)⟩ ∼= 33 : S3. The number of right cosets in Nt1t4t3N is

calculated by the formula,
|N |

|N(143)| =
162
162 = 1.

The orbits of N (143) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9} is a single orbit

{1, 7, 5, 8, 2, 6, 3, 4, 9} We will determine the double cosetes by selecting one representative

from this orbit such as,

Choose 3 from {1, 6, 7, 8, 3, 2, 9, 5, 4}
Nt1t4t3t3 = Nt1t4t

2
3 = Nt1t4 ∈ [14].

This means nine ti’s take [143] to [14].

Cayley Diagram

Figure 7.12: Cayley Diagram for G over S9
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It is possible that the coset stabiliser of N (w) of the coset Nw increases and therefore
|N |

|N(w)| decreases.

Our cayley diagram shows that

G = N ∪Nt1 ∪Nt1t2 ∪Nt1t3 ∪Nt1t4 ∪Nt1t4t1 ∪Nt1t4t2 ∪Nt1t4t3

|G| ≤ (|N |+ |N |
|N(1)| +

|N |
|N(12)| +

|N |
|N(13)| +

|N |
|N(14)| +

|N |
|N(141)| +

|N |
|N(142)| +

|N |
|N(143)| × |N |

|G| ≤ (1 + 9 + 1 + 1 + 9 + 1 + 1 + 1)× 162

=⇒ |G| ≤ 24× 162

=⇒ |G| ≤ 3888.

G acts on 24 cosets that are given in the cayley diagram.

Let X be the set of these 24 cosets.

Now, f : G → Sx is a homomorphism.

G
Kerf

∼= Imf (First Isomorphism Theorem).

=⇒ G
Kerf

∼= ⟨f(x), f(y), f(t)⟩
=⇒ | G

Kerf | = |⟨f(x), f(y), f(t)⟩|
But #⟨f(x), f(y), f(t)⟩ = 3888.

So, | G
kerf | = 3888

This means |G| ≥ 3888. We know |G| ≤ 3888 from cayley diagram.

Therefore, |G| = 3888.

From |G| = 3888× |Kerf | we find |Kerf | = 1

G ∼= ⟨f(x), f(y), f(t)⟩ but, ⟨f(x), f(y), f(t)⟩ ∼= 33 : (3 : 2) =⇒ G ∼= 33 : (3 : 2).
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7.3 Construction of 53 : (2× A5) over A5 × 2

Let N ∼= A5 × 2 = ⟨x, y⟩ where x ∼ (1, 6, 3)(2, 8, 4)(5, 7, 9)(10, 11, 12), and

y ∼ (1, 5, 2, 3, 11, 4, 10, 6, 8, 7)(9, 12).

The progenitor 2∗12 : N has symmetric presentation

G<x,y,t>:=Group<x,y,t|x^3, (x * y^-2)^2,

(x^-1 * y * x^-1 * y^-1)^2,

(x^-1 * y^-3)^2,

t^2>;

We want to verify that the presentation given above is correct.

Theorem: 2∗n:N
ti,tj

∼= 2n : N where 1 ≤ i ≤ j ≤ n.

We will show that 2∗12:N
((y3)∗t(y2∗x∗y∗x−1∗y)))5

∼= 53 : (2 : A5) Thus, we will prove

G<x,y,t>:=Group<x,y,t|x^3, (x * y^-2)^2,

(x^-1 * y * x^-1 * y^-1)^2,

(x^-1 * y^-3)^2,

t^2,(t,x^-1 * y^-1 * x * y^2),(t,x * y * x^-1 * y^-1 * x * y),

((y^3)* t^{(y^2 * x * y * x^-1 * y)}))^5> ~ 5^3:(2:A_5)

We need to determine the order of G. We perform manual double coset enumeration

(DCE) of G over N . We need to determine all distinct double cosets NwN and find

the number of right cosets in each double coset. It suffices to find the double coset of

Nwti for one representative ti from each orbit of the coset stabiliser N (w) of the right

coset Nw, so we find our index, which is the order of G over the order of N . Hence,
|G|
|N | =

15000
125 = 120. Now we know that we have 120 distinct single cosets.

Expanding Relation We expand our only relation.

((y3) ∗ t(y2∗x∗y∗x−1∗y)))5

= (y3) ∗ t2(y3) ∗ t2(y3) ∗ t2(y3) ∗ t2(y3) ∗ t2
= (y3)5 ∗ (t(y

3)4

2 ) ∗ (t(y
3)3

2 ) ∗ (t(y
3)2

2 ) ∗ (t(y
3)

2 )t2

= y15 ∗ (t2)y
12 ∗ (t2)y

9 ∗ (t2)y
6 ∗ (t2)y

3 ∗ t2
Now since the order of y is 10, we can reduce our relation to be

y5 ∗ (t2)y
2 ∗ (t2)y

9 ∗ (t2)y
6 ∗ (t2)y

3 ∗ t2 =⇒ y5t11t5t8t4t2 = e =⇒ y5 ∗ t11t5t8 = t2t4.
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First Double Coset [∗]

NeN = {Nen|n ∈ N} = {N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The formula for the number of right coset in N is |N |
|N | =

120
120 = 1.

Since N is transitive on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. We need only determine the

double coset of the right coset Nt1.

Thus 12 ti’s extend the double coset [∗] to the double coset Nt1N = [1].

Cayley Diagram

Figure 7.13: Cayley Diagram for G over S12

Second Double Coset [1]

Nt1N = {Ntn1 |n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10, Nt11, Nt12

We now find the Coset Stabilizer N (1). We first find the point stabilizer of 1 in N .

N1 = {n ∈ N |1n = 1}
= ⟨(2, 5, 7, 8, 12)(3, 9, 6, 10, 11), (3, 11)(5, 12)(7, 8)(9, 10)⟩.
Thus, N (1) ≥ N1 = ⟨(2, 5, 7, 8, 12)(3, 9, 6, 10, 11), (3, 11)(5, 12)(7, 8)(9, 10)⟩
=⇒ (2, 5, 7, 8, 12)(3, 9, 6, 10, 11), (3, 11)(5, 12)(7, 8)(9, 10) ∈ N (1).

The number of single right cosets in Nt1N is calculated by the formula |N |
|N(1)| =

120
10 = 12.

The orbits of N (1) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {4}, {2, 5, 7, 12, 8}, {3, 9, 11, 6, 10}. We will determine the double cosetes by selecting

one representative from each orbit such as,

Choose 1 from {1}
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Nt1t1 = Nt21 = N ∈ [∗].
This means one ti takes [1] to [*].

Choose 4 from {4}
Nt1t4 ∈ [14].

This means one ti takes [1] to [14].

Choose 2 from {2,5,7,12,8}
Nt1t2 ∈ [12].

This means five ti’s take [1] to [12].

Choose 3 from {3,9,11,6,10}
Nt1t3 ∈ [13].

This means five ti’s take [1] to [13].

Cayley Diagram

Figure 7.14: Cayley Diagram for G over S12

Third Double Coset [12]

Nt1t2 = {N(t1t2)
n|n ∈ N}.

We now find the Coset Stabilizer N (12). We first find the point stabilizer of 1 and 2 in N .

N12 = {n ∈ N |(12)n = 12}
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N12 = ⟨(3, 11)(5, 12)(7, 8)(9, 10)⟩.
We will find different names of Nt1t2. Now N(t1t2)

(1,6)(2,4)(5,9)(10,12) = Nt6t4. But

Nt1t2 = Nt6t4, so N(t1t2)
(1,6)(2,4)(5,9)(10,12) = Nt1t2

=⇒ (1, 6)(2, 4)(5, 9)(10, 12) ∈ N (12).

ThusN (12) ≥ ⟨N12, (1, 6)(2, 4)(5, 9)(10, 12)⟩= ⟨(3, 11)(5, 12)(7, 8)(9, 10), (1, 6)(2, 4)(5, 9)(10, 12)⟩ ∼=
22.

The number of distinct right cosets in Nt1t2N is calculated by the formula,
|N |

|N(12)| =
120
4 = 30.

The orbits of N12 on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1, 6}, {2, 4}, {3, 11}, {7, 8}, {5, 12, 10, 9}.
We will determine the double cosetes by selecting one representative from each orbit such

as,

Choose 1 from {1,6}
Nt1t2t1 ∈ [121].

This means two ti’s take [12] to [121].

Choose 2 from { 2, 4}
Nt1t2t2 = Nt1t

2
2 = Nt1 ∈ [1].

This means two ti’s take [12] to [1].

Choose 3 from { 3, 11}
Nt1t2t3 ∈ [131].

We have Nt1t2t3 = Nt9t1t9

= (t1t3t1)
(x∗y−1∗x−1∗y−1) ∈ [131].

This means two ti’s take [12] to [131].

Choose 5 from {5,12,10,9}
Nt1t2t5 ∈ [12].

We have Nt1t2t5 = y5(t8t12)

= y5(t1t2)
y2∗x ∈ [12].

This means four ti’s take [12] to [12].

Choose 7 from {7,8}
Nt1t2t7 ∈ [13].

We have Nt1t2t7 = y5(t12t5

= y5(t1t3)
x∗y−1∗x−1 ∈ [13].
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This means two ti’s take [12] to [13].

Cayley Diagram

Figure 7.15: Cayley Diagram for G over S12

Fourth Double Coset [13]

Nt1t3 = {N(t1t3)
n|n ∈ N}.

We now find the Coset Stabilizer N (13). We first find the point stabilizer of 1 and 3 in N .

N13 = {n ∈ N |(13)n = 13}
N13 = ⟨(2, 5)(6, 10)(7, 12)(9, 11)⟩.
We will find different names of Nt1t3. Now N(13)(1,8)(2,10)(3,4)(5,6) = Nt8t4. But Nt1t3 =

Nt8t4, so N(13)(1,8)(2,10)(3,4)(5,6) = Nt1t3

ThusN (13) ≥ ⟨N13, (1, 8)(2, 10)(3, 4)(5, 6)⟩= ⟨(2, 5)(6, 10)(7, 12)(9, 11), (1, 8)(2, 10)(3, 4)(5, 6)⟩ ∼=
22

The number of distinct right cosets in Nt1t3N is calculated by the formula,
|N |

|N(13)| =
120
4 = 30.

The orbits of N13 on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1, 8}, {3, 4}, {7, 12}, {9, 11}, {2, 5, 10, 6}. We will determine the double cosetes by select-
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ing one representative from each orbit such as,

Choose 1 from {1,8}
Nt1t3t1 ∈ [131].

This means two ti’s take [13] to [131].

Choose 2 from {2,5,10,6}
Nt1t3t2 ∈ [13].

We have Nt1t3t2 = y5(t10t7

= y5(t1t3)
x∗y−1 ∈ [13]

This means four ti’s take [13] to [13].

Choose 3 from {3,4}
Nt1t3t3 = Nt1t

2
3 = Nt1 ∈ [1].

This means two ti’s take [13] to [1].

Choose 7 from {7,12}
Nt1t3t7 ∈ [121].

We have Nt1t3t7 = Nt9t7t9

= (t1t2t1)
y−1∗x ∈ [121]

This means nine ti’s take [13] to [121].

Choose 9 from {9,11}
Nt1t3t9 ∈ [12].

We have Nt1t3t9 = y5t5t2

= y5(t1t2)
(y∗x∗y2) ∈ [12].

This means two ti’s take [13] to [12].
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Cayley Diagram

Figure 7.16: Cayley Diagram for G over S12

Fifth Double Coset [14]

Nt1t4 = {N(t1t4)
n|n ∈ N}.

We now find the Coset Stabilizer N (14). We first find the point stabilizer of 1 and 4 in N .

N14 = {n ∈ N |(14)n = 14}
N14 = ⟨(2, 5, 7, 8, 12)(3, 9, 6, 10, 11), (2, 12)(3, 10)(5, 8)(6, 9)⟩
Thus, N (14) ≥ N14 = ⟨(2, 5, 7, 8, 12)(3, 9, 6, 10, 11), (2, 12)(3, 10)(5, 8)(6, 9)⟩ ∼= 2× 5.

The number of distinct single cosets in Nt1t4N is calculated by the formula,
|N |

|N(14)| =
120
10 = 12.

The Orbits of N14 on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {4}, {2, 5, 7, 8, 12}, {3, 9, 11, 6, 10}.
We will determine the double cosetes by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t4t1 ∈ [14].

We have Nt1t4t1 = y5(t1t4) ∈ [14]
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This means one ti takes [14] to [14].

Choose 2 from {2,5,7,8,12}
Nt1t4t2 ∈ [131].

We have Nt1t4t2 = Nt7t12t7

= (t1t3t1)
(y∗x) ∈ [131].

This means five ti’s take [14] to [131].

Choose 3 from {3,9,11,6,10}
Nt1t4t3 ∈ [121].

We have Nt1t4t3 = Nt9t6t9

= (t1t2t1)
(y∗x−1) ∈ [121].

This means five ti’s take [14] to [121].

Choose 4 from {4}
Nt1t4t4 = Nt1t

2
4 = Nt1 ∈ [1]

This means one ti takes [14] to [1].

Cayley Diagram

Figure 7.17: Cayley Diagram for G over S12
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Sixth Double Coset [121]

Nt1t2t1 = {N(t1t2t1)
n|n ∈ N}.

We now find the Coset Stabilizer N (121). We first find the point stabilizer of 1,2 and 1 in

N .

N121 = {n ∈ N |(121)n = 121}
N121 = ⟨(3, 11)(5, 12)(7, 8)(9, 10)⟩.
We will find different names of Nt1t2t1. Now N(t1t2t1)

(1,9)(2,3)(4,12)(6,8) = Nt9t3t9. But

Nt1t2t1 = Nt9t3t9 so, N(t1t2t1)
(1,9)(2,3)(4,12)(6,8) = Nt1t2t1 =⇒ (1, 9)(2, 3)(4, 12)(6, 8) ∈

N (121)

ThusN (12) ≥ ⟨N12, (1, 9)(2, 3)(4, 12)(6, 8)⟩= ⟨(3, 11)(5, 12)(7, 8)(9, 10), (1, 9)(2, 3)(4, 12)(6, 8)⟩ ∼=
S3.

The number of single cosets in Nt1t2t1 is calculated by the formula |N |
|N(121)| =

120
6 = 20.

The orbits of N (121) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1, 9, 10}, {2, 3, 11}, {4, 12, 5}, {6, 8, 7}.
We will determine the double cosetes by selecting one representative from each orbit such

as,

Choose 1 from {1,9,10}
Nt1t2t1t1 = Nt1t2t

2
1 = Nt1t2 ∈ [12].

This means three ti’s takes [121] to [12].

Choose 2 from {2,3,11}
Nt1t2t1t2 ∈ [13].

We have Nt1t2t1t2 = Nt3t7

= (t1t3)
(y∗x∗y∗x−1) ∈ [13].

This means three ti’s takes [121] to [13].

Choose 4 from {4,12,5}
Nt1t2t1t4 ∈ [131].

We have Nt1t2t1t4 = y5t7t12t7

= y5(t1t3t1)
(y∗x) ∈ [131].

This means three ti’s takes [121] to [131].

Choose 6 from {6,8,7}
Nt1t2t1t6 ∈ [14].

We have Nt1t2t1t6 = Nt1t4 ∈ [14].
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This means three ti’s takes [121] to [14].

Cayley Diagram

Figure 7.18: Cayley Diagram for G over S12

Seventh Double Coset [131]

Nt1t3t1 = {N(t1t3t1)
n|n ∈ N}.

We now find the Coset Stabilizer N (131). We first find the point stabilizer of 1,3 and 1 in

N .

Nt1t3t1 = {N(t1t3t1)
n|n ∈ N} N131 = ⟨(2, 5)(6, 10)(7, 12)(9, 11)⟩.

We will find different names of Nt1t3t1. Now N(t1t3t1)
(1,2,5)(3,7,12)(4,6,10)(8,11,9) = Nt2t7t2.

But t1t3t1 = Nt2t7t2 so, N(t1t3t1)
(1,2,5)(3,7,12)(4,6,10)(8,11,9) = Nt1t3t1

=⇒ (1, 2, 5)(3, 7, 12)(4, 6, 10)(8, 11, 9) ∈ N (131).

Thus N (131) ≥ ⟨N131, (1, 2, 5)(3, 7, 12)(4, 6, 10)(8, 11, 9)⟩
= ⟨(2, 5)(6, 10)(7, 12)(9, 11), (1, 2, 5)(3, 7, 12)(4, 6, 10)(8, 11, 9)⟩ ∼= S3.

The number of single cosets in Nt1t3t1 is calculated by the formula |N |
|N(131)| =

120
6 = 20.

The orbits of N (131) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1, 2, 5}, {3, 7, 12}, {4, 6, 10}, {8, 11, 9}.
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We will determine the double cosetes by selecting one representative from each orbit such

as,

Choose 1 from {1,2,5}
Nt1t3t1t1 = Nt1t3t

2
1 = Nt1t3 ∈ [13].

This means three ti’s take [131] to [13].

Choose 3 from {3,7,12}
Nt1t3t1t3 ∈ [12].

We have Nt1t3t1t3 = Nt12t11

= (t1t2)
(x∗y∗x∗y∗x−1) ∈ [12]

This means three ti’s take [131] to [12].

Choose 4 from {4,6,10}
Nt1t3t1t4 ∈ [121].

We have Nt1t3t1t4 = y5t9t6t9

= y5(t1t2t1)
(y∗x−1) ∈ [121]

This means three ti’s take [131] to [121].

Choose 8 from {8,11,9}
Nt1t3t1t8 ∈ [14].

We have Nt1t3t1t8 = Nt1t4

This means three ti’s take [131] to [14].
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Cayley Diagram

Figure 7.19: Cayley Diagram for G over S12

It is possible that the coset stabiliser of N (w) of the coset Nw increases and therefore
|N |

|N(w)| decreases.

Our cayley diagram shows that

G = N ∪Nt1 ∪Nt1t2 ∪Nt1t3 ∪Nt1t4 ∪Nt1t2t1 ∪Nt1t3t1

|G| ≤ (|N |+ |N |
|N(1)| +

|N |
|N(12)| +

|N |
|N(13)| +

|N |
|N(14)| +

|N |
|N(121)| +

|N |
|N(131)| × |N |)

|G| ≤ (1 + 12 + 30 + 30 + 12 + 20 + 20)× 120 =⇒ |G| ≤ 125× 120 =⇒ |G| ≤ 15000.

G acts on 125 cosets that are given in the cayley diagram.

Let X be the set of these 125 cosets. Now, f : G → Sx is a homomorphism.

G
Kerf

∼= Imf (First Isomorphism Theorem).

=⇒ G
Kerf

∼= ⟨f(x), f(y), f(t)⟩
=⇒ | G

Kerf | = |⟨f(x), f(y), f(t)⟩|
But #⟨f(x), f(y), f(t)⟩ = 15000. So, | G

kerf | = 15000

This means |G| ≥ 15000. We know |G| ≤ 15000 from cayley diagram. Therefore, |G| =
15000.

From |G| = 15000× |Kerf | we find |Kerf | = 1

G ∼= ⟨f(x), f(y), f(t)⟩ but, ⟨f(x), f(y), f(t)⟩ ∼= A5 × 2 =⇒ G ∼= A5 × 2.
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7.4 Construction of A5 × A5 over A5 × 2

Let N ∼= A5 × 2 = ⟨x, y⟩ where x ∼ (1, 6, 3)(2, 8, 4)(5, 7, 9)(10, 11, 12), and

y ∼ (1, 5, 2, 3, 11, 4, 10, 6, 8, 7)(9, 12). The progenitor 2∗12 : N has symmetric presentation

G<x,y,t>:=Group<x,y,t|x^3, (x * y^-2)^2,

(x^-1 * y * x^-1 * y^-1)^2,

(x^-1 * y^-3)^2,

t^2>;

We want to verify that the presentation given above is correct.

Theorem: 2∗n:N
ti,tj

∼= 2n : N where 1 ≤ i ≤ j ≤ n

We will show that 2∗12:N
((y∗x∗y2)∗(t(y−2∗x−1∗y)))3

∼= A5 ×A5 Thus, we will prove

G<x,y,t>:=Group<x,y,t|x^3, (x * y^-2)^2,

(x^-1 * y * x^-1 * y^-1)^2,

(x^-1 * y^-3)^2,

t^2,(t,x^-1 * y^-1 * x * y^2),(t,x * y * x^-1 * y^-1 * x * y),

((y * x * y^2)*(t^(y^-2 * x^-1 * y))^3 ~ A_5 X 2

We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N . We need to determine all distinct double cosets NwN and find the number

of right cosets in each double coset. It suffices to find the double coset of Nwti for one

representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw, so we

find our index, which is the order of G over the order of N. Hence, |G|
|N | =

14400
120 = 120.

Now we know that we have 120 distinct single cosets.

Expanding Relation We will expand our only relation.

((y ∗ x ∗ y2) ∗ (t(y−2 ∗ x−1 ∗ y)))3

= (y ∗ x ∗ y2) ∗ t3(y ∗ x ∗ y2) ∗ t3(y ∗ x ∗ y2) ∗ t3
= (y ∗ x ∗ y2)3 ∗ (t(y∗x∗y

2)2

3 ) ∗ t(y∗x∗y
2)

3 ) ∗ t3
=⇒ (y ∗ x ∗ y2)3t3t12t3 = e

=⇒ (y ∗ x ∗ y2)3t3 = t3t12

First Double Coset [∗]

NeN = {Nen|n ∈ N ] = [N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne
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is N .

The formula for the number of right cosets in N is 120
120 = 1.

Since N is transitive on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. We need only determine

the double coset of the right cosets Nt1. Thus 12 ti’s extend the double coset [∗] to the

double coset Nt1N = [1].

Cayley Diagram

Figure 7.20: Cayley Diagram for G over S12

Second Double Coset [1]

Nt1N = {N(t1)
n|n ∈ N}

= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10, Nt11, Nt12}.
We now find the Coset Stabilier N1). We first find the point stabiliser of 1 in N.

N1 = {n ∈ N |1n = 1}
N1 = ⟨(2, 5, 7, 8, 12)(3, 9, 6, 10, 11), (3, 11)(5, 12)(7, 8)(9, 10)⟩.
Thus, N (1) ≥ N1 = ⟨(2, 5, 7, 8, 12)(3, 9, 6, 10, 11), (3, 11)(5, 12)(7, 8)(9, 10)⟩
=⇒ (2, 5, 7, 8, 12)(3, 9, 6, 10, 11), (3, 11)(5, 12)(7, 8)(9, 10) ∈ N (1).

The number of right cosets in Nt1N is calculated by the formula,
|N |

|N(1)| =
120
10 = 12.

The orbits of N (1) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are {1} , {4} , {2, 5, 7, 12, 8} ,

{3, 9, 11, 6, 10}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t1 = Ne ∈ [∗].
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This means one ti takes [1] to [*].

Choose 2 from {2,5,7,12,8}
Nt1t2 ∈ [12]

This means five ti’s take [1] to [12].

Choose 3 from {3,9,11,6,10}
Nt1t3 ∈ [1].

We have Nt1t3 = (y ∗ x ∗ y−1 ∗ x−1 ∗ y)t1 ∈ [1].

This means five ti’s take [1] to [1].

Choose 4 from {4}
Nt1t4 ∈ [14]

This means one ti takes [1] to [14]. Now we need to investigate the first new double coset.

Cayley Diagram

Figure 7.21: Cayley Diagram for G over S12

Third Double Coset [12]

Nt1t2 = {N(t1t2)
n|n ∈ N}.

We now find the coset stablilizer N(1,2). We first find the point stabilizer of 1 and 2 in N.

N12 = {n ∈ N |(12)n = 12}
N12 = ⟨(3, 11)(5, 12)(7, 8)(9, 10)⟩.
We find different names of Nt1t2. Now, t1t2 = (y−2 ∗ x−1)t7t9 =⇒ Nt1t2 = Nt7t9

N(t1t2)
(1,7)(2,9)(4,11)(6,12) = Nt7t9.

But Nt7t9 = Nt1t2 =⇒ N(t1t2)
(1,7)(2,9)(4,11)(6,12) = Nt1t2.

=⇒ (1, 7)(2, 9)(4, 11)(6, 12), (1, 7, 8)(2, 9, 10)(3, 4, 11)(5, 6, 12) ∈ N (12). Thus N (1,2) ≥
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⟨N1,2, (1, 7)(2, 9)(4, 11)(6, 12), (1, 7, 8)(2, 9, 10)(3, 4, 11)(5, 6, 12)⟩.
= ⟨(3, 11)(5, 12)(7, 8)(9, 10), (1, 7)(2, 9)(4, 11)(6, 12), (1, 7, 8)(2, 9, 10)(3, 4, 11)(5, 6, 12)⟩.
The number of distinct right cosets in Nt1t2N is calculated by the formula

|N |
|N(1,2)| =

120
6 = 20.

The orbits of N1,2 on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1, 7, 8}, {2, 9, 10}, {3, 11, 4}, {5, 12, 6}.
We will determine the double cosets by selecting one representative from each orbit such

as

Choose 1 from {1,7,8}
Nt1t2t1 ∈ [12].

We have Nt1t2t1 = (x ∗ y−1 ∗ x−1 ∗ y ∗ x ∗ y)t1t2 ∈ [12].

This means three ti’s take [12] to [12].

Choose 2 from {2,9,10}
Nt1t2t2 = Nt1t

2
2 = Nt1 ∈ [1].

This means three ti’s take [12] to [1].

Choose 3 from {3,11,4}
Nt1t2t3 ∈ [14].

We have Nt1t2t3(y
x)t5t10

= (yx)(t1t4)
y ∈ [14].

This means three ti’s take [12] to [14].

Choose 5 from {5,12,6}
Nt1t2t5 ∈ [125].

This means three ti’s take [12] to [125].
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Cayley Diagram

Figure 7.22: Cayley Diagram for G over S12

Fourth Double Coset [14]

Nt1t4 = {N(t1t4)
n|n ∈ N}.

We now find the coset stabiliser N(1,4). We first find the point stabiliser of 1 and 4 in N.

N14 = {n ∈ N |(14)n = 14}
Thus N (14) ≥ N14 = ⟨(2, 5, 7, 8, 12)(3, 9, 6, 10, 11)(3, 11)(5, 12)(7, 8)(9, 10)⟩.
The number of distinct right cosets in Nt1t4N is calculated by the formula,
|N |

|N1,4| =
120
10 = 12.

The orbits of N14 ox X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {4}, {2, 5, 7, 8, 12}, {3, 9, 11, 6, 10}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t4t1 ∈ [141].

This means one ti takes [14] to [141].

Choose 2 from {2,5,7,8,12}
Nt1t4t2 ∈ [12].

We have Nt1t4t2

= (y ∗ x−1 ∗ y−1 ∗ x ∗ y)t6t4
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= (y ∗ x−1 ∗ y−1 ∗ x ∗ y) ∗ (t1t2)(x∗y∗x
−1∗y∗x−1) ∈ [12]

This means five ti’s take [14] to [12].

Choose 3 from {3,9,11,6,10}
Nt1t4t3 ∈ [125].

We have Nt1t4t3

= (y−2)t8t6t7

= (y−2)(t1t2t5)
(y−1∗x−1∗y−1∗x∗y) ∈ [125]

This means five ti’s take [14] to [125].

Choose 4 from {4}
Nt1t4t4 = Nt1t

2
4 = Nt1 ∈ [1].

This means one ti takes [14] to [1].

Cayley Diagram

Figure 7.23: Cayley Diagram for G over S12

Fifth Double Coset [125]

Nt1t2t5 = {N(t1t2t5)
n|n ∈ N}.

We now find the coset stabiliser N(125). We first find the point stabilizer of 1, 2, and 5 in

N.

N125 = {n ∈ N |(125)n = 125}
N125 = ⟨e⟩
We find different names of Nt1t2t5. Now t1t2t5 = (x−1 ∗ y−1 ∗ x−1 ∗ y−1 ∗ x)t7t6t8 =⇒
Nt1t2t5 = Nt7t6t8.
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We have N(t1t2t5)
(1,7)(2,6)(3,10)(4,11)(5,8)(9,12) = Nt7t6t8.

But, Nt7t6t8 = Nt1t2t5 so, N(t1t2t5)
(1,7)(2,6)(3,10)(4,11)(5,8)(9,12) = Nt1t2t5.

=⇒ (1, 7)(2, 6)(3, 10)(4, 11)(5, 8)(9, 12) ∈ N (125).

Thus N (125) ≥ ⟨N125, (1, 7)(2, 6)(3, 10)(4, 11)(5, 8)(9, 12)⟩.
= ⟨e, (1, 7)(2, 6)(3, 10)(4, 11)(5, 8)(9, 12)⟩.
The number of distinct right cosets in Nt1t2t5N is calculated by the formula

|N |
|N(125)| =

120
4 = 30.

The orbits of N (125) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1, 7}, {3, 10}, {4, 11}, {5, 8}, {2, 6, 9, 12}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1,7}
Nt1t2t5t1 ∈ [141].

We have Nt1t2t5t1

= (x ∗ y3)t11t7t11
= (x ∗ y3)(t1t4t1)(x∗y

−1∗x) ∈ [141]

This means two ti’s take [125] to [141].

Choose 2 from {2,6,9,12}
Nt1t2t5t2 ∈ [125].

We have Nt1t2t5t2

= (x ∗ y3)t1t2t5 ∈ [125]

This means four ti’s take [125] to [125].

Choose 3 from {3,10}
Nt1t2t5t3 ∈ [1253].

This means two ti’s take [125] to [1253].

Choose 4 from {4,11}
Nt1t2t5t4 ∈ [14].

We have Nt1t2t5t4

= (x ∗ y−1 ∗ x−1 ∗ y−1 ∗ x−1)t7t11

= (x ∗ y−1 ∗ x−1 ∗ y−1 ∗ x−1)(t1t4)
(y−1) ∈ [14]

This means two ti’s take [125] to [14].

Choose 5 from {5,8}
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Nt1t2t5t5 = Nt1t2t
2
5 = Nt1t2 ∈ [12].

This means two ti’s take [125] to [12].

Cayley Diagram

Figure 7.24: Cayley Diagram for G over S12

Sixth Double Coset [141]

Nt1t4t1 = {N(t1t4t1)
n|n ∈ N}.

We now find the coset stabiliser N(141). We first find the point stabiliser of 1, 4, and 1 in

N.

N141 = {n ∈ N |(141)n = 141}
Thus, N (141) ≥ N141 = ⟨(2, 5, 7, 8, 12)(3, 9, 6, 10, 11)(3, 11)(5, 12)(7, 8)(9, 10)⟩.
The number of distinct single cosets in Nt1t4t1N is calculated by the formula

|N |
|N(141)| =

120
10 = 12.

The orbits of N (141) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {4}, {2, 5, 7, 8, 12}, {3, 9, 11, 6, 10}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t4t1t1 = Nt1t4t

2
1 = Nt1t4 ∈ [14]

This means one ti takes [141] to [14].

Choose 2 from {2,5,7,8,12}
Nt1t4t1t2 ∈ [1253].
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We have Nt1t4t1t2

= xt11t12t2t1

= x(t1t2t5t3)
(y∗x∗y∗x−1∗y) ∈ [1253]

This means five ti’s take [141] to [1235].

Choose 3 from {3,9,11,6,10}
Nt1t4t1t3 ∈ [125].

We have Nt1t4t1t3

= (y ∗ x−1 ∗ y−1 ∗ x ∗ y)t3t5t9
= (y ∗ x−1 ∗ y−1 ∗ x ∗ y)(t1t2t5)(y

2∗x∗y−1∗x) ∈ [125]

This means five ti’s take [141] to [125].

Choose 4 from {4}
Nt1t4t1t4 ∈ [1414]

This means one ti takes [141] to [1414].

Cayley Diagram

Figure 7.25: Cayley Diagram for G over S12
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Seventh Double Coset [1414]

Nt1t4t1t4 = {N(t1t4t1t4)
n|n ∈ N}.

We now find the coset stabiliser N (1414). We first find the point stabiliser of 1, 4, 1, and

4 in N.

N1414 = {n ∈ N |(1414)n = 1414}
Thus N (1414) ≥ N1414 = ⟨(2, 5, 7, 8, 12)(3, 9, 6, 10, 11)(3, 11)(5, 12)(7, 8)(9, 10)⟩.
The number of distinct single right cosets in Nt1t4t1t4N is calculated by the formula,

|N |
|N(1414)| =

120
10 = 12.

The orbits of N (1414) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {4}, {2, 5, 7, 8, 12}, {3, 9, 11, 6, 10}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t4t1t4t1 ∈ [14141]

This means one ti takes [1414] to [14141].

Choose 2 from {2,5,7,8,12}
Nt1t4t1t4t2 ∈ [1253].

We have Nt1t4t1t4t2

= (x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y)t11t10t4t6
= (x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y)(t1t2t5t3)(y

4) ∈ [1253]

This means five ti’s take [1414] to [1253].

Choose 3 from {3,9,11,6,10}
Nt1t4t1t4t3 ∈ [1414].

We have Nt1t4t1t4t3

= (y ∗ x ∗ y−1 ∗ x−1 ∗ y)t1t4t1t4 ∈ [1414]

This means five ti’s take [1414] to [1414].

Choose 4 from {4}
Nt1t4t1t4t4 = Nt1t4t1t

2
4 = Nt1t4t1 ∈ [141].

This means one ti takes [1414] to [141].
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Cayley Diagram

Figure 7.26: Cayley Diagram for G over S12

Eightieth Double Coset [14141]

Nt1t4t1t4t1 = {N(t1t4t1t4t1)
n|n ∈ N}.

We now find the coset stabiliser N(1,4,1,4,1). We first find the point stabiliser of 1, 4, 1, 4,

and 1 in N.

N14141 = {n ∈ N |(14141)n = 14141}N14141 = ⟨(2, 5, 7, 8, 12)(3, 9, 6, 10, 11)(3, 11)(5, 12)(7, 8)(9, 10)⟩
Now, t1t4t1t4t1 = t9t12t9t12t9. We haveN(t1t4t1t4t1)

(1,9,11,8,5,4,12,7,3,10)(2,6)... = t9t12t9t12t9.

But Nt1t4t1t4t1 = Nt9t12t9t12t9so,N(t1t4t1t4t1)
(1,9,11,8,5,4,12,7,3,10)(2,6)... = Nt1t4t1t4t1

=⇒ (1, 9, 11, 8, 5, 4, 12, 7, 3, 10)(2, 6)... ∈ N (14141)

Thus, N (14141) ≥ ⟨N14141, (1, 9, 11, 8, 5, 4, 12, 7, 3, 10)(2, 6)...⟩.
= ⟨(2, 5, 7, 8, 12)(3, 9, 6, 10, 11)(3, 11)(5, 12)(7, 8)(9, 10), (1, 9, 11, 8, 5, 4, 12, 7, 3, 10)(2, 6)...⟩.
The number of distinct single right cosets in Nt1t4t1t4t1N is calculated by the formula

|N |
|N(14141)| =

120
120 = 1

The orbit of N14141 on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is the single orbit

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
We will determine the double cosets by selecting one representative from the orbit such
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as,

Choose 1 from {1,9,6,10,11,2,8,3,5,4,7,12}
Nt1t4t1t4t1t1

= Nt1t4t1t4t
2
1

= Nt1t4t1t4 ∈ [1414]

This means twelve ti’s take [14141] to [1414].

Cayley Diagram

Figure 7.27: Cayley Diagram for G over S12

Nineth Double Coset [1253]

Nt1t2t5t3 = {N(t1t2t5t3)
n|n ∈ N}.

WE now find the coset stabiliser N(1253). We first find the point stabiliser of 1, 2, 5, and

3 in N.

N1253 = {n ∈ N |(1253)n = 1253}
Thus, N (1253) ≥ N1253 = ⟨(1, 5, 7)(2, 9, 8)(3, 6, 12)(4, 10, 11)⟩.
The number of distinct single cosets in Nt1t2t5t3N is calculated by the formula

|N |
|N(1253)| =

120
6 = 20.

The orbits of N (1253) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are
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{1, 5, 7}, {2, 8, 9}, {3, 6, 12}, {4, 10, 11}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1,5,7}
Nt1t2t5t3t1 ∈ [141].

We have Nt1t2t5t3t1

= (x−1 ∗ y ∗ x−1 ∗ y ∗ x)t12t9t12
= (x−1 ∗ y ∗ x−1 ∗ y ∗ x)(t1t4t1)(y∗x

−1∗y) ∈ [141]

This means three ti’s take [1253] to [141].

Choose 2 from {2,8,9}
Nt1t2t5t3t2 ∈ [1414].

We have Nt1t2t5t3t2

= (x ∗ y2 ∗ x ∗ y ∗ x−1)t11t7t11t7

= (x ∗ y2 ∗ x ∗ y ∗ x−1)(t1t4t1t4)
(x∗y−1∗x) ∈ [1414

This means three ti’s take [1253] to [1414].

Choose 3 from {3,6,12}
Nt1t2t5t3t3 = Nt1t2t5t

2
3 ∈ [125]

This means three ti’s take [1253] to [125].

Choose 4 from {4,10,11}
Nt1t2t5t3t4 ∈ [1253].

We have Nt1t2t5t3t4

= (y−1 ∗ x−1)t5t2t1t12

= (y−1 ∗ x−1)(t1t2t5t3)
(y∗x∗y2) ∈ [1253]

This means three ti’s take [1253] to [1253].
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Cayley Diagram

Figure 7.28: Cayley Diagram for G over S12

It is possible that the coset stabiliser of N (w) of the coset Nw increases and therefore
|N |
|Nw| decreases. Our cayley diagram shows that

G = N ∪Nt1 ∪Nt1t2 ∪Nt1t4 ∪Nt1t2t5 ∪Nt1t4t1 ∪Nt1t4t1t4 ∪Nt1t4t1t4t1 ∪Nt1t2t5t3

|G| ≤ (|N |+ | |N |
|N(1)|+

|N |
|N(12)|+

|N |
|N(14)|+

|N |
|N(125)|+

|N |
|N(141)|+

|N |
|N(1414)|+

|N |
|N(14141)|+

|N |
|N(1253)|×|N |)

G ≤ (1 + 12 + 20 + 12 + 12 + 12 + 30 + 1 + 20)× 120

=⇒ |G| ≤ 120× 120 =⇒ |G| ≤ 14400.

G acts on 120 cosets that are given in the cayley diagram. Let X be the set of these 120

cosets. Now f : G → Sx is a homomorphism.

G
Kerf

∼= Imf (First Isomorphsim Theorem) =⇒ G
Kerf

∼= ⟨f(x), f(y), f(t)⟩
=⇒ | G

Kerf | = 14400.

This means |G| ≥ 14400 . We know |G| ≤ 14400 from the cayley diagram. Therefore,

|G| = 14400.

From |G| = 14400× |Kerf | we find |kerf | = 1.

G ∼= ⟨f(x), f(y), f(t)⟩ but, ⟨f(x), f(y), f(t)⟩ ∼= A5 × 2 =⇒ G ∼= A5 × 2.
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7.5 Construction of (2 : A5 × A5) over (A5 × 2)

Let N ∼= A5 × 2 = ⟨x, y⟩ where x ∼ (1, 6, 3)(2, 8, 4)(5, 7, 9)(10, 11, 12), and

y ∼ (1, 5, 2, 3, 11, 4, 10, 6, 8, 7)(9, 12). The progenitor 2∗12 : N has symmetric presentation

G<x,y,t>:=Group<x,y,t|x^3, (x * y^-2)^2,

(x^-1 * y * x^-1 * y^-1)^2,

(x^-1 * y^-3)^2,

t^2>;

We want to verify that the presentation given above is correct.

Theorem: 2∗n:N
ti,tj

∼= 2n : N where 1 ≤ i ≤ j ≤ n

We will show that 2∗12:N
((y5)∗(t(y2∗x∗y∗x−1∗y))5,((y∗x∗y2)∗(t(y−2∗x−1∗y))3)

∼= 2 : (A5 × A5) Thus, we

will prove

G<x,y,t>:=Group<x,y,t|x^3, (x * y^-2)^2,

(x^-1 * y * x^-1 * y^-1)^2,

(x^-1 * y^-3)^2,

t^2,(t,x^-1 * y^-1 * x * y^2),

(t,x * y * x^-1 * y^-1 * x * y),

((y^5)*(t^(y^2 * x * y * x^-1 * y))^5,

((y * x * y^2)*(t^(y^-2 * x^-1 * y))^3) ~ A_5 X 2

We will determine the order of G. We perform manual double coset enumeration of G

over N . We need to determine all distinct double cosets and find the number of right

cosets in each double coset NwN . It suffices to find the double coset of Nwti for one

representative ti for each orbit of the coset stabiliser N (w) of the right coset Nw. So we

find our index, which is the order of G over the order of N. Hence, |G|
|N | =

7200
120 = 60. Now

we know that we have 60 distinct single cosets.

Expanding First Relation We will expand our first relation.

(((y5) ∗ (t(y2∗x∗y∗x−1∗y)))5

= (y5) ∗ t2 ∗ (y5) ∗ t2 ∗ (y5) ∗ t2 ∗ (y5) ∗ t2 ∗ (y5) ∗ t2
= (y5)5 ∗ (t(y

5)4

2 ) ∗ (t(y
5)3

2 ) ∗ (t(y
5)2

2 ) ∗ (t(y
5)

2 ) ∗ t2
= y25 ∗ (t(y

20)
2 ) ∗ (t(y

15)
2 ) ∗ (t(y

10)
2 ) ∗ (t(y

5)
2 ) ∗ t2

Since the order of y is 10 we can reduce the relation such as,
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y5 ∗ t2t6t2t6t2 = e =⇒ y5 ∗ t2t6 = t2t6t2

Expanding Second Relation We will expand our second relation.

((y ∗ x ∗ y2) ∗ (t(y−2∗x−1∗y)))3

= (y ∗ x ∗ y2) ∗ t3(y ∗ x ∗ y2) ∗ t3(y ∗ x ∗ y2) ∗ t3
= (y ∗ x ∗ y2)3 ∗ (t(y∗x∗y

2)2

3 ) ∗ (t(y∗x∗y
2)

3 ) ∗ t3
Since the order of (y ∗ x ∗ y2) is 2 we can reduce the relation such as,

(y ∗ x ∗ y2) ∗ t3t12t3 = e =⇒ (y ∗ x ∗ y2) ∗ t3 = t3t12

First Double Coset [∗]

NeN = {Nen|n ∈ N ] = [N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The formula for the number of right cosets in N is 120
120 = 1.

Since N is transitive on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. We need only determine

the double coset of the right cosets Nt1. Thus 12 ti’s extend the double coset [∗] to the

double coset Nt1N = [1].

Cayley Diagram

Figure 7.29: Cayley Diagram for G over S12

Second Double Coset [1]

Nt1N = {N(t1)
n|n ∈ N}

= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10, Nt11, Nt12}.
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We now find the Coset Stabilier N1). We first find the point stabiliser of 1 in N.

N1 = {n ∈ N |1n = 1}
Thus, N (1) ≥ ⟨N1 = (2, 5, 7, 8, 12)(3, 9, 6, 10, 11), (3, 11)(5, 12)(7, 8)(9, 10)⟩
=⇒ (2, 5, 7, 8, 12)(3, 9, 6, 10, 11), (3, 11)(5, 12)(7, 8)(9, 10) ∈ N (1).

The number of right cosets in Nt1N is calculated by the formula,
|N |

|N(1)| =
120
10 = 12.

The orbits of N (1) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1} , {4} , {2, 5, 7, 12, 8} , {3, 9, 11, 6, 10}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t1 = Ne ∈ [∗].
This means one ti takes [1] to [*].

Choose 2 from {2,5,7,12,8}
Nt1t2 ∈ [12].

This means five ti’s take [1] to [12].

Choose 3 from {3,9,11,6,10}
Nt1t3 ∈ [1].

We have Nt1t3 = (y ∗ x ∗ y−1 ∗ x−1 ∗ y)t1 ∈ [1]

This means five ti’s take [1] to [1].

Choose 4 from {4} Nt1t4 ∈ [14].

This means one ti takes [1] to [14].
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Cayley Diagram

Figure 7.30: Cayley Diagram for G over S12

Third Double Coset [12]

Nt1t2 = {N(t1t2)
n|n ∈ N}.

We now find the coset stablilizer N(12). We first find the point stabilizer of 1 and 2 in N.

N12 = {n ∈ N |(12)n = 12}
N12 = ⟨(3, 11)(5, 12)(7, 8)(9, 10)⟩.
We find different names of Nt1t2. Now, t1t2 = (y−2 ∗ x−1)t7t9 =⇒ Nt1t2 = Nt7t9

N(t1t2)
(1,7)(2,9)(4,11)(6,12) = Nt7t9.

But Nt7t9 = Nt1t2 =⇒ N(t1t2)
(1,7)(2,9)(4,11)(6,12) = Nt1t2.

=⇒ (1, 7)(2, 9)(4, 11)(6, 12), (1, 7, 8)(2, 9, 10)(3, 4, 11)(5, 6, 12) ∈ N (12). Thus N (12) ≥
⟨N12, (1, 7)(2, 9)(4, 11)(6, 12), (1, 7, 8)(2, 9, 10)(3, 4, 11)(5, 6, 12)⟩.
= ⟨(3, 11)(5, 12)(7, 8)(9, 10), (1, 7)(2, 9)(4, 11)(6, 12), (1, 7, 8)(2, 9, 10)(3, 4, 11)(5, 6, 12)⟩.
The number of single right cosets in Nt1t2N is calculated by the formula,

|N |
|N(12)| =

120
6 = 20.

The orbits of N (12) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1, 7, 8}, {2, 9, 10}, {3, 11, 4}, {5, 12, 6}.
We will determine the double cosets by selecting one representative from each orbit such

as,
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Choose 1 from {1,7,8}
Nt1t2t1 ∈ [12].

We have Nt1t2t1 = (x ∗ y−1 ∗ x−1 ∗ y ∗ x ∗ y)t1t2 ∈ [12]

This means three ti’s take [12] to [12].

Choose 2 from {2,9,10}
Nt1t2t2 = Nt1t

2
2 = Nt1 ∈ [1].

This means three ti’s take [12] to [1].

Choose 3 from {3,11,4}
Nt1t2t3 ∈ [14].

We have Nt1t2t3 = (yx)t5t10

= (yx)(t1t4)
y ∈ [14]

This means three ti’s take [12] to [14].

Choose 5 from {5,12,6}
Nt1t2t5 ∈ [125].

This means three ti’s take [12] to [125].

Cayley Diagram

Figure 7.31: Cayley Diagram for G over S12
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Fourth Double Coset [14]

Nt1t4 = {N(t1t4)
n|n ∈ N}.

We now find the coset stablilizer N(14). We first find the point stabilizer of 1 and 4 in N.

N14 = {n ∈ N |(14)n = 14} ThusN (14) ≥ N14 = ⟨(2, 5, 7, 8, 12)(3, 9, 6, 10, 11)(3, 11)(5, 12)(7, 8)(9, 10)⟩.
The number of single right cosets in Nt1t2N is calculated by the formula,
|N |

|N(14) = 120
10 = 12.

The orbits of N (14) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {4}, {2, 5, 7, 8, 12}, {3, 9, 11, 6, 10}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t4t1 ∈ [14].

We have Nt1t4t1 = y5t1t4 ∈ [14]

This means one ti takes [14] to [14].

Choose 2 from {2,5,7,8,12}
Nt1t4t2 ∈ [12].

We have Nt1t4t2 = (y ∗ x−1 ∗ y−1 ∗ x ∗ y)t6t4
= (y ∗ x−1 ∗ y−1 ∗ x ∗ y)(t1t2)(x∗y∗x

−1∗y∗x−1) ∈ [12]

This means five ti’s take [14] to [12].

Choose 3 from {3,9,11,6,10}
Nt1t4t3 ∈ [125].

We have Nt1t4t3 = (y−2)t8t6t7

= (y−2)(t1t2t5)
(y−1∗x−1∗y−1∗x∗y) ∈ [125]

This means five ti’s take [14] to [125].

Choose 4 from {4}
Nt1t4t4 = Nt1t

2
4 = Nt1 ∈ [1].

This means one ti takes [14] to [1].
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Cayley Diagram

Figure 7.32: Cayley Diagram for G over S12

Fifth Double Coset [125]

Nt1t2t5 = {N(t1t2t5)
n|n ∈ N}.

We now find the coset stablilizer N(125). We first find the point stabilizer of 1,2 and 5 in

N.

N125 = {n ∈ N |(125)n = 125}
N125 = ⟨e⟩.
We find different names of Nt1t2t5. Now, t1t2t5 = (x−1 ∗ y ∗ x ∗ y ∗ x−1)t11t12t10 =⇒
Nt1t2t5 = Nt11t12t10

N(t1t2t5)
(1,11)(2,12)(3,8)(4,7)(5,10)(6,9) = Nt11t12t10.

But Nt11t12t10 = Nt1t2t5 =⇒ N(t1t2t5)
(1,11)(2,12)(3,8)(4,7)(5,10)(6,9) = Nt1t2t5.

=⇒ (1, 11)(2, 12)(3, 8)(4, 7)(5, 10)(6, 9) ∈ N (125). ThusN (125) ≥ ⟨N125, (1, 11)(2, 12)(3, 8)(4, 7)(5, 10)(6, 9)⟩.
= ⟨e, (1, 11)(2, 12)(3, 8)(4, 7)(5, 10)(6, 9)⟩.
The number of single right cosets in Nt1t2t5N is calculated by the formula,

|N |
|N(125)| =

120
8 = 15.

The orbits of N (125) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are
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{1, 7, 4, 11}, {2, 6, 9, 12}, {3, 10, 5, 8}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1,7,4,11}
Nt1t2t5t1 ∈ [141].

We have Nt1t2t5t1 = (x ∗ y3)t11t7t11
= (x ∗ y3)(t1t4t1)(x∗y

−1∗x) ∈ [141]

This means four ti’s take [125] to [141].

Choose 2 from {2,6,9,12}
Nt1t2t5t2 ∈ [125].

We have Nt1t2t5t2 = (y ∗ x ∗ y−2)t4t9t3

= (y ∗ x ∗ y−2)(t1t2t5)
(y∗x∗y−1∗x) ∈ [125]

This means four ti’s take [125] to [125].

Choose 3 from {3,10}
Nt1t2t5t3 ∈ [12].

We have Nt1t2t5t3 = (x ∗ y ∗ x−1 ∗ y−1 ∗ x)t11t2
= (x ∗ y ∗ x−1 ∗ y−1 ∗ x)(t1t2)((y∗x

−1)2) ∈ [12]

This means four ti’s take [125] to [12].
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Cayley Diagram

Figure 7.33: Cayley Diagram for G over S12

It is possible that the coset stabiliser of N (w) of the coset Nw increases and therefore
|N |
|Nw| decreases. Our cayley diagram shows that

G = N ∪Nt1 ∪Nt1t2 ∪Nt1t4 ∪Nt1t2t5

|G| ≤ (|N |+ | |N |
|N(1)| +

|N |
|N(12)| +

|N |
|N(14)| +

|N |
|N(125)| × |N |

|G| ≤ (1 + 12 + 20 + 12 + 15)× 120 =⇒ |G| ≤ 60× 120 =⇒ |G| ≤ 7200.

G acts on 60 cosets that are given in the cayley diagram. Let X be the set of these 60

cosets. Now f : G → Sx is a homomorphism.

G
Kerf

∼= Imf (First Isomorphsim Theorem) =⇒ G
Kerf

∼= ⟨f(x), f(y), f(t)⟩
=⇒ | G

Kerf | = 7200.

This means |G| ≥ 7200 . We know |G| ≤ 7200 from the cayley diagram. Therefore,

|G| = 7200.

From |G| = 7200× |Kerf | we find |kerf | = 1.

G ∼= ⟨f(x), f(y), f(t)⟩ but, ⟨f(x), f(y), f(t)⟩ ∼= A5 × 2 =⇒ G ∼= A5 × 2.
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7.6 Construction of J1 over (2× A5)

Let N ∼= A5 × 2 = ⟨x, y⟩ where x ∼ (1, 6, 3)(2, 8, 4)(5, 7, 9)(10, 11, 12), and

y ∼ (1, 5, 2, 3, 11, 4, 10, 6, 8, 7)(9, 12). The progenitor 2∗12 : N has symmetric presentation

G<x,y,t>:=Group<x,y,t|x^3, (x * y^-2)^2,

(x^-1 * y * x^-1 * y^-1)^2,

(x^-1 * y^-3)^2,

t^2>;

We want to verify that the presentation given above is correct.

Using the theorem: 2∗n:N
ti,tj

∼= 2n : N where 1 ≤ i ≤ j ≤ n,

we will show that 2∗12:N
((y5)∗(t(y2∗x∗y∗x−1∗y))3,((x)∗(t(y−2∗x−1∗y))5

∼= J1 Thus, we will prove

G<x,y,t>:=Group<x,y,t|x^3, (x * y^-2)^2,

(x^-1 * y * x^-1 * y^-1)^2,

(x^-1 * y^-3)^2,

t^2,

(t,x^-1 * y^-1 * x * y^2),

(t,x * y * x^-1 * y^-1 * x * y),

((y^5)*(t^{(y^2 * x * y * x^-1 * y)}))^3,

((x)*(t^{(y^-2 * x^-1 * y)}))^5 ~ J1

We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N . We need to determine all distinct double cosets NwN and find the number

of right cosets in each double coset. It suffices to find the double coset of Nwti for one

representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw, so we

find our index, which is the order of G over the order of N. Hence, |G|
|N | =

175560
120 = 1463 .

Now we know that we have 1463 distinct single cosets.

Expanding First Relation We will expand our first relation.

((y5) ∗ (t(y2∗x∗y∗x−1∗y)))3

= y5 ∗ t2 ∗ y5 ∗ t2 ∗ y5 ∗ t2
=(y5)3 ∗ (t(y

5)2

2 ) ∗ (t(y
5)

2 ) ∗ t2
Since the order of y is 10 we can reduce our relation such as,

y5 ∗ t2t6t2 = e =⇒ y5 ∗ t2 = t2t6

Expanding Second Relation We will expand our second relation.
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((x) ∗ (t(y−2∗x−1∗y)))5

= x ∗ t3 ∗ x ∗ t3 ∗ x ∗ t3 ∗ x ∗ t3 ∗ x ∗ t3
=x5 ∗ (t(x

4)
3 ) ∗ (t(x

3)
3 ) ∗ (t(x

2)
3 ) ∗ (tx3) ∗ t3

=⇒ x5 ∗ t1 ∗ t3 ∗ t6 ∗ t1 ∗ t3=e

=⇒ x5 ∗ t1t3t6 = t3t1

First Double Coset [∗]

NeN = {Nen|n ∈ N ] = [N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The formula for the number of right cosets in N is 120
120 = 1.

Since N is transitive on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. We need only determine

the double coset of the right cosets Nt1. Thus 12 ti’s extend the double coset [∗] to the

double coset Nt1N = [1].

Cayley Diagram

Figure 7.34: Cayley Diagram for G over S12

Second Double Coset [1]

Nt1N = {N(t1)
n|n ∈ N}

= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10, Nt11, Nt12}.
We now find the Coset Stabilier N1). We first find the point stabiliser of 1 in N.

N1 = {n ∈ N |1n = 1}
Thus, N (1) ≥ ⟨N1 = (2, 5, 7, 8, 12)(3, 9, 6, 10, 11), (3, 11)(5, 12)(7, 8)(9, 10)⟩
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=⇒ (2, 5, 7, 8, 12)(3, 9, 6, 10, 11), (3, 11)(5, 12)(7, 8)(9, 10) ∈ N (1).

The number of right cosets in Nt1N is calculated by the formula,
|N |

|N(1)| =
120
10 = 12.

The orbits of N (1) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {4}, {2, 5, 7, 12, 8}, {3, 9, 11, 6, 10}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t1 = Nt21 = Ne ∈ [∗].
This means one ti takes [1] to [*].

Choose 4 from {4}
Nt1t4 ∈ [1].

we have Nt1t4 = y5t1 ∈ [1]

This means one ti takes [1] to [1].

Choose 2 from {2,5,7,12,8}
Nt1t2 ∈ [12].

This means five ti’s take [1] to [12].

Choose 3 from {3,9,11,6,10}
Nt1t3 ∈ [13].

This means five ti’s take [1] to [13].
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Cayley Diagram

Figure 7.35: Cayley Diagram for G over S12

Third Double Coset [12]

Nt1t2 = {N(t1t2)
n|n ∈ N}.

We now find the coset stablilizer N(12). We first find the point stabilizer of 1 and 2 in N.

N12 = {n ∈ N |(12)n = 12}
Thus N (12) ≥ N12 = ⟨(3, 11)(5, 12)(7, 8)(9, 10)⟩.
The number of single right cosets in Nt1t2N is calculated by the formula,

|N |
|N(12)| =

120
2 = 60.

The orbits of N (12) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {2}, {4}, {6}, {3, 11}, {5, 12}, {7, 8}, {9, 10}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t2t1 ∈ [12].

we have Nt1t2t1 = (y2 ∗ x ∗ y ∗ x−1 ∗ y)t1t2 ∈ [12]

This means one ti takes [12] to [12].

Choose 2 from {2}
Nt1t2t2 = Nt1t

2
2 = Nt1 ∈ [1].
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This means one ti takes [12] to [1].

Choose 3 from {3,11}
Nt1t2t3 ∈ [123].

This means two ti’s take [12] to [123].

Choose 4 from {4}
Nt1t2t4 ∈ [124].

This means one ti takes [12] to [124].

Choose 5 from {5,12}
Nt1t2t5 ∈ [125].

This means two ti’s take [12] to [125].

Choose 6 from {6}
Nt1t2t6 ∈ [13].

We have Nt1t2t6 = y5t4t2

= y5 (t1t3)
y∗x−1∗y∗x∗y−1 ∈ [13]

This means one ti takes [12] to [13].

Choose 7 from {7,8}
Nt1t2t7 ∈ [127].

This means two ti’s take [12] to [127].

Choose 9 from {9,10}
Nt1t2t9 ∈ [129].

This means two ti’s take [12] to [129].
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Cayley Diagram

Figure 7.36: Cayley Diagram for G over S12

Fourth Double Coset [13]

Nt1t3 = {N(t1t3)
n|n ∈ N}.

We now find the coset stablilizer N(13). We first find the point stabilizer of 1 and 3 in N.

N13 = {n ∈ N |(13)n = 13}
Thus N (13) ≥ N13 = ⟨(2, 5)(6, 10)(7, 12)(9, 11)⟩.
The number of single right cosets in Nt1t3N is calculated by the formula,

|N |
|N(13)| =

120
2 = 60.

The orbits of N (13) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {3}, {4}, {8}, {2, 5}, {6, 10}, {7, 12}, {9, 11}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t3t1 ∈ [13].

We have Nt1t3t1 = (y ∗ x ∗ y−1 ∗ x−1 ∗ y)t1t3 ∈ [13]

This means one ti takes [13] to [13].
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Choose 2 from {2,5}
Nt1t3t2 ∈ [132].

This means two ti’s take [13] to [132].

Choose 3 from {3}
Nt1t3t3 ∈ [1].

This means one ti takes [13] to [1].

Choose 4 from {4}
Nt1t3t4 ∈ [134].

This means one ti takes [13] to [134].

Choose 6 from {6,10}
Nt1t3t6 ∈ [13].

We have Nt1t3t6 = xt3t1

= x(t1t3)
(x−1∗y∗x−1∗y∗x) ∈ [13]

This means two ti’s take [13] to [13].

Choose 7 from {7,12}
Nt1t3t7 ∈ [137].

This means two ti’s take [13] to [137].

Choose 8 from {8}
Nt1t3t8 ∈ [12].

We have Nt1t3t8 = y5t4t3

= y5(t1t2)
(y∗x−1∗y∗x−1∗y) ∈ [12] This means one ti takes [13] to [12].

Choose 9 from {9,11}
Nt1t3t9 ∈ [139].

This means two ti’s take [13] to [139].
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Cayley Diagram

Figure 7.37: Cayley Diagram for G over S12

Fifth Double Coset [123]

Nt1t2t3 = {N(t1t2t3)
n|n ∈ N}.

We now find the coset stablilizer N(123). We first find the point stabilizer of 1,2 and 3 in

N.

N123 = {n ∈ N |(123)n = 123}
N123 = ⟨e⟩.
We find different names of Nt1t2t3. Now, Nt1t2t3 = Nt8t6t4

N(t1t2t3)
(1,8)(2,6)(3,4)(5,10)(7,12)(9,11) = Nt8t6t4.

But Nt8t6t4 = Nt1t2t3 =⇒ N(t1t2t3)
(1,8)(2,6)(3,4)(5,10)(7,12)(9,11) = Nt1t2t3.

=⇒ (1, 8)(2, 6)(3, 4)(5, 10)(7, 12)(9, 11) ∈ N (123).

Thus N (123) ≥ ⟨N123, (1, 8)(2, 6)(3, 4)(5, 10)(7, 12)(9, 11)⟩.
= ⟨e, (1, 8)(2, 6)(3, 4)(5, 10)(7, 12)(9, 11)⟩.
The number of single right cosets in Nt1t2t3N is calculated by the formula,

|N |
|N(123)| =

120
2 = 60.

The orbits of N (123) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are
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{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t2t3t1 ∈ [127].

We have Nt1t2t3t1 = y5t3t2t4

= y5(t1t2t7)
x∗y∗x−1∗y ∈ [127]

This means one ti takes [123] to [127].

Choose 2 from {2}
Nt1t2t3t2 ∈ [132].

We have Nt1t2t3t2 = (y ∗ x ∗ y−1 ∗ x−1 ∗ y) ∗ (t6t1t8)
= (y ∗ x ∗ y−1 ∗ x−1 ∗ y) ∗ (t1t3t2)x ∈ [132]

This means one ti takes [123] to [132].

Choose 3 from {3}
Nt1t2t3t3 ∈ [12].

This means one ti takes [123] to [12].

Choose 4 from {4}
Nt1t2t3t4 ∈ [12].

We have Nt1t2t3t4 = Nt8t6

= (t1t2)
(y∗x∗y2∗x∗y−1) ∈ [12]

This means one ti takes [123] to [12].

Choose 5 from {5}
Nt1t2t3t5 ∈ [1235].

This means one ti takes [123] to [1235].

Choose 6 from {6}
Nt1t2t3t6 ∈ [132].

We have Nt1t2t3t6 = (y2 ∗ x ∗ y ∗ x−1 ∗ y)(t3t6t4)
= (y2 ∗ x ∗ y ∗ x−1 ∗ y) ∗ (t1t3t2)(x

−1) ∈ [132]

This means one ti takes [123] to [132].

Choose 7 from {7}
Nt1t2t3t7 ∈ [1237].

This means one ti takes [123] to [1237].
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Choose 8 from {8}
Nt1t2t3t8 ∈ [127].

We have Nt1t2t3t8 = y5(t4t6t3)

= y5(t1t2t7)
(x−1∗y2) ∈ [127]

This means one ti takes [123] to [127].

Choose 9 from {9}
Nt1t2t3t9 ∈ [1239].

This means one ti takes [123] to [1239].

Choose 10 from {10}
Nt1t2t3t10 ∈ [1235].

We have Nt1t2t3t10 = Nt8t6t4t10

= (t1t2t3t5)
(y∗x∗y2∗x∗y−1) ∈ [1235]

This means one ti takes [123] to [1235].

Choose 11 from {11}
Nt1t2t3t11 ∈ [1239].

We have Nt1t2t3t11 = Nt8t6t4t11

= (t1t2t3t9)
(y∗x∗y2∗x∗y−1) ∈ [1239]

This means one ti takes [123] to [1239].

Choose 12 from {12}
Nt1t2t3t12 ∈ [1237].

We have Nt1t2t3t12 = Nt8t6t4t12

= (t1t2t3t7)
(y∗x∗y2∗x∗y−1) ∈ [1237]

This means one ti takes [123] to [1237].
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Cayley Diagram

Figure 7.38: Cayley Diagram for G over S12

Sixth Double Coset [124]

Nt1t2t4 = {N(t1t2t4)
n|n ∈ N}.

We now find the coset stablilizer N(124). We first find the point stabilizer of 1,2 and 4 in

N.

N124 = {n ∈ N |(124)n = 124}
N124 = ⟨(3, 11)(5, 12)(7, 8)(9, 10)⟩.
We find different names of Nt1t2t4. Now, t1t2t4 = (y2∗x∗y∗x−1∗y)t6t4t2 =⇒ Nt1t2t4 =

Nt6t4t2

N(t1t2t4)
(1,6)(2,4)(3,11)(5,10)(7,8)(9,12) = Nt6t4t2.

But Nt6t4t2 = Nt1t2t4 =⇒ N(t1t2t4)
(1,6)(2,4)(3,11)(5,10)(7,8)(9,12) = Nt1t2t4.

=⇒ (1, 6)(2, 4)(3, 11)(5, 10)(7, 8)(9, 12) ∈ N (124).

Thus N (124) ≥ ⟨N124, (1, 6)(2, 4)(3, 11)(5, 10)(7, 8)(9, 12)⟩.
= ⟨(3, 11)(5, 12)(7, 8)(9, 10), (1, 6)(2, 4)(3, 11)(5, 10)(7, 8)(9, 12)⟩.
The number of single right cosets in Nt1t2t4N is calculated by the formula,
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|N |
|N(124)| =

120
8 = 15.

The orbits of N (124) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1, 6, 2, 4}, {3, 11, 8, 7}, {5, 12, 10, 9} .

We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1,6,2,4}
Nt1t2t4t1 ∈ [12].

We have Nt1t2t4t1 = (y ∗ x−1 ∗ y−1 ∗ x ∗ y)t4t6
= (y ∗ x−1 ∗ y−1 ∗ x ∗ y)(t1t2)y

5 ∈ [12]

This means four ti’s take [124] to [12].

Choose 3 from {3,11,8,7}
Nt1t2t4t3 ∈ [124].

We have Nt1t2t4t3 = (y ∗ x ∗ y ∗ x ∗ y)t4t6t1
= (y ∗ x ∗ y ∗ x ∗ y) ∗ (t1t2t4)y

5 ∈ [124]

This means four ti’s take [124] to [124].

Choose 5 from {5,12,10,9}
Nt1t2t4t5 ∈ [1245].

This means four ti’s take [124] to [1245].
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Cayley Diagram

Figure 7.39: Cayley Diagram for G over S12

Seventh Double Coset [125]

Nt1t2t5 = {N(t1t2t5)
n|n ∈ N}.

We now find the coset stablilizer N(125). We first find the point stabilizer of 1,2 and 5 in

N.

N125 = {n ∈ N |(125)n = 125}
Thus, N (125) ≥ N125 = ⟨e⟩.
The number of single right cosets in Nt1t2t5N is calculated by the formula,

|N |
|N(125) = 120

1 = 120.

The orbits of N (125) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t2t5t1 ∈ [1251].
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This means one ti takes [125] to [125].

Choose 2 from {2}
Nt1t2t5t2 ∈ [125].

We have Nt1t2t5t2 = (x−1 ∗ y ∗ x−1 ∗ y ∗ x)t3t2t5
= (x−1 ∗ y ∗ x−1 ∗ y ∗ x)(t1t2t5)(y∗x∗y

−1∗x−1∗y) ∈ [125]

This means one ti takes [125] to [125].

Choose 3 from {3}
Nt1t2t5t3 ∈ [1237].

We have Nt1t2t5t3 = (y ∗ x−1 ∗ y)t6t10t11t9
= (y ∗ x−1 ∗ y) ∗ (t1t2t3t7)(y∗x

−1∗y∗x∗y) ∈ [1237]

This means one ti takes [125] to [1237].

Choose 4 from {4}
Nt1t2t5t4 ∈ [125].

We have Nt1t2t5t4 = (x−1 ∗ y−1 ∗ x−1)t1t12t8

= (x−1 ∗ y−1 ∗ x−1) ∗ (t1t2t5)(x
−1∗y−1∗x∗y2) ∈ [125]

This means one ti takes [125] to [125].

Choose 5 from {5}
Nt1t2t5t5 ∈ [12].

This means one ti takes [125] to [12].

Choose 6 from {6}
Nt1t2t5t6 ∈ [1256].

This means one ti takes [125] to [1256].

Choose 7 from {7}
Nt1t2t5t7 ∈ [1235].

We have Nt1t2t5t7 = (x−1 ∗ y−1 ∗ x−1 ∗ y−1 ∗ x)t4t11t2t3
= (x−1 ∗ y−1 ∗ x−1 ∗ y−1 ∗ x) ∗ (t1t2t3t5)(y∗x

−1∗y∗x∗y−1) ∈ [1235]

This means one ti takes [125] to [1235].

Choose 8 from {8}
Nt1t2t5t8 ∈ [1245].

We have Nt1t2t5t8 = (y2 ∗ x ∗ y−1 ∗ x)t11t3t7t4
= (y2 ∗ x ∗ y−1 ∗ x) ∗ (t1t2t4t5)(x∗y

−1∗x) ∈ [1245]

This means one ti takes [125] to [1245].
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Choose 9 from {9}
Nt1t2t5t9 ∈ [1239].

We have Nt1t2t5t9 = t1t12t10t6

= (t1t2t3t9)
x−1∗y−1∗x∗y2) ∈ [1239]

This means one ti takes [125] to [1239].

Choose 10 from {10}
Nt1t2t5t10 ∈ [129].

We have Nt1t2t5t10 = y5t4t6t5

= y5(t1t2t9)
(x−1∗y2) ∈ [129]

This means one ti takes [125] to [129].

Choose 11 from {11}
Nt1t2t5t11 ∈ [1, 2, 5, 11].

This means one ti takes [125] to [125,11].

Choose 12 from {12}
Nt1t2t5t12 ∈ [1, 2, 5, 12].

This means one ti takes [125] to [125,12].

Cayley Diagram

Figure 7.40: Cayley Diagram for G over S12
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Eightieth Double Coset [127]

Nt1t2t7 = {N(t1t2t7)
n|n ∈ N}.

We now find the coset stablilizer N(127). We first find the point stabilizer of 1,2 and 7 in

N.

N127 = {n ∈ N |(127)n = 127}
N127 = ⟨e⟩.
We find different names of Nt1t2t7. Now, t1t2t7 = (y ∗ x)t11t2t4 =⇒ Nt1t2t7 = Nt11t2t4

N(t1t2t7)
(1,11)(3,5)(4,7)(8,10) = Nt11t2t4.

But Nt11t2t4 = Nt1t2t7 =⇒ N(t1t2t7)
(1,11)(3,5)(4,7)(8,10) = Nt1t2t7.

=⇒ (1, 11)(3, 5)(4, 7)(8, 10) ∈ N (127).

Thus N (127) ≥ ⟨N127, (1, 11)(3, 5)(4, 7)(8, 10)⟩.
= ⟨e, (1, 11)(3, 5)(4, 7)(8, 10)⟩.
The number of single cosets in Nt1t2t7 is calculated by the formula,

|N |
|N(127) = 120

2 = 60.

The orbits of N (127) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1, 11}, {2}, {3, 5}, {4, 7}, {6}, {8, 10}, {9}, {12}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t2t7t1 ∈ [123].

We have Nt1t2t7t1 = ((x−1 ∗ y−1)2)t7t6t4

= ((x−1 ∗ y−1)2)(t1t2t3)
(y−1∗x−1∗y∗x∗y) ∈ [123]

This means one ti takes [127] to [123].

Choose 2 from {2}
Nt1t2t7t2 ∈ [127].

We have Nt1t2t7t2 = (x ∗ y ∗ x−1 ∗ y−2)t1t2t7 ∈ [127].

This means one ti takes [127] to [127].

Choose 3 from {3}
Nt1t2t7t3 ∈ [125, 11].

We have Nt1t2t7t3 = (y ∗ x−1 ∗ y ∗ x ∗ y−1)t8t7t6t5

= (y ∗ x−1 ∗ y ∗ x ∗ y−1)(t1t2t5t11)
(y∗x∗y−1) ∈ [125, 11]

This means one ti takes [127] to [125,11].
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Choose 4 from {4}
Nt1t2t7t4 ∈ [12].

We have Nt1t2t7t4 = (y ∗ x)t11t2
= (y ∗ x)(t1t2)(y∗x) ∈ [12]

This means one ti takes [127] to [12].

Choose 5 from {5}
Nt1t2t7t5 ∈ [125, 11].

We have Nt1t2t7t5 = (x ∗ y ∗ x ∗ y−1)(t10t4t6t3)

= (x ∗ y ∗ x ∗ y−1) ∗ (t1t2t5t11)(x∗y
−1∗x∗y2) ∈ [1, 2, 5, 11]

This means one ti takes [127] to [125,11].

Choose 6 from {6}
Nt1t2t7t6 ∈ [134].

We have Nt1t2t7t6 = (y2 ∗ x ∗ y ∗ x−1 ∗ y)t1t11t4
= (y2 ∗ x ∗ y ∗ x−1 ∗ y)(t1t3t4)(y

−1∗x−1∗y−1) ∈ [134]

This means one ti takes [127] to [134].

Choose 7 from {7}
Nt1t2t7t7 = Nt1t2t

2
7 = Nt1t2 ∈ [12].

This means one ti takes [127] to [12].

Choose 8 from {8}
Nt1t2t7t8 ∈ [137].

We have Nt1t2t7t8 = (y ∗ x−1)t12t4t2

= (y ∗ x−1)(t1t3t7)
(y∗x−1∗y−1)

This means one ti takes [127] to [137].

Choose 9 from {9}
Nt1t2t7t9 ∈ [125, 12].

We have Nt1t2t7t9 = (x ∗ y−1 ∗ x ∗ y2)t9t7t6t5
= (x ∗ y−1 ∗ x ∗ y2)(t1t2t5t12)(y

−1∗x)

This means one ti takes [127] to [125,12].

Choose 10 from {10}
Nt1t2t7t10 ∈ [137].

We have Nt1t2t7t10 = (y ∗ x−1 ∗ y−1)t12t7t2

= (y ∗ x−1 ∗ y−1)(t1t3t7)
(x∗y2∗x∗y)
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This means one ti takes [127] to [137].

Choose 11 from {11}
Nt1t2t7t11 ∈ [123].

We have Nt1t2t7t11 = y5(t4t6t7)

= y5(t1t2t3)
(x−1∗y2)

This means one ti takes [127] to [123].

Choose 12 from {12}
Nt1t2t7t12 ∈ [1245].

We have Nt1t2t7t12 = ((y ∗ x)2)t5t3t10t2
= ((y ∗ x)2)(t1t2t4t5)y

This means one ti takes [127] to [1245].

Cayley Diagram

Figure 7.41: Cayley Diagram for G over S12

Ninth Double Coset [129]

Nt1t2t9 = {N(t1t2t9)
n|n ∈ N}.

We now find the coset stablilizer N(129). We first find the point stabilizer of 1,2 and 9 in

N.

N129 = {n ∈ N |(129)n = 129}
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Thus, N (129) ≥ N129 = ⟨ e ⟩.
The number of single cosets in Nt1t2t9 is calculated by the formula,

|N |
|N(129)| =

120
1 = 120.

The orbits of N (129) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12} .

We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t2t9t1 ∈ [125, 12].

We have Nt1t2t9t1 = (y ∗ x−1)t11t4t10t3

= (y ∗ x−1)(t1t2t5t12)
x∗y−3) ∈ [125, 12]

This means one ti takes [129] to [125,12].

Choose 2 from {2}
Nt1t2t9t2 ∈ [137].

We have Nt1t2t9t2 = (y2 ∗ x ∗ y)t7t2t9
= (y2 ∗ x ∗ y)(t1t3t7)(x∗y

2) ∈ [137]

This means one ti takes [129] to [137].

Choose 3 from {3}
Nt1t2t9t3 ∈ [1256].

We have Nt1t2t9t3 = (y−3)t12t10t8t5

= (y−3)(t1t2t5t6)
(x∗y2∗x∗y−1) ∈ [1256]

This means one ti takes [129] to [1256].

Choose 4 from {4}
Nt1t2t9t4 ∈ [1237].

We have Nt1t2t9t4 = (x ∗ y4)t5t7t8t2
= (x ∗ y4)(t1t2t3t7)(x∗y

−1∗x−1∗y∗x) ∈ [1237]

This means one ti takes [129] to [1237].

Choose 5 from {5}
Nt1t2t9t5 ∈ [137].

We have Nt1t2t9t5 = (y−3)t12t3t10

= (y−3)(t1t3t7)
(x∗y−1∗x−1∗y2) ∈ [137]

This means one ti takes [129] to [137].
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Choose 6 from {6}
Nt1t2t9t6 ∈ [1296].

This means one ti takes [129] to [1296].

Choose 7 from {7}
Nt1t2t9t7 ∈ [1237].

We have Nt1t2t9t7 = (x−1 ∗ y−1 ∗ x−1)t5t7t6t3

= (x−1 ∗ y−1 ∗ x−1)(t1t2t3t7)
(y2∗x∗y∗x−1) ∈ [1237]

This means one ti takes [129] to [1237].

Choose 8 from {8}
Nt1t2t9t8 ∈ [129].

We have Nt1t2t9t8 = (x−1 ∗ y ∗ x ∗ y ∗ x−1)t7t9t2

= (x−1 ∗ y ∗ x ∗ y ∗ x−1)(t1t2t9)
(y2∗x∗y) ∈ [129]

This means one ti takes [129] to [129].

Choose 9 from {9}
Nt1t2t9t9 ∈ [12].

This means one ti takes [129] to [12].

Choose 10 from {10}
Nt1t2t9t10 ∈ [13].

We have Nt1t2t9t10 = (y2)t9t8

= (y2)(t1t3)
(y−1∗x) ∈ [13]

This means one ti takes [129] to [13].

Choose 11 from {11}
Nt1t2t9t11 ∈ [1235].

We have Nt1t2t9t11 = ((y−1 ∗ x−1)2)t12t8t7t1

= ((y−1 ∗ x−1)2)(t1t2t3t5)
(x∗y2∗x∗y) ∈ [1235]

This means one ti takes [129] to [1235].

Choose 12 from {12}
Nt1t2t9t12 ∈ [125].

We have Nt1t2t9t12 = (y5)t4t6t9

= (y5)(t1t2t5)
(x−1∗y2) ∈ [125]

This means one ti takes [129] to [125].
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Cayley Diagram

Figure 7.42: Cayley Diagram for G over S12

Tenth Double Coset [132]

Nt1t3t2 = {N(t1t3t2)
n|n ∈ N}.

We now find the coset stablilizer N(132). We first find the point stabilizer of 1,3 and 2 in

N.

N132 = {n ∈ N |(132)n = 132}
N132 = ⟨e⟩.
We find different names of Nt1t3t2. Now, t1t3t2 = (y−1∗x−1∗y−1∗x−1∗y−1)t8t4t6 =⇒
Nt1t3t2 = Nt8t4t6

N(t1t3t2)
(1,8)(2,6)(3,4)(5,10)(7,12)(9,11) = Nt8t4t6.

But Nt8t4t6 = Nt1t3t2 =⇒ N(t1t3t2)
(1,8)(2,6)(3,4)(5,10)(7,12)(9,11) = Nt1t3t2.

=⇒ (1, 8)(2, 6)(3, 4)(5, 10)(7, 12)(9, 11) ∈ N (132).

Thus N (132) ≥ ⟨N132, (1, 8)(2, 6)(3, 4)(5, 10)(7, 12)(9, 11)⟩.
= ⟨e, (1, 8)(2, 6)(3, 4)(5, 10)(7, 12)(9, 11)⟩.
The number of single cosets in Nt1t3t2 is calculated by this formula,

|N |
|N(132)| =

120
2 = 60.

The orbits of N (132) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}.
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We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t3t2t1 ∈ [132].

We have Nt1t3t2t1 = (y5)t1t6t8

= (y5)(t1t3t2)
(x∗y∗x−1∗y−1∗x∗y) ∈ [132]

This means one ti takes [132] to [132].

Choose 2 from {2}
Nt1t3t2t2 = Nt1t3t

2
2 = Nt1t3 ∈ [13].

This means one ti takes [132] to [13].

Choose 3 from {3}
Nt1t3t2t3 ∈ [123].

We have Nt1t3t2t3 = (x ∗ y2 ∗ x ∗ y ∗ x−1 ∗ y)t6t8t1
= (x ∗ y2 ∗ x ∗ y ∗ x−1 ∗ y)(t1t2t3)x ∈ [123]

This means one ti takes [132] to [123].

Choose 4 from {4}
Nt1t3t2t4 ∈ [123].

We have Nt1t3t2t4 = (x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y)(t3t4t6)
= (x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y) ∗ (t1t2t3)(x

−1) ∈ [123]

This means one ti takes [132] to [123].

Choose 5 from {5}
Nt1t3t2t5 ∈ [1256].

We have Nt1t3t2t5 = (y ∗ x ∗ y)t12t8t1t3
= (y ∗ x ∗ y)(t1t2t5t6)(x∗y

2∗x∗y) ∈ [1256]

This means one ti takes [132] to [1256].

Choose 6 from {6}
Nt1t3t2t6 ∈ [13].

We have Nt1t3t2t6 = (y−1 ∗ x−1 ∗ y−1 ∗ x−1 ∗ y−1) ∗ (t8t4)
= (y−1 ∗ x−1 ∗ y−1 ∗ x−1 ∗ y−1) ∗ (t1t3)(x∗y∗x

−1∗y∗x−1∗y) ∈ [13]

This means one ti takes [132] to [13].

Choose 7 from {7}
Nt1t3t2t7 ∈ [1237].
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We have Nt1t3t2t7 = (y3)t6t10t11t9

= (y3)(t1t2t3t7)
(y∗x−1∗y∗x∗y) ∈ [1237]

This means one ti takes [132] to [1237].

Choose 8 from {8}
Nt1t3t2t8 ∈ [132].

We have Nt1t3t2t8 = x ∗ (t8t2t1)
= x ∗ (t1t3t2)(y∗x∗y∗x∗y) ∈ [132]

This means one ti takes [132] to [132].

Choose 9 from {9}
Nt1t3t2t9 ∈ [125, 11].

We have Nt1t3t2t9 = (x ∗ y−1 ∗ x)t11t12t2t8
= (x ∗ y−1 ∗ x)(t1t2t5t11)(y∗x∗y∗x

−1∗y) ∈ [125, 11]

This means one ti takes [132] to [125,11].

Choose 10 from {10}
Nt1t3t2t10 ∈ [1256].

We have Nt1t3t2t10 = y ∗ (t7t1t8t4)
= y ∗ (t1t2t5t6)(y∗x) ∈ [1256]

This means one ti takes [132] to [1256].

Choose 11 from {11}
Nt1t3t2t11 ∈ [1, 2, 5, 11].

We have Nt1t3t2t11 = (y−1 ∗ x−1 ∗ y−1)(t9t7t6t1)

= (y−1 ∗ x−1 ∗ y−1) ∗ (t1t2t5t11)(y
−1∗x) ∈ [125, 11]

This means one ti takes [132] to [125,11].

Choose 12 from {12}
Nt1t3t2t12 ∈ [1237].

We have Nt1t3t2t12 = (y−2)(t2t5t9t11)

= (y−2) ∗ (t1t2t3t7)(x∗y∗x
−1) ∈ [1237]

This means one ti takes [132] to [1237].
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Cayley Diagram

Figure 7.43: Cayley Diagram for G over S12

Eleventh Double Coset [134]

Nt1t3t4 = {N(t1t3t4)
n|n ∈ N}.

We now find the coset stablilizer N(134). We first find the point stabilizer of 1,3 and 4 in

N.

N134 = {n ∈ N |(134)n = 134}
N134 = ⟨(2, 5)(6, 10)(7, 12)(9, 11)⟩.
We find different names of Nt1t3t4. Now, t1t3t4 = (y ∗ x ∗ y−1 ∗ x−1 ∗ y)t8t4t3 =⇒
Nt1t3t4 = Nt8t4t3

N(t1t3t4)
(1,8)(2,6)(3,4)(5,10)(7,12)(9,11) = Nt8t4t3.

But Nt8t4t3 = Nt1t3t4 =⇒ N(t1t3t4)
(1,8)(2,6)(3,4)(5,10)(7,12)(9,11) = Nt1t3t4.

=⇒ (1, 8)(2, 6)(3, 4)(5, 10)(7, 12)(9, 11) ∈ N (134).

Thus N (134) ≥ ⟨N134, (1, 8)(2, 6)(3, 4)(5, 10)(7, 12)(9, 11)⟩.
= ⟨(2, 5)(6, 10)(7, 12)(9, 11), (1, 8)(2, 6)(3, 4)(5, 10)(7, 12)(9, 11)⟩.
The number of single cosets in Nt1t3t4 is calculated by this formula,

|N |
|N(134)| =

120
8 = 15.

The orbits of N (134) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are
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{1, 4, 3, 8}, {2, 5, 6, 10}, {7, 12, 11, 9}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1,4,3,8}
Nt1t3t4t1 ∈ [13].

We have Nt1t3t4t1 = (y ∗ x ∗ y2 ∗ x ∗ y−1)t4t8

= (y ∗ x ∗ y2 ∗ x ∗ y−1)(t1t3)
(x∗y−2) ∈ [13]

This means four ti’s take [134] to [13].

Choose 2 from {2,5,6,10}
Nt1t3t4t2 ∈ [127].

We have Nt1t3t4t2 = (x−1)t4t6t3

= (x−1)(t1t2t7)
(x−1∗y2) ∈ [127]

This means four ti’s take [134] to [127].

Choose 7 from {7,12,11,9}
Nt1t3t4t7 ∈ [125, 12].

We have Nt1t3t4t7 = (x ∗ y ∗ x)t12t2t11t1
= (x ∗ y ∗ x)(t1t2t5t12)(x∗y

−1∗x−1∗y2) ∈ [125, 12]

This means four ti’s take [134] to [125,12].

Cayley Diagram

Figure 7.44: Cayley Diagram for G over S12
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Twelveth Double Coset [137]

Nt1t3t7 = {N(t1t3t7)
n|n ∈ N}.

We now find the coset stablilizer N(137). We first find the point stabilizer of 1,3 and 7 in

N.

N137 = {n ∈ N |(137)n = 137}. Thus, N (137) ≥ N137 = ⟨e⟩.
The number of single cosets in Nt1t3t7 is calculated by this formula,

|N |
|N(137)| =

120
1 = 120.

The orbits of N (137) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t3t7t1 ∈ [1256].

We have Nt1t3t7t1 = (x ∗ y)t1t12t2t9
= (x ∗ y)(t1t2t5t6)(y

−1∗x−1∗y−1) ∈ [1256]

This means one ti takes [137] to [1256].

Choose 2 from {2}
Nt1t3t7t2 ∈ [125, 11].

We have Nt1t3t7t2 = (y ∗ x−1)t1t5t7t3

= (y ∗ x−1)(t1t2t5t11)
(y∗x∗y) ∈ [125, 11]

This means one ti takes [137] to [125,11].

Choose 3 from {3}
Nt1t3t7t3 ∈ [129].

We have Nt1t3t7t3 = (x ∗ y−1 ∗ x−1 ∗ y ∗ x ∗ y)t2t3t7
= (x ∗ y−1 ∗ x−1 ∗ y ∗ x ∗ y)(t1t2t9)(y

−2∗x−1) ∈ [129]

This means one ti takes [137] to [129].

Choose 4 from {4}
Nt1t3t7t4 ∈ [1239].

We have Nt1t3t7t4 = (y ∗ x ∗ y ∗ x−1 ∗ y)t9t7t1t2
= (y ∗ x ∗ y ∗ x−1 ∗ y)(t1t2t3t9)(x∗y

−1∗x−1∗y−1) ∈ [1239]

This means one ti takes [137] to [1239].

Choose 5 from {5}
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Nt1t3t7t5 ∈ [1296].

We have Nt1t3t7t5 = (x ∗ y−1)t12t1t6t4

= (x ∗ y−1)(t1t2t9t6)
(xy) ∈ [1296]

This means one ti takes [137] to [1296].

Choose 6 from {6}
Nt1t3t7t6 ∈ [1235].

We have Nt1t3t7t6 = (x ∗ y−1 ∗ x−1 ∗ y−1 ∗ x−1)t9t4t11t3

= (x ∗ y−1 ∗ x−1 ∗ y−1 ∗ x−1)(t1t2t3t5)
(y∗x−1∗y−2) ∈ [1235]

This means one ti takes [137] to [1235].

Choose 7 from {7}
Nt1t3t7t7 = Nt1t3t

2
7 = Nt1t3 ∈ [13].

This means one ti takes [137] to [13].

Choose 8 from {8}
Nt1t3t7t8 ∈ [1296].

We have Nt1t3t7t8 = (x ∗ y ∗ x−1 ∗ y ∗ x−1)t6t8t11t3

= (x ∗ y ∗ x−1 ∗ y ∗ x−1)(t1t2t9t6)
(y∗x∗y−2) ∈ [1296]

This means one ti takes [137] to [1296].

Choose 9 from {9}
Nt1t3t7t9 ∈ [125, 11].

We have Nt1t3t7t9 = (y−2 ∗ x−1 ∗ y)t9t5t7t2
= (y−2 ∗ x−1 ∗ y)(t1t2t5t11)(y

−1∗x∗y2) ∈ [125, 11]

This means one ti takes [137] to [125,11].

Choose 10 from {10}
Nt1t3t7t10 ∈ [137].

We have Nt1t3t7t10 = (y−1 ∗ x−1 ∗ y)t2t7t3
= (y−1 ∗ x−1 ∗ y)(t1t3t7)(x∗y

−1∗x−1∗y∗x∗y) ∈ [137]

This means one ti takes [137] to [137].

Choose 11 from {11}
Nt1t3t7t11 ∈ [129].

We have Nt1t3t7t11 = (x ∗ y ∗ x)t12t2t4
= (x ∗ y ∗ x)(t1t2t9)(x∗y

−1∗x−1∗y2) ∈ [129]

This means one ti takes [137] to [129].
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Choose 12 from {12}
Nt1t3t7t12 ∈ [127].

We have Nt1t3t7t12 = (y−1 ∗ x−1 ∗ y2)t8t7t10
= (y−1 ∗ x−1 ∗ y2)(t1t2t7)(y∗x∗y

−1) ∈ [127]

This means one ti takes [137] to [127].

Cayley Diagram

Figure 7.45: Cayley Diagram for G over S12

Thirteenth Double Coset [1235]

Nt1t2t3t5 = {N(t1t2t3t5)
n|n ∈ N}.

We now find the coset stablilizer N(1235). We first find the point stabilizer of 1,2,3 and 5

in N. N (1235) ≥ N1235 = ⟨e⟩.
The number of single cosets in Nt1t2t3t5 is calculated by this formula,

|N |
|N(1235)| =

120
1 = 120.

The orbits of N (1235) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12} .

We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
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Nt1t2t3t5t1 ∈ [12351].

This means one ti takes [1235] to [12351].

Choose 2 from {2}
Nt1t2t3t5t2 ∈ [125, 11].

We have Nt1t2t3t5t2 = (y−1 ∗ x)t1t8t12t6
= (y−1 ∗ x)(t1t2t5t11)(x∗y∗x

−1∗y∗x) ∈ [125, 11]

This means one ti takes [1235] to [125,11]

Choose 3 from {3}
Nt1t2t3t5t3 ∈ [1237].

We have Nt1t2t3t5t3 = (y−1 ∗ x−1 ∗ y−1 ∗ x)t12t8t7t2
= (y−1 ∗ x−1 ∗ y−1 ∗ x)(t1t2t3t7)(x∗y

2∗x∗y) ∈ [1237]

This means one ti takes [1235] to [1237]

Choose 4 from {4}
Nt1t2t3t5t4 ∈ [1235].

We have Nt1t2t3t5t4 = (x−1 ∗ y−1 ∗ x−1)t1t12t10t8

= (x−1 ∗ y−1 ∗ x−1)(t1t2t3t5)
(x−1∗y−1∗x∗y2) ∈ [1235]

This means one ti takes [1235] to [1235]

Choose 5 from {5}
Nt1t2t3t5t5 = Nt1t2t3t

2
5 = Nt1t2t3 ∈ [123].

This means one ti takes [1235] to [123]

Choose 6 from {6}
Nt1t2t3t5t6 ∈ [125].

We have Nt1t2t3t5t6 = (x ∗ y ∗ x ∗ y ∗ x−1)t4t3t9

= (x ∗ y ∗ x ∗ y ∗ x−1)(t1t2t5)
(y∗x−1∗y∗x−1∗y) ∈ [125]

This means one ti takes [1235] to [125]

Choose 7 from {7}
Nt1t2t3t5t7 ∈ [1239].

We have Nt1t2t3t5t7 = (y2 ∗ x)t2t5t9t4
= (y2 ∗ x)(t1t2t3t9)(x∗y∗x

−1) ∈ [1239]

This means one ti takes [1235] to [1239]

Choose 8 from {8}
Nt1t2t3t5t8 ∈ [129].
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We have Nt1t2t3t5t8 = ((y, x))t5t7t4

= ((y, x))(t1t2t9)
(y2∗x∗y∗x−1) ∈ [129]

This means one ti takes [1235] to [129]

Choose 9 from {9}
Nt1t2t3t5t9 ∈ [125, 11].

We have Nt1t2t3t5t9 = (x)t2t11t3t10

= (x)(t1t2t5t11)
(y2) ∈ [125, 11]

This means one ti takes [1235] to [125,11]

Choose 10 from {10}
Nt1t2t3t5t10 ∈ [1235].

We have Nt1t2t3t5t10 = (y5)t3t2t1t5

= (y5)(t1t2t3t5)
(y∗x∗y−1∗x−1∗y) ∈ [1235]

This means one ti takes [1235] to [1235]

Choose 11 from {11}
Nt1t2t3t5t11 ∈ [1239].

We have Nt1t2t3t5t11 = (x ∗ y ∗ x)t10t4t3t2
= (x ∗ y ∗ x)(t1t2t3t9)(y∗x

−1∗y∗x) ∈ [1239]

This means one ti takes [1235] to [1239]

Choose 12 from {12}
Nt1t2t3t5t12 ∈ [137].

We have Nt1t2t3t5t12 = (x ∗ y2)t6t5t8
= (x ∗ y2)(t1t3t7)(y

2∗x∗y−1) ∈ [137]

This means one ti takes [1235] to [137]
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Cayley Diagram

Figure 7.46: Cayley Diagram for G over S12

Fourteenth Double Coset [1237]

Nt1t2t3t7 = {N(t1t2t3t7)
n|n ∈ N}.

We now find the coset stablilizer N(1237). We first find the point stabilizer of 1,2,3 and 7

in N. N (1237) ≥ N1237 = ⟨e⟩.
The number of single cosets in Nt1t2t3t7 is calculated by the formula,

|N |
|N(1237)| =

120
1 = 120.

The orbits of N (1237) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12} .

We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t2t3t7t1 ∈ [1296].

We have Nt1t2t3t7t1 = (y ∗ x)t9t7t2t11
= (y ∗ x)(t1t2t9t6)(x∗y

−1∗x−1∗y−1) ∈ [1296]

This means one ti takes [1237] to [1296]

Choose 2 from {2}
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Nt1t2t3t7t2 ∈ [129].

We have Nt1t2t3t7t2 = (y3)t12t8t5

= (y3)(t1t2t9)
(x∗y2∗x∗y) ∈ [129]

This means one ti takes [1237] to [129]

Choose 3 from {3}
Nt1t2t3t7t3 ∈ [125, 11].

We have Nt1t2t3t7t3 = (x)t11t3t4t5

= (x)(t1t2t5t11)
(x∗y−1∗x) ∈ [125, 11]

This means one ti takes [1237] to [125,11]

Choose 4 from {4}
Nt1t2t3t7t4 ∈ [125, 11].

We have Nt1t2t3t7t4 = (x ∗ y2 ∗ x ∗ y ∗ x−1)t10t6t4t7

= (x ∗ y2 ∗ x ∗ y ∗ x−1)(t1t2t5t11)
(x−1∗y−1∗x−1∗y) ∈ [125, 11]

This means one ti takes [1237] to [125,11]

Choose 5 from {5}
Nt1t2t3t7t5 ∈ [125, 12].

We have Nt1t2t3t7t5 = (y ∗ x ∗ y ∗ x ∗ y)t2t12t1t11
= (y ∗ x ∗ y ∗ x ∗ y)(t1t2t5t12)(y∗x∗y∗x

−1∗y−1) ∈ [125, 12]

This means one ti takes [1237] to [125,12]

Choose 6 from {6}
Nt1t2t3t7t6 ∈ [1235].

We have Nt1t2t3t7t6 = ((x−1 ∗ y)2)t5t7t6t9
= ((x−1 ∗ y)2)(t1t2t3t5)(y

2∗x∗y∗x−1) ∈ [1235]

This means one ti takes [1237] to [1235]

Choose 7 from {7}
Nt1t2t3t7t7 = Nt1t2t3t

2
7 = Nt1t2t3 ∈ [123].

This means one ti takes [1237] to [123]

Choose 8 from {8}
Nt1t2t3t7t8 ∈ [132].

We have Nt1t2t3t7t8 = (y−1 ∗ x−1 ∗ y2)t10t9t4
= (y−1 ∗ x−1 ∗ y2)(t1t3t2)(x∗y

−1∗x∗y2) ∈ [132]

This means one ti takes [1237] to [132]
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Choose 9 from {9}
Nt1t2t3t7t9 ∈ [125].

We have Nt1t2t3t7t9 = (x ∗ y2 ∗ x)t10t4t6
= (x ∗ y2 ∗ x)(t1t2t5)(x∗y

−1∗x∗y2) ∈ [125]

This means one ti takes [1237] to [125]

Choose 10 from {10}
Nt1t2t3t7t10 ∈ [129].

We have Nt1t2t3t7t10 = (x−1 ∗ y−2)t5t7t12

= (x−1 ∗ y−2)(t1t2t9)
(x∗y−1∗x−1∗y∗x) ∈ [129]

This means one ti takes [1237] to [129]

Choose 11 from {11}
Nt1t2t3t7t11 ∈ [1239].

We have Nt1t2t3t7t11 = (y5)t3t2t1t7

= (y5)(t1t2t3t9)
(y∗x∗y−1∗x−1∗y) ∈ [1239]

This means one ti takes [1237] to [1239]

Choose 12 from {12}
Nt1t2t3t7t12 ∈ [1245].

We have Nt1t2t3t7t12 = (x ∗ y)t12t8t9t10
= (x ∗ y)(t1t2t4t5)(y∗x

−1∗y) ∈ [1245]

This means one ti takes [1237] to [1245]
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Cayley Diagram

Figure 7.47: Cayley Diagram for G over S12

Fifteenth Double Coset [1239]

Nt1t2t3t9 = {N(t1t2t3t9)
n|n ∈ N}.

We now find the coset stablilizer N(1239). We first find the point stabilizer of 1,2,3 and 9

in N. N (1239) ≥ N1239 = ⟨e⟩.
The number of single right cosets in Nt1t2t3t9 is calculated by the formula,

|N |
|N(1239)| =

120
1 = 120.

The orbits of N (1239) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12} .

We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t2t3t9t1 ∈ [1296].

We have Nt1t2t3t9t1 = (x ∗ y−1 ∗ x ∗ y2)t4t11t5t7
= (x ∗ y−1 ∗ x ∗ y2)(t1t2t9t6)(y∗x

−1∗y∗x∗y−1) ∈ [1296]

This means one ti takes [1239] to [1296]

Choose 2 from {2 }
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Nt1t2t3t9t2 ∈ [125, 12].

We have Nt1t2t3t9t2 = (y5)t4t9t3t6

= (y5)(t1t2t5t12)
(y∗x∗y−1∗x) ∈ [125, 12]

This means one ti takes [1239] to [125,12]

Choose 3 from { 3}
Nt1t2t3t9t3 ∈ [1256].

We have Nt1t2t3t9t3 = (x−1 ∗ y−1)t8t1t12t4

= (x−1 ∗ y−1)(t1t2t5t6)
(y∗x∗y∗x∗y) ∈ [1256]

This means one ti takes [1239] to [1256]

Choose 4 from {4}
Nt1t2t3t9t4 ∈ [1239].

We have Nt1t2t3t9t4 = (y ∗ x−1 ∗ y)t1t8t6t9
= (y ∗ x−1 ∗ y)(t1t2t3t9)(x∗y∗x

−1∗y−1∗x∗y) ∈ [1239]

This means one ti takes [1239] to [1239]

Choose 5 from { 5}
Nt1t2t3t9t5 ∈ [1235].

We have Nt1t2t3t9t5 = (x ∗ y−1)t6t9t3t4

= (x ∗ y−1)(t1t2t3t5)
((x−1∗y)2) ∈ [1235]

This means one ti takes [1239] to [1235]

Choose 6 from {6}
Nt1t2t3t9t6 ∈ [125].

We have Nt1t2t3t9t6 = t1t12t8

= (t1t2t5)
(x−1∗y−1∗x∗y2) ∈ [125]

This means one ti takes [1239] to [125]

Choose 7 from {7}
Nt1t2t3t9t7 ∈ [1239].

We have Nt1t2t3t9t7 = (x ∗ y−1 ∗ x−1 ∗ y−1 ∗ x−1)t2t12t10t4

= (x ∗ y−1 ∗ x−1 ∗ y−1 ∗ x−1)(t1t2t3t9)
(y−1∗x−1∗y) ∈ [1239]

This means one ti takes [1239] to [1239]

Choose 8 from {8}
Nt1t2t3t9t8 ∈ [137].

We have Nt1t2t3t9t8 = (x ∗ y2 ∗ x ∗ y)t3t7t2
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= (x ∗ y2 ∗ x ∗ y)(t1t3t7)(y∗x∗y∗x
−1) ∈ [137]

This means one ti takes [1239] to [137]

Choose 9 from {9}
Nt1t2t3t9t9 = Nt1t2t3t

2
9 = Nt1t2t3 ∈ [123].

This means one ti takes [1239] to [123]

Choose 10 from {10}
Nt1t2t3t9t10 ∈ [1239].

We have Nt1t2t3t9t10 = (x−1 ∗ y−2)t12t1t7t6

= (x−1 ∗ y−2)(t1t2t3t9)
(xy) ∈ [1239]

This means one ti takes [1239] to [1239]

Choose 11 from {11 }
Nt1t2t3t9t11 ∈ [1235].

We have Nt1t2t3t9t11 = (x−1 ∗ y−2)t12t1t5t2

= (x−1 ∗ y−2)(t1t2t3t5)
(x∗y−1∗x−1) ∈ [1235]

This means one ti takes [1239] to [1235]

Choose 12 from { 12}
Nt1t2t3t9t12 ∈ [1237].

We have Nt1t2t3t9t12 = (y5)t3t2t1t9

= (y5)(t1t2t3t7)
(y∗x∗y−1∗x−1∗y) ∈ [1237]

This means one ti takes [1239] to [1237]
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Cayley Diagram

Figure 7.48: Cayley Diagram for G over S12

Sixteenth Double Coset [1, 2, 5, 1]

Nt1t2t5t1 = {N(t1t2t5t1)
n|n ∈ N}.

We now find the coset stablilizer N(1251). We first find the point stabilizer of 1,2,5 and 1

in N.

N1251 = {n ∈ N |(1251)n = 1251}
N1251 = ⟨e⟩.
We find different names ofNt1t2t5t1. Now, t1t2t5t1 = (x∗y−1∗x−1∗y−1∗x−1)t5t7t1t5 =⇒
Nt1t2t5t1 = Nt5t7t1t5

N(t1t2t5t1)
(1,5)(2,7)(3,8)(4,10)(6,11)(9,12) = Nt5t7t1t5.

But Nt5t7t1t5 = Nt1t2t5t1 =⇒ N(t1t2t5t1)
(1,5)(2,7)(3,8)(4,10)(6,11)(9,12) = Nt1t2t5t1.

=⇒ (1, 5)(2, 7)(3, 8)(4, 10)(6, 11)(9, 12) ∈ N (1251).

Thus N (1251) ≥ ⟨N1251, (1, 5)(2, 7)(3, 8)(4, 10)(6, 11)(9, 12)⟩.
= ⟨e, (1, 5)(2, 7)(3, 8)(4, 10)(6, 11)(9, 12)⟩.
The number of single cosets in Nt1t2t5t1 is calculated by this formula,

|N |
|N(1251)| =

120
6 = 20.

The orbits of N (1251) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are
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{1, 8, 3, 5, 4, 10}, {2, 6, 11, 7, 9, 12}
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1,8,3,5,4,10}
Nt1t2t5t1t1 = Nt1t2t5t

2
1 = Nt1t2t5 ∈ [125].

This means six ti’s take [1251] to [125]

Choose 2 from {2,6,11,7,9,12}
Nt1t2t5t1t2 ∈ [125, 11].

We have Nt1t2t5t1t2 = (x ∗ y ∗ x)t8t12t1t11
= (x ∗ y ∗ x)(t1t2t5t11)(y

2∗x) ∈ [125, 11]

This means six ti’s take [1251] to [125,11]

Cayley Diagram

Figure 7.49: Cayley Diagram for G over S12

Seventeenth Double Coset [1256]

Nt1t2t5t6 = {N(t1t2t5t6)
n|n ∈ N}.

We now find the coset stablilizer N(1256). We first find the point stabilizer of 1,2,5 and 6

in N.

N1256 = {n ∈ N |(1256)n = 1256}
N1256 = ⟨e⟩.
We find different names of Nt1t2t5t6. Now, t1t2t5t6 = (x∗y∗x−1∗y∗x−1∗y)t8t6t10t2 =⇒
Nt1t2t5t6 = Nt8t6t10t2

N(t1t2t5t6)
(1,8)(2,6)(3,4)(5,10)(7,12)(9,11) = Nt8t6t10t2.
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But Nt8t6t10t2 = Nt1t2t5t6 =⇒ N(t1t2t5t6)
(1,8)(2,6)(3,4)(5,10)(7,12)(9,11) = Nt1t2t5t6.

=⇒ (1, 8)(2, 6)(3, 4)(5, 10)(7, 12)(9, 11) ∈ N (1256).

Thus N (1256) ≥ ⟨N1256, (1, 8)(2, 6)(3, 4)(5, 10)(7, 12)(9, 11)⟩.
= ⟨e, (1, 8)(2, 6)(3, 4)(5, 10)(7, 12)(9, 11)⟩.
The number of single cosets in Nt1t2t5t6 is calculated by this formula,

|N |
|N(1256)| =

120
2 = 60.

The orbits of N (1256) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1, 8}, {2, 6}, {3, 4}, {5, 10}, {7, 12}, {9, 11}
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1,8}
Nt1t2t5t6t1 ∈ [137].

We have Nt1t2t5t6t1 = (y ∗ x ∗ y2 ∗ x)t1t9t8
= (y ∗ x ∗ y2 ∗ x)(t1t3t7)(y∗x∗y)

This means two ti’s take [1256] to [137]

Choose 2 from {2,6}
Nt1t2t5t6t2 ∈ [125].

We have Nt1t2t5t6t2 = (x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y)t8t6t10
= (x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y)(t1t2t5)(y∗x∗y

2∗x∗y−1) ∈ [125]

This means two ti’s take [1256] to [125]

Choose 3 from {3,4}
Nt1t2t5t6t3 ∈ [1239].

We have Nt1t2t5t6t3 = (x ∗ y−1 ∗ x−1 ∗ y−1 ∗ x)t6t4t3t5
= (x ∗ y−1 ∗ x−1 ∗ y−1 ∗ x)(t1t2t3t9)(y∗x

−1∗y−1∗x∗y) ∈ [1239]

This means two ti’s take [1256] to [1239]

Choose 5 from {5,10}
Nt1t2t5t6t5 ∈ [129].

We have Nt1t2t5t6t5 = (x ∗ y ∗ x−1 ∗ y)t12t1t3
= (x ∗ y ∗ x−1 ∗ y)(t1t2t9)(x∗y

−1∗x−1) ∈ [129]

This means two ti’s take [1256] to [129]

Choose 7 from {7,12}
Nt1t2t5t6t7 ∈ [1256].
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We have Nt1t2t5t6t7 = (x∗y∗x−1∗y−2)t1t5t2t10 = (x∗y∗x−1∗y−2)(t1t2t5t6)
(x∗y3) ∈ [1256]

This means two ti’s take [1256] to [1256]

Choose 9 from {9,11}
Nt1t2t5t6t9 ∈ [132].

We have Nt1t2t5t6t9 = (y−2 ∗ x−1)t5t6t7

= (y−2 ∗ x−1)(t1t3t2)
y2∗x∗y∗x−1) ∈ [132]

This means two ti’s take [1256] to [132]

Cayley Diagram

Figure 7.50: Cayley Diagram for G over S12

Eighteenth Double Coset [1, 2, 5, 11]

Nt1t2t5t11 = {N(t1t2t5t11)
n|n ∈ N}.

We now find the coset stablilizer N(125,11). We first find the point stabilizer of 1,2,5 and

11 in N. N (125,11) ≥ N125,11 = ⟨e⟩.
The number of single right cosets in Nt1t2t5t11 is calculated by the formula,

|N |
|N(12511)| =

120
1 = 120.

The orbits of N (12511) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}.
We will determine the double cosets by selecting one representative from each orbit such

as,
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Choose 1 from {1}
Nt1t2t5t11t1 ∈ [137].

We have Nt1t2t5t11t1 = (y−1 ∗ x ∗ y2)t3t12t5
= (y−1 ∗ x ∗ y2)(t1t3t7)(y

−2∗x−1∗y) ∈ [137]

This means one ti takes [125,11] to [137]

Choose 2 from { 2 }
Nt1t2t5t11t2 ∈ [1237].

We have Nt1t2t5t11t2 = ((x, y))t10t12t2t4

= ((x, y))(t1t2t3t7)
(x−1∗y∗x−1) ∈ [1237]

This means one ti takes [125,11] to [1237]

Choose 3 from {3}
Nt1t2t5t11t3 ∈ [1251].

We have Nt1t2t5t11t3 = (y ∗ x ∗ y−2)t5t3t9t5

= (y ∗ x ∗ y−2)(t1t2t5t1)
(x−1∗y−2) ∈ [1251]

This means one ti takes [125,11] to [1251]

Choose 4 from {4 }
Nt1t2t5t11t4 ∈ [127].

We have Nt1t2t5t11t4 = (y−1)t12t10t2

= (y−1)(t1t2t7)
(y∗x−1∗y−1) ∈ [127]

This means one ti takes [125,11] to [127]

Choose 5 from {5}
Nt1t2t5t11t5 ∈ [1237].

We have Nt1t2t5t11t5 = (x ∗ y−1 ∗ x−1 ∗ y2)t10t6t9t11
= (x ∗ y−1 ∗ x−1 ∗ y2)(t1t2t3t7)(x

−1∗y−1∗x−1∗y) ∈ [1237]

This means one ti takes [125,11] to [1237]

Choose 6 from { 6 }
Nt1t2t5t11t6 ∈ [132].

We have Nt1t2t5t11t6 = (x−1 ∗ y−2)t11t8t10

= (x−1 ∗ y−2)(t1t3t2)
(x−1∗y) ∈ [132]

This means one ti takes [125,11] to [132]

Choose 7 from {7}
Nt1t2t5t11t7 ∈ [1235].
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We have Nt1t2t5t11t7 = (y ∗ x−1)t1t7t6t8

= (y ∗ x−1)(t1t2t3t5)
(x−1∗y∗x−1∗y∗x−1) ∈ [1235]

This means one ti takes [125,11] to [1235]

Choose 8 from {8}
Nt1t2t5t11t8 ∈ [125, 11].

We have Nt1t2t5t11t8 = (y−1 ∗ x)t10t11t4t2
= (y−1 ∗ x)(t1t2t5t11)(x∗y

2∗x∗y−1∗x) ∈ [125, 11]

This means one ti takes [125,11] to [125,11]

Choose 9 from {9}
Nt1t2t5t11t9 ∈ [1235].

We have Nt1t2t5t11t9 = ((y−1 ∗ x−1)2)t8t1t5t7

= ((y−1 ∗ x−1)2)(t1t2t3t5)
(y−2) ∈ [1235]

This means one ti takes [125,11] to [1235]

Choose 10 from {10}
Nt1t2t5t11t10 ∈ [1296].

We have Nt1t2t5t11t10 = (x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y)t8t7t2t11
= (x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y)(t1t2t9t6)(x∗y) ∈ [1296]

This means one ti takes [125,11] to [1296]

Choose 11 from {11}
Nt1t2t5t11t11 = Nt1t2t5t

2
11 = Nt1t2t5 ∈ [125].

This means one ti takes [125,11] to [125]

Choose 12 from {12}
Nt1t2t5t11t12 ∈ [137].

We have Nt1t2t5t11t12 = (y−3)t1t11t5

= (y−3)(t1t3t7)
(y−1∗x−1∗y−1) ∈ [137]

This means one ti takes [125,11] to [137]
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Cayley Diagram

Figure 7.51: Cayley Diagram for G over S12

Nineteenth Double Coset [1, 2, 5, 12]

Nt1t2t5t12 = {N(t1t2t5t12)
n|n ∈ N}.

We now find the coset stablilizer N(125,12). We first find the point stabilizer of 1,2,5 and

12 in N.

N125,12 = {n ∈ N |(125, 12)n = 125, 12}
N125,12 = ⟨e⟩.
We find different names ofNt1t2t5t12. Now, t1t2t5t12 = (x∗y−3)t1t7t5t8 =⇒ Nt1t2t5t12 =

Nt1t7t5t8

N(t1t2t5t12)
(2,7)(3,9)(6,11)(8,12) = Nt1t7t5t8.

But Nt1t7t5t8 = Nt1t2t5t12 =⇒ N(t1t2t5t12)
(2,7)(3,9)(6,11)(8,12) = Nt1t2t5t12.

=⇒ (2, 7)(3, 9)(6, 11)(8, 12) ∈ N (125,12).

Thus N (125,12) ≥ ⟨N125,12, (2, 7)(3, 9)(6, 11)(8, 12)⟩.
= ⟨e, (2, 7)(3, 9)(6, 11)(8, 12)⟩.
The number of single right cosets in Nt1t2t5t12 is calculated by the formula,

|N |
|N(12512)| =

120
2 = 60.

The orbits of N (12512)on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}.
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We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t2t5t12t1 ∈ [127].

We have Nt1t2t5t12t1 = (y * x * y * x * y)t11t10t2

= (y * x * y * x * y)(t1t2t7)
(x−1∗y)

This means one ti takes [125,12] to [127]

Choose 2 from {2}
Nt1t2t5t12t2 ∈ [1237].

We have Nt1t2t5t12t2 = ((x−1 ∗ y)2)t5t1t12t3
= ((x−1 ∗ y)2)(t1t2t3t7)(x

−1,y−1) ∈ [1237]

This means one ti takes [125,12] to [1237]

Choose 3 from {3}
Nt1t2t5t12t3 ∈ [1239].

We have Nt1t2t5t12t3 = (x ∗ y2)t4t3t5t7
= (x ∗ y2)(t1t2t3t9)(y∗x

−1∗y∗x−1∗y) ∈ [1239]

This means one ti takes [125,12] to [1239]

Choose 4 from {4}
Nt1t2t5t12t4 ∈ [1245].

We have Nt1t2t5t12t4 = (x ∗ y2 ∗ x ∗ y)t3t9t8t5
= (x ∗ y2 ∗ x ∗ y)(t1t2t4t5)(y∗x∗y∗x

−1) ∈ [1245]

This means one ti takes [125,12] to [1245]

Choose 5 from {5}
Nt1t2t5t12t5 ∈ [125, 12].

We have Nt1t2t5t12t5 = (y3 ∗ x)t1t2t5t12 ∈ [125, 12]

This means one ti takes [125,12] to [125,12]

Choose 6 from {6}
Nt1t2t5t12t6 ∈ [129].

We have Nt1t2t5t12t6 = (x−1 ∗ y)t6t8t11
= (x−1 ∗ y)(t1t2t9)(y∗x∗y

−2) ∈ [129]

This means one ti takes [125,12] to [129]

Choose 7 from {7}
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Nt1t2t5t12t7 ∈ [1237].

We have Nt1t2t5t12t7 = (x ∗ y)(t5t1t8t9)
= (x ∗ y) ∗ (t1t2t3t7)(y∗x∗y

−1∗x−1∗y−1) ∈ [1237]

This means one ti takes [125,12] to [1237]

Choose 8 from {8}
Nt1t2t5t12t8 ∈ [125].

We have Nt1t2t5t12t8 = (x ∗ y−3)t1t7t5

= (x ∗ y−3)(t1t2t5)
(x∗y∗x−1∗y−2) ∈ [125]

This means one ti takes [125,12] to [125]

Choose 9 from {9}
Nt1t2t5t12t9 ∈ [1239].

We have Nt1t2t5t12t9 = y5(t4t9t5t2)

= y5(t1t2t3t9)
(y∗x∗y−1∗x) ∈ [1239]

This means one ti takes [125,12] to [1239]

Choose 10 from {10}
Nt1t2t5t12t10 ∈ [134].

We have Nt1t2t5t12t10 = (y2)t3t12t8

= (y2)(t1t3t4)
(x∗y∗x−1∗y) ∈ [134]

This means one ti takes [125,12] to [134]

Choose 11 from {11}
Nt1t2t5t12t11 ∈ [129].

We have Nt1t2t5t12t11 = (x ∗ y4)(t11t12t6)
= (x ∗ y4) ∗ (t1t2t9)(x∗y∗x∗y

−1) ∈ [129]

This means one ti takes [125,12] to [129]

Choose 12 from {12}
Nt1t2t5t12t12 = Nt1t2t5t

2
12 = Nt1t2t5 ∈ [125]

This means one ti takes [125,12] to [125]
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Cayley Diagram

Figure 7.52: Cayley Diagram for G over S12

Twenty Double Coset [1245]

Nt1t2t4t5 = {N(t1t2t4t5)
n|n ∈ N}.

We now find the coset stablilizer N(1245). We first find the point stabilizer of 1,2,4 and 5

in N.

N1245 = {n ∈ N |(1245)n = 1245}
N1245 = ⟨e⟩.
We find different names of Nt1t2t4t5. Now, t1t2t4t5 = (y5)t2t1t6t5 =⇒ Nt1t2t4t5 =

Nt2t1t6t5

N(t1t2t4t5)
(1,2)(3,7)(4,6)(8,11) = Nt2t1t6t5.

But Nt2t1t6t5 = Nt1t2t4t5 =⇒ N(t1t2t4t5)
(1,2)(3,7)(4,6)(8,11) = Nt1t2t4t5.

=⇒ (1, 2)(3, 7)(4, 6)(8, 11) ∈ N (1245).

Thus N (1245) ≥ ⟨N1245, (1, 2)(3, 7)(4, 6)(8, 11)⟩.
= ⟨e, (1, 2)(3, 7)(4, 6)(8, 11)⟩.
The number of single cosets in Nt1t2t4t5 is calculated by the formula,

|N |
|N(1245)| =

120
2 = 60.

The orbits of N (1245) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}.
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We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t2t4t5t1 ∈ [1237].

We have Nt1t2t4t5t1 = (y ∗ x ∗ y ∗ x−1 ∗ y)t12t8t6t11
= (y ∗ x ∗ y ∗ x−1 ∗ y)(t1t2t3t7)(y∗x

−1∗y) ∈ [1237]

This means one ti takes [1245] to [1237]

Choose 2 from {2}
Nt1t2t4t5t2 ∈ [1237].

We have Nt1t2t4t5t2 = (x, y−1)(t12t11t4t8)

= (x, y−1) ∗ (t1t2t3t7)(y
x) ∈ [1237]

This means one ti takes [1245] to [1237]

Choose 3 from {3}
Nt1t2t4t5t3 ∈ [12351].

We have Nt1t2t4t5t3 = (x ∗ y3)t12t2t3t11t12
= (x ∗ y3)(t1t2t3t5t1)(x∗y

−1∗x−1∗y2) ∈ [12351]

This means one ti takes [1245] to [12351]

Choose 4 from {4}
Nt1t2t4t5t4 ∈ [125].

We have Nt1t2t4t5t4 = (x−1, y−1)t10t12t8

= (x−1, y−1)(t1t2t5)
(x∗y)2) ∈ [125]

This means one ti takes [1245] to [125]

Choose 5 from {5}
Nt1t2t4t5t5 = Nt1t2t4t

2
5 = Nt1t2t4 ∈ [124].

This means one ti takes [1245] to [124]

Choose 6 from {6}
Nt1t2t4t5t6 ∈ [125].

We have Nt1t2t4t5t6 = (y ∗ x−1 ∗ y ∗ x ∗ y)(t10t12t11)
= (y ∗ x−1 ∗ y ∗ x ∗ y) ∗ (t1t2t5)(x

−1∗y∗x−1) ∈ [125]

This means one ti takes [1245] to [125]

Choose 7 from {7}
Nt1t2t4t5t7 ∈ [12351].
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We have Nt1t2t4t5t7 = (x ∗ y4)t1t2t3t5t1 ∈ [12351]

This means one ti takes [1245] to [12351]

Choose 8 from {8}
Nt1t2t4t5t8 ∈ [1245].

We have Nt1t2t4t5t8 = (x−1 ∗ y)t12t2t9t11
= (x−1 ∗ y)(t1t2t4t5)(x∗y

−1∗x−1∗y2) ∈ [1245]

This means one ti takes [1245] to [1245]

Choose 9 from {9}
Nt1t2t4t5t9 ∈ [127].

We have Nt1t2t4t5t9 = (y−1 ∗ x−1 ∗ y)t7t5t8
= (y−1 ∗ x−1 ∗ y)(t1t2t7)(y

−1) ∈ [127]

This means one ti takes [1245] to [127]

Choose 10 from {10}
Nt1t2t4t5t10 ∈ [1245].

We have Nt1t2t4t5t10 = (y2 ∗ x ∗ y ∗ x−1 ∗ y)t1t2t4t5 ∈ [1245]

This means one ti takes [1245] to [1245]

Choose 11 from {11}
Nt1t2t4t5t11 ∈ [1245].

We have Nt1t2t4t5t11 = (x−1 ∗ y−2)(t12t1t9t8)

= (x−1 ∗ y−2) ∗ (t1t2t4t5)(x
y) ∈ [1245]

This means one ti takes [1245] to [1245]

Choose 12 from {12}
Nt1t2t4t5t12 ∈ [125, 12].

We have Nt1t2t4t5t12 = (y ∗ x ∗ y ∗ x−1 ∗ y)t9t7t5t6
= (y ∗ x ∗ y ∗ x−1 ∗ y)(t1t2t5t12)(x∗y

−1∗x−1∗y−1) ∈ [125, 12]

This means one ti takes [1245] to [125,12]
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Cayley Diagram

Figure 7.53: Cayley Diagram for G over S12

Twenty-one Double Coset [1, 2, 9, 6]

Nt1t2t9t6 = {N(t1t2t9t6)
n|n ∈ N}.

We now find the coset stablilizer N(1296). We first find the point stabilizer of 1,2,9 and 6

in N.

N1296 = {n ∈ N |(1296)n = 1296}
N1296 = ⟨e⟩.
We find different names of Nt1t2t9t6. Now, t1t2t9t6 = (y5)t4t9t2t12 =⇒ Nt1t2t9t6 =

Nt4t9t2t12

N(t1t2t9t6)
(1,4)(2,9)(3,5)(6,12)(7,11)(8,10) = Nt4t9t2t12.

But Nt4t9t2t12 = Nt1t2t9t6 =⇒ N(t1t2t9t6)
(1,4)(2,9)(3,5)(6,12)(7,11)(8,10) = Nt1t2t9t6.

=⇒ (1, 4)(2, 9)(3, 5)(6, 12)(7, 11)(8, 10) ∈ N (1296).

Thus N (1296) ≥ ⟨N1296, (1, 4)(2, 9)(3, 5)(6, 12)(7, 11)(8, 10)⟩.
= ⟨e, (1, 4)(2, 9)(3, 5)(6, 12)(7, 11)(8, 10)⟩.
The number of single cosets in Nt1t2t9t6 is calculated by the formula,

|N |
|N(1296)| =

120
2 = 60.

The orbits of N (1296) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}.
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We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t2t9t6t1 ∈ [1239].

We have Nt1t2t9t6t1 = (x−1, y−1)t1t5t3t11

= (x−1, y−1)(t1t2t3t9)
(x∗y3) ∈ [1239]

This means one ti takes [1296] to [1239]

Choose 2 from {2}
Nt1t2t9t6t2 ∈ [137].

We have Nt1t2t9t6t2 = (x ∗ y ∗ x ∗ y−1)t11t6t12

= (x ∗ y ∗ x ∗ y−1)(t1t3t7)
(x∗y−3) ∈ [137]

This means one ti takes [1296] to [137]

Choose 3 from {3}
Nt1t2t9t6t3 ∈ [1237].

We have Nt1t2t9t6t3 = (x ∗ y−1 ∗ x)t3t9t7t2
= (x ∗ y−1 ∗ x) ∗ (t1t2t3t7)(y∗x∗y∗x

−1) ∈ [1237]

This means one ti takes [1296] to [1237]

Choose 4 from {4}
Nt1t2t9t6t4 ∈ [1239].

We have Nt1t2t9t6t4 = (y−2 ∗ x−1 ∗ y)(t4t3t5t7)
= (y−2 ∗ x−1 ∗ y) ∗ (t1t2t3t9)(y∗x

−1∗y∗x−1∗y) ∈ [1239]

This means one ti takes [1296] to [1239]

Choose 5 from {5}
Nt1t2t9t6t5 ∈ [1237].

We have Nt1t2t9t6t5 = (x, y)(t5t2t11t9)

= (x, y) ∗ (t1t2t3t7)(x∗y
4) ∈ [1237]

This means one ti takes [1296] to [1237]

Choose 6 from {6}
Nt1t2t9t6t6 = Nt1t2t9t

2
6 = Nt1t2t9 ∈ [129].

This means one ti takes [1296] to [129]

Choose 7 from {7}
Nt1t2t9t6t7 ∈ [137].
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We have Nt1t2t9t6t7 = (x ∗ y4)t9t8t5
= (x ∗ y4) ∗ (t1t3t7)(x∗y

2∗x) ∈ [137]

This means one ti takes [1296] to [137]

Choose 8 from {8}
Nt1t2t9t6t8 ∈ [125, 11].

We have Nt1t2t9t6t8 = (y ∗ x ∗ y2)t5t9t3t6
= (y ∗ x ∗ y2) ∗ (t1t2t5t11)(y

−1∗x−1) ∈ [125, 11]

This means one ti takes [1296] to [125,11]

Choose 9 from {9}
Nt1t2t9t6t9 ∈ [137].

We have Nt1t2t9t6t9 = (y2 ∗ x ∗ y)(t7t12t6)
= (y2 ∗ x ∗ y) ∗ (t1t3t7)(y∗x) ∈ [137]

This means one ti takes [1296] to [137]

Choose 10 from {10}
Nt1t2t9t6t10 ∈ [125, 11].

We have Nt1t2t9t6t10 = (x−1 ∗ y ∗ x−1 ∗ y ∗ x)(t3t2t5t12)
= (x−1 ∗ y ∗ x−1 ∗ y ∗ x) ∗ (t1t2t5t11)(x

−1∗y∗x−1∗y∗x) ∈ [125, 11]

This means one ti takes [1296] to [125,11]

Choose 11 from {11}
Nt1t2t9t6t11 ∈ [137].

We have Nt1t2t9t6t11 = y3(t2t10t3)

= y3(t1t3t7)
(y−1∗x−1∗y) ∈ [137]

This means one ti takes [1296] to [137]

Choose 12 from {12}
Nt1t2t9t6t12 ∈ [129].

We have Nt1t2t9t6t12 = y5(t4t9t2)

= y5 ∗ (t1t2t9)(y∗x∗y
−1∗x) ∈ [129]

This means one ti takes [1296] to [129]
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Cayley Diagram

Figure 7.54: Cayley Diagram for G over S12

Twenty-two Double Coset [1, 2, 3, 5, 1]

Nt1t2t3t5t1 = {N(t1t2t3t5t1)
n|n ∈ N}.

We now find the coset stablilizer N(12351). We first find the point stabilizer of 1,2,3,5 and

1 in N.

N12351 = {n ∈ N |(12351)n = 12351}
N12351 = ⟨e⟩.
We find different names ofNt1t2t3t5t1. Now, t1t2t3t5t1 = (x−1∗y∗x−1∗y∗x)t2t12t10t11t2 =⇒
Nt1t2t3t5t1 = Nt2t12t10t11t2

N(t1t2t3t5t1)
(1,2,12)(3,10,7)(4,6,9)(5,11,8) = Nt2t12t10t11t2.

ButNt2t12t10t11t2 = Nt1t2t3t5t1 =⇒ N(t1t2t3t5t1)
(1,2,12)(3,10,7)(4,6,9)(5,11,8) = Nt1t2t3t5t1.

=⇒ (1, 2, 12)(3, 10, 7)(4, 6, 9)(5, 11, 8) ∈ N (12351).

Thus N (12351) ≥ ⟨N12351, (1, 2, 12)(3, 10, 7)(4, 6, 9)(5, 11, 8)⟩.
= ⟨e, (1, 2, 12)(3, 10, 7)(4, 6, 9)(5, 11, 8)⟩.
The number of single right cosets in Nt1t2t3t5t1 is calculated by the formula,

|N |
|N(12351)| =

120
6 = 20.

The orbits of N (12351) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

{1, 12, 6, 2, 9, 4}, {3, 7, 11, 10, 8, 5}
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We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1,12,6,2,9,4}
Nt1t2t3t5t1t1 = Nt1t2t3t5t

2
1 = Nt1t2t3t5 ∈ [1235].

This means six ti’s take [12351] to [1235]

Choose 3 from {3,7,11,10,8,5}
Nt1t2t3t5t1t3 ∈ [1245].

We have Nt1t2t3t5t1t3 = (x ∗ y2 ∗ x ∗ y−1 ∗ x)t12t2t9t11
= (x ∗ y2 ∗ x ∗ y−1 ∗ x) ∗ (t1t2t4t5)(x∗y

−1∗x−1∗y2) ∈ [1245]

This means six ti’s take [12351] to [1245]

Cayley Diagram

Figure 7.55: Cayley Diagram for G over S12

Now, we have Completed the Double Coset Enumeration since all the single

right Cosets go back and there is no new Cosets. This is the whole picture in Figure 4.44.
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Cayley Diagram

Figure 7.56: Cayley Diagram for G over S12

It is possible that the coset stabiliser of N (w) of the coset Nw increases and therefore
|N |
|Nw| decreases. Our cayley diagram shows that

G = N ∪Nt1 ∪Nt1t2 ∪Nt1t3 ∪Nt1t2t3 ∪Nt1t2t4 ∪Nt1t2t5 ∪Nt1t2t7

∪Nt1t2t9 ∪Nt1t3t2 ∪Nt1t3t4 ∪Nt1t3t7 ∪Nt1t2t3t5 ∪Nt1t2t3t7

∪Nt1t2t3t9 ∪Nt1t2t5t1 ∪Nt1t2t5t6 ∪Nt1t2t5t11

∪Nt1t2t5t12 ∪Nt1t2t4t5 ∪Nt1t2t9t6 ∪Nt1t2t3t5t1

|G| ≤ (|N |+ | |N |
|N(1)| +

|N |
|N(12)| +

|N |
|N(13)| +

|N |
|N(123)| +

|N |
|N(124)|

+ |N |
|N(125)|+

|N |
|N(127)|+

|N |
|N(129)|+

|N |
|N(132)|+

|N |
|N134|+

|N |
|N(137)|+

|N |
|N(1235)|+

|N |
|N(1237)|+

|N |
|N(1239)|+

|N |
|N(1251)|

+ |N |
|N(1256)| +

|N |
|N(12511)| +

|N |
|N(12512)| +

|N |
|N(1245)| +

|N |
|N(1296)| +

|N |
|N(12351)|X|N |)

G ≤ (1 + 12 + 60 + 60 + 60 + 15 + 120 + 60 + 120 + 60 + 15 + 120 + 120 + 120 + 120 +

20 + 60 + 120 + 60 + 60 + 60 + 20)

=⇒ |G| ≤ 1463X120 =⇒ |G| ≤ 175560.

G acts on 1463 cosets that are given in the cayley diagram. Let X be the set of these

1463 cosets. Now f : G → Sx is a homomorphism.
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G
Kerf

∼= Imf (First Isomorphsim Theorem) =⇒ G
Kerf

∼= ⟨f(x), f(y), f(t)⟩
=⇒ | G

Kerf | = 175560.

This means |G| ≥ 175560 . We know |G| ≤ 175560 from the cayley diagram. Therefore,

|G| = 175560.
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7.7 Construction of (3 : 24) : (S5 : 2) over S5

LetN ∼= S5⟨x, y⟩ where x ∼ (1, 20, 6, 10)(2, 19, 8, 12)(3, 13)(4, 15)(5, 16, 11, 17)(7, 14, 9, 18),

and

y ∼ (1, 15)(2, 13)(3, 11, 8, 18)(4, 9, 6, 17)(5, 16, 19, 10)(7, 14, 20, 12). The progenitor 2∗20 :

N has symmetric presentation

G<x,y,t>:=Group<x,y,t|x^4 , y^4 ,

(y^-1 * x)^3 ,

x^-2 * y^-2 * x^-1 * y^2 * x^2 * y^-1,

t^2>;

We want to verify that the presentation given above is correct.

Using the theorem: 2∗n:N
ti,tj

∼= 2n : N where 1 ≤ i ≤ j ≤ n,

we will show that 2∗20:N
((x2∗y−1∗x−1∗y−1)∗t(x∗y∗x∗y2))3

∼= (3 : 24) : (S5 : 2) Thus, we will prove

G<x,y,t>:=Group<x,y,t|x^4 , y^4 ,

(y^-1 * x)^3 ,x^-2 * y^-2 * x^-1 * y^2 * x^2 * y^-1,

t^2,

(t,y^2),(t,(y^-1*x*y)^2),

(t,t^{(y*x)}),(t,t^{(x^2*y^-1)}),

(t,t^{(x^2*y*x^-1)}),

(t,t^{(x*y*x)}),(t,t^{(x^2*y*x^-1*y^-1)})> ~ (3:2^4):(S_5:2)

We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N . We need to determine all distinct double cosets NwN and find the number

of right cosets in each double coset. It suffices to find the double coset of Nwti for one

representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw, so we

find our index, which is the order of G over the order of N. Hence, |G|
|N | =

5760
120 = 48 . Now

we know that we have 48 distinct single cosets.

Expanding Relation We will expand our only relation.

((x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t(x ∗ y ∗ x ∗ y2))3

= (x2 ∗ y−1 ∗x−1 ∗ y−1) ∗ t2 ∗ (x2 ∗ y−1 ∗x−1 ∗ y−1) ∗ t2 ∗ (x2 ∗ y−1 ∗x−1 ∗ y−1) ∗ t2
= (x2 ∗ y−1 ∗ x−1 ∗ y−1)3 ∗ (t(x

2∗y−1∗x−1∗y−1)2

2 ) ∗ (t(x
2∗y−1∗x−1∗y−1)

2 ) ∗ t2
=⇒ (x2 ∗ y−1 ∗ x−1 ∗ y−1)3 ∗ t2 ∗ t5t2 = e =⇒ (x2 ∗ y−1 ∗ x−1 ∗ y−1)3 ∗ t2 = t2 ∗ t5
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First Double Coset [∗]

NeN = {Nen|n ∈ N ] = [N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The formula for the number of right cosets in N is 120
120 = 1.

Since N is transitive on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.
We need only determine the double coset of the right cosets Nt1. Thus 20 ti’s extend the

double coset [∗] to the double coset Nt1N = [1].

Cayley Diagram

captionCayley Diagram for G over S20

Second Double Coset [1]

Nt1N = {Ntn1 |n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10,

Nt11, Nt12, Nt13, Nt14, Nt15, Nt16, Nt17, Nt18, Nt19, Nt20

We now find the Coset Stabilizer N (1). We first find the point stabilizer of 1 in N .

N1 = {n ∈ N |1n = 1}
= ⟨(3, 8)(4, 6)(5, 19)(7, 20)(9, 17)(10, 16)(11, 18)(12, 14)
(3, 20)(4, 19)(5, 12)(6, 14)(7, 10)(8, 16)(13, 18)(15, 17)⟩.
Thus, N (1) ≥ N1 = ⟨(3, 8)(4, 6)(5, 19)(7, 20)(9, 17)(10, 16)(11, 18)(12, 14)
(3, 20)(4, 19)(5, 12)(6, 14)(7, 10)(8, 16)(13, 18)(15, 17)⟩
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The number of single right cosets in Nt1N is calculated by the formula |N |
|N(1)| =

120
6 = 20.

The orbits of N (1) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20} are

{1}, {2}, {3, 8, 20, 16, 7, 10}, {4, 6, 19, 14, 5, 12}, {9, 17, 15}, {11, 18, 13}. We will determine

the double cosetes by selecting one representative from each orbit such as,

Choose 1 from {1}
Nt1t1 = Nt21 = N ∈ [∗]
This means one ti takes [1] to [*]

Choose 2 from {2}
Nt1t2 ∈ [12]

This means one ti takes [1] to [12]

Choose 3 from {3, 8, 20, 16, 7, 10}
Nt1t3 ∈ [1].

We have Nt1t3 = (x ∗ y ∗ x ∗ y ∗ x)t1 ∈ [1]

This means six ti’s take [1] to [1]

Choose 4 from {4, 6, 19, 14, 5, 12}
Nt1t4 ∈ [14]

This means six ti’s take [1] to [14]

Choose 9 from {9,17,15}
Nt1t9 ∈ [19]

This means three ti’s take [1] to [19]

Choose 11 from {11, 18, 13}
Nt1t11 ∈ [1, 11]

This means three ti’s take [1] to [1,11]
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Cayley Diagram

Figure 7.57: Cayley Diagram for G over S20

Third Double Coset [12]

Nt1t2 = {N(t1t2)
n|n ∈ N}.

We now find the coset stablilizer N(12). We first find the point stabilizer of 1 and 2 in N.

N12 = {n ∈ N |(12)n = 12}
N12 = ⟨(3, 8)(4, 6)(5, 19)(7, 20)(9, 17)(10, 16)(11, 18)(12, 14)
(3, 20)(4, 19)(5, 12)(6, 14)(7, 10)(8, 16)(13, 18)(15, 17)⟩.
We find different names of Nt1t2. Now, Nt1t2 = Nt6t8

N(t1t2)
(1,6)(2,8)(5,11)(7,9)(10,20)(12,19)(14,18)(16,17) = Nt6t8.

But Nt6t8 = Nt1t2 =⇒ N(t1t2)
(1,6)(2,8)(5,11)(7,9)(10,20)(12,19)(14,18)(16,17) = Nt1t2.

=⇒ (1, 6)(2, 8)(5, 11)(7, 9)(10, 20)(12, 19)(14, 18)(16, 17) ∈ N (12).

Thus N (12) ≥ ⟨N12, (1, 6)(2, 8)(5, 11)(7, 9)(10, 20)(12, 19)(14, 18)(16, 17)⟩.
= ⟨(3, 8)(4, 6)(5, 19)(7, 20)(9, 17)(10, 16)(11, 18)(12, 14)
(3, 20)(4, 19)(5, 12)(6, 14)(7, 10)(8, 16)(13, 18)(15, 17),

(1, 6)(2, 8)(5, 11)(7, 9)(10, 20)(12, 19)(14, 18)(16, 17)⟩.
The number of single right cosets in Nt1t2N is calculated by the formula,
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|N |
|N(12)| =

120
60 = 2.

The orbits of N (12) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20} are

{1, 6, 4, 14, 18, 12, 19, 11, 13, 5}, {2, 8, 3, 16, 17, 10, 20, 9, 15, 7} We will determine the dou-

ble cosets by selecting one representative from each orbit such as,

Choose 1 from {1, 6, 4, 14, 18, 12, 19, 11, 13, 5}
Nt1t2t1 ∈ [1].

We have Nt1t2t1 = (x ∗ y ∗ x ∗ y ∗ x)t1t4 ∈ [14]

This means ten ti’s take [1] to [14]

Choose 2 from {2, 8, 3, 16, 17, 10, 20, 9, 15, 7}
Nt1t2t2 = Nt1t

2
2 = Nt1 ∈ [1]

This means ten ti’s take [1] to [1]

Cayley Diagram

Figure 7.58: Cayley Diagram for G over S20

Fourth Double Coset [14]

Nt1t4 = {N(t1t4)
n|n ∈ N}.

We now find the coset stablilizer N(14). We first find the point stabilizer of 1 and 4 in N.

N14 = {n ∈ N |(14)n = 14}
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N14 = ⟨e⟩.
We find different names of Nt1t4. Now, Nt1t4 = (x2 ∗ y2)t1t6 =⇒ Nt1t4 = Nt1t6

N(t1t4)
(3,8)(4,6)(5,19)(7,20)(9,17)(10,16)(11,18)(12,14) = Nt1t6.

But Nt1t6 = Nt1t4 =⇒ N(t1t4)
(3,8)(4,6)(5,19)(7,20)(9,17)(10,16)(11,18)(12,14) = Nt1t4.

=⇒ (3, 8)(4, 6)(5, 19)(7, 20)(9, 17)(10, 16)(11, 18)(12, 14) ∈ N (14).

Thus N (14) ≥ ⟨N14, (3, 8)(4, 6)(5, 19)(7, 20)(9, 17)(10, 16)(11, 18)(12, 14)⟩.
= ⟨e, (3, 8)(4, 6)(5, 19)(7, 20)(9, 17)(10, 16)(11, 18)(12, 14)⟩.
The number of single right cosets in Nt1t4N is calculated by the formula,

|N |
|N(14)| =

120
12 = 10.

The orbits of N14 on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20} are

{1, 2}, {3, 20, 14, 7, 6, 8, 4, 10, 5, 16, 12, 19}, {9, 11, 17, 18, 15, 13}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1,2}
Nt1t4t1 ∈ [12].

We have Nt1t4t1 = (x ∗ y ∗ x ∗ y ∗ x)t1t2 ∈ [12]

This means two ti’s take [14] to [12]

Choose 3 from {3, 20, 14, 7, 6, 8, 4, 10, 5, 16, 12, 19}
Nt1t4t3 ∈ [1].

We have Nt1t4t3 = Nt2

= (t1)
(x∗y∗x) ∈ [1]

This means twelve ti’s take [14] to [1]

Choose 9 from {9, 11, 17, 18, 15, 13}
Nt1t4t9 ∈ [19].

We have Nt1t4t9 = (x ∗ y ∗ x ∗ y−1 ∗ x)t8t14
= (x ∗ y ∗ x ∗ y−1 ∗ x) ∗ (t1t9)(y∗x

−1∗y−1∗x−1∗y) ∈ [19]

This means six ti’s take [14] to [19]
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Cayley Diagram

Figure 7.59: Cayley Diagram for G over S20

Fifth Double Coset [19]

Nt1t9 = {N(t1t9)
n|n ∈ N}.

We now find the coset stablilizer N(19). We first find the point stabilizer of 1 and 9 in N.

N19 = {n ∈ N |(19)n = 19}
N19 = ⟨(3, 20)(4, 19)(5, 12)(6, 14)(7, 10)(8, 16)(13, 18)(15, 17)⟩.
We find different names of Nt1t9. Now, t1t9 = ((x−1 ∗ y ∗ x)2)t6t16 =⇒ Nt1t9 = Nt6t16

N(t1t9)
(1,6,4)(2,8,3)(5,12,18)(7,10,17)(9,16,20)(11,14,19) = Nt6t16.

But Nt6t16 = Nt1t9 =⇒ N(t1t9)
(1,6,4)(2,8,3)(5,12,18)(7,10,17)(9,16,20)(11,14,19) = Nt1t9.

=⇒ (1, 6, 4)(2, 8, 3)(5, 12, 18)(7, 10, 17)(9, 16, 20)(11, 14, 19)

(1, 6, 19)(2, 8, 20)(3, 9, 16)(4, 11, 14)(5, 18, 13)(7, 17, 15) ∈ N (19).

Thus N (19) ≥ ⟨N19, (1, 6, 4)(2, 8, 3)(5, 12, 18)(7, 10, 17)(9, 16, 20)(11, 14, 19)

(1, 6, 19)(2, 8, 20)(3, 9, 16)(4, 11, 14)(5, 18, 13)(7, 17, 15)⟩.
= ⟨(3, 20)(4, 19)(5, 12)(6, 14)(7, 10)(8, 16)(13, 18)(15, 17),
(1, 6, 4)(2, 8, 3)(5, 12, 18)(7, 10, 17)(9, 16, 20)(11, 14, 19)

(1, 6, 19)(2, 8, 20)(3, 9, 16)(4, 11, 14)(5, 18, 13)(7, 17, 15)⟩.
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The number of single right cosets in Nt1t9N is calculated by the formula,
|N |

|N(19)| =
120
12 = 10.

The orbits of N19 on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20} are

{1, 6, 14, 4, 19, 11}, {2, 8, 16, 3, 20, 9}, {5, 12, 18, 13}, {7, 10, 17, 15}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1, 6, 14, 4, 19, 11}
Nt1t9t1 ∈ [14].

We have Nt1t9t1 = (x ∗ y ∗ x ∗ y2)t9t15
= (x ∗ y ∗ x ∗ y2)(t1t4)(x∗y

2∗x2) ∈ [14]

This means six ti’s take [19] to [14]

Choose 2 from {2, 8, 16, 3, 20, 9}
Nt1t9t2 ∈ [1].

We have Nt1t9t2 = Nt11

= (t1)
((x−1,y−1)) ∈ [1]

This means six ti’s take [19] to [1]

Choose 5 from {5, 12, 18, 13}
Nt1t9t5 ∈ [1, 11].

We have Nt1t9t5 = (x2 ∗ y−1 ∗ x−1 ∗ y−1)t1t11 ∈ [1, 11]

This means four ti’s take [19] to [1,11]

Choose 7 from {7, 10, 17, 15}
Nt1t9t7 ∈ [19].

We have Nt1t9t7 = (x2 ∗ y−1 ∗ x−1 ∗ y−1)t1t9 ∈ [19]

This means six ti’s take [19] to [19]
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Cayley Diagram

Figure 7.60: Cayley Diagram for G over S20

Sixth Double Coset [1, 11]

Nt1t11N = {Nt1t
n
11|n ∈ N}.

We now find the coset stablilizer N(1,11). We first find the point stabilizer of 1 and 11 in

N.

N1,11 = {n ∈ N |(1, 11)n = 1, 11}
N1,11 = ⟨(3, 20)(4, 19)(5, 12)(6, 14)(7, 10)(8, 16)(13, 18)(15, 17)⟩.
We find different names of Nt1t11. Now, Nt1t11 = Nt2t9

N(t1t11)
(1,2)(3,14)(4,16)(5,7)(6,20)(8,19)(9,11)(10,12)(13,17)(15,18) = Nt2t9.

But Nt2t9 = Nt1t11 =⇒ N(t1t11)
(1,2)(3,14)(4,16)(5,7)(6,20)(8,19)(9,11)(10,12)(13,17)(15,18) =

Nt1t11.

=⇒ (1, 2)(3, 14)(4, 16)(5, 7)(6, 20)(8, 19)(9, 11)(10, 12)(13, 17)(15, 18),

(1, 2)(3, 6)(4, 8)(5, 10)(7, 12)(9, 11)(13, 15)(14, 20)(16, 19)(17, 18) ∈ N (1,11).

Thus N (1,11) ≥ ⟨N1,11, (1, 2)(3, 14)(4, 16)(5, 7)(6, 20)(8, 19)(9, 11)(10, 12)(13, 17)(15, 18)⟩.
= ⟨(3, 20)(4, 19)(5, 12)(6, 14)(7, 10)(8, 16)(13, 18)(15, 17),
(1, 2)(3, 14)(4, 16)(5, 7)(6, 20)(8, 19)(9, 11)(10, 12)(13, 17)(15, 18),
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(1, 2)(3, 6)(4, 8)(5, 10)(7, 12)(9, 11)(13, 15)(14, 20)(16, 19)(17, 18)⟩.
The number of single right cosets in Nt1t11N is calculated by the formula,

|N |
|N(1,11)| =

120
24 = 5.

The orbits of N1,11 on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20} are

{1, 20, 2, 3, 11, 6, 14, 19, 9, 8, 16, 4], [5, 12, 15, 10, 7, 17, 18, 13}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1, 20, 2, 3, 11, 6, 14, 19, 9, 8, 16, 4}
Nt1t11t1 ∈ [1].

We have Nt1t11t1 = Nt11

= (t1)
((x−1,y−1)) ∈ [1]

This means twelve ti’s take [1,11] to [1]

Choose 5 from {5, 12, 15, 10, 7, 17, 18, 13}
Nt1t11t5 ∈ [19].

We have Nt1t11t5 = (x2 ∗ y−1 ∗ x−1 ∗ y−1)t1t9

This means twelve ti’s take [1,11] to [19]

Cayley Diagram

Figure 7.61: Cayley Diagram for G over S20
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It is possible that the coset stabiliser of N(w) of the coset Nw increases and therefore |N |
|Nw|

decreases. Our cayley diagram shows that

G = N ∪Nt1 ∪Nt1t2 ∪Nt1t4 ∪Nt1t9 ∪Nt1t11

|G| ≤ (|N |+ |N |
|N(1)| +

|N |
|N(12)| +

|N |
|N(14)| +

|N |
|N(19)| +

|N |
|N(111)|)× |N |

|G| ≤ (1 + 20 + 2 + 10 + 10 + 5)× 120 =⇒ |G| ≤ 48× 120 =⇒ |G| ≤ 5760.

G acts on 48 cosets that are given in the cayley diagram. Let X be the set of these 48

cosets. Now f : G → Sx is a homomorphism.

G
Kerf

∼= Imf (First Isomorphsim Theorem)

=⇒ G
Kerf

∼= ⟨f(x), f(y), f(t)⟩
=⇒ | G

Kerf | = 5760.

This means |G| ≥ 5760 .

We know |G| ≤ 5760 from the cayley diagram.

Therefore, |G| = 5760.
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Construction of (24) : (S5 : 2) over S5

LetN ∼= S5⟨x, y⟩ where x ∼ (1, 20, 6, 10)(2, 19, 8, 12)(3, 13)(4, 15)(5, 16, 11, 17)(7, 14, 9, 18),

and

y ∼ (1, 15)(2, 13)(3, 11, 8, 18)(4, 9, 6, 17)(5, 16, 19, 10)(7, 14, 20, 12). The progenitor 2∗20 :

N has symmetric presentation

G<x,y,t>:=Group<x,y,t|x^4 , y^4 ,

(y^-1 * x)^3 ,

x^-2 * y^-2 * x^-1 * y^2 * x^2 * y^-1,

t^2>;

We want to verify that the presentation given above is correct.

Using the theorem: 2∗n:N
ti,tj

∼= 2n : N where 1 ≤ i ≤ j ≤ n,

we will show that 2∗20:N
((x2∗y−1∗x−1∗y−1)∗t(y∗x−1∗y−1∗x−1∗y))3,((x2∗y−1∗x−1∗y−1)∗t(x2∗y∗x∗y−1))2

∼= (24) :

(S5 : 2) Thus, we will prove

G<x,y,t>:=Group<x,y,t|x^4 , y^4 ,

(y^-1 * x)^3 ,x^-2 * y^-2 * x^-1 * y^2 * x^2 * y^-1,

t^2,

(t,y^2),(t,(y^-1*x*y)^2),

(t,t^{(y*x)}),(t,t^{(x^2*y^-1)}),

(t,t^{(x^2*y*x^-1)}),

(t,t^{(x*y*x)}),(t,t^{(x^2*y*x^-1*y^-1)})

((x ^ 2 * y^-1 * x^-1 * y^-1)*t^(y * x^-1 * y^-1 * x^-1 * y))^3,

((x ^ 2 * y^-1 * x^-1 * y^-1)*t^(x^2 * y * x * y^-1))^2> ~ (2^4):(S_5:2)

We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N . We need to determine all distinct double cosets NwN and find the number

of right cosets in each double coset. It suffices to find the double coset of Nwti for one

representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw, so we

find our index, which is the order of G over the order of N. Hence, |G|
|N | =

1920
120 = 16 . Now

we know that we have 16 distinct single cosets.

Expanding RelationWe will expand our first relation.

((x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t(y ∗ x−1 ∗ y−1 ∗ x−1 ∗ y))3

= (x2 ∗ y−1 ∗ x−1 ∗ y−1)t8 ∗ (x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t8(x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t8
= (x2 ∗ y−1 ∗ x−1 ∗ y−1)3 ∗ t(x

2∗y−1∗x−1∗y−1)2

8 ∗ t(x
2∗y−1∗x−1∗y−1)

8 ∗ t8
= (x2 ∗ y−1 ∗ x−1 ∗ y−1)3 ∗ t8t18t8
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=⇒ (x2 ∗ y−1 ∗ x−1 ∗ y−1)3 ∗ t8 = t8t18

Expanding RelationWe will expand our second relation.

((x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t(x2 ∗ y ∗ x ∗ y−1))2

= (x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t10 ∗ (x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t10
= (x2 ∗ y−1 ∗ x−1 ∗ y−1)2 ∗ t(x

2∗y−1∗x−1∗y−1)
10 ∗ t10

= (x2 ∗ y−1 ∗ x−1 ∗ y−1)2 ∗ t12t10
=⇒ (x2 ∗ y−1 ∗ x−1 ∗ y−1)2 ∗ t12 = t10

First Double Coset [∗]

NeN = {Nen|n ∈ N ] = [N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The formula for the number of right cosets in N is 120
120 = 1.

Since N is transitive on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.
We need only determine the double coset of the right cosets Nt1. Thus 20 ti’s extend the

double coset [∗] to the double coset Nt1N = [1].

Cayley Diagram

captionCayley Diagram for G over S20

Second Double Coset [1]

Nt1N = {Ntn1 |n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10,

Nt11, Nt12, Nt13, Nt14, Nt15, Nt16, Nt17, Nt18, Nt19, Nt20

We now find the Coset Stabilizer N (1). We first find the point stabilizer of 1 in N .

N1 = {n ∈ N |1n = 1}
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= ⟨(3, 8)(4, 6)(5, 19)(7, 20)(9, 17)(10, 16)(11, 18)(12, 14)
(3, 20)(4, 19)(5, 12)(6, 14)(7, 10)(8, 16)(13, 18)(15, 17)⟩.
Thus, N (1) ≥ N1 = ⟨(3, 8)(4, 6)(5, 19)(7, 20)(9, 17)(10, 16)(11, 18)(12, 14)
(3, 20)(4, 19)(5, 12)(6, 14)(7, 10)(8, 16)(13, 18)(15, 17)⟩
The number of single right cosets in Nt1N is calculated by the formula |N |

|N(1)| =
120
6 = 20.

The orbits of N (1) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20} are

{1}, {2}, {3, 8, 20, 16, 7, 10}, {4, 6, 19, 14, 5, 12}, {9, 17, 15}, {11, 18, 13}. We will determine

the double cosetes by selecting one representative from each orbit such as,

Choose 1 from {1}
Nt1t1 = Nt21 = N ∈ [∗]
This means one ti takes [1] to [*]

Choose 2 from {2}
Nt1t2 ∈ [1]

This means one ti takes [1] to [*]

Choose 3 from {3, 8, 20, 16, 7, 10}
Nt1t3 ∈ [1].

We have Nt1t3 = (x ∗ y ∗ x ∗ y ∗ x)t1 ∈ [1]

This means six ti’s take [1] to [1]

Choose 4 from {4, 6, 19, 14, 5, 12}
Nt1t4 ∈ [1]

We have Nt1t4 = (x ∗ y ∗ x ∗ y ∗ x)t1 ∈ [1]

This means six ti’s take [1] to [1]

Choose 9 from {9,17,15}
Nt1t9 ∈ [19]

This means three ti’s take [1] to [19]

Choose 11 from {11, 18, 13}
Nt1t11 ∈ [19]

This means three ti’s take [1] to [19]

Cayley Diagram
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Figure 7.62: Cayley Diagram for G over S20

Third Double Coset [19]

Nt1t9 = {N(t1t9)
n|n ∈ N}.

We now find the coset stablilizer N(19). We first find the point stabilizer of 1 and 9 in N.

N19 = {n ∈ N |(19)n = 19}
N19 = ⟨(3, 20)(4, 19)(5, 12)(6, 14)(7, 10)(8, 16)(13, 18)(15, 17)⟩.
We find different names of Nt1t9. Now, t1t9 = ((x−1 ∗ y ∗ x)2)t8t14 =⇒ Nt1t9 = Nt8t14

N(t1t9)
(1,8,11,16)(2,6,9,14)(3,19)(4,20)(5,10,18,15)(7,12,17,13) = Nt8t14.

But Nt6t14 = Nt1t9 =⇒ N(t1t9)
(1,8,11,16)(2,6,9,14)(3,19)(4,20)(5,10,18,15)(7,12,17,13) = Nt1t9.

=⇒ (1, 8, 11, 16)(2, 6, 9, 14)(3, 19)(4, 20)(5, 10, 18, 15)(7, 12, 17, 13),

(1, 8)(2, 6)(3, 4)(5, 17)(7, 18)(9, 14)(10, 12)(11, 16)(13, 15)(19, 20) ∈ N (19).

Thus N (19) ≥ ⟨N19, (1, 8, 11, 16)(2, 6, 9, 14)(3, 19)(4, 20)(5, 10, 18, 15)(7, 12, 17, 13),

(1, 8)(2, 6)(3, 4)(5, 17)(7, 18)(9, 14)(10, 12)(11, 16)(13, 15)(19, 20)⟩.
= ⟨(3, 20)(4, 19)(5, 12)(6, 14)(7, 10)(8, 16)(13, 18)(15, 17),
(1, 8, 11, 16)(2, 6, 9, 14)(3, 19)(4, 20)(5, 10, 18, 15)(7, 12, 17, 13),

(1, 8)(2, 6)(3, 4)(5, 17)(7, 18)(9, 14)(10, 12)(11, 16)(13, 15)(19, 20)⟩.
The number of single right cosets in Nt1t9N is calculated by the formula,

|N |
|N(19)| =

120
24 = 5.

The orbits of N19 on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20} are

{1, 6, 2, 14, 4, 19, 20, 3, 8, 11, 16, 9}, {5, 12, 18, 7, 10, 13, 15, 17}
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1, 6, 2, 14, 4, 19, 20, 3, 8, 11, 16, 9}
Nt1t9t1 ∈ [1].
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We have Nt1t9t1 = t9 = (t1)
x2∗y−1 ∈ [1]

This means twelve ti’s take [19] to [1]

Choose 5 from {5, 12, 18, 7, 10, 13, 15, 17}
Nt1t9t5 ∈ [19].

We have Nt1t9t5 = (x2 ∗ y−1 ∗ x−1 ∗ y−1)t1t9 ∈ [19]

This means eight ti’s take [19] to [19]

Cayley Diagram

Figure 7.63: Cayley Diagram for G over S20

It is possible that the coset stabiliser of N (w) of the coset Nw increases and therefore
|N |
|Nw| decreases. Our cayley diagram shows that

G = N ∪Nt1 ∪Nt1t9

|G| ≤ (|N |+ |N |
|N(1)| +

|N |
|N(19)|)× |N |

|G| ≤ (1 + 10 + 5)× 120 =⇒ |G| ≤ 16× 120 =⇒ |G| ≤ 1920.

G acts on 16 cosets that are given in the cayley diagram. Let X be the set of these 16

cosets. Now f : G → Sx is a homomorphism.

G
Kerf

∼= Imf (First Isomorphsim Theorem)

=⇒ G
Kerf

∼= ⟨f(x), f(y), f(t)⟩
=⇒ | G

Kerf | = 1920.

This means |G| ≥ 1920 .

We know |G| ≤ 1920 from the cayley diagram.

Therefore, |G| = 1920.
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7.8 Construction of (22 : 3) : (24 : (7 : 3)) over (21× (S6)

LetN ∼= 21×S6 = ⟨x, y⟩ where x ∼ (1, 21, 3, 10, 14, 16)(2, 20, 5, 13, 8, 17)(4, 19, 9)(6, 18)(7, 15, 11)

, and

y ∼ (1, 19, 6, 15, 2, 9, 5, 4, 14, 12, 8, 7, 3, 11)(10, 21, 18, 20, 13, 16, 17)

The progenitor 2∗21 : N has symmetric presentation

G<x,y,t>:=Group<x,y,t|x^6,

(y^-1 * x^-1)^3,

(y^-1 * x)^3,

x^-1 * y^-1 * x^3 * y^-1 * x * y,

t^2>;

We want to verify that the presentation given above is correct.

Theorem: 2∗n:N
ti,tj

∼= 2n : N where 1 ≤ i ≤ j ≤ n

We will show that 2∗21:N
((y∗x2)∗(t(x∗y∗x−1)2))3

∼= (22 : 3) : (24 : (7 : 3) Thus, we will prove

G<x,y,t>:=Group<x,y,t|x^6,

(y^-1 * x^-1)^3,

(y^-1 * x)^3,

x^-1 * y^-1 * x^3 * y^-1 * x * y,

t^2,

(t,x * y * x^-1 * y^-2),(t,x^3*y*x^-1),

(t,t^(y^x)), (t,t^(x^2)),

(t,t^(y*x^-1)),(t,t^(y^-3)),

(t,t^(y*x)),

((y * x^2)*(t^{(x * y * x^-1)^2)})^3> ~ (2^2:3):(2^4:(7:3).

We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N . We need to determine all distinct double cosets NwN and find the number

of right cosets in each double coset. It suffices to find the double coset of Nwti for one

representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw, so we

find our index, which is the order of G over the order of N . Hence, |G|
|N | =

4032
126 = 32. Now

we know that we have 32 distinct single cosets.

Expanding Relation We expand our only relation:

((y ∗ x2) ∗ (t(x ∗ y ∗ x−1)2))3
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= (y ∗ x2) ∗ t2 ∗ (y ∗ x2) ∗ t2 ∗ (y ∗ x2) ∗ t2
= (y ∗ x2)3 ∗ (t(y∗x

2)2

2 ) ∗ (t(y∗x
2)

2 ) ∗ t2
=⇒ (y ∗ x2)3 ∗ t6t19t2 = e

=⇒ (y ∗ x2)3 ∗ t6 = t2t19

First Double Coset [∗]

NeN = {Nen|n ∈ N} = {N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The formula for the number of right coset in N is |N |
|N | =

126
126 = 1.

Since N is transitive onX = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}.
We need only determine the double coset of the right coset Nt1.

Thus 21 ti’s extend the double coset [∗] to the double coset Nt1N = [1].

Cayley Diagram

Figure 7.64: Cayley Diagram for G over S21

Second Double Coset [1]

Nt1N = {Ntn1 |n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10, Nt11,

Nt12, Nt13, Nt14, Nt15, Nt16, Nt17, Nt18, Nt19, Nt20, Nt21}.
We now find the Coset Stabilizer N (1). We first find the point stabilizer of 1 in N .

N1 = {n ∈ N |1n = 1}
Thus, N (1) ≥ N1 = ⟨(2, 6, 14)(3, 5, 8)(4, 10)(7, 18, 19, 13, 12, 21)(9, 17, 15, 16, 11, 20)⟩.
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The number of right cosets in Nt1N is calculated by the formula,
|N |

|N(1)| =
126
6 = 21.

The orbits of N (1) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
are

{1}, {4, 10}, {2, 6, 14}, {3, 5, 8}, {7, 18, 19, 13, 12, 21}, {9, 17, 15, 16, 11, 20}.
We will determine the double cosetes by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t1 = t21 = e ∈ [∗].
This means one ti takes [1] to [*].

Choose 2 from {2,6,14}
Nt1t2 ∈ [13].

We have Nt1t2 = (t1t3)
y ∈ [13].

This means three ti’s take [1] to [13].

Choose 3 from {3,5,8}
Nt1t3 ∈ [13]

This means three ti’s take [1] to [13].

Choose 4 from {4,10}
Nt1t4 ∈ [14].

This means two ti’s take [1] to [14].

Choose 7 from {7,18,19,13,12,21}
Nt1t7 ∈ [1].

We have Nt1t7 = (y ∗ x−1 ∗ y−2 ∗ x)t3
= (y ∗ x−1 ∗ y−2 ∗ x)(t1)y

−2 ∈ [1].

This means six ti’s take [1] to [1].

Choose 9 from {9,17,15,16,11,20}
Nt1t9 ∈ [1].

We have Nt1t9 = (y ∗ x−1 ∗ y−2 ∗ x)t2
= (y ∗ x−1 ∗ y−2 ∗ x)(t1)(y

−1∗x−1∗y) ∈ [1].

This means six ti’s take [1] to [1].

Cayley Diagram
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Figure 7.65: Cayley Diagram for G over S21

Third Double Coset [13]

Nt1t3 = {N(t1t3)
n|n ∈ N}.

We now find the Coset Stabilizer N (13). We first find the point stabilizer of 1 and 3 in N.

N13 = {n ∈ N |(13)n = 13}
N13 = ⟨(4, 10)(7, 13)(9, 16)(11, 17)(12, 18)(15, 20)(19, 21)⟩ We will find different names of

Nt1t3N . Nt1t3 = Nt15t11.

N(t1t3)
(1,15,18)(2,7,13)(3,11,21)(4,20,6)(5,19,16)(8,12,10)(9,17,14) = Nt15t11.

But, Nt1t3 = Nt15t11 =⇒ N(t1t3)
(1,15,18)(2,7,13)(3,11,21)(4,20,6)(5,19,16)(8,12,10)(9,17,14) =

Nt1t3

=⇒ (1, 15, 18)(2, 7, 13)(3, 11, 21)(4, 20, 6)(5, 19, 16)(8, 12, 10)(9, 17, 14),

(1, 15, 6, 4, 8, 12)(2, 7)(3, 11, 14, 9, 5, 19)(10, 20, 18)(16, 17, 21) ∈ N (13)

Thus N (13) ≥ ⟨N13, (1, 15, 6, 4, 8, 12)(2, 7)(3, 11, 14, 9, 5, 19)(10, 20, 18)(16, 17, 21),

(1, 15, 18)(2, 7, 13)(3, 11, 21)(4, 20, 6)(5, 19, 16)(8, 12, 10)(9, 17, 14)⟩
= ⟨(4, 10)(7, 13)(9, 16)(11, 17)(12, 18)(15, 20)(19, 21),
(1, 15, 6, 4, 8, 12)(2, 7)(3, 11, 14, 9, 5, 19)(10, 20, 18)(16, 17, 21),

(1, 15, 18)(2, 7, 13)(3, 11, 21)(4, 20, 6)(5, 19, 16)(8, 12, 10)(9, 17, 14)⟩ ∼= 3× S3.

The number of distinct right cosets in Nt1t3N is calculated by the formula,
|N |

|N(13)| =
126
18 = 7.

The orbits of N13 on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
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are

{2, 7, 13}, {1, 6, 8, 15, 4, 12, 20, 10, 18}, {3, 14, 5, 11, 9, 19, 17, 16, 21}.
We will determine the double cosetes by selecting one representative from each orbit such

as,

Choose 1 from {1,6,8,15,4,12,20,10,18}
Nt1t3t1 ∈ [1].

We have Nt1t3t1 = t3

= (t1)
y−2 ∈ [1].

This means nine ti’s take [13] to [1].

Choose 2 from {2,7,13}
Nt1t3t2 ∈ [13].

We have Nt1t3t2 = (y ∗ x−1 ∗ y−2 ∗ x)t1t4 ∈ [14].

This means three ti’s take [13] to [14].

Choose 3 from {3,14,5,11,9,19,17,16,21}
Nt1t3t3 = Nt21 = Nt1 ∈ [1].

This means nine ti’s take [13] to [1].

Cayley Diagram

Figure 7.66: Cayley Diagram for G over S21
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Fourth Double Coset [14]

Nt1t4 = {N(t1t4)
n|n ∈ N}.

We now find the Coset Stabilizer N (14). We first find the point stabilizer of 1 and 4 in N .

N14 = {n ∈ N |(14)n = 14}
N14 = ⟨(2, 6, 14)(3, 5, 8)(7, 12, 19)(9, 11, 15)(13, 18, 21)(16, 17, 20)⟩
We will find different names of Nt1t4N

t1t4 = (x ∗ y2 ∗ x ∗ y−1 ∗ x)t8t20 =⇒ Nt1t4 = Nt8t20

N(t1t4)
(1,8,14)(2,3,6)(4,20,19,10,15,21)(7,16,12,13,9,18)(11,17) = Nt8t20.

But, Nt8t20 = Nt1t4 =⇒
N(t1t4)

(1,8,14)(2,3,6)(4,20,19,10,15,21)(7,16,12,13,9,18)(11,17) = Nt1t4.

=⇒ (1, 8, 14)(2, 3, 6)(4, 20, 19, 10, 15, 21)(7, 16, 12, 13, 9, 18)(11, 17) ∈ N (14)

Thus, N (14) ≥ ⟨N14, (1, 8, 14)(2, 3, 6)(4, 20, 19, 10, 15, 21)(7, 16, 12, 13, 9, 18)(11, 17),

(1, 8, 5, 6, 3, 14, 2)(4, 20, 11, 18, 9, 21, 7, 10, 15, 17, 12, 16, 19, 13),

(1, 8, 6)(3, 5, 14)(4, 20, 12, 10, 15, 18)(7, 13)(9, 17, 19, 16, 11, 21)⟩.
= ⟨(2, 6, 14)(3, 5, 8)(7, 12, 19)(9, 11, 15)(13, 18, 21)(16, 17, 20),
(1, 8, 14)(2, 3, 6)(4, 20, 19, 10, 15, 21)(7, 16, 12, 13, 9, 18)(11, 17),

(1, 8, 5, 6, 3, 14, 2)(4, 20, 11, 18, 9, 21, 7, 10, 15, 17, 12, 16, 19, 13),

(1, 8, 6)(3, 5, 14)(4, 20, 12, 10, 15, 18)(7, 13)(9, 17, 19, 16, 11, 21)⟩ ∼= 14 : 3.

The number of distinct single cosets in Nt1t4N is calculated by the formula,
|N |

|N(1,4)| =
126
42 = 3.

The Orbits of N (14) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
are

{1, 8, 3, 14, 5, 6, 2}, {4, 20, 16, 19, 11, 12, 17, 7, 10, 13, 15, 18, 21, 9}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1,8,3,14,5,6,2}
Nt1t4t1 ∈ [13].

We have Nt1t4t1 = (y ∗ x−1 ∗ y−2 ∗ x)t9t7
= (y ∗ x−1 ∗ y−2 ∗ x)(t1t3)(y∗x) ∈ [13].

This means seven ti’s take [14] to [13].

Choose 4 from {4,20,16,19,11,12,17,7,10,13,15,18,21,9}
Nt1t4t4 = Nt1t

2
4 = Nt1 ∈ [1].
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This means fourteen ti’s take [14] to [1].

Cayley Diagram

Figure 7.67: Cayley Diagram for G over S21

It is possible that the coset stabiliser of N (w) of the coset Nw increases and therefore
|N |

|N(w)| decreases.

Our cayley diagram shows that

G = N ∪Nt1 ∪Nt1t3 ∪Nt1t4

|G| ≤ (|N |+ |N |
|N(1)| +

|N |
|N(13)| +

|N |
|N(14)| × |N |

|G| ≤ (1 + 21 + 7 + 3)× 126

=⇒ |G| ≤ 32× 126

=⇒ |G| ≤ 4032.

G acts on 32 cosets that are given in the cayley diagram.

Let X be the set of these 32 cosets.

Now, f : G → Sx is a homomorphism.

G
Kerf

∼= Imf (First Isomorphism Theorem).

=⇒ G
Kerf

∼= ⟨f(x), f(y), f(t)⟩
=⇒ | G

Kerf | = |⟨f(x), f(y), f(t)⟩|
But #⟨f(x), f(y), f(t)⟩ = 4032.

So, | G
kerf | = 4032
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This means |G| ≥ 4032. We know |G| ≤ 4032 from cayley diagram.

Therefore, |G| = 4032.

From |G| = 4032× |Kerf | we find |Kerf | = 1

G ∼= ⟨f(x), f(y), f(t)⟩ but, ⟨f(x), f(y), f(t)⟩ ∼= (22 : 3)(24 : 7 : 3) =⇒ G ∼= (22 : 3)(24 :

7 : 3).
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7.9 Construction of (26 : S6)(7 : 3) over (21× (S6))

LetN ∼= (21×S6) = ⟨x, y⟩ where x ∼ (1, 21, 3, 10, 14, 16)(2, 20, 5, 13, 8, 17)(4, 19, 9)(6, 18)(7, 15, 11),

and

y ∼ (1, 19, 6, 15, 2, 9, 5, 4, 14, 12, 8, 7, 3, 11)(10, 21, 18, 20, 13, 16, 17).

The progenitor 2∗21 : (21× S6) has symmetric presentation

G<x,y,t>:=Group<x,y,t|x^6,

(y^-1 * x^-1)^3,

(y^-1 * x)^3,

x^-1 * y^-1 * x^3 * y^-1 * x * y,

t^2>;

We want to verify that the presentation given above is correct.

Theorem: 2∗n:N
titj

∼= 2n : N where 1 ≤ i ≤ j ≤ n.

We will show that 2∗21:(21×S6

((x2∗y2∗x∗y−1)∗t)3,((x2∗y2)∗(t(x∗y∗x−1)2 ))3
∼= (26 : S6)(7 : 3).

Thus, we will prove

G<x,y,t>:=Group<x,y,t|x^6,

(y^-1 * x^-1)^3,

(y^-1 * x)^3,

x^-1 * y^-1 * x^3 * y^-1 * x * y,

t^2,

(t,x * y * x^-1 * y^-2),(t,x^3*y*x^-1),

((x^2 * y^2 * x * y^-1)*t)^3,

((x^2 * y^2)*(t^{(x * y * x^-1)^2)})^3)> ~ (2^6:S_6)(7:3).

We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N . We need to determine all distinct double cosets NwN and find the number

of right cosets in each double coset. It suffices to find the double cosets of Nwti for one

representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw, so we

find our index, which is the order of G over the order of N . Hence, |G|
|N | =

8064
126 = 64. Now

we know that we have 64 distinct single cosets.

Expanding First Relation We will expand our first relation.

(x2 ∗ y2 ∗ x ∗ y−1) ∗ t)3

= (x2 ∗ y2 ∗ x ∗ y−1) ∗ t1 ∗ (x2 ∗ y2 ∗ x ∗ y−1) ∗ t1 ∗ (x2 ∗ y2 ∗ x ∗ y−1) ∗ t1
= (x2 ∗ y2 ∗ x ∗ y−1)3 ∗ (t(x

2∗y2∗x∗y−1)2

1 ) ∗ (t(x
2∗y2∗x∗y−1)

1 ) ∗ t1
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=⇒ (x2 ∗ y2 ∗ x ∗ y−1)3 ∗ t4t10t1 = e

=⇒ (x2 ∗ y2 ∗ x ∗ y−1)3t4 = t1t10

Expanding Second Relation We will expand our second relation.

(x2 ∗ y2) ∗ (t(x ∗ y ∗ x−1)2))3

= (x2 ∗ y2) ∗ t2 ∗ (x2 ∗ y2) ∗ t2 ∗ (x2 ∗ y2) ∗ t2
= (x2 ∗ y2)3 ∗ (t(x

2∗y2)2
2 ) ∗ (t(x

2∗y2)
2 ) ∗ t2

=⇒ (x2 ∗ y2)3 ∗ t6t14t2 = e

=⇒ (x2 ∗ y2)3 ∗ t6 = t2t14

First Double Coset [∗]

NeN = {Nen|n ∈ N} = {N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The formula for the number of right coset in N is |N |
|N | =

126
126 = 1.

Since N is transitive onX = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}.
We need only determine the double coset of the right coset Nt1.

Thus 21 ti’s extend the double coset [∗] to the double coset Nt1N = [1].

Cayley Diagram

Figure 7.68: Cayley Diagram for G over S21
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Second Double Coset [1]

Nt1N = {Ntn1 |n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10, Nt11,

Nt12, Nt13, Nt14, Nt15, Nt16, Nt17, Nt18, Nt19, Nt20, Nt21}.
We now find the Coset Stabilizer N (1). We first find the point stabilizer of 1 in N .

N1 = {n ∈ N |1n = 1}
Thus, N (1) ≥ N1 = ⟨(2, 6, 14)(3, 5, 8)(4, 10)(7, 18, 19, 13, 12, 21)(9, 17, 15, 16, 11, 20),
(2, 6, 14)(3, 5, 8)(4, 10)(7, 18, 19, 13, 12, 21)(9, 17, 15, 16, 11, 20)⟩.
The number of right cosets in Nt1N is calculated by the formula,
|N |

|N(1)| =
126
6 = 21.

The orbits of N (1) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
are

{1}, {4, 10}, {2, 6, 14}, {3, 5, 8}, {7, 18, 19, 13, 12, 21}, {9, 17, 15, 16, 11, 20}.
We will determine the double cosetes by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t1 = Nt21 = N ∈ [∗].
This means one ti takes [1] to [*].

Choose 2 from {2,6,14}
Nt1t2 ∈ [1].

We have Nt1t2 = t3

= (t1)
y−2 ∈ [1]

This means three ti’s take [1] to [1].

Choose 3 from {3,5,8}
Nt1t3 ∈ [1].

We have Nt1t3 = t2

= (t1)
(y−1∗x−1∗y) ∈ [1]

This means three ti’s take [1] to [1].

Choose 4 from {4,10}
Nt1t4 ∈ [1].

We have Nt1t4 = t10

= (t1)
(y−2∗x) ∈ [1]



203

This means two ti’s take [1] to [1].

Choose 7 from {7,18,19,13,12,21}
Nt1t7 ∈ [17].

This means six ti’s take [1] to [17].

Choose 9 from {9,17,15,16,11,20}
Nt1t9 ∈ [17].

We have Nt1t9 = t9t1

= (t1t7)
(y∗x−2) ∈ [17]

This means six ti’s take [1] to [17].

Cayley Diagram

Figure 7.69: Cayley Diagram for G over S21

Third Double Coset [17]

Nt1t7 = {N(t1t7)
n|n ∈ N}.

We now find the Coset Stabilizer N (17). We first find the point stabilizer of 1 and 7 in N .

N17 = {n ∈ N |(17)n = 17}
N17 = ⟨e⟩
We will find different names of Nt1t7N

Nt1t7 = Nt13t3

N(t1t7)
(1,13,9)(2,16,4)(3,10,7)(5,18,19)(6,21,11)(8,20,15)(12,14,17) = Nt13t3.

But,Nt13t3 = Nt1t7 =⇒
N(t1t7)

(1,13,9)(2,16,4)(3,10,7)(5,18,19)(6,21,11)(8,20,15)(12,14,17) = Nt1t7.

=⇒ (1, 13, 9)(2, 16, 4)(3, 10, 7)(5, 18, 19)(6, 21, 11)(8, 20, 15)(12, 14, 17) ∈ N (17)
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Thus, N (17) ≥ ⟨N17, (1, 13, 9)(2, 16, 4)(3, 10, 7)(5, 18, 19)(6, 21, 11)(8, 20, 15)(12, 14, 17)⟩.
= ⟨e, (1, 13, 9)(2, 16, 4)(3, 10, 7)(5, 18, 19)(6, 21, 11)(8, 20, 15)(12, 14, 17)⟩.
The number of distinct cosets in Nt1t7N is calculated by the formula,

|N |
|N(17)| =

126
3 = 42.

The orbits of N (17) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
are

{1, 13, 9}, {2, 16, 4}, {3, 10, 7}, {5, 18, 19}, {6, 21, 11}, {8, 20, 15}, {12, 14, 17}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1,13,9}
Nt1t7t1 ∈ [1].

We have Nt1t7t1 = t7

= (t1)
(y−1∗x) ∈ [1]

This means three ti’s take [17] to [1].

Choose 2 from {2,16,4}
Nt1t7t2 ∈ [17].

We have Nt1t7t2 = t1t13

= (t1t7)
(x∗y∗x−1∗y−2) ∈ [17]

This means three ti’s take [17] to [17].

Choose 3 from {3,10,7}
Nt1t7t3 ∈ [1].

We have Nt1t7t3 = t13

= (t1)
(x∗y3) ∈ [1]

This means three ti’s take [17] to [1].

Choose 5 from {5,18,19}
Nt1t7t5 ∈ [17].

We have Nt1t7t5 = t13t14

= (t1t7)
((y−1,x)) ∈ [17]

This means three ti’s take [17] to [17].

Choose 6 from {6,21,11}
Nt1t7t6 ∈ [17].

We have Nt1t7t6 = t17t15
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= (t1t7)
(x2∗y−2∗x) ∈ [17]

This means three ti’s take [17] to [17].

Choose 8 from {8,20,15}
Nt1t7t8 ∈ [17].

We have Nt1t7t8 = t21t12

= (t1t7)
(y−2∗x−1) ∈ [17]

This means three ti’s take [17] to [17].

Choose 12 from {12,14,17}
Nt1t7t12 ∈ [17].

We have Nt1t7t12 = t21t8

= (t1t7)
(y2∗x∗y−1) ∈ [17]

This means three ti’s take [17] to [17].

Cayley Diagram

Figure 7.70: Cayley Diagram for G over S21

It is possible that the coset stabiliser of N (w) of the coset Nw increases and therefore
|N |

|N(w)| decreases.

Our cayley diagram shows that

G = N ∪Nt1 ∪Nt1t7

|G| ≤ (|N |+ |N |
|N(1)| +

|N |
|N(17)| × |N |

|G| ≤ (1 + 21 + 42)× 126

=⇒ |G| ≤ 64× 126

=⇒ |G| ≤ 8064.

G acts on 64 cosets that are given in the cayley diagram.

Let X be the set of these 64 cosets.
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Now, f : G → Sx is a homomorphism.

G
Kerf

∼= Imf (First Isomorphism Theorem).

=⇒ G
Kerf

∼= ⟨f(x), f(y), f(t)⟩
=⇒ | G

Kerf | = |⟨f(x), f(y), f(t)⟩|
But #⟨f(x), f(y), f(t)⟩ = 8064.

So, | G
kerf | = 8064

This means |G| ≥ 8064. We know |G| ≤ 8064 from cayley diagram.

Therefore, |G| = 8064.

From |G| = 8064× |Kerf | we find |Kerf | = 1

G ∼= ⟨f(x), f(y), f(t)⟩ but, ⟨f(x), f(y), f(t)⟩ ∼= (26 : S6)(7 : 3) =⇒ G ∼= (26 : S6)(7 : 3).
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7.10 Construction of 73 : S3 : 2 over (21× (S6)

LetN ∼= (21×S6) = ⟨x, y⟩ where x ∼ (1, 21, 3, 10, 14, 16)(2, 20, 5, 13, 8, 17)(4, 19, 9)(6, 18)(7, 15, 11),

and

y ∼ (1, 19, 6, 15, 2, 9, 5, 4, 14, 12, 8, 7, 3, 11)(10, 21, 18, 20, 13, 16, 17).

The progenitor 2∗21 : (21× S6) has symmetric presentation

G<x,y,t>:=Group<x,y,t|x^6, (y^-1 * x^-1)^3,

(y^-1 * x)^3,

x^-1 * y^-1 * x^3 * y^-1 * x * y,

t^2>.

We want to verify that the presentation given above is correct.

Theorem: 2∗n:N
titj

∼= 2n : N where 1 ≤ i ≤ j ≤ n.

We will show that 2∗21:(21×S6)

((y∗x−1∗y−2∗x)∗t)3,((x2∗y−1∗x)∗(t(x∗y∗x−1)2 )4
∼= (73 : S3 : 2).

Thus, we will prove

G<x,y,t>:=Group<x,y,t|x^6, (y^-1 * x^-1)^3,

(y^-1 * x)^3,

x^-1 * y^-1 * x^3 * y^-1 * x * y,

t^2,

(t,x * y * x^-1 * y^-2),(t,x^3*y*x^-1),

((y * x^-1 * y^-2 * x)*t)^3,

((x^2 * y^-1 * x)*(t^{(x * y * x^-1)^2})^4)> ~ (7^3:S_3:2)

We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N . We need to determine all distinct double cosets NwN and find the number

of right cosets in each double coset. It suffices to find the double cosets of Nwti for one

representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw, so we

find our index, which is the order of G over the order of N . Hence, |G|
|N | =

24696
126 = 196.

Now we know that we have 196 distinct single cosets.

Expanding First Relation We will expand our first relation.

((y ∗ x−1 ∗ y−2 ∗ x) ∗ t)3

= (y ∗ x−1 ∗ y−2 ∗ x) ∗ t1 ∗ (y ∗ x−1 ∗ y−2 ∗ x) ∗ t1 ∗ (y ∗ x−1 ∗ y−2 ∗ x) ∗ t1
= (y ∗ x−1 ∗ y−2 ∗ x)3 ∗ (t(y∗x

−1∗y−2∗x)2
1 ) ∗ (t(y∗x

−1∗y−2∗x)
1 ) ∗ t1

=⇒ (y ∗ x−1 ∗ y−2 ∗ x)3 ∗ t1 ∗ t4 ∗ t1
=⇒ (y ∗ x−1 ∗ y−2 ∗ x)3 ∗ t1 = t1 ∗ t4
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Expanding Second Relation We will expand our second relation.

((x2 ∗ y−1 ∗ x) ∗ (t(x ∗ y ∗ x−1)2))4

= (x2 ∗ y−1 ∗ x) ∗ t2 ∗ (x2 ∗ y−1 ∗ x) ∗ t2 ∗ (x2 ∗ y−1 ∗ x) ∗ t2 ∗ (x2 ∗ y−1 ∗ x) ∗ t2
= (x2 ∗ y−1 ∗ x)4 ∗ (t(x

2∗y−1∗x)3
2 ) ∗ (t(x

2∗y−1∗x)2
2 ) ∗ (t(x

2∗y−1∗x)
2 ) ∗ t2

=⇒ (x2 ∗ y−1 ∗ x)4 ∗ t5 ∗ t20 ∗ t4 ∗ t2
=⇒ (x2 ∗ y−1 ∗ x)4 ∗ t5 ∗ t20 = t2 ∗ t4

First Double Coset [∗]

NeN = {Nen|n ∈ N} = {N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The formula for the number of right coset in N is |N |
|N | =

126
126 = 1.

Since N is transitive onX = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}.
We need only determine the double coset of the right coset Nt1.

Thus 21 ti’s extend the double coset [∗] to the double coset Nt1N = [1].

Cayley Diagram

Figure 7.71: Cayley Diagram for G over S21

Second Double Coset [1]

Nt1N = {Ntn1 |n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10, Nt11,



209

Nt12, Nt13, Nt14, Nt15, Nt16, Nt17, Nt18, Nt19, Nt20, Nt21}.
We now find the Coset Stabilizer N (1). We first find the point stabilizer of 1 in N .

N1 = {n ∈ N |1n = 1}
Thus, N (1) ≥ N1 = ⟨(2, 6, 14)(3, 5, 8)(4, 10)(7, 18, 19, 13, 12, 21)(9, 17, 15, 16, 11, 20),
(2, 6, 14)(3, 5, 8)(4, 10)(7, 18, 19, 13, 12, 21)(9, 17, 15, 16, 11, 20)⟩.
The number of right cosets in Nt1N is calculated by the formula,
|N |

|N(1)| =
126
6 = 21.

The orbits of N (1) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
are

{1}, {4, 10}, {2, 6, 14}, {3, 5, 8}, {7, 12, 18, 19, 21, 13}, {9, 11, 17, 15, 20, 16}.
We will determine the double cosetes by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t1 = Nt21 = N ∈ [∗].
This means one ti takes [1] to [*].

Choose 2 from {2,6,14}
Nt1t2 ∈ [12].

This means three ti’s take [1] to [12].

Choose 3 from {3,5,8}
Nt1t3 ∈ [13].

This means three ti’s take [1] to [13].

Choose 4 from {4,10}
Nt1t4 ∈ [1].

We have Nt1t4 = (y ∗ x−1 ∗ y−2 ∗ x)t1 ∈ [1]

This means two ti’s take [1] to [1].

Choose 7 from {7,12,18,19,21,13}
Nt1t7 ∈ [17].

This means six ti’s take [1] to [17].

Choose 9 from {9,11,17,15,20,16}
Nt1t9 ∈ [17].

We have Nt1t9 = t14t20

= (x−1, y)(t1t7)
(y∗x∗y3) ∈ [17]
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This means six ti’s take [1] to [17].

Cayley Diagram

Figure 7.72: Cayley Diagram for G over S21

Third Double Coset [12]

Nt1t2 = {N(t1t2)
n|n ∈ N}.

We now find the coset stabilizer N(12). We first find the point stabilizer of 1 and 2 in N.

N12 = {n ∈ N |(12)n = 12}
N12 = ⟨(4, 10)(7, 13)(9, 16)(11, 17)(12, 18)(15, 20)(19, 21)⟩
We will find different names of Nt1t2N . Nt1t2 = Nt14t3.

N(t1t2)
(1,14,6,8,2,3,5)(4,19,12,15,7,9,11)(10,21,18,20,13,16,17) = Nt14t3.

But, Nt14t3 = Nt1t2 =⇒
N(t1t2)

(1,14,6,8,2,3,5)(4,19,12,15,7,9,11)(10,21,18,20,13,16,17) = Nt1t2.

Thus N (12) ≥ ⟨N12, (1, 14, 6, 8, 2, 3, 5)(4, 19, 12, 15, 7, 9, 11)(10, 21, 18, 20, 13, 16, 17)

(1, 14, 6, 8, 2, 3, 5)(4, 21, 12, 20, 7, 16, 11, 10, 19, 18, 15, 13, 9, 17)⟩.
= (4, 10)(7, 13)(9, 16)(11, 17)(12, 18)(15, 20)(19, 21),

(1, 14, 6, 8, 2, 3, 5)(4, 19, 12, 15, 7, 9, 11)(10, 21, 18, 20, 13, 16, 17),

(1, 14, 6, 8, 2, 3, 5)(4, 21, 12, 20, 7, 16, 11, 10, 19, 18, 15, 13, 9, 17)
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The number of distinct right cosets in Nt1t2N is calculated by the formula,
|N |

|N(12)| =
126
14 = 9.

The orbits of N (12) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
are

{1, 14, 6, 8, 2, 3, 5}, {4, 10, 19, 21, 12, 18, 15, 20, 7, 13, 9, 16, 11, 17}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1, 14, 6, 8, 2, 3, 5}
Nt1t2t1 ∈ [1].

We have Nt1t2t1 = Nt8

= (t1)
(x∗y−1∗x−1)2 ∈ [1]

This means seven ti’s take [12] to [1].

Choose 4 from {4, 10, 19, 21, 12, 18, 15, 20, 7, 13, 9, 16, 11, 17}
Nt1t2t4 ∈ [17].

We have Nt1t2t4 = (y ∗ x−1 ∗ y−2 ∗ x)t15t1
= (y ∗ x−1 ∗ y−2 ∗ x)(t1t7)y

3 ∈ [17]

This means fourteen ti’s take [12] to [17].
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Cayley Diagram

Figure 7.73: Cayley Diagram for G over S21

Fourth Double Coset [13]

Nt1t3 = {N(t1t3)
n|n ∈ N}.

We now find the coset stabilizer N(13). We first find the point stabilizer of 1 and 3 in N.

N13 = {n ∈ N |(13)n = 13}
N13 = ⟨(4, 10)(7, 13)(9, 16)(11, 17)(12, 18)(15, 20)(19, 21)⟩
We will find different names of Nt1t3N . Nt1t2 = Nt5t2.

N(t1t3)
(1,5,3,2,8,6,14)(4,11,9,7,15,12,19)(10,17,16,13,20,18,21)) = Nt5t2.

But, Nt5t2 = Nt1t3 =⇒
N(t1t3)

(1,5,3,2,8,6,14)(4,11,9,7,15,12,19)(10,17,16,13,20,18,21) = Nt1t3.

Thus N (13) ≥ ⟨N13, (1, 5, 3, 2, 8, 6, 14)(4, 11, 9, 7, 15, 12, 19)(10, 17, 16, 13, 20, 18, 21)

(1, 5, 3, 2, 8, 6, 14)(4, 17, 9, 13, 15, 18, 19, 10, 11, 16, 7, 20, 12, 21)⟩.
= (4, 10)(7, 13)(9, 16)(11, 17)(12, 18)(15, 20)(19, 21),

(1, 5, 3, 2, 8, 6, 14)(4, 11, 9, 7, 15, 12, 19)(10, 17, 16, 13, 20, 18, 21)

(1, 5, 3, 2, 8, 6, 14)(4, 17, 9, 13, 15, 18, 19, 10, 11, 16, 7, 20, 12, 21)

The number of distinct right cosets in Nt1t3N is calculated by the formula,
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|N |
|N(13)| =

126
14 = 9.

The orbits on N (13) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
are

{1, 5, 3, 2, 8, 6, 14}, {4, 10, 11, 17, 9, 16, 7, 13, 15, 20, 12, 18, 19, 21}. We will determine the

double cosets by selecting one representative from each orbit such as,

Choose 1 from {1, 5, 3, 2, 8, 6, 14}
Nt1t3t1 ∈ [1].

We have Nt1t3t1 = Nt6

= (t1)
y2 ∈ [1]

This means seven ti’s take [13] to [1].

Choose 4 from {4, 10, 11, 17, 9, 16, 7, 13, 15, 20, 12, 18, 19, 21}
Nt1t3t4 ∈ [17].

We have Nt1t3t4 = ((x ∗ y ∗ x−1)3)t15t16

= ((x ∗ y ∗ x−1)3) ∗ (t1t7)(x
2∗y∗x−1) ∈ [17]

This means fourteen ti’s take [13] to [17].

Cayley Diagram

Figure 7.74: Cayley Diagram for G over S21
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Fifth Double Coset [17]

Nt1t7 = {N(t1t7)
n|n ∈ N}.

We now find the coset stabilizer N(17). We ind the point stabilizer of 1 and 7 in N.

Thus N (17) ≥ N17⟨e⟩
The number of distinct right cosets in Nt1t7N is calculated by the formula,

|N |
|N(17)| =

126
1 = 126.

The orbits of N (17) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10},
{11}, {12}, {13}, {14}, {15}, {16}, {17}, {18}, {19}, {20}, {21}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t7t1 ∈ [171].

This means one ti takes [17] to [171].

Choose 2 from {2 }
Nt1t7t2 ∈ [12].

We have Nt1t7t2 = (y ∗ x−1 ∗ y−2 ∗ x)t19t9
= (y ∗ x−1 ∗ y−2 ∗ x)(t1t2)y ∈ [12]

This means one ti takes [17] to [12].

Choose 3 from {3}
Nt1t7t3 ∈ [171].

We have Nt1t7t3 = (x−2 ∗ y ∗ x−1)t18t5t18

= (x−2 ∗ y ∗ x−1)(t1t7t1)
(x∗y∗x2) ∈ [171]

This means one ti takes [17] to [171].

Choose 4 from {4}
Nt1t7t4 ∈ [17].

We have Nt1t7t4 = (x3 ∗ y−2)t6t17

= (x3 ∗ y−2)(t1t7)
(x∗y∗x−1) ∈ [17]

This means one ti takes [17] to [17].

Choose 5 from {5}
Nt1t7t5 ∈ [171].
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We have Nt1t7t5 = (x3 ∗ y)t18t7t18
= (x3 ∗ y) ∗ (t1t7t1)(y

2∗x) ∈ [171]

This means one ti takes [17] to [171].

Choose 6 from {6}
Nt1t7t6 ∈ [176].

This means one ti takes [17] to [176].

Choose 7 from {7}
Nt1t7t7 = Nt1t

2
7 ∈ [1].

This means one ti takes [17] to [1].

Choose 8 from {8}
Nt1t7t8 ∈ [178].

This means one ti takes [17] to [178].

Choose 9 from {9}
Nt1t7t9 ∈ [17].

We have Nt1t7t9 = (y ∗ x−1 ∗ y−2 ∗ x)t1t19
= (y ∗ x−1 ∗ y−2 ∗ x) ∗ (t1t7)(x

2∗y2) ∈ [17]

This means one ti takes [17] to [17].

Choose 10 from {10}
Nt1t7t10 ∈ [17].

We have Nt1t7t10 = (x ∗ y−1 ∗ x−1)t6t15

= (x ∗ y−1 ∗ x−1) ∗ (t1t7)(y
2∗x2) ∈ [17]

This means one ti takes [17] to [17].

Choose 11 from {11}
Nt1t7t11 ∈ [17].

We have Nt1t7t11 = (y ∗ x−1 ∗ y−2 ∗ x)t1t12
= (y ∗ x−1 ∗ y−2 ∗ x) ∗ (t1t7)(y

−2∗x−2) ∈ [17]

This means one ti takes [17] to [17].

Choose 12 from {12}
Nt1t7t12 ∈ [17].

We have Nt1t7t12 = (x2 ∗ y−2 ∗ x)t14t20
= (x2 ∗ y−2 ∗ x) ∗ (t1t7)(y∗x∗y

3) ∈ [17]

This means one ti takes [17] to [17].
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Choose 13 from {13}
Nt1t7t13 ∈ [17].

We have Nt1t7t13 = (x ∗ y ∗ x−1 ∗ y−2)t1t7 ∈ [17] This means one ti takes [17] to [17].

Choose 14 from {14}
Nt1t7t14 ∈ [13].

We have Nt1t7t14 = (x ∗ y−1 ∗ x ∗ y ∗ x)t18t16
= (x ∗ y−1 ∗ x ∗ y ∗ x) ∗ (t1t3)(y

2∗x−1) ∈ [13]

This means one ti takes [17] to [13].

Choose 15 from {15}
Nt1t7t15 ∈ [17].

We have Nt1t7t15 = (x ∗ y ∗ x2 ∗ y)t2t16
= (x ∗ y ∗ x2 ∗ y) ∗ (t1t7)(y

−1∗x−1∗y) ∈ [17]

This means one ti takes [17] to [17].

Choose 16 from {16}
Nt1t7t16 ∈ [17].

We have Nt1t7t16 = (x ∗ y−1 ∗ x ∗ y ∗ x)t3t18
= (x ∗ y−1 ∗ x ∗ y ∗ x) ∗ (t1t7)(x∗y

−1∗x−1) ∈ [17]

This means one ti takes [17] to [17].

Choose 17 from {17}
Nt1t7t17 ∈ [17].

We have Nt1t7t17 = ((x ∗ y−1 ∗ x−1)3)t5t19

= ((x ∗ y−1 ∗ x−1)3) ∗ (t1t7)(y∗x
−2∗y) ∈ [17]

This means one ti takes [17] to [17].

Choose 18 from {18}
Nt1t7t18 ∈ [17].

We have Nt1t7t18 = (x ∗ y−1 ∗ x ∗ y ∗ x)t3t17
= (x ∗ y−1 ∗ x ∗ y ∗ x) ∗ (t1t7)(y

2∗x∗y−1∗x) ∈ [17]

This means one ti takes [17] to [17].

Choose 19 from {19}
Nt1t7t19 ∈ [17].

We have Nt1t7t19 = (y ∗ x−1 ∗ y−2 ∗ x)t1t7 ∈ [17]

This means one ti takes [17] to [17].
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Choose 20 from {20}
Nt1t7t20 ∈ [17].

We have Nt1t7t20 = (x ∗ y−1 ∗ x ∗ y ∗ x)t3t10
= (x ∗ y−1 ∗ x ∗ y ∗ x) ∗ (t1t7)(x

y) ∈ [17]

This means one ti takes [17] to [17].

Choose 21 from {21}
Nt1t7t21 ∈ [1].

We have Nt1t7t21 = (x−2 ∗ y ∗ x−1)t3

= (x−2 ∗ y ∗ x−1) ∗ (t1)(y
−2) ∈ [1]

This means one ti takes [17] to [1].

Cayley Diagram

Figure 7.75: Cayley Diagram for G over S21

Sixth Double Coset [171]

Nt1t7t1 = {N(t1t7t1)
n|n ∈ N}.

We now find the coset stabilizer N(171). We first find the point stabilizer of 1,7 and 1 in

N.
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N171 = {n ∈ N |(171)n = 171}
N171 = ⟨e⟩
We will find different names of Nt1t7t1N . Nt1t7t1 = Nt2t19t2.

N(t1t7t1)
(1,2,14,3,6,5,8)(4,7,19,9,12,11,15)(10,13,21,16,18,17,20) = Nt2t19t2.

But, Nt2t19t2 = Nt1t7t1 =⇒
N(t1t7t1)

(1,2,14,3,6,5,8)(4,7,19,9,12,11,15)(10,13,21,16,18,17,20) = Nt1t7t1.

=⇒ (1, 2, 14, 3, 6, 5, 8)(4, 7, 19, 9, 12, 11, 15)(10, 13, 21, 16, 18, 17, 20) ∈ Nt1t7t1N

Thus N (171) ≥ ⟨N171, (1, 2, 14, 3, 6, 5, 8)(4, 7, 19, 9, 12, 11, 15)(10, 13, 21, 16, 18, 17, 20)⟩.
= e, (1, 2, 14, 3, 6, 5, 8)(4, 7, 19, 9, 12, 11, 15)(10, 13, 21, 16, 18, 17, 20)

The number of distinct right cosets in Nt1t7t1N is calculated by the formula,
|N |

|N(1,7,1)| =
126
7 = 18.

The orbits ofN (171) onX = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
are

{1, 2, 14, 3, 6, 5, 8}, {4, 7, 19, 9, 12, 11, 15}, {10, 13, 21, 16, 18, 17, 20}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1, 2, 14, 3, 6, 5, 8}
Nt1t7t1t1 = t1t7t

2
1 = t1t7 ∈ [17].

This means seven ti’s take [171] to [17].

Choose 4 from {4, 7, 19, 9, 12, 11, 15}
Nt1t7t1t4 ∈ [17].

We have Nt1t7t1t4 = (x ∗ y−1 ∗ x2)t12t17
= (x ∗ y−1 ∗ x2) ∗ (t1t7)(x

−2∗y∗x−1) ∈ [17]

This means seven ti’s take [171] to [17].

Choose 10 from {10, 13, 21, 16, 18, 17, 20}
Nt1t7t1t10 ∈ [17].

We have Nt1t7t1t10 = (x ∗ y−1 ∗ x2)t18t15
= (x ∗ y−1 ∗ x2) ∗ (t1t7)(y

2∗x−1) ∈ [17]

This means seven ti’s take [171] to [17].

Cayley Diagram
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Figure 7.76: Cayley Diagram for G over S21

Seventh Double Coset [176]

Nt1t7t6 = {N(t1t7t6)
n|n ∈ N}.

We now find the coset stabilizer N(176). We first find the point stabilizer of 1,7 and 6 in

N.

N176 = {n ∈ N |(176)n = 176}
N176 = ⟨e⟩
We will find different names of Nt1t7t6N . t1t7t6 = (x−2 ∗ y ∗x−1)t20t2t10 =⇒ Nt1t7t6 =

Nt20t2t10.

N(t1t7t6)
(1,20,12)(2,13,7)(3,17,19)(4,8,18)(5,21,9)(6,10,15)(11,14,16) = Nt20t2t10.

But, Nt20t2t10 = Nt1t7t6 =⇒
N(t1t7t6)

(1,20,12)(2,13,7)(3,17,19)(4,8,18)(5,21,9)(6,10,15)(11,14,16) = Nt1t7t6.

=⇒ (1, 20, 12)(2, 13, 7)(3, 17, 19)(4, 8, 18)(5, 21, 9)(6, 10, 15)(11, 14, 16) ∈ Nt1t7t6N

Thus N (176) ≥ ⟨N176, (1, 20, 12)(2, 13, 7)(3, 17, 19)(4, 8, 18)(5, 21, 9)(6, 10, 15)(11, 14, 16)⟩.
= e, (1, 20, 12)(2, 13, 7)(3, 17, 19)(4, 8, 18)(5, 21, 9)(6, 10, 15)(11, 14, 16)

The number of distinct right cosets in Nt1t7t6 is calculated by the formula
|N |

|N(1,7,6)| =
126
21 = 6.

The orbits ofN (1,7,6) onX = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
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are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11},
{12}, {13}, {14}, {15}, {16}, {17}, {18}, {19}, {20}, {21}.
We will determine the double cosets by selecting one represebtative from each orbit such

as,

Choose 1 from {1}
Nt1t7t6t1 ∈ [17].

We have Nt1t7t6t1 = Nt3t12

= (t1t7)
(y−2) ∈ [17]

This means one ti takes [176] to [17].

Choose 2 from {2}
Nt1t7t6t2 ∈ [17].

We have Nt1t7t6t2 = Nt6t11

= (t1t7)
(y2) ∈ [17]

This means one ti takes [176] to [17].

Choose 3 from {3}
Nt1t7t6t3 ∈ [17].

We have Nt1t7t6t3 = Nt8t4

= (t1t7)
((x∗y−1∗x−1)2) ∈ [17]

This means one ti takes [176] to [17].

Choose 4 from {4}
Nt1t7t6t4 ∈ [17].

We have Nt1t7t6t4 = (x3 ∗ y−1)t11t21

= (x3 ∗ y−1) ∗ (t1t7)(x
2∗y−1∗x−1) ∈ [17]

This means one ti takes [176] to [17].

Choose 5 from {5}
Nt1t7t6t5 ∈ [17].

We have Nt1t7t6t5 = Nt2t19

= (t1t7)
((x∗y∗x−1)2) ∈ [17]

This means one ti takes [176] to [17].

Choose 6 from {6} Nt1t7t6t6 = Nt1t7t
2
6 = Nt1t7 ∈ [17].

This means one ti takes [176] to [17].
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Choose 7 from {7}
Nt1t7t6t7 ∈ [17].

We have Nt1t7t6t7 = (x3 ∗ y−1)t15t16

= (x3 ∗ y−1) ∗ (t1t7)(x
2∗y∗x−1) ∈ [17]

This means one ti takes [176] to [17].

Choose 8 from {8}
Nt1t7t6t8 ∈ [17].

We have Nt1t7t6t8 = Nt14t9

= (t1t7)
((x−1∗y∗x)2) ∈ [17]

This means one ti takes [176] to [17].

Choose 9 from {9}
Nt1t7t6t9 ∈ [17].

We have Nt1t7t6t9 = (x3 ∗ y−1)t7t17

= (x3 ∗ y−1) ∗ (t1t7)(y
−1∗x) ∈ [17]

This means one ti takes [176] to [17].

Choose 10 from {10}
Nt1t7t6t10 ∈ [17].

We have Nt1t7t6t10 = (x−2 ∗ y ∗ x−1)t20t2

= (x−2 ∗ y ∗ x−1) ∗ (t1t7)(y∗x∗y
−1∗x) ∈ [17]

This means one ti takes [176] to [17].

Choose 11 from {11}
Nt1t7t6t11 ∈ [17].

We have Nt1t7t6t11 = (x3 ∗ y−1)t9t10

= (x3 ∗ y−1) ∗ (t1t7)(y∗x) ∈ [17]

This means one ti takes [176] to [17].

Choose 12 from {12}
Nt1t7t6t12 ∈ [17].

We have Nt1t7t6t12 = (x3 ∗ y−1)t19t20

= (x3 ∗ y−1) ∗ (t1t7)(x
2∗y∗x−1∗y−2) ∈ [17]

This means one ti takes [176] to [17].

Choose 13 from {13}
Nt1t7t6t13 ∈ [17].
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We have Nt1t7t6t13 = (x−2 ∗ y ∗ x−1)t10t14

= (x−2 ∗ y ∗ x−1) ∗ (t1t7)(y
−1∗x∗y∗x) ∈ [17]

This means one ti takes [176] to [17].

Choose 14 from {14}
Nt1t7t6t14 ∈ [17].

We have Nt1t7t6t14 = Nt5t15

= (t1t7)
((x−1∗y−1∗x)2) ∈ [17]

This means one ti takes [176] to [17].

Choose 15 from {15}
Nt1t7t6t15 ∈ [17].

We have Nt1t7t6t15 = (x3 ∗ y−1)t12t13

= (x3 ∗ y−1) ∗ (t1t7)(x
−1∗y∗x−1∗y−1) ∈ [17]

This means one ti takes [176] to [17].

Choose 16 from {16}
Nt1t7t6t16 ∈ [17].

We have Nt1t7t6t16 = (x−2 ∗ y ∗ x−1)t21t6

= (x−2 ∗ y ∗ x−1) ∗ (t1t7)(x∗y
−1∗x−2) ∈ [17]

This means one ti takes [176] to [17].

Choose 17 from {17}
Nt1t7t6t17 ∈ [17].

We have Nt1t7t6t17 = (x−2 ∗ y ∗ x−1)t18t8

= (x−2 ∗ y ∗ x−1) ∗ (t1t7)(x∗y∗x
−2) ∈ [17]

This means one ti takes [176] to [17].

Choose 18 from {18}
Nt1t7t6t18 ∈ [17].

We have Nt1t7t6t18 = (x−2 ∗ y ∗ x−1)t16t5

= (x−2 ∗ y ∗ x−1) ∗ (t1t7)(x∗y
2∗x−2∗y−1) ∈ [17]

This means one ti takes [176] to [17].

Choose 19 from {19}
Nt1t7t6t19 ∈ [17].

We have Nt1t7t6t19 = (x3 ∗ y−1)t4t18

= (x3 ∗ y−1) ∗ (t1t7)(y∗x∗y
2) ∈ [17]



223

This means one ti takes [176] to [17].

Choose 20 from {20}
Nt1t7t6t20 ∈ [17].

We have Nt1t7t6t20 = (x−2 ∗ y ∗ x−1)t17t1

= (x−2 ∗ y ∗ x−1) ∗ (t1t7)(x
−1∗y) ∈ [17]

This means one ti takes [176] to [17].

Choose 21 from {21}
Nt1t7t6t21 ∈ [17].

We have Nt1t7t6t21 = (x−2 ∗ y ∗ x−1)t13t3

= (x−2 ∗ y ∗ x−1) ∗ (t1t7)(x
−1∗y−1) ∈ [17]

This means one ti takes [176] to [17].

Cayley Diagram

Figure 7.77: Cayley Diagram for G over S21

Eightieth Double Coset [178]

Nt1t7t8 = {N(t1t7t8)
n|n ∈ N}.

We now find the coset stabilizer N(178). We first find the point stabilizer of 1,7 and 8 in
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N.

N178 = {n ∈ N |(178)n = 178}
N178 = ⟨e⟩
We will find different names of Nt1t7t8N . t1t7t8 = (x−2 ∗ y ∗x−1)t21t8t17 =⇒ Nt1t7t8 =

Nt21t8t17.

N(t1t7t8)
(1,21,9)(2,20,11)(3,10,19)(4,14,16)(5,13,15)(6,18,12)(7,8,17) = Nt21t8t17.

But, Nt21t8t17 = Nt1t7t8 =⇒
N(t1t7t8)

(1,21,9)(2,20,11)(3,10,19)(4,14,16)(5,13,15)(6,18,12)(7,8,17) = Nt1t7t8.

=⇒ (1, 21, 9)(2, 20, 11)(3, 10, 19)(4, 14, 16)(5, 13, 15)(6, 18, 12)(7, 8, 17) ∈ Nt1t7t8N

Thus N (178) ≥ ⟨N178, ⟩.
= e, (1, 21, 9)(2, 20, 11)(3, 10, 19)(4, 14, 16)(5, 13, 15)(6, 18, 12)(7, 8, 17)

The number of distinct right cosets in Nt1t7t8N is calculated by the formula,
|N |

|N(1,7,8)| =
126
21 = 6.

The orbits ofN (178) onX = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11},
{12}, {13}, {14}, {15}, {16}, {17}, {18}, {19}, {20}, {21}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t7t8t1 ∈ [17].

We have Nt1t7t8t1 = Nt2t19

= (t1t7)
((x∗y∗x−1)2) ∈ [17]

This means one ti takes [178] to [17].

Choose 2 from {2}
Nt1t7t8t2 ∈ [17].

We have Nt1t7t8t2 = Nt14t9

= (t1t7)
((x−1∗y∗x)2) ∈ [17]

This means one ti takes [178] to [17].

Choose 3 from {3}
Nt1t7t8t3 ∈ [17].

We have Nt1t7t8t3 = Nt6t11
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= (t1t7)
(y2) ∈ [17]

This means one ti takes [178] to [17].

Choose 4 from {4}
Nt1t7t8t4 ∈ [17].

We have Nt1t7t8t4 = (y ∗ x ∗ y ∗ x−1)t19t18

= (y ∗ x ∗ y ∗ x−1) ∗ (t1t7)(x∗y∗x∗y
−1) ∈ [17]

This means one ti takes [178] to [17].

Choose 5 from {5}
Nt1t7t8t5 ∈ [17].

We have Nt1t7t8t5 = Nt8t4

= (t1t7)
((x∗y−1∗x−1)2) ∈ [17]

This means one ti takes [178] to [17].

Choose 6 from {6}
Nt1t7t8t6 ∈ [17].

We have Nt1t7t8t6 = Nt5t15

= (t1t7)
((x−1∗y−1∗x)2) ∈ [17]

This means one ti takes [178] to [17].

Choose 7 from {7}
Nt1t7t8t7 ∈ [17].

We have Nt1t7t8t7 = (y ∗ x ∗ y ∗ x−1)t9t17

= (y ∗ x ∗ y ∗ x−1) ∗ (t1t7)(y∗x
−1∗y−2) ∈ [17]

This means one ti takes [178] to [17].

Choose 8 from {8}
Nt1t7t8t8 = Nt1t7t

2
8 = Nt1t7 ∈ [17].

This means one ti takes [178] to [17].

Choose 9 from {9}
Nt1t7t8t9 ∈ [17].

We have Nt1t7t8t9 = (y ∗ x ∗ y ∗ x−1)t11t10

= (y ∗ x ∗ y ∗ x−1) ∗ (t1t7)(y
−3∗x−1) ∈ [17]

This means one ti takes [178] to [17].

Choose 10 from {10}
Nt1t7t8t10 ∈ [17].
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We have Nt1t7t8t10 = (x−2 ∗ y ∗ x−1)t18t2

= (x−2 ∗ y ∗ x−1) ∗ (t1t7)(x∗y) ∈ [17]

This means one ti takes [178] to [17].

Choose 11 from {11}
Nt1t7t8t11 ∈ [17].

We have Nt1t7t8t11 = (y ∗ x ∗ y ∗ x−1)t4t21

= (y ∗ x ∗ y ∗ x−1) ∗ (t1t7)(y∗x
−1) ∈ [17]

This means one ti takes [178] to [17].

Choose 12 from {12}
Nt1t7t8t12 ∈ [17].

We have Nt1t7t8t12 = (y ∗ x ∗ y ∗ x−1)t15t13

= (y ∗ x ∗ y ∗ x−1) ∗ (t1t7)(y
−1∗x−1) ∈ [17]

This means one ti takes [178] to [17].

Choose 13 from {13}
Nt1t7t8t13 ∈ [17].

We have Nt1t7t8t13 = (x−2 ∗ y ∗ x−1)t17t14

= (x−2 ∗ y ∗ x−1) ∗ (t1t7)(x
−1∗y−1∗x2) ∈ [17]

This means one ti takes [178] to [17].

Choose 14 from {14}
Nt1t7t8t14 ∈ [17].

We have Nt1t7t8t14 = Nt3t12

= (t1t7)
(y−2) ∈ [17]

This means one ti takes [178] to [17].

Choose 15 from {15}
Nt1t7t8t15 ∈ [17].

We have Nt1t7t8t15 = (y ∗ x ∗ y ∗ x−1)t7t16

= (y ∗ x ∗ y ∗ x−1) ∗ (t1t7)(y
3∗x−1) ∈ [17]

This means one ti takes [178] to [17].

Choose 16 from {16}
Nt1t7t8t16 ∈ [17].

We have Nt1t7t8t16 = (x−2 ∗ y ∗ x−1)t10t6

= (x−2 ∗ y ∗ x−1) ∗ (t1t7)(x∗y
−1) ∈ [17]
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This means one ti takes [178] to [17].

Choose 17 from {17}
Nt1t7t8t17 ∈ [17].

We have Nt1t7t8t17 = (x−2 ∗ y ∗ x−1)t21t8

= (x−2 ∗ y ∗ x−1) ∗ (t1t7)(y
2∗x∗y−1) ∈ [17]

This means one ti takes [178] to [17].

Choose 18 from {18}
Nt1t7t8t18 ∈ [17].

We have Nt1t7t8t18 = (x−2 ∗ y ∗ x−1)t13t5

= (x−2 ∗ y ∗ x−1) ∗ (t1t7)(x∗y
3) ∈ [17]

This means one ti takes [178] to [17].

Choose 19 from {19}
Nt1t7t8t19 ∈ [17].

We have Nt1t7t8t19 = (y ∗ x ∗ y ∗ x−1)t12t20

= (y ∗ x ∗ y ∗ x−1) ∗ (t1t7)(x∗y
−1∗x∗y) ∈ [17]

This means one ti takes [178] to [17].

Choose 20 from {20}
Nt1t7t8t20 ∈ [17].

We have Nt1t7t8t20 = (x−2 ∗ y ∗ x−1)t16t1

= (x−2 ∗ y ∗ x−1) ∗ (t1t7)(x∗y
−3) ∈ [17]

This means one ti takes [178] to [17].

Choose 21 from {21}
Nt1t7t8t21 ∈ [17].

We have Nt1t7t8t21 = (x−2 ∗ y ∗ x−1)t20t3

= (x−2 ∗ y ∗ x−1) ∗ (t1t7)(y
2∗x∗y) ∈ [17]

This means one ti takes [178] to [17].
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Cayley Diagram

Figure 7.78: Cayley Diagram for G over S21

It is possible that the coset stabiliser of N (w) of the coset Nw increases and therefore
|N |

|N(w)| decreases.

Our cayley diagram shows that

G = N ∪Nt1 ∪Nt1t2 ∪Nt1t3 ∪Nt1t7 ∪Nt1t7t1 ∪Nt1t7t6 ∪Nt1t7t8

|G| ≤ (|N |+ |N |
|N(1)| +

|N |
|N(12)| +

|N |
|N(13)| +

|N |
|N(17)| +

|N |
|N(171)| +

|N |
|N(176)| +

|N |
|N(178)| × |N |

|G| ≤ (1 + 21 + 9 + 9 + 126 + 18 + 6 + 6)× 126

=⇒ |G| ≤ 196× 126

=⇒ |G| ≤ 24696.

G acts on 196 cosets that are given in the cayley diagram.

Let X be the set of these 196 cosets.

Now, f : G → Sx is a homomorphism.

G
Kerf

∼= Imf (First Isomorphism Theorem).

=⇒ G
Kerf

∼= ⟨f(x), f(y), f(t)⟩
=⇒ | G

Kerf | = |⟨f(x), f(y), f(t)⟩|
But #⟨f(x), f(y), f(t)⟩ = 24696.
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So, | G
kerf | = 24696

This means |G| ≥ 24696. We know |G| ≤ 24696 from cayley diagram.

Therefore, |G| = 24696.

From |G| = 24696× |Kerf | we find |Kerf | = 1

G ∼= ⟨f(x), f(y), f(t)⟩ but, ⟨f(x), f(y), f(t)⟩ ∼= 73 : S3 : 2 =⇒ G ∼= 73 : S3 : 2.
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7.11 Construction of 26 : PSL(2, 7) over PSL(2, 7)

Let N ∼= PSL(2, 7) where

x ∼ (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 19)(14, 22)(16, 24)

(17, 26)(20, 29)(21, 31)(23, 33)(25, 30)(27, 36)(28, 37)(32, 40)(34, 42)(35, 43)(38, 47)(39, 48)

(41, 51)(44, 49)(45, 55)(46, 57)(50, 61)(52, 58)(53, 64)(54, 66)(56, 65)(59, 69)(60, 71)

(62, 70)(63, 73)(68, 76)(75, 80)(78, 82)(79, 83)(81, 84), and

y ∼ (1, 3, 6, 11)(2, 4, 8, 14)(5, 9, 16, 25)(7, 12, 20, 30)(10, 17, 13, 21)(15, 23, 19, 28)

(18, 27, 24, 34)(22, 32, 29, 38)(26, 35, 44, 54)(31, 39, 49, 60)(33, 41, 52, 63)

(36, 45, 56, 48)(37, 46, 58, 68)(40, 50, 62, 43)(42, 53, 65, 57)(47, 59, 70, 51)(55, 67, 71, 78)(61, 72, 66, 75)

(64, 74, 76, 81)(69, 77, 73, 79)(80, 84)(82, 83).

The progenitor 2∗84 : PSL(2, 7) has symmetric presentation

G<x,y>:=Group<x,y,t| x^2, y^4,

y^-2 * x * y^2 * x * y^2 * x,

(x * y^-1)^7,

t^2 >.

We want to verify that the presentation given above is correct.

Theorem: 2∗n:N
titj

∼= 2n : N where 1 ≤ i ≤ j ≤ n.

We will show that 26:PSL(2,7)

((y)∗t(y∗x∗y−1∗x∗y∗x∗y−1))3,((y)∗t(x∗y∗x∗y−1∗x∗y∗x))3
∼= PSL(2, 7).

Thus, we will prove

G<x,y>:=Group<x,y,t| x^2, y^4, y^-2 * x * y^2 * x * y^2 * x,

(x * y^-1)^7,

t^2,

(t,(x * y * x * y^-1)^2 ),

(t,t^{(y^x)}), (t,t^{(x^2)}),(t,t^{(y*x^-1)}),

(t,t^{(y^-3)}),(t,t^{(y*x)}),

((y)*t^(y * x * y^-1 * x * y * x * y^-1))^3,

((y)*t^(x * y * x * y^-1 * x * y * x))^3> ~ PSL(2,7).

We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N . We need to determine all distinct double cosets NwN and find the number

of right cosets in each double coset. It suffices to find the double cosets of Nwti for one

representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw, so we

find our index, which is the order of G over the order of N . Hence, |G|
|N | =

10752
168 = 64.
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Now we know that we have 64 distinct single cosets.

Expanding First Relation We will expand our first relation.

((y) ∗ t(y∗x∗y−1∗x∗y∗x∗y−1))3

=y ∗ t2 ∗ y ∗ t2 ∗ y ∗ t2
= y3 ∗ (t(y

2)
2 ) ∗ (t(y)2 ) ∗ t2

=⇒ y3 ∗ t8t4t2 = e

=⇒ y3 ∗ t8 = t2 ∗ t4
Expanding Second RelationWe will expand our second relation.

((y) ∗ t(x∗y∗x∗y−1∗x∗y∗x))3

=y ∗ t3 ∗ y ∗ t3 ∗ y ∗ t3
= y3 ∗ (t(y

2)
3 ) ∗ (t(y)3 ) ∗ t3

=⇒ y3 ∗ t11 ∗ t6 ∗ t3 = e

=⇒ y3 ∗ t11 = t3 ∗ t6

First Double Coset [∗]

NeN = {Nen|n ∈ N} = {N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The formula for the number of right coset in N is |N |
|N | =

168
168 = 1.

Since N is transitive on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84}.
We need only determine the double coset of the right coset Nt1.

Thus 84 ti’s extend the double coset [∗] to the double coset Nt1N = [1].

Cayley Diagram
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Figure 7.79: Cayley Diagram for G over S84

Second Double Coset [1]

Nt1N = {Ntn1 |n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10, Nt11,

Nt12, Nt13, Nt14, Nt15, Nt16, Nt17, Nt18, Nt19, Nt20, Nt21,

Nt22, Nt23, Nt24, Nt25, Nt26, Nt27, Nt28, Nt29, Nt30,

Nt31, Nt32, Nt33, Nt34, Nt35, Nt36, Nt37, Nt38, Nt39, Nt40,

Nt41, Nt42, Nt43, Nt44, Nt45, Nt46, Nt47, Nt48, Nt49, Nt50,

Nt51, Nt52, Nt53, Nt54, Nt55, Nt56, Nt57, Nt58, Nt59, Nt60,

Nt61, Nt62, Nt63, Nt64, Nt65, Nt66, Nt67, Nt68, Nt69, Nt70,

Nt71, Nt72, Nt73, Nt74, Nt75, Nt76, Nt77, Nt78, Nt79, Nt80, Nt81, Nt82, Nt83, Nt84}.
We now find the Coset Stabilizer N (1). We first find the point stabilizer of 1 in N .

N1 = {n ∈ N |1n = 1}
Thus, N (1) ≥ N1 = ⟨(3, 65)(4, 70)(5, 56)(6, 84)(7, 62)(8, 83)(9, 82)(10, 81)(11, 35)(12, 80),
(13, 79)(14, 39)(15, 78)(16, 41)(17, 33)(18, 43)(19, 75)(20, 46)(21,

37)(22, 48)(23, 26)(24, 51)(27, 73)(28, 31)(29, 57)(32, 76)(34, 66)(36, 63)(38, 71)(40, 68),

(42, 54)(44, 49)(45, 53)(47, 60)(50, 59)(52, 58)(55, 64)(61, 69)(67, 72)(74, 77)⟩.
The number of right cosets in Nt1N is calculated by the formula,
|N |

|N(1)| =
168
84 = 2. The orbits of N(1) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84} are

{1}, {2}, {25}, {30}, {3, 65}, {4, 70}, {5, 56}, {6, 84}, {7, 62},
{8, 83}, {9, 82}, {10, 81}, {11, 35}, {12, 80}, {13, 79}, {14, 39}, {15, 78},
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{16, 41}, {17, 33}, {18, 43}, {19, 75},
{20, 46}, {21, 37}, {22, 48}, {23, 26}, {24, 51}, {27, 73},
{28, 31}, {29, 57}, {32, 76}, {34, 66}, {36, 63}, {38, 71}, {40, 68},
{42, 54}, {44, 49}, {45, 53}, {47, 60}, {50, 59}, {52, 58}, {55, 64}, {61, 69}, {67, 72}, {74, 77}.
We will determine the double cosetes by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t1 = Nt21 = N ∈ [∗].
This means one ti takes [1] to [*].

Choose 2 from {2 }
Nt1t2 ∈ [∗].
This means one ti takes [1] to [*].

Choose 25 from {25}
Nt1t25 ∈ [1].

We have Nt1t25 = Nt44

= (t1)
(y2∗x∗y∗x∗y2) ∈ [1]

This means one ti takes [1] to [1].

Choose 30 from {30}
Nt1t30 ∈ [1].

We have Nt1t30 = Nt44

= (t1)
(y2∗x∗y∗x∗y2) ∈ [1]

This means one ti takes [1] to [1].

Choose 3 from {3,65}
Nt1t3 ∈ [1].

We have Nt1t3 = (y−1)t6

= (y−1)(t1)
(y2) ∈ [1]

This means two ti’s take [1] to [1].

Choose 4 from {4,70}
Nt1t4 ∈ [1].

We have Nt1t4 = (y−1)t6

= (y−1) ∗ (t1)(y
2) ∈ [1]

This means two ti’s take [1] to [1].
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Choose 5 from {5,56}
Nt1t5 ∈ [1].

We have Nt1t5 = (x ∗ y−1 ∗ x)t10
= (x ∗ y−1 ∗ x) ∗ (t1)(y

2∗x) ∈ [1]

This means two ti’s take [1] to [1].

Choose 6 from {6,84}
Nt1t6 ∈ [16].

This means two ti’s take [1] to [16].

Choose 7 from {7,62}
Nt1t7 ∈ [1].

We have Nt1t7 = (x ∗ y−1 ∗ x)t10
= (x ∗ y−1 ∗ x) ∗ (t1)(y

2∗x) ∈ [1]

This means two ti’s take [1] to [1].

Choose 8 from {8,83}
Nt1t8 ∈ [16].

We have Nt1t8 = Nt1t6.

This means two ti’s take [1] to [16].

Choose 9 from {9,82}
Nt1t9 ∈ [19].

This means two ti’s take [1] to [19].

Choose 10 from {10,81}
Nt1t10 ∈ [16].

We have Nt1t10 = Nt10t2

= (t1t6)
(y2∗x) ∈ [16]

This means two ti’s take [1] to [16].

Choose 11 from {11,35}
Nt1t11 ∈ [1].

We have Nt1t11 = y ∗ t6 = y ∗ (t1)(y
2) ∈ [1]

This means two ti’s take [1] to [1].

Choose 12 from {12,80}
Nt1t12 ∈ [19].

We have Nt1t12 = Nt1t9.
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This means two ti’s take [1] to [19].

Choose 13 from {13,79}
Nt1t13 ∈ [16].

We have Nt1t13 = Nt10t2

= (t1t6)
(y2∗x) ∈ [16]

This means two ti’s take [1] to [16].

Choose 14 from {14,39}
Nt1t14 ∈ [1].

We have Nt1t14 = yt6

= y(t1)
(y2) ∈ [1]

This means two ti’s take [1] to [1].

Choose 15 from {15,78}
Nt1t15 ∈ [19].

We have Nt1t15 = Nt2t15

= (t1t9)
x ∈ [19]

This means two ti’s take [1] to [19].

Choose 16 from {16,41}
Nt1t16 ∈ [19].

We have Nt1t16 = (y−1 ∗ x ∗ y2)t32t31
= (y−1 ∗ x ∗ y2) ∗ (t1t9)(y∗x∗y

−1∗x∗y−1∗x∗y−1) ∈ [19]

This means two ti’s take [1] to [19].

Choose 17 from {17,33}
Nt1t17 ∈ [19].

We have Nt1t17 = Nt1t82

= (t1t9)
((x∗y∗x∗y−1)2) ∈ [19]

This means two ti’s take [1] to [19].

Choose 18 from {18,43}
Nt1t18 ∈ [1].

We have Nt1t18 = (x ∗ y ∗ x)t10
= (x ∗ y ∗ x) ∗ (t1)(y

2∗x) ∈ [1]

This means two ti’s take [1] to [1].

Choose 19 from {19,75}
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Nt1t19 ∈ [19].

We have Nt1t19 = Nt2t15

= (t1t9)
x ∈ [19]

This means two ti’s take [1] to [19].

Choose 20 from {20,46}
Nt1t20 ∈ [19].

We have Nt1t20 = (y−1 ∗ x ∗ y2)t32t31
= (y−1 ∗ x ∗ y2) ∗ (t1t9)(y∗x∗y

−1∗x∗y−1∗x∗y−1) ∈ [19]

This means two ti’s take [1] to [19].

Choose 21 from {21,37}
Nt1t21 ∈ [19].

We have Nt1t21 = Nt1t82

= (t1t9)
((x∗y∗x∗y−1)2) ∈ [19]

This means two ti’s take [1] to [19].

Choose 22 from {22,48}
Nt1t22 ∈ [1].

We have Nt1t22 = (x ∗ y ∗ x)t10
= (x ∗ y ∗ x) ∗ (t1)(y

2∗x) ∈ [1]

This means two ti’s take [1] to [1].

Choose 23 from {23,26}
Nt1t23 ∈ [19].

We have Nt1t23 = Nt2t15

= (t1t9)
x ∈ [19]

This means two ti’s take [1] to [19].

Choose 24 from {24,51}
Nt1t24 ∈ [19].

We have Nt1t24 = (y−1 ∗ x)3)t7t33
= (y−1 ∗ x)3) ∗ (t1t9)(x∗y∗x) ∈ [19]

This means two ti’s take [1] to [19].

Choose 27 from {27,73}
Nt1t27 ∈ [1].

We have Nt1t27 = (y2 ∗ x ∗ y ∗ x ∗ y)t10
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= (y2 ∗ x ∗ y ∗ x ∗ y) ∗ (t1)(y
2∗x) ∈ [1]

This means two ti’s take [1] to [1].

Choose 28 from {28,31}
Nt1t28 ∈ [19].

We have Nt1t28 = Nt2t15

= (t1t9)
x ∈ [19]

This means two ti’s take [1] to [19].

Choose 29 from {29,57}
Nt1t29 ∈ [19].

We have Nt1t29 = (x ∗ y ∗ x ∗ y2)t40t21
= (x ∗ y ∗ x ∗ y2) ∗ (t1t9)(y∗x∗y

−1∗x∗y−1∗x∗y−1∗x) ∈ [19]

This means two ti’s take [1] to [19].

Choose 32 from {32,76}
Nt1t32 ∈ [1].

We have Nt1t32 = (y2 ∗ x ∗ y ∗ x ∗ y)t10
= (y2 ∗ x ∗ y ∗ x ∗ y) ∗ (t1)(y

2∗x) ∈ [1]

This means two ti’s take [1] to [1].

Choose 34 from {34,66}
Nt1t34 ∈ [19].

We have Nt1t34 = xt60t49

= x(t1t9)
(y−1∗x∗y∗x∗y−1∗x∗y2) ∈ [19]

This means two ti’s take [1] to [19].

Choose 36 from {36,63}
Nt1t36 ∈ [1].

We have Nt1t36 = (y2 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t6
= (y2 ∗ x ∗ y−1 ∗ x ∗ y ∗ x) ∗ (t1)(y

2) ∈ [1]

This means two ti’s take [1] to [1].

Choose 38 from {38,71}
Nt1t38 ∈ [19].

We have Nt1t38 = xt60t49

= x(t1t9)
(y−1∗x∗y∗x∗y−1∗x∗y2) ∈ [19]

This means two ti’s take [1] to [19].
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Choose 40 from {40,68}
Nt1t40 ∈ [1].

We have Nt1t40 = (y2 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t6
= (y2 ∗ x ∗ y−1 ∗ x ∗ y ∗ x) ∗ (t1)(y

2) ∈ [1]

This means two ti’s take [1] to [1].

Choose 42 from {42,54}
Nt1t42 ∈ [19].

We have Nt1t42 = xt60t49

= x(t1t9)
(y−1∗x∗y∗x∗y−1∗x∗y2) ∈ [19]

This means two ti’s take [1] to [19].

Choose 44 from {44,49}
Nt1t44 ∈ [1].

We have Nt1t44 = Nt25

= (t1)
(y∗x∗y−1) ∈ [1]

This means two ti’s take [1] to [1].

Choose 45 from {45,53}
Nt1t45 ∈ [1].

We have Nt1t45 = (x ∗ y−1 ∗ x ∗ y ∗ x ∗ y2)t6
= (x ∗ y−1 ∗ x ∗ y ∗ x ∗ y2) ∗ (t1)(y

2) ∈ [1]

This means two ti’s take [1] to [1].

Choose 47 from {47,60}
Nt1t47 ∈ [19].

We have Nt1t47 = xt60t49

= x(t1t9)
(y−1∗x∗y∗x∗y−1∗x∗y2) ∈ [19]

This means two ti’s take [1] to [19].

Choose 50 from {50,59}
Nt1t50 ∈ [1].

We have Nt1t50 = (x ∗ y−1 ∗ x ∗ y ∗ x ∗ y2)t6
= (x ∗ y−1 ∗ x ∗ y ∗ x ∗ y2) ∗ (t1)(y

2) ∈ [1]

This means two ti’s take [1] to [1].

Choose 52 from {52,58}
Nt1t52 ∈ [1].
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We have Nt1t52 = Nt44

= (t1)
(y2∗x∗y∗x∗y2) ∈ [1]

This means two ti’s take [1] to [1].

Choose 55 from {55,64}
Nt1t55 ∈ [1].

We have Nt1t55 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y2)t10
= (y−1 ∗ x ∗ y−1 ∗ x ∗ y2) ∗ (t1)(y

2∗x) ∈ [1]

This means two ti’s take [1] to [1].

Choose 61 from {61,69}
Nt1t61 ∈ [1].

We have Nt1t61 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y2)t10
= (y−1 ∗ x ∗ y−1 ∗ x ∗ y2) ∗ (t1)(y

2∗x) ∈ [1]

This means two ti’s take [1] to [1].

Choose 67 from {67,72}
Nt1t67 ∈ [1].

We have Nt1t67 = Nt25

= (t1)
(y∗x∗y−1) ∈ [1]

This means two ti’s take [1] to [1].

Choose 74 from {74,77}
Nt1t74 ∈ [∗].
This means two ti’s take [1] to [*].
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Cayley Diagram

Figure 7.80: Cayley Diagram for G over S84

Third Double Coset [16]

Nt1t6 = {N(t1t6)
n|n ∈ N}.

We now find the coset stabilizer N(16). We first find the point stabilizer of 1 and 6 in N.

N16 = {n ∈ N |(16)n = 16}
N16 = ⟨e⟩
We will find different names of Nt1t6N . Nt1t6 = Nt81t2.

N(t1t6)
(1,81,77,8),(2,79,74,6) = Nt81t2.

But, Nt81t2 = Nt1t6 =⇒
N(t1t6)

(1,81,77,8),(2,79,74,6) = Nt1t6.

=⇒ (1, 81, 77, 8)(2, 79, 74, 6)(3, 43, 69, 36)(4, 48, 64, 40)(5, 51, 61, 42)(7, 57, 55, 47)

(9, 30, 75, 67)(10, 83, 13, 84)(11, 56, 73, 50)(12, 25, 78, 72)(14, 62, 76, 45)(15, 80, 19, 82)

(16, 65, 66, 59)(17, 28)(18, 41, 27, 54)(20, 70, 71, 53)(21, 23)(22, 46, 32, 60)

(24, 35, 34, 63)(26, 44, 33, 52)(29, 39, 38, 68)(31, 49, 37, 58) ∈ Nt1t6N

Thus N (16) ≥ ⟨N16, (1, 81, 77, 8)(2, 79, 74, 6)(3, 43, 69, 36)(4, 48, 64, 40)

(5, 51, 61, 42)(7, 57, 55, 47)(9, 30, 75, 67)(10, 83, 13, 84)
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(11, 56, 73, 50)(12, 25, 78, 72)(14, 62, 76, 45)(15, 80, 19, 82)(16, 65, 66, 59)(17, 28)

(18, 41, 27, 54)(20, 70, 71, 53)(21, 23)(22, 46, 32, 60)

(24, 35, 34, 63)(26, 44, 33, 52)(29, 39, 38, 68)(31, 49, 37, 58)⟩.
= ⟨e, (1, 81, 77, 8)(2, 79, 74, 6)(3, 43, 69, 36)(4, 48, 64, 40)(5, 51, 61, 42)(7, 57, 55, 47)
(9, 30, 75, 67)(10, 83, 13, 84)(11, 56, 73, 50)(12, 25, 78, 72)(14, 62, 76, 45)(15, 80, 19, 82)

(16, 65, 66, 59)(17, 28)(18, 41, 27, 54)(20, 70, 71, 53)(21, 23)(22, 46, 32, 60)

(24, 35, 34, 63)(26, 44, 33, 52)(29, 39, 38, 68)(31, 49, 37, 58)⟩
The number of distinct right cosets in Nt1t6N is calculated by the formula,

|N |
|N(1,6)| =

168
24 = 7.

The orbits of N (16) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84} are

{10, 82, 13, 17, 28, 80, 23, 83, 21, 19, 15, 84}, {18, 33, 27, 52, 41, 26, 63, 44, 24, 54, 35, 34},
{22, 37, 32, 58, 46, 31, 68, 49, 29, 60, 39, 38},
{1, 76, 77, 64, 3, 36, 14, 56, 81, 4, 73, 43, 50, 74, 62, 69, 40, 6, 45, 2, 79, 48, 8, 11},
{5, 70, 61, 47, 9, 67, 53, 78, 51, 57, 72, 30, 12, 59, 20, 75, 7, 16, 71, 65, 66, 55, 42, 25}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1, 76, 77, 64, 3, 36, 14, 56, 81, 4, 73,
43, 50, 74, 62, 69, 40, 6, 45, 2, 79, 48, 8, 11}
Nt1t6t1 ∈ [1].

We have Nt1t6t1 = Nt6

= (t1)
(y2) ∈ [1]

This means twenty ti’s take [16] to [1].

Choose 5 from {5, 70, 61, 47, 9, 67, 53, 78, 51, 57, 72, 30, 12, 59, 20,
75, 7, 16,71, 65, 66, 55, 42, 25}
Nt1t6t5 ∈ [19].

We have Nt1t6t5 = (y ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y−1)t1t9 ∈ [19]

This means twenty ti’s take [16] to [19].

Choose 10 from {10, 82, 13, 17, 28, 80, 23, 83, 21, 19, 15, 84}
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Nt1t6t10 ∈ [191].

We have Nt1t6t10 = (y ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y−1)t20t52t20

= (y ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y−1) ∗ (t1t9t1)(x∗y∗x∗y
2) ∈ [191]

This means twelve ti’s take [16] to [191].

Choose 18 from {18, 33, 27, 52, 41, 26, 63, 44, 24, 54, 35, 34}
Nt1t6t18 ∈ [19].

We have Nt1t6t18 = (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y)t1t9 ∈ [19]

This means twelve ti’s take [16] to [19].

Choose 22 from {22, 37, 32, 58, 46, 31, 68, 49, 29, 60, 39, 38}
Nt1t6t22 ∈ [19].

We have Nt1t6t22 = (y2 ∗ x)t14t71
= (y2 ∗ x) ∗ (t1t9)(y∗x∗y

−1∗x∗y∗x∗y2) ∈ [19]

This means twelve ti’s take [16] to [19].

Cayley Diagram

Figure 7.81: Cayley Diagram for G over S84
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Fourth Double Coset [19]

Nt1t9 = {N(t1t9)
n|n ∈ N}.

We now find the coset stabilizer N(19). We first find the point stabilizer of 1 and 9 in N.

N19 = {n ∈ N |(19)n = 19}
N19 = ⟨e⟩
We will find different names of Nt1t9N . Nt1t9 = Nt74t12.

N(t1t9)
(1,74),(9,12) = Nt74t12.

But, Nt74t12 = Nt1t9 =⇒
N(t1t9)

(1,74),(9,12) = Nt1t9.

=⇒ (1, 74)(2, 77)(3, 50)(4, 45)(5, 59)(6, 8)(7, 53)(9, 12)(10, 83)(11, 36)

(13, 84)(14, 40)(15, 80)(16, 42)(17, 23)(18, 63)(19, 82)(20, 47)(21, 28)(22, 68)(24, 54)

(25, 67)(27, 35)(29, 60)(30, 72)(32, 39)(34, 41)(38, 46)(43, 73)(44, 52)

(48, 76)(49, 58)(51, 66)(55, 70)(56, 69)(57, 71)(61, 65)(62, 64)(75, 78)(79, 81) ∈ Nt1t9N

Thus N (19) ≥ ⟨N19, (1, 74)(2, 77)(3, 50)(4, 45)(5, 59)(6, 8)

(7, 53)(9, 12)(10, 83)(11, 36)(13, 84)(14, 40)(15, 80)(16, 42)

(17, 23)(18, 63)(19, 82)(20, 47)(21, 28)(22, 68)(24, 54)(25, 67)(27, 35)

(29, 60)(30, 72)(32, 39)(34, 41)(38, 46)(43, 73)(44, 52)(48, 76)(49, 58)

(51, 66)(55, 70)(56, 69)(57, 71)(61, 65)(62, 64)(75, 78)(79, 81)⟩.
= ⟨e, (1, 74)(2, 77)(3, 50)(4, 45)(5, 59)(6, 8)(7, 53)(9, 12)(10, 83)(11, 36)
(13, 84)(14, 40)(15, 80)(16, 42)(17, 23)(18, 63)(19, 82)(20, 47)(21, 28)(22, 68)(24, 54)(25, 67)

(27, 35)(29, 60)(30, 72)(32, 39)(34, 41)(38, 46)(43, 73)(44, 52)(48, 76)

(49, 58)(51, 66)(55, 70)(56, 69)(57, 71)(61, 65)(62, 64)(75, 78)(79, 81)⟩
The number of distinct right cosets in Nt1t9N is calculated by the formula,

|N |
|N(1,9)| =

168
6 = 28.

The orbits of N (19) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,

76, 77, 78, 79, 80, 81, 82, 83, 84} are

{1, 69, 74, 56, 14, 40}, {2, 64, 77, 62, 11, 36},
{3, 79, 50, 81, 45, 4}, {5, 75, 59, 78, 53, 7},
{6, 73, 8, 43, 76, 48}, {9, 66, 12, 51, 71, 57},
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{10, 17, 83, 23, 80, 15}, {13, 21, 84, 28, 82, 19},
{16, 72, 42, 30, 70, 55}, {18, 63, 26},
{20, 67, 47, 25, 65, 61], [22, 68, 31}, {24, 54, 33},
{27, 34, 35, 41, 52, 44}, {29, 60, 37}, {32, 38, 39, 46, 58, 49}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1, 69, 74, 56, 14, 40}
Nt1t9t1 ∈ [191].

This means six ti’s take [19] to [191].

Choose 2 from {2, 64, 77, 62, 11, 36}
Nt1t9t2 ∈ [191].

We have Nt1t9t2 = Nt1t9t1.

This means six ti’s take [19] to [191].

Choose 3 from {3, 79, 50, 81, 45, 4}
Nt1t9t3 ∈ [19].

We have Nt1t9t3 = (y ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y)t11t5
= (y ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y) ∗ (t1t9)(y

−1) ∈ [19]

This means six ti’s take [19] to [19].

Choose 5 from {5, 75, 59, 78, 53, 7}
Nt1t9t5 ∈ [16].

We have Nt1t9t5 = (y ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y)t3t11
= (y ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y) ∗ (t1t6)y ∈ [16]

This means six ti’s take [19] to [16].

Choose 6 from {6, 73, 8, 43, 76, 48}
Nt1t9t6 ∈ [19].

We have Nt1t9t6 = (y2 ∗ x ∗ y ∗ x ∗ y−1 ∗ x)t3t16
= (y2 ∗ x ∗ y ∗ x ∗ y−1 ∗ x) ∗ (t1t9)y ∈ [19]

This means six ti’s take [19] to [19].

Choose 9 from {9, 66, 12, 51, 71, 57}
Nt1t9t9 = Nt1t

2
9 = Nt1 ∈ [1].

This means six ti’s take [19] to [1].

Choose 10 from {10, 17, 83, 23, 80, 15}
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Nt1t9t10 ∈ [1].

We have Nt1t9t10 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y)t26
= (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y) ∗ (t1)(y

2∗x∗y∗x) ∈ [1]

This means six ti’s take [19] to [1].

Choose 13 from {13, 21, 84, 28, 82, 19}
Nt1t9t13 ∈ [1].

We have Nt1t9t13 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y)t26
= (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y) ∗ (t1)(y

2∗x∗y∗x) ∈ [1]

This means six ti’s take [19] to [1].

Choose 16 from {16, 72, 42, 30, 70, 55 }
Nt1t9t16 ∈ [19].

We have Nt1t9t16 = (y2 ∗ x ∗ y ∗ x ∗ y−1 ∗ x)t25t73
= (y2 ∗ x ∗ y ∗ x ∗ y−1 ∗ x) ∗ (t1t9)(x∗y∗x∗y

−1∗x) ∈ [19]

This means six ti’s take [19] to [19].

Choose 18 from {18, 63, 26}
Nt1t9t18 ∈ [16].

We have Nt1t9t18 = (y ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t3t11
= (y ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y ∗ x) ∗ (t1t6)y ∈ [16]

This means six ti’s take [19] to [16].

Choose 20 from {20, 67, 47, 25, 65, 61}
Nt1t9t20 ∈ [19].

We have Nt1t9t20 = (y2∗x∗y∗x∗y−1∗x)t25t73 = (y2∗x∗y∗x∗y−1∗x)∗(t1t9)(x∗y∗x∗y
−1∗x) ∈

[19]

This means six ti’s take [19] to [19].

Choose 22 from {22, 68, 31}
Nt1t9t22 ∈ [16].

We have Nt1t9t22 = (y ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t3t11
= (y ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y ∗ x) ∗ (t1t6)y ∈ [16]

This means three ti’s take [19] to [16].

Choose 24 from {24, 54, 33}
Nt1t9t24 ∈ [1].

We have Nt1t9t24 = (y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t36
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= (y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x) ∗ (t1)(y
−1∗x∗y∗x) ∈ [1]

This means three ti’s take [19] to [1].

Choose 27 from {27, 34, 35, 41, 52, 44}
Nt1t9t27 ∈ [19].

We have Nt1t9t27 = (y−1 ∗ x ∗ y ∗ x ∗ y)t20t48
= (y−1 ∗ x ∗ y ∗ x ∗ y) ∗ (t1t9)(y∗x∗y

−1∗x∗y−1) ∈ [19] This means six ti’s take [19] to [19].

Choose 29 from {29, 60, 37}
Nt1t9t29 ∈ [1].

We have Nt1t9t29 = (y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t36
= (y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x) ∗ (t1)(y

−1∗x∗y∗x) ∈ [1]

This means three ti’s take [19] to [1].

Choose 32 from {32, 38, 39, 46, 58, 49}
Nt1t9t32 ∈ [19].

We have Nt1t9t32 = (y−1 ∗ x ∗ y ∗ x ∗ y)t20t48
= (y−1 ∗ x ∗ y ∗ x ∗ y) ∗ (t1t9)(y∗x∗y

−1∗x∗y−1) ∈ [19]

This means six ti’s take [19] to [19].

Cayley Diagram

Figure 7.82: Cayley Diagram for G over S84
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Fifth Double Coset [191]

Nt1t9t1 = {N(t1t9t1)
n|n ∈ N}.

We now find the coset stabilizer N(191). We first find the point stabilizer of 1,9 and 1 in

N.

N191 = {n ∈ N |(191)n = 191}
N19 = ⟨e⟩
We will find different names of Nt1t9t1N . Nt1t9t1 = Nt13t12t13.

N(t1t9t1)
(1,13),(9,12) = Nt13t12t13.

But, Nt13t12t13 = Nt1t9t1 =⇒
N(t1t9t1)

(1,13),(9,12) = Nt1t9t1.

=⇒ (1, 13)(2, 10)(3, 24)(4, 29)(5, 18)(6, 8)(7, 22)(9, 12)(11, 16)(14, 20)(15, 30)(17, 49)

(19, 25)(21, 44)(23, 58)(26, 31)(27, 65)(28, 52)(32, 70)(33, 37)(34, 56)(35, 61)(36, 42)

(38, 62)(39, 55)(40, 47)(41, 69)(43, 66)(45, 60)(46, 64)(48, 71)(50, 54)(51, 73)(53, 68)

(57, 76)(59, 63)(67, 82)(72, 80)(74, 84)(77, 83) ∈ Nt1t9t1N

ThusN (191) ≥ ⟨N191, (1, 13)(2, 10)(3, 24)(4, 29)(5, 18)(6, 8)(7, 22)(9, 12)(11, 16)(14, 20)(15, 30)

(17, 49)(19, 25)(21, 44)(23, 58)(26, 31)(27, 65)(28, 52)(32, 70)(33, 37)(34, 56)(35, 61)(36, 42)

(38, 62)(39, 55)(40, 47)(41, 69)(43, 66)(45, 60)(46, 64)(48, 71)(50, 54)(51, 73)(53, 68)(57, 76)

(59, 63)(67, 82)(72, 80)(74, 84)(77, 83)⟩.
= ⟨e, (1, 13)(2, 10)(3, 24)(4, 29)(5, 18)(6, 8)(7, 22)(9, 12)(11, 16)(14, 20)(15, 30)(17, 49)(19, 25)
(21, 44)(23, 58)(26, 31)(27, 65)(28, 52)(32, 70)(33, 37)(34, 56)(35, 61)(36, 42)(38, 62)(39, 55)

(40, 47)(41, 69)(43, 66)(45, 60)(46, 64)(48, 71)(50, 54)(51, 73)(53, 68)(57, 76)(59, 63)

(67, 82)(72, 80)(74, 84)(77, 83)⟩
The number of distinct right cosets in Nt1t9t1N is calculated by the formula,

|N |
|N(1,9,1)| =

168
24 = 7.

The orbits of N (191) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84} are

{3, 24, 33, 45, 37, 60, 29, 54, 81, 4, 50, 79},
{5, 18, 26, 53, 31, 68, 22, 63, 78, 7, 59, 75},
{6, 8, 73, 76, 51, 9, 57, 12, 48, 66, 43, 71},
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{1, 13, 82, 14, 67, 61, 20, 65, 28, 35, 34, 56, 27, 52, 41, 47, 44, 25, 69, 40, 74, 21, 19, 84},
{2, 10, 80, 11, 72, 55, 16, 70, 23, 39, 38, 62, 32, 58, 46, 42, 49, 30, 64, 36, 77, 17, 15, 83}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1, 13, 82, 14, 67, 61, 20, 65, 28, 35, 34, 56, 27,
52, 41, 47, 44, 25, 69, 40, 74, 21, 19, 84}
Nt1t9t1t1 = Nt1t9t

2
1 = Nt1t9 ∈ [19].

This means twenty ti’s take [191] to [19].

Choose 2 from {2, 10, 80, 11, 72, 55, 16, 70, 23, 39, 38, 62, 32, 58, 46, 42, 49,
30, 64, 36, 77, 17, 15, 83}
Nt1t9t1t2 ∈ [19].

We have Nt1t9t1t2 = Nt1t9.

This means twenty ti’s take [191] to [19].

Choose 3 from {3, 24, 33, 45, 37, 60, 29, 54, 81, 4, 50, 79}
Nt1t9t1t3 ∈ [191].

We have Nt1t9t1t3 = (y2 ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y2)t11t5t11
= (y2 ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y2) ∗ (t1t9t1)(y

−1) ∈ [191]

This means twelve ti’s take [191] to [191].

Choose 5 from {5, 18, 26, 53, 31, 68, 22, 63, 78, 7, 59, 75}
Nt1t9t1t5 ∈ [16].

We have Nt1t9t1t5 = (y ∗ x ∗ y−1 ∗ x ∗ y−1)t14t21

= (y ∗ x ∗ y−1 ∗ x ∗ y−1) ∗ (t1t6)(x∗y
−1) ∈ [16]

This means twelve ti’s take [191] to [16].

Choose 6 from {6, 8, 73, 76, 51, 9, 57, 12, 48, 66, 43, 71}
Nt1t9t1t6 ∈ [191].

We have Nt1t9t1t6 = Nt2t78t2

= (t1t9t1)
(y∗x∗y−1∗x∗y∗x∗y−1) ∈ [191]

This means twelve ti’s take [191] to [191].
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Cayley Diagram

Figure 7.83: Cayley Diagram for G over S84

It is possible that the coset stabiliser of N (w) of the coset Nw increases and therefore
|N |

|N(w)| decreases.

Our cayley diagram shows that

G = N ∪Nt1 ∪Nt1t6 ∪Nt1t9 ∪Nt1t9t1

|G| ≤ (|N |+ |N |
|N(1)| +

|N |
|N(16)| +

|N |
|N(19)| +

|N |
|N(191)| × |N |

|G| ≤ (1 + 21 + 7 + 28 + 7)× 168 =⇒ |G| ≤ 64× 168 =⇒ |G| ≤ 10752.

G acts on 168 cosets that are given in the cayley diagram.

Let X be the set of these 168 cosets.

Now, f : G → Sx is a homomorphism.

G
Kerf

∼= Imf (First Isomorphism Theorem).

=⇒ G
Kerf

∼= ⟨f(x), f(y), f(t)⟩ =⇒ | G
Kerf | = |⟨f(x), f(y), f(t)⟩|

But #⟨f(x), f(y), f(t)⟩ = 10752. So, | G
kerf | = 10752

This means |G| ≥ 10752. We know |G| ≤ 10752 from cayley diagram.

Therefore, |G| = 10752.

From |G| = 10752× |Kerf | we find |Kerf | = 1

G ∼= ⟨f(x), f(y), f(t)⟩ but, ⟨f(x), f(y), f(t)⟩ ∼= 26 : PSL(2, 7) =⇒ G ∼= 26 : PSL(2, 7).



250

Construction of 27 : PSL(2, 7) over PSL(2, 7)

Let N ∼= PSL(2, 7) where x ∼ (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)

(12, 19)(14, 22)(16, 24)(17, 26)(20, 29)(21, 31)(23, 33)(25, 30)(27, 36)(28, 37)(32, 40)

(34, 42)(35, 43)(38, 47)(39, 48)(41, 51)(44, 49)(45, 55)(46, 57)(50, 61)(52, 58)(53, 64)

(54, 66)(56, 65)(59, 69)(60, 71)(62, 70)(63, 73)(68, 76)(75, 80)(78, 82)(79, 83)(81, 84),and

y ∼ (1, 3, 6, 11)(2, 4, 8, 14)(5, 9, 16, 25)(7, 12, 20, 30)(10, 17, 13, 21)(15, 23, 19, 28)

(18, 27, 24, 34)(22, 32, 29, 38)(26, 35, 44, 54)(31, 39, 49, 60)(33, 41, 52, 63)(36, 45, 56, 48)

(37, 46, 58, 68)(40, 50, 62, 43)(42, 53, 65, 57)(47, 59, 70, 51)(55, 67, 71, 78)(61, 72, 66, 75)

(64, 74, 76, 81)(69, 77, 73, 79)(80, 84)(82, 83).

The progenitor 2∗84 : N has symmetric presentation

G<x,y>:=Group<x,y,t| x^2, y^4, y^-2 * x * y^2 * x * y^2 * x,

(x * y^-1)^7,t^2>;

We want to verify that the presentation given above is correct.

Using the theorem: 2∗n:N
titj

∼= 2n : N where 1 ≤ i ≤ j ≤ n,

we will show that
27:PSL(2,7)

((y2)∗t(y∗x∗y−1∗x∗y∗x∗y−1))3,((y2)∗t(x∗y∗x∗y−1∗x∗y∗x))3,((y∗x∗y)∗t(x∗y))4,((y∗x∗y)∗t(x∗y∗x∗y−1∗x∗y))3
∼= PSL(2, 7).

Thus, we will prove

G<x,y>:=Group<x,y,t| x^2, y^4, y^-2 * x * y^2 * x * y^2 * x,

(x * y^-1)^7,

t^2,

(t,(x * y * x * y^-1)^2 ),

(t,t^{(y^x)}), (t,t^{(x^2)}),(t,t^{(y*x^-1)}),

(t,t^{(y^-3)}),(t,t^{(y*x)}),

((y^2)*t^{(y * x * y^-1 * x * y * x * y^-1)})^3

((y^2)*t^{(x * y * x * y^-1 * x * y * x)})^3,

((y * x * y)*t^{(x * y)})^4,

((y * x * y)*t^{(x * y * x * y^-1 * x * y)})^3> ~ PSL(2,7).

We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N . We need to determine all distinct double cosets NwN and find the number

of right cosets in each double coset. It suffices to find the double cosets of Nwti for one

representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw, so we

find our index, which is the order of G over the order of N . Hence, |G|
|N | =

21504
168 = 128.
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Now we know that we have 128 distinct single cosets.

Expanding First Relation We will expand our first relation.

((y2) ∗ t(y∗x∗y−1∗x∗y∗x∗y−1))3

= y2 ∗ t2 ∗ y2 ∗ t2 ∗ y2 ∗ t2
=(y2)3 ∗ (t(y

2)2

2 ) ∗ (t(y
2)

2 ) ∗ t2
= (y6) ∗ (t(y

4)
2 ) ∗ (t(y

2)
2 ) ∗ t2

=⇒ y6 ∗ t2 ∗ t8 ∗ t2 = e

=⇒ y6 ∗ t2 = t2 ∗ t8
Expanding Second Relation We will expand our second relation.

((y2) ∗ t(x∗y∗x∗y−1∗x∗y∗x))3

= y2 ∗ t3 ∗ y2 ∗ t3 ∗ y2 ∗ t3
= (y2)3 ∗ (t(y

2)2

3 ) ∗ (t(y
2)

3 ) ∗ t3
= (y6) ∗ (t(y

4)
3 ) ∗ (t(y

2)
3 ) ∗ t3

=⇒ y6 ∗ t3t11 ∗ t3 = e =⇒ y6 ∗ t3 = t3 ∗ t11
Expanding Third Relation We will expand our third relation.

((y ∗ x ∗ y) ∗ t(x∗y))4

= (y ∗ x ∗ y) ∗ t4 ∗ (y ∗ x ∗ y) ∗ t4 ∗ (y ∗ x ∗ y) ∗ t4 ∗ (y ∗ x ∗ y) ∗ t4
= (y ∗ x ∗ y)4 ∗ (t(y∗x∗y)

3

4 ) ∗ (t(y∗x∗y)
2

4 ) ∗ (t(y∗x∗y)4 ) ∗ t4
=⇒ (y ∗ x ∗ y)4 ∗ t4 ∗ t11 ∗ t21 ∗ t4 = e =⇒ (y ∗ x ∗ y)4 ∗ t4 ∗ t11 = t4 ∗ t21

Expanding Fourth Relation We will expand our fourth relation.

((y ∗ x ∗ y) ∗ t(x∗y∗x∗y−1∗x∗y))3

= (y ∗ x ∗ y) ∗ t5 ∗ (y ∗ x ∗ y) ∗ t5 ∗ (y ∗ x ∗ y) ∗ t5
= (y ∗ x ∗ y)3 ∗ (t(y∗x∗y)

2

5 ) ∗ (t(y∗x∗y)5 ) ∗ t5
=⇒ (y ∗ x ∗ y)3 ∗ t20 ∗ t23t5 = e =⇒ (y ∗ x ∗ y)3 ∗ t20 = t5 ∗ t23
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First Double Coset [∗]

NeN = {Nen|n ∈ N} = {N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The formula for the number of right coset in N is |N |
|N | =

168
168 = 1.

Since N is transitive on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84}.
We need only determine the double coset of the right coset Nt1.

Thus 84 ti’s extend the double coset [∗] to the double coset Nt1N = [1].

Cayley Diagram

Figure 7.84: Cayley Diagram for G over S84

Second Double Coset [1]

Nt1N = {Ntn1 |n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10, Nt11,

Nt12, Nt13, Nt14, Nt15, Nt16, Nt17, Nt18, Nt19, Nt20, Nt21,

Nt22, Nt23, Nt24, Nt25, Nt26, Nt27, Nt28, Nt29, Nt30,

Nt31, Nt32, Nt33, Nt34, Nt35, Nt36, Nt37, Nt38, Nt39, Nt40,

Nt41, Nt42, Nt43, Nt44, Nt45, Nt46, Nt47, Nt48, Nt49, Nt50,

Nt51, Nt52, Nt53, Nt54, Nt55, Nt56, Nt57, Nt58, Nt59, Nt60,
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Nt61, Nt62, Nt63, Nt64, Nt65, Nt66, Nt67, Nt68, Nt69, Nt70,

Nt71, Nt72, Nt73, Nt74, Nt75, Nt76, Nt77, Nt78, Nt79, Nt80, Nt81, Nt82, Nt83, Nt84}.
We now find the Coset Stabilizer N (1). We first find the point stabilizer of 1 in N .

N1 = {n ∈ N |1n = 1}
Thus, N (1) ≥ N1 = ⟨(3, 65)(4, 70)(5, 56)(6, 84)(7, 62)(8, 83)(9, 82)(10, 81)(11, 35)(12, 80),
(13, 79)(14, 39)(15, 78)(16, 41)(17, 33)(18, 43)(19, 75)(20, 46)(21,

37)(22, 48)(23, 26)(24, 51)(27, 73)(28, 31)(29, 57)(32, 76)(34, 66)(36, 63)(38, 71)(40, 68),

(42, 54)(44, 49)(45, 53)(47, 60)(50, 59)(52, 58)(55, 64)(61, 69)(67, 72)(74, 77)⟩.
The number of right cosets in Nt1N is calculated by the formula,
|N |

|N(1)| =
168
84 = 2. The orbits of N(1) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84} are

{1}, {2}, {25}, {30}, {3, 65}, {4, 70}, {5, 56}, {6, 84}, {7, 62},
{8, 83}, {9, 82}, {10, 81}, {11, 35}, {12, 80}, {13, 79}, {14, 39}, {15, 78}, {16, 41},
{17, 33}, {18, 43}, {19, 75}, {20, 46}, {21, 37}, {22, 48}, {23, 26}, {24, 51}, {27, 73},
{28, 31}, {29, 57}, {32, 76}, {34, 66}, {36, 63}, {38, 71}, {40, 68}, {42, 54}, {44, 49},
{45, 53}, {47, 60}, {50, 59}, {52, 58}, {55, 64}, {61, 69}, {67, 72}, {74, 77}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t1 = Nt21 = N ∈ [∗].
This means one ti takes [1] to [*].

Choose 2 from {2}
Nt1t2 ∈ [∗].
This means one ti takes [1] to [*].

Choose 25 from {25}
Nt1t25 ∈ [1, 25].

This means one ti takes [1] to [1,25].

Choose 30 from {30}
Nt1t30 ∈ [1, 25].
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We have Nt1t30 = Nt1t25 ∈ [1, 25]

This means one ti takes [1] to [1,25].

Choose 3 from {3,65}
Nt1t3 ∈ [1].

We have Nt1t3 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y2)t74
= (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y2)(t1)(y

−1∗x∗y−1∗x∗y∗x∗y) ∈ [1]

This means two ti’s take [1] to [1].

Choose 4 from {4,70}
Nt1t4 ∈ [1].

We have Nt1t4 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y2)t74
= (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y2)(t1)(y

−1∗x∗y−1∗x∗y∗x∗y) ∈ [1]

This means two ti’s take [1] to [1].

Choose 5 from {5,56}
Nt1t5 ∈ [1].

We have Nt1t5 = (y ∗ x ∗ y ∗ x ∗ y ∗ x ∗ y−1)t74

= (y ∗ x ∗ y ∗ x ∗ y ∗ x ∗ y−1)(t1)
(y−1∗x∗y−1∗x∗y∗x∗y) ∈ [1]

This means two ti’s take [1] to [1].

Choose 6 from {6,84}
Nt1t6 ∈ [1].

We have Nt1t6 = y2t1 ∈ [1]

This means two ti’s take [1] to [1].

Choose 7 from {7,62}
Nt1t7 ∈ [1].

We have Nt1t7 = (y ∗ x ∗ y ∗ x ∗ y ∗ x ∗ y−1)t74

= (y ∗ x ∗ y ∗ x ∗ y ∗ x ∗ y−1)(t1)
(y−1∗x∗y−1∗x∗y∗x∗y) ∈ [1]

This means two ti’s take [1] to [1].

Choose 8 from {8,83}
Nt1t8 ∈ [1].

We have Nt1t8 = y2t1 ∈ [1]

This means two ti’s take [1] to [1].

Choose 9 from {9,82}
Nt1t9 ∈ [19].
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This means two ti’s take [1] to [19].

Choose 10 from {10,81}
Nt1t10 ∈ [1].

We have Nt1t10 = (x ∗ y2 ∗ x)t1 ∈ [1]

This means two ti’s take [1] to [1].

Choose 11 from {11,35}
Nt1t11 ∈ [1].

We have Nt1t11 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t45
= (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)(t1)(y

2∗x∗y−1∗x∗y∗x∗y2) ∈ [1]

This means two ti’s take [1] to [1].

Choose 12 from {12,80}
Nt1t12 ∈ [19].

We have Nt1t12 = Nt1t9 ∈ [19].

This means two ti’s take [1] to [19].

Choose 13 from {13,79}
Nt1t13 ∈ [1].

We have Nt1t13 = (x ∗ y2 ∗ x)t1 ∈ [1]

This means two ti’s take [1] to [1].

Choose 14 from {14,39}
Nt1t14 ∈ [1].

We have Nt1t14 = y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t45
= y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)(t1)(y

2∗x∗y−1∗x∗y∗x∗y2) ∈ [1]

This means two ti’s take [1] to [1].

Choose 15 from {15,78}
Nt1t15 ∈ [19].

We have Nt1t15 = Nt2t15

= (t1t9)
x ∈ [19]

This means two ti’s take [1] to [19].

Choose 16 from {16,41}
Nt1t16 ∈ [19].

We have Nt1t16 = (y−1 ∗ x ∗ y−1)t8t19

= (y−1 ∗ x ∗ y−1)(t1t9)
(x∗y2) ∈ [19]
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This means two ti’s take [1] to [19].

Choose 17 from {17,33}
Nt1t17 ∈ [19].

We have Nt1t17 = (y2 ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t24t11
= (y2 ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y ∗ x)(t1t9)(y

−1∗x∗y2) ∈ [19]

This means two ti’s take [1] to [19].

Choose 18 from {18,43}
Nt1t18 ∈ [1].

We have Nt1t18 = (x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y)t55
= (x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y)(t1)(y

2∗x∗y−1∗x∗y−1∗x∗y2) ∈ [1]

This means two ti’s take [1] to [1].

Choose 19 from {19,75}
Nt1t19 ∈ [19].

We have Nt1t19 = Nt2t15

= (t1t9)
x ∈ [19]

This means two ti’s take [1] to [19].

Choose 20 from {20,46}
Nt1t20 ∈ [19].

We have Nt1t20 = (y−1 ∗ x ∗ y−1)t8t19

= (y−1 ∗ x ∗ y−1) ∗ (t1t9)(x∗y
2) ∈ [19]

This means two ti’s take [1] to [19].

Choose 21 from {21,37}
Nt1t21 ∈ [19].

We have Nt1t21 = (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y)t47t76
= (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y) ∗ (t1t9)(x∗y

−1∗x∗y−1∗x) ∈ [19]

This means two ti’s take [1] to [19].

Choose 22 from {22,48}
Nt1t22 ∈ [1].

We have Nt1t22 = (x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y)t55
= (x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y)(t1)(y

2∗x∗y−1∗x∗y−1∗x∗y2) ∈ [1]

This means two ti’s take [1] to [1].

Choose 23 from {23,26}
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Nt1t23 ∈ [19].

We have Nt1t23 = (y ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y)t81t15
= (y ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y)(t1t9)(y∗x∗y∗x∗y

−1∗x∗y−1∗x∗y) ∈ [19]

This means two ti’s take [1] to [19].

Choose 24 from {24,51}
Nt1t24 ∈ [19].

We have Nt1t24 = (x ∗ y−1 ∗ x ∗ y−1 ∗ x)t13t12
= (x ∗ y−1 ∗ x ∗ y−1 ∗ x)(t1t9)(x∗y

2∗x) ∈ [19]

This means two ti’s take [1] to [19].

Choose 27 from {27,73}
Nt1t27 ∈ [1].

We have Nt1t27 = Nt63

= (t1)
(y∗x∗y∗x∗y∗x∗y−1) ∈ [1]

This means two ti’s take [1] to [1].

Choose 28 from {28,31}
Nt1t28 ∈ [19].

We have Nt1t28 = ((y ∗ x)2)t41t43
= ((y ∗ x)2)(t1t9)(x∗y∗x∗y∗x∗y

−1∗x∗y) ∈ [19]

This means two ti’s take [1] to [19].

Choose 29 from {29,57}
Nt1t29 ∈ [19].

We have Nt1t29 = (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x)t66t27
= (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x)(t1t9)(x∗y

−1∗x∗y∗x∗y∗x∗y2) ∈ [19]

This means two ti’s take [1] to [19].

Choose 32 from {32,76}
Nt1t32 ∈ [1].

We have Nt1t32 = Nt63

= (t1)
(y∗x∗y∗x∗y∗x∗y−1) ∈ [1]

This means two ti’s take [1] to [1].

Choose 34 from {34,66}
Nt1t34 ∈ [19].

We have Nt1t34 = (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y)t83t75
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= (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y)(t1t9)(x∗y
−1∗x∗y−1∗x∗y∗x∗y−1∗x) ∈ [19]

This means two ti’s take [1] to [19].

Choose 36 from {36,63}
Nt1t36 ∈ [1].

We have Nt1t36 = Nt73

= (t1)
(y∗x∗y∗x∗y∗x∗y−1∗x) ∈ [1]

This means two ti’s take [1] to [1].

Choose 38 from {38,71}
Nt1t38 ∈ [19].

We have Nt1t38 = (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y)t83t75
= (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y)(t1t9)(x∗y

−1∗x∗y−1∗x∗y∗x∗y−1∗x) ∈ [19]

This means two ti’s take [1] to [19].

Choose 40 from {40,68}
Nt1t40 ∈ [1].

We have Nt1t40 = Nt73

= (t1)
(y∗x∗y∗x∗y∗x∗y−1∗x) ∈ [1]

This means two ti’s take [1] to [1].

Choose 42 from {42,54}
Nt1t42 ∈ [19].

We have Nt1t42 = (x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y−1 ∗ x)t57t14
= (x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y−1 ∗ x)(t1t9)(y

−1∗x∗y−1∗x∗y−1) ∈ [19]

This means two ti’s take [1] to [19].

Choose 44 from {44,49}
Nt1t44 ∈ [1, 25].

We have Nt1t44 = ((x ∗ y−1 ∗ x ∗ y)2)t3t5
= ((x ∗ y−1 ∗ x ∗ y)2)(t1t25)y ∈ [1, 25]

This means two ti’s take [1] to [1,25].

Choose 45 from {45,53}
Nt1t45 ∈ [1].

We have Nt1t45 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t74
= (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)(t1)(y

−1∗x∗y−1∗x∗y∗x∗y∗x) ∈ [1]

This means two ti’s take [1] to [1].
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Choose 47 from {47,60}
Nt1t47 ∈ [19].

We have Nt1t47 = (x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y−1 ∗ x)t57t14
= (x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y−1 ∗ x)(t1t9)(y

−1∗x∗y−1∗x∗y−1) ∈ [19]

This means two ti’s take [1] to [19].

Choose 50 from {50,59}
Nt1t50 ∈ [1].

We have Nt1t50 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t74
= (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)(t1)(y

−1∗x∗y−1∗x∗y∗x∗y∗x) ∈ [1]

This means two ti’s take [1] to [1].

Choose 52 from {52,58}
Nt1t52 ∈ [1, 52].

This means two ti’s take [1] to [1,52].

Choose 55 from {55,64}
Nt1t55 ∈ [1].

We have Nt1t55 = (x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y)t74
= (x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y)(t1)(y

−1∗x∗y−1∗x∗y∗x∗y∗x) ∈ [1]

This means two ti’s take [1] to [1].

Choose 61 from {61,69}
Nt1t61 ∈ [1].

We have Nt1t61 = (x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y)t74
= (x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y)(t1)(y

−1∗x∗y−1∗x∗y∗x∗y∗x) ∈ [1]

This means two ti’s take [1] to [1].

Choose 67 from {67,72}
Nt1t67 ∈ [1, 52].

We have Nt1t67 = (y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x)t3t63
= (y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x)(t1t52)y ∈ [1, 52]

This means two ti’s take [1] to [1,52].

Choose 74 from {74,77}
Nt1t74 ∈ [1, 74].

This means two ti’s take [1] to [1,74].

Cayley Diagram
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Figure 7.85: Cayley Diagram for G over S84

Third Double Coset [19]

Nt1t9 = {N(t1t9)
n|n ∈ N}.

We now find the coset stabilizer N(19). We first find the point stabilizer of 1 and 9 in N.

N19 = {n ∈ N |(19)n = 19}
N19 = ⟨e⟩
We will find different names of Nt1t9N . Nt1t9 = Nt4t55.

N(t1t9)
(1,4,43),(9,55,65) = Nt4t55.

But, Nt4t55 = Nt1t9 =⇒
N(t1t9)

(1,4,43),(9,55,65) = Nt1t9.

=⇒ (1, 4, 43)(2, 3, 48)(5, 57, 30)(6, 64, 56)(7, 51, 25)(8, 69, 62)(9, 55, 65)

(10, 80, 28)(11, 40, 81)(12, 61, 70)(13, 82, 23)(14, 36, 79)(15, 83, 21)(16, 47, 78)(17, 19, 84)

(18, 44, 54)(20, 42, 75)(22, 49, 60)(24, 52, 63)(26, 41, 34)(27, 33, 35)(29, 58, 68)(31, 46, 38)

(32, 37, 39)(45, 74, 73)(50, 77, 76)(53, 67, 66)(59, 72, 71) ∈ Nt1t9N

Thus N (19) ≥ ⟨N19, (1, 4, 43)(2, 3, 48)(5, 57, 30)(6, 64, 56)(7, 51, 25)(8, 69, 62)(9, 55, 65)

(10, 80, 28)(11, 40, 81)(12, 61, 70)(13, 82, 23)(14, 36, 79)(15, 83, 21)(16, 47, 78)(17, 19, 84)

(18, 44, 54)(20, 42, 75)(22, 49, 60)(24, 52, 63)(26, 41, 34)(27, 33, 35)(29, 58, 68)(31, 46, 38)
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(32, 37, 39)(45, 74, 73)(50, 77, 76)(53, 67, 66)(59, 72, 71)⟩.
= ⟨e, (1, 4, 43)(2, 3, 48)(5, 57, 30)(6, 64, 56)(7, 51, 25)(8, 69, 62)(9, 55, 65)
(10, 80, 28)(11, 40, 81)(12, 61, 70)(13, 82, 23)(14, 36, 79)(15, 83, 21)(16, 47, 78)(17, 19, 84)

(18, 44, 54)(20, 42, 75)(22, 49, 60)(24, 52, 63)(26, 41, 34)(27, 33, 35)(29, 58, 68)

(31, 46, 38)(32, 37, 39)(45, 74, 73)(50, 77, 76)(53, 67, 66)(59, 72, 71)⟩
The number of distinct right cosets in Nt1t9N is calculated by the formula,

|N |
|N(1,9)| =

168
6 = 28.

The orbits of N (19) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,

76, 77, 78, 79, 80, 81, 82, 83, 84} are

{1, 4, 43}, {2, 3, 48}, {5, 57, 30}, {6, 64, 6}, {7, 51, 25}, {8, 69, 62},
{9, 55, 65}, {10, 80, 28}, {11, 40, 81}, {12, 61, 70}, {13, 82, 23}, {14, 36, 79}, {15, 83, 21}, {16, 47, 78},
{17, 19, 84}, {18, 44, 54}, {20, 42, 75}, {22, 49, 60}, {24, 52, 63}, {26, 41, 34}, {27, 33, 35},
{29, 58, 68}, {31, 46, 38}, {32, 37, 39}, {45, 74, 73}, {50, 77, 76}, {53, 67, 66}, {59, 72, 71}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1, 4, 43}
Nt1t9t1 ∈ [1].

We have Nt1t9t1 = y2t23

= y2(t1)
(y∗x∗y∗x∗y) ∈ [1]

This means three ti’s take [19] to [1].

Choose 2 from {2, 3, 48}
Nt1t9t2 ∈ [1].

We have Nt1t9t2 = y2t23

= y2(t1)
(y∗x∗y∗x∗y) ∈ [1]

This means three ti’s take [19] to [1].

Choose 5 from {5, 57, 30}
Nt1t9t5 ∈ [19].

We have Nt1t9t5 = (y−1 ∗ x ∗ y−1)t27t6

= (y−1 ∗ x ∗ y−1)(t1t9)
(xy) ∈ [19]
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This means three ti’s take [19] to [1].

Choose 6 from {6, 64, 56}
Nt1t9t6 ∈ [19].

We have Nt1t9t6 = y2t1t9

This means three ti’s take [19] to [19].

Choose 7 from {7, 51, 25}
Nt1t9t7 ∈ [19].

We have Nt1t9t7 = (y−1 ∗ x ∗ y−1)t27t6

= (y−1 ∗ x ∗ y−1)(t1t9)
(xy) ∈ [19]

This means three ti’s take [19] to [19].

Choose 8 from {8, 69, 62}
Nt1t9t8 ∈ [19].

We have Nt1t9t8 = y2t1t9

This means three ti’s take [19] to [19].

Choose 9 from {9, 55, 65}
Nt1t9t9 = Nt1t

2
9 = Nt1 ∈ [1].

This means three ti’s take [19] to [1].

Choose 10 from {10, 80, 28}
Nt1t9t10 ∈ [1, 52].

We have Nt1t9t10 = (x ∗ y2)t1t52
This means three ti’s take [19] to [1,52].

Choose 11 from {11, 40, 81}
Nt1t9t11 ∈ [19].

We have Nt1t9t11 = (y−1 ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y)t1t9 ∈ [19]

This means three ti’s take [19] to [19].

Choose 12 from {12, 61, 70}
Nt1t9t12 ∈ [1].

We have Nt1t9t12 = Nt1

This means three ti’s take [19] to [1].

Choose 13 from {13, 82, 23}
Nt1t9t13 ∈ [1, 52].

We have Nt1t9t13 = (x ∗ y2)t1t52
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This means three ti’s take [19] to [1,52].

Choose 14 from {14, 36, 79}
Nt1t9t14 ∈ [19].

We have Nt1t9t14 = (y−1 ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y)t1t9 ∈ [19]

This means three ti’s take [19] to [19].

Choose 15 from {15, 83, 21}
Nt1t9t15 ∈ [1, 25].

We have Nt1t9t15 = Nt1t25.

This means three ti’s take [19] to [1,25].

Choose 16 from {16, 47, 78}
Nt1t9t16 ∈ [1, 9, 16].

This means three ti’s take [19] to [1,9,16].

Choose 17 from {17, 19, 84}
Nt1t9t17 ∈ [1, 25].

We have Nt1t9t17 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y−1)t6t9

= (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y−1)(t1t25)
y2 ∈ [1, 25]

This means three ti’s take [19] to [1,25].

Choose 18 from {18, 44, 54}
Nt1t9t18 ∈ [19].

We have Nt1t9t18 = (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t45t70
= (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y ∗ x)(t1t9)(y

2∗x∗y−1∗x∗y∗x∗y2) ∈ [19]

This means three ti’s take [19] to [19].

Choose 20 from {20, 42, 75}
Nt1t9t20 ∈ [1, 9, 16].

We have Nt1t9t20 = Nt1t9t16.

This means three ti’s take [19] to [1,9,16].

Choose 22 from {22, 49, 60}
Nt1t9t22 ∈ [19].

We have Nt1t9t22 = (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t45t70
= (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y ∗ x)(t1t9)(y

2∗x∗y−1∗x∗y∗x∗y2) ∈ [19]

This means three ti’s take [19] to [19].

Choose 24 from {24, 52, 63}
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Nt1t9t24 ∈ [19].

We have Nt1t9t24 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y2)t74t12
= (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y2)(t1t9)(y

−1∗x∗y−1∗x∗y∗x∗y) ∈ [19]

This means three ti’s take [19] to [19].

Choose 26 from {26, 41, 34}
Nt1t9t26 ∈ [1, 9, 16].

We have Nt1t9t26 = (y−1 ∗ x ∗ y ∗ x ∗ y ∗ x ∗ y)t5t24t30
= (y−1 ∗ x ∗ y ∗ x ∗ y ∗ x ∗ y)(t1t9t16)(y∗x) ∈ [1, 9, 16]

This means three ti’s take [19] to [1,9,16].

Choose 27 from {27, 33, 35}
Nt1t9t27 ∈ [1].

We have Nt1t9t27 = (y ∗ x ∗ y−1)t15

= (y ∗ x ∗ y−1)(t1)
((y∗x)2) ∈ [1]

This means three ti’s take [19] to [1].

Choose 29 from {29, 58, 68}
Nt1t9t29 ∈ [19].

We have Nt1t9t29 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y2)t74t12
= (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y2)(t1t9)(y

−1∗x∗y−1∗x∗y∗x∗y) ∈ [19]

This means three ti’s take [19] to [19].

Choose 31 from {31, 46, 38}
Nt1t9t31 ∈ [1, 9, 16].

We have Nt1t9t31 = (y−1 ∗ x ∗ y ∗ x ∗ y ∗ x ∗ y)t5t24t30
= (y−1 ∗ x ∗ y ∗ x ∗ y ∗ x ∗ y)(t1t9t31)(y∗x) ∈ [1, 9, 16]

This means three ti’s take [19] to [1,9,16].

Choose 32 from {32, 37, 39}
Nt1t9t32 ∈ [1].

We have Nt1t9t32 = (y ∗ x ∗ y−1)t15

= (y ∗ x ∗ y−1)(t1)
((y∗x)2) ∈ [1]

This means three ti’s take [19] to [1].

Choose 45 from {45, 74, 73}
Nt1t9t45 ∈ [1].

We have Nt1t9t45 = (y2 ∗ x ∗ y−1 ∗ x ∗ y−1)t10
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= (y2 ∗ x ∗ y−1 ∗ x ∗ y−1)(t1)
(y2∗x) ∈ [1]

This means three ti’s take [19] to [1].

Choose 50 from {50, 77, 76}
Nt1t9t50 ∈ [1].

We have Nt1t9t50 = (y2 ∗ x ∗ y−1 ∗ x ∗ y−1)t10

= (y2 ∗ x ∗ y−1 ∗ x ∗ y−1)(t1)
(y2∗x) ∈ [1]

This means three ti’s take [19] to [1].

Choose 53 from {53, 67, 66}
Nt1t9t53 ∈ [19].

We have Nt1t9t53 = (y ∗ x ∗ y−1 ∗ x ∗ y−1)t61t6

= (y ∗ x ∗ y−1 ∗ x ∗ y−1)(t1t9)
(y2∗x∗y∗x∗y−1∗x∗y2) ∈ [19]

This means three ti’s take [19] to [19].

Choose 59 from {59, 72, 71}
Nt1t9t59 ∈ [19].

We have Nt1t9t59 = (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y)t54t2
= (x ∗ y ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y)(t1t9)((y

2∗x∗y−1)2) ∈ [19]

This means three ti’s take [19] to [19].
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Cayley Diagram

Figure 7.86: Cayley Diagram for G over S84

Fourth Double Coset [1, 25]

Nt1t25 = {N(t1t25)
n|n ∈ N}.

We now find the coset stabilizer N(1,25). We first find the point stabilizer of 1 and 25 in

N.

N1,25 = {n ∈ N |(1, 25)n = 1, 25}
N1,25 = ⟨(3, 65)(4, 70)(5, 56)(6, 84)(7, 62)(8, 83)(9, 82)(10, 81)(11, 35)(12, 80)(13, 79)
(14, 39)(15, 78)(16, 41)(17, 33)(18, 43)(19, 75)(20, 46)(21, 37)(22, 48)(23, 26)

(24, 51)(27, 73)(28, 31)(29, 57)(32, 76)(34, 66)(36, 63)(38, 71)(40, 68)

(42, 54)(44, 49)(45, 53)(47, 60)(50, 59)(52, 58)(55, 64)(61, 69)(67, 72)(74, 77)⟩
We will find different names of Nt1t25N . Nt1t25 = Nt2t30.

N(t1t25)
(1,2),(25,30) = Nt2t30.

But, Nt2t30 = Nt1t25 =⇒ N(t1t25)
(1,2),(25,30) = Nt1t25.

=⇒ (1, 2)(3, 56)(4, 62)(5, 65)(6, 81)(7, 70)(8, 79)(9, 78)(10, 84)(11, 43)(12, 75)(13, 83)

(14, 48)(15, 82)(16, 51)(17, 23)(18, 35)(19, 80)(20, 57)(21, 28)(22, 39)(24, 41)(25, 30)

(26, 33)(27, 63)(29, 46)(31, 37)(32, 68)(34, 54)(36, 73)(38, 60)(40, 76)(42, 66)(45, 64)
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(47, 71)(50, 69)(53, 55)(59, 61)(67, 72)(74, 77), (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)

(12, 19)(14, 22)(16, 24)(17, 26)(20, 29)(21, 31)(23, 33)(25, 30)(27, 36)(28, 37)(32, 40)

(34, 42)(35, 43)(38, 47)(39, 48)(41, 51)(44, 49)(45, 55)(46, 57)(50, 61)(52, 58)(53, 64)

(54, 66)(56, 65)(59, 69)(60, 71)(62, 70)(63, 73)(68, 76)(75, 80)(78, 82)(79, 83)(81, 84) ∈ Nt1t25N

Thus N (1,25) ≥ ⟨N1,25, (1, 2)(3, 56)(4, 62)(5, 65)(6, 81)(7, 70)(8, 79)(9, 78)(10, 84)

(11, 43)(12, 75)(13, 83)(14, 48)(15, 82)(16, 51)(17, 23)(18, 35)(19, 80)(20, 57)(21, 28)(22, 39)

(24, 41)(25, 30)(26, 33)(27, 63)(29, 46)(31, 37)(32, 68)(34, 54)(36, 73)(38, 60)(40, 76)(42, 66)

(45, 64)(47, 71)(50, 69)(53, 55)(59, 61)(67, 72)(74, 77), (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)

(9, 15)(11, 18)(12, 19)(14, 22)(16, 24)(17, 26)(20, 29)(21, 31)(23, 33)(25, 30)(27, 36)(28, 37)

(32, 40)(34, 42)(35, 43)(38, 47)(39, 48)(41, 51)(44, 49)(45, 55)(46, 57)(50, 61)(52, 58)

(53, 64)(54, 66)(56, 65)(59, 69)(60, 71)(62, 70)(63, 73)(68, 76)(75, 80)(78, 82)(79, 83)(81, 84)⟩.
= ⟨(3, 65)(4, 70)(5, 56)(6, 84)(7, 62)(8, 83)(9, 82)(10, 81)(11, 35)(12, 80)(13, 79)(14, 39)(15, 78)
(16, 41)(17, 33)(18, 43)(19, 75)(20, 46)(21, 37)(22, 48)(23, 26)(24, 51)(27, 73)(28, 31)(29, 57)

(32, 76)(34, 66)(36, 63)(38, 71)(40, 68)(42, 54)(44, 49)(45, 53)(47, 60)(50, 59)(52, 58)

(55, 64)(61, 69)(67, 72)(74, 77), (1, 2)(3, 56)(4, 62)(5, 65)(6, 81)(7, 70)(8, 79)(9, 78)(10, 84)

(11, 43)(12, 75)(13, 83)(14, 48)(15, 82)(16, 51)

(17, 23)(18, 35)(19, 80)(20, 57)(21, 28)(22, 39)(24, 41)(25, 30)(26, 33)(27, 63)(29, 46)(31, 37)

(32, 68)(34, 54)(36, 73)(38, 60)(40, 76)(42, 66)(45, 64)(47, 71)(50, 69)(53, 55)(59, 61)(67, 72)

(74, 77), (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 19)(14, 22)(16, 24)(17, 26)(20, 29)(21, 31)

(23, 33)(25, 30)(27, 36)(28, 37)(32, 40)(34, 42)(35, 43)(38, 47)(39, 48)(41, 51)(44, 49)

(45, 55)(46, 57)(50, 61)(52, 58)(53, 64)(54, 66)(56, 65)(59, 69)(60, 71)

(62, 70)(63, 73)(68, 76)(75, 80)(78, 82)(79, 83)(81, 84)⟩
The number of distinct right cosets in Nt1t25N is calculated by the formula,

|N |
|N(1,25)| =

168
24 = 7.

The orbits of N(1,25) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84} are

{1, 50, 2, 59, 55, 64, 69, 61, 45, 25, 53, 30},
{11, 35, 52, 74, 43, 18, 58, 22, 77, 48, 14, 39},
{16, 41, 44, 67, 51, 24, 49, 29, 72, 57, 20, 46},
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{3, 65, 71, 8, 56, 5, 38, 68, 75, 47, 60, 83, 19, 40, 79, 13, 12, 76, 37, 32, 21, 80, 31, 28},
{4, 70, 66, 6, 62, 7, 34, 63, 78, 42, 54, 84, 15, 36, 81, 10, 9, 73, 33, 27, 17, 82, 26, 23}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1, 50, 2, 59, 55, 64, 69, 61, 45, 25, 53, 30}
Nt1t25t1 ∈ [1].

We have Nt1t25t1 = Nt25

= (t1)
(y∗x∗y−1) ∈ [1]

This means twelve ti’s take [1,25] to [1].

Choose 3 from {3, 65, 71, 8, 56, 5, 38, 68, 75, 47, 60, 83, 19, 40,
79, 13, 12, 76, 37, 32, 21, 80, 31, 28}
Nt1t25t3 ∈ [19].

We have Nt1t25t3 = (y ∗ x ∗ y−1)t59t81

= (y ∗ x ∗ y−1)(t1t9)
(x∗y−1∗x∗y−1∗x∗y) ∈ [19]

This means twenty-four ti’s take [1,25] to [19].

Choose 4 from {4, 70, 66, 6, 62, 7, 34, 63, 78, 42, 54, 84, 15, 36, 81
10, 9, 73, 33, 27, 17, 82, 26, 23}
Nt1t25t4 ∈ [19].

We have Nt1t25t4 = (y ∗ x ∗ y−1)t59t81

= (y ∗ x ∗ y−1)(t1t9)
(x∗y−1∗x∗y−1∗x∗y) ∈ [19]

This means twenty-four ti’s take [1,25] to [19].

Choose 11 from {11, 35, 52, 74, 43, 18, 58, 22, 77, 48, 14, 39}
Nt1t25t11 ∈ [1].

We have Nt1t25t11 = ((x ∗ y ∗ x ∗ y−1)2)t35

= ((x ∗ y ∗ x ∗ y−1)2)(t1)
(x∗y−1∗x∗y∗x∗y−1∗x) ∈ [1]

This means twelve ti’s take [1,25] to [1].

Choose 16 from {16, 41, 44, 67, 51, 24, 49, 29, 72, 57, 20, 46}
Nt1t25t16 ∈ [1, 9, 16].

We have Nt1t25t16 = (y2 ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t84t25t56
= (y2 ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)(t1t9t16)(y

−1∗x∗y−1∗x∗y∗x∗y−1∗x) ∈ [1]

This means twelve ti’s take [1,25] to [1].
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Cayley Diagram

Figure 7.87: Cayley Diagram for G over S84

Fifth Double Coset [1, 52]

Nt1t52 = {N(t1t52)
n|n ∈ N}.

We now find the coset stabilizer N(1,52). We first find the point stabilizer of 1 and 52 in

N.

N1,52 = {n ∈ N |(1, 52)n = 1, 52}
N1,52 = ⟨e⟩
We will find different names of Nt1t52N . Nt1t52 = Nt2t52.

N(t1t52)
(1,2) = Nt2t52.

But, Nt2t52 = Nt1t52 =⇒ N(t1t52)
(1,2) = Nt1t52.

=⇒ (1, 2)(3, 56)(4, 62)(5, 65)(6, 81)(7, 70)(8, 79)(9, 78)(10, 84)(11, 43)

(12, 75)(13, 83)(14, 48)(15, 82)(16, 51)(17, 23)(18, 35)

(19, 80)(20, 57)(21, 28)(22, 39)(24, 41)(25, 30)(26, 33)(27, 63)(29, 46)(31, 37)(32, 68)

(34, 54)(36, 73)(38, 60)(40, 76)

(42, 66)(45, 64)(47, 71)(50, 69)(53, 55)(59, 61)(67, 72)(74, 77) ∈ Nt1t52N

Thus N (1,52) ≥ ⟨N1,52, (1, 2)(3, 56)(4, 62)(5, 65)(6, 81)(7, 70)(8, 79)(9, 78)
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(10, 84)(11, 43)(12, 75)(13, 83)(14, 48)(15, 82)(16, 51)(17, 23)(18, 35)

(19, 80)(20, 57)(21, 28)(22, 39)(24, 41)(25, 30)(26, 33)(27, 63)(29, 46)(31, 37)(32, 68)

(34, 54)(36, 73)(38, 60)(40, 76)

(42, 66)(45, 64)(47, 71)(50, 69)(53, 55)(59, 61)(67, 72)(74, 77)⟩.
= ⟨e, (1, 2)(3, 56)(4, 62)(5, 65)(6, 81)(7, 70)(8, 79)(9, 78)(10, 84)(11, 43)
(12, 75)(13, 83)(14, 48)(15, 82)(16, 51)(17, 23)(18, 35)(19, 80)(20, 57)

(21, 28)(22, 39)(24, 41)(25, 30)(26, 33)(27, 63)(29, 46)(31, 37)(32, 68)(34, 54)(36, 73)(38, 60)

(40, 76)(42, 66)(45, 64)(47, 71)(50, 69)(53, 55)(59, 61)(67, 72)(74, 77)⟩.
The number of distinct right cosets in Nt1t52N is calculated by the formula,

|N |
|N(1,52)| =

168
24 = 7.

The orbits of N (1,25) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84} are

{1, 69, 59, 25, 2, 45, 64, 61, 50, 53, 30, 55},
{11, 52, 77, 39, 43, 14, 18, 74, 58, 48, 22, 35},
{16, 44, 72, 46, 51, 20, 24, 67, 49, 57, 29, 41},
{3, 47, 83, 37, 56, 76, 75, 13, 71, 32, 38, 28, 31, 19, 8, 12, 40, 68, 5, 80, 60, 65, 21, 79},
{4, 42, 84, 33, 62, 73, 78, 10, 66, 27, 34, 23, 26, 15, 6, 9, 36, 63, 7, 82, 54, 70, 17, 81}.
We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1, 69, 59, 25, 2, 45, 64, 61, 50, 53, 30, 55}
Nt1t52t1 ∈ [1].

We have Nt1t52t1 = (t1)
(y∗x∗y∗x∗y−1∗x∗y2) ∈ [1]

This means twelve ti’s take [1,52] to [1].

Choose 3 from {3, 47, 83, 37, 56, 76, 75, 13, 71, 32, 38, 28,
31, 19, 8, 12, 40, 68, 5, 80, 60, 65, 21, 79}
Nt1t52t3 ∈ [19].

We have Nt1t52t3 = (y−1 ∗ x ∗ y ∗ x)t42t2
= (y−1 ∗ x ∗ y ∗ x)(t1t9)((y

−1∗x)2) ∈ [19]

This means twenty-four ti’s take [1,52] to [19].
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Choose 4 from {4, 42, 84, 33, 62, 73, 78, 10, 66, 27, 34, 23, 26, 15, 6,
9, 36, 63, 7, 82, 54, 70, 17, 81}
Nt1t52t4 ∈ [19].

We have Nt1t52t4 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)t18t79
= (y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x)(t1t9)(x∗y∗x∗y

−1∗x∗y−1∗x∗y2) ∈ [19]

This means twenty-four ti’s take [1,52] to [19].

Choose 11 from {11, 52, 77, 39, 43, 14, 18, 74, 58, 48, 22, 35}
Nt1t52t11 ∈ [1].

We have Nt1t52t11 = (x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y)t55
= (x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y)(t1)(y

2∗x∗y−1∗x∗y−1∗x∗y2) ∈ [1]

This means twelve ti’s take [1,52] to [1].

Choose 16 from {16, 44, 72, 46, 51, 20, 24, 67, 49, 57, 29, 41}
Nt1t52t16 ∈ [1, 9, 16].

We have Nt1t52t16 = (x ∗ y2)t6t25t5
= (x ∗ y2)(t1t9t16)y

2 ∈ [1, 9, 16]

This means twelve ti’s take [1,52] to [1,9,16].

Cayley Diagram

Figure 7.88: Cayley Diagram for G over S84
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Sixth Double Coset [1, 74]

Nt1t74 = {N(t1t74)
n|n ∈ N}.

We now find the coset stabilizer N(1,74). We first find the point stabilizer of 1 and 74 in

N.

N1,74 = {n ∈ N |(1, 74)n = 1, 74}
N1,74 = ⟨e⟩
We will find different names of Nt1t74N . Nt1t74 = Nt64t14.

N(t1t74)
(1,64,59),(14,22,74) = Nt64t14.

But, Nt64t14 = Nt1t74 =⇒ N(t1t74)
(1,64,59),(14,22,74) = Nt1t74.

=⇒ (1, 64, 59)(2, 69, 53)(3, 75, 83)(4, 78, 84)(5, 79, 80)(6, 17, 63)(7, 81, 82)

(8, 21, 68)(9, 23, 54)(10, 73, 26)(11, 18, 77)(12, 28, 60)(13, 76, 31)(14, 22, 74)(15, 66, 33)(16, 24, 72)

(19, 71, 37)(20, 29, 67)(25, 55, 50)(27, 62, 42)(30, 61, 45)(32, 56, 47)

(34, 70, 36)(35, 48, 58)(38, 65, 40)(39, 43, 52)(41, 57, 49)(44, 46, 51) ∈ Nt1t74N

ThusN (1,74) ≥ ⟨N1,74, (1, 64, 59)(2, 69, 53)(3, 75, 83)(4, 78, 84)(5, 79, 80)(6, 17, 63)(7, 81, 82)(8, 21, 68)

(9, 23, 54)(10, 73, 26)(11, 18, 77)(12, 28, 60)(13, 76, 31)(14, 22, 74)(15, 66, 33)

(16, 24, 72)(19, 71, 37)(20, 29, 67)(25, 55, 50)(27, 62, 42)(30, 61, 45)

(32, 56, 47)(34, 70, 36)(35, 48, 58)(38, 65, 40)(39, 43, 52)(41, 57, 49)(44, 46, 51)⟩.
= ⟨e, (1, 64, 59)(2, 69, 53)(3, 75, 83)(4, 78, 84)(5, 79, 80)(6, 17, 63)(7, 81, 82)
(8, 21, 68)(9, 23, 54)(10, 73, 26)(11, 18, 77)(12, 28, 60)(13, 76, 31)

(14, 22, 74)(15, 66, 33)(16, 24, 72)(19, 71, 37)(20, 29, 67)(25, 55, 50)(27, 62, 42)(30, 61, 45)

(32, 56, 47)(34, 70, 36)(35, 48, 58)(38, 65, 40)(39, 43, 52)(41, 57, 49)(44, 46, 51)⟩.
The number of distinct right cosets in Nt1t74N is calculated by the formula,

|N |
|N(1,74)| =

168
168 = 1.

The orbits of N (1,25) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,

52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,

72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84} are

{1, 26, 82, 57, 68, 4, 61, 43, 41, 78, 14, 37, 23, 34, 30, 10, 40, 29, 5, 65, 54,
71, 46, 70, 83, 11, 67, 74, 50, 16, 36, 52, 39, 79, 8, 13, 58, 64, 80, 81, 28, 21, 24, 62, 38, 72, 9, 19,

42, 18, 59, 76, 63, 12, 32, 3, 55, 22, 66, 73, 35, 77, 45, 47,

49, 2, 20, 53, 69, 75, 56, 33, 6, 15, 17, 27, 31, 84, 44, 7, 48, 60, 25, 51}. We will determine the
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double cosets by selecting one representative from each orbit such as,

Choose 1 from {1, 26, 82, 57, 68, 4, 61, 43, 41, 78, 14, 37, 23, 34, 30, 10, 40, 29,
5, 65, 54, 71, 46, 70, 83, 11, 67, 74, 50, 16, 36, 52, 39, 79, 8, 13, 58, 64, 80, 81, 28,

21, 24, 62, 38, 72, 9, 19, 42, 18, 59, 76, 63, 12, 32, 3, 55, 22, 66, 73, 35, 77, 45, 47,

49, 2, 20, 53, 69, 75, 56, 33, 6, 15, 17, 27, 31, 84, 44, 7, 48, 60, 25, 51}
Nt74t1 ∈ [1].

We have Nt1t74t1 = Nt74

= (t1)
(y−1∗x∗y−1∗x∗y∗x∗y∗x)

This means eighty-four ti’s take [1,74] to [1].

Cayley Diagram

Figure 7.89: Cayley Diagram for G over S84

Seventh Double Coset [1, 9, 16]

Nt1t9t16 = {N(t1t9t16)
n|n ∈ N}.

We now find the coset stabilizer N (1,9,16). We first find the point stabilizer of 1, 9 and 16

in N.

N1,9,16 = {n ∈ N |(1, 9, 16)n = 1, 9, 16}
N1,9,16 = ⟨e⟩
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We will find different names of Nt1t9t16N . Nt1t9t16 = Nt44t48t83.

N(t1t9t16)
(1,44),(9,48),(16,83) = Nt44t48t83.

But, Nt44t48t83 = Nt1t9t16 =⇒ N(t1t9t16)
(1,44),(9,48),(16,83) = Nt1t9t16.

=⇒ (1, 44)(2, 49)(6, 57)(8, 51)(9, 48)(10, 46)(11, 80)(12, 43)(13, 41)(14, 82)

(15, 39)(16, 83)(17, 64)(18, 75)(19, 35)(20, 84)(21, 69)(22, 78)(23, 55)(24, 79)

(25, 52)(26, 53)(27, 40)(28, 61)(29, 81)(30, 58)(31, 59)(32, 36)(33, 45)(34, 47)(37, 50)

(38, 42)(54, 60)(56, 65)(62, 70)(63, 68)(66, 71)(67, 74)(72, 77)(73, 76) ∈ Nt1t9t16N

Thus N (1,9,16) ≥ ⟨N1,9,16, (1, 44)(2, 49)(6, 57)(8, 51)(9, 48)(10, 46)(11, 80)

(12, 43)(13, 41)(14, 82)(15, 39)(16, 83)(17, 64)(18, 75)(19, 35)(20, 84)(21, 69)(22, 78)

(23, 55)(24, 79)(25, 52)(26, 53)(27, 40)(28, 61)(29, 81)

(30, 58)(31, 59)(32, 36)(33, 45)(34, 47)(37, 50)

(38, 42)(54, 60)(56, 65)(62, 70)(63, 68)(66, 71)(67, 74)(72, 77)(73, 76)⟩.
= ⟨e, (1, 44)(2, 49)(6, 57)(8, 51)(9, 48)(10, 46)(11, 80)(12, 43)(13, 41)(14, 82)
(15, 39)(16, 83)(17, 64)(18, 75)(19, 35)(20, 84)(21, 69)(22, 78)(23, 55)(24, 79)(25, 52)(26, 53)

(27, 40)(28, 61)(29, 81)(30, 58)(31, 59)(32, 36)(33, 45)(34, 47)(37, 50)

(38, 42)(54, 60)(56, 65)(62, 70)(63, 68)(66, 71)(67, 74)(72, 77)(73, 76)⟩.
The number of distinct right cosets in Nt1t9t16N is calculated by the formula,

|N |
|N(1,9,16)| =

168
12 = 14.

The orbits of N (1,9,16) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84} are

{1, 50, 29, 55, 83, 16, 23, 27, 40, 44, 81, 37},
{2, 45, 24, 61, 84, 20, 28, 32, 36, 49, 79, 33},
{3, 71, 68, 63, 4, 66}, {5, 76, 60, 54, 7, 73},
{6, 15, 46, 70, 77, 72, 62, 9, 48, 57, 10, 39},
{8, 19, 41, 65, 74, 67, 56, 12, 43, 51, 13, 35},
{11, 52, 47, 22, 59, 31, 78, 17, 64, 80, 34, 25},
{14, 58, 42, 18, 53, 26, 75, 21, 69, 82, 38, 30}.
We will determine the double cosets by selecting one representative from each orbit such

as,
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Choose 1 from {1, 50, 29, 55, 83, 16, 23, 27, 40, 44, 81, 37}
Nt1t9t16t1 ∈ [19].

We have Nt1t9t16t1 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y2)t37t46
= (y−1 ∗ x ∗ y−1 ∗ x ∗ y2)(t1t9)(y∗x∗y∗x∗y

−1∗x) ∈ [19]

This means twelve ti’s take [1,9,16] to [19].

Choose 2 from {2, 45, 24, 61, 84, 20, 28, 32, 36, 49, 79, 33}
Nt1t9t16t2 ∈ [19].

We have Nt1t9t16t2 = (y−1 ∗ x ∗ y−1 ∗ x ∗ y2)t37t46
= (y−1 ∗ x ∗ y−1 ∗ x ∗ y2)(t1t9)(y∗x∗y∗x∗y

−1∗x) ∈ [19]

This means twelve ti’s take [1,9,16] to [19].

Choose 3 from {3, 71, 68, 63, 4, 66}
Nt1t9t16t3 ∈ [1, 25].

We have Nt1t9t16t3 = (y2 ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y−1)t35t41

= (y2 ∗ x ∗ y ∗ x ∗ y−1 ∗ x ∗ y−1)(t1t25)
(x∗y−1∗x∗y∗x∗y−1∗x) ∈ [1, 25]

This means six ti’s take [1,9,16] to [1,25].

Choose 5 from {5, 76, 60, 54, 7, 73}
Nt1t9t16t5 ∈ [1, 52].

We have Nt1t9t16t5 = (x ∗ y2)t6t33
= (x ∗ y2)(t1t52)y

2 ∈ [1, 52]

This means six ti’s take [1,9,16] to [1,52].

Choose 6 from {6, 15, 46, 70, 77, 72, 62, 9, 48, 57, 10, 39}
Nt1t9t16t6 ∈ [19].

We have Nt1t9t16t6 = ((y−1 ∗ x)2)t58t32
= ((y−1 ∗ x)2)(t1t9)(y

−1∗x∗y−1∗x∗y−1∗x∗y) ∈ [19]

This means twelve ti’s take [1,9,16] to [19].

Choose 8 from {8, 19, 41, 65, 74, 67, 56, 12, 43, 51, 13,35}
Nt1t9t16t8 ∈ [19].

We have Nt1t9t16t8 = ((y−1 ∗ x)2)t58t32
= ((y−1 ∗ x)2)(t1t9)(y

−1∗x∗y−1∗x∗y−1∗x∗y) ∈ [19]

This means twelve ti’s take [1,9,16] to [19].

Choose 11 from {11, 52, 47, 22, 59, 31, 78, 17, 64, 80, 34,25}
Nt1t9t16t11 ∈ [1, 9, 16].
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We have Nt1t9t16t11 = (y ∗ x ∗ y−1)t81t15t27

= (y ∗ x ∗ y−1)(t1t9t16)
(y∗x∗y∗x∗y−1∗x∗y−1∗x∗y) ∈ [1, 9, 16]

This means twelve ti’s take [1,9,16] to [1,9,16].

Choose 14 from {14, 58, 42, 18, 53, 26, 75, 21, 69, 82, 38, 30}
Nt1t9t16t14 ∈ [1, 9, 16].

We have Nt1t9t16t14 = ((y−1 ∗ x)2)t37t46t1
= ((y−1 ∗ x)2)(t1t9t16)(y∗x∗y∗x∗y

−1∗x) ∈ [1, 9, 16]

This means twelve ti’s take [1,9,16] to [1,9,16].

Cayley Diagram

Figure 7.90: Cayley Diagram for G over S84

It is possible that the coset stabiliser of N (w) of the coset Nw increases and therefore
|N |

|N(w)| decreases.

Our cayley diagram shows that

G = N ∪Nt1 ∪Nt1t9 ∪Nt1t25 ∪Nt1t52 ∪Nt1t74 ∪Nt1t9t16

|G| ≤ (|N |+ |N |
|N(1)| +

|N |
|N(19)| +

|N |
|N(1,25)| +

|N |
|N(1,52)| +

|N |
|N(1,74)| +

|N |
|N(1,9,16)| × |N |

|G| ≤ (1 + 42 + 56 + 7 + 7 + 1 + 14)× 168 =⇒ |G| ≤ 128× 168 =⇒ |G| ≤ 21504.

G acts on 168 cosets that are given in the cayley diagram.

Let X be the set of these 168 cosets.
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Now, f : G → Sx is a homomorphism.

G
Kerf

∼= Imf (First Isomorphism Theorem).

=⇒ G
Kerf

∼= ⟨f(x), f(y), f(t)⟩ =⇒ | G
Kerf | = |⟨f(x), f(y), f(t)⟩|

But #⟨f(x), f(y), f(t)⟩ = 21504. So, | G
kerf | = 21504

This means |G| ≥ 21504. We know |G| ≤ 21504 from cayley diagram.

Therefore, |G| = 21504.

From |G| = 21504× |Kerf | we find |Kerf | = 1

G ∼= ⟨f(x), f(y), f(t)⟩ but, ⟨f(x), f(y), f(t)⟩ ∼= 27 : PSL(2, 7) =⇒ G ∼= 27 : PSL(2, 7).
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7.12 Lemma 3.3 in Construction of 2∗7 : (7 : 3)) over (23 : (7 :

3)

Let N ∼= 23 : (7 : 3) = ⟨x, y⟩ where x ∼ (1, 11, 13)(2, 12, 10)(3, 7, 9)(5, 6, 14), and

y ∼ (1, 13, 2)(3, 9, 6)(4, 7, 12, 8, 11, 14)(5, 10). The progenitor 2∗14 : N has symmetric pre-

sentation.

G<x,y,t>:=Group<x,y,t|x^3, y^6,

(y^-1 * x^-1)^3,

x * y * x^-1 * y^-1 * x^-1 * y * x^-1 * y^-2,

t^2>

We want to verify that the presentation given above is correct.

Using the theorem: 2∗n:N
ti,tj

∼= 2n : N where 1 ≤ i ≤ j ≤ n,

we will show that 2∗14:N
((y2)∗t(y−1))3

∼= 27 : (7 : 3) Thus, we will prove

G<x,y,t>:=Group<x,y,t|x^3, y^6, (y^-1 * x^-1)^3,

x * y * x^-1 * y^-1 * x^-1 * y * x^-1 * y^-2,

t^2,

(t,y^3),(t,x^-1*y^-1),

(t,t^{(y^-1)}),(t,t^{(x * y^2)}),

(t,t^{(x * y * x^-1 * y^-1 * x)}),

((y^2)*t^(y^{-1}))^3> ~ (2^7:(7:3))

We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N . We need to determine all distinct double cosets NwN and find the number

of right cosets in each double coset. It suffices to find the double coset of Nwti for one

representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw, so we

find our index, which is the order of G over the order of N. Hence, |G|
|N | =

2688
168 = 16 . Now

we know that we have 16 distinct single cosets.

Expanding Relation We will expand our only relation.

((y2) ∗ t(y−1))3

= y2 ∗ t2 ∗ y2 ∗ t2 ∗ y2 ∗ t2
=(y2)3 ∗ (t(y

2)2

2 ) ∗ (t(y
2)

2 ) ∗ t2
= (y6) ∗ (t(y

4)
2 ) ∗ (t(y

2)
2 ) ∗ t2

=⇒ (y6) ∗ t1t13t2 = e =⇒ (y6) ∗ t1t13 = t2
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First Double Coset [∗]

NeN = {Nen|n ∈ N}. The double coset NeN = [∗] contains 1 right coset. The coset

stabiliser of the coset Ne is N .

The formula for the number of right cosets in N is 168
168 = 1.

Since N is transitive on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}. We need only deter-

mine the double coset of the right cosets Nt1. Thus 14 ti’s extend the double coset [∗] to
the double coset Nt1N = [1].

Cayley Diagram

Figure 7.91: Cayley Diagram for G over S14

Second Double Coset [1]

Nt1N = {N(t1)
n|n ∈ N}

= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10, Nt11, Nt12, Nt13, Nt14}.
We now find the Coset Stabilier N1). We first find the point stabiliser of 1 in N.

N1 = {n ∈ N |1n = 1}
Thus, N (1) ≥ ⟨N1 = (2, 11, 10)(4, 13, 12)(5, 6, 7)(8, 9, 14)(2, 6)(7, 11)(9, 13)(12, 14)⟩
The number of right cosets in Nt1N is calculated by the formula,
|N |

|N(1)| =
168
14 = 12.

The orbits of N1 on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} are

{1}, {3}, {2, 7, 6, 10, 11, 5}, {4, 13, 14, 9, 12, 8}.
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We will determine the double cosets by selecting one representative from each orbit such

as,

Choose 1 from {1}
Nt1t1 = Nt21 = N ∈ [∗]
This means one ti takes [1] to [*]

Choose 3 from {3}
Nt1t3 ∈ [13]

This means one ti takes [1] to [13]

Choose 2 from {2,7,6,10,11,5}
Nt1t2 ∈ [1].

We have Nt1t2 = Nt13

= (t1)
y

This means six ti’s take [1] to [1]

Choose 4 from {4, 13, 14, 9, 12, 8}
Nt1t4 ∈ [1].

We have Nt1t4 = Nt10

= (t1)
(y−1∗x−1)

This means six ti’s take [1] to [1]

Cayley Diagram

Figure 7.92: Cayley Diagram for G over S14
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Third Double Coset [13]

Nt1t3 = {N(t1t3)
n|n ∈ N}.

We now find the Coset Stabilier N13). We first find the point stabiliser of 1 and 3 in N.

N13 = {n ∈ N |13n = 13}
N13 = ⟨(2, 6)(7, 11)(9, 13)(12, 14)(2, 11, 5)(4, 9, 14)(6, 7, 10)(8, 13, 12)⟩.
Now we will find different names of Nt1t3.We have Nt1t3 = Nt8t4 Thus, N (13) ≥ ⟨N13 =

(2, 6)(7, 11)(9, 13)(12, 14)(2, 11, 5)(4, 9, 14)(6, 7, 10)(8, 13, 12)⟩
The number of single cosets in Nt1t3 is calculated by the formula, |N |

|N(13) = 168
168 = 1

The orbits of N13 on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} are

{1, 8, 13, 12, 10, 2, 14, 5, 6, 9, 4, 11, 3, 7}.
Now, we choose one representative from this orbit,

Choose 1 from {1, 8, 13, 12, 10, 2, 14, 5, 6, 9, 4, 11, 3, 7 }
1 ∈ {1, 8, 13, 12, 10, 2, 14, 5, 6, 9, 4, 11, 3, 7} =⇒ Nt1t3t1 ∈ [1].

We have Nt1t3t1 = Nt3

= (t1)
x∗y∗x−1∗y−1∗x

= (t1)
(1,3)(2,10,11,6,5,7)(4,14,9)(8,12,13) ∈ [1].

This means fourteen ti’s take [13] to [1].

Cayley Diagram

Figure 7.93: Cayley Diagram for G over S14

Now, all elements being addressed to their double cosets, we calculate.
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G = N ∪Nt1 ∪Nt1t3

|G| ≤ (|N |+ |N |
|N(1)| +

|N |
|N(13)| ×|N | =⇒ |G| ≤ (1+14+1)× 168 =⇒ |G| ≤ 16× 168 =⇒

|G| ≤ 2688. But from Cayley Diagram we know that |G| ≥ 2688. Therefore, |G| = 2688

———————————————
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Chapter 8

Double Coset Enumeration

Involving Maximal Subgroup

As stated in previous chapter, a double coset enumeration is performed using an algo-

rithm. In some cases, double coset enumerations are more difficult than others. It depends

on the group itself and the control group N . It has been discovered that performing the

double coset enumeration over a maximal subgroup produces the same outcome. In the

next example we will show the process of double coset enumerations over a maximal

subgroup H.

8.1 S5 over 24 : A4 and 24 : 3

Consider H to be a subgroup of G such that N ≤ H ≤ G. We can write G as a set

of single cosets in H. We perform double coset enumeration of G over H = 24 : A4 =

⟨x, y, t1t2t3t1⟩ = (1, 2, 3) and 24 : 3 = N . It should be noted that the order of H is

24. We will prove that the progenitor 2∗4 : (22 : 3), where 2∗4 : (22 : 3) = ⟨x, y⟩ giving

x ∼ (1, 2)(3, 4) and y ∼ (1, 2, 3) factored by one relation is isomorphic to S5.

Let G ∼= 2∗4(22:2)
t1t2t3t1=(1,2,3) . Thus we show that G ∼ S5.

First Double Coset [∗]

HeN = {H(e)n|n ∈ N} = {H|n ∈ N}
The coset stabiliser He is H. The number of single right cosets in the double coset
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HeN = [∗] is given by
|H|
|H| =

24
24 = 1.

The orbits of H on X = {1, 2, 3, 4} is {1, 2, 3, 4}. We will now choose an orbit represen-

tative and multiply the representative by H on the right and determine its double coset.

Choose 1 from {1,2,3,4}
Ht1 ∈ [1]

Second Double Coset

Ht1N = {H(t1)
n|n ∈ N}

= {Ht1, Ht2, Ht3, Ht4}
The coset stabiliser N (1) ≥ N1 = ⟨(2, 3, 4)⟩
The number of single right cosets in the double coset Ht1N = [1] is given by the formula,
|N |

|N(1)
| = 24

6 = 4

The orbits of N (1) on X = {1, 2, 3, 4} are {1}, {2, 3, 4}. We will now choose a representa-

tive of each orbit and multiply Ht1 on the right and determine its double coset.

Choose 1 from {1}
Ht1t1 = Ht21 = H ∈ [∗].
This means one ti takes [1] to [*].

Choose 2 from {2, 3, 4}
Ht1t2 ∈ [12].

This means three ti’s take [1] to [12].

Third Double Coset

Ht1t2N = {H(t1t2)
n|n ∈ N}

= {Ht1t2, Ht2t3, . . . ,Ht2t1}.
We now find the Coset Stabilier N12). We first find the point stabiliser of 1 and 2 in N.

The point-stabiliser N12 is given by ⟨e⟩
The coset stabiliser N (12) = ⟨e, (2, 3, 4)⟩
The orbits of N (12) on X = {1, 2, 3, 4} are {1}, {2}, {3}, {4}. We will now choose a

representative of each orbit and multiply Ht1t2 on the right and determine its double

coset.

Choose 1 from {1}
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Nt1t2t1 ∈ [121]

Choose 2 from {2}
Nt1t2t2 ∈ [∗]
Choose 3 from {3}
Nt1t2t3 ∈ [121]

Choose 4 from {4}
Nt1t2t4 ∈ [121]

Fourth Double Coset

Ht1t2t1N = {H(t1t2t1)
n|n ∈ N}

= {Ht1t2t1, Ht2t3t1, . . . ,Ht2t1t2}.
We now find the Coset Stabilier N121). We first find the point stabiliser of 1,2 and 1 in

N. The point-stabiliser N121 is given by ⟨e⟩
The coset stabiliser N (121) = ⟨e, (2, 3, 4)⟩
The orbits of N (121) on X = {1, 2, 3, 4} is {1, 3, 4, 2}. We will now choose a representative

of this orbit and multiply Ht1t2t1 on the right and determine its double coset.

Using our relation (see below) we have 12 ∼ 13 ∼ 14.

121 = (1, 2, 4)141

121 = 1(213)3 = (2, 1, 3)323 =⇒ (2, 3, 4), (1, 3, 4) ∈ N (121). ThusN (121) ≥ ⟨e, (2, 3, 4), (1, 3, 4)⟩.
=⇒ Nt1t2t1 = Nt1t3t1 = Nt1t4t1. This means all the symmetric generators are in the

same double coset.
|N |

|N(121)| =
12
12 = 1

Thus, G = H ∪Ht1 ∪Ht1t2 ∪Ht1t2t1

Now H = ⟨N, t1t2t1⟩, which is double the order of N , then H ∪ Nt1t2t1 since the order

of H is 24 and the order of N is 12. So,

G = N ∪Nt1t2t1 which gives

G = N ∪Nt1t2t1 ∪ (N ∪Nt1t2t1)t1 ∪ (N ∪Nt1t2t1)t2 ∪ (N ∪Nt1t2t1)t3 ∪ (N ∪Nt1t2t1)t4

=⇒ G = N∪Nt1t2t1∪Nt1∪Nt1t2t1t1∪Nt2∪Nt1t2t1t2∪Nt3∪Nt1t2t1t3∪Nt4∪Nt1t2t1t4

Our goal is to get G similar to our DCE 2∗4 : (24 : 3) which is G = N ∪Nt1∪Nt2∪Nt3∪
Nt4 ∪Nt1t2 ∪Nt1t3 ∪Nt1t4 ∪Nt2t3 ∪Nt2t4 ∪Nt3t4.

We need to investigate further, so we are going to take the following elements of our G,

and use our relation to see where they belong:
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Ht1t2t1. Now Nt1t2 = Nt1t3 (Relation) =⇒ (2, 3, 4) ∈ N (12).

Thus N (12) = ⟨(2, 3, 4)⟩.
Nt1t2 = Nt1t3 = Nt1t4

From Magma we got:

{[1,2]}^N;

/*

GSet{@

{

[ 1, 3 ],

[ 1, 2 ],

[ 1, 4 ]

},

{

[ 2, 4 ],

[ 2, 3 ],

[ 2, 1 ]

},

{

[ 3, 4 ],

[ 3, 2 ],

[ 3, 1 ]

},

{

[ 4, 1 ],

[ 4, 3 ],

[ 4, 2 ]

}

@}

*/

That means, 13 ∼ 12 ∼ 14 , 24 ∼ 23 ∼ 21, 34 ∼ 32 ∼ 31, and 41 ∼ 43 ∼ 42
|N |

|N(12)| =
12
3 = 4

Now Nt1t2t1 = Nt1t3t1 = Nt1t4t1

Given relation: 12 = (1, 2, 3)13.

using conjugation by elements of N we get,

(Nt1t2)
(12)(34) = (Nt1t3)

(12)(34) =⇒ 21 ∼ 24

(Nt1t2)
(132) = (Nt1t3)

(132) =⇒ 31 ∼ 32

(Nt1t2)
(124) = (Nt1t3)

(124) =⇒ 24 ∼ 23
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(Nt1t2)
(13)(24) = (Nt1t3)

(13)(24) =⇒ 34 ∼ 31

(Nt1t2)
(143) = (Nt1t3)

(143) =⇒ 42 ∼ 41

(Nt1t2)
(134) = (Nt1t3)

(134) =⇒ 32 ∼ 34

(Nt1t2)
(142) = (Nt1t3)

(142) =⇒ 41 ∼ 43

(Nt1t2)
(14)(23) = (Nt1t3)

(14)(23) =⇒ 43 ∼ 42

(Nt1t2)
(243) = (Nt1t3)

(243) =⇒ 14 ∼ 12

(Nt1t2)
(123) = (Nt1t3)

(123) =⇒ 23 ∼ 21

(Nt1t2)
(234) = (Nt1t3)

(234) =⇒ 13 ∼ 14

Now, we write G as a union of the right Cosets,

G = N ∪Nt1 ∪Nt2 ∪Nt3 ∪Nt4 ∪Nt1t2 ∪Nt2t3 ∪Nt3t1 ∪Nt4t3 ∪Nt1t2t1

|G| ≤ |N |
|N | +

|N |
|N(1)| +

|N |
|N(12)| +

|N |
|N(121)| × |N |

= 1 + 4 + 4 + 1× 12

= 10× 12 = 120

The second Part is

DCE of G = 2∗4:A4
1231=(123) over H =< A4, t1, t2, t1 > and N = S4

N (1) = ⟨e⟩ Orbits are {1}, {2}, {3}, {4}
Ht1t1 ∈ [∗]
H = ⟨S4, t1, t2, t1⟩
=⇒ t1t2t1 ∈ H =⇒ Ht1t2t1 = H

=⇒ Ht1t2 = Ht1 ∈ [1].

Our relation is 12 = (123)13

Ht1t2 = Ht1t3 =⇒ Ht1t3 ∈ [1]

G = H ∪Ht1 ∪Ht2 ∪Ht3 ∪Ht4

Replace H we get,

G = N ∪Nt1t2t1 ∪Nt1 ∪Nt1t2t1t1 ∪Nt2 ∪Nt1t2t1t2 ∪Nt3 ∪Nt1t2t1t3 ∪Nt4 ∪Nt1t2t1t4

if we conjugate, H = ⟨N, t1t2t1⟩
t1t2t1 ∈ H, t2t3t2 ∈ H, t3t1t3 ∈ H, t4t3t4 ∈ H

=⇒ Ht1t2t1 = Ht2t3t2 = Ht3t1t3 = Ht4t3t4

Now we have,

G = N ∪ Nt1 ∪ Nt2 ∪ Nt3 ∪ Nt4 ∪ Nt1t2 ∪ Nt2t3t2t2 = Nt2t3 ∪ Nt3t1t3t3 = Nt3t1 ∪
Nt4t3t4t4 = Nt4t3 ∪Nt1t2t1.

Thus is the same decomposition as in the Case of DCE G over N .
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Chapter 9

Monomial Representations

In this chapter we find monomial presentations for several groups. We will use Magma to

view the character table of each group with the goal of writing the monomial representa-

tion of each respective control group, G. In our control group’s character table we look

for characters with degrees greater than 1 ,say m, that are also faithful. Our group is

guaranteed a faithful irreducible monomial representation if the group has a subgroup, H,

with an index m and if H has a linear character that will induce up to the degree m char-

acter of G. After obtaining the faithful irreducible monomial representation of the given

group, we determine the progenitor. We then convert those matrices into permutations

and construct a permutation representation of G.

Theorem 9.1. The number of irreducible characters of G is equal to the number of

conjugacy classes of G [Led77].

Definition 9.2. commutator Let G be a group with a, b ∈ G. Then the commutator of

a and b, denoted [a, b], is [a, b] = aba−1b−1 [Rot94]

Definition 9.3. normalizer Let G be a group with H ≤ G. Then the normalizer of H

in G is the set {a ∈ G|aHa−1 = H} [Rot94]

Definition 9.4. Let G be a group, the Monomial Representation is a map M : G

Hom−−−→ GL(n, F ) that provide which M(x) and M(y) are monomial matrices [Led77].

Definition 9.5. Let A(x) = (aij(x)) be a matrix representation of G of degree m. We

consider the characteristic polynomial of A(x), namely.
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det(λI −A(x)) =



Λ− a11(x) Λ− a12(x) ... Λ− a1m(x)

Λ− a21(x) Λ− a22(x) ... Λ− a2m(x)

. . ... .

. . ... .

. . ... .

Λ− am1(x) Λ− am2(x) ... Λ− amm(x)


This is polyno-

mial of degree m in λ, with the coefficient of −λm−1 is

α(x) = a11(x) + a22(x) + ...+ amm(x).

It is customary to call the right-hand side of this equation the trace of A(x) abbreviated

to trA(x), so that α(x) = trA(x). We regard α(x) as a function on G with values in field

K, and we call it the character of A(x) [Led77].

Definition 9.6. The character of A(x), which is called the induced character of ϕ

denoted by ϕG. Thus,

ϕG = trA(x) =
n∑

i=1

ϕ(tixt
−1
i )

. The formula of induced character is given by,

ϕ ↑Gα=
n

hα

∑
w∈Cα∩H

= α(w), α = 1, 2, 3, ...,m

[Led77].

9.1 First Monomial Representations of 37∗2 :m (23 : S3)

We are given G, a transitive group on 24 letters, which is generated by

xx ~ (1, 16, 17, 8, 9, 23)(2, 15, 18, 7, 10, 24)

(3, 6, 19, 21, 11, 13)(4, 5, 20, 22, 12, 14).

yy ~ (1, 20)(2, 19)(3, 18)(4, 17)(5, 15)(6, 16)

(7, 14)(8, 13)(9, 12)(10, 11)(21, 23)(22, 24).

zz ~ (1, 21, 18, 14, 9, 6, 2, 22, 17, 13, 10, 5)

(3, 24, 20, 16, 11, 7, 4, 23, 19, 15, 12, 8).

G:=sub<G|xx,yy,zz>;

#G;

48
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We note that G ∼= 23 : S3 We will write a presentation for the monomial progenitor

37∗2 : (23 : S3) note that 2∗3 represents 2 t′s of order 3. We now use the character table

of 23 : S3 to determine if it has any faithful characters of degree greater than 1. We can

see that it has 2 characters with degree 3, but only 1 of them is faithful. We consider

this character CG[16]. We note that in order for 23 : S3 to have a faithful irreducible

monomial representation of degree 3 there must exist a subgroup, H, of G with index 3

which has a linear character that induces up to CG[16]. We label the classes of 23 : S3

below, and then find the suitable subgroup H. We need to induce a non-trivial linear

character from a subgroup H of G such that |G|
|H| = 2 which is the number of t’s in our

presentation. |G| = 48 therefore we must have |H| = 24. Here, the conjugacy classes of

G are:

C1 = {e}

C2 = {(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24)}

C3 = {(1, 8)(2, 7)(3, 21)(4, 22)(5, 12)(6, 11)(9, 16)(10, 15)(13, 19)(14, 20)(17, 23)(18, 24)}

C4 = {(1, 20)(2, 19)(3, 18)(4, 17)(5, 15)(6, 16)(7, 14)(8, 13)(9, 12)(10, 11)(21, 23)(22, 24)}

C5 = {(1, 2)(3, 11)(4, 12)(5, 21)(6, 22)(9, 18)(10, 17)(13, 14)(15, 24)(16, 23)}

C6 = {(1, 17, 9)(2, 18, 10)(3, 19, 11)(4, 20, 12)(5, 22, 14)(6, 21, 13)(7, 24, 15)(8, 23, 16)}

C7 = {(1, 14, 2, 13)(3, 16, 4, 15)(5, 18, 6, 17)(7, 19, 8, 20)(9, 22, 10, 21)(11, 23, 12, 24)}

C8 = {(1, 13, 2, 14)(3, 15, 4, 16)(5, 17, 6, 18)(7, 20, 8, 19)(9, 21, 10, 22)(11, 24, 12, 23)}

C9 = {(1, 20, 2, 19)(3, 9, 4, 10)(5, 24, 6, 23)(7, 13, 8, 14)(11, 17, 12, 18)(15, 21, 16, 22)}

C10 = {(1, 6, 2, 5)(3, 16, 4, 15)(7, 11, 8, 12)(9, 21, 10, 22)(13, 18, 14, 17)(19, 23, 20, 24)}

C11 = {(1, 24, 2, 23)(3, 21, 4, 22)(5, 19, 6, 20)(7, 18, 8, 17)(9, 15, 10, 16)(11, 13, 12, 14)}

C12 = {(1, 16, 17, 8, 9, 23)(2, 15, 18, 7, 10, 24)(3, 6, 19, 21, 11, 13)(4, 5, 20, 22, 12, 14)}

C13 = {(1, 23, 9, 8, 17, 16)(2, 24, 10, 7, 18, 15)(3, 13, 11, 21, 19, 6)(4, 14, 12, 22, 20, 5)}

C14 = {(1, 18, 9, 2, 17, 10)(3, 20, 11, 4, 19, 12)(5, 21, 14, 6, 22, 13)(7, 23, 15, 8, 24, 16)}
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C15 = {(1, 21, 18, 14, 9, 6, 2, 22, 17, 13, 10, 5)(3, 24, 20, 16, 11, 7, 4, 23, 19, 15, 12, 8)}

C16 = {(1, 22, 18, 13, 9, 5, 2, 21, 17, 14, 10, 6)(3, 23, 20, 15, 11, 8, 4, 24, 19, 16, 12, 7)}

C17 = {(1, 11, 10, 20, 17, 3, 2, 12, 9, 19, 18, 4)(5, 16, 13, 24, 22, 8, 6, 15, 14, 23, 21, 7)}

C18 = {(1, 3, 18, 20, 9, 11, 2, 4, 17, 19, 10, 12)(5, 8, 21, 24, 14, 16, 6, 7, 22, 23, 13, 15)}

Consider the subgroup H of G given below.

H = <(1, 20, 2, 19)(3, 9, 4, 10)(5, 24, 6, 23)

(7, 13, 8, 14)(11, 17, 12, 18)(15, 21, 16, 22)

(1, 16, 17, 8, 9, 23)(2, 15, 18, 7, 10, 24)

(3, 6, 19, 21, 11, 13)(4, 5, 20,22, 12, 14)

(1, 10, 17, 2, 9, 18)(3, 12, 19, 4, 11, 20)

(5, 13, 22, 6, 14, 21)(7, 16, 24,8, 15, 23)

(1, 17, 9)(2, 18, 10)(3, 19, 11)(4, 20, 12)

(5, 22, 14)(6, 21, 13)(7, 24,15)(8, 23, 16)>

The conjugacy classes of H are

D1 = {Id(H)}

D2 = {(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24)}

D3 = {(1, 8)(2, 7)(3, 21)(4, 22)(5, 12)(6, 11)(9, 16)(10, 15)(13, 19)(14, 20)(17, 23)(18, 24)}

D4 = {(1, 7)(2, 8)(3, 22)(4, 21)(5, 11)(6, 12)(9, 15)(10, 16)(13, 20)(14, 19)(17, 24)(18, 23)}

D5 = {(1, 17, 9)(2, 18, 10)(3, 19, 11)(4, 20, 12)(5, 22, 14)(6, 21, 13)(7, 24, 15)(8, 23, 16)}

D6 = {(1, 9, 17)(2, 10, 18)(3, 11, 19)(4, 12, 20)(5, 14, 22)(6, 13, 21)(7, 15, 24)(8, 16, 23)}

D7 = {(1, 20, 2, 19)(3, 9, 4, 10)(5, 24, 6, 23)(7, 13, 8, 14)(11, 17, 12, 18)(15, 21, 16, 22)}

D8 = {(1, 19, 2, 20)(3, 10, 4, 9)(5, 23, 6, 24)(7, 14, 8, 13)(11, 18, 12, 17)(15, 22, 16, 21)}

D9 = {(1, 13, 2, 14)(3, 15, 4, 16)(5, 17, 6, 18)(7, 20, 8, 19)(9, 21, 10, 22)(11, 24, 12, 23)}

D10 = {(1, 14, 2, 13)(3, 16, 4, 15)(5, 18, 6, 17)(7, 19, 8, 20)(9, 22, 10, 21)(11, 23, 12, 24)}

D11 = {(1, 16, 17, 8, 9, 23)(2, 15, 18, 7, 10, 24)(3, 6, 19, 21, 11, 13)(4, 5, 20, 22, 12, 14)}
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D12 = {(1, 23, 9, 8, 17, 16)(2, 24, 10, 7, 18, 15)(3, 13, 11, 21, 19, 6)(4, 14, 12, 22, 20, 5)}

D13 = {(1, 10, 17, 2, 9, 18)(3, 12, 19, 4, 11, 20)(5, 13, 22, 6, 14, 21)(7, 16, 24, 8, 15, 23)}

D14 = {(1, 18, 9, 2, 17, 10)(3, 20, 11, 4, 19, 12)(5, 21, 14, 6, 22, 13)(7, 23, 15, 8, 24, 16)}

D15 = {(1, 24, 9, 7, 17, 15)(2, 23, 10, 8, 18, 16)(3, 14, 11, 22, 19, 5)(4, 13, 12, 21, 20, 6)}

D16 = {(1, 15, 17, 7, 9, 24)(2, 16, 18, 8, 10, 23)(3, 5, 19, 22, 11, 14)(4, 6, 20, 21, 12, 13)}

D17 = {(1, 22, 18, 13, 9, 5, 2, 21, 17, 14, 10, 6)(3, 23, 20, 15, 11, 8, 4, 24, 19, 16, 12, 7)}

D18 = {(1, 5, 10, 13, 17, 22, 2, 6, 9, 14, 18, 21)(3, 8, 12, 15, 19, 23, 4, 7, 11, 16, 20, 24)}

D19 = {(1, 21, 18, 14, 9, 6, 2, 22, 17, 13, 10, 5)(3, 24, 20, 16, 11, 7, 4, 23, 19, 15, 12, 8)}

D20 = {(1, 6, 10, 14, 17, 21, 2, 5, 9, 13, 18, 22)(3, 7, 12, 16, 19, 24, 4, 8, 11, 15, 20, 23)}

D21 = {(1, 3, 18, 20, 9, 11, 2, 4, 17, 19, 10, 12)(5, 8, 21, 24, 14, 16, 6, 7, 22, 23, 13, 15)}

D22 = {(1, 11, 10, 20, 17, 3, 2, 12, 9, 19, 18, 4)(5, 16, 13, 24, 22, 8, 6, 15, 14, 23, 21, 7)}

D23 = {(1, 4, 18, 19, 9, 12, 2, 3, 17, 20, 10, 11)(5, 7, 21, 23, 14, 15, 6, 8, 22, 24, 13, 16)}

D24 = {(1, 12, 10, 19, 17, 4, 2, 11, 9, 20, 18, 3)(5, 15, 13, 23, 22, 7, 6, 16, 14, 24, 21, 8)}

We verify. Induction(CH[15],G) eq CG[16];

true



293

We know that the character table of H is given by

Character Table of Group H

--------------------------

-------------------------------------------------------------------------------

Class | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Size | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Order | 1 2 2 2 3 3 4 4 4 4 6 6 6 6 6 6 12 12 12

-------------------------------------------------------------------------------

p = 2 1 1 1 1 6 5 2 2 2 2 5 6 5 6 6 5 14 13 14

p = 3 1 2 3 4 1 1 8 7 10 9 3 3 2 2 4 4 9 9 10

-------------------------------------------------------------------------------

X.1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X.2 + 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1

X.3 0 1 -1 -1 1 1 1 -I I -I I -1 -1 -1 -1 1 1 I I -I

X.4 0 1 -1 1 -1 1 1 I -I -I I 1 1 -1 -1 -1 -1 I I -I

X.5 + 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1

X.6 + 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1

X.7 0 1 -1 -1 1 1 1 I -I I -I -1 -1 -1 -1 1 1 -I -I I

X.8 0 1 -1 1 -1 1 1 -I I I -I 1 1 -1 -1 -1 -1 -I -I I

X.9 0 1 1 1 1 J-1-J 1 1 1 1-1-J J-1-J J J-1-J -1-J J -1-J

X.10 0 1 1 -1 -1 J-1-J -1 -1 1 1 1+J -J-1-J J -J 1+J -1-J J -1-J

X.11 0 1 -1 -1 1 J-1-J -I I -I I 1+J -J 1+J -J J-1-J Z1 Z1#5 -Z1

X.12 0 1 -1 1 -1 J-1-J I -I -I I-1-J J 1+J -J -J 1+J Z1 Z1#5 -Z1

X.13 0 1 1 1 1 J-1-J -1 -1 -1 -1-1-J J-1-J J J-1-J 1+J -J 1+J

X.14 0 1 1 -1 -1 J-1-J 1 1 -1 -1 1+J -J-1-J J -J 1+J 1+J -J 1+J

X.15 0 1 -1 -1 1 J-1-J I -I I -I 1+J -J 1+J -J J-1-J -Z1-Z1#5 Z1

X.16 0 1 -1 1 -1 J-1-J -I I I -I-1-J J 1+J -J -J 1+J -Z1-Z1#5 Z1

X.17 0 1 1 1 1-1-J J 1 1 1 1 J-1-J J-1-J-1-J J J -1-J J

X.18 0 1 1 -1 -1-1-J J -1 -1 1 1 -J 1+J J-1-J 1+J -J J -1-J J

X.19 0 1 -1 -1 1-1-J J -I I -I I -J 1+J -J 1+J-1-J J Z1#5 Z1-Z1#5

X.20 0 1 -1 1 -1-1-J J I -I -I I J-1-J -J 1+J 1+J -J Z1#5 Z1-Z1#5

X.21 0 1 1 1 1-1-J J -1 -1 -1 -1 J-1-J J-1-J-1-J J -J 1+J -J

X.22 0 1 1 -1 -1-1-J J 1 1 -1 -1 -J 1+J J-1-J 1+J -J -J 1+J -J

X.23 0 1 -1 -1 1-1-J J I -I I -I -J 1+J -J 1+J-1-J J-Z1#5 -Z1 Z1#5

X.24 0 1 -1 1 -1-1-J J -I I I -I J-1-J -J 1+J 1+J -J-Z1#5 -Z1 Z1#5

----------------------------------

Class | 20 21 22 23 24

Size | 1 1 1 1 1
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Order | 12 12 12 12 12

----------------------------------

p = 2 13 14 13 14 13

p = 3 10 7 7 8 8

----------------------------------

X.1 + 1 1 1 1 1

X.2 + 1 -1 -1 -1 -1

X.3 0 -I I I -I -I

X.4 0 -I -I -I I I

X.5 + -1 -1 -1 -1 -1

X.6 + -1 1 1 1 1

X.7 0 I -I -I I I

X.8 0 I I I -I -I

X.9 0 J -1-J J -1-J J

X.10 0 J 1+J -J 1+J -J

X.11 0 -Z1#5 Z1 Z1#5 -Z1-Z1#5

X.12 0 -Z1#5 -Z1-Z1#5 Z1 Z1#5

X.13 0 -J 1+J -J 1+J -J

X.14 0 -J -1-J J -1-J J

X.15 0 Z1#5 -Z1-Z1#5 Z1 Z1#5

X.16 0 Z1#5 Z1 Z1#5 -Z1-Z1#5

X.17 0 -1-J J -1-J J -1-J

X.18 0 -1-J -J 1+J -J 1+J

X.19 0 -Z1 Z1#5 Z1-Z1#5 -Z1

X.20 0 -Z1-Z1#5 -Z1 Z1#5 Z1

X.21 0 1+J -J 1+J -J 1+J

X.22 0 1+J J -1-J J -1-J

X.23 0 Z1-Z1#5 -Z1 Z1#5 Z1

X.24 0 Z1 Z1#5 Z1-Z1#5 -Z1

We verify by hand that we have a monomial representation of 23 : S3 by inducing CH[15]

up to CG[16]. Consider the irreducible character ϕ of H and ϕG of G given below.
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Irreducible Character of ϕ

Class Size Representation ϕ

D1 1 Id(H) 1

D2 1 (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24) −1

D3 1 (1, 8)(2, 7)(3, 21)(4, 22)(5, 12)(6, 11)(9, 16)(10, 15)(13, 19)(14, 20)(17, 23)(18, 24) −1

D4 1 (1, 7)(2, 8)(3, 22)(4, 21)(5, 11)(6, 12)(9, 15)(10, 16)(13, 20)(14, 19)(17, 24)(18, 23) 1

D5 1 (1, 17, 9)(2, 18, 10)(3, 19, 11)(4, 20, 12)(5, 22, 14)(6, 21, 13)(7, 24, 15)(8, 23, 16) 3

D6 1 (1, 9, 17)(2, 10, 18)(3, 11, 19)(4, 12, 20)(5, 14, 22)(6, 13, 21)(7, 15, 24)(8, 16, 23) 33

D7 1 (1, 20, 2, 19)(3, 9, 4, 10)(5, 24, 6, 23)(7, 13, 8, 14)(11, 17, 12, 18)(15, 21, 16, 22) 9

D8 1 (1, 19, 2, 20)(3, 10, 4, 9)(5, 23, 6, 24)(7, 14, 8, 13)(11, 18, 12, 17)(15, 22, 16, 21) 28

D9 1 (1, 13, 2, 14)(3, 15, 4, 16)(5, 17, 6, 18)(7, 20, 8, 19)(9, 21, 10, 22)(11, 24, 12, 23) 9

D10 1 (1, 14, 2, 13)(3, 16, 4, 15)(5, 18, 6, 17)(7, 19, 8, 20)(9, 22, 10, 21)(11, 23, 12, 24) 28

D11 1 (1, 16, 17, 8, 9, 23)(2, 15, 18, 7, 10, 24)(3, 6, 19, 21, 11, 13)(4, 5, 20, 22, 12, 14) 4

D12 1 (1, 23, 9, 8, 17, 16)(2, 24, 10, 7, 18, 15)(3, 13, 11, 21, 19, 6)(4, 14, 12, 22, 20, 5) 34

D13 1 (1, 10, 17, 2, 9, 18)(3, 12, 19, 4, 11, 20)(5, 13, 22, 6, 14, 21)(7, 16, 24, 8, 15, 23) 4

D14 1 (1, 18, 9, 2, 17, 10)(3, 20, 11, 4, 19, 12)(5, 21, 14, 6, 22, 13)(7, 23, 15, 8, 24, 16) 34

D15 1 (1, 24, 9, 7, 17, 15)(2, 23, 10, 8, 18, 16)(3, 14, 11, 22, 19, 5)(4, 13, 12, 21, 20, 6) 3

D16 1 (1, 15, 17, 7, 9, 24)(2, 16, 18, 8, 10, 23)(3, 5, 19, 22, 11, 14)(4, 6, 20, 21, 12, 13) 33

D17 1 (1, 22, 18, 13, 9, 5, 2, 21, 17, 14, 10, 6)(3, 23, 20, 15, 11, 8, 4, 24, 19, 16, 12, 7) 1

D18 1 (1, 5, 10, 13, 17, 22, 2, 6, 9, 14, 18, 21)(3, 8, 12, 15, 19, 23, 4, 7, 11, 16, 20, 24) 10

D19 1 (1, 21, 18, 14, 9, 6, 2, 22, 17, 13, 10, 5)(3, 24, 20, 16, 11, 7, 4, 23, 19, 15, 12, 8) 1

D20 1 (1, 6, 10, 14, 17, 21, 2, 5, 9, 13, 18, 22)(3, 7, 12, 16, 19, 24, 4, 8, 11, 15, 20, 23) 27

D21 1 (1, 3, 18, 20, 9, 11, 2, 4, 17, 19, 10, 12)(5, 8, 21, 24, 14, 16, 6, 7, 22, 23, 13, 15) 36

D22 1 (1, 11, 10, 20, 17, 3, 2, 12, 9, 19, 18, 4)(5, 16, 13, 24, 22, 8, 6, 15, 14, 23, 21, 7) 10

D23 1 (1, 4, 18, 19, 9, 12, 2, 3, 17, 20, 10, 11)(5, 7, 21, 23, 14, 15, 6, 8, 22, 24, 13, 16) 1

D24 1 (1, 12, 10, 19, 17, 4, 2, 11, 9, 20, 18, 3)(5, 15, 13, 23, 22, 7, 6, 16, 14, 24, 21, 8) 27

Table 9.1: Irreducible Character of ϕ

We now induce the character ϕ of H up to G to obtain the character ϕG of G, ϕ ↑GH
Using

ϕ ↑Gα=
n

hα

∑
w∈Cα∩H

= ϕ(w)
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where n = |G|
|H| =

24
12 = 2

ϕ ↑G1 =
n

hα

∑
w∈C1∩H

= 2(ϕId(H)) = 2(1) = 2

ϕ ↑G2 =
n

hα

∑
w∈C2∩H

=
2

1
(ϕ(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24))

= (2)(−1) = −2

ϕ ↑G3 =
n

hα

∑
w∈C3∩H

=
2

2
(ϕ(1, 8)(2, 7)(3, 21)(4, 22)(5, 12)(6, 11)(9, 16)(10, 15)(13, 19)(14, 20)(17, 23)(18, 24))

= (1)(−1) = −1

ϕ ↑G4 =
n

hα

∑
w∈C4∩H

=
2

6
(ϕ(1, 7)(2, 8)(3, 22)(4, 21)(5, 11)(6, 12)(9, 15)(10, 16)(13, 20)(14, 19)(17, 24)(18, 23))

= 1
3(1) =

1
3

ϕ ↑G5 =
n

hα

∑
w∈C5∩H

=
2

6
(ϕ(1, 17, 9)(2, 18, 10)(3, 19, 11)(4, 20, 12)(5, 22, 14)(6, 21, 13)(7, 24, 15)(8, 23, 16))

= 1
3(3) = 1

ϕ ↑G6 =
n

hα

∑
w∈C6∩H

=
2

2
(ϕ(1, 9, 17)(2, 10, 18)(3, 11, 19)(4, 12, 20)(5, 14, 22)(6, 13, 21)(7, 15, 24)(8, 16, 23))

= (1)(33) = 33

ϕ ↑G7 =
n

hα

∑
w∈C7∩H

=
2

1
(ϕ(1, 20, 2, 19)(3, 9, 4, 10)(5, 24, 6, 23)(7, 13, 8, 14)(11, 17, 12, 18)(15, 21, 16, 22))

= (2)(9) = 18

ϕ ↑G8 =
n

hα

∑
w∈C8∩H

=
2

1
(ϕ(1, 19, 2, 20)(3, 10, 4, 9)(5, 23, 6, 24)(7, 14, 8, 13)(11, 18, 12, 17)(15, 22, 16, 21))

= (2)(28) = 56 = 19

ϕ ↑G9 =
n

hα

∑
w∈C9∩H

=
2

2
(ϕ(1, 13, 2, 14)(3, 15, 4, 16)(5, 17, 6, 18)(7, 20, 8, 19)(9, 21, 10, 22)(11, 24, 12, 23))



297

= (1)(9) = 9

ϕ ↑G10=
n

hα

∑
w∈C10∩H

=
2

6
(ϕ(1, 14, 2, 13)(3, 16, 4, 15)(5, 18, 6, 17)(7, 19, 8, 20)(9, 22, 10, 21)(11, 23, 12, 24))

= 1
3(28) =

28
3

ϕ ↑G11=
n

hα

∑
w∈C11∩H

=
2

6
(ϕ(1, 16, 17, 8, 9, 23)(2, 15, 18, 7, 10, 24)(3, 6, 19, 21, 11, 13)(4, 5, 20, 22, 12, 14))

= 1
3(4) =

4
3

ϕ ↑G12=
n

hα

∑
w∈C12∩H

=
2

2
(ϕ(1, 23, 9, 8, 17, 16)(2, 24, 10, 7, 18, 15)(3, 13, 11, 21, 19, 6)(4, 14, 12, 22, 20, 5))

= (1)(34) = 34

ϕ ↑G13=
n

hα

∑
w∈C13∩H

=
2

2
(ϕ(1, 10, 17, 2, 9, 18)(3, 12, 19, 4, 11, 20)(5, 13, 22, 6, 14, 21)(7, 16, 24, 8, 15, 23))

= (1)(4) = 4

ϕ ↑G14=
n

hα

∑
w∈C14∩H

=
2

2
(ϕ(1, 18, 9, 2, 17, 10)(3, 20, 11, 4, 19, 12)(5, 21, 14, 6, 22, 13)(7, 23, 15, 8, 24, 16))

= (1)(34) = 34

ϕ ↑G15=
n

hα

∑
w∈C15∩H

=
2

2
(ϕ(1, 24, 9, 7, 17, 15)(2, 23, 10, 8, 18, 16)(3, 14, 11, 22, 19, 5)(4, 13, 12, 21, 20, 6))

= (1)(3) = 3

ϕ ↑G16=
n

hα

∑
w∈C16∩H

=
2

2
(ϕ(1, 15, 17, 7, 9, 24)(2, 16, 18, 8, 10, 23)(3, 5, 19, 22, 11, 14)(4, 6, 20, 21, 12, 13))

= (1)(33) = 33

ϕ ↑G17=
n

hα

∑
w∈C17∩H

=
2

2
(ϕ(1, 22, 18, 13, 9, 5, 2, 21, 17, 14, 10, 6)(3, 23, 20, 15, 11, 8, 4, 24, 19, 16, 12, 7))

= (1)(1) = 1

ϕ ↑G18=
n

hα

∑
w∈C18∩H

=
2

2
(ϕ(1, 5, 10, 13, 17, 22, 2, 6, 9, 14, 18, 21)(3, 8, 12, 15, 19, 23, 4, 7, 11, 16, 20, 24))
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= (1)(10) = 10

CH[15];

( 1, -1, -1, 1, zeta(12)_3, -zeta(12)_3 - 1,

zeta(12)_4, -zeta(12)_4,zeta(12)_4, -zeta(12)_4,

zeta(12)_3 + 1, zeta(12)_3, zeta(12)_3 + 1,

-zeta(12)_3, zeta(12)_3, -zeta(12)_3 - 1,

zeta(12)_4*zeta(12)_3 + zeta(12)_4, -zeta(12)_4*zeta(12)_3,

-zeta(12)_4*zeta(12)_3 - zeta(12)_4,

zeta(12)_4*zeta(12)_3, zeta(12)_4*zeta(12)_3 + zeta(12)_4,

-zeta(12)_4*zeta(12)_3, -zeta(12)_4*zeta(12)_3 - zeta(12)_4,

zeta(12)_4*zeta(12)_3 )

*/

CG[16];

( 2, -2, 0, 0, 0, -1, -2*zeta(12)_4, 2*zeta(12)_4, 0, 0, 0,

2*zeta(12)_3 + 1, -2*zeta(12)_3 - 1, 1, -zeta(12)_4, zeta(12)_4,

-2*zeta(12)_4*zeta(12)_3 -zeta(12)_4,

2*zeta(12)_4*zeta(12)_3 + zeta(12)_4 )

Thus, CH[15] ↑GH= CG[16]. This ensures that our group has a faithful irreducible mono-

mial representation.

We now find an irreducible monomial representation of 23 : S3. From Magma, we can

find the transversals of G and H. Note that the number of transversals equals the order

of G divided by the order of H. Below is the code:

T:=Transversal(G,H);

#T;

2

T;

{}Id(G),(1, 20)(2, 19)(3, 18)(4, 17)(5, 15)(6, 16)(7, 14)

(8, 13)(9, 12)(10, 11)(21, 23)(22, 24)}

So, G = He∪H((1, 20)(2, 19)(3, 18)(4, 17)(5, 15)(6, 16)(7, 14)(8, 13)(9, 12)(10, 11)(21, 23)(22, 24)

Let t1 = e, t2 = (1, 20)(2, 19)(3, 18)(4, 17)(5, 15)(6, 16)(7, 14)(8, 13)(9, 12)(10, 11)(21, 23)(22, 24

Then,

A(xx) =

ϕ(t1xxt−1
1 ϕ(t1xxt

−1
2

ϕ(t2xxt
−1
1 ϕ(t2xxt

−1
2

 =

27 0

0 26
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A(yy) =

ϕ(t1yyt−1
1 ϕ(t1yyt

−1
2

ϕ(t2yyt
−1
1 ϕ(t2yyt

−1
2

 =

0 1

1 0


A(zz) =

ϕ(t1zzt−1
1 ϕ(t1zzt

−1
2

ϕ(t2zzt
−1
1 ϕ(t2zzt

−1
2

 =

14 0

0 29


Let us now verify if this representation is faithful.

IsIsomorphic(G,sub<GG|GG!A,GG!B,GG!D>);

true

Hence ⟨A(xx), A(yy), A(zz)⟩ is a faithful monomial representation of 23 : 3.

We aim to write a monomial progenitor for 23 : 3. We first need to find a permutation

representation using the field order and the degree of representation. By Euler’s Formula,

the primitive square root of unity is e
i2π
2 = cos(2π2 ) + isin(2π2 ) = cos(π) + isin(π) = −1

The field order will be the smallest finite field that has square roots of unity. This will

be a cyclic group of order p − 1 where 2|p − 1. So the field order will be Z2. Since the

dimension of A(xx), A(yy) and A(zz) is 2, then the degree of the representation is 2.

Thus the monomial progenitor is 32 :m (23 : 3). We will use the matrices we created in

order to label the automorphisms of ti’s.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

t1 t2 t21 t22 t31 t32 t41 t42 t51 t52 t61 t62 t71 t72 t81 t82 t91 t92 t101 t102 t111 t112 t121 t122

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t271 t262 t171 t152 t71 t42 t341 t302 t241 t192 t141 t82 t41 t342 t311 t232 t211 t122 t111 t2 t1 t272 t281 t162

53 52 33 30 13 8 67 60 47 38 27 16 7 68 61 46 41 24 21 2 1 54 55 32

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

t131 t132 t141 t142 t151 t152 t161 t162 t171 t172 t181 t182 t191 t192 t201 t202 t211 t212 t221 t222 t231 t232 t241 t242

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t181 t52 t81 t312 t351 t202 t251 t92 t151 t352 t51 t242 t321 t132 t221 t22 t121 t282 t21 t172 t291 t62 t191 t322

32 35 10 15 62 69 40 49 18 29 70 9 48 63 26 43 4 23 56 3 34 57 12 37

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

t251 t252 t261 t262 t271 t272 t281 t282 t291 t292 t301 t302 t311 t312 t321 t322 t331 t332 t341 t342 t351 t352 t361 t362

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t91 t212 t361 t102 t261 t362 t161 t252 t61 t142 t331 t32 t231 t292 t131 t182 t31 t72 t301 t332 t201 t222 t101 t112

17 42 71 20 51 72 31 50 11 28 65 6 45 58 25 36 5 14 59 66 39 44 19 22



300

Thus,

xx : (1, 53, 51, 71, 19, 21)(2, 52, 20)(3, 33, 29, 69, 39, 43)(4, 30, 40)

(5, 13, 7, 67, 59, 65)(6, 8, 60)(9, 47, 37, 63, 25, 35)(10, 38, 26)

(11, 27, 15, 61, 45, 57)(12, 16, 46)(14, 68, 66)(17, 41, 23, 55, 31, 49)

(18, 24, 32)(22, 54, 72)(36, 48, 64)(28, 62, 58)(42, 56, 50)(44, 34, 70)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

t1 t2 t21 t22 t31 t32 t41 t42 t51 t52 t61 t62 t71 t72 t81 t82 t91 t92 t101 t102 t111 t112 t121 t122

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t2 t1 t22 t21 t32 t31 t42 t41 t52 t51 t62 t61 t72 t71 t82 t81 t92 t91 t102 t101 t112 t111 t122 t121

2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

t131 t132 t141 t142 t151 t152 t161 t162 t171 t172 t181 t182 t191 t192 t201 t202 t211 t212 t221 t222 t231 t232 t241 t242

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t132 t131 t142 t141 t152 t151 t162 t161 t172 t171 t182 t181 t192 t191 t202 t201 t212 t211 t222 t221 t232 t231 t242 t241

26 25 28 27 30 29 32 31 34 32 36 35 38 37 40 39 42 41 44 43 46 45 48 47

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

t251 t252 t261 t262 t271 t272 t281 t282 t291 t292 t301 t302 t311 t312 t321 t322 t331 t332 t341 t342 t351 t352 t361 t362

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t252 t251 t262 t261 t272 t271 t282 t281 t292 t291 t302 t301 t312 t311 t322 t321 t332 t331 t342 t341 t352 t351 t362 t361

50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71

Thus,

yy : (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)

(21, 22)(23, 24)(25, 26)(27, 28)(29, 30)(31, 32)(33, 34)

(35, 36)(37, 38)(39, 40)(41, 42)(43, 44)(45, 46)(47, 48)(49, 50)

(51, 52)(53, 54)(55, 56)(57, 58)(59, 60)(61, 62)(63, 64)(65, 66)(67, 68)(69, 70)(71, 72)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

t1 t2 t21 t22 t31 t32 t41 t42 t51 t52 t61 t62 t71 t72 t81 t82 t91 t92 t101 t102 t111 t112 t121 t122

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t141 t292 t281 t212 t51 t132 t191 t52 t331 t342 t101 t262 t241 t182 t1 t102 t151 t22 t291 t312 t61 t232 t201 t152

27 58 55 42 9 26 37 10 65 68 19 52 47 36 1 20 29 4 57 62 11 46 39 30

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

t131 t132 t141 t142 t151 t152 t161 t162 t171 t172 t181 t182 t191 t192 t201 t202 t211 t212 t221 t222 t231 t232 t241 t242

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t341 t72 t111 t362 t251 t282 t21 t202 t161 t122 t301 t42 t71 t332 t211 t252 t351 t172 t121 t92 t261 t2 t31 t302

67 14 21 72 49 56 3 40 31 24 59 8 13 66 41 50 69 34 23 18 51 2 5 60

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

t251 t252 t261 t262 t271 t272 t281 t282 t291 t292 t301 t302 t311 t312 t321 t322 t331 t332 t341 t342 t351 t352 t361 t362

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t171 t222 t311 t142 t81 t62 t221 t352 t361 t272 t131 t192 t271 t112 t41 t32 t181 t322 t321 t242 t91 t162 t231 t82

33 44 61 28 15 12 43 70 71 54 25 38 53 22 7 6 35 64 63 48 17 32 45 16

Thus,

zz : (1, 27, 21, 11, 19, 57, 71, 45, 51, 61, 53, 15)

(2, 58, 54, 12, 52, 28, 72, 16, 20, 62, 22, 46)

(3, 55, 43, 23, 39, 41, 69, 17, 29, 49, 33, 31)

(4, 42, 34, 24, 30, 56, 70, 32, 40, 50, 44, 18)

(5, 9, 65, 35, 59, 25, 67, 63, 7, 37, 13, 47)

(6, 26, 14, 36, 8, 10, 68, 48, 60, 38, 66, 64)

We need to verify that this permutation representation is faithful.

S:=Sym(72);

xx:= S!(1,53,51,71,19,21)(2,52,20)(3,33,29,69,39,43)(4,30,40)

(5,13,7,67,59,65)(6,8,60) (9,47,37,63,25,35)(10,38,26)

(11,27,15,61,45,57)(12,16,46)(14,68,66)(17,41,23,55,31,49)

(18,24,32)(22,54,72)(36,48,64)(28,62,58)(42,56,50)(44,34,70);

yy:= S!(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)

(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)

(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)

(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)

(59,60)(61,62)(63,64)(65,66)(67,68)(69,70)(71,72);
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zz:= S!(1,27,21,11,19,57,71,45,51,61,53,15)

(2,58,54,12,52,28,72,16,20,62,22,46)

(3,55,43,23,39,41,69,17,29,49,33,31)

(4,42,34,24,30,56,70,32,40,50,44,18)

(5,9,65,35,59,25,67,63,7,37,13,47)

(6,26,14,36,8,10,68,48,60,38,66,64);

N:=sub<S|xx,yy,zz>;

#N;

/*48*/

IsIsomorphic(G,N);

true

Now, we write the symmetric presentation of the monomial progenitor 32 :m (23 : 3) by

including the presentation of 23 : 3, the order of our t’s, and the Normalizer of < t >.

We got this,

G<x,y,z,t>:=Group<x,y,z,t|y^2, (x, z), x^6,

(x * y * x)^2,

z * y * x^2 * z^-1 * y, z^2 * x^2 * z^2, y * x^-1 * y * x * z^-2, t^37,

t^(x^3)=t^(36), t^(x * z^2 * y * z * y)=t^29>;

We will test our progenitor to see if it is correct by adding first order relation.

G<x,y,z,t>:=Group<x,y,z,t|y^2, (x, z), x^6,

(x * y * x)^2,

z * y * x^2 * z^-1 * y, z^2 * x^2 * z^2, y * x^-1 * y * x * z^-2,

t^37,

t^(x^3)=t^(36), t^(x * z^2 * y * z * y)=t^29,(t,t^y)>;

Index(G,sub<G|x,y,z>);

1369

37^2;

1369

#G;

65712

37^2*48;

65712

Thus, our progenitor is correct.
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9.2 Second Monomial Representations of 37∗2 :m 23 : S3

We are given G, a transitive group on 24 letters, which is generated by

xx ~ (1, 16, 17, 8, 9, 23)(2, 15, 18, 7, 10, 24)

(3, 6, 19, 21, 11, 13)(4, 5, 20, 22, 12, 14).

yy ~ (1, 20)(2, 19)(3, 18)(4, 17)(5, 15)(6, 16)

(7, 14)(8, 13)(9, 12)(10, 11)(21, 23)(22, 24).

zz ~ (1, 21, 18, 14, 9, 6, 2, 22, 17, 13, 10, 5)

(3, 24, 20, 16, 11, 7, 4, 23, 19, 15, 12, 8).

G:=sub<G|xx,yy,zz>;

#G;

48

We will use the information from last section to apply it here. We verify.

Induction(CH[23], G)eqCG[15];

/ ∗ true ∗ /
From Magma, we can find the transversals of G and H. Note that the number of transver-

sals equals the order of G divided by the order of H. Below is the code:

T:=Transversal(G,H);

#T;

2

T;

{Id(G),(1, 20)(2, 19)(3, 18)(4, 17)(5, 15)(6, 16)(7, 14)

(8, 13)(9, 12)(10, 11)(21, 23)(22, 24)}

So, G = He∪H((1, 20)(2, 19)(3, 18)(4, 17)(5, 15)(6, 16)(7, 14)(8, 13)(9, 12)(10, 11)(21, 23)(22, 24)

Let t1 = e, t2 = (1, 20)(2, 19)(3, 18)(4, 17)(5, 15)(6, 16)(7, 14)(8, 13)(9, 12)(10, 11)(21, 23)(22, 24

Then,

A(xx) =

ϕ(t1xxt−1
1 ϕ(t1xxt

−1
2

ϕ(t2xxt
−1
1 ϕ(t2xxt

−1
2

 =

11 0

0 10


A(yy) =

ϕ(t1yyt−1
1 ϕ(t1yyt

−1
2

ϕ(t2yyt
−1
1 ϕ(t2yyt

−1
2

 =

0 1

1 0


A(zz) =

ϕ(t1zzt−1
1 ϕ(t1zzt

−1
2

ϕ(t2zzt
−1
1 ϕ(t2zzt

−1
2

 =

29 0

0 14
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Let us now verify if this representation is faithful.

IsIsomorphic(G,sub<GG|GG!A,GG!B,GG!D>);

true

Hence ⟨A(xx), A(yy), A(zz)⟩ is a faithful monomial representation of 23 : S3.

We aim to write a monomial progenitor for 23 : S3. We first need to find a permutation

representation using the field order and the degree of representation. By Euler’s Formula,

the primitive square root of unity is e
i2π
2 = cos(2π2 ) + isin(2π2 ) = cos(π) + isin(π) = −1

The field order will be the finite field that has square roots of unity. This will be a cyclic

group of order p − 1 where 2|p − 1. So the field order will be Z2. Since the dimension

of A(xx), A(yy) and A(zz) is 2, then the degree of the representation is 2. Thus the

monomial progenitor is 32 :m (23 : S3). We will use the matrices we created in order to

label the automorphisms of ti’s.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

t1 t2 t21 t22 t31 t32 t41 t42 t51 t52 t61 t62 t71 t72 t81 t82 t91 t92 t101 t102 t111 t112 t121 t122

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t111 t102 t221 t202 t331 t302 t71 t32 t181 t132 t291 t232 t31 t332 t141 t62 t251 t162 t361 t262 t101 t362 t211 t92

21 20 43 40 65 60 13 6 35 26 57 46 5 66 27 12 49 32 71 52 19 72 41 18

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

t131 t132 t141 t142 t151 t152 t161 t162 t171 t172 t181 t182 t191 t192 t201 t202 t211 t212 t221 t222 t231 t232 t241 t242

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t321 t192 t61 t292 t171 t22 t281 t122 t21 t222 t131 t322 t241 t52 t351 t152 t91 t252 t201 t352 t311 t82 t51 t182

63 38 11 58 33 4 55 24 3 44 25 64 47 10 69 30 17 50 39 70 61 16 9 36

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

t251 t252 t261 t262 t271 t272 t281 t282 t291 t292 t301 t302 t311 t312 t321 t322 t331 t332 t341 t342 t351 t352 t361 t362

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t161 t282 t271 t2 t1 t112 t121 t212 t231 t312 t341 t42 t81 t142 t191 t242 t301 t342 t41 t72 t151 t172 t261 t272

31 56 53 2 1 22 23 42 45 62 67 8 15 28 37 48 59 68 7 14 29 34 51 54

Thus,

xx : (1, 21, 19, 71, 51, 53)(2, 20, 52)(3, 43, 39, 69, 29, 33)(4, 40, 30)

(5, 65, 59, 67, 7, 13)(6, 60, 8)(9, 35, 25, 63, 37, 47)(10, 26, 38)(11, 57, 45, 61, 15, 27)

(12, 46, 16)(14, 66, 68)(17, 49, 31, 55, 23, 41)(18, 32, 24)
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(22, 72, 54)(28, 58, 62)(34, 44, 70)(36, 64, 48)(42, 50, 56)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

t1 t2 t21 t22 t31 t32 t41 t42 t51 t52 t61 t62 t71 t72 t81 t82 t91 t92 t101 t102 t111 t112 t121 t122

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t2 t1 t22 t21 t32 t31 t42 t41 t52 t51 t62 t61 t72 t71 t82 t81 t92 t91 t102 t101 t112 t111 t122 t121

2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

t131 t132 t141 t142 t151 t152 t161 t162 t171 t172 t181 t182 t191 t192 t201 t202 t211 t212 t221 t222 t231 t232 t241 t242

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t132 t131 t142 t141 t152 t151 t162 t161 t172 t171 t182 t181 t192 t191 t202 t201 t212 t211 t222 t221 t232 t231 t242 t241

26 25 28 27 30 29 32 31 34 32 36 35 38 37 40 39 42 41 44 43 46 45 48 47

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

t251 t252 t261 t262 t271 t272 t281 t282 t291 t292 t301 t302 t311 t312 t321 t322 t331 t332 t341 t342 t351 t352 t361 t362

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t252 t251 t262 t261 t272 t271 t282 t281 t292 t291 t302 t301 t312 t311 t322 t321 t332 t331 t342 t341 t352 t351 t362 t361

50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71

Thus,

yy : (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)

(21, 22)(23, 24)(25, 26)(27, 28)(29, 30)(31, 32)(33, 34)

(35, 36)(37, 38)(39, 40)(41, 42)(43, 44)(45, 46)(47, 48)(49, 50)

(51, 52)(53, 54)(55, 56)(57, 58)(59, 60)(61, 62)(63, 64)(65, 66)(67, 68)(69, 70)(71, 72)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

t1 t2 t21 t22 t31 t32 t41 t42 t51 t52 t61 t62 t71 t72 t81 t82 t91 t92 t101 t102 t111 t112 t121 t122

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t291 t142 t211 t282 t131 t52 t51 t192 t341 t332 t261 t102 t181 t242 t101 t2 t21 t152 t311 t292 t231 t62 t151 t202

57 28 41 56 25 10 9 38 67 66 51 20 35 48 19 2 3 30 61 58 45 12 29 40

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

t131 t132 t141 t142 t151 t152 t161 t162 t171 t172 t181 t182 t191 t192 t201 t202 t211 t212 t221 t222 t231 t232 t241 t242

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t71 t342 t361 t112 t281 t252 t201 t22 t121 t162 t41 t302 t331 t72 t251 t212 t171 t352 t91 t122 t1 t262 t301 t32

13 68 71 22 55 50 39 4 23 32 7 60 65 14 49 42 33 70 17 24 1 52 59 6

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

t251 t252 t261 t262 t271 t272 t281 t282 t291 t292 t301 t302 t311 t312 t321 t322 t331 t332 t341 t342 t351 t352 t361 t362

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t221 t172 t141 t312 t61 t82 t351 t222 t271 t362 t191 t132 t111 t272 t31 t42 t321 t182 t241 t322 t161 t92 t81 t232

43 34 27 62 11 16 69 44 53 72 37 26 21 54 5 8 63 36 47 64 31 18 15 46

Thus,

zz : (1, 57, 53, 11, 51, 27, 71, 15, 19, 61, 21, 45)

(2, 28, 22, 12, 20, 58, 72, 46, 52, 62, 54, 16)

(3, 41, 33, 23, 29, 55, 69, 31, 39, 49, 43, 17)

(4, 56, 44, 24, 40, 42, 70, 18, 30, 50, 34, 32)

(5, 25, 13, 35, 7, 9, 67, 47, 59, 37, 65, 63)

(6, 10, 66, 36, 60, 26, 68, 64, 8, 38, 14, 48)

We need to verify that this permutation representation is faithful.

S:=Sym(72);

xx:= S!(1,21,19,71,51,53)(2,20,52)(3,43,39,69,29,33)

(4,40,30)(5,65,59,67,7,13)(6,60,8)(9,35,25,63,37,47)

(10,26,38)(11,57,45,61,15,27)(12,46,16)(14,66,68)

(17,49,31,55,23,41)(18,32,24)(22,72,54)(28,58,62)

(34,44,70)(36,64,48)(42,50,56);

yy:= S!(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)

(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)

(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)

(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)

(63,64)(65,66)(67,68)(69,70)(71,72);
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zz:= S!(1,57,53,11,51,27,71,15,19,61,21,45)

(2,28,22,12,20,58,72,46,52,62,54,16)

(3,41,33,23,29,55,69,31,39,49,43,17)

(4,56,44,24,40,42,70,18,30,50,34,32)

(5,25,13,35,7,9,67,47,59,37,65,63)

(6,10,66,36,60,26,68,64,8,38,14,48);

N:=sub<S|xx,yy,zz>;

#N;

/*48*/

IsIsomorphic(G,N);

true

Now, we write the symmetric presentation of the monomial progenitor 32 :m (23 : S3) by

including the presentation of 23 : S3, the order of our t’s, and the Normalizer of < t >.

We got this,

G<x,y,z,t>:=Group<x,y,z,t|y^2, (x, z), x^6, (x * y * x)^2,

z * y * x^2 * z^-1 * y, z^2 * x^2 * z^2, y * x^-1 * y * x * z^-2, t^37,

t^(x^3)=t^(36), t^(x * z^2 * y * z * y)=t^14>;

We will test our progenitor to see if it is correct by adding first order relation.

G<x,y,z,t>:=Group<x,y,z,t|y^2, (x, z), x^6, (x * y * x)^2,

z * y * x^2 * z^-1 * y, z^2 * x^2 * z^2, y * x^-1 * y * x * z^-2,

t^37, t^(x^3)=t^(36),

t^(x * z^2 * y * z * y)=t^14,(t,t^y)>;

Index(G,sub<G|x,y,z>);

1369

37^2;

1369

#G;

65712

37^2*48;

65712

Thus, our progenitor is correct.
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9.3 Linear Lifting Characters

Definition 9.7. Lifting Process Let N be a normal subgroup of G and suppose that

A00(Nx) is a representation of degree m of the group G/N . Then A(x) = A0(Nx)

defines a representation of G/N lifted from G/N . If α0(Nx) is a character of A0(Nx),

then α(x) = α0(Nx) is the lifted character of A(x). Also, if u ∈ N , then A(u) =

Im, α(u) = m = α(1). The lifting process preserves irreducibility [Led77].

Definition 9.8. A representation ρ : G Rep
−−→

GL(n, F ) is given by gρ = Fn is a Trivial

Representation of G

• χ(x) = χ(y) if x and y are conjugates.

• Equivelent representation have the same character.

• The number of irreducible character of G is equal to the number of the conjugacy

classes of G [Rot94].

Definition 9.9. The Trivial Character is the character χ of the trivial representation,

where χ : G → T given by χ(x) = 1,∀g ∈ G [Rot94].

9.3.1 Linear Lifting Characters of 2∗6 :m (Sym(5))

Let H = ISOM TYPE = ⟨(2, 5, 6, 3), (2, 6)(3, 5), (2, 5, 4, 3, 6)⟩ where the order of H is

20. Then H ′ = ISOM TYPE = ⟨(2, 5, 4, 3, 6)⟩ and the order of H ′ is 5. Then H/H ′ =

{(1, 2, 3, 4)}. The classes of H ′ are

C1 = {e}

C2 = {(2, 3)(4, 5), (2, 6)(3, 5), (3, 4)(5, 6), (2, 4)(3, 6), (2, 5)(4, 6)}

C3 = {(2, 6, 5, 4), (2, 5, 6, 3), (2, 4, 3, 5), (3, 6, 4, 5), (2, 3, 4, 6)}

C4 = {(2, 3, 6, 5), (3, 5, 4, 6), (2, 5, 3, 4), (2, 6, 4, 3), (2, 4, 5, 6)}

C5 = {(2, 5, 4, 3, 6), (2, 3, 5, 6, 4), (2, 4, 6, 5, 3), (2, 6, 3, 4, 5)}

We know that the character table of H/H ′ is given by
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Character Table

e a=T[2] a2=b=T[3] a3=c=T[4]

χ.1 1 1 1 1

χ.2 1 -1 i -i

χ.3 1 1 -1 -1

χ.4 1 -1 -i i

Table 9.2: Character Table H/H ′

We lift the characters of H/H ′ to H. To calculate the lift of χ of character χ of H/H ′,

we note that

χ(C[1][3]) = χ(1) = 1,

χ(C[2][3]) = χT [3],

χ(C[3][3]) = χT [2],

χ(C[4][3]) = χT [4].

Lifted-Character Table

Class Representative e a = T [2] a2 = b = T [3] a3 = c = T [4]

χ.1 1 1 1 1

χ.2 1 -1 i -1

χ.3 1 1 -1 -1

χ.4 1 -1 -Z4 Z4

Table 9.3: Lifted-Character Table H/H ′

Thus χ.1, χ.2, χ.3, χ.4 are irreducible characters ofH since χ.1, χ.2, χ.3, χ.4 are irreducible

characters of H/H ′.

We consider G = ISOM TYPE = ⟨(1, 5, 3)(2, 6, 4), (1, 5, 4, 2, 3, 6)⟩. We want to find the

monomial representative of G, if possible. In order to see this we must first look to the
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character table of G.

Character Table of Group G

-----------------------------

Class | 1 2 3 4 5 6 7

Size | 1 10 15 20 30 24 20

Order | 1 2 2 3 4 5 6

-----------------------------

p = 2 1 1 1 4 3 6 4

p = 3 1 2 3 1 5 6 2

p = 5 1 2 3 4 5 1 7

-----------------------------

X.1 + 1 1 1 1 1 1 1

X.2 + 1 -1 1 1 -1 1 -1

X.3 + 4 -2 0 1 0 -1 1

X.4 + 4 2 0 1 0 -1 -1

X.5 + 5 1 1 -1 -1 0 1

X.6 + 5 -1 1 -1 1 0 -1

X.7 + 6 0 -2 0 0 1 0

Now the character table of G has characters whose degree is greater than one. It should

be noted that all characters of degree larger than one have degree four, five, and six. Since

there are two characters of degree four and five and one character of degree six, it is possi-

ble to have five different monomial representations. All of which will be irreducible mono-

mial representations. So we need to determine which of the five irreducible characters of G

are faithful. We note that there is one faithful character namely χ.7 = (6, 0,−2, 0, 0, 1, 0).

In order for G to have an irreducible faithful monomial representation, G is required to

have a subgroup of H to the index 6 in G and that such H must have a linear character

that induces it to character χ.7 of G.

We find H = ⟨(2, 3, 4, 6), (3, 6, 4, 5)⟩ has an index 6 and that of H induces up to the

character χ.7 of G.

Therefore, G has a faithful irreducible monomial representation of degree six. The field

entries of the representation is determined by the character values ϕ of H that is being

induced which brings our focus to (1,−1,−Z4,Z4, 1) has Z4 since the character values

are fourth root of unity, the field of entries is the cycloatomicfield of 4th roots of unity.

Thus, explicitly this representation is

ρ : G −→ GL(C), where C=CyclotomicField(4),

ρ (xx) =
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T [1]xxT [1]−1 T [1]xxT [2]−1 T [1]xxT [3]−1 T [1]xxT [4]−1 T [1]xxT [5]−1 T [1]xxT [6]−1

T [2]xxT [1]−1 T [2]xxT [2]−1 T [2]xxT [3]−1 T [2]xxT [4]−1 T [2]xxT [5]−1 T [2]xxT [6]−1

T [3]xxT [1]−1 T [3]xxT [2]−1 T [3]xxT [3]−1 T [3]xxT [4]−1 T [3]xxT [5]−1 T [3]xxT [6]−1

T [4]xxT [1]−1 T [4]xxT [2]−1 T [4]xxT [3]−1 T [4]xxT [4]−1 T [4]xxT [5]−1 T [4]xxT [6]−1

T [5]xxT [1]−1 T [5]xxT [2]−1 T [5]xxT [3]−1 T [5]xxT [4]−1 T [5]xxT [5]−1 T [5]xxT [6]−1

ρ (yy) =
T [1]yyT [1]−1 T [1]yyT [2]−1 T [1]yyT [3]−1 T [1]yyT [4]−1 T [1]yyT [5]−1 T [1]yyT [6]−1

T [2]yyT [1]−1 T [2]yyT [2]−1 T [2]yyT [3]−1 T [2]yyT [4]−1 T [2]yyT [5]−1 T [2]yyT [6]−1

T [3]yyT [1]−1 T [3]yyT [2]−1 T [3]yyT [3]−1 T [3]yyT [4]−1 T [3]yyT [5]−1 T [3]yyT [6]−1

T [4]yyT [1]−1 T [4]yyT [2]−1 T [4]yyT [3]−1 T [4]yyT [4]−1 T [4]yyT [5]−1 T [4]yyT [6]−1

T [5]yyT [1]−1 T [5]yyT [2]−1 T [5]yyT [3]−1 T [5]yyT [4]−1 T [5]yyT [5]−1 T [5]yyT [6]−1

where G = ⟨xx, yy⟩ and G = HT [1] ∪HT [2] ∪HT [3] ∪HT [4] ∪HT [5] ∪HT [6]

A =



0 1 0 0 0 0

0 0 1 0 0 0

1 0 1 0 0 0

0 0 0 1 0 −1

0 1 0 −1 0 0

0 0 0 0 1 0


and B =



0 −Z4 0 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 1 0 Z4

1 0 0 0 0 0

0 0 1 0 0 0


where A = ρ(xx) and B = ρ(yy).

Therefore, the generators of the faithful irreducible monomial representation are A and

B. Now the smallest finite field that contains the fourth root of unity (elements of order

5) is Z5. The elements of order four in Z5 are generators of Z5-{0}.
We now find a permutation representation of our monomial representation. we denote

the permutation representative of A, B and A(xx), B(yy) respectively. Our progenitor

is: 2∗6. We have six ti’s and those are t1, t2, t3, t4, t5, t6. We now interpret the automor-

phisms given by the two matrices A and B by using the formula aij ⇔ ti → tj .

First we will consider the A matirix,

A =



0 1 0 0 0 0

0 0 1 0 0 0

1 0 1 0 0 0

0 0 0 1 0 −1

0 1 0 −1 0 0

0 0 0 0 1 0


So,a12 = 1, a23 = 1, a31 = 1, a46 = −1, a54 = −1, a65 = 1.

Then we have,
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t1 → t2

t2 → t3

t3 → t1

t4 → t−1
6

t5 → t4

t6 → t5

We have two distinct powers of each of the six ti’s and to simplify we will use modulo

5. We label t1, t2, t3, t4, t5, t6 by 1, 2, 3, 4, 5, 6 respectively. Apply t1 → t21 and t2 → t3 to

form the permutation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

t1 t2 t3 t4 t5 t6 t21 t22 t23 t24 t25 t26 t31 t32 t33 t34 t35 t36 t41 t42 t43 t44 t45 t46

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t21 t2 t1 t122 t112 t31 t42 t51 t41 t92 t82 t61 t72 t81 t71 t62 t52 t91 t102 t111 t110 t32 t22 t121

2 3 1 24 22 5 8 9 7 18 16 11 14 15 13 12 10 17 20 21 19 6 4 23

Therefore, A(xx) = (1, 2, 3)(4, 24, 23)(5, 22, 6)(7, 8, 9)(10, 18, 17)(11, 16, 12)(13, 14, 15)(19, 20, 21).

Next we consider B =



0 −i 0 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 1 0 i

1 0 0 0 0 0

0 0 1 0 0 0


So,

a12 = −i

a24 = 1

a35 = −1

a46 = −i

a51 = 1

a63 = 1

Then we have,

t1 → t−i
2 = t32

t2 → t4

t3 → t−1
5

t4 → t−i
6 = t36
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t5 → t1

t6 → t3

We label t1, t2, t3, t4, t5, t6 by 1, 2, 3, 4, 5, 6 respectively. Apply t1 → t32, t2 → t4 to form the

permutation. Thus the permutation forB(yy) = (1, 14, 16, 24, 21, 5)(2, 4, 18, 15, 11, 7)(3, 23, 19, 8, 10, 6)(9, 17, 13, 20, 22, 12).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

t1 t2 t3 t4 t5 t6 t21 t22 t23 t24 t25 t26 t31 t32 t33 t34 t35 t36 t41 t42 t43 t44 t45 t46

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
14 4 23 18 1 3 2 10 17 6 7 9 20 16 11 24 13 15 8 22 5 12 19 21

Now we want to find a symmetric presentation for our progenitor. The stabilizer (N, {1, 7, 13, 19}
where, < t1 >= {t1, t21, ..., t241 } and {gϵN | < t >g=< t >} is called the normalizer of < t >

in G. This tells us the number of different conjugates of < t1 > is twenty-four. Thus, our

presentation of the progenitor 2∗6 : Sym(5) is

< x, y, t|x3, y6, (x ∗ y−2)2, (x ∗ y−1 ∗ x−1 ∗ y−1)2, t5 >

We check if our progenitor is correct using Grindstaff’s lemma. To do so, we will begin by

looking at the orbits of N with respects to 1 which we will denote as N1. We find that N1

has the following orbits {1}, {7}, {13}, {19}, {2, 3, 12, 10, 11}, {4, 5, 14, 15, 6}, {8, 9, 24, 22, 23}, {16, 17, 20, 21, 18}.
Next we will choose an orbit representative of each orbit and search for different combi-

nations of x and y that takes 1 to the chosen representative. We will choose the following

orbit representatives: 7, 13, 19, 2, 4, 8, 16. Therefore we have

Next we will add the following to our progenitor t(xy
5), t(yx

−1), t(x
2y2), tx, t(xy), t(xy),

t(x
2y3), t(y

2) and then apply Grindstaff’s lemma by finding the index of G with respects

to sub< G|x, y >. In magma we compute the following

S:=Sym(24);

xx:=S!(1,2,3)(4,24,23)(5,22,6)(7,8,9)(10,18,17)(11,16,12)(13,14,15)(19,20,21);

yy:=S!(1,14,16,24,21,5)(2,4,18,15,11,7)(3,23,19,8,10,6)(9,17,13,20,22,12);

N:=sub<S|xx,yy>;

#N;

/*120*/

G<x,y,t>:=Group<x,y,t|x^3 ,

y^6 ,

(x * y^-2)^2 ,

(x * y^-1 * x^-1 * y^-1)^2,

t^5,

(t,(y*x*y^3*x^-1)),(t,(y*x^-1)),(t,t^(x*y^5)),
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N1 Orbit representatative table

Orbit Representative Permutation Written as

7 xy5 t(xy
5)

13 yx−1 t(yx
−1)

19 x2y2 t(x
2y2)

2 x tx

4 xy t(xy)

8 x2y3 t(x
2y3)

16 y2 t(y
2)

Table 9.4: N1 Orbit Representatative Table

(t,t^(y*x^-1)),(t,t^(x^2*y^2)),(t,t^(x)),

(t,t^(x*y)),(t,t^(x^2*y^3)),(t,t^(y^2)) >;

Index(G,sub<G|x,y>);

/*15625*/

Next we want to find our first order relations and to do so, we must investigate the five

conjugacy classes of PSL(6, 5). In the table below we list the conjugacy classes and their

representatives.
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Conjugacy Classes and First Order Relations

Class Class Representative Elements of the form πti

2 (y3) = (1, 24)(2, 15)(3, 8)(4, 11)(5, 16)(6, 19)(7, 18)(9,

20)(10, 23)(12, 13)(14, 21)(17, 22)

(y3)t , (y3)t2

3 (x ∗ y ∗x−1 ∗ y) = (1, 19)(2, 21)(3, 20)(4, 22)(5, 24)(6,

23)(7, 13)(8, 15)(9, 14)(10, 16)(11, 18)(12, 17)

(x∗y∗x−1∗y)t, (x∗y∗x−1∗y)t2,
(x ∗ y ∗ x−1 ∗ y)t8

4 x = (1, 2, 3)(4, 24, 23)(5, 22, 6)(7, 8, 9)(10, 18, 17)(11,

16, 12)(13, 14, 15)(19, 20, 21)

xt, xt5, xt7, xt11

5 (x ∗ y−1) = (1, 7, 19, 13)(2, 6, 21, 23)(3, 5, 20, 24)(4,

16, 22, 10)(8, 12, 15, 17)(9, 11, 14, 18)

(x ∗ y−1)t, (x ∗ y−1)t2, (x ∗
y−1)t3, (x∗y−1)t4, (x∗y−1)t8,

(x ∗ y−1)t9

6 (y ∗ x ∗ y ∗ x ∗ y−2) = (2, 3, 12, 10, 11)(4, 5, 14, 15,

6)(8, 9, 24, 22, 23)(16, 17, 20, 21, 18)

(y ∗ x ∗ y ∗ x ∗ y−2)t, (y ∗ x ∗
y ∗ x ∗ y−2)t7, (y ∗ x ∗ y ∗ x ∗
y−2)t13, (y ∗x ∗ y ∗x ∗ y−2)t19,

(y ∗x∗y ∗x∗y−2)t2, (y ∗x∗y ∗
x∗y−2)t4, (y∗x∗y∗x∗y−2)t8,

(y ∗ x ∗ y ∗ x ∗ y−2)t16

7 y = (1, 14, 16, 24, 21, 5)(2, 4, 18, 15, 11, 7)(3, 23, 19,

8, 10, 6)(9, 17, 13, 20, 22, 12)

yt, yt2, yt3, yt9

Table 9.5: Conjugacy Classes of PSL(6, 5)
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9.3.2 Linear Lifting Characters of 2∗10 :m (Alt(6))

Let H = ISOM TYPE = ⟨(1, 5, 6, 2)(3, 4), (1, 6)(2, 5), (2, 4, 5), (1, 6, 3)⟩ with the following

character table for H.

Character Table of Group H

--------------------------

Class | 1 2 3 4 5 6

Size | 1 9 4 4 9 9

Order | 1 2 3 3 4 4

--------------------------

p = 2 1 1 3 4 2 2

p = 3 1 2 1 1 6 5

--------------------------

X.1 + 1 1 1 1 1 1

X.2 + 1 1 1 1 -1 -1

X.3 0 1 -1 1 1 I -I

X.4 0 1 -1 1 1 -I I

X.5 + 4 0 1 -2 0 0

X.6 + 4 0 -2 1 0 0

Explanation of Character Value Symbols

--------------------------------------

I = RootOfUnity(4)

We consider our G = ISOM TYPE = ⟨(1, 2)(3, 4, 5, 6), (1, 2, 3)⟩. We want to find the

monomial representative of G, if possible. In order to see if this may be possible we first

must consider the character table for G.

Character Table of Group G

----------------------------------

Class | 1 2 3 4 5 6 7

Size | 1 45 40 40 90 72 72

Order | 1 2 3 3 4 5 5

----------------------------------

p = 2 1 1 3 4 2 7 6

p = 3 1 2 1 1 5 7 6

p = 5 1 2 3 4 5 1 1

----------------------------------

X.1 + 1 1 1 1 1 1 1

X.2 + 5 1 2 -1 -1 0 0

X.3 + 5 1 -1 2 -1 0 0

X.4 + 8 0 -1 -1 0 Z1 Z1#2

X.5 + 8 0 -1 -1 0 Z1#2 Z1

X.6 + 9 1 0 0 1 -1 -1
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X.7 + 10 -2 1 1 0 0 0

Explanation of Character Value Symbols

--------------------------------------

# denotes algebraic conjugation, that is,

#k indicates replacing the root of unity w by w^k

Z1 = (CyclotomicField(5: Sparse := true)) ! [ RationalField() | 1, 0, 1, 1 ]

Now the character table for G has characters with degree greater than one. Those charac-

ters larger than one being of degree five, eight, nine and ten. Since we have two characters

of degree five, two characters of degree eight, one character of degree nine and one char-

acter of degree ten we have a possible six different monomial interpretations to write for

G. All of these will be irreducible monomial representations, so we need to determine

which of the six irreducible characters of G are faithful. We consider that there is one

faithful character namely χ.10, where χ.10 = (10,−2, 1, 1, 0, 0, 0). In order for G to have

an irreducible faithful monomial representation, G is required to have a subgroup H to

the index ten and H must be a linear character that induces up to the character χ.10 of

G.

We find H = ⟨(1, 5, 6, 2)(3, 4), (1, 6)(2, 5), (2, 4, 5), (1, 6, 3)⟩ has an index of ten in G and

induces up to the character χ.10 of G.

Therefore, G has a faithful monomial representation of degree ten. The field entries of the

representation is determined by the character values ϕ of H that is being induced, which

brings our attention to Z4 since the character values are fourth root of unity. Therefore,

explicitly the representation is ρ : G −→ GL(C), where C=CyclotomicField(4).

ρ(xx) =


T [1]xxT [1]−1 . . . T [1]xxT [10]−1

...
. . .

...

T [10]xxT [1]−1 . . . T [10]xxT [10]−1


and

ρ(yy) =


T [1]yyT [1]−1 . . . T [1]yyT [10]−1

...
. . .

...

T [10]yyT [1]−1 . . . T [10]yyT [10]−1


where G = ⟨xx, yy⟩ and G = HT [1]∪HT [2]∪HT [3]∪HT [4]∪HT [5]∪HT [6]∪HT [7]∪
HT [8] ∪HT [9] ∪HT [10]
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A =



0 −Z4 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 Z4 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0


So,

a1,2 = −Z4 = −i = 3

a2,3 = 1

a3,4 = Z4 = i = 2

a4,6 = 1

a5,8 = 1

a6,1 = 1

a7,5 = 1

a8,9 = 1

a9,10 = 1

a10,7 = 1

Then we have,

a1,2, t1 → t32

a2,3, t2 → t3

a3,4, t3 → t24

a4,6, t4 → t6

a5,8, t5 → t8

a6,1, t6 → t1

a7,5, t7 → t5

a8,9, t8 → t9

a9,10, t9 → t10

a10,7, t10 → t7
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We have nine distinct powers of the ten ti’s and to simplify we will use modulo 5. We

label t1, t2, . . . , t10 as 1, 2, . . . , 10 respectively. Apply t1 → t−i
2 , t2 → t3 and so on to form

the permutation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t21 t22 t23 t24 t25 t26 t27 t28 t29 t210

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t32 t3 t24 t6 t8 t1 t5 t9 t10 t7 t2 t23 t44 t26 t28 t21 t25 t29 t210 t27

22 3 14 6 8 1 5 9 10 7 2 13 34 16 18 11 15 19 20 17

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

t31 t32 t33 t34 t35 t36 t37 t38 t39 t310 t41 t42 t43 t44 t45 t46 t47 t48 t49 t410

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t42 t33 t4 t36 t38 t31 t35 t39 t310 t37 t22 t43 t34 t46 t48 t41 t45 t49 t410 t47

32 23 4 26 28 21 25 29 30 27 12 33 24 36 38 31 35 39 40 37

Therefore the permutation for A(xx) is:

(1, 22, 23, 4, 6)(2, 3, 14, 16, 11)(5, 8, 9, 10, 7)(12, 13, 34, 36, 31)

(15, 18, 19, 20, 17)(21, 32, 33, 24, 26)(25, 28, 29, 30, 27)(35, 38, 39, 40, 37)

Next we will consider B =



0 1 0 0 0 0 0 0 0 0

0 0 −Z4 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

Z4 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 −Z4 0

0 0 0 0 0 0 0 0 0 Z4


Then,

a1,2 = 1
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a2,3 = −Z4 = −i = 3

a3,5 = 1

a4,7 = 1

a5,1 = Z4 = i = 2

a6,4 = 1

a7,8 = 1

a8,9 = 1

a9,9 = −Z4 = −i = 3

a10,10 = Z4 = i = 2

Then we have,

a1,2, t1 → t2

a2,3, t2 → t33

a3,5, t3 → t5

a4,7, t4 → t7

a5,1, t5 → t21

a6,4, t6 → t4

a7,8, t7 → t8

a8,6, t8 → t6

a9,9, t9 → t39

a10,10, t10 → t210

We label t1, t2, . . . , t10 as 1, 2, . . . , 10 respectively. Apply t1 → t2, t2 → t33 and so on to

form the permutation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t21 t22 t23 t24 t25 t26 t27 t28 t29 t210

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t2 t33 t5 t7 t21 t4 t8 t6 t39 t210 t22 t3 t25 t27 t41 t24 t28 t26 t9 t410

2 23 5 7 11 4 8 6 29 20 12 3 15 17 31 14 18 16 9 40
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21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

t31 t32 t33 t34 t35 t36 t37 t38 t39 t310 t41 t42 t43 t44 t45 t46 t47 t48 t49 t410

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t32 t43 t35 t37 t1 t34 t38 t36 t49 t10 t42 t23 t45 t47 t31 t44 t48 t46 t29 t310

22 33 25 27 1 24 28 26 39 10 32 13 35 37 21 34 38 36 19 30

Thus we have the permutation for B(yy) to be

B(yy) = (1, 2, 23, 25)(3, 5, 11, 12)(4, 7, 8, 6)(9, 29, 39, 19)(10, 20, 40, 30)

(14, 17, 18, 16)(13, 15, 31, 32)(21, 22, 33, 35)(24, 27, 28, 26)(34, 37, 38, 36).

Now we want to find a symmetric presentation for our progenitor. The stabiliser (N, {1, 11, 21, 31})
where, ⟨t1 ≥ {t1, t41}⟩ and {g ∈ N |tg = t} is called the normalizer of ⟨t⟩ in G. Thus tells us

the number of different conjugates of ⟨t1⟩ is four. Thus our presentation of the progenitor

is:

G⟨x, y, t⟩ := Group ⟨x, y, t|x5, y4, (y−1x−1)3, (x−1, y−1)2,

t5, (t, (y2x−2)), (t, (x−2y−1x)), t(yx
−1) = t2⟩.

We check using Grindstaff’s lemma, if we add (t1, t11), (t1, t21), (t1, t31), (t1, t2), (t1, t3), (t1, t4), (t1, t5)

to the presentation of G then the order of |G| = 9765625. Now t1 = t, t11 = t(yx
4), t21 =

t(xy
−1), t31 = t(yxy

3xy2), t2 = t(y), t3 = t(yx), t4 = t(x
3), t5 = t(yxy) then we have,

G < x,y,t >:= Group < x,y,t| x^5 ,

y^4 ,

(y^-1 x^-1)^3 ,(x^-1, y^-1)^2,

t^5, (t,(y^2 x^-2)),

(t,(x^-2 y^-1 x)),

t^(y x^-1)= t^2,

(t,t^(yx^4)),

(t,t^(xy^-1)),

(t,t^(yxy^3xy^2)),

(t,t^(y)),

(t,t^(yx)),

(t,t^(x^3)),

(t,t^(yxy))>;

#G;

0

Since our G is zero, this means that the number for our G may either be too large for

magma to compute or we have an incorrect progenitor. Therefore we will input into
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magma the following:

print Index (G,sub<G|x,y>: CosetLimit:=9^{10}, Hard:=true, Print:=2);

CP: a=9739415 r=9774 h=6216204 n=9740071; l=19481 c=+0.29; m=9739415 t=9740070

CP: a=9749413 r=9784 h=6348237 n=9750071; l=19501 c=+0.27; m=9749413 t=9750070

CP: a=9759413 r=9794 h=6535478 n=9760071; l=19521 c=+0.25; m=9759413 t=9760070

INDEX = 9765625 (a=9765625 r=9801 h=9766283 n=9766283; l=19536 c=170.25;

m=9765625 t=9766282)

Thus, our progenitor is correct since we found an index of 9765625
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Chapter 10

Composition Charts

In this chapter, we will show the isomorphic images for most of the composition factors

we discovered.

10.1 2∗9 : (33 : (3 : 2))

We have the following information.

S:=Sym(9), we are working with 9 letters.

x ∼ (1, 9, 5)(2, 7, 6)(3, 8, 4)

y ∼ (1, 6, 2, 4, 3, 5)(7, 8, 9)

The order of |N | = 162 .

2∗9 : (33 : (3 : 2))

a b c d e f g h i j G

0 0 0 0 0 0 0 0 0 3 34 : S4

0 0 0 0 0 0 9 4 0 9 PSL(2, 19)

0 0 0 0 0 0 9 4 0 10 PSL(2, 19)× S3

0 0 0 0 0 0 8 0 0 10 Sym(6) : 2

0 0 0 0 0 2 5 6 6 0 A5 : 2

0 0 0 0 0 6 3 6 6 0 22 : (6 : 33)

0 0 0 0 0 6 4 0 0 0 35 : (23 : 2)

0 0 0 0 0 6 5 0 0 0 (36 : A5) : 2
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G⟨x, y, t⟩ := Group⟨x, y, t|x3, y6, y ∗ x ∗ y−1 ∗ x−1 ∗ y−1 ∗ x ∗ y, t2,
(t, (y2 ∗ x−1 ∗ y−1)),

(t, (x−1 ∗ y2 ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y−2)),

((y3) ∗ t(x∗y−2∗x−1∗y−1))a,

((x ∗ y ∗ x−1 ∗ y ∗ x ∗ y−2) ∗ t(x))b,
((y−2) ∗ t(x∗y∗x−1∗y∗x))c,

(((y ∗ x−1)2) ∗ t(y2))e,
((x−1 ∗ y−1 ∗ x−1 ∗ y) ∗ t(x∗y−2))f ,

((x) ∗ t(x∗y∗x−1∗y∗x))g,

((x ∗ y−1) ∗ t(y∗x∗y−2∗x−1))h,

((y ∗ x−1) ∗ t(x∗y−2∗x−1∗y−1))i,

((y2 ∗ x−1 ∗ y−1 ∗ x−1) ∗ t(x∗y∗x−1∗y∗x))j >
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2∗9 : (33 : (3 : 2))

a b c d e f g h i j G

0 0 0 0 0 2 6 10 10 10 52 : (6 : 2)

0 0 0 0 0 2 7 6 6 9 PSL(2, 8)

0 0 0 0 0 2 7 10 8 9 PSL(2, 8)

0 0 0 0 0 2 8 6 6 6 42 : (6 : 2)

0 0 0 0 0 2 8 6 6 7 PSL(2, 7) : 2

0 0 0 0 0 2 8 6 6 8 (PSL(2, 7) : 2) : 2

G⟨x, y, t⟩ := Group⟨x, y, t|x3, y6, y ∗ x ∗ y−1 ∗ x−1 ∗ y−1 ∗ x ∗ y, t2,
(t, (y2 ∗ x−1 ∗ y−1)),

(t, (x−1 ∗ y2 ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y−1 ∗ x ∗ y−2)),

((y3) ∗ t(x∗y−2∗x−1∗y−1))a,

((x ∗ y ∗ x−1 ∗ y ∗ x ∗ y−2) ∗ t(x))b,
((y−2) ∗ t(x∗y∗x−1∗y∗x))c,

(((y ∗ x−1)2) ∗ t(y2))e,
((x−1 ∗ y−1 ∗ x−1 ∗ y) ∗ t(x∗y−2))f ,

((x) ∗ t(x∗y∗x−1∗y∗x))g,

((x ∗ y−1) ∗ t(y∗x∗y−2∗x−1))h,

((y ∗ x−1) ∗ t(x∗y−2∗x−1∗y−1))i,

((y2 ∗ x−1 ∗ y−1 ∗ x−1) ∗ t(x∗y∗x−1∗y∗x))j >
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10.2 2∗12 : (2× A5)

We have the following information

S:=Sym(12), we are working with 12 letters.

x ∼ (1, 6, 3)(2, 8, 4)(5, 7, 9)(10, 11, 12)

y ∼ (1, 5, 2, 3, 11, 4, 10, 6, 8, 7)(9, 12)

The order of |N | = 120.

2∗12 : (2×A5)

a b c d e f g h i j G

0 3 0 0 0 0 0 0 0 0 (2 : A5) : A5

5 3 0 0 0 0 0 0 0 0 A5 : A5

3 4 0 0 0 0 0 0 0 0 S(6, 2)× (A5 × 2)

2 8 4 0 0 0 0 0 0 0 26 : A5

G⟨x, y, t⟩ := Group⟨x, y, t|x3, (x ∗ y−2)2, (x−1 ∗ y ∗ x−1 ∗ y−1)2,

(x−1 ∗ y−3)2, t2,

(t, x−1 ∗ y−1 ∗ x ∗ y2), (t, x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y)
((y5) ∗ t(y2∗x∗y∗x−1∗y))a,

((y ∗ x ∗ y2) ∗ t(y−2∗x−1∗y))b,

((x−1 ∗ y ∗ x−1 ∗ y ∗ x) ∗ t(x∗y−2))c,

((x) ∗ t(y∗x∗y−1∗x−1∗y−1))d,

((y2) ∗ t(x))e,
((y ∗ x ∗ y ∗ x−1) ∗ t(y−1∗x−1∗y∗x∗y))f ,

((x ∗ y) ∗ t(y∗x−1))g,

((y) ∗ t(x∗y−1))h,

((y3) ∗ t(x∗y∗x∗y−1))i,

((y) ∗ t(x∗y2∗x∗y−1))j >
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2∗12 : (2×A5)

a b c d e f g h i j G

0 5 0 0 0 0 0 0 0 0 PSL(2, 19)

9 5 0 0 0 0 0 0 0 0 PSL(2, 19)

4 8 0 0 0 0 0 0 0 0 (6 : A6 ×A6) : 2
2

G⟨x, y, t⟩ := Group⟨x, y, t|x3, (x ∗ y−2)2, (x−1 ∗ y ∗ x−1 ∗ y−1)2,

(x−1 ∗ y−3)2, t2,

(t, x−1 ∗ y−1 ∗ x ∗ y2), (t, x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y)
((y ∗ x ∗ y ∗ x−1) ∗ t(y2 ∗ x ∗ y ∗ x−1 ∗ y)))a,
((x ∗ y) ∗ t(y−2∗x−1∗y))b,

((y ∗ x ∗ y ∗ x−1) ∗ t(x∗y−2))c,

((x) ∗ t(y∗x∗y−1∗x−1∗y−1))d,

((y3) ∗ t(x))e,
((y ∗ x ∗ y ∗ x−1) ∗ t(y−1∗x−1∗y∗x∗y))f ,

((y) ∗ t(y∗x−1))g,

((y3) ∗ t(x∗y−1))h,

((x) ∗ t(x∗y∗x∗y−1))i,

((x ∗ y) ∗ t(x∗y2∗x∗y−1))j >

2∗12 : (2×A5)

a b c d e f g h i j G

0 4 0 0 0 0 0 0 0 0 (2 : A5 ×A5) : 2
2

10 0 6 0 0 0 0 0 0 0 PSL(3, 4)

8 8 8 0 0 0 0 0 0 0 M12

G⟨x, y, t⟩ := Group⟨x, y, t|x3, (x ∗ y−2)2, (x−1 ∗ y ∗ x−1 ∗ y−1)2,

(x−1 ∗ y−3)2, t2,

(t, x−1 ∗ y−1 ∗ x ∗ y2), (t, x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y)
((x ∗ y) ∗ t(y2∗x∗y∗x−1∗y))a,

((x) ∗ t(y−2∗x−1∗y))b,

((y ∗ x ∗ y ∗ x−1) ∗ t(x∗y−2))c,
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((x ∗ y) ∗ t(y∗x∗y−1∗x−1∗y−1))d,

((y) ∗ t(x))e,
((y ∗ x ∗ y ∗ x−1) ∗ t(y−1∗x−1∗y∗x∗y))f ,

((y5) ∗ t(y∗x−1))g,

((x) ∗ t(x∗y−1))h,

((y3) ∗ t(x∗y∗x∗y−1))i,

((x) ∗ t(x∗y2∗x∗y−1))j >
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2∗12 : (2×A5)

a b c d e f g h i j G

6 4 0 0 0 0 0 0 0 0 PSL(2, 25) : 2

0 4 6 0 0 0 0 0 0 0 PSL(2, 121) : 2

G⟨x, y, t⟩ := Group⟨x, y, t|x3, (x ∗ y−2)2, (x−1 ∗ y ∗ x−1 ∗ y−1)2,

(x−1 ∗ y−3)2, t2,

(t, x−1 ∗ y−1 ∗ x ∗ y2), (t, x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y)
((x) ∗ t(y2∗x∗y∗x−1∗y))a,

((y2) ∗ t(y−2∗x−1∗y))b,

((x−1 ∗ y ∗ x−1 ∗ y ∗ x) ∗ t(x∗y−2))c,

((x) ∗ t(y∗x∗y−1∗x−1∗y−1))d,

((y3) ∗ t(x))e,
((x) ∗ t(y−1∗x−1∗y∗x∗y))f ,

((x−1 ∗ y ∗ x−1 ∗ y ∗ x) ∗ t(y∗x−1))g,

((x ∗ y) ∗ t(x∗y−1))h,

((x−1 ∗ y ∗ x−1 ∗ y ∗ x) ∗ t(x∗y∗x∗y−1))i,

((y) ∗ t(x∗y2∗x∗y−1))j >

2∗12 : (2×A5)

a b c d e f g h i j G

5 6 0 0 0 0 0 0 0 0 J1

0 0 4 0 0 0 0 0 0 0 PSL(2, 11) : 2

6 0 6 0 0 0 0 0 0 0 (A7 : 2) : 3

G⟨x, y, t⟩ := Group⟨x, y, t|x3, (x ∗ y−2)2, (x−1 ∗ y ∗ x−1 ∗ y−1)2,

(x−1 ∗ y−3)2, t2,

(t, x−1 ∗ y−1 ∗ x ∗ y2), (t, x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y)
((x−1 ∗ y ∗ x−1 ∗ y ∗ x) ∗ t(y2∗x∗y∗x−1∗y))a,

((x ∗ y) ∗ t(y−2∗x−1∗y))b,

((y) ∗ t(x∗y−2))c,

((x) ∗ t(y∗x∗y−1∗x−1∗y−1))d,

((y5) ∗ t(x))e,
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((x ∗ y) ∗ t(y−1∗x−1∗y∗x∗y))f ,

((y3) ∗ t(y∗x−1))g,

((x) ∗ t(x∗y−1))h,

((y) ∗ t(x∗y∗x∗y−1))i,

((x−1 ∗ y ∗ x−1 ∗ y ∗ x) ∗ t(x∗y2∗x∗y−1))j >

2∗12 : (2×A5)

a b c d e f g h i j G

3 5 0 0 0 0 0 0 0 0 J1

G⟨x, y, t⟩ := Group⟨x, y, t|x3, (x ∗ y−2)2, (x−1 ∗ y ∗ x−1 ∗ y−1)2,

(x−1 ∗ y−3)2, t2,

(t, x−1 ∗ y−1 ∗ x ∗ y2), (t, x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y)
((y5) ∗ t(y2∗x∗y∗x−1∗y))a,

((x) ∗ t(y−2∗x−1∗y))b,

((y) ∗ t(x∗y−2))c,

((x−1 ∗ y ∗ x−1 ∗ y ∗ x) ∗ t(y∗x∗y−1∗x−1∗y−1))d,

((y2) ∗ t(x))e,
((x−1 ∗ y ∗ x−1 ∗ y ∗ x) ∗ t(y−1∗x−1∗y∗x∗y))f ,

((y2) ∗ t(y∗x−1))g,

((y3) ∗ t(x∗y−1))h,

((y) ∗ t(x∗y∗x∗y−1))i,

((x) ∗ t(x∗y2∗x∗y−1))j >

2∗12 : (2×A5)

a b c d e f g h i j G

0 0 0 0 0 0 0 0 2 7 PSL(2, 41)

0 0 0 0 0 0 0 0 3 4 PSL(2, 16) : 2

0 0 0 0 0 0 0 7 2 7 PSL(2, 41)

0 0 0 0 0 0 0 10 4 4 (211 : PSL(2 : 11)) : 2

G⟨x, y, t⟩ := Group⟨x, y, t|x3, (x ∗ y−2)2, (x−1 ∗ y ∗ x−1 ∗ y−1)2,
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(x−1 ∗ y−3)2, t2,

(t, x−1 ∗ y−1 ∗ x ∗ y2), (t, x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y)
((y2) ∗ t(y2∗x∗y∗x−1∗y))a,

((x ∗ y) ∗ t(y−2∗x−1∗y))b,

((y5) ∗ t(x∗y−2))c,

((x ∗ y) ∗ t(y∗x∗y−1∗x−1∗y−1))d,

((y3) ∗ t(x))e,
((y ∗ x ∗ y ∗ x−1) ∗ t(y−1∗x−1∗y∗x∗y))f ,

((y) ∗ t(y∗x−1))g,

((x ∗ y) ∗ t(x∗y−1))h,

((y5) ∗ t(x∗y∗x∗y−1))i,

((y ∗ x ∗ y ∗ x−1) ∗ t(x∗y2∗x∗y−1))j >

2∗12 : (2xA5)

a b c d e f g h i j G

0 0 0 0 0 0 8 0 2 10 (3 : 29)(A6 : 2)

G⟨x, y, t⟩ := Group⟨x, y, t|x3, (x ∗ y−2)2, (x−1 ∗ y ∗ x−1 ∗ y−1)2,

(x−1 ∗ y−3)2, t2,

(t, x−1 ∗ y−1 ∗ x ∗ y2), (t, x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y)
((y) ∗ t(y2∗x∗y∗x−1∗y))a,

((x ∗ y) ∗ t(y−2∗x−1∗y))b,

((y3) ∗ t(x∗y−2))c,

((y ∗ x ∗ y ∗ x−1) ∗ t(y∗x∗y−1∗x−1∗y−1))d,

((x) ∗ t(x))e,
((x) ∗ t(y−1∗x−1∗y∗x∗y))f ,

((y ∗ x ∗ y ∗ x−1) ∗ t(y∗x−1))g,

((y3) ∗ t(x∗y−1))h,

((y5) ∗ t(x∗y∗x∗y−1))i,

((x ∗ y) ∗ t(x∗y2∗x∗y−1))j >
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2∗12 : (2×A5)

a b c d e f g h i j G

0 0 0 0 0 0 0 8 2 6 PSL(3, 4) : 22

0 0 0 0 0 0 0 8 0 4 (6 : A6 ×A6) : 2
2

G⟨x, y, t⟩ := Group⟨x, y, t|x3, (x ∗ y−2)2, (x−1 ∗ y ∗ x−1 ∗ y−1)2,

(x−1 ∗ y−3)2, t2,

(t, x−1 ∗ y−1 ∗ x ∗ y2), (t, x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y)
((y2) ∗ t(y2∗x∗y∗x−1∗y))a,

((x ∗ y) ∗ t(y−2∗x−1∗y))b,

((y5) ∗ t(x∗y−2))c,

((x ∗ y) ∗ t(y∗x∗y−1∗x−1∗y−1))d,

((y3) ∗ t(x))e,
((y ∗ x ∗ y ∗ x−1) ∗ t(y−1∗x−1∗y∗x∗y))f ,

((y) ∗ t(y∗x−1))g,

((x ∗ y) ∗ t(x∗y−1))h,

((y5) ∗ t(x∗y∗x∗y−1))i,

((y ∗ x ∗ y ∗ x−1) ∗ t(x∗y2∗x∗y−1))j >;
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2∗12 : (2×A5)

a b c d e f g h i j G

4 0 0 0 0 0 0 0 0 0 PSL(2 : 11) : 2

5 0 0 0 0 0 0 0 0 0 (53 : 2) : A5

G⟨x, y, t⟩ := Group⟨x, y, t|x3, (x ∗ y−2)2, (x−1 ∗ y ∗ x−1 ∗ y−1)2,

(x−1 ∗ y−3)2, t2,

(t, x−1 ∗ y−1 ∗ x ∗ y2), (t, x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y)
((y3) ∗ t(y2∗x∗y∗x−1∗y))a,

((x ∗ y) ∗ t(y−2∗x−1∗y))b,

((y3) ∗ t(x∗y−2))c,

((x ∗ y) ∗ t(y∗x∗y−1∗x−1∗y−1))d,

((y3) ∗ t(x))e,
((x ∗ y) ∗ t(y−1∗x−1∗y∗x∗y))f ,

((x ∗ y) ∗ t(y∗x−1))g,

((y3) ∗ t(x∗y−1))h,

((y3) ∗ t(x∗y∗x∗y−1))i,

((x ∗ y) ∗ t(x∗y2∗x∗y−1))j >;
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2∗12 : (2×A5)

a b c d e f g h i j G

0 5 0 0 0 0 0 0 0 0 PSL(2 : 19)

G⟨x, y, t⟩ := Group⟨x, y, t|x3, (x ∗ y−2)2,

(x−1 ∗ y ∗ x−1 ∗ y−1)2, (x−1 ∗ y−3)2, t2,

(t, x−1 ∗ y−1 ∗ x ∗ y2), (t, x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y),
((y5) ∗ t(y2∗x∗y∗x−1∗y))a,

((x ∗ y) ∗ t(y−2∗x−1∗y))b,

((y5) ∗ t(x∗y−2))c,

((x) ∗ t(y∗x∗y−1∗x−1∗y−1))d,

((y3) ∗ t(x))e,
((x) ∗ t(y−1∗x−1∗y∗x∗y))f ,

((x) ∗ t(y∗x−1))g,

((y5) ∗ t(x∗y−1))h,

((x) ∗ t(x∗y∗x∗y−1))i,

((x ∗ y) ∗ t(x∗y2∗x∗y−1))j >;
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10.3 2∗14 : (23 : 7)

We have the following information

S:=Sym(14), we are working with 14 letters.

x ∼ (1, 11, 13)(2, 12, 10)(3, 7, 9)(5, 6, 14)

y ∼ (1, 13, 2)(3, 9, 6)(4, 7, 12, 8, 11, 14)(5, 10)

The order of |N | = 168.

2∗14 : (23 : 7)

a b c d e f g h i j k l m G

3 0 0 0 0 0 0 0 0 0 0 0 0 (24 : 23) : (7 : 3)

11 0 5 0 0 0 0 0 0 0 0 0 0 M22

3 2 6 0 0 0 0 0 0 0 0 0 0 (23 : 7) : 3

G⟨x, y, t⟩ := Group⟨x, y, t|x3, y6,
(y−1 ∗ x−1)3, x ∗ y ∗ x−1 ∗ y−1 ∗ x−1 ∗ y ∗ x−1 ∗ y−2, t2,

(t, y3), (t, x−1 ∗ y−1),

((y2) ∗ t(y−1))a,

((y3) ∗ t(x∗y∗x−1∗y))b,

((y) ∗ t(x−1∗y−1∗x∗y2))c,

((y−2) ∗ t(x∗y−2∗x∗y))d,

((y−1) ∗ t(y−2∗x−1∗y∗x−1))e,

((y ∗ x−1) ∗ t(y−1∗x∗y−1))f ,

(((y ∗ x−1)3) ∗ t(y2∗x∗y))g,
((y2) ∗ t(x∗y∗x−1∗y∗x−1))h,

((y3) ∗ t(x−1∗y−2∗x−1))i,

((y−2) ∗ t(y∗x−1))j ,

((y−1) ∗ t(yx))k,
(((y ∗ x−1)3) ∗ t(x∗y−2∗x−1∗y∗x−1))l,

((y2) ∗ t(x∗y2∗x∗y−1))m >
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2∗14 : (23 : 7)

a b c d e f g h i j k l m G

8 0 5 0 0 0 0 0 0 0 0 0 0 M22 : 2

7 6 6 0 0 0 0 0 0 0 0 0 0 (210 : 23) : (7 : 3)

6 7 7 14 12 0 0 0 0 0 0 0 0 A8

6 10 6 14 12 0 0 0 0 0 0 0 0 (3 : A7) : 2

6 0 6 14 12 0 0 0 0 0 0 0 0 (21 : 3) : (A7 : 2)

G⟨x, y, t⟩ := Group⟨x, y, t|x3, y6,
(y−1 ∗ x−1)3, x ∗ y ∗ x−1 ∗ y−1 ∗ x−1 ∗ y ∗ x−1 ∗ y−2, t2,

(t, y3), (t, x−1 ∗ y−1),

(((y ∗ x−1)3) ∗ t(y−1))a,

((y) ∗ t(x∗y∗x−1∗y))b,

((y−2) ∗ t(x−1∗y−1∗x∗y2))c,

((y3) ∗ t(x∗y−2∗x∗y))d,

((y ∗ x−1) ∗ t(y−2∗x−1∗y∗x−1))e,

((y3) ∗ t(y−1∗x∗y−1))f ,

((y) ∗ t(y2∗x∗y))g,
((y−1) ∗ t(x∗y∗x−1∗y∗x−1))h,

((y−2) ∗ t(x−1∗y−2∗x−1))i,

((y3) ∗ t(y∗x−1))j ,

((y) ∗ t(yx))k,
((y−2) ∗ t(x∗y−2∗x−1∗y∗x−1))l,

((y−1) ∗ t(x∗y2∗x∗y−1))m >

2∗14 : (23 : 7)

a b c d e f g h i j k l m G

0 0 0 0 0 0 0 6 10 6 6 7 0 (26 : 7) : 3

G⟨x, y, t⟩ := Group⟨x, y, t|x3, y6,
(y−1 ∗ x−1)3, x ∗ y ∗ x−1 ∗ y−1 ∗ x−1 ∗ y ∗ x−1 ∗ y−2, t2,

(t, y3), (t, x−1 ∗ y−1),
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((y) ∗ t(y−1))a,

((y−2) ∗ t(x∗y∗x−1∗y))b,

((y−1) ∗ t(x−1∗y−1∗x∗y2))c,

((y) ∗ t(x∗y−2∗x∗y))d,

((y−2) ∗ t(y−2∗x−1∗y∗x−1))e,

((y ∗ x−1) ∗ t(y−1∗x∗y−1))f ,

((y) ∗ t(y2∗x∗y))g,
((y−2) ∗ t(x∗y∗x−1∗y∗x−1))h,

((y3) ∗ t(x−1∗y−2∗x−1))i,

((y2) ∗ t(y∗x−1))j ,

((y) ∗ t(yx))k,
(((y ∗ x−1)3) ∗ t(x∗y−2∗x−1∗y∗x−1))l,

((y−2) ∗ t(x∗y2∗x∗y−1))m >

2∗14 : (23 : 7)

a b c d e f g h i j k l m G

0 0 0 0 0 0 0 0 0 0 6 6 8 (2 : 3) : (7 : 3)(26 : A7 : 2)

0 0 0 0 0 0 0 0 0 0 6 6 12 (3 : 7) : (3 : 26) : (A7 : 2)

G⟨x, y, t⟩ := Group⟨x, y, t|x3, y6,
(y−1 ∗ x−1)3, x ∗ y ∗ x−1 ∗ y−1 ∗ x−1 ∗ y ∗ x−1 ∗ y−2, t2,

(t, y3), (t, x−1 ∗ y−1),

((y) ∗ t(y−1))a,

((y−2) ∗ t(x∗y∗x−1∗y))b,

((y−1) ∗ t(x−1∗y−1∗x∗y2))c,

((y3) ∗ t(x∗y−2∗x∗y))d,

((y ∗ x−1) ∗ t(y−2∗x−1∗y∗x−1))e,

((y3) ∗ t(y−1∗x∗y−1))f ,

((y−1) ∗ t(y2∗x∗y))g,
((y2) ∗ t(x∗y∗x−1∗y∗x−1))h,

((y−2) ∗ t(x−1∗y−2∗x−1))i,

((y3) ∗ t(y∗x−1))j ,
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(((y ∗ x−1)3) ∗ t(yx))k,
((y) ∗ t(x∗y−2∗x−1∗y∗x−1))l,

((y3) ∗ t(x∗y2∗x∗y−1))m >

2∗14 : (23 : 7)

a b c d e f g h i j k l m G

0 0 0 0 0 0 0 0 0 0 6 6 10 (3 : 27) : (A7 : 2)

G⟨x, y, t⟩ := Group⟨x, y, t|x3, y6,
(y−1 ∗ x−1)3, x ∗ y ∗ x−1 ∗ y−1 ∗ x−1 ∗ y ∗ x−1 ∗ y−2, t2,

(t, y3), (t, x−1 ∗ y−1),

((y2) ∗ t(y−1))a,

((y−1) ∗ t(x∗y∗x−1∗y))b,

((y−2) ∗ t(x−1∗y−1∗x∗y2))c,

((y) ∗ t(x∗y−2∗x∗y))d,

((y3) ∗ t(y−2∗x−1∗y∗x−1))e,

(((y ∗ x−1)3) ∗ t(y−1∗x∗y−1))f ,

((y2) ∗ t(y2∗x∗y))g,
((y−1) ∗ t(x∗y∗x−1∗y∗x−1))h,

((y3) ∗ t(x−1∗y−2∗x−1))i,

((y−2) ∗ t(y∗x−1))j ,

(((y ∗ x−1)3) ∗ t(yx))k,
((y−1) ∗ t(x∗y−2∗x−1∗y∗x−1))l,

((y−2) ∗ t(x∗y2∗x∗y−1))m >
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10.4 2∗20 : (S5)

We have the following information

S:=Sym(20), we are working with 20 letters.

x ∼ (1, 20, 6, 10)(2, 19, 8, 12)(3, 13)(4, 15)(5, 16, 11, 17)(7, 14, 9, 18)

y ∼ (1, 15)(2, 13)(3, 11, 8, 18)(4, 9, 6, 17)(5, 16, 19, 10)(7, 14, 20, 12)

The order of |N | = 120 .

2∗20 : (S5)

a b c d e f g h i G

3 0 0 0 0 0 0 0 0 (3 : 24) : (A5 : 2)

0 0 0 0 0 0 3 0 2 (24 : A5) : 2

G⟨x, y, t⟩ := Group⟨x, y, t|x4, y4, (y−1 ∗ x)3, x−2 ∗ y−2 ∗ x−1 ∗ y2 ∗ x2 ∗ y−1, t2,

(t, y2), (t, (y−1 ∗ x ∗ y)2),
((x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t(x∗y∗x∗y2))a,
((x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t(x2∗y∗x−1∗y−1))b,

((x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t(y∗x−1))c,

((x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t(x−1∗y2∗x−1))d,

((x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t(x∗y−1∗x∗y))e,

((x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t(y∗x∗y∗x−1∗y−1))f ,

((x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t(y∗x−1∗y−1∗x−1∗y))g,

((x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t(x∗y2∗x2))h,

((x2 ∗ y−1 ∗ x−1 ∗ y−1) ∗ t(x2∗y∗x∗y−1))i >
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10.5 2∗21 : (2× 21)

We have the following information

S:=Sym(21), we are working with 21 letters.

x ∼ (1, 21, 3, 10, 14, 16)(2, 20, 5, 13, 8, 17)(4, 19, 9)(6, 18)(7, 15, 11)

y ∼ (1, 19, 6, 15, 2, 9, 5, 4, 14, 12, 8, 7, 3, 11)(10, 21, 18, 20, 13, 16, 17)

The order of |N | = 126.

2∗21 : (2× 21)

a b c d e f g h i j k l m n o p q r s u v G

2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (26 : 7) : (3 : 2)

3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (73 : 3 : 22)(3 : 2)

2 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (26 : 7)(3 : 2)

0 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (24 : 214) : (32 : 7)

4 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (214 : 22) : (32 : 7)

5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (74 : 3) : A5

G⟨x, y, t⟩ := Group⟨x, y, t|x6, (y−1 ∗ x−1)3, (y−1 ∗ x)3, x−1 ∗ y−1 ∗ x3 ∗ y−1 ∗ x ∗ y, t2,
(t, x ∗ y ∗ x−1 ∗ y−2), (t, x2 ∗ y−1 ∗ x−1 ∗ y),
((y ∗ x−1 ∗ y−2 ∗ x) ∗ t)a,
((x2 ∗ y−1 ∗ x) ∗ t(x∗y∗x−1)2))b,

((y3) ∗ t(x∗y−1∗x−1))c,

((x2 ∗ y−1 ∗ x) ∗ t(y∗x∗y2))d,
((y) ∗ t(y∗x−2∗y))e,

((y−2 ∗ x−2) ∗ t(y2∗x2))f ,

((y ∗ x−1 ∗ y−2 ∗ x) ∗ t(y3∗x−1))g,

((x2 ∗ y−1 ∗ x) ∗ t(x−1∗y−1∗x))h,

((y) ∗ t(y∗x−1∗y−2))i,

((x2 ∗ y−1 ∗ x) ∗ t(x∗y−1))j ,

((y) ∗ t(x2∗y))k,

((y ∗ x) ∗ t(x∗y−1∗x∗y))l,

((x2 ∗ y−1 ∗ x) ∗ t(x∗y3))m,

((y3) ∗ t((x∗y−1∗x−1)3))n,
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((x2 ∗ y−1 ∗ x) ∗ t(y3))o,
((y) ∗ t(x∗y2∗x−2∗y−1))p,

((x2 ∗ y−1 ∗ x) ∗ t(x∗y2∗x−2))q,

((y3) ∗ t(x∗y∗x2))r,

((x2 ∗ y−1 ∗ x) ∗ t(x∗y∗x∗y−1))s,

((y) ∗ t(x∗y∗x2∗y))u,

((x2 ∗ y−1 ∗ x) ∗ t(x2∗y2∗x))v >
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2∗21 : (2× 21)

a b c d e f g h i j k l m n o p q r s u v G

3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (26 : 3) : (2 : 7 : 3)

G⟨x, y, t⟩ := Group⟨x, y, t|x6, (y−1 ∗ x−1)3, (y−1 ∗ x)3, x−1 ∗ y−1 ∗ x3 ∗ y−1 ∗ x ∗ y, t2,
(t, x ∗ y ∗ x−1 ∗ y−2), (t, x2 ∗ y−1 ∗ x−1 ∗ y),
((x2 ∗ y2 ∗ x ∗ y−1) ∗ t)a,
((x2 ∗ y2) ∗ t(x∗y∗x−1)2))b,

((y−2 ∗ x−2) ∗ t(x∗y−1∗x−1))c,

((x2 ∗ y2 ∗ x ∗ y−1) ∗ t(y∗x∗y2))d,
((x2 ∗ y2) ∗ t(y∗x−2∗y))e,

((y−2 ∗ x−2) ∗ t(y2∗x2))f ,

((x2 ∗ y2 ∗ x ∗ y−1) ∗ t(y3∗x−1))g,

((y ∗ x) ∗ t(x−1∗y−1∗x))h,

((y−2 ∗ x−2) ∗ t(y∗x−1∗y−2))i,

((x2 ∗ y2 ∗ x ∗ y−1) ∗ t(x∗y−1))j ,

((x2 ∗ y2) ∗ t(x2∗y))k,

((y ∗ x) ∗ t(x∗y−1∗x∗y))l,

((x2 ∗ y2 ∗ x ∗ y−1) ∗ t(x∗y3))m,

((y−2 ∗ x−2) ∗ t(x∗y−1∗x−1)3))n,

((x2 ∗ y2) ∗ t(y3))o,
((x2 ∗ y2 ∗ x ∗ y−1) ∗ t(x∗y2∗x−2∗y−1))p,

((y ∗ x) ∗ t(x∗y2∗x−2))q,

((y−2 ∗ x−2) ∗ t(x∗y∗x2))r,

((x2 ∗ y2 ∗ x ∗ y−1) ∗ t(x∗y∗x∗y−1))s,

((y ∗ x) ∗ t(x∗y∗x2∗y))u,

((y−2 ∗ x−2) ∗ t(x2∗y2∗x))v >
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2∗21 : (2× 21)

a b c d e f g h i j k l m n o p q r s u v G

4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (3 : A10) : 2

21 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (25 : 2) : (32 : 7)

14 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (23 : 7) : 3

G⟨x, y, t⟩ := Group⟨x, y, t|x6, (y−1 ∗ x−1)3, (y−1 ∗ x)3, x−1 ∗ y−1 ∗ x3 ∗ y−1 ∗ x ∗ y, t2,
(t, x ∗ y ∗ x−1 ∗ y−2), (t, x2 ∗ y−1 ∗ x−1 ∗ y),
((y3) ∗ t)a,
((x2 ∗ y2) ∗ t(x∗y∗x−1)2)b,

((y ∗ x2) ∗ t(x∗y−1∗x−1))c,

((x ∗ y ∗ x2) ∗ t(y∗x∗y2))d,
((y) ∗ t(y∗x−2∗y))e,

((x2 ∗ y2 ∗ x ∗ y−1) ∗ t(y2∗x2))f ,

((y2) ∗ t(y3∗x−1))g,

((x ∗ y ∗ x2) ∗ t(x−1∗y−1∗x))h,

((y) ∗ t(y∗x−1∗y−2))i,

((y ∗ x2) ∗ t(x∗y−1))j ,

((y) ∗ t(x2∗y))k,

((x ∗ y ∗ x2) ∗ t(x∗y−1∗x∗y))l,

((y−2) ∗ t(x∗y3))m,

((x2 ∗ y2) ∗ t((x∗y−1∗x−1)3))n,

((y ∗ x2) ∗ t(y3))o,
((x2 ∗ y2 ∗ x ∗ y−1) ∗ t(x∗y2∗x−2∗y−1))p,

((y ∗ x2) ∗ t(x∗y2∗x−2))q,

((y) ∗ t(x∗y∗x2))r,

((y ∗ x2) ∗ t(x∗y∗x∗y−1))s,

((y3) ∗ t(x∗y∗x2∗y))u,

((y) ∗ t(x2∗y2∗x))v >



346

2∗21 : (2× 21)

a b c d e f g h i j k l m n o p q r s u v G

6 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (23 : 3) : (A10 : 2)

G⟨x, y, t⟩ := Group⟨x, y, t|x6, (y−1 ∗ x−1)3, (y−1 ∗ x)3, x−1 ∗ y−1 ∗ x3 ∗ y−1 ∗ x ∗ y, t2,
(t, x ∗ y ∗ x−1 ∗ y−2), (t, x2 ∗ y−1 ∗ x−1 ∗ y),
((y−2) ∗ t)a,
((x−2 ∗ y−1) ∗ t(x∗y∗x−1)2))b,

((y3) ∗ t(x∗y−1∗x−1))c,

((x2 ∗ y2) ∗ t(y∗x∗y2))d,
((y2) ∗ t(y∗x−2∗y))e,

((x2 ∗ y2) ∗ t(y2∗x2))f ,

((x ∗ y ∗ x2) ∗ t(y3∗x−1))g,

((y) ∗ t(x−1∗y−1∗x))h,

((x−2 ∗ y−1) ∗ t(y∗x−1∗y−2))i,

((y3) ∗ t(x∗y−1))j ,

((y ∗ x) ∗ t(x2∗y))k,

((x−2 ∗ y−1) ∗ t(x∗y−1∗x∗y))l,

((y3) ∗ t(x∗y3))m,

((y ∗ x2) ∗ t(x∗y−1∗x−1)3))n,

((x−2 ∗ y−1) ∗ t(y3))o,
((x ∗ y ∗ x2) ∗ t(x∗y2∗x−2∗y−1))p,

((y ∗ x2) ∗ t(x∗y2∗x−2))q,

((y) ∗ t(x∗y∗x2))r,

((x−2 ∗ y−1) ∗ t(x∗y∗x∗y−1))s,

((y−2) ∗ t(x∗y∗x2∗y))u,

((x ∗ y ∗ x2) ∗ t(x2∗y2∗x))v >
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2∗21 : (2× 21)

a b c d e f g h i j k l m n o p q r s u v G

6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (219 : 3) : (2 : 7 : 3)

6 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (218 : 3) : (2 : 7 : 3)

G⟨x, y, t⟩ := Group⟨x, y, t|x6, (y−1 ∗ x−1)3, (y−1 ∗ x)3, x−1 ∗ y−1 ∗ x3 ∗ y−1 ∗ x ∗ y, t2,
(t, x ∗ y ∗ x−1 ∗ y−2), (t, x2 ∗ y−1 ∗ x−1 ∗ y),
((y ∗ x) ∗ t)a,
((x2 ∗ y2) ∗ t(x∗y∗x−1)2))b,

((y−2 ∗ x−2) ∗ t(x∗y−1∗x−1))c,

((y) ∗ t(y∗x∗y2))d,
((x ∗ y ∗ x2) ∗ t(y∗x−2∗y))e,

((y−2) ∗ t(y2∗x2))f ,

((y ∗ x) ∗ t(y3∗x−1))g,

((y) ∗ t(x−1∗y−1∗x))h,

((y3) ∗ t(y∗x−1∗y−2))i,

((x2 ∗ y2 ∗ x ∗ y−1) ∗ t(x∗y−1))j ,

((x2 ∗ y2) ∗ t(x2∗y))k,

((y ∗ x) ∗ t(x∗y−1∗x∗y))l,

((x ∗ y ∗ x2) ∗ t(x∗y3))m,

((y−2 ∗ x−2) ∗ t(x∗y−1∗x−1)3))n,

((x2 ∗ y2) ∗ t(y3))o,
((x2 ∗ y2 ∗ x ∗ y−1) ∗ t(x∗y2∗x−2∗y−1))p,

((y) ∗ t(x∗y2∗x−2))q,

((y−2 ∗ x−2) ∗ t(x∗y∗x2))r,

((x ∗ y ∗ x2) ∗ t(x∗y∗x∗y−1))s,

((y3) ∗ t(x∗y∗x2∗y))u,

((y−2) ∗ t(x2∗y2∗x))v >



348

2∗21 : (2× 21)

a b c d e f g h i j k l m n o p q r s u v G

4 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (2 : A10) : 2

2 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (A7 : 2) : (3 : 7 : 3)

G⟨x, y, t⟩ := Group⟨x, y, t|x6, (y−1 ∗ x−1)3, (y−1 ∗ x)3, x−1 ∗ y−1 ∗ x3 ∗ y−1 ∗ x ∗ y, t2,
(t, x ∗ y ∗ x−1 ∗ y−2), (t, x2 ∗ y−1 ∗ x−1 ∗ y),
((x2 ∗ y2 ∗ x ∗ y−1) ∗ t)a,
((y) ∗ t(x∗y∗x−1)2))b,

((y ∗ x2) ∗ t(x∗y−1∗x−1))c,

((x ∗ y ∗ x2) ∗ t(y∗x∗y2))d,
((y3) ∗ t(y∗x−2∗y))e,

((x2 ∗ y2 ∗ x ∗ y−1) ∗ t(y2∗x2))f ,

((y2) ∗ t(y3∗x−1))g,

((x ∗ y ∗ x2) ∗ t(x−1∗y−1∗x))h,

((y) ∗ t(y∗x−1∗y−2))i,

((y ∗ x2) ∗ t(x∗y−1))j ,

((y) ∗ t(x2∗y))k,

((x ∗ y ∗ x2) ∗ t(x∗y−1∗x∗y))l,

((y−2) ∗ t(x∗y3))m,

((x2 ∗ y2) ∗ t(x∗y−1∗x−1)3))n,

((y ∗ x2) ∗ t(y3))o,
((x2 ∗ y2 ∗ x ∗ y−1) ∗ t(x∗y2∗x−2∗y−1))p,

((y−2) ∗ t(x∗y2∗x−2))q,

((x ∗ y ∗ x2) ∗ t(x∗y∗x2))r,

((y2) ∗ t(x∗y∗x∗y−1))s,

((y) ∗ t(x∗y∗x2∗y))u,

((x ∗ y ∗ x2) ∗ t(x2∗y2∗x))v >
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2∗21 : (2× 21)

a b c d e f g h i j k l m n o p q r s u v G

4 14 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (24 : 3) : (A10 : 2)

G⟨x, y, t⟩ := Group⟨x, y, t|x6, (y−1 ∗ x−1)3, (y−1 ∗ x)3, x−1 ∗ y−1 ∗ x3 ∗ y−1 ∗ x ∗ y, t2,
(t, x ∗ y ∗ x−1 ∗ y−2), (t, x2 ∗ y−1 ∗ x−1 ∗ y),
((y3) ∗ t)a

((x2 ∗ y2) ∗ t(x∗y∗x−1)2))b,

((y ∗ x2) ∗ t(x∗y−1∗x−1))c,

((x ∗ y ∗ x2) ∗ t(y∗x∗y2))d,
((y) ∗ t(y∗x−2∗y))e,

((x2 ∗ y2 ∗ x ∗ y−1) ∗ t(y2∗x2))f ,

((y2) ∗ t(y3∗x−1))g,

((x ∗ y ∗ x2) ∗ t(x−1∗y−1∗x))h,

((y) ∗ t(y∗x−1∗y−2))i,

((y ∗ x2) ∗ t(x∗y−1))j ,

((y) ∗ t(x2∗y))k,

((x ∗ y ∗ x2) ∗ t(x∗y−1∗x∗y))l,

((y−2) ∗ t(x∗y3))m,

((x2 ∗ y2) ∗ t(x∗y−1∗x−1)3))n,

((y ∗ x2) ∗ t(y3))o,
((x2 ∗ y2 ∗ x ∗ y−1) ∗ t(x∗y2∗x−2∗y−1))p,

((y ∗ x2) ∗ t(x∗y2∗x−2))q,

((y) ∗ t(x∗y∗x2))r,

((y ∗ x2) ∗ t(x∗y∗x∗y−1))s,

((y3) ∗ t(x∗y∗x2∗y))u,

((y) ∗ t(x2∗y2∗x))v >
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10.6 2∗30 : (S6)

We have the following information

S:=Sym(30), we are working with 30 letters.

x ∼ (1, 2, 4, 7, 10)(3, 6, 9, 14, 18)(5, 8, 12, 11, 16)(13, 17, 19, 24, 21)

(15, 20, 25, 29, 23)(22, 27, 30, 26, 28)

y ∼ (1, 3)(2, 5)(4, 6)(7, 11)(8, 13)(9, 15)(10, 12)(14, 19)(16, 21)(17, 22)

(18, 23)(20, 26)(24, 28)(25, 30)(27, 29)

The order of |N | = 720.

2∗30 : (S6)

a b c d e f g h i j G

0 0 0 0 0 0 2 0 6 2 A7 : 2

0 0 0 0 0 0 2 2 0 6 Sym(6) : 2

0 0 0 0 0 0 2 2 4 0 23

0 0 0 0 0 0 2 2 8 0 24

0 0 0 0 0 0 4 2 2 0 (2 : 34)(A6 : 2)

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((x) ∗ t(x−1∗y∗x−1∗y∗x2∗y∗x∗y))a,

((y) ∗ t(x2∗y∗x−1∗y∗x∗y))b,

(((x ∗ y)3) ∗ t(x−1∗y∗x−1∗y∗x2∗y∗x))c,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(x2∗y∗x−2∗y∗x−2∗y∗x∗y∗x−1))d,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(x∗y∗x2∗y))e,

((x2 ∗ y ∗ x−1 ∗ y ∗ x ∗ y) ∗ t(y∗x2∗y∗x2∗y∗x−1∗y))f ,

(((x ∗ y)2) ∗ t(y∗x∗y∗x−2∗y∗x−2))g,

((x ∗ y ∗ x−1 ∗ y) ∗ t(x−2∗y∗x∗y))h,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(x2∗y∗x−1))i,

((x ∗ y) ∗ t(y∗x∗y∗x2∗y∗x2))j¿
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2∗30 : (S6)

a b c d e f g h i j G

0 0 0 0 0 0 0 3 0 2 (29 : A6) : 2

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((x ∗ y) ∗ t(x2∗y∗x−1∗y∗x∗y))a,

((x2 ∗ y ∗ x−1 ∗ y ∗ x ∗ y) ∗ t(x2∗y∗x−2∗y∗x∗y))b,

((y) ∗ t(x∗y∗x2∗y))c,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(y∗x∗y∗x∗y∗x2∗y∗x))d,

(((x ∗ y)2) ∗ t(x∗y∗x∗y∗x−2∗y))e,

((x ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x−1∗y∗x−1∗y∗x))f ,

((x) ∗ t(x−1∗y∗x−1∗y∗x2∗y∗x∗y))g,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(y∗x2∗y∗x2∗y∗x−2∗y∗x−1))h,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x2∗y))i,

((x2 ∗ y ∗ x−1 ∗ y ∗ x ∗ y) ∗ t(y∗x2∗y∗x2∗y∗x−1∗y))j¿

2∗30 : (S6)

a b c d e f g h i j G

0 0 0 0 0 0 0 2 0 2 Cyclic(2)

0 0 0 0 0 0 0 3 0 2 (26 : A7) : 2

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((y) ∗ t(x∗y∗x2∗y))a,

(((x ∗ y)3) ∗ t(x2∗y∗x−1∗y∗x∗y))b,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(y∗x−1∗y∗x∗y∗x−2∗y∗x))c,

(((x ∗ y)2) ∗ t(x2∗y∗x−2∗y∗x−2∗y∗x∗y∗x−1))d,

((x ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x−1∗y∗x∗y∗x))e,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(x−2∗y∗x∗y))f ,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(y∗x∗y∗x∗y∗x2∗y∗x))g,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(y∗x∗y∗x2∗y∗x2))h,

((x) ∗ t(x2∗y∗x−1∗y∗x∗y))i,

((x ∗ y) ∗ t(x2∗y∗x−1∗y∗x−1∗y∗x))j¿
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2∗30 : (S6)

a b c d e f g h i j G

0 0 0 0 0 0 0 3 2 3 (25 : A6) : 2

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((x ∗ y) ∗ t(y∗x∗y∗x2∗y∗x2))a,

((y) ∗ t(y∗x−1∗y∗x∗y∗x−2∗y∗x))b,

((x ∗ y) ∗ t(x−1∗y∗x−1∗y∗x2∗y∗x∗y))c,

(((x ∗ y)3) ∗ t(x2∗y∗x−1))d,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(y∗x∗y∗x∗y∗x2∗y∗x))e,

(((x ∗ y)2) ∗ t(x2∗y∗x−1∗y∗x∗y))f ,

((x ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x−1∗y∗x−2∗y∗x−2))g,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(x∗y∗x2∗y∗x−1))h,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(x2∗y∗x−2∗y∗x∗y))i,

((x) ∗ t(x∗y∗x2∗y))j >

2∗30 : (S6)

a b c d e f g h i j G

0 0 0 0 0 0 2 2 0 3 (3 : A8) : 2

0 0 0 0 0 0 2 2 4 3 A8 : 2

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((x2 ∗ y ∗ x−1 ∗ y ∗ x ∗ y) ∗ t(y∗x2∗y∗x2∗y))a,

((x ∗ y) ∗ t(y∗x2∗y∗x2∗y∗x−1∗y))b,

((x) ∗ t(x∗y∗x∗y∗x−2∗y))c,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x−1∗y∗x−1∗y∗x2))d,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(x−2∗y∗x−2∗y∗x∗y∗x−2))e,

((x ∗ y ∗ x−1 ∗ y) ∗ t(x−2∗y∗x∗y))f ,

(((x ∗ y)2) ∗ t(y∗x−1∗y∗x∗y∗x−2∗y∗x))g,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(x2∗y∗x−1))h,

(((x ∗ y)3) ∗ t(x∗y∗x−1∗y∗x−2∗y∗x−2))i,
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((y) ∗ t(x∗y∗x−1∗y∗x−1∗y∗x))j >

2∗30 : (S6)

a b c d e f g h i j G

0 0 0 0 0 0 2 0 7 2 (7 : 2) : A9

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((y) ∗ t(x−2∗y∗x∗y))a,

((x) ∗ t(x−1∗y∗x−1∗y∗x2∗y∗x∗y))b,

((x2 ∗ y ∗ x−1 ∗ y ∗ x ∗ y) ∗ t(y∗x2∗y∗x2∗y∗x−1∗y))c,

(((x ∗ y)3) ∗ t(y∗x∗y∗x∗y∗x2∗y∗x))d,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(y∗x−1∗y∗x∗y∗x−2∗y∗x))e,

(((x ∗ y)2) ∗ t(x∗y∗x2∗y))f ,

((x ∗ y ∗ x−1 ∗ y) ∗ t(x2∗y∗x−1∗y∗x−1∗y∗x))g,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(x2∗y∗x−2∗y∗x∗y))h,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(y∗x∗y∗x2∗y∗x2))i,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(x2∗y∗x−2∗y∗x−2∗y∗x∗y∗x−1))j >

2∗30 : (S6)

a b c d e f g h i j G

0 0 0 0 0 0 2 8 2 0 (26 : A6) : 2
2

0 0 0 0 0 0 3 0 3 2 (35 : A6) : 2

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((y) ∗ t(y∗x−1∗y∗x∗y∗x−2∗y∗x))a,

(((x ∗ y)3) ∗ t(x2∗y∗x−1))b,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(y∗x∗y∗x∗y∗x2∗y∗x))c,

(((x ∗ y)2) ∗ t(x2∗y∗x−1∗y∗x∗y))d,

((x ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x−1∗y∗x−2∗y∗x−2))e,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(x∗y∗x2∗y∗x−1))f ,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x−2∗y∗x−2∗y∗x))g,

((x) ∗ t(x2∗y∗x−2∗y∗x∗y))h,
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((x ∗ y) ∗ t(x∗y∗x2∗y))i,

((x2 ∗ y ∗ x−1 ∗ y ∗ x ∗ y) ∗ t(x2∗y∗x−1∗y∗x−1∗y∗x))j >

2∗30 : (S6)

a b c d e f g h i j G

0 0 0 0 0 0 2 0 2 4 (210 : A6) : 2
2

0 0 0 0 0 0 2 2 6 3 (3 : PSL(4, 3)) : 2

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((x2 ∗ y ∗ x−1 ∗ y ∗ x ∗ y) ∗ t(x∗y∗x∗y∗x−2∗y))a,

((x ∗ y) ∗ t(x∗y∗x−1∗y∗x−1∗y∗x2))b,

((x) ∗ t(x−2∗y∗x−2∗y∗x∗y∗x−2))c,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x−1∗y∗x2∗y∗x2∗y))d,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(y∗x−1∗y∗x2∗y∗x∗y))e,

((x ∗ y ∗ x−1 ∗ y) ∗ t(x−1∗y∗x−1∗y∗x2∗y∗x∗y))f ,

(((x ∗ y)2) ∗ t(x−2∗y∗x∗y))g,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(x∗y∗x∗y∗x−2∗y∗x−2∗y∗x−1))h,

(((x ∗ y)3) ∗ t(x2∗y∗x2∗y∗x−1))i,

((y) ∗ t(x∗y∗x2∗y∗x−1))j >

2∗30 : (S6)

a b c d e f g h i j G

0 0 0 0 0 0 0 2 2 3 A7 : 2

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((y) ∗ t(x2∗y∗x−1∗y∗x∗y))a,

(((x ∗ y)3) ∗ t(x∗y∗x−1∗y∗x−2∗y∗x−2))b,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(x∗y∗x2∗y∗x−1))c,

(((x ∗ y)2) ∗ t(x∗y∗x−2∗y∗x−2∗y∗x))d,

((x ∗ y ∗ x−1 ∗ y) ∗ t(x2∗y∗x−2∗y∗x∗y))e,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(x∗y∗x2∗y))f ,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x−1∗y∗x∗y∗x))g,
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((x) ∗ t(x∗y∗x∗y∗x−2∗y))h,

((x ∗ y) ∗ t(x−2∗y∗x−2∗y∗x∗y∗x−2))i,

((x2 ∗ y ∗ x−1 ∗ y ∗ x ∗ y) ∗ t(y∗x2∗y∗x2∗y))j >

2∗30 : (S6)

a b c d e f g h i j G

0 0 0 0 0 0 3 2 3 0 (3 : A7) : 2

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((y) ∗ t(x2∗y∗x−1∗y∗x−1∗y∗x))a,

(((x ∗ y)3) ∗ t(x∗y∗x2∗y))b,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(x2∗y∗x−2∗y∗x∗y))c,

(((x ∗ y)2) ∗ t(x∗y∗x−2∗y∗x−2∗y∗x))d,

((x ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x2∗y∗x−1))e,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(x∗y∗x−1∗y∗x−2∗y∗x−2))f ,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(x2∗y∗x−1∗y∗x∗y))g,

((x) ∗ t(y∗x∗y∗x∗y∗x2∗y∗x))h,

((x ∗ y) ∗ t(x2∗y∗x−1))i,

((x2 ∗ y ∗ x−1 ∗ y ∗ x ∗ y) ∗ t(y∗x−1∗y∗x∗y∗x−2∗y∗x))j >
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2∗30 : (S6)

a b c d e f g h i j G

0 0 0 0 0 0 2 3 8 2 (210 : A6) : 2

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((x2 ∗ y ∗ x−1 ∗ y ∗ x ∗ y) ∗ t(x−2∗y∗x∗y))a,

((x ∗ y) ∗ t(x∗y∗x−1∗y∗x−1∗y∗x))b,

((x) ∗ t(x−1∗y∗x−1∗y∗x2∗y∗x∗y))c,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(y∗x−1∗y∗x2∗y∗x∗y))d,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(x∗y∗x−1∗y∗x2∗y∗x2∗y))e,

((x ∗ y ∗ x−1 ∗ y) ∗ t(x−2∗y∗x−2∗y∗x∗y∗x−2))f ,

(((x ∗ y)2) ∗ t(x∗y∗x−1∗y∗x−1∗y∗x2))g,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(x∗y∗x∗y∗x−2∗y))h,

(((x ∗ y)3) ∗ t(y∗x2∗y∗x2∗y∗x−1∗y))i,

((y) ∗ t(y∗x2∗y∗x2∗y))j >

2∗30 : (S6)

a b c d e f g h i j G

0 0 0 0 0 0 2 3 5 2 (24 : 34)(A6 : 2)

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((y) ∗ t(y∗x∗y∗x∗y∗x2∗y∗x))a,

(((x ∗ y)2) ∗ t(x∗y∗x2∗y∗x−1))b,

((x ∗ y) ∗ t(x∗y∗x−1∗y∗x∗y∗x))c,

((x) ∗ t(x2∗y∗x−1∗y∗x−1∗y∗x))d,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(x∗y∗x−1∗y∗x−2∗y∗x−2))e,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(x2∗y∗x−2∗y∗x∗y))f ,

((x ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x−2∗y∗x−2∗y∗x))g,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x2∗y))h,

((x2 ∗ y ∗ x−1 ∗ y ∗ x ∗ y) ∗ t(y∗x2∗y∗x2∗y∗x−2∗y∗x−1))i,

(((x ∗ y)3) ∗ t(x2∗y∗x−1∗y∗x∗y))j >
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2∗30 : (S6)

a b c d e f g h i j G

0 0 0 0 0 0 0 2 2 5 (5 : A7) : 2

0 0 0 0 0 0 0 2 2 6 (A8 : 2)(3 : 2)

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((x2 ∗ y ∗ x−1 ∗ y ∗ x ∗ y) ∗ t(y∗x2∗y∗x−2∗y∗x−1∗y∗x))a,

((x ∗ y) ∗ t(x−1∗y∗x−1∗y∗x2∗y∗x))b,

((x) ∗ t(x2∗y∗x2∗y∗x−1))c,

((x ∗ y ∗ x−1 ∗ y) ∗ t(y∗x∗y∗x−2∗y∗x−2))d,

(((x ∗ y)3) ∗ t(x2∗y∗x−1∗y∗x−1∗y∗x))e,

((y) ∗ t(x∗y∗x2∗y))f ,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(x2∗y∗x−2∗y∗x−2∗y∗x∗y∗x−1))g,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(x∗y∗x−1∗y∗x∗y∗x))h,

(((x ∗ y)2) ∗ t(y∗x2∗y∗x2∗y∗x−2∗y∗x−1))i,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(y∗x∗y∗x2∗y∗x2))j >

2∗30 : (S6)

a b c d e f g h i j G

2 4 0 2 0 0 0 0 0 0 (22 : A7) : 2

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((x) ∗ t(y∗x2∗y∗x2∗y))a,

((x2 ∗ y ∗ x−1 ∗ y ∗ x ∗ y) ∗ t(y∗x−1∗y∗x∗y∗x−2∗y∗x))b,

((x ∗ y) ∗ t(x∗y∗x−1∗y∗x2∗y∗x2∗y))c,

((x) ∗ t(x2∗y∗x−1∗y∗x−1∗y∗x))d,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x∗y∗x−2∗y∗x−2∗y∗x−1))e,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(x∗y∗x∗y∗x−2∗y))f ,

((x ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x2∗y))g,

(((x ∗ y)2) ∗ t(y∗x2∗y∗x2∗y∗x−2∗y∗x−1))h,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(x∗y∗x∗y∗x−2∗y))i,

(((x ∗ y)3) ∗ t(x∗y∗x−1∗y∗x∗y∗x))j >
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2∗30 : (S6)

a b c d e f g h i j G

2 2 4 0 0 0 0 0 0 0 (25 : A6) : 2
2

G⟨x, y, t⟩ := Group < x, y, t|x5, y2, (x−1∗y)6,(x−1∗y∗x∗y)3, (x∗y∗x∗y∗x−1∗y∗x−1∗y)2, t2,
((x2 ∗ y ∗ x−1 ∗ y ∗ x ∗ y) ∗ t(y∗x2∗y∗x2∗y))a,

((y) ∗ t(y∗x−1∗y∗x∗y∗x−2∗y∗x))b,

(((x ∗ y)3) ∗ t(x2∗y∗x2∗y∗x−1))c,

((x2 ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x−2 ∗ y) ∗ t(y∗x∗y∗x2∗y∗x2))d,

(((x ∗ y)2) ∗ t(x2∗y∗x−1∗y∗x∗y))e,

((x ∗ y ∗ x−1 ∗ y) ∗ t(x∗y∗x−1∗y∗x−2∗y∗x−2))f ,

((x ∗ y ∗ x ∗ y ∗ x) ∗ t(x∗y∗x∗y∗x−2∗y∗x−2∗y∗x−1))g,

((x ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y) ∗ t(x2∗y∗x−2∗y∗x−2∗y∗x∗y∗x−1))h,

((x) ∗ t(x∗y∗x2∗y))i,

((x ∗ y) ∗ t(x−2∗y∗x∗y))j >
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10.7 2∗72 : ((23 : 3) : 2)

We have the following information

S:=Sym(72), we are working with 72 letters.

x ∼ (1, 21, 19, 71, 51, 53)(2, 20, 52)(3, 43, 39, 69, 29, 33)(4, 40, 30)

(5, 65, 59, 67, 7, 13)(6, 60, 8)(9, 35, 25, 63, 37, 47)(10, 26, 38)(11, 57, 45, 61, 15, 27)

(12, 46, 16)(14, 66, 68)(17, 49, 31, 55, 23, 41)(18, 32, 24)(22, 72, 54)

(28, 58, 62)(34, 44, 70)(36, 64, 48)(42, 50, 56)

y ∼ (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)

(17, 18)(19, 20)(21, 22)(23, 24)(25, 26)(27, 28)(29, 30)(31, 32)(33, 34)

(35, 36)(37, 38)(39, 40)(41, 42)(43, 44)(45, 46)(47, 48)(49, 50)(51, 52)(53, 54)

(55, 56)(57, 58)(59, 60)(61, 62)(63, 64)(65, 66)(67, 68)(69, 70)(71, 72);

z ∼ (1, 57, 53, 11, 51, 27, 71, 15, 19, 61, 21, 45)(2, 28, 22, 12, 20, 58, 72, 46, 52, 62, 54, 16)

(3, 41, 33, 23, 29, 55, 69, 31, 39, 49, 43, 17)(4, 56, 44, 24, 40, 42, 70, 18, 30, 50, 34, 32)

(5, 25, 13, 35, 7, 9, 67, 47, 59, 37, 65, 63)(6, 10, 66, 36, 60, 26, 68, 64, 8, 38, 14, 48)

The order of |N | = 48 .

2∗72

a b c d e f g h i j k l m G

0 4 0 0 0 0 0 0 0 0 0 0 0 (372 : 3) : 24

G⟨x, y, t⟩ := Group⟨x, y, t|y2, (x, z), x6, (x ∗ y ∗ x)2, z ∗ y ∗ x2 ∗ z−1 ∗ y, z2 ∗ x2 ∗ z2, y ∗ x−1 ∗
y ∗ x ∗ z−2, t37, t(x3) = t(36), t(x ∗ z2 ∗ y ∗ z ∗ y) = t14

((x2 ∗ z−2) ∗ t(x2∗y∗x−1))a,

((x ∗ y) ∗ t(z∗x−1))b,

((x2 ∗ z−2) ∗ t(x∗y∗z))c,
((z) ∗ t(x3∗z))d,

((x2 ∗ z−2) ∗ t(x−1∗y∗z))e,

((x ∗ y) ∗ t(x∗z−2))f ,

((x2 ∗ z−2) ∗ t(x2∗y))g,

((z) ∗ t(x))h,
((x2 ∗ z−2) ∗ t(x∗y))i,
((x) ∗ t(x3∗z−1))j ,

((x2 ∗ z−2) ∗ t(x∗y∗z−1))k,
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((x ∗ y) ∗ t(z−1))l,

((x2 ∗ z−2) ∗ t(z−1∗y))m >
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10.8 2∗84 : PSL(2, 7)

We have the following information

S:=Sym(84), we are working with 84 letters.

x ∼ (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 19)(14, 22)(16, 24)

(17, 26)(20, 29)(21, 31)(23, 33)(25, 30)(27, 36)(28, 37)(32, 40)(34, 42)(35, 43)(38, 47)

(39, 48)(41, 51)(44, 49)(45, 55)(46, 57)(50, 61)(52, 58)(53, 64)(54, 66)

(56, 65)(59, 69)(60, 71)(62, 70)(63, 73)(68, 76)(75, 80)(78, 82)(79, 83)(81, 84)

y ∼ (1, 3, 6, 11)(2, 4, 8, 14)(5, 9, 16, 25)(7, 12, 20, 30)(10, 17, 13, 21)(15, 23, 19, 28)

(18, 27, 24, 34)(22, 32, 29, 38)(26, 35, 44, 54)(31, 39, 49, 60)(33, 41, 52, 63)

(36, 45, 56, 48)(37, 46, 58, 68)(40, 50, 62, 43)(42, 53, 65, 57)

(47, 59, 70, 51)(55, 67, 71, 78)(61, 72, 66, 75)(64, 74, 76, 81)(69, 77, 73, 79)(80, 84)(82, 83)

The order of |N | = 168 .

2∗84 : PSL(2, 7)

a b c d e f g h i G

3 3 0 0 0 0 0 0 0 PSL(2, 7)

G⟨x, y, t⟩ := Group⟨x, y, t|x2, y4, y−2 ∗ x ∗ y2 ∗ x ∗ y2 ∗ x, (x ∗ y−1)7, t2, (t, (x ∗ y ∗ x ∗ y−1)2)

((y) ∗ t(y∗x∗y−1∗x∗y∗x∗y−1))a,

((y) ∗ t(x∗y∗x∗y−1∗x∗y∗x))b,

((y) ∗ t(x∗y))c,
((y) ∗ t(x∗y∗x∗y−1∗x∗y))d,

((y) ∗ t(y2))e,
((y) ∗ t(y∗x∗y−1∗x∗y))f ,

((y) ∗ t(y∗x∗y−1∗x∗y∗x∗y))g,

((y) ∗ t(y ∗ x ∗ y))h, ((y) ∗ t(x∗y∗x∗y−1∗x∗y∗x∗y∗x))i >
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10.9 2∗160 : (J1)

We have the following information

S:=Sym(160), we are working with 160 letters.

x ∼ (1, 2, 6, 19, 5, 16, 47, 119, 52, 50)(3, 10, 33, 35, 77, 48, 93, 98, 137, 140)

(4, 13, 41, 100, 97, 49, 106, 150, 139, 89)(7, 22, 65, 38, 64, 120, 53, 129, 141, 108)

(8, 25, 71, 107, 80, 121, 157, 61, 30, 86)(9, 29, 82, 148, 123, 122, 158, 136, 135, 11)

(12, 37, 63, 81, 152, 87, 28, 78, 102, 20)(14, 26, 75, 73, 56, 124, 159, 105, 94, 111)

(15, 45, 113, 149, 145, 125, 115, 39, 103, 118)(17, 51, 66, 142, 155, 126, 96, 130, 43, 34)

(18, 55, 91, 32, 85, 67, 60, 59, 133, 127)(21, 44, 114, 110, 154, 83, 92, 58, 72, 146)

(23, 46, 31, 88, 95, 128, 151, 143, 70, 57)(24, 69, 117, 132, 42, 109, 138, 116, 160, 156)

(27, 68, 144, 101, 36, 99, 134, 104, 79, 62)(40, 76, 74, 147, 131, 112, 54, 84, 153, 90)

y ∼ (1, 3, 11, 33, 91, 93)(2, 7)(4, 14)(5, 17, 52, 95, 85, 142)(6, 20, 60, 90, 136, 71)

(8, 26, 76, 24, 70, 72)(9, 30, 32, 23, 68, 103)(10, 16, 48, 123, 98, 59)(12, 38, 78, 129, 80, 146)

(13, 42, 100, 114, 150, 64)(15, 46, 102, 153, 157, 96)(18, 56, 29, 83, 36, 69)

(19, 57, 127, 43, 50, 126)(21, 62, 138, 67, 111, 158)(22, 66, 44, 115, 116, 31)

(25, 51, 125, 151, 81, 147)(27, 77)(28, 79, 113, 144, 74, 148)(34, 94, 112, 75, 118, 132)(35, 97)

(37, 101, 39, 104, 84, 135)(40, 105, 145, 160, 155, 73)(41, 108, 106, 156, 139, 58)

(45, 117, 143, 53, 130, 92)(47, 120)(49, 124)(54, 109, 88, 110, 121, 159)

(55, 131, 82, 61, 119, 152)(63, 65, 86, 154, 87, 141)(89, 137)(99, 140)(107, 133, 128, 134, 149, 122)

The order of |N | = 1920.

2∗160 : (J1)

a b c d e f g h i j k l m n G

5 2 0 0 0 0 0 0 0 0 0 0 0 0 210 : A5

7 2 0 0 0 0 0 0 0 0 0 0 0 0 J1

5 2 0 6 0 0 0 0 0 0 0 0 0 0 25 : A5

G⟨x, y, t⟩ := Group⟨x, y, t|x10, y6, (x ∗ y−2 ∗ x)2, (x ∗ y2 ∗ x2)2, (y−1 ∗ x−1)5,

(x ∗ y2 ∗ x−1 ∗ y−1)2, x−1 ∗ y−1 ∗ x5 ∗ y ∗ x−4,

y ∗ x−2 ∗ y−1 ∗ x3 ∗ y ∗ x ∗ y3 ∗ x−1, t2, (t, (x ∗ y−1 ∗ x−1)2), (t, (y ∗ x ∗ y)2)
((x) ∗ t(x))a,
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((y3) ∗ t(x2∗y2∗x∗y∗x−1))b,

((x5) ∗ t(y∗x∗y−2∗x∗y∗x))c,

((y) ∗ t(x−2∗y−2))d,

((y ∗ x−1) ∗ t(y−1∗x−1∗y−1∗x−3))e,

((x ∗ y−1 ∗ x ∗ y−2 ∗ x ∗ y) ∗ t(y∗x∗y2∗x∗y∗x∗y))f ,
((x5) ∗ t(x−1∗y∗x∗y∗x−1∗y−1∗x−1∗y−1))g,

((x) ∗ t(y∗x2∗y−1∗x))h,

((y) ∗ t(y∗x))i,
((y ∗ x−1) ∗ t(y2))j ,
((x) ∗ t(x∗y∗x2∗y−1∗x−2))k,

((x ∗ y−1 ∗ x ∗ y−2 ∗ x ∗ y) ∗ t(y−1∗x−1∗y−1∗x∗y−1∗x−1∗y))l,

((y ∗ x−1) ∗ t(y−1∗x∗y∗x−2∗y∗x))m,

((y3) ∗ t(x−3∗y−1∗x−1∗y2))n >
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2∗160 : (J1)

a b c d e f g h i j k l m n G

3 0 0 0 0 0 0 0 0 0 0 0 0 0 (35 : 24) : A5

0 2 0 0 0 0 0 0 0 0 0 0 0 0 Cyclic(2)

0 3 0 0 0 0 0 0 0 0 0 0 0 0 PSL(6, 2)

3 12 0 0 0 0 0 0 0 0 0 0 0 0 (35 : 24) : A5

G⟨x, y, t⟩ := Group⟨x, y, t|x10, y6, (x ∗ y−2 ∗ x)2, (x ∗ y2 ∗ x2)2, (y−1 ∗ x−1)5,

(x ∗ y2 ∗ x−1 ∗ y−1)2, x−1 ∗ y−1 ∗ x5 ∗ y ∗ x−4,

y ∗ x−2 ∗ y−1 ∗ x3 ∗ y ∗ x ∗ y3 ∗ x−1, t2, (t, (x ∗ y−1 ∗ x−1)2), (t, (y ∗ x ∗ y)2)
((y ∗ x−1) ∗ t(x))a,
((y ∗ x3 ∗ y) ∗ t(x2∗y2∗x∗y∗x−1))b,

((y ∗ x−1) ∗ t(y∗x∗y−2∗x∗y∗x))c,

((y ∗ x3 ∗ y) ∗ t(x−2∗y−2))d,

((y2) ∗ t(y−1∗x−1∗y−1∗x−3))e,

((y ∗ x3 ∗ y) ∗ t(y∗x∗y2∗x∗y∗x∗y))f ,
((y2) ∗ t(x−1∗y∗x∗y∗x−1∗y−1∗x−1∗y−1))g,

((y ∗ x3 ∗ y) ∗ t(y∗x2∗y−1∗x))h,

((y ∗ x−1) ∗ t(y∗x))i,
((x ∗ y ∗ x ∗ y2 ∗ x ∗ y) ∗ t(y2))j ,
((x) ∗ t(x∗y∗x2∗y−1∗x−2))k,

((y2) ∗ t(y−1∗x−1∗y−1∗x∗y−1∗x−1∗y))l,

((y) ∗ t(y−1∗x∗y∗x−2∗y∗x))m,

((x ∗ y ∗ x ∗ y2 ∗ x ∗ y) ∗ t(x−3∗y−1∗x−1∗y2))n >
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2∗160 : (J1)

a b c d e f g h i j k l m n G

0 6 2 6 0 0 0 0 0 0 0 0 0 0 A5 : (3
4 : 2)

0 12 2 6 0 0 0 0 0 0 0 0 0 0 (24 : 34)(2 : A5)

0 10 2 6 0 0 0 0 0 0 0 0 0 0 (54 : A5) : 2

0 8 2 6 0 0 0 0 0 0 0 0 0 0 214 : A5

0 14 2 6 0 0 0 0 0 0 0 0 0 0 A5 : (7
4 : 2)

G⟨x, y, t⟩ := Group⟨x, y, t|x10, y6, (x ∗ y−2 ∗ x)2, (x ∗ y2 ∗ x2)2, (y−1 ∗ x−1)5,

(x ∗ y2 ∗ x−1 ∗ y−1)2, x−1 ∗ y−1 ∗ x5 ∗ y ∗ x−4,

y ∗ x−2 ∗ y−1 ∗ x3 ∗ y ∗ x ∗ y3 ∗ x−1, t2, (t, (x ∗ y−1 ∗ x−1)2), (t, (y ∗ x ∗ y)2)
(((x−1 ∗ y)3) ∗ t(x))a,
((y ∗ x3 ∗ y) ∗ t(x2∗y2∗x∗y∗x−1))b,

(((x−1 ∗ y)3) ∗ t(y∗x∗y−2∗x∗y∗x))c,

((y) ∗ t(x−2∗y−2))d,

(((x−1 ∗ y)3) ∗ t(y−1∗x−1∗y−1∗x−3))e,

((x) ∗ t(y∗x∗y2∗x∗y∗x∗y))f ,
(((x−1 ∗ y)3) ∗ t(x−1∗y∗x∗y∗x−1∗y−1∗x−1∗y−1))g,

((y ∗ x3 ∗ y) ∗ t(y∗x2∗y−1∗x))h,

(((x−1 ∗ y)3) ∗ t(y∗x))i,
((y) ∗ t(y2))j ,
((x5) ∗ t(x∗y∗x2∗y−1∗x−2))k,

((y ∗ x3 ∗ y) ∗ t(y−1∗x−1∗y−1∗x∗y−1∗x−1∗y))l,

((x3) ∗ t(y−1∗x∗y∗x−2∗y∗x))m,

((y ∗ x3 ∗ y) ∗ t(x−3∗y−1∗x−1∗y2))n¿
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2∗160 : (J1)

a b c d e f g h i j k l m n G

0 3 0 0 0 0 0 0 0 0 0 0 0 0 J2

G⟨x, y, t⟩ := Group⟨x, y, t|x10, y6, (x ∗ y−2 ∗ x)2, (x ∗ y2 ∗ x2)2, (y−1 ∗ x−1)5,

(x ∗ y2 ∗ x−1 ∗ y−1)2, x−1 ∗ y−1 ∗ x5 ∗ y ∗ x−4,

y ∗ x−2 ∗ y−1 ∗ x3 ∗ y ∗ x ∗ y3 ∗ x−1, t2, (t, (x ∗ y−1 ∗ x−1)2), (t, (y ∗ x ∗ y)2)
((y2) ∗ t(x))a,
((x ∗ y−1 ∗ x ∗ y−2 ∗ x ∗ y) ∗ t(x2∗y2∗x∗y∗x−1))b,

((y2) ∗ t(y∗x∗y−2∗x∗y∗x))c,

((y ∗ x−1) ∗ t(x−2∗y−2))d,

((y2) ∗ t(y−1∗x−1∗y−1∗x−3))e,

(((x−1 ∗ y)3) ∗ t(y∗x∗y2∗x∗y∗x∗y))f ,
((y2) ∗ t(x−1∗y∗x∗y∗x−1∗y−1∗x−1∗y−1))g,

(((x−1 ∗ y)3) ∗ t(y∗x2∗y−1∗x))h,

((y2) ∗ t(y∗x))i,
((x) ∗ t(y2))j ,
(((x−1 ∗ y)3) ∗ t(x∗y∗x2∗y−1∗x−2))k,

((y) ∗ t(y−1∗x−1∗y−1∗x∗y−1∗x−1∗y))l,

((y ∗ x−1) ∗ t(y−1∗x∗y∗x−2∗y∗x))m,

((x ∗ y−1 ∗ x ∗ y−2 ∗ x ∗ y) ∗ t(x−3∗y−1∗x−1∗y2))n >;
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2∗160 : (J1)

a b c d e f g h i j k l m n G

4 2 6 8 0 0 0 0 0 0 0 0 0 0 219 : A5

4 2 0 6 0 0 0 0 0 0 0 0 0 0 (24 : 35)(25 : A5)

8 10 6 2 0 0 0 0 0 0 0 0 0 0 29 : A5

G⟨x, y, t⟩ := Group⟨x, y, t|x10, y6, (x ∗ y−2 ∗ x)2, (x ∗ y2 ∗ x2)2, (y−1 ∗ x−1)5,

(x ∗ y2 ∗ x−1 ∗ y−1)2, x−1 ∗ y−1 ∗ x5 ∗ y ∗ x−4,

y ∗ x−2 ∗ y−1 ∗ x3 ∗ y ∗ x ∗ y3 ∗ x−1, t2, (t, (x ∗ y−1 ∗ x−1)2), (t, (y ∗ x ∗ y)2)
((y ∗ x3 ∗ y) ∗ t(x))a,
(((x−1 ∗ y)3) ∗ t(x2∗y2∗x∗y∗x−1))b,

((y ∗ x−1) ∗ t(y∗x∗y−2∗x∗y∗x))c,

(((x−1 ∗ y)3) ∗ t(x−2∗y−2))d,

((x2) ∗ t(y−1∗x−1∗y−1∗x−3))e,

(((x−1 ∗ y)3) ∗ t(y∗x∗y2∗x∗y∗x∗y))f ,
((x) ∗ t(x−1∗y∗x∗y∗x−1∗y−1∗x−1∗y−1))g,

(((x−1 ∗ y)3) ∗ t(y∗x2∗y−1∗x))h,

((x2) ∗ t(y∗x))i,
((y) ∗ t(y2))j ,
(((x ∗ y−1 ∗ x−1)2) ∗ t(x∗y∗x2∗y−1∗x−2))k,

((y) ∗ t(y−1∗x−1∗y−1∗x∗y−1∗x−1∗y))l,

(((x ∗ y−1 ∗ x−1)2) ∗ t(y−1∗x∗y∗x−2∗y∗x))m,

((y ∗ x−1) ∗ t(x−3∗y−1∗x−1∗y2))n >
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2∗160 : (J1)

a b c d e f g h i j k l m n G

6 10 2 0 0 0 0 0 0 0 0 0 0 0 A5 : (3
4 : 2)

6 12 2 8 0 0 0 0 0 0 0 0 0 0 (29 : A6) : 2

10 10 2 6 0 0 0 0 0 0 0 0 0 0 (54 : A5) : 2

14 10 2 6 0 0 0 0 0 0 0 0 0 0 (74 : 2) : A5

G⟨x, y, t⟩ := Group⟨x, y, t|x10, y6, (x ∗ y−2 ∗ x)2, (x ∗ y2 ∗ x2)2, (y−1 ∗ x−1)5,

(x ∗ y2 ∗ x−1 ∗ y−1)2, x−1 ∗ y−1 ∗ x5 ∗ y ∗ x−4,

y ∗ x−2 ∗ y−1 ∗ x3 ∗ y ∗ x ∗ y3 ∗ x−1, t2, (t, (x ∗ y−1 ∗ x−1)2), (t, (y ∗ x ∗ y)2)
((x ∗ y−1 ∗ x ∗ y−2 ∗ x ∗ y) ∗ t(x))a,
((x) ∗ t(x2∗y2∗x∗y∗x−1))b,

((x ∗ y−1 ∗ x ∗ y−2 ∗ x ∗ y) ∗ t(y∗x∗y−2∗x∗y∗x))c,

((y) ∗ t(x−2∗y−2))d,

((x ∗ y−1 ∗ x ∗ y−2 ∗ x ∗ y) ∗ t(y−1∗x−1∗y−1∗x−3))e,

((y ∗ x3 ∗ y) ∗ t(y∗x∗y2∗x∗y∗x∗y))f ,
((x ∗ y−1 ∗ x ∗ y−2 ∗ x ∗ y) ∗ t(x−1∗y∗x∗y∗x−1∗y−1∗x−1∗y−1))g,

((y ∗ x3 ∗ y) ∗ t(y∗x2∗y−1∗x))h,

((x ∗ y−1 ∗ x ∗ y−2 ∗ x ∗ y) ∗ t(y∗x))i,
((y) ∗ t(y2))j ,
((x3) ∗ t(x∗y∗x2∗y−1∗x−2))k,

((y3) ∗ t(y−1∗x−1∗y−1∗x∗y−1∗x−1∗y))l,

((y ∗ x3 ∗ y) ∗ t(y−1∗x∗y∗x−2∗y∗x))m,

((x) ∗ t(x−3∗y−1∗x−1∗y2))n >
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2∗160 : (J1)

a b c d e f g h i j k l m n G

3 6 0 0 0 0 0 0 0 0 0 0 0 0 PSL(4, 3)

G⟨x, y, t⟩ := Group⟨x, y, t|x10, y6, (x ∗ y−2 ∗ x)2, (x ∗ y2 ∗ x2)2, (y−1 ∗ x−1)5,

(x ∗ y2 ∗ x−1 ∗ y−1)2, x−1 ∗ y−1 ∗ x5 ∗ y ∗ x−4,

y ∗ x−2 ∗ y−1 ∗ x3 ∗ y ∗ x ∗ y3 ∗ x−1, t2, (t, (x ∗ y−1 ∗ x−1)2), (t, (y ∗ x ∗ y)2)
((x ∗ y ∗ x ∗ y2 ∗ x ∗ y) ∗ t(x))a,
((x) ∗ t(x2∗y2∗x∗y∗x−1))b,

((x ∗ y ∗ x ∗ y2 ∗ x ∗ y) ∗ t(y∗x∗y−2∗x∗y∗x))c,

(((x−1 ∗ y)3) ∗ t(x−2∗y−2))d,

((x ∗ y ∗ x ∗ y2 ∗ x ∗ y) ∗ t(y−1∗x−1∗y−1∗x−3))e,

((y) ∗ t(y∗x∗y2∗x∗y∗x∗y))f ,
((x ∗ y ∗ x ∗ y2 ∗ x ∗ y) ∗ t(x−1∗y∗x∗y∗x−1∗y−1∗x−1∗y−1))g,

((y2) ∗ t(y∗x2∗y−1∗x))h,

((x ∗ y ∗ x ∗ y2 ∗ x ∗ y) ∗ t(y∗x))i,
((x ∗ y−2 ∗ x ∗ y) ∗ t(y2))j ,
((x5) ∗ t(x∗y∗x2∗y−1∗x−2))k,

((x) ∗ t(y−1∗x−1∗y−1∗x∗y−1∗x−1∗y))l,

((x ∗ y−2 ∗ x ∗ y) ∗ t(y−1∗x∗y∗x−2∗y∗x))m,

(((x−1 ∗ y)3) ∗ t(x−3∗y−1∗x−1∗y2))n >
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Chapter 11

Unsuccessful Progenitors

Although most of the progenitors give us images that are isomorphic to the groups we try,

some progenitors fail to give us any for many reasons. We will include some unsuccessful

progenitors and explain why they fail.

11.1 Sym(84)

This progenitor has very huge double coset number and even we try to do the maximal

double cosets were huge as well.

a:=3;b:=3;c:=6;d:=3;e:=0;f:=0;g:=0;h:=0;i:=0;

G<x,y,t>:=Group<x,y,t|x^2, y^4,

y^-2 * x * y^2 * x * y^2 * x,

(x * y^-1)^7,t^2,(t,(x * y * x * y^-1)^2),

((y^2)*t^(y * x * y^-1 * x * y * x * y^-1))^a,

((y^2)*t^(x * y * x * y^-1 * x * y * x))^b,

((y * x * y)*t^(x * y))^c,

((y * x * y)*t^(x * y * x * y^-1 * x * y))^d,

((y)*t^(y^2))^e,

((y)*t^( y * x * y^-1 * x * y))^f,

((y * x )*t^(y * x * y^-1 * x * y * x * y))^g,

((y * x )*t^(y * x * y))^h,

((y * x )*t^(x * y * x * y^-1 * x * y * x * y * x))^i>;

#G;

/* 1102248 */

S:=Sym(84);

xx:=S!(1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)
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(12, 19)(14, 22)(16, 24)(17,26)(20, 29)(21, 31)(23, 33)

(25, 30)(27, 36)(28, 37)(32, 40)(34, 42)(35,43)(38, 47)

(39, 48)(41, 51)(44, 49)(45, 55)(46, 57)(50, 61)(52,58)

(53,64)(54, 66)(56, 65)(59, 69)(60, 71)(62, 70)

(63, 73)(68, 76)(75, 80)(78,82)(79, 83)(81, 84);

yy:=S!(1, 3, 6, 11)(2, 4, 8, 14)(5, 9, 16, 25)

(7, 12, 20, 30)(10, 17, 13, 21)(15,23, 19, 28)

(18, 27, 24, 34)(22, 32, 29, 38)(26, 35, 44, 54)

(31, 39, 49,60)(33, 41, 52, 63)(36, 45, 56, 48)

(37, 46, 58, 68)(40, 50, 62, 43)(42,53, 65, 57)

(47, 59, 70, 51)(55, 67, 71, 78)(61, 72, 66, 75)

(64, 74, 76,81)(69, 77, 73, 79)(80, 84)(82, 83);

N:=sub<S|xx,yy>;

#N;

/* 168 */

f,G1,k:=CosetAction(G,sub<G|x,y>);

#k;

/*1*/

IN:=sub<G1|f(x),f(y)>;

L<u,v>:=Group<u,v|u^2, v^4,

v^-2 * u * v^2 * u * v^2 * u, (u * v^-1)^7>;

Sch:=SchreierSystem(L,sub<L|Id(L)>);

h:=hom<L->N|u->xx,v->yy>;

g:=hom<IN->N|f(x)->xx,f(y)->yy>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

IN:=sub<G1|f(x),f(y)>;

CompositionFactors(G1);

/*

G

| A(1, 7) = L(2, 7)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*
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| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

1

*/

NL:=NormalLattice(G1);

NL;

/*

Normal subgroup lattice

-----------------------

[4] Order 1102248 Length 1 Maximal Subgroups: 3

---

[3] Order 6561 Length 1 Maximal Subgroups: 2

---

[2] Order 3 Length 1 Maximal Subgroups: 1

---

[1] Order 1 Length 1 Maximal Subgroups:

*/

word:=function(A)

Sch:=SchreierSystem(G,sub<G|Id(G)>);

B:=Id(G);

for i in [2..#G] do

P:=[Id(G1): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=f(x); end if;

if Eltseq(Sch[i])[j] eq -1 then P[j]:=f(x)^-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=f(y); end if;

if Eltseq(Sch[i])[j] eq -2 then P[j]:=f(y)^-1; end if;

end for;

PP:=Id(G1);

for k in [1..#P] do

PP:=PP*P[k]; end for;

if A eq PP then B:=Sch[i]; end if;

end for;

return B;

end function;

for i in [0..2] do for j in [0..1] do printf "%o", i;j,xx^i*yy^j; end for;end for;

/*

00 Id(S)
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01 (1, 3, 6, 11)(2, 4, 8, 14)(5, 9, 16, 25)(7, 12, 20, 30)

(10, 17, 13, 21)(15,23, 19, 28)(18, 27, 24, 34)

(22, 32, 29, 38)(26, 35, 44, 54)(31, 39, 49,60)

(33, 41, 52, 63)(36, 45, 56, 48)(37, 46, 58, 68)

(40, 50, 62, 43)(42, 53,65, 57)(47, 59, 70, 51)

(55, 67, 71, 78)(61, 72, 66, 75)(64, 74, 76, 81)

(69,77, 73, 79)(80, 84)(82, 83)

10 (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)

(12, 19)(14, 22)(16, 24)(17,26)(20, 29)(21, 31)

(23, 33)(25, 30)(27, 36)(28, 37)(32, 40)(34, 42)

(35, 43)(38, 47)(39, 48)(41, 51)(44, 49)(45, 55)

(46, 57)(50, 61)(52, 58)(53,64)(54, 66)(56, 65)

(59, 69)(60, 71)(62, 70)(63, 73)(68, 76)(75, 80)

(78,82)(79, 83)(81, 84)

11 (1, 4, 12, 28, 46, 42, 18)(2, 3, 9, 23, 41, 47, 22)

(5, 6, 17, 35, 40, 29, 30)(7, 8, 21, 39, 36, 24, 25)

(10, 11, 27, 45, 67, 71, 31)(13, 14, 32, 50,72, 66, 26)

(15, 16, 34, 53, 74, 76, 37)(19, 20, 38, 59, 77, 73, 33)

(43, 44, 60, 78, 83, 69, 70)(48, 49, 54, 75, 84, 64, 65)

(51, 52, 68, 81, 80, 61, 62)(55, 56, 57, 58, 63, 79, 82)

20 Id(S)

21 (1, 3, 6, 11)(2, 4, 8, 14)(5, 9, 16, 25)(7, 12, 20, 30)

(10, 17, 13, 21)(15,23, 19, 28)(18, 27, 24, 34)

(22, 32, 29, 38)(26, 35, 44, 54)(31, 39, 49,60)

(33, 41, 52, 63)(36, 45, 56, 48)(37, 46, 58, 68)

(40, 50, 62, 43)(42, 53,65, 57)(47, 59, 70, 51)

(55, 67, 71, 78)(61, 72, 66, 75)(64, 74, 76, 81)

(69,77, 73, 79)(80, 84)(82, 83)

*/

#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

/* 63 */

f,G1,k:=CosetAction(G,sub<G|x,y>);

IN:=sub<G1|f(x),f(y)>;

ts := [ Id(G1): i in [1 .. 84] ];

ts[1]:=f(t);

ts[2]:= f(t^(y * x * y^-1 * x * y * x * y^-1));

ts[3]:= f(t^(x * y * x * y^-1 * x * y * x));

ts[4]:= f(t^(x * y));

ts[5]:= f(t^(x * y * x * y^-1 * x * y));

ts[6]:= f(t^(y^2));
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ts[7]:= f(t^(y * x * y^-1 * x * y));

ts[8]:= f(t^( y * x * y^-1 * x * y * x * y));

ts[9]:= f(t^(y * x * y));

ts[10]:= f(t^(x * y * x * y^-1 * x * y * x * y * x));

ts[11]:= f(t^(x * y * x * y^-1 * x * y * x * y^2));

ts[12]:= f(t^((x * y)^2));

ts[13]:= f(t^(y * x * y^-1 * x * y * x * y * x));

ts[14]:= f(t^( y * x * y^-1 * x * y * x * y^2));

ts[15]:= f(t^(x * y * x * y * x * y^2));

ts[16]:= f(t^(x * y * x * y^-1 * x * y^-1));

ts[17]:= f(t^(y^2 * x * y));

ts[18]:= f(t^(y^-1 * x));

ts[19]:= f(t^(x * y * x * y * x));

ts[20]:= f(t^(x * y * x * y^2));

ts[21]:= f(t^(y^2 * x * y^-1));

ts[22]:= f(t^(y * x * y^-1 * x * y^-1 * x * y^2));

ts[23]:= f(t^(y * x * y * x * y));

ts[24]:= f(t^(x * y * x * y^-1 * x * y^-1 * x));

ts[25]:= f(t^(x * y * x * y^-1 * x));

ts[26]:= f(t^(x * y^-1 * x * y * x * y^-1 * x * y^-1));

ts[27]:= f(t^(x * y * x * y^-1 * x * y^-1 * x * y^-1));

ts[28]:= f(t^((x * y)^3));

ts[29]:= f(t^(x * y^-1 * x * y^2));

ts[30]:= f(t^(y * x * y^-1 * x));

ts[31]:= f(t^(y^-1 * x * y * x * y^-1 * x * y^-1));

ts[32]:= f(t^( x * y^-1 * x * y));

ts[33]:= f(t^((y * x)^3));

ts[34]:= f(t^(y^-1 * x * y^-1));

ts[35]:= f(t^(x * y^-1 * x * y * x * y^-1 * x));

ts[36]:= f(t^(y^2 * x * y^-1 * x * y * x * y));

ts[37]:= f(t^(x * y * x * y * x * y * x));

ts[38]:= f(t^((x * y^-1)^2));

ts[39]:= f(t^(y^-1 * x * y * x * y^-1 * x));

ts[40]:= f(t^(x * y^-1 * x * y * x));

ts[41]:= f(t^(x * y^-1 * x * y^-1 * x * y^-1 * x));

ts[42]:= f(t^(x * y * x * y^-1 * x * y^-1 * x * y * x));

ts[43]:= f(t^(y^2 * x * y * x * y * x));

ts[44]:= f(t^((x * y^-1 * x * y)^2));

ts[45]:= f(t^(y^-1 * x * y * x * y));

ts[46]:= f(t^(y * x * y * x * y^-1 * x * y));

ts[47]:= f(t^(x * y^-1 * x * y^-1 * x));

ts[48]:= f(t^(y^2 * x * y^-1 * x * y * x));

ts[49]:= f(t^(y^2 * x * y^-1 * x * y^2));

ts[50]:= f(t^(x * y^-1 * x * y * x * y));
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ts[51]:= f(t^((x * y^-1)^3));

ts[52]:= f(t^(x * y^-1 * x * y^-1 * x * y^-1 * x * y));

ts[53]:= f(t^(x * y * x * y^-1 * x * y^-1 * x * y * x * y));

ts[54]:= f(t^(x * y^-1 * x * y * x * y^-1 * x * y^2));

ts[55]:= f(t^(y^-1 * x * y * x * y * x));

ts[56]:= f(t^((y^-1 * x * y^2)^2));

ts[57]:= f(t^(y^-1 * x * y^-1 * x * y^-1));

ts[58]:= f(t^(y * x * y * x * y^-1 * x * y^2));

ts[59]:= f(t^(x * y^-1 * x * y^-1 * x * y));

ts[60]:= f(t^(y^2 * x * y^-1 * x * y^-1));

ts[61]:= f(t^(x * y^-1 * x * y * x * y * x));

ts[62]:= f(t^((y^2 * x * y^-1)^3));

ts[63]:= f(t^(y * x * y * x * y * x * y^-1));

ts[64]:= f(t^(y^-1 * x * y^-1 * x * y * x));

ts[65]:= f(t^(y^-1 * x * y^-1 * x * y^2));

ts[66]:= f(t^(y^2 * x * y * x * y^-1 * x));

ts[67]:= f(t^(y^2 * x * y^-1 * x * y^-1 * x * y^-1));

ts[68]:= f(t^(x * y * x * y * x * y * x * y^-1));

ts[69]:= f(t^(x * y^-1 * x * y^-1 * x * y * x * y * x * y^-1));

ts[70]:= f(t^(x * y^-1 * x * y^-1 * x * y^2));

ts[71]:= f(t^((y^-1 * x * y^2)^3));

ts[72]:= f(t^( y^2 * x * y * x * y^-1 * x * y^-1));

ts[73]:= f(t^( x * y * x * y * x * y^-1 * x * y^-1 * x));

ts[74]:= f(t^(y^-1 * x * y^-1 * x * y * x * y));

ts[75]:= f(t^(y^2 * x * y * x * y^-1 * x * y));

ts[76]:= f(t^(y * x * y * x * y^-1 * x * y^-1 * x));

ts[77]:= f(t^(x * y^-1 * x * y^-1 * x * y * x * y * x));

ts[78]:= f(t^(y^2 * x * y^-1 * x * y^-1 * x * y));

ts[79]:= f(t^(x * y^-1 * x * y^-1 * x * y * x * y^-1));

ts[80]:= f(t^(x * y^-1 * x * y * x * y * x * y^-1 * x));

ts[81]:= f(t^(y * x * y * x * y^-1 * x * y^-1 * x * y));

ts[82]:= f(t^(y^2 * x * y^-1 * x * y^-1 * x * y * x));

ts[83]:= f(t^(x * y^-1 * x * y^-1 * x * y * x * y^-1 * x));

ts[84]:= f(t^(y^-1 * x * y^-1 * x * y * x * y^-1 * x));

DoubleCosets(G,sub<G|x,y>, sub<G|x,y>);

/*

{ <GrpFP, Id(G), GrpFP>,

<GrpFP, t * x * y^-1 * x * y^-1 * t * y^-1 * x * y^-1 *t * y^-1 * t, GrpFP>,

<GrpFP, t * x * y * x * y * t * y * t * y * x * y * t,GrpFP>,

<GrpFP, t * y^-1 * x * y^-1 * t * y^-1 * x * y^-1 * t * y^-1 * t,GrpFP>,

<GrpFP, t * y^-1 * x * y * x * y^2 * t * y^-1 * x * t, GrpFP>,

<GrpFP, t* y * x * y * t * y * x * y * t * y * t, GrpFP>,

<GrpFP, t * x * y * t * y^2 * x * y^-1 * x * y * t, GrpFP>,

<GrpFP, t * y * t * y * t * x * y * x * y * t,GrpFP>,
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<GrpFP, t * y * t * y * x * t * y * t * y * t, GrpFP>,

<GrpFP, t * y^2 * x * y * t * y^-1 * x * y^-1 * t, GrpFP>,

<GrpFP, t * y * x * y * t * y^-1 * x * y^2 * t, GrpFP>,

<GrpFP, t * y * x * y * t * y^2 * x * y * t, GrpFP>,

<GrpFP, t * x * y * x * y * t * y * x * y * t, GrpFP>,

<GrpFP, t * y^-1 * t * y^-1 * x * y^-1 * t * y^-1 * t, GrpFP>,

<GrpFP, t * y * t * y^-1 * x * t * y^-1 * x * t,GrpFP>,

<GrpFP, t * y * t * y * t * y * t * y * t, GrpFP>,

<GrpFP, t * y * t * y * t * y * x * y * t, GrpFP>,

<GrpFP, t * y * t * y * x * y * t * y * t, GrpFP>,

<GrpFP, t * y * x * y^-1 * t * y^-1 * t * y * t, GrpFP>,

<GrpFP, t * y * x * y * t * y * t * y * t, GrpFP>,

<GrpFP, t * y * x * y * t * y * x * y * t, GrpFP>,

<GrpFP, t * y * x * t * y * x * t, GrpFP>,

<GrpFP, t * y * x * y * t * y^-1 * t, GrpFP>,

<GrpFP, t * y * x * y * t * y * t, GrpFP>,

<GrpFP, t * x * y^2 * t * y * t, GrpFP>,

<GrpFP, t * x * y * x * t * y * t, GrpFP>,

<GrpFP, t * y * t * y * x * t, GrpFP>,

<GrpFP, t * y^2 * x * y * t, GrpFP>,

<GrpFP, t * y * x * t * y * t,GrpFP>,

<GrpFP, t * x * y^-1 * t * y^-1 * t, GrpFP>,

<GrpFP, t * x * y^-1 * t * y * t, GrpFP>,

<GrpFP, t * x * y * x * y^-1 * t, GrpFP>,

<GrpFP, t * y^-1 * t * y^-1 * t, GrpFP>,

<GrpFP, t, GrpFP>,

<GrpFP, t * y * t, GrpFP>,

<GrpFP, t * y^-1 * t, GrpFP>,

<GrpFP, t * x * y * t, GrpFP>,

<GrpFP, t * y * x * t, GrpFP>,

<GrpFP, t * x * y^2 * t, GrpFP>,

<GrpFP, t * y * x * y * t, GrpFP>,

<GrpFP, t * y * x * y^-1 * t, GrpFP>,

<GrpFP, t * y^2 * x * t, GrpFP>,

<GrpFP, t * y * t * y * t, GrpFP>,

<GrpFP, t * y^-1 * x * y * t, GrpFP>,

<GrpFP, t * y^-1 * x * y^-1 * t, GrpFP>,

<GrpFP, t * y^-1 * t * y * t, GrpFP>,

<GrpFP, t * y * x * y^-1 * t * y^-1 * t, GrpFP>,

<GrpFP, t * y^2 * x * t * y * t, GrpFP>,

<GrpFP, t * y * t * y * x * y^-1 * t, GrpFP>,

<GrpFP, t * y * t * y * t * y * t, GrpFP>,

<GrpFP, t * y * t * y^-1 * x * y^-1 * t, GrpFP>,

<GrpFP, t * y * t * y^-1 * t * y^-1 * t,GrpFP>,
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<GrpFP, t * y^-1 * x * y * t * y * t, GrpFP>,

<GrpFP, t * y^-1 * t * y^-1 * x * y * t, GrpFP>,

<GrpFP, t * x * y * x * y * t * y^-1 * t, GrpFP>,

<GrpFP, t * x * y * t * y * x * y * t, GrpFP>,

<GrpFP, t * x * y * t * y^-1 * x * y * t, GrpFP>,

<GrpFP, t * y * x * y^2 * t * y * t, GrpFP>,

<GrpFP, t * y * x * t * y * t * y * t, GrpFP>,

<GrpFP, t * y^2 * x * y * t * y^-1 * t, GrpFP>,

<GrpFP, t * y * t * y * t * x * y * t, GrpFP>,

<GrpFP, t * y^-1 * x * y^-1 * t * y^-1 * x * t, GrpFP>,

<GrpFP, t * x * y * t * x * y * t * y^-1 * t, GrpFP> }

*/

DC:=[ f( Id(G)),

f(t),

f(t * y^-1 * t),

f(t * y * x * t),

f(t * x * y * t),

f(t * y * t),

f(t * y^2 * x * t),

f(t * y^-1 * x * y^-1 * t),

f(t * x * y^2 * t),

f(t * y * t * y * t),

f( t * y^-1 * t * y^-1 * t),

f(t * y * x * t * y * t),

f(t * y * x * y * t),

f(t * y^2 * x * y * t),

f(t * y * x * y^-1 * t),

f(t * y^-1 * x * y * t),

f(t * x * y * x * y^-1 * t),

f(t * y^-1 * t * y * t),

f(t * x * y * t * y^-1 * x * y * t),

f(t * x * y^-1 * t * y * t),

f( t * x * y^-1 * x * y^-1 * t * y^-1 * x * y^-1 *t * y^-1 * t),

f( t * x * y * x * y * t * y * t * y * x * y * t),

f(t * y^-1 * x * y^-1 * t * y^-1 * x * y^-1 * t * y^-1 * t),

f(t * y^-1 * x * y * x * y^2 * t * y^-1 * x * t),

f(t* y * x * y * t * y * x * y * t * y * t),

f(t * x * y * t * y^2 * x * y^-1 * x * y * t),

f(t * y * t * y * t * x * y * x * y * t),

f(t * y * t * y * x * t * y * t * y * t),

f(t * y^2 * x * y * t * y^-1 * x * y^-1 * t),

f(t * y * x * y * t * y^-1 * x * y^2 * t),

f(t * y * x * y * t * y^2 * x * y * t),

f(t * x * y * x * y * t * y * x * y * t),
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f(t * y^-1 * t * y^-1 * x * y^-1 * t * y^-1 * t),

f(t * y * t * y^-1 * x * t * y^-1 * x * t),

f(t * y * t * y * t * y * t * y * t),

f(t * y * t * y * t * y * x * y * t),

f(t * y * t * y * x * y * t * y * t),

f(t * y * x * y^-1 * t * y^-1 * t * y * t),

f(t * y * x * y * t * y * t * y * t),

f(t * y * x * y * t * y * x * y * t),

f(t * y * x * t * y * x * t),

f(t * y * x * y * t * y^-1 * t),

f(t * y * x * y * t * y * t),

f(t * x * y^2 * t * y * t),

f(t * x * y * x * t * y * t),

f(t * y * t * y * x * t),

f(t * x * y^-1 * t * y^-1 * t),

f(t * y * x * y^-1 * t * y^-1 * t),

f(t * y^2 * x * t * y * t),

f(t * y * t * y * x * y^-1 * t),

f(t * y * t * y * t * y * t),

f(t * y * t * y^-1 * x * y^-1 * t),

f(t * y * t * y^-1 * t * y^-1 * t),

f(t * y^-1 * x * y * t * y * t),

f(t * y^-1 * t * y^-1 * x * y * t),

f(t * x * y * x * y * t * y^-1 * t),

f( t * x * y * t * y * x * y * t),

f(t * y * x * y^2 * t * y * t),

f(t * y * x * t * y * t * y * t),

f(t * y^2 * x * y * t * y^-1 * t),

f(t * y * t * y * t * x * y * t),

f(t * y^-1 * x * y^-1 * t * y^-1 * x * t),

f(t * x * y * t * x * y * t * y^-1 * t)];

Index(G1,IN);

/* 6561 */

cst := [null : i in [1 .. Index(G1,IN)]] where null is [Integers() | ];

prodim := function(pt, Q, I)

v := pt;

for i in I do

v := v^(Q[i]);

end for;

return v;

end function;

for i := 1 to 84 do

cst[prodim(1, ts, [i])] := [i];

end for;
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m:=0; for i in [1..6561] do if cst[i] ne [] then m:=m+1; end if; end for;m;

/* 84 */

Orbits(N);

/*

[

GSet{@ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,

39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,

58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,

77, 78, 79, 80, 81, 82, 83, 84 @}

]

*/

for i in [1..#DC] do for m,n in IN do if ts[1] eq m*(DC[i])^n then i; break;end if; end for;end for;

/*2*/

N1:=Stabiliser(N,1);

#N1;

/* 2 */

Orbits(N1);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 25 @},

GSet{@ 30 @},

GSet{@ 3, 65 @},

GSet{@ 4, 70 @},

GSet{@ 5, 56 @},

GSet{@ 6, 84 @},

GSet{@ 7, 62 @},

GSet{@ 8, 83 @},

GSet{@ 9, 82 @},

GSet{@ 10, 81 @},

GSet{@ 11, 35 @},

GSet{@ 12, 80 @},

GSet{@ 13, 79 @},

GSet{@ 14, 39 @},

GSet{@ 15, 78 @},

GSet{@ 16, 41 @},

GSet{@ 17, 33 @},

GSet{@ 18, 43 @},

GSet{@ 19, 75 @},

GSet{@ 20, 46 @},

GSet{@ 21, 37 @},
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GSet{@ 22, 48 @},

GSet{@ 23, 26 @},

GSet{@ 24, 51 @},

GSet{@ 27, 73 @},

GSet{@ 28, 31 @},

GSet{@ 29, 57 @},

GSet{@ 32, 76 @},

GSet{@ 34, 66 @},

GSet{@ 36, 63 @},

GSet{@ 38, 71 @},

GSet{@ 40, 68 @},

GSet{@ 42, 54 @},

GSet{@ 44, 49 @},

GSet{@ 45, 53 @},

GSet{@ 47, 60 @},

GSet{@ 50, 59 @},

GSet{@ 52, 58 @},

GSet{@ 55, 64 @},

GSet{@ 61, 69 @},

GSet{@ 67, 72 @},

GSet{@ 74, 77 @}

]

*/

M:=MaximalSubgroups(G1);

M;

/*

Conjugacy classes of subgroups

------------------------------

[1] Order 504 Length 2187

Permutation group acting on a set of cardinality 6561

Order = 504 = 2^3 * 3^2 * 7

[2] Order 504 Length 2187

Permutation group acting on a set of cardinality 6561

Order = 504 = 2^3 * 3^2 * 7

[3] Order 504 Length 2187

Permutation group acting on a set of cardinality 6561

Order = 504 = 2^3 * 3^2 * 7

[4] Order 137781 Length 8

Permutation group acting on a set of cardinality 6561

Order = 137781 = 3^9 * 7

[5] Order 157464 Length 7

Permutation group acting on a set of cardinality 6561

Order = 157464 = 2^3 * 3^9
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[6] Order 157464 Length 7

Permutation group acting on a set of cardinality 6561

Order = 157464 = 2^3 * 3^9

*/

IN:=sub<G1|f(x),f(y)>; M1:=M[1]‘subgroup;

f(x) in M1;

/* true */

T:={{M1}};

for n in G1 do T:=T join {M1^n}; end for;

#T;

/* 1 */

TT:=Setseq(T);

TT[1];

/*

{

Permutation group M1 acting on a set of cardinality 6561

Order = 504 = 2^3 * 3^2 * 7

}

*/

f(y) in M1;

/* false */

[ 504, 42336, 84672, 14112, 14112, 28224, 84672, 84672, 28224, 21168, 28224,

28224, 7056, 84672, 42336, 7056, 42336, 84672, 84672, 84672, 84672, 28224,

28224, 28224, 28224, 4032, 4032 ]

#DoubleCosetRepresentatives(G1,DD[1],sub<G1|f(x),f(y)>);

/*27*/

Since we got a huge number of Double Cosets, we will not be able to do them.
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11.2 Sym(160)

This progenitor never give us any good numbers for G

S:=Sym(160);

xx:=S!(1, 2, 6, 19, 5, 16, 47, 119, 52, 50)

(3, 10, 33, 35, 77, 48, 93, 98, 137,140)

(4, 13, 41, 100, 97, 49, 106, 150, 139, 89)

(7, 22, 65, 38, 64, 120,53, 129, 141, 108)

(8, 25, 71, 107, 80, 121, 157, 61, 30, 86)

(9, 29, 82,148, 123, 122, 158, 136, 135, 11)

(12, 37, 63, 81, 152, 87, 28, 78, 102,20)

(14, 26, 75, 73, 56, 124, 159, 105, 94, 111)

(15, 45, 113, 149, 145,125, 115, 39, 103, 118)

(17, 51, 66, 142, 155, 126, 96, 130, 43, 34)

(18,55, 91, 32, 85, 67, 60, 59, 133, 127)

(21, 44, 114, 110, 154, 83, 92, 58,72, 146)

(23, 46, 31, 88, 95, 128, 151, 143, 70, 57)

(24, 69, 117, 132,42, 109, 138, 116, 160, 156)

(27, 68, 144, 101, 36, 99, 134, 104, 79,62)

(40, 76, 74, 147, 131, 112, 54, 84, 153, 90);

yy:=S!(1, 3, 11, 33, 91, 93)(2, 7)(4, 14)

(5, 17, 52, 95, 85, 142)(6, 20, 60, 90,136, 71)

(8, 26, 76, 24, 70, 72)(9, 30, 32, 23, 68, 103)

(10, 16, 48, 123,98, 59)(12, 38, 78, 129, 80, 146)

(13, 42, 100, 114, 150, 64)(15, 46,102, 153, 157, 96)

(18, 56, 29, 83, 36, 69)(19, 57, 127, 43, 50, 126)

(21,62, 138, 67, 111, 158)(22, 66, 44, 115, 116, 31)

(25, 51, 125, 151, 81,147)(27, 77)

(28, 79, 113, 144, 74, 148)

(34, 94, 112, 75, 118, 132)(35,97)

(37, 101, 39, 104, 84, 135)(40, 105, 145, 160, 155, 73)

(41, 108, 106,156, 139, 58)(45, 117, 143, 53, 130, 92)

(47, 120)(49, 124)(54, 109, 88,110, 121, 159)

(55, 131, 82, 61, 119, 152)(63, 65, 86, 154, 87, 141)

(89,137)(99, 140)(107, 133, 128, 134, 149, 122);

N:=sub<S|xx,yy>;

#N;

/* 1920 */

N1:=Stabiliser(N,1);

Generators(N1);

/*

{
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A:= (2, 158, 67)(3, 93, 77)(4, 106, 41)(5, 60, 148)

(6, 52, 133)(7, 138, 21)(8,63, 145)(9, 127, 101)

(10, 140, 48)(11, 27, 91)(12, 54, 115)(13, 150,49)

(14, 58, 156)(15, 96, 151)(17, 74, 128)(18, 47, 29)

(19, 32, 119)(20,107, 28)(22, 129, 110)(23, 126, 84)

(24, 154, 73)(25, 153, 102)(26, 105,117)(30, 37, 152)

(31, 112, 80)(34, 66, 88)(38, 44, 132)(39, 57, 61)

(40,86, 143)(42, 124, 114)(43, 103, 131)(45, 87, 76)

(46, 125, 51)(50, 55,135)(53, 65, 72)(59, 123, 99)

(68, 104, 82)(69, 83, 120)(70, 155,130)(71, 113, 95)

(75, 116, 159)(78, 118, 121)(79, 122, 85)(81, 157,147)

(90, 142, 149)(92, 160, 141)(94, 109, 146)(134, 144, 136),

B:= (2, 150, 130)(3, 142, 107)(4, 18, 54)(5, 53, 15)

(6, 153, 141)(7, 10, 152)(8,100, 145)(9, 79, 146)

(11, 27, 89)(12, 88, 106)(13, 87, 70)(14, 35,156)

(19, 132, 134)(20, 120, 93)(21, 103, 140)(22, 125, 50)

(23, 98,84)(24, 94, 85)(25, 104, 92)(26, 129, 135)

(28, 90, 69)(29, 34, 115)(30,48, 43)(31, 36, 80)

(32, 136, 81)(33, 74, 128)(37, 131, 138)(38, 119,147)

(41, 66, 47)(42, 124, 137)(44, 157, 144)(45, 158, 155)

(46, 105,55)(49, 67, 76)(51, 110, 117)(52, 160, 68)

(56, 95, 71)(57, 61,111)(60,151, 75)(62, 86, 143)

(65, 148, 159)(72, 116, 96)(73, 127, 109)

(77, 83,149)(82, 102, 133)(97, 123, 99)(101, 154, 122)

(118, 121, 139)

}

*/

FPGroup(N);

/*

Finitely presented group on 2 generators

Relations

$.1^10 = Id($)

$.2^6 = Id($)

($.1 * $.2^-2 * $.1)^2 = Id($)

($.1 * $.2^2 * $.1^2)^2 = Id($)

($.2^-1 * $.1^-1)^5 = Id($)

($.1 * $.2^2 * $.1^-1 * $.2^-1)^2 = Id($)

$.1^-1 * $.2^-1 * $.1^5 * $.2 * $.1^-4 = Id($)

$.2 * $.1^-2 * $.2^-1 * $.1^3 * $.2 * $.1 * $.2^3 * $.1^-1 = Id($)

*/

/*

x^10 ,

y^6 ,
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(x * y^-2 * x)^2 ,

(x * y^2 * x^2)^2 ,

(y^-1 * x^-1)^5 ,

(x * y^2 * x^-1 * y^-1)^2 ,

x^-1 * y^-1 * x^5 * y * x^-4 ,

y * x^-2 * y^-1 * x^3 * y * x * y^3 * x^-1

*/

NN<a,b>:=Group<a,b|a^10, b^6,(a * b^-2 * a)^2 ,

(a * b^2 * a^2)^2 , (b^-1 * a^-1)^5 ,

(a * b^2 * a^-1 * b^-1)^2 ,

a^-1 * b^-1 * a^5 * b * a^-4 , b * a^-2 * b^-1 * a^3 * b * a * b^3 * a^-1>;

#NN;

/* 1920 */

word:=function(A)

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

for i in [2..#NN] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;

if Eltseq(Sch[i])[j] eq -1 then P[j]:=xx^-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;

if Eltseq(Sch[i])[j] eq -2 then P[j]:=yy^-1; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

if A eq PP then B:=Sch[i]; end if;

end for;

return B;

end function;

A:=N!(2, 158, 67)(3, 93, 77)(4, 106, 41)(5, 60, 148)

(6, 52, 133)(7, 138, 21)(8,63, 145)(9, 127, 101)

(10, 140, 48)(11, 27, 91)(12, 54, 115)(13, 150,49)

(14, 58, 156)(15, 96, 151)(17, 74, 128)(18, 47, 29)

(19, 32, 119)(20,107, 28)(22, 129, 110)(23, 126, 84)

(24, 154, 73)(25, 153, 102)(26, 105,117)(30, 37, 152)

(31, 112, 80)(34, 66, 88)(38, 44, 132)(39, 57, 61)

(40,86, 143)(42, 124, 114)(43, 103, 131)(45, 87, 76)

(46, 125, 51)(50, 55,135)(53, 65, 72)(59, 123, 99)

(68, 104, 82)(69, 83, 120)(70, 155,130)(71, 113, 95)

(75, 116, 159)(78, 118, 121)(79, 122, 85)(81, 157,147)

(90, 142, 149)(92, 160, 141)(94, 109, 146)(134, 144, 136);
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word(A);

/*

(a * b^-1 * a^-1)^2

*/

/*

(x*y^-1*x^-1)^2

*/

B:=N!(2, 150, 130)(3, 142, 107)(4, 18, 54)(5, 53, 15)

(6, 153, 141)(7, 10, 152)(8,100, 145)(9, 79, 146)

(11, 27, 89)(12, 88, 106)(13, 87, 70)

(14, 35,156)(19, 132, 134)(20, 120, 93)(21, 103, 140)

(22, 125, 50)(23, 98,84)(24, 94, 85)(25, 104, 92)

(26, 129, 135)(28, 90, 69)(29, 34, 115)

(30,48, 43)(31, 36, 80)(32, 136, 81)(33, 74, 128)

(37, 131, 138)(38, 119,147)(41, 66, 47)(42, 124, 137)

(44, 157, 144)(45, 158, 155)

(46, 105,55)(49, 67, 76)(51, 110, 117)(52, 160, 68)

(56, 95, 71)(57, 61, 111)(60,151, 75)(62, 86, 143)

(65, 148, 159)(72, 116, 96)(73, 127, 109)

(77, 83,149)(82, 102, 133)(97, 123, 99)

(101, 154, 122)(118, 121, 139);

word(B);

/*

(b * a * b)^2

*/

/*

(y*x*y)^2

*/

G<x,y,t>:=Group<x,y,t|x^10 ,

y^6 ,

(x * y^-2 * x)^2 ,

(x * y^2 * x^2)^2 ,

(y^-1 * x^-1)^5 ,

(x * y^2 * x^-1 * y^-1)^2 ,

x^-1 * y^-1 * x^5 * y * x^-4 ,

y * x^-2 * y^-1 * x^3 * y * x * y^3 * x^-1,

t^2,

(t,(x*y^-1*x^-1)^2),(t,(y*x*y)^2)>;

Orbits(N1);

/*

[

GSet{@ 1 @},

GSet{@ 16 @},

GSet{@ 64 @},
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GSet{@ 108 @},

GSet{@ 8, 63, 145, 100 @},

GSet{@ 11, 27, 91, 89 @},

GSet{@ 14, 58, 156, 35 @},

GSet{@ 17, 74, 33, 128 @},

GSet{@ 23, 126, 84, 98 @},

GSet{@ 31, 112, 80, 36 @},

GSet{@ 39, 57, 111, 61 @},

GSet{@ 40, 86, 62, 143 @},

GSet{@ 42, 124, 114, 137 @},

GSet{@ 56, 113, 95, 71 @},

GSet{@ 59, 123, 97, 99 @},

GSet{@ 78, 118, 139, 121 @},

GSet{@ 2, 158, 87, 67, 13, 76, 70, 150, 45, 130, 155, 49 @},

GSet{@ 3, 93, 69, 77, 90, 83, 28, 142, 120, 107, 20, 149 @},

GSet{@ 4, 106, 34, 41, 29, 66, 115, 18, 88, 54, 12, 47 @},

GSet{@ 5, 60, 116, 148, 72, 159, 96, 53, 75, 15, 151, 65 @},

GSet{@ 6, 52, 104, 133, 25, 82, 92, 153, 68, 141, 160, 102 @},

GSet{@ 7, 138, 43, 21, 48, 103, 30, 10, 131, 152, 37, 140 @},

GSet{@ 9, 127, 24, 101, 85, 154, 94, 79, 73, 146, 109, 122 @},

GSet{@ 19, 32, 157, 119, 44, 147, 144, 132, 81, 134, 136, 38 @},

GSet{@ 22, 129, 105, 110, 46, 117, 55, 125, 26, 50, 135, 51 @}

]

*/

temp:={16,64,108,8,11,14,17,23,31,39,40,42,56,59,78,2,3,4,5,6,7,9,19,22};

for n in N do for j in temp do if 1^n eq j then word(n),j; temp:=temp diff {j}; end if; end for;

end for;

/*

a 2

b 3

a^2 6

a * b 7

b^2 11

a^3 19

a * b * a 22

a * b * a^-1 108

b * a * b 16

b * a * b^-1 59

b^2 * a 9

a^-1 * b * a * b^2 * a^-1 23

a^-2 * b^-1 17

a^2 * b^3 * a 40

a^4 5
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a^2 * b * a^2 * b^2 39

a * b * a * b^-1 31

a^-1 * b * a * b * a^-1 * b * a 42

b^-1 * a^2 * b * a 4

b * a^-2 * b^-1 * a^-2 * b 64

a^2 * b^-2 * a^-1 * b^-1 * a 14

a * b^-1 * a^-1 * b * a * b * a^-1 * b 78

b^2 * a^2 * b^-1 56

a^2 * b * a * b^-1 * a^-1 * b 8

*/

/*

x 2

y 3

x^2 6

x * y 7

y^2 11

x^3 19

x * y * x 22

x * y * x^-1 108

y * x * y 16

y * x * y^-1 59

y^2 * x 9

x^-1 * y * x * y^2 * x^-1 23

x^-2 * y^-1 17

x^2 * y^3 * x 40

x^4 5

x^2 * y * x^2 * y^2 39

x * y * x * y^-1 31

x^-1 * y * x * y * x^-1 * y * x 42

y^-1 * x^2 * y * x 4

y * x^-2 * y^-1 * x^-2 * y 64

x^2 * y^-2 * x^-1 * y^-1 * x 14

x * y^-1 * x^-1 * y * x * y * x^-1 * y 78

y^2 * x^2 * y^-1 56

x^2 * y * x * y^-1 * x^-1 * y 8

*/

/*put into cycle with t included*/

/*(t,t^(x))

(t,t^(y))

(t,t^(x^2))

(t,t^(x*y))

(t,t^(y^2))

(t,t^(x^3))

(t,t^(x * y * x))
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(t,t^(x * y * x^-1))

(t,t^(y * x * y))

(t,t^(y * x * y^-1))

(t,t^(y^2 * x))

(t,t^(x^-1 * y * x * y^2 * x^-1))

(t,t^(x^-2 * y^-1))

(t,t^(x^2 * y^3 * x))

(t,t^(x^4))

(t,t^(x^2 * y * x^2 * y^2))

(t,t^(x * y * x * y^-1))

(t,t^(x^-1 * y * x * y * x^-1 * y * x))

(t,t^(y^-1 * x^2 * y * x))

(t,t^(y * x^-2 * y^-1 * x^-2 * y))

(t,t^(x^2 * y^-2 * x^-1 * y^-1 * x))

(t,t^(x * y^-1 * x^-1 * y * x * y * x^-1 * y))

(t,t^(y^2 * x^2 * y^-1))

(t,t^(x^2 * y * x * y^-1 * x^-1 * y))

*/

G<x,y,t>:=Group<x,y,t| x^10 ,

y^6 ,

(x * y^-2 * x)^2 ,

(x * y^2 * x^2)^2 ,

(y^-1 * x^-1)^5 ,

(x * y^2 * x^-1 * y^-1)^2 ,

x^-1 * y^-1 * x^5 * y * x^-4 ,

y * x^-2 * y^-1 * x^3 * y * x * y^3 * x^-1,

t^2,

(t,(x*y^-1*x^-1)^2),(t,(y*x*y)^2)>;

C:=Classes(N);

C;

/*

Conjugacy Classes of group N

----------------------------

[1] Order 1 Length 1

Rep Id(N)

[2] Order 2 Length 1

Rep (1, 16)(2, 47)(3, 48)(4, 49)(5, 50)(6, 119)(7, 120)(8, 121)(9,

122)(10, 93)(11, 123)(12, 87)(13, 106)(14, 124)(15, 125)(17,

126)(18, 67)(19, 52)(20, 152)(21, 83)(22, 53)(23, 128)(24, 109)(25,

157)(26, 159)(27, 99)(28, 37)(29, 158)(30, 107)(31, 143)(32,

133)(33, 98)(34, 155)(35, 137)(36, 62)(38, 141)(39, 113)(40,

112)(41, 150)(42, 156)(43, 142)(44, 92)(45, 115)(46, 151)(51,

96)(54, 76)(55, 60)(56, 111)(57, 95)(58, 114)(59, 91)(61, 71)(63,
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78)(64, 108)(65, 129)(66, 130)(68, 134)(69, 138)(70, 88)(72,

110)(73, 94)(74, 84)(75, 105)(77, 140)(79, 101)(80, 86)(81, 102)(82,

136)(85, 127)(89, 97)(90, 131)(100, 139)(103, 149)(104, 144)(116,

117)(118, 145)(132, 160)(135, 148)(146, 154)(147, 153)

[3] Order 2 Length 10

Rep (1, 33)(2, 7)(3, 91)(4, 14)(5, 95)(6, 90)(8, 24)(9, 23)

(10, 123)(11,93)(12, 129)(13, 114)(15, 153)(16, 98)(17, 85)

(18, 83)(19, 43)(20,136)

(21, 67)(22, 115)(25, 151)(26, 70)(27, 77)

(28, 144)(29, 69)(30,68)(31, 44)(32, 103)(34, 75)

(35, 97)(36, 56)(37, 104)(38, 80)(39,135)(40, 160)

(41, 156)(42, 150)(45, 53)(46, 157)(47, 120)

(48,59)(49, 124)(50, 57)(51, 81)(52, 142)(54, 110)

(55, 61)(58, 106)(60, 71)(62, 111)(63, 154)

(64, 100)(65, 87)(66, 116)(72, 76)(73, 145)

(74,79)(78, 146)(82, 152)(84, 101)(86, 141)

(88, 159)(89, 137)(92,143)(94, 118)(96, 102)

(99, 140)(105, 155)(107, 134)(108, 139)(109,121)

(112, 132)(113, 148)(117, 130)(119, 131)

(122, 128)(125,147)(126, 127)(133, 149)(138, 158)

[4] Order 2 Length 120

Rep (1, 97)(2, 78)(3, 61)(4, 40)(6, 65)(7, 17)(8, 29)(9, 51)(10, 95)(11,

123)(12, 130)(13, 31)(14, 114)(15, 85)(16, 89)(18, 145)(19, 22)(20,

43)(21, 74)(23, 69)(24, 102)(25, 73)(26, 82)(27, 59)(28, 103)(30,

90)(32, 110)(33, 111)(34, 76)(35, 64)(36, 100)(37, 149)(39, 77)(41,

86)(42, 156)(44, 132)(45, 88)(46, 101)(47, 63)(48, 71)(49, 112)(52,

53)(54, 155)(55, 135)(56, 98)(57, 93)(58, 124)(60, 148)(62, 139)(66,

87)(67, 118)(68, 117)(70, 115)(72, 133)(75, 144)(79, 151)(80,

150)(81, 109)(83, 84)(91, 99)(92, 160)(94, 157)(96, 122)(104,

105)(106, 143)(107, 131)(108, 137)(113, 140)(116, 134)(119,

129)(120, 126)(121, 158)(125, 127)(128, 138)(136, 159)(142,

152)(146, 147)(153, 154)

[5] Order 3 Length 80

Rep (1, 11, 91)(3, 33, 93)(5, 52, 85)(6, 60, 136)(8, 76, 70)(9, 32,

68)(10, 48, 98)(12, 78, 80)(13, 100, 150)(15, 102, 157)(16, 123,

59)(17, 95, 142)(18, 29, 36)(19, 127, 50)(20, 90, 71)(21, 138,

111)(22, 44, 116)(23, 103, 30)(24, 72, 26)(25, 125, 81)(28, 113,

74)(31, 66, 115)(34, 112, 118)(37, 39, 84)(38, 129, 146)(40, 145,

155)(41, 106, 139)(42, 114, 64)(43, 126, 57)(45, 143, 130)(46, 153,

96)(51, 151, 147)(53, 92, 117)(54, 88, 121)(55, 82, 119)(56, 83,

69)(58, 108, 156)(61, 152, 131)(62, 67, 158)(63, 86, 87)(65, 154,
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141)(73, 105, 160)(75, 132, 94)(79, 144, 148)(101, 104, 135)(107,

128, 149)(109, 110, 159)(122, 133, 134)

[6] Order 4 Length 20

Rep (1, 118, 16, 145)(2, 69, 47, 138)(3, 70, 48, 88)(4, 90, 49, 131)(5,

41, 50, 150)(6, 124, 119, 14)(7, 29, 120, 158)(8, 146, 121, 154)(9,

17, 122, 126)(10, 38, 93, 141)(11, 86, 123, 80)(12, 112, 87, 40)(13,

107, 106, 30)(15, 81, 125, 102)(18, 36, 67, 62)(19, 135, 52,

148)(20, 71, 152, 61)(21, 111, 83, 56)(22, 99, 53, 27)(23, 85, 128,

127)(24, 78, 109, 63)(25, 137, 157, 35)(26, 59, 159, 91)(28, 133,

37, 32)(31, 130, 143, 66)(33, 94, 98, 73)(34, 110, 155, 72)(39, 142,

113, 43)(42, 95, 156, 57)(44, 117, 92, 116)(45, 77, 115, 140)(46,

97, 151, 89)(51, 147, 96, 153)(54, 105, 76, 75)(55, 136, 60, 82)(58,

68, 114, 134)(64, 84, 108, 74)(65, 160, 129, 132)(79, 100, 101,

139)(103, 144, 149, 104)

[7] Order 4 Length 120

Rep (1, 155, 23, 50)(2, 160, 35, 142)(3, 21, 134, 102)(4, 130, 140,

20)(5, 16, 34, 128)(6, 136, 22, 116)(7, 135, 89, 12)(8, 141, 108,

37)(9, 54, 98, 42)(10, 74, 32, 146)(11, 109, 103, 139)(13, 18, 26,

96)(14, 55, 27, 92)(15, 70, 111, 58)(17, 105, 73, 95)(19, 151, 40,

158)(24, 149, 100, 123)(25, 113, 69, 129)(28, 121, 38, 64)(29, 52,

46, 112)(30, 62, 91, 147)(31, 115, 61, 131)(33, 156, 122, 76)(36,

59, 153, 107)(39, 138, 65, 157)(41, 145, 110, 127)(43, 47, 132,

137)(44, 124, 60, 99)(45, 71, 90, 143)(48, 83, 68, 81)(49, 66, 77,

152)(51, 106, 67, 159)(53, 117, 119, 82)(56, 114, 125, 88)(57, 126,

75, 94)(63, 144, 79, 86)(72, 85, 150, 118)(78, 104, 101, 80)(84,

133, 154, 93)(87, 120, 148, 97)

[8] Order 5 Length 192

Rep (1, 6, 5, 47, 52)(2, 19, 16, 119, 50)(3, 33, 77, 93, 137)(4, 41, 97,

106, 139)(7, 65, 64, 53, 141)(8, 71, 80, 157, 30)(9, 82, 123, 158,

135)(10, 35, 48, 98, 140)(11, 29, 148, 122, 136)(12, 63, 152, 28,

102)(13, 100, 49, 150, 89)(14, 75, 56, 159, 94)(15, 113, 145, 115,

103)(17, 66, 155, 96, 43)(18, 91, 85, 60, 133)(20, 37, 81, 87,

78)(21, 114, 154, 92, 72)(22, 38, 120, 129, 108)(23, 31, 95, 151,

70)(24, 117, 42, 138, 160)(25, 107, 121, 61, 86)(26, 73, 124, 105,

111)(27, 144, 36, 134, 79)(32, 67, 59, 127, 55)(34, 51, 142, 126,

130)(39, 118, 45, 149, 125)(40, 74, 131, 54, 153)(44, 110, 83, 58,

146)(46, 88, 128, 143, 57)(62, 68, 101, 99, 104)(69, 132, 109, 116,

156)(76, 147, 112, 84, 90)

[9] Order 5 Length 192

Rep (1, 20, 159, 29, 93)(2, 37, 79, 71, 160)(3, 89, 42, 145, 6)(4, 58,
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18, 95, 146)(5, 128, 44, 88, 125)(7, 155, 94, 31, 135)(8, 55, 30,

147, 141)(9, 131, 52, 56, 54)(10, 16, 152, 26, 158)(11, 74, 53, 13,

137)(12, 157, 75, 139, 14)(15, 50, 23, 92, 70)(17, 82, 39, 102,

133)(19, 111, 76, 122, 90)(21, 86, 127, 140, 59)(22, 106, 35, 123,

84)(24, 45, 129, 36, 149)(25, 105, 100, 124, 87)(27, 142, 151, 144,

33)(28, 101, 61, 132, 47)(32, 126, 136, 113, 81)(34, 73, 143, 148,

120)(38, 121, 60, 107, 153)(40, 51, 110, 78, 117)(41, 108, 66, 134,

69)(43, 46, 104, 98, 99)(48, 97, 156, 118, 119)(49, 114, 67, 57,

154)(62, 103, 109, 115, 65)(63, 116, 112, 96, 72)(64, 130, 68, 138,

150)(77, 91, 83, 80, 85)

[10] Order 6 Length 80

Rep (1, 36, 143, 16, 62, 31)(2, 49, 9, 47, 4, 122)(3, 12, 30, 48, 87,

107)(5, 105, 123, 50, 75, 11)(6, 84, 25, 119, 74, 157)(7, 140, 24,

120, 77, 109)(8, 89, 60, 121, 97, 55)(10, 34, 149, 93, 155, 103)(13,

43, 88, 106, 142, 70)(14, 98, 153, 124, 33, 147)(15, 27, 100, 125,

99, 139)(17, 81, 82, 126, 102, 136)(18, 90, 146, 67, 131, 154)(19,

58, 132, 52, 114, 160)(20, 94, 29, 152, 73, 158)(21, 45, 127, 83,

115, 85)(22, 145, 46, 53, 118, 151)(23, 35, 44, 128, 137, 92)(26,

159)(28, 54, 41, 37, 76, 150)(32, 133)(38, 104, 42, 141, 144,

156)(39, 113)(40, 112)(51, 116, 78, 96, 117, 63)(56, 61, 64, 111,

71, 108)(57, 95)(59, 135, 65, 91, 148, 129)(66, 79, 69, 130, 101,

138)(68, 134)(72, 110)(80, 86)

[11] Order 6 Length 160

Rep (1, 3, 11, 33, 91, 93)(2, 7)(4, 14)(5, 17, 52, 95, 85, 142)(6, 20,

60, 90, 136, 71)(8, 26, 76, 24, 70, 72)(9, 30, 32, 23, 68, 103)(10,

16, 48, 123, 98, 59)(12, 38, 78, 129, 80, 146)(13, 42, 100, 114,

150, 64)(15, 46, 102, 153, 157, 96)(18, 56, 29, 83, 36, 69)(19, 57,

127, 43, 50, 126)(21, 62, 138, 67, 111, 158)(22, 66, 44, 115, 116,

31)(25, 51, 125, 151, 81, 147)(27, 77)(28, 79, 113, 144, 74,

148)(34, 94, 112, 75, 118, 132)(35, 97)(37, 101, 39, 104, 84,

135)(40, 105, 145, 160, 155, 73)(41, 108, 106, 156, 139, 58)(45,

117, 143, 53, 130, 92)(47, 120)(49, 124)(54, 109, 88, 110, 121,

159)(55, 131, 82, 61, 119, 152)(63, 65, 86, 154, 87, 141)(89,

137)(99, 140)(107, 133, 128, 134, 149, 122)

[12] Order 6 Length 160

Rep (1, 93, 91, 33, 11, 3)(2, 7)(4, 14)(5, 142, 85, 95, 52, 17)(6, 71,

136, 90, 60, 20)(8, 72, 70, 24, 76, 26)(9, 103, 68, 23, 32, 30)(10,

59, 98, 123, 48, 16)(12, 146, 80, 129, 78, 38)(13, 64, 150, 114,

100, 42)(15, 96, 157, 153, 102, 46)(18, 69, 36, 83, 29, 56)(19, 126,

50, 43, 127, 57)(21, 158, 111, 67, 138, 62)(22, 31, 116, 115, 44,

66)(25, 147, 81, 151, 125, 51)(27, 77)(28, 148, 74, 144, 113,
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79)(34, 132, 118, 75, 112, 94)(35, 97)(37, 135, 84, 104, 39,

101)(40, 73, 155, 160, 145, 105)(41, 58, 139, 156, 106, 108)(45, 92,

130, 53, 143, 117)(47, 120)(49, 124)(54, 159, 121, 110, 88, 109)(55,

152, 119, 61, 82, 131)(63, 141, 87, 154, 86, 65)(89, 137)(99,

140)(107, 122, 149, 134, 128, 133)

[13] Order 8 Length 240

Rep (1, 150, 118, 5, 16, 41, 145, 50)(2, 153, 69, 51, 47, 147, 138,

96)(3, 152, 70, 61, 48, 20, 88, 71)(4, 87, 90, 40, 49, 12, 131,

112)(6, 132, 124, 65, 119, 160, 14, 129)(7, 125, 29, 102, 120, 15,

158, 81)(8, 104, 146, 103, 121, 144, 154, 149)(9, 34, 17, 110, 122,

155, 126, 72)(10, 74, 38, 64, 93, 84, 141, 108)(11, 79, 86, 100,

123, 101, 80, 139)(13, 66, 107, 31, 106, 130, 30, 143)(18, 46, 36,

97, 67, 151, 62, 89)(19, 53, 135, 27, 52, 22, 148, 99)(21, 157, 111,

35, 83, 25, 56, 137)(23, 105, 85, 76, 128, 75, 127, 54)(24, 28, 78,

133, 109, 37, 63, 32)(26, 60, 59, 82, 159, 55, 91, 136)(33, 156, 94,

57, 98, 42, 73, 95)(39, 140, 142, 45, 113, 77, 43, 115)(44, 114,

117, 134, 92, 58, 116, 68)

[14] Order 10 Length 192

Rep (1, 2, 6, 19, 5, 16, 47, 119, 52, 50)(3, 10, 33, 35, 77, 48, 93, 98,

137, 140)(4, 13, 41, 100, 97, 49, 106, 150, 139, 89)(7, 22, 65, 38,

64, 120, 53, 129, 141, 108)(8, 25, 71, 107, 80, 121, 157, 61, 30,

86)(9, 29, 82, 148, 123, 122, 158, 136, 135, 11)(12, 37, 63, 81,

152, 87, 28, 78, 102, 20)(14, 26, 75, 73, 56, 124, 159, 105, 94,

111)(15, 45, 113, 149, 145, 125, 115, 39, 103, 118)(17, 51, 66, 142,

155, 126, 96, 130, 43, 34)(18, 55, 91, 32, 85, 67, 60, 59, 133,

127)(21, 44, 114, 110, 154, 83, 92, 58, 72, 146)(23, 46, 31, 88, 95,

128, 151, 143, 70, 57)(24, 69, 117, 132, 42, 109, 138, 116, 160,

156)(27, 68, 144, 101, 36, 99, 134, 104, 79, 62)(40, 76, 74, 147,

131, 112, 54, 84, 153, 90)

[15] Order 10 Length 192

Rep (1, 19, 47, 50, 6, 16, 52, 2, 5, 119)(3, 35, 93, 140, 33, 48, 137,

10, 77, 98)(4, 100, 106, 89, 41, 49, 139, 13, 97, 150)(7, 38, 53,

108, 65, 120, 141, 22, 64, 129)(8, 107, 157, 86, 71, 121, 30, 25,

80, 61)(9, 148, 158, 11, 82, 122, 135, 29, 123, 136)(12, 81, 28, 20,

63, 87, 102, 37, 152, 78)(14, 73, 159, 111, 75, 124, 94, 26, 56,

105)(15, 149, 115, 118, 113, 125, 103, 45, 145, 39)(17, 142, 96, 34,

66, 126, 43, 51, 155, 130)(18, 32, 60, 127, 91, 67, 133, 55, 85,

59)(21, 110, 92, 146, 114, 83, 72, 44, 154, 58)(23, 88, 151, 57, 31,

128, 70, 46, 95, 143)(24, 132, 138, 156, 117, 109, 160, 69, 42,

116)(27, 101, 134, 62, 144, 99, 79, 68, 36, 104)(40, 147, 54, 90,

74, 112, 153, 76, 131, 84)
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[16] Order 12 Length 160

Rep (1, 140, 36, 24, 143, 120, 16, 77, 62, 109, 31, 7)(2, 108, 49, 56,

9, 61, 47, 64, 4, 111, 122, 71)(3, 135, 12, 65, 30, 91, 48, 148, 87,

129, 107, 59)(5, 34, 105, 149, 123, 93, 50, 155, 75, 103, 11, 10)(6,

102, 84, 136, 25, 17, 119, 81, 74, 82, 157, 126)(8, 14, 89, 98, 60,

153, 121, 124, 97, 33, 55, 147)(13, 132, 43, 52, 88, 114, 106, 160,

142, 19, 70, 58)(15, 23, 27, 35, 100, 44, 125, 128, 99, 137, 139,

92)(18, 73, 90, 158, 146, 20, 67, 94, 131, 29, 154, 152)(21, 79, 45,

69, 127, 130, 83, 101, 115, 138, 85, 66)(22, 51, 145, 116, 46, 78,

53, 96, 118, 117, 151, 63)(26, 40, 159, 112)(28, 104, 54, 42, 41,

141, 37, 144, 76, 156, 150, 38)(32, 57, 133, 95)(39, 134, 113,

68)(72, 86, 110, 80)

*/

for i in [2..#C] do i, C[i][3]; word(C[i][3]);

Orbits(Centraliser(N,C[i][3]));end for;

/*

2 (1, 16)(2, 47)(3, 48)(4, 49)(5, 50)(6, 119)(7, 120)(8, 121)(9, 122)(10, 93)(11, 123)(12, 87)(13, 106)(14, 124)(15, 125)(17, 126)(18, 67)(19, 52)(20,

152)(21, 83)(22, 53)(23, 128)(24, 109)(25, 157)(26, 159)(27, 99)(28, 37)(29,158)(30, 107)(31, 143)(32, 133)(33, 98)(34, 155)(35, 137)(36, 62)(38,141)(39, 113)(40, 112)(41, 150)(42, 156)(43, 142)(44, 92)(45, 115)(46,

151)(51, 96)(54, 76)(55, 60)(56, 111)(57, 95)(58, 114)(59, 91)(61, 71)(63,

78)(64, 108)(65, 129)(66, 130)(68, 134)(69, 138)(70, 88)(72, 110)(73,

94)(74, 84)(75, 105)(77, 140)(79, 101)(80, 86)(81, 102)(82, 136)(85,

127)(89, 97)(90, 131)(100, 139)(103, 149)(104, 144)(116, 117)(118, 145)(132,

160)(135, 148)(146, 154)(147, 153)

a^5

/* x^5 */

[

GSet{@ 1, 2, 3, 6, 7, 10, 11, 19, 20, 22, 33, 16, 9, 5, 57, 12, 60, 65, 66,

35, 91, 47, 48, 29, 30, 17, 23, 127, 37, 38, 59, 90, 86, 142, 44, 77, 97,

32, 93, 119, 120, 123, 82, 83, 51, 52, 46, 68, 18, 43, 63, 101, 64, 78, 133,

40, 136, 8, 154, 155, 114, 115, 27, 49, 85, 98, 152, 53, 122, 148, 61, 92,

36, 125, 50, 95, 31, 102, 144, 103, 55, 56, 34, 81, 39, 13, 129, 128, 76,

105, 135, 71, 25, 26, 87, 126, 73, 110, 150, 116, 106, 124, 67, 137, 130,

158, 107, 28, 58, 45, 99, 69, 151, 88, 153, 74, 118, 131, 94, 147, 104, 41,

42, 141, 80, 134, 24, 145, 75, 96, 121, 139, 160, 156, 159, 111, 140, 89,

21, 79, 72, 113, 117, 143, 157, 15, 132, 112, 84, 100, 108, 109, 146, 149,

70, 54, 14, 4, 62, 138 @}

]

3 (1, 33)(2, 7)(3, 91)(4, 14)(5, 95)(6, 90)(8, 24)(9, 23)(10, 123)(11, 93)(12,

129)(13, 114)(15, 153)(16, 98)(17, 85)(18, 83)(19, 43)(20, 136)(21, 67)(22,

115)(25, 151)(26, 70)(27, 77)(28, 144)(29, 69)(30, 68)(31, 44)(32, 103)(34,

75)(35, 97)(36, 56)(37, 104)(38, 80)(39, 135)(40, 160)(41, 156)(42, 150)(45,

53)(46, 157)(47, 120)(48, 59)(49, 124)(50, 57)(51, 81)(52, 142)(54, 110)(55,

61)(58, 106)(60, 71)(62, 111)(63, 154)(64, 100)(65, 87)(66, 116)(72, 76)(73,
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145)(74, 79)(78, 146)(82, 152)(84, 101)(86, 141)(88, 159)(89, 137)(92,

143)(94, 118)(96, 102)(99, 140)(105, 155)(107, 134)(108, 139)(109, 121)(112,

132)(113, 148)(117, 130)(119, 131)(122, 128)(125, 147)(126, 127)(133,

149)(138, 158)

b^3

/* y^3 */

[

GSet{@ 2, 158, 7, 120, 111, 67, 138, 69, 47, 62, 21, 36, 83, 29, 56, 18 @},

GSet{@ 15, 96, 153, 147, 137, 151, 102, 81, 125, 25, 89, 97, 51, 157, 35, 46

@},

GSet{@ 1, 33, 98, 146, 160, 16, 78, 40, 63, 112, 94, 24, 26, 141, 34, 86,

154, 132, 118, 8, 70, 75, 145, 121, 88, 80, 105, 38, 109, 91, 65, 93, 92,

115, 66, 27, 143, 22, 73, 159, 155, 3, 87, 11, 116, 77, 48, 12, 123, 31, 53,

117, 140, 44, 45, 129, 54, 72, 59, 130, 10, 99, 110, 76 @},

GSet{@ 4, 106, 14, 124, 39, 82, 41, 58, 114, 133, 49, 135, 152, 148, 20, 57,

144, 50, 68, 19, 90, 156, 42, 17, 13, 149, 103, 6, 71, 79, 113, 136, 28, 30,

43, 5, 37, 95, 107, 142, 119, 61, 139, 9, 55, 108, 104, 32, 150, 85, 127,

74, 23, 60, 131, 84, 52, 122, 134, 64, 128, 100, 101, 126 @}

]

4 (1, 97)(2, 78)(3, 61)(4, 40)(6, 65)(7, 17)(8, 29)(9, 51)(10, 95)(11, 123)(12,

130)(13, 31)(14, 114)(15, 85)(16, 89)(18, 145)(19, 22)(20, 43)(21, 74)(23,

69)(24, 102)(25, 73)(26, 82)(27, 59)(28, 103)(30, 90)(32, 110)(33, 111)(34,

76)(35, 64)(36, 100)(37, 149)(39, 77)(41, 86)(42, 156)(44, 132)(45, 88)(46,

101)(47, 63)(48, 71)(49, 112)(52, 53)(54, 155)(55, 135)(56, 98)(57, 93)(58,

124)(60, 148)(62, 139)(66, 87)(67, 118)(68, 117)(70, 115)(72, 133)(75,

144)(79, 151)(80, 150)(81, 109)(83, 84)(91, 99)(92, 160)(94, 157)(96,

122)(104, 105)(106, 143)(107, 131)(108, 137)(113, 140)(116, 134)(119,

129)(120, 126)(121, 158)(125, 127)(128, 138)(136, 159)(142, 152)(146,

147)(153, 154)

b * a^3 * b

/* y*x^3*y */

[

GSet{@ 5, 38, 50, 141 @},

GSet{@ 11, 123, 42, 156 @},

GSet{@ 32, 110, 72, 133 @},

GSet{@ 75, 144, 105, 104 @},

GSet{@ 1, 97, 142, 27, 89, 152, 59, 16, 83, 20, 91, 84, 43, 99, 74, 21 @},

GSet{@ 2, 78, 116, 40, 63, 134, 4, 47, 122, 68, 49, 96, 117, 112, 51, 9 @},

GSet{@ 3, 61, 146, 69, 71, 147, 23, 48, 53, 153, 128, 52, 154, 138, 19, 22

@},

GSet{@ 6, 65, 158, 127, 129, 121, 125, 119, 13, 8, 15, 31, 29, 85, 143, 106

@},

GSet{@ 7, 17, 136, 39, 126, 159, 77, 120, 109, 26, 140, 81, 82, 113, 102, 24

@},
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GSet{@ 10, 95, 76, 37, 57, 34, 149, 93, 86, 155, 103, 41, 54, 28, 150, 80

@},

GSet{@ 12, 130, 108, 18, 66, 137, 145, 87, 14, 35, 118, 114, 64, 67, 58, 124

@},

GSet{@ 25, 73, 45, 148, 94, 88, 60, 157, 100, 70, 55, 36, 115, 135, 62, 139

@},

GSet{@ 30, 90, 79, 111, 131, 151, 33, 107, 92, 46, 98, 160, 101, 56, 132, 44

@}

]

5 (1, 11, 91)(3, 33, 93)(5, 52, 85)(6, 60, 136)(8, 76, 70)(9, 32, 68)(10, 48,

98)(12, 78, 80)(13, 100, 150)(15, 102, 157)(16, 123, 59)(17, 95, 142)(18,

29, 36)(19, 127, 50)(20, 90, 71)(21, 138, 111)(22, 44, 116)(23, 103, 30)(24,

72, 26)(25, 125, 81)(28, 113, 74)(31, 66, 115)(34, 112, 118)(37, 39, 84)(38,

129, 146)(40, 145, 155)(41, 106, 139)(42, 114, 64)(43, 126, 57)(45, 143,

130)(46, 153, 96)(51, 151, 147)(53, 92, 117)(54, 88, 121)(55, 82, 119)(56,

83, 69)(58, 108, 156)(61, 152, 131)(62, 67, 158)(63, 86, 87)(65, 154,

141)(73, 105, 160)(75, 132, 94)(79, 144, 148)(101, 104, 135)(107, 128,

149)(109, 110, 159)(122, 133, 134)

b^2

/* y^2 */

[

GSet{@ 2, 7, 137, 97, 89, 35, 120, 47 @},

GSet{@ 4, 14, 77, 99, 27, 140, 124, 49 @},

GSet{@ 1, 11, 3, 149, 91, 33, 107, 9, 122, 93, 128, 32, 133, 30, 10, 68,

134, 23, 48, 16, 103, 98, 123, 59 @},

GSet{@ 5, 52, 17, 40, 85, 95, 145, 75, 105, 142, 155, 132, 160, 118, 43, 94,

73, 34, 126, 50, 112, 57, 19, 127 @},

GSet{@ 6, 60, 20, 92, 136, 90, 117, 115, 45, 71, 53, 31, 143, 116, 61, 66,

130, 22, 152, 119, 44, 131, 55, 82 @},

GSet{@ 8, 76, 26, 42, 70, 24, 114, 139, 100, 72, 64, 41, 150, 58, 110, 106,

13, 108, 159, 121, 156, 109, 54, 88 @},

GSet{@ 12, 78, 38, 79, 80, 129, 144, 39, 113, 146, 148, 84, 74, 104, 154,

37, 28, 135, 141, 87, 101, 65, 63, 86 @},

GSet{@ 15, 102, 46, 83, 157, 153, 69, 62, 36, 96, 56, 67, 18, 138, 51, 158,

29, 111, 151, 125, 21, 147, 81, 25 @}

]

6 (1, 118, 16, 145)(2, 69, 47, 138)(3, 70, 48, 88)(4, 90, 49, 131)(5, 41, 50,

150)(6, 124, 119, 14)(7, 29, 120, 158)(8, 146, 121, 154)(9, 17, 122,

126)(10, 38, 93, 141)(11, 86, 123, 80)(12, 112, 87, 40)(13, 107, 106,

30)(15, 81, 125, 102)(18, 36, 67, 62)(19, 135, 52, 148)(20, 71, 152, 61)(21,

111, 83, 56)(22, 99, 53, 27)(23, 85, 128, 127)(24, 78, 109, 63)(25, 137,

157, 35)(26, 59, 159, 91)(28, 133, 37, 32)(31, 130, 143, 66)(33, 94, 98,

73)(34, 110, 155, 72)(39, 142, 113, 43)(42, 95, 156, 57)(44, 117, 92,

116)(45, 77, 115, 140)(46, 97, 151, 89)(51, 147, 96, 153)(54, 105, 76,
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75)(55, 136, 60, 82)(58, 68, 114, 134)(64, 84, 108, 74)(65, 160, 129,

132)(79, 100, 101, 139)(103, 144, 149, 104)

(a^-1 * b)^3

/* (x^-1*y)^3 */

[

GSet{@ 1, 118, 156, 127, 16, 57, 23, 145, 105, 122, 75, 42, 85, 76, 126, 54,

95, 128, 110, 94, 5, 73, 72, 9, 155, 98, 41, 33, 34, 17, 50, 150 @},

GSet{@ 8, 63, 146, 149, 84, 100, 24, 93, 139, 121, 104, 108, 28, 154, 86,

80, 101, 78, 141, 79, 109, 37, 103, 74, 133, 123, 11, 10, 144, 64, 32, 38

@},

GSet{@ 2, 45, 69, 135, 157, 13, 77, 117, 4, 47, 52, 35, 125, 138, 40, 119,

112, 107, 91, 115, 92, 90, 140, 60, 88, 55, 148, 25, 102, 12, 14, 87, 30,

83, 19, 137, 62, 134, 31, 99, 36, 106, 26, 89, 21, 116, 49, 82, 3, 136, 44,

131, 65, 29, 51, 68, 129, 15, 6, 56, 18, 58, 130, 53, 67, 81, 159, 20, 124,

143, 152, 59, 114, 96, 46, 111, 27, 43, 158, 70, 160, 120, 147, 132, 48, 7,

142, 71, 66, 61, 153, 151, 22, 97, 39, 113 @}

]

7 (1, 155, 23, 50)(2, 160, 35, 142)(3, 21, 134, 102)(4, 130, 140, 20)(5, 16, 34,

128)(6, 136, 22, 116)(7, 135, 89, 12)(8, 141, 108, 37)(9, 54, 98, 42)(10,

74, 32, 146)(11, 109, 103, 139)(13, 18, 26, 96)(14, 55, 27, 92)(15, 70, 111,

58)(17, 105, 73, 95)(19, 151, 40, 158)(24, 149, 100, 123)(25, 113, 69,

129)(28, 121, 38, 64)(29, 52, 46, 112)(30, 62, 91, 147)(31, 115, 61,

131)(33, 156, 122, 76)(36, 59, 153, 107)(39, 138, 65, 157)(41, 145, 110,

127)(43, 47, 132, 137)(44, 124, 60, 99)(45, 71, 90, 143)(48, 83, 68, 81)(49,

66, 77, 152)(51, 106, 67, 159)(53, 117, 119, 82)(56, 114, 125, 88)(57, 126,

75, 94)(63, 144, 79, 86)(72, 85, 150, 118)(78, 104, 101, 80)(84, 133, 154,

93)(87, 120, 148, 97)

a * b^-1 * a * b^-2 * a * b

/* x*y^-1*x*y^-2*x*y */

[

GSet{@ 1, 155, 150, 23, 118, 128, 50, 72, 5, 110, 85, 16, 127, 34, 41, 145

@},

GSet{@ 2, 160, 113, 35, 69, 137, 142, 129, 43, 65, 25, 47, 157, 132, 39, 138

@},

GSet{@ 3, 21, 15, 134, 70, 68, 102, 111, 81, 56, 58, 48, 114, 83, 125, 88

@},

GSet{@ 4, 130, 71, 140, 90, 77, 20, 143, 152, 31, 45, 49, 115, 66, 61, 131

@},

GSet{@ 6, 136, 44, 22, 124, 53, 116, 60, 117, 55, 99, 119, 27, 82, 92, 14

@},

GSet{@ 7, 135, 112, 89, 29, 97, 12, 52, 87, 19, 46, 120, 151, 148, 40, 158

@},

GSet{@ 8, 141, 32, 108, 146, 64, 37, 10, 28, 93, 74, 121, 84, 38, 133, 154

@},
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GSet{@ 9, 54, 95, 98, 17, 33, 42, 105, 156, 75, 73, 122, 94, 76, 57, 126 @},

GSet{@ 11, 109, 79, 103, 86, 149, 139, 63, 100, 78, 144, 123, 104, 24, 101,

80 @},

GSet{@ 13, 18, 153, 26, 107, 159, 96, 36, 51, 62, 59, 106, 91, 67, 147, 30

@}

]

8 (1, 6, 5, 47, 52)(2, 19, 16, 119, 50)(3, 33, 77, 93, 137)(4, 41, 97, 106,

139)(7, 65, 64, 53, 141)(8, 71, 80, 157, 30)(9, 82, 123, 158, 135)(10, 35,

48, 98, 140)(11, 29, 148, 122, 136)(12, 63, 152, 28, 102)(13, 100, 49, 150,

89)(14, 75, 56, 159, 94)(15, 113, 145, 115, 103)(17, 66, 155, 96, 43)(18,

91, 85, 60, 133)(20, 37, 81, 87, 78)(21, 114, 154, 92, 72)(22, 38, 120, 129,

108)(23, 31, 95, 151, 70)(24, 117, 42, 138, 160)(25, 107, 121, 61, 86)(26,

73, 124, 105, 111)(27, 144, 36, 134, 79)(32, 67, 59, 127, 55)(34, 51, 142,

126, 130)(39, 118, 45, 149, 125)(40, 74, 131, 54, 153)(44, 110, 83, 58,

146)(46, 88, 128, 143, 57)(62, 68, 101, 99, 104)(69, 132, 109, 116, 156)(76,

147, 112, 84, 90)

a^2

/* x^2 */

[

GSet{@ 1, 6, 2, 5, 19, 47, 16, 52, 119, 50 @},

GSet{@ 3, 33, 10, 77, 35, 93, 48, 137, 98, 140 @},

GSet{@ 4, 41, 13, 97, 100, 106, 49, 139, 150, 89 @},

GSet{@ 7, 65, 22, 64, 38, 53, 120, 141, 129, 108 @},

GSet{@ 8, 71, 25, 80, 107, 157, 121, 30, 61, 86 @},

GSet{@ 9, 82, 29, 123, 148, 158, 122, 135, 136, 11 @},

GSet{@ 12, 63, 37, 152, 81, 28, 87, 102, 78, 20 @},

GSet{@ 14, 75, 26, 56, 73, 159, 124, 94, 105, 111 @},

GSet{@ 15, 113, 45, 145, 149, 115, 125, 103, 39, 118 @},

GSet{@ 17, 66, 51, 155, 142, 96, 126, 43, 130, 34 @},

GSet{@ 18, 91, 55, 85, 32, 60, 67, 133, 59, 127 @},

GSet{@ 21, 114, 44, 154, 110, 92, 83, 72, 58, 146 @},

GSet{@ 23, 31, 46, 95, 88, 151, 128, 70, 143, 57 @},

GSet{@ 24, 117, 69, 42, 132, 138, 109, 160, 116, 156 @},

GSet{@ 27, 144, 68, 36, 101, 134, 99, 79, 104, 62 @},

GSet{@ 40, 74, 76, 131, 147, 54, 112, 153, 84, 90 @}

]

9 (1, 20, 159, 29, 93)(2, 37, 79, 71, 160)(3, 89, 42, 145, 6)(4, 58, 18, 95,

146)(5, 128, 44, 88, 125)(7, 155, 94, 31, 135)(8, 55, 30, 147, 141)(9, 131,

52, 56, 54)(10, 16, 152, 26, 158)(11, 74, 53, 13, 137)(12, 157, 75, 139,

14)(15, 50, 23, 92, 70)(17, 82, 39, 102, 133)(19, 111, 76, 122, 90)(21, 86,

127, 140, 59)(22, 106, 35, 123, 84)(24, 45, 129, 36, 149)(25, 105, 100, 124,

87)(27, 142, 151, 144, 33)(28, 101, 61, 132, 47)(32, 126, 136, 113, 81)(34,

73, 143, 148, 120)(38, 121, 60, 107, 153)(40, 51, 110, 78, 117)(41, 108, 66,

134, 69)(43, 46, 104, 98, 99)(48, 97, 156, 118, 119)(49, 114, 67, 57,
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154)(62, 103, 109, 115, 65)(63, 116, 112, 96, 72)(64, 130, 68, 138, 150)(77,

91, 83, 80, 85)

a * b^-2 * a * b

/* x*y^-2*x*y */

[

GSet{@ 1, 20, 158, 159, 10, 29, 16, 93, 152, 26 @},

GSet{@ 2, 37, 61, 79, 132, 71, 47, 160, 28, 101 @},

GSet{@ 3, 89, 118, 42, 119, 145, 48, 6, 97, 156 @},

GSet{@ 4, 58, 57, 18, 154, 95, 49, 146, 114, 67 @},

GSet{@ 5, 128, 70, 44, 15, 88, 50, 125, 23, 92 @},

GSet{@ 7, 155, 143, 94, 148, 31, 120, 135, 34, 73 @},

GSet{@ 8, 55, 153, 30, 38, 147, 121, 141, 60, 107 @},

GSet{@ 9, 131, 111, 52, 76, 56, 122, 54, 90, 19 @},

GSet{@ 11, 74, 106, 53, 35, 13, 123, 137, 84, 22 @},

GSet{@ 12, 157, 100, 75, 124, 139, 87, 14, 25, 105 @},

GSet{@ 17, 82, 81, 39, 32, 102, 126, 133, 136, 113 @},

GSet{@ 21, 86, 77, 127, 91, 140, 83, 59, 80, 85 @},

GSet{@ 24, 45, 62, 129, 103, 36, 109, 149, 115, 65 @},

GSet{@ 27, 142, 104, 151, 98, 144, 99, 33, 43, 46 @},

GSet{@ 40, 51, 63, 110, 116, 78, 112, 117, 96, 72 @},

GSet{@ 41, 108, 68, 66, 138, 134, 150, 69, 64, 130 @}

]

10 (1, 36, 143, 16, 62, 31)(2, 49, 9, 47, 4, 122)(3, 12, 30, 48, 87, 107)(5,

105, 123, 50, 75, 11)(6, 84, 25, 119, 74, 157)(7, 140, 24, 120, 77, 109)(8,

89, 60, 121, 97, 55)(10, 34, 149, 93, 155, 103)(13, 43, 88, 106, 142,

70)(14, 98, 153, 124, 33, 147)(15, 27, 100, 125, 99, 139)(17, 81, 82, 126,

102, 136)(18, 90, 146, 67, 131, 154)(19, 58, 132, 52, 114, 160)(20, 94, 29,

152, 73, 158)(21, 45, 127, 83, 115, 85)(22, 145, 46, 53, 118, 151)(23, 35,

44, 128, 137, 92)(26, 159)(28, 54, 41, 37, 76, 150)(32, 133)(38, 104, 42,

141, 144, 156)(39, 113)(40, 112)(51, 116, 78, 96, 117, 63)(56, 61, 64, 111,

71, 108)(57, 95)(59, 135, 65, 91, 148, 129)(66, 79, 69, 130, 101, 138)(68,

134)(72, 110)(80, 86)

(b * a^-1)^2

/* (y*x^-1)^2 */

[

GSet{@ 26, 159, 113, 40, 39, 112, 68, 134 @},

GSet{@ 32, 133, 72, 57, 110, 95, 86, 80 @},

GSet{@ 1, 36, 157, 140, 143, 6, 24, 126, 17, 16, 84, 120, 102, 81, 7, 119, 62, 25, 77, 136, 82, 74, 31, 109 @},

GSet{@ 2, 49, 116, 108, 9, 78, 56, 46, 151, 47, 96, 61, 53, 22, 71, 63, 4, 117, 64, 118, 145, 51, 122, 111 @},

GSet{@ 3, 12, 58, 135, 30, 132, 65, 13, 106, 48, 52, 91, 43, 142, 59, 160, 87, 114, 148, 88, 70, 19, 107, 129 @},

GSet{@ 5, 105, 144, 34, 123, 156, 149, 76, 54, 50, 38, 93, 150, 41, 10, 42, 75, 104, 155, 28, 37, 141, 11, 103 @},

GSet{@ 8, 89, 83, 14, 60, 115, 98, 101, 79, 121, 85, 153, 138, 69, 147, 45, 97, 21, 124, 66, 130, 127, 55, 33 @},

GSet{@ 15, 27, 20, 23, 100, 94, 35, 67, 18, 125, 29, 44, 131, 90, 92, 73, 99, 152, 128, 154, 146, 158, 139, 137 @}

]
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11 (1, 3, 11, 33, 91, 93)(2, 7)(4, 14)(5, 17, 52, 95, 85, 142)(6, 20, 60, 90, 136, 71)(8, 26, 76, 24, 70, 72)(9, 30, 32, 23, 68, 103)(10, 16, 48, 123, 98, 59)(12, 38,

78, 129, 80, 146)(13, 42, 100, 114, 150, 64)(15, 46, 102, 153, 157, 96)(18, 56, 29, 83, 36, 69)(19, 57, 127, 43, 50, 126)(21, 62, 138, 67, 111, 158)(22, 66, 44,

115, 116, 31)(25, 51, 125, 151, 81, 147)(27, 77)(28, 79, 113, 144, 74, 148)(34, 94, 112, 75, 118, 132)(35, 97)(37, 101, 39, 104, 84, 135)(40, 105, 145, 160, 155,

73)(41, 108, 106, 156, 139, 58)(45, 117, 143, 53, 130, 92)(47, 120)(49, 124)(54, 109, 88, 110, 121, 159)(55, 131, 82, 61, 119, 152)(63, 65, 86, 154, 87, 141)(89,

137)(99, 140)(107, 133, 128, 134, 149, 122)

b

/* y */

[

GSet{@ 2, 7, 47, 120 @},

GSet{@ 4, 14, 49, 124 @},

GSet{@ 27, 77, 99, 140 @},

GSet{@ 35, 97, 137, 89 @},

GSet{@ 1, 3, 123, 11, 98, 91, 33, 59, 93, 16, 10, 48 @},

GSet{@ 5, 17, 19, 52, 57, 85, 95, 127, 142, 50, 43, 126 @},

GSet{@ 6, 20, 55, 60, 131, 136, 90, 82, 71, 119, 61, 152 @},

GSet{@ 8, 26, 54, 76, 109, 70, 24, 88, 72, 121, 110, 159 @},

GSet{@ 9, 30, 133, 32, 128, 68, 23, 134, 103, 122, 149, 107 @},

GSet{@ 12, 38, 63, 78, 65, 80, 129, 86, 146, 87, 154, 141 @},

GSet{@ 13, 42, 139, 100, 58, 150, 114, 41, 64, 106, 108, 156 @},

GSet{@ 15, 46, 81, 102, 147, 157, 153, 25, 96, 125, 51, 151 @},

GSet{@ 18, 56, 158, 29, 21, 36, 83, 62, 69, 67, 138, 111 @},

GSet{@ 22, 66, 92, 44, 45, 116, 115, 117, 31, 53, 143, 130 @},

GSet{@ 28, 79, 39, 113, 104, 74, 144, 84, 148, 37, 135, 101 @},

GSet{@ 34, 94, 40, 112, 105, 118, 75, 145, 132, 155, 160, 73 @}

]

12 (1, 93, 91, 33, 11, 3)(2, 7)(4, 14)(5, 142, 85, 95, 52, 17)(6, 71, 136, 90, 60, 20)(8, 72, 70, 24, 76, 26)(9, 103, 68, 23, 32, 30)(10, 59, 98, 123, 48, 16)(12, 146,

80, 129, 78, 38)(13, 64, 150, 114, 100, 42)(15, 96, 157, 153, 102, 46)(18, 69, 36, 83, 29, 56)(19, 126, 50, 43, 127, 57)(21, 158, 111, 67, 138, 62)(22, 31, 116,

115, 44, 66)(25, 147, 81, 151, 125, 51)(27, 77)(28, 148, 74, 144, 113, 79)(34, 132, 118, 75, 112, 94)(35, 97)(37, 135, 84, 104, 39, 101)(40, 73, 155, 160, 145,

105)(41, 58, 139, 156, 106, 108)(45, 92, 130, 53, 143, 117)(47, 120)(49, 124)(54, 159, 121, 110, 88, 109)(55, 152, 119, 61, 82, 131)(63, 141, 87, 154, 86, 65)(89,

137)(99, 140)(107, 122, 149, 134, 128, 133)

b^-1

/* y^-1 */

[

GSet{@ 2, 7, 47, 120 @},

GSet{@ 4, 14, 49, 124 @},

GSet{@ 27, 77, 99, 140 @},

GSet{@ 35, 97, 137, 89 @},

GSet{@ 1, 93, 123, 91, 48, 33, 16, 11, 10, 3, 59, 98 @},

GSet{@ 5, 142, 19, 85, 126, 95, 50, 52, 43, 17, 127, 57 @},

GSet{@ 6, 71, 55, 136, 152, 90, 119, 60, 61, 20, 82, 131 @},

GSet{@ 8, 72, 54, 70, 159, 24, 121, 76, 110, 26, 88, 109 @},

GSet{@ 9, 103, 133, 68, 107, 23, 122, 32, 149, 30, 134, 128 @},

GSet{@ 12, 146, 63, 80, 141, 129, 87, 78, 154, 38, 86, 65 @},

GSet{@ 13, 64, 139, 150, 156, 114, 106, 100, 108, 42, 41, 58 @},
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GSet{@ 15, 96, 81, 157, 151, 153, 125, 102, 51, 46, 25, 147 @},

GSet{@ 18, 69, 158, 36, 111, 83, 67, 29, 138, 56, 62, 21 @},

GSet{@ 22, 31, 92, 116, 130, 115, 53, 44, 143, 66, 117, 45 @},

GSet{@ 28, 148, 39, 74, 101, 144, 37, 113, 135, 79, 84, 104 @},

GSet{@ 34, 132, 40, 118, 73, 75, 155, 112, 160, 94, 145, 105 @}

]

13 (1, 150, 118, 5, 16, 41, 145, 50)(2, 153, 69, 51, 47, 147, 138, 96)(3, 152, 70, 61, 48, 20, 88, 71)(4, 87, 90, 40, 49, 12, 131, 112)(6, 132, 124, 65, 119, 160, 14,

129)(7, 125, 29, 102, 120, 15, 158, 81)(8, 104, 146, 103, 121, 144, 154, 149)(9, 34, 17, 110, 122, 155, 126, 72)(10, 74, 38, 64, 93, 84, 141, 108)(11, 79, 86, 100,

123, 101, 80, 139)(13, 66, 107, 31, 106, 130, 30, 143)(18, 46, 36, 97, 67, 151, 62, 89)(19, 53, 135, 27, 52, 22, 148, 99)(21, 157, 111, 35, 83, 25, 56, 137)(23,

105, 85, 76, 128, 75, 127, 54)(24, 28, 78, 133, 109, 37, 63, 32)(26, 60, 59, 82, 159, 55, 91, 136)(33, 156, 94, 57, 98, 42, 73, 95)(39, 140, 142, 45, 113, 77, 43,

115)(44, 114, 117, 134, 92, 58, 116, 68)

a * b * a * b^2 * a * b

/* x*y*x*y^2*x*y */

[

GSet{@ 1, 150, 118, 5, 16, 41, 145, 50 @},

GSet{@ 2, 153, 69, 51, 47, 147, 138, 96 @},

GSet{@ 3, 152, 70, 61, 48, 20, 88, 71 @},

GSet{@ 4, 87, 90, 40, 49, 12, 131, 112 @},

GSet{@ 6, 132, 124, 65, 119, 160, 14, 129 @},

GSet{@ 7, 125, 29, 102, 120, 15, 158, 81 @},

GSet{@ 8, 104, 146, 103, 121, 144, 154, 149 @},

GSet{@ 9, 34, 17, 110, 122, 155, 126, 72 @},

GSet{@ 10, 74, 38, 64, 93, 84, 141, 108 @},

GSet{@ 11, 79, 86, 100, 123, 101, 80, 139 @},

GSet{@ 13, 66, 107, 31, 106, 130, 30, 143 @},

GSet{@ 18, 46, 36, 97, 67, 151, 62, 89 @},

GSet{@ 19, 53, 135, 27, 52, 22, 148, 99 @},

GSet{@ 21, 157, 111, 35, 83, 25, 56, 137 @},

GSet{@ 23, 105, 85, 76, 128, 75, 127, 54 @},

GSet{@ 24, 28, 78, 133, 109, 37, 63, 32 @},

GSet{@ 26, 60, 59, 82, 159, 55, 91, 136 @},

GSet{@ 33, 156, 94, 57, 98, 42, 73, 95 @},

GSet{@ 39, 140, 142, 45, 113, 77, 43, 115 @},

GSet{@ 44, 114, 117, 134, 92, 58, 116, 68 @}

]

14 (1, 2, 6, 19, 5, 16, 47, 119, 52, 50)(3, 10, 33, 35, 77, 48, 93, 98, 137, 140)(4, 13, 41, 100, 97, 49, 106, 150, 139, 89)(7, 22, 65, 38, 64, 120, 53, 129, 141,

108)(8, 25, 71, 107, 80, 121, 157, 61, 30, 86)(9, 29, 82, 148, 123, 122, 158, 136, 135, 11)(12, 37, 63, 81, 152, 87, 28, 78, 102, 20)(14, 26, 75, 73, 56, 124, 159,

105, 94, 111)(15, 45, 113, 149, 145, 125, 115, 39, 103, 118)(17, 51, 66, 142, 155, 126, 96, 130, 43, 34)(18, 55, 91, 32, 85, 67, 60, 59, 133, 127)(21, 44, 114, 110,

154, 83, 92, 58, 72, 146)(23, 46, 31, 88, 95, 128, 151, 143, 70, 57)(24, 69, 117, 132, 42, 109, 138, 116, 160, 156)(27, 68, 144, 101, 36, 99, 134, 104, 79, 62)(40,

76, 74, 147, 131, 112, 54, 84, 153, 90)

a

/* x */

[

GSet{@ 1, 2, 6, 19, 5, 16, 47, 119, 52, 50 @},
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GSet{@ 3, 10, 33, 35, 77, 48, 93, 98, 137, 140 @},

GSet{@ 4, 13, 41, 100, 97, 49, 106, 150, 139, 89 @},

GSet{@ 7, 22, 65, 38, 64, 120, 53, 129, 141, 108 @},

GSet{@ 8, 25, 71, 107, 80, 121, 157, 61, 30, 86 @},

GSet{@ 9, 29, 82, 148, 123, 122, 158, 136, 135, 11 @},

GSet{@ 12, 37, 63, 81, 152, 87, 28, 78, 102, 20 @},

GSet{@ 14, 26, 75, 73, 56, 124, 159, 105, 94, 111 @},

GSet{@ 15, 45, 113, 149, 145, 125, 115, 39, 103, 118 @},

GSet{@ 17, 51, 66, 142, 155, 126, 96, 130, 43, 34 @},

GSet{@ 18, 55, 91, 32, 85, 67, 60, 59, 133, 127 @},

GSet{@ 21, 44, 114, 110, 154, 83, 92, 58, 72, 146 @},

GSet{@ 23, 46, 31, 88, 95, 128, 151, 143, 70, 57 @},

GSet{@ 24, 69, 117, 132, 42, 109, 138, 116, 160, 156 @},

GSet{@ 27, 68, 144, 101, 36, 99, 134, 104, 79, 62 @},

GSet{@ 40, 76, 74, 147, 131, 112, 54, 84, 153, 90 @}

]

15 (1, 19, 47, 50, 6, 16, 52, 2, 5, 119)(3, 35, 93, 140, 33, 48, 137, 10, 77, 98)(4, 100, 106, 89, 41, 49, 139, 13, 97, 150)(7, 38, 53, 108, 65, 120, 141, 22, 64,

129)(8, 107, 157, 86, 71, 121, 30, 25, 80, 61)(9, 148, 158, 11, 82, 122, 135, 29, 123, 136)(12, 81, 28, 20, 63, 87, 102, 37, 152, 78)(14, 73, 159, 111, 75, 124, 94,

26, 56, 105)(15, 149, 115, 118, 113, 125, 103, 45, 145, 39)(17, 142, 96, 34, 66, 126, 43, 51, 155, 130)(18, 32, 60, 127, 91, 67, 133, 55, 85, 59)(21, 110, 92, 146,

114, 83, 72, 44, 154, 58)(23, 88, 151, 57, 31, 128, 70, 46, 95, 143)(24, 132, 138, 156, 117, 109, 160, 69, 42, 116)(27, 101, 134, 62, 144, 99, 79, 68, 36, 104)(40,

147, 54, 90, 74, 112, 153, 76, 131, 84)

a^3

/* x^3 */

[

GSet{@ 1, 19, 47, 50, 6, 16, 52, 2, 5, 119 @},

GSet{@ 3, 35, 93, 140, 33, 48, 137, 10, 77, 98 @},

GSet{@ 4, 100, 106, 89, 41, 49, 139, 13, 97, 150 @},

GSet{@ 7, 38, 53, 108, 65, 120, 141, 22, 64, 129 @},

GSet{@ 8, 107, 157, 86, 71, 121, 30, 25, 80, 61 @},

GSet{@ 9, 148, 158, 11, 82, 122, 135, 29, 123, 136 @},

GSet{@ 12, 81, 28, 20, 63, 87, 102, 37, 152, 78 @},

GSet{@ 14, 73, 159, 111, 75, 124, 94, 26, 56, 105 @},

GSet{@ 15, 149, 115, 118, 113, 125, 103, 45, 145, 39 @},

GSet{@ 17, 142, 96, 34, 66, 126, 43, 51, 155, 130 @},

GSet{@ 18, 32, 60, 127, 91, 67, 133, 55, 85, 59 @},

GSet{@ 21, 110, 92, 146, 114, 83, 72, 44, 154, 58 @},

GSet{@ 23, 88, 151, 57, 31, 128, 70, 46, 95, 143 @},

GSet{@ 24, 132, 138, 156, 117, 109, 160, 69, 42, 116 @},

GSet{@ 27, 101, 134, 62, 144, 99, 79, 68, 36, 104 @},

GSet{@ 40, 147, 54, 90, 74, 112, 153, 76, 131, 84 @}

]

16 (1, 140, 36, 24, 143, 120, 16, 77, 62, 109, 31, 7)(2, 108, 49, 56, 9, 61, 47, 64, 4, 111, 122, 71)(3, 135, 12, 65, 30, 91, 48, 148, 87, 129, 107, 59)(5, 34, 105,

149, 123, 93, 50, 155, 75, 103, 11, 10)(6, 102, 84, 136, 25, 17, 119, 81, 74, 82, 157, 126)(8, 14, 89, 98, 60, 153, 121, 124, 97, 33, 55, 147)(13, 132, 43, 52, 88,

114, 106, 160, 142, 19, 70, 58)(15, 23, 27, 35, 100, 44, 125, 128, 99, 137, 139, 92)(18, 73, 90, 158, 146, 20, 67, 94, 131, 29, 154, 152)(21, 79, 45, 69, 127, 130,
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83, 101, 115, 138, 85, 66)(22, 51, 145, 116, 46, 78, 53, 96, 118, 117, 151, 63)(26, 40, 159, 112)(28, 104, 54, 42, 41, 141, 37, 144, 76, 156, 150, 38)(32, 57, 133,

95)(39, 134, 113, 68)(72, 86, 110, 80)

b * a^-1

/* y*x^-1 */

[

GSet{@ 26, 40, 159, 112 @},

GSet{@ 32, 57, 133, 95 @},

GSet{@ 39, 134, 113, 68 @},

GSet{@ 72, 86, 110, 80 @},

GSet{@ 1, 143, 140, 62, 120, 36, 109, 16, 24, 31, 77, 7 @},

GSet{@ 2, 9, 108, 4, 61, 49, 111, 47, 56, 122, 64, 71 @},

GSet{@ 3, 30, 135, 87, 91, 12, 129, 48, 65, 107, 148, 59 @},

GSet{@ 5, 123, 34, 75, 93, 105, 103, 50, 149, 11, 155, 10 @},

GSet{@ 6, 25, 102, 74, 17, 84, 82, 119, 136, 157, 81, 126 @},

GSet{@ 8, 60, 14, 97, 153, 89, 33, 121, 98, 55, 124, 147 @},

GSet{@ 13, 88, 132, 142, 114, 43, 19, 106, 52, 70, 160, 58 @},

GSet{@ 15, 100, 23, 99, 44, 27, 137, 125, 35, 139, 128, 92 @},

GSet{@ 18, 146, 73, 131, 20, 90, 29, 67, 158, 154, 94, 152 @},

GSet{@ 21, 127, 79, 115, 130, 45, 138, 83, 69, 85, 101, 66 @},

GSet{@ 22, 46, 51, 118, 78, 145, 117, 53, 116, 151, 96, 63 @},

GSet{@ 28, 41, 104, 76, 141, 54, 156, 37, 42, 150, 144, 38 @}

]

*/

for j in [2..#N] do for i in [1..#Setseq(Set(N))] do if 1^Setseq(Set(N))[i] eq j then j, word(Setseq(Set(N))[i]); break;end if; end for;end for;

/*

2 a

3 a^2 * b^2 * a * b * a^-1

4 b * a * b^-2 * a * b * a

5 a^-2 * b^-2

6 b^-1 * a^-1 * b^-1 * a^-3

7 b * a * b^2 * a * b * a * b

8 a^-1 * b * a * b * a^-1 * b^-1 * a^-1 * b^-1

9 b * a^2 * b^-1 * a

10 b * a

11 b^2

12 a * b * a^2 * b^-1 * a^-2

13 b^-1 * a^-1 * b^-1 * a * b^-1 * a^-1 * b

14 b^-1 * a * b * a^-2 * b * a

15 a^-3 * b^-1 * a^-1 * b^2

16 a^-2 * b^-2 * a

17 a^4 * b

18 b * a^-1 * b * a^-1 * b^2

19 b^-1 * a^-1 * b^-1 * a^-2

20 a^2 * b^-1 * a * b * a^-2 * b^-1
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21 a^2 * b * a * b^-1 * a

22 a * b * a

23 b^-1 * a^-2 * b * a * b^-1

24 b * a^-2 * b * a^-1 * b^-1 * a

25 a * b^-1 * a^2 * b * a^2

26 b * a^-2 * b * a * b^-1 * a

27 a^-1 * b^3 * a * b * a^-1

28 b^2 * a^-1 * b^-2 * a * b^-1

29 b^-1 * a^-1 * b * a^-3

30 a^-3 * b^-1 * a

31 a^2 * b * a * b * a^-2 * b^-1

32 a * b * a^2 * b * a^-1 * b

33 b^-1 * a * b^-2 * a * b^-2

34 a * b * a * b * a^-3

35 a * b^-1 * a^-1 * b^-1 * a^2 * b

36 (b * a^-1)^2

37 a * b^-1 * a^3 * b^-1 * a

38 b^2 * a^-1 * b * a^-1 * b

39 a^-1 * b * a^-1 * b^-1 * a^-1 * b^-1 * a

40 b * a * b^-1 * a^-1 * b * a

41 a * b^-1 * a^4 * b * a

42 b * a^3 * b^-1 * a^-1 * b^-1

43 a * b^-2 * a^-2 * b^-1

44 b^2 * a * b^-1 * a^-2 * b^-1

45 b * a^-1 * b * a^-1 * b^-1 * a * b

46 a * b^3 * a * b^-1 * a^-1

47 b * a * b * a * b^-2

48 b * a * b^2

49 b^2 * a^2 * b^-1 * a * b

50 b * a * b * a^4

51 a^-1 * b^-1 * a^3

52 b * a * b * a^3

53 a * b^-1 * a^-4

54 b * a * b^-1 * a^-1 * b * a^-3

55 b^-1 * a * b^-2 * a * b^-1 * a^-1

56 a^3 * b^-1 * a^-1 * b * a

57 b^-2 * a * b * a^-1

58 a^-1 * b^-1 * a^-1 * b * a

59 a * b^-2 * a * b^2 * a

60 b^2 * a^-1 * b * a^-2 * b

61 b^-1 * a^-1 * b * a^-2 * b

62 a^2 * b^2 * a^-1 * b^-2

63 a^-2 * b * a^2 * b * a^-1

64 b * a^-2 * b * a^2 * b^-1
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65 (a^2 * b * a^-1)^2

66 a^-2 * b^3 * a^-1

67 a^-2 * b^2 * a

68 b^-1 * a^-2 * b^-1 * a

69 a^-1 * b * a^-1 * b^-1 * a^3

70 a * b * a^-1 * b^-2 * a * b^-1

71 b * a * b * a^-3 * b^-1

72 a^2 * b^-1 * a^2 * b * a^-1

73 a^4 * b^-1 * a * b

74 a^-2 * b^-1 * a * b^-2 * a^-1

75 a^-1 * b^-2 * a * b * a^-2

76 a^-1 * b * a^-1 * b * a^-2 * b

77 b^-1 * a^-2 * b^-2

78 a * b * a^-3 * b^-1

79 a^-2 * b * a * b * a^2

80 a * b^2 * a * b * a * b^-2

81 b * a^-1 * b * a * b^-1 * a * b

82 a^2 * b^-1 * a^-1 * b^-1 * a * b

83 a * b * a^-2 * b^-2 * a

84 a^-2 * b * a * b * a * b

85 a * b^-1 * a * b * a * b^-1

86 b^2 * a^-1 * b * a * b^2

87 b^-1 * a * b^-1 * a^-1 * b * a^-1

88 b * a * b^-1 * a * b * a^-2

89 (b * a^-1 * b^-1)^2

90 a^2 * b * a^2 * b^-1 * a^-1 * b^-1

91 (b * a^-1 * b^-1)^4

92 a^-1 * b * a^2 * b

93 a * b^2 * a^-1 * b^-1

94 a^4 * b * a^-1 * b

95 a^-1 * b * a^-2 * b^-2

96 a^3 * b^-1 * a

97 (b * a * b^-1)^3

98 b * a^2 * b^2 * a

99 b * a^-2 * b^-2 * a * b

100 b^3 * a * b^-1 * a^-1

101 a * b * a^2 * b^-1 * a^-1 * b

102 a^2 * b * a^-1

103 b * a^2 * b^-1 * a * b^-1

104 b * a^-1 * b^-1 * a^2

105 b^-1 * a * b * a^-1 * b * a * b

106 b^3 * a * b^-1 * a^2

107 b * a * b^-1 * a * b^-1

108 b^3 * a * b^-1 * a^-2 * b
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109 b^2 * a^-1 * b^-1 * a^-1 * b

110 a * b^-1 * a^-1 * b^-1 * a * b * a

111 b^-1 * a * b * a^-2 * b

112 b * a^2 * b * a^-1 * b * a

113 b^2 * a^-1 * b^-2 * a * b

114 a * b^-1 * a^-1 * b^-1 * a * b

115 a^2 * b * a^2 * b^2 * a^-1

116 b^-2 * a * b * a^2 * b^-1

117 b * a^-1 * b^-1 * a^-1 * b * a

118 a^2 * b * a^-1 * b^-2 * a^-1

119 a^-3

120 b * a * b * a * b

121 a^2 * b^-1 * a^3

122 (b^-1 * a)^2

123 b^3 * a^-1 * b^3

124 b^-1 * a^-3 * b * a * b

125 b * a * b * a^-1 * b * a * b

126 a * b^2 * a^2 * b^-1

127 a^-2 * b * a * b^-1 * a

128 b * a * b^-1 * a * b

129 a^-1 * b^-1 * a^-1 * b^-1 * a

130 a * b^-2 * a^-2 * b^-1 * a^-1

131 b^2 * a^3 * b^-1

132 a^-1 * b^-1 * a * b^-1

133 a^2 * b^-1 * a * b

134 b * a^-2 * b^-2 * a * b * a

135 b * a^2 * b^-1 * a^-1

136 b * a * b^-1 * a * b^-1 * a^-1 * b^-1

137 b^-1 * a^-1 * b^2 * a

138 a * b * a * b^-1 * a * b^-1 * a

139 a^-1 * b * a^-1 * b^-1 * a * b

140 a * b^2 * a^-1 * b * a^-1

141 a * b^-1 * a^-2

142 a^-1 * b * a^-2

143 b * a * b^-1 * a * b * a^2

144 b^2 * a * b^-1 * a^-1 * b^-1 * a^-1

145 a * b * a * b * a^-1 * b * a^-1

146 a^2 * b^-1 * a^2 * b

147 a^2 * b^-1 * a^-1 * b^-1

148 a^2 * b * a * b^2 * a^-1 * b^-1

149 b^2 * a^-1 * b^-2 * a^-1 * b

150 a * b * a * b^2 * a * b

151 a^-1 * b^-1 * a^-1 * b^-2 * a^-1

152 b * a * b * a^2 * b
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153 a * b^2 * a * b * a^-1 * b

154 a * b^-1 * a^-2 * b^-2

155 a^4 * b^-1 * a

156 b^-1 * a^2 * b * a^-1 * b^-1

157 a^-2 * b * a^-1 * b^2 * a

158 a^2 * b^2 * a^-1 * b^2

159 b^2 * a^-1 * b^-1 * a^-1 * b^-1

160 a^-2 * b * a^-2 * b^-1 * a

*/

/*

2 x

3 x^2 * y^2 * x * y * x^-1

4 y * x * y^-2 * x * y * x

5 x^-2 * y^-2

6 y^-1 * x^-1 * y^-1 * x^-3

7 y * x * y^2 * x * y * x * y

8 x^-1 * y * x * y * x^-1 * y^-1 * x^-1 * y^-1

9 y * x^2 * y^-1 * x

10 y * x

11 y^2

12 x * y * x^2 * y^-1 * x^-2

13 y^-1 * x^-1 * y^-1 * x * y^-1 * x^-1 * y

14 y^-1 * x * y * x^-2 * y * x

15 x^-3 * y^-1 * x^-1 * y^2

16 x^-2 * y^-2 * x

17 x^4 * y

18 y * x^-1 * y * x^-1 * y^2

19 y^-1 * x^-1 * y^-1 * x^-2

20 x^2 * y^-1 * x * y * x^-2 * y^-1

21 x^2 * y * x * y^-1 * x

22 x * y * x

23 y^-1 * x^-2 * y * x * y^-1

24 y * x^-2 * y * x^-1 * y^-1 * x

25 x * y^-1 * x^2 * y * x^2

26 y * x^-2 * y * x * y^-1 * x

27 x^-1 * y^3 * x * y * x^-1

28 y^2 * x^-1 * y^-2 * x * y^-1

29 y^-1 * x^-1 * y * x^-3

30 x^-3 * y^-1 * x

31 x^2 * y * x * y * x^-2 * y^-1

32 x * y * x^2 * y * x^-1 * y

33 y^-1 * x * y^-2 * x * y^-2

34 x * y * x * y * x^-3
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35 x * y^-1 * x^-1 * y^-1 * x^2 * y

36 (y * x^-1)^2

37 x * y^-1 * x^3 * y^-1 * x

38 y^2 * x^-1 * y * x^-1 * y

39 x^-1 * y * x^-1 * y^-1 * x^-1 * y^-1 * x

40 y * x * y^-1 * x^-1 * y * x

41 x * y^-1 * x^4 * y * x

42 y * x^3 * y^-1 * x^-1 * y^-1

43 x * y^-2 * x^-2 * y^-1

44 y^2 * x * y^-1 * x^-2 * y^-1

45 y * x^-1 * y * x^-1 * y^-1 * x * y

46 x * y^3 * x * y^-1 * x^-1

47 y * x * y * x * y^-2

48 y * x * y^2

49 y^2 * x^2 * y^-1 * x * y

50 y * x * y * x^4

51 x^-1 * y^-1 * x^3

52 y * x * y * x^3

53 x * y^-1 * x^-4

54 y * x * y^-1 * x^-1 * y * x^-3

55 y^-1 * x * y^-2 * x * y^-1 * x^-1

56 x^3 * y^-1 * x^-1 * y * x

57 y^-2 * x * y * x^-1

58 x^-1 * y^-1 * x^-1 * y * x

59 x * y^-2 * x * y^2 * x

60 y^2 * x^-1 * y * x^-2 * y

61 y^-1 * x^-1 * y * x^-2 * y

62 x^2 * y^2 * x^-1 * y^-2

63 x^-2 * y * x^2 * y * x^-1

64 y * x^-2 * y * x^2 * y^-1

65 (x^2 * y * x^-1)^2

66 x^-2 * y^3 * x^-1

67 x^-2 * y^2 * x

68 y^-1 * x^-2 * y^-1 * x

69 x^-1 * y * x^-1 * y^-1 * x^3

70 x * y * x^-1 * y^-2 * x * y^-1

71 y * x * y * x^-3 * y^-1

72 x^2 * y^-1 * x^2 * y * x^-1

73 x^4 * y^-1 * x * y

74 x^-2 * y^-1 * x * y^-2 * x^-1

75 x^-1 * y^-2 * x * y * x^-2

76 x^-1 * y * x^-1 * y * x^-2 * y

77 y^-1 * x^-2 * y^-2

78 x * y * x^-3 * y^-1
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79 x^-2 * y * x * y * x^2

80 x * y^2 * x * y * x * y^-2

81 y * x^-1 * y * x * y^-1 * x * y

82 x^2 * y^-1 * x^-1 * y^-1 * x * y

83 x * y * x^-2 * y^-2 * x

84 x^-2 * y * x * y * x * y

85 x * y^-1 * x * y * x * y^-1

86 y^2 * x^-1 * y * x * y^2

87 y^-1 * x * y^-1 * x^-1 * y * x^-1

88 y * x * y^-1 * x * y * x^-2

89 (y * x^-1 * y^-1)^2

90 x^2 * y * x^2 * y^-1 * x^-1 * y^-1

91 (y * x^-1 * y^-1)^4

92 x^-1 * y * x^2 * y

93 x * y^2 * x^-1 * y^-1

94 x^4 * y * x^-1 * y

95 x^-1 * y * x^-2 * y^-2

96 x^3 * y^-1 * x

97 (y * x * y^-1)^3

98 y * x^2 * y^2 * x

99 y * x^-2 * y^-2 * x * y

100 y^3 * x * y^-1 * x^-1

101 x * y * x^2 * y^-1 * x^-1 * y

102 x^2 * y * x^-1

103 y * x^2 * y^-1 * x * y^-1

104 y * x^-1 * y^-1 * x^2

105 y^-1 * x * y * x^-1 * y * x * y

106 y^3 * x * y^-1 * x^2

107 y * x * y^-1 * x * y^-1

108 y^3 * x * y^-1 * x^-2 * y

109 y^2 * x^-1 * y^-1 * x^-1 * y

110 x * y^-1 * x^-1 * y^-1 * x * y * x

111 y^-1 * x * y * x^-2 * y

112 y * x^2 * y * x^-1 * y * x

113 y^2 * x^-1 * y^-2 * x * y

114 x * y^-1 * x^-1 * y^-1 * x * y

115 x^2 * y * x^2 * y^2 * x^-1

116 y^-2 * x * y * x^2 * y^-1

117 y * x^-1 * y^-1 * x^-1 * y * x

118 x^2 * y * x^-1 * y^-2 * x^-1

119 x^-3

120 y * x * y * x * y

121 x^2 * y^-1 * x^3

122 (y^-1 * x)^2
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123 y^3 * x^-1 * y^3

124 y^-1 * x^-3 * y * x * y

125 y * x * y * x^-1 * y * x * y

126 x * y^2 * x^2 * y^-1

127 x^-2 * y * x * y^-1 * x

128 y * x * y^-1 * x * y

129 x^-1 * y^-1 * x^-1 * y^-1 * x

130 x * y^-2 * x^-2 * y^-1 * x^-1

131 y^2 * x^3 * y^-1

132 x^-1 * y^-1 * x * y^-1

133 x^2 * y^-1 * x * y

134 y * x^-2 * y^-2 * x * y * x

135 y * x^2 * y^-1 * x^-1

136 y * x * y^-1 * x * y^-1 * x^-1 * y^-1

137 y^-1 * x^-1 * y^2 * x

138 x * y * x * y^-1 * x * y^-1 * x

139 x^-1 * y * x^-1 * y^-1 * x * y

140 x * y^2 * x^-1 * y * x^-1

141 x * y^-1 * x^-2

142 x^-1 * y * x^-2

143 y * x * y^-1 * x * y * x^2

144 y^2 * x * y^-1 * x^-1 * y^-1 * x^-1

145 x * y * x * y * x^-1 * y * x^-1

146 x^2 * y^-1 * x^2 * y

147 x^2 * y^-1 * x^-1 * y^-1

148 x^2 * y * x * y^2 * x^-1 * y^-1

149 y^2 * x^-1 * y^-2 * x^-1 * y

150 x * y * x * y^2 * x * y

151 x^-1 * y^-1 * x^-1 * y^-2 * x^-1

152 y * x * y * x^2 * y

153 x * y^2 * x * y * x^-1 * y

154 x * y^-1 * x^-2 * y^-2

155 x^4 * y^-1 * x

156 y^-1 * x^2 * y * x^-1 * y^-1

157 x^-2 * y * x^-1 * y^2 * x

158 x^2 * y^2 * x^-1 * y^2

159 y^2 * x^-1 * y^-1 * x^-1 * y^-1

160 x^-2 * y * x^-2 * y^-1 * x

ts[2]:= f(t^(x));

ts[3]:= f(t^(x^2 * y^2 * x * y * x^-1));

ts[4]:= f(t^(y * x * y^-2 * x * y * x));

ts[5]:= f(t^(x^-2 * y^-2));

ts[6]:= f(t^(y^-1 * x^-1 * y^-1 * x^-3));
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ts[7]:= f(t^(y * x * y^2 * x * y * x * y));

ts[8]:= f(t^(x^-1 * y * x * y * x^-1 * y^-1 * x^-1 * y^-1));

ts[9]:= f(t^(y * x^2 * y^-1 * x));

ts[10]:= f(t^( y * x));

ts[11]:= f(t^(y^2));

ts[12]:= f(t^(x * y * x^2 * y^-1 * x^-2));

ts[13]:= f(t^(y^-1 * x^-1 * y^-1 * x * y^-1 * x^-1 * y));

ts[14]:= f(t^(y^-1 * x * y * x^-2 * y * x));

ts[15]:= f(t^(x^-3 * y^-1 * x^-1 * y^2));

ts[16]:= f(t^(x^-2 * y^-2 * x));

ts[17]:= f(t^(x^4 * y));

ts[18]:= f(t^(y * x^-1 * y * x^-1 * y^2));

ts[19]:= f(t^(y^-1 * x^-1 * y^-1 * x^-2));

ts[20]:= f(t^(x^2 * y^-1 * x * y * x^-2 * y^-1));

ts[21]:= f(t^(x^2 * y * x * y^-1 * x));

ts[22]:= f(t^(x * y * x));

ts[23]:= f(t^(y^-1 * x^-2 * y * x * y^-1));

ts[24]:= f(t^(y * x^-2 * y * x^-1 * y^-1 * x));

ts[25]:= f(t^( x * y^-1 * x^2 * y * x^2));

ts[26]:= f(t^( y * x^-2 * y * x * y^-1 * x));

ts[27]:= f(t^(x^-1 * y^3 * x * y * x^-1));

ts[28]:= f(t^(y^2 * x^-1 * y^-2 * x * y^-1));

ts[29]:= f(t^(y^-1 * x^-1 * y * x^-3));

ts[30]:= f(t^(x^-3 * y^-1 * x));

ts[31]:= f(t^(x^2 * y * x * y * x^-2 * y^-1));

ts[32]:= f(t^(x * y * x^2 * y * x^-1 * y));

ts[33]:= f(t^(y^-1 * x * y^-2 * x * y^-2));

ts[34]:= f(t^(x * y * x * y * x^-3));

ts[35]:= f(t^(x * y^-1 * x^-1 * y^-1 * x^2 * y));

ts[36]:= f(t^((y * x^-1)^2));

ts[37]:= f(t^(x * y^-1 * x^3 * y^-1 * x));

ts[38]:= f(t^( y^2 * x^-1 * y * x^-1 * y));

ts[39]:= f(t^(x^-1 * y * x^-1 * y^-1 * x^-1 * y^-1 * x));

ts[40]:= f(t^(y * x * y^-1 * x^-1 * y * x));

ts[41]:= f(t^(x * y^-1 * x^4 * y * x));

ts[42]:= f(t^(y * x^3 * y^-1 * x^-1 * y^-1));

ts[43]:= f(t^(x * y^-2 * x^-2 * y^-1));

ts[44]:= f(t^(y^2 * x * y^-1 * x^-2 * y^-1));

ts[45]:= f(t^(y * x^-1 * y * x^-1 * y^-1 * x * y));

ts[46]:= f(t^(x * y^3 * x * y^-1 * x^-1));

ts[47]:= f(t^(y * x * y * x * y^-2));

ts[48]:= f(t^( y * x * y^2));

ts[49]:= f(t^(y^2 * x^2 * y^-1 * x * y));

ts[50]:= f(t^(y * x * y * x^4));
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ts[51]:= f(t^(x^-1 * y^-1 * x^3));

ts[52]:= f(t^(y * x * y * x^3));

ts[53]:= f(t^(x * y^-1 * x^-4));

ts[54]:= f(t^(y * x * y^-1 * x^-1 * y * x^-3));

ts[55]:= f(t^(y^-1 * x * y^-2 * x * y^-1 * x^-1));

ts[56]:= f(t^(x^3 * y^-1 * x^-1 * y * x));

ts[57]:= f(t^(y^-2 * x * y * x^-1));

ts[58]:= f(t^(x^-1 * y^-1 * x^-1 * y * x));

ts[59]:= f(t^(x * y^-2 * x * y^2 * x));

ts[60]:= f(t^(y^2 * x^-1 * y * x^-2 * y));

ts[61]:= f(t^(y^-1 * x^-1 * y * x^-2 * y));

ts[62]:= f(t^(x^2 * y^2 * x^-1 * y^-2));

ts[63]:= f(t^(x^-2 * y * x^2 * y * x^-1));

ts[64]:= f(t^(y * x^-2 * y * x^2 * y^-1));

ts[65]:= f(t^((x^2 * y * x^-1)^2));

ts[66]:= f(t^( x^-2 * y^3 * x^-1));

ts[67]:= f(t^(x^-2 * y^2 * x));

ts[68]:= f(t^(y^-1 * x^-2 * y^-1 * x));

ts[69]:= f(t^( x^-1 * y * x^-1 * y^-1 * x^3));

ts[70]:= f(t^(x * y * x^-1 * y^-2 * x * y^-1));

ts[71]:= f(t^(y * x * y * x^-3 * y^-1));

ts[72]:= f(t^(x^2 * y^-1 * x^2 * y * x^-1));

ts[73]:= f(t^(x^4 * y^-1 * x * y));

ts[74]:= f(t^(x^-2 * y^-1 * x * y^-2 * x^-1));

ts[75]:= f(t^(x^-1 * y^-2 * x * y * x^-2));

ts[76]:= f(t^(x^-1 * y * x^-1 * y * x^-2 * y));

ts[77]:= f(t^(y^-1 * x^-2 * y^-2));

ts[78]:= f(t^(x * y * x^-3 * y^-1));

ts[79]:= f(t^(x^-2 * y * x * y * x^2));

ts[80]:= f(t^(x * y^2 * x * y * x * y^-2));

ts[81]:= f(t^(y * x^-1 * y * x * y^-1 * x * y));

ts[82]:= f(t^(x^2 * y^-1 * x^-1 * y^-1 * x * y));

ts[83]:= f(t^(x * y * x^-2 * y^-2 * x));

ts[84]:= f(t^(x^-2 * y * x * y * x * y));

ts[85]:= f(t^(x * y^-1 * x * y * x * y^-1));

ts[86]:= f(t^(y^2 * x^-1 * y * x * y^2));

ts[87]:= f(t^(y^-1 * x * y^-1 * x^-1 * y * x^-1));

ts[88]:= f(t^(y * x * y^-1 * x * y * x^-2));

ts[89]:= f(t^((y * x^-1 * y^-1)^2));

ts[90]:= f(t^(x^2 * y * x^2 * y^-1 * x^-1 * y^-1));

ts[91]:= f(t^((y * x^-1 * y^-1)^4));

ts[92]:= f(t^(x^-1 * y * x^2 * y));

ts[93]:= f(t^(x * y^2 * x^-1 * y^-1));

ts[94]:= f(t^(x^4 * y * x^-1 * y));
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ts[95]:= f(t^(x^-1 * y * x^-2 * y^-2));

ts[96]:= f(t^( x^3 * y^-1 * x));

ts[97]:= f(t^((y * x * y^-1)^3));

ts[98]:= f(t^(y * x^2 * y^2 * x));

ts[99]:= f(t^(y * x^-2 * y^-2 * x * y));

ts[100]:= f(t^(y^3 * x * y^-1 * x^-1));

ts[101]:= f(t^(x * y * x^2 * y^-1 * x^-1 * y));

ts[102]:= f(t^(x^2 * y * x^-1));

ts[103]:= f(t^( y * x^2 * y^-1 * x * y^-1));

ts[104]:= f(t^(y * x^-1 * y^-1 * x^2));

ts[105]:= f(t^(y^-1 * x * y * x^-1 * y * x * y));

ts[106]:= f(t^(y^3 * x * y^-1 * x^2));

ts[107]:= f(t^(y * x * y^-1 * x * y^-1));

ts[108]:= f(t^(y^3 * x * y^-1 * x^-2 * y));

ts[109]:= f(t^(y^2 * x^-1 * y^-1 * x^-1 * y));

ts[110]:= f(t^(x * y^-1 * x^-1 * y^-1 * x * y * x));

ts[111]:= f(t^(y^-1 * x * y * x^-2 * y));

ts[112]:= f(t^(y * x^2 * y * x^-1 * y * x));

ts[113]:= f(t^(y^2 * x^-1 * y^-2 * x * y));

ts[114]:= f(t^(x * y^-1 * x^-1 * y^-1 * x * y));

ts[115]:= f(t^(x^2 * y * x^2 * y^2 * x^-1));

ts[116]:= f(t^(y^-2 * x * y * x^2 * y^-1));

ts[117]:= f(t^(y * x^-1 * y^-1 * x^-1 * y * x));

ts[118]:= f(t^( x^2 * y * x^-1 * y^-2 * x^-1));

ts[119]:= f(t^(x^-3));

ts[120]:= f(t^(y * x * y * x * y));

ts[121]:= f(t^(x^2 * y^-1 * x^3));

ts[122]:= f(t^((y^-1 * x)^2));

ts[123]:= f(t^(y^3 * x^-1 * y^3));

ts[124]:= f(t^(y^-1 * x^-3 * y * x * y));

ts[125]:= f(t^(y * x * y * x^-1 * y * x * y));

ts[126]:= f(t^(x * y^2 * x^2 * y^-1));

ts[127]:= f(t^(x^-2 * y * x * y^-1 * x));

ts[128]:= f(t^(y * x * y^-1 * x * y));

ts[129]:= f(t^(x^-1 * y^-1 * x^-1 * y^-1 * x));

ts[130]:= f(t^(x * y^-2 * x^-2 * y^-1 * x^-1));

ts[131]:= f(t^(y^2 * x^3 * y^-1));

ts[132]:= f(t^(x^-1 * y^-1 * x * y^-1));

ts[133]:= f(t^(x^2 * y^-1 * x * y));

ts[134]:= f(t^(y * x^-2 * y^-2 * x * y * x));

ts[135]:= f(t^(y * x^2 * y^-1 * x^-1));

ts[136]:= f(t^(y * x * y^-1 * x * y^-1 * x^-1 * y^-1));

ts[137]:= f(t^(y^-1 * x^-1 * y^2 * x));

ts[138]:= f(t^(x * y * x * y^-1 * x * y^-1 * x));
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ts[139]:= f(t^(x^-1 * y * x^-1 * y^-1 * x * y));

ts[140]:= f(t^(x * y^2 * x^-1 * y * x^-1));

ts[141]:= f(t^(x * y^-1 * x^-2));

ts[142]:= f(t^(x^-1 * y * x^-2));

ts[143]:= f(t^(y * x * y^-1 * x * y * x^2));

ts[144]:= f(t^(y^2 * x * y^-1 * x^-1 * y^-1 * x^-1));

ts[145]:= f(t^(x * y * x * y * x^-1 * y * x^-1));

ts[146]:= f(t^(x^2 * y^-1 * x^2 * y));

ts[147]:= f(t^(x^2 * y^-1 * x^-1 * y^-1));

ts[148]:= f(t^(x^2 * y * x * y^2 * x^-1 * y^-1));

ts[149]:= f(t^(y^2 * x^-1 * y^-2 * x^-1 * y));

ts[150]:= f(t^(x * y * x * y^2 * x * y));

ts[151]:= f(t^(x^-1 * y^-1 * x^-1 * y^-2 * x^-1));

ts[152]:= f(t^(y * x * y * x^2 * y));

ts[153]:= f(t^(x * y^2 * x * y * x^-1 * y));

ts[154]:= f(t^(x * y^-1 * x^-2 * y^-2));

ts[155]:= f(t^(x^4 * y^-1 * x));

ts[156]:= f(t^(y^-1 * x^2 * y * x^-1 * y^-1));

ts[157]:= f(t^(x^-2 * y * x^-1 * y^2 * x));

ts[158]:= f(t^(x^2 * y^2 * x^-1 * y^2));

ts[159]:= f(t^( y^2 * x^-1 * y^-1 * x^-1 * y^-1));

ts[160]:= f(t^(x^-2 * y * x^-2 * y^-1 * x));

We put the progenitor on the back of magma, but all the groups we got were either

unfaithful meaning k ̸= 1 or the subgroup number are not matching the subgroup number

we got from x and y. Here we put some examples.

First Group

a:=0;b:=0;c:=2;d:=0;e:=0;f:=0;g:=0;h:=0;i:=0;j:=0;k:=0;l:=0;m:=0;n:=0;

G<x,y,t>:=Group<x,y,t|x^10 ,

y^6 ,

(x * y^-2 * x)^2 ,

(x * y^2 * x^2)^2 ,

(y^-1 * x^-1)^5 ,

(x * y^2 * x^-1 * y^-1)^2 ,

x^-1 * y^-1 * x^5 * y * x^-4 ,

y * x^-2 * y^-1 * x^3 * y * x * y^3 * x^-1,t^2,(t,(x*y^-1*x^-1)^2),

(t,(y*x*y)^2),

((y)*t^(x))^a,

((y*x^-1)*t^( x^2 * y^2 * x * y * x^-1))^b,

((y*x^3*y)*t^(y * x * y^-2 * x * y * x))^c,

((y*x^-1)*t^(x^-2 * y^-2))^d,

((y*x^3*y)*t^(y^-1 * x^-1 * y^-1 * x^-3))^e,
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((y*x^-1)*t^(y * x * y^2 * x * y * x * y))^f,

((x)*t^(x^-1 * y * x * y * x^-1 * y^-1 * x^-1 * y^-1))^g,

((y*x^-1)*t^(y * x^2 * y^-1 * x))^h,

((y*x^3*y)*t^(y * x))^i,

((y)*t^(y^2))^j,

((y*x^3*y)*t^(x * y * x^2 * y^-1 * x^-2))^k,

((y^2)*t^(y^-1 * x^-1 * y^-1 * x * y^-1 * x^-1 * y))^l,

((x^5)*t^(y^-1 * x * y * x^-2 * y * x))^m,

((y*x^3*y)*t^(x^-3 * y^-1 * x^-1 * y^2))^n>;

#G;

/*3840*/

f,G1,k:=CosetAction(G,sub<G|x,y>);

#k;

/*1920*/

#sub<G|x,y>;

/*1920*/

#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

/*2*/

CompositionFactors(G1);

/* G

| Cyclic(2)

1

*/

Second Group

a:=0;b:=0;c:=3;d:=0;e:=0;f:=0;g:=0;h:=0;i:=0;j:=0;k:=0;l:=0;m:=0;n:=0;

G<x,y,t>:=Group<x,y,t|x^10 ,

y^6 ,

(x * y^-2 * x)^2 ,

(x * y^2 * x^2)^2 ,

(y^-1 * x^-1)^5 ,

(x * y^2 * x^-1 * y^-1)^2 ,

x^-1 * y^-1 * x^5 * y * x^-4 ,

y * x^-2 * y^-1 * x^3 * y * x * y^3 * x^-1,t^2,(t,(x*y^-1*x^-1)^2),

(t,(y*x*y)^2),

((y)*t^(x))^a,

((y*x^-1)*t^( x^2 * y^2 * x * y * x^-1))^b,

((y*x^3*y)*t^(y * x * y^-2 * x * y * x))^c,

((y*x^-1)*t^(x^-2 * y^-2))^d,

((y*x^3*y)*t^(y^-1 * x^-1 * y^-1 * x^-3))^e,

((y*x^-1)*t^(y * x * y^2 * x * y * x * y))^f,

((x)*t^(x^-1 * y * x * y * x^-1 * y^-1 * x^-1 * y^-1))^g,

((y*x^-1)*t^(y * x^2 * y^-1 * x))^h,
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((y*x^3*y)*t^(y * x))^i,

((y)*t^(y^2))^j,

((y*x^3*y)*t^(x * y * x^2 * y^-1 * x^-2))^k,

((y^2)*t^(y^-1 * x^-1 * y^-1 * x * y^-1 * x^-1 * y))^l,

((x^5)*t^(y^-1 * x * y * x^-2 * y * x))^m,

((y*x^3*y)*t^(x^-3 * y^-1 * x^-1 * y^2))^n>;

#G;

/*1451520*/

f,G1,k:=CosetAction(G,sub<G|x,y>);

#k;

/*1*/

#sub<G|x,y>;

/*960*/

#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

/*36*/

CompositionFactors(G1);

/*

G

| C(3, 2) = S(6, 2)

1

*/

Third Group

a:=3;b:=0;c:=0;d:=0;e:=0;f:=0;g:=0;h:=0;i:=0;j:=0;k:=0;l:=0;m:=0;n:=0;

G<x,y,t>:=Group<x,y,t|x^10 ,

y^6 ,

(x * y^-2 * x)^2 ,

(x * y^2 * x^2)^2 ,

(y^-1 * x^-1)^5 ,

(x * y^2 * x^-1 * y^-1)^2 ,

x^-1 * y^-1 * x^5 * y * x^-4 ,

y * x^-2 * y^-1 * x^3 * y * x * y^3 * x^-1,t^2,(t,(x*y^-1*x^-1)^2),

(t,(y*x*y)^2),

((y*x^-1)*t^(x))^a,

((x)*t^( x^2 * y^2 * x * y * x^-1))^b,

((y*x^-1)*t^(y * x * y^-2 * x * y * x))^c,

((x*y^-2*x*y)*t^(x^-2 * y^-2))^d,

((y*x^-1)*t^(y^-1 * x^-1 * y^-1 * x^-3))^e,

((y)*t^(y * x * y^2 * x * y * x * y))^f,

((y*x^-1)*t^(x^-1 * y * x * y * x^-1 * y^-1 * x^-1 * y^-1))^g,

((x*y^-2*x*y)*t^(y * x^2 * y^-1 * x))^h,

((y*x^-1)*t^(y * x))^i,

((x^3)*t^(y^2))^j,
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((x^5)*t^(x * y * x^2 * y^-1 * x^-2))^k,

((x*y^-2*x*y)*t^(y^-1 * x^-1 * y^-1 * x * y^-1 * x^-1 * y))^l,

((y)*t^(y^-1 * x * y * x^-2 * y * x))^m,

((x*y^-2*x*y)*t^(x^-3 * y^-1 * x^-1 * y^2))^n>;

#G;

/*466560*/

f,G1,k:=CosetAction(G,sub<G|x,y>);

#k;

/*2*/

#sub<G|x,y>;

/*1920*/

#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

/*7*/

CompositionFactors(G1);

/*

G

| Alternating(5)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

1

*/

Fourth Group

a:=0;b:=7;c:=2;d:=0;e:=0;f:=0;g:=0;h:=0;i:=0;j:=0;k:=0;l:=0;m:=0;n:=0;

G<x,y,t>:=Group<x,y,t|x^10 ,

y^6 ,

(x * y^-2 * x)^2 ,
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(x * y^2 * x^2)^2 ,

(y^-1 * x^-1)^5 ,

(x * y^2 * x^-1 * y^-1)^2 ,

x^-1 * y^-1 * x^5 * y * x^-4 ,

y * x^-2 * y^-1 * x^3 * y * x * y^3 * x^-1,t^2,(t,(x*y^-1*x^-1)^2),

(t,(y*x*y)^2),

((x^5)*t^(x))^a,

((x^3)*t^( x^2 * y^2 * x * y * x^-1))^b,

((x*y^-1*x*y^-2*x*y)*t^(y * x * y^-2 * x * y * x))^c,

((x^3)*t^(x^-2 * y^-2))^d,

((x*y^-1*x*y^-2*x*y)*t^(y^-1 * x^-1 * y^-1 * x^-3))^e,

((x^3)*t^(y * x * y^2 * x * y * x * y))^f,

(((x^-1*y)^3)*t^(x^-1 * y * x * y * x^-1 * y^-1 * x^-1 * y^-1))^g,

((x^3)*t^(y * x^2 * y^-1 * x))^h,

((x)*t^(y * x))^i,

((y)*t^(y^2))^j,

(((x*y^-1*x^-1)^2)*t^(x * y * x^2 * y^-1 * x^-2))^k,

((y^2)*t^(y^-1 * x^-1 * y^-1 * x * y^-1 * x^-1 * y))^l,

(((x*y^-1*x^-1)^2)*t^(y^-1 * x * y * x^-2 * y * x))^m,

(((x^-1*y)^3)*t^(x^-3 * y^-1 * x^-1 * y^2))^n>;

#G;

/*175560*/

f,G1,k:=CosetAction(G,sub<G|x,y>);

#k;

/*1*/

#sub<G|x,y>;

/*60*/

#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

/*62*/

CompositionFactors(G1);

/*

G

| J1

1

Fifth Group

a:=0;b:=3;c:=0;d:=0;e:=0;f:=0;g:=0;h:=0;i:=0;j:=0;k:=0;l:=0;m:=0;n:=0;

G<x,y,t>:=Group<x,y,t|x^10 ,

y^6 ,

(x * y^-2 * x)^2 ,

(x * y^2 * x^2)^2 ,

(y^-1 * x^-1)^5 ,

(x * y^2 * x^-1 * y^-1)^2 ,
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x^-1 * y^-1 * x^5 * y * x^-4 ,

y * x^-2 * y^-1 * x^3 * y * x * y^3 * x^-1,t^2,(t,(x*y^-1*x^-1)^2),

(t,(y*x*y)^2),

((x^3)*t^(x))^a,

((x*y^-1*x*y^-2*x*y)*t^( x^2 * y^2 * x * y * x^-1))^b,

((x^3)*t^(y * x * y^-2 * x * y * x))^c,

((y^-1)*t^(x^-2 * y^-2))^d,

((x^3)*t^(y^-1 * x^-1 * y^-1 * x^-3))^e,

((y)*t^(y * x * y^2 * x * y * x * y))^f,

((x^3)*t^(x^-1 * y * x * y * x^-1 * y^-1 * x^-1 * y^-1))^g,

((x*y^-1*x*y^-2*x*y)*t^(y * x^2 * y^-1 * x))^h,

((x^3)*t^(y * x))^i,

(((x*y^-1*x^-1)^2)*t^(y^2))^j,

((y^-1)*t^(x * y * x^2 * y^-1 * x^-2))^k,

((x)*t^(y^-1 * x^-1 * y^-1 * x * y^-1 * x^-1 * y))^l,

(((x*y^-1*x^-1)^2)*t^(y^-1 * x * y * x^-2 * y * x))^m,

((x*y^-1*x*y^-2*x*y)*t^(x^-3 * y^-1 * x^-1 * y^2))^n>;

#G;

/*604800*/

f,G1,k:=CosetAction(G,sub<G|x,y>);

#k;

/*1*/

#sub<G|x,y>;

/*1920*/

#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

/*6*/

CompositionFactors(G1);

/*

G

| J2

1

*/

Sixth Group

a:=3;b:=6;c:=0;d:=0;e:=0;f:=0;g:=0;h:=0;i:=0;j:=0;k:=0;l:=0;m:=0;n:=0;

G<x,y,t>:=Group<x,y,t|x^10 ,

y^6 ,

(x * y^-2 * x)^2 ,

(x * y^2 * x^2)^2 ,

(y^-1 * x^-1)^5 ,

(x * y^2 * x^-1 * y^-1)^2 ,

x^-1 * y^-1 * x^5 * y * x^-4 ,

y * x^-2 * y^-1 * x^3 * y * x * y^3 * x^-1,t^2,(t,(x*y^-1*x^-1)^2),
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(t,(y*x*y)^2),

((x*y*x*y^2*x*y)*t^(x))^a,

((x)*t^( x^2 * y^2 * x * y * x^-1))^b,

((x*y*x*y^2*x*y)*t^(y * x * y^-2 * x * y * x))^c,

(((x^-1*y)^3)*t^(x^-2 * y^-2))^d,

((x*y*x*y^2*x*y)*t^(y^-1 * x^-1 * y^-1 * x^-3))^e,

((y)*t^(y * x * y^2 * x * y * x * y))^f,

((x*y*x*y^2*x*y)*t^(x^-1 * y * x * y * x^-1 * y^-1 * x^-1 * y^-1))^g,

((y^2)*t^(y * x^2 * y^-1 * x))^h,

((x*y*x*y^2*x*y)*t^(y * x))^i,

((x*y^-2*x*y)*t^(y^2))^j,

((x^5)*t^(x * y * x^2 * y^-1 * x^-2))^k,

((x)*t^(y^-1 * x^-1 * y^-1 * x * y^-1 * x^-1 * y))^l,

((x*y^-2*x*y)*t^(y^-1 * x * y * x^-2 * y * x))^m,

(((x^-1*y)^3)*t^(x^-3 * y^-1 * x^-1 * y^2))^n>;

#G;

/*25920*/

f,G1,k:=CosetAction(G,sub<G|x,y>);

#k;

/*1*/

#sub<G|x,y>;

/*960*/

#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

/*3*/

CompositionFactors(G1);

/*

G

| C(2, 3) = S(4, 3)

1

*/

Seventh Group

a:=6;b:=2;c:=0;d:=0;e:=0;f:=0;g:=0;h:=0;i:=0;j:=0;k:=0;l:=0;m:=0;n:=0;

G<x,y,t>:=Group<x,y,t|x^10 ,

y^6 ,

(x * y^-2 * x)^2 ,

(x * y^2 * x^2)^2 ,

(y^-1 * x^-1)^5 ,

(x * y^2 * x^-1 * y^-1)^2 ,

x^-1 * y^-1 * x^5 * y * x^-4 ,

y * x^-2 * y^-1 * x^3 * y * x * y^3 * x^-1,t^2,(t,(x*y^-1*x^-1)^2),

(t,(y*x*y)^2),

((x^2)*t^(x))^a,
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(((x^-1*y)^3)*t^( x^2 * y^2 * x * y * x^-1))^b,

((x^2)*t^(y * x * y^-2 * x * y * x))^c,

((x*y^-2*x*y)*t^(x^-2 * y^-2))^d,

((x^2)*t^(y^-1 * x^-1 * y^-1 * x^-3))^e,

((y)*t^(y * x * y^2 * x * y * x * y))^f,

((x^2)*t^(x^-1 * y * x * y * x^-1 * y^-1 * x^-1 * y^-1))^g,

(((x^-1*y)^3)*t^(y * x^2 * y^-1 * x))^h,

((x^2)*t^(y * x))^i,

((x*y^-2*x*y)*t^(y^2))^j,

((x)*t^(x * y * x^2 * y^-1 * x^-2))^k,

((x*y^-2*x*y)*t^(y^-1 * x^-1 * y^-1 * x * y^-1 * x^-1 * y))^l,

((y)*t^(y^-1 * x * y * x^-2 * y * x))^m,

(((x^-1*y)^3)*t^(x^-3 * y^-1 * x^-1 * y^2))^n>;

#G;

/*23040*/

f,G1,k:=CosetAction(G,sub<G|x,y>);

#k;

/*1*/

#sub<G|x,y>;

/*960*/

#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

/*6*/

CompositionFactors(G1);

/*

G

| Cyclic(2)

*

| Alternating(6)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

*/
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