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Abstract

Protecting information that is being communicated between two parties over

unsecured channels is of huge importance in today’s world. The use of mathematical

concepts to achieve high levels of security when communicating over these unsecured

platforms is cryptography. The world of cryptography is always expanding and growing.

In this paper we set out to explore the use of elliptic curves in the cryptography of today,

as well as the cryptography of the future.

We also offer our own original cryptosystem, CSDH. This system on its own

offers some moderate level of security. It shares many similarities to the post-quantum,

SIDH system. The parallels between these two systems can lead to deeper understanding

of the systems offered for our post-quantum world.
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Chapter 1

Introduction

In the world we live in today the ability to safely communicate information on

insecure platforms is extremely necessary. Currently the field of cryptography is ramping

up its development of new and improved protocols that not only provide security against

classical computers, but also hold strong against quantum computers. In this paper we

will discuss the use of elliptic curves in current protocols and also look to the future use

of elliptic curves in the post-quantum world.

In Chapter 2 of this paper, we cover basics the of elliptic curves. We cover

necessary definitions and theorems for classical elliptic curve cryptography. Background

needed for classical elliptic curve cryptography, such as the definition an elliptic curve,

and the group law associated with elliptic curve groups, with examples, are included.

Information needed for post-quantum applications, such as isogeny and torsion subgroups

will also be covered.

In Chapter 3, we cover a brief background of cryptography. We then cover the

original Diffie-Hellman Key Exchange in Fp. We also provide a simple example to further

the readers understanding of the protocol. We also discuss the hard problem associated

with the Diffie-Hellman Key Exchange, the Discrete Log Problem, and offer some ways

to solve it. In addition to describing some algorithms, Sage sample code will be given.

In Chapter 4, we move to covering classical elliptic curve cryptography. Specif-

ically we cover Elliptic Curve Diffie-Hellman Key Exchange (ECDH). We discuss the

analogous hard problem Elliptic Curve Discrete Log Problem. We then give examples of

the ECDH protocol. Also we discuss potential vulnerabilities within the key exchange



2

and offer Sage code for possible attacks on the exchange.

Moving on to Chapter 5, we cover a post-quantum system based on elliptic

curves, the Supersingular Isogeny Diffie-Hellman Key Exchange (SIDH). We cover the

algorithm for the exchange as well as offer an example. We then move to explain the

isogeny graphs that have use within the post quantum cryptographic world.

Finally in Chapter 6, we offer our own cryptosystem, the Cyclic Subgroup Diffie-

Hellman Key Exchange (CSDH), that has strong parallels to the post-quantum SIDH. We

cover the algorithm associated to the exchange and prove the associated theorems. We

continue in our exploration by using Sage to compute many large scale trials to understand

expected values and tendencies of our system. We also provide another analogy between

subgroup graphs and isogeny graphs.

Throughout this exploration of elliptic curves we will continue to draw on the

parallels between the original Diffie-Hellman, Elliptic Curve Diffie-Hellman, Supersingular

Isogeny Diffie-Hellman, and Cyclic Subgroup Diffie-Hellman. We will discuss the idea of

hard problems and their use in cryptography, specifically the hard problems associated

with the protocols covered in the systems mentioned above.

This research was supported in part by the high performance computing re-

sources provided by the Information Technology Services and Academic Technologies

and Innovation at California State University San Bernardino [ATI22].
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Chapter 2

Elliptic Curves

A complete and thorough resource for the study of elliptic curves is Silverman’s,

The Arithmetic of Elliptic Curves [Sil16]. We will cover only what is necessary for the

purposes of this paper.

We take as a given a field k of characteristic char k 6= 2, 3 and the ring of

polynomials k[x, y].

Definition 2.1. An algebraic curve in k2 is the zero set of a polynomial f ∈ k[x, y].

In symbols, V (f) = {(x, y) ∈ k2|f(x, y) = 0}.

Definition 2.2. An algebraic curve defined over k is smooth at P ∈ V (f) if ∇f(P ) 6= 0.

If V (f) is smooth at all points, then it is smooth (or nonsingular).

Definition 2.3. An elliptic curve is the solution set to a smooth cubic polynomial

together with a base point O at infinity.

Definition 2.4. A elliptic curve curve E is in Weierstrass form if E = V (f) where,

f(x, y) = y2 − (x3 +Ax+B).

Going forward, we will write E : y2 = x3 +Ax+B when defining an elliptic curve.

Given an elliptic curve defined over a field k with char 6= 2, 3, then there ex-

ists an isomorphism defined over k̄, to another curve that is in Weierstrass form [Sil16,

Proposition 3.1]. For most applications within this paper we will be using elliptic curves

in Weierstrass form. By [Sil16, Proposition 3.1], we are justified in this restriction. Com-

putations with curves in Weierstrass forms are much easier, and we can represent these

curves by their coefficients [A,B].
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Definition 2.5. The discriminant of an elliptic curve with Weierstrass form f(x, y) =

y2 − (x3 +Ax+B) is,

∆f = 4A3 + 27B2

Proposition 2.6. If f(x, y) = y2 − (x3 + Ax + B) and C = V (f), then C is smooth if

and only if ∆f 6= 0.

A proof of Proposition 2.6 can be found in [Sil16, Proposition 3.1.4].

Example 2.7. Elliptic curve over R.

Figure 2.1: E : y2 = x3 − 5x+ 9 is a nonsingular elliptic curve with ∆ = 1687

Example 2.8. Singular cubic curve with cusps.

Figure 2.2: E : y2 = x3 is a singular curve with ∆ = 0 and singular point (x, y) = (0, 0)

Definition 2.9. If k′/k is a field extension and E is an elliptic curve defined over k,

then the set of points on E with coordinates in k′ is the set

E(k′) = {(x, y)|x, y ∈ k′ satisfying y2 = x3 +Ax+B} ∪ {O}.

We call these the k′-points of E.
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Definition 2.10. If k′/k is a field extension and E is an elliptic curve in Weierstrass

form over k, then we define the Group Law as follows. Given two points P and Q on E

we define the line through P and Q as L. Since E is a cubic we know, by Bezout’s Theorem

[Bix06, Theorem 11.5], L will intersect E at exactly three points (with multiplicity), we

call this third point R. In the case were L is a vertical line, we let O, the point at infinity,

be the third point of intersection. Since E is symmetric about the x-axis we can reflect R

about the x-axis to R′ ∈ E. For the case when R′ = −O we let −O = O. Define R′ be

the sum of P and Q, and we use ⊕ to represent this operation: P ⊕Q := R′.

Note: P and Q need not be distinct, so in some cases L may be tangent to

E. We will use ∗ to denote adding a point P to itself multiple times, for example

3 ∗ P := P ⊕ P ⊕ P .

Theorem 2.11. If k′/k is a field extension and E is an elliptic curve defined over k,

then the E(k′)-points form a group with ⊕.

The proof of Theorem 2.11 is straight forward, however showing the associative

property is very lengthy. A proof using the Riemann–Roch Theorem can be found in

Silverman’s The Arithmetic of Elliptic Curves [Sil16].

In Figure 2.3 we represent this operation over R. Although the picture is less

clear over other fields, the definition works just as well.

Figure 2.3: P ⊕Q = R′

This geometric process can be implemented by a computer using the following

algorithm [HPS14, Theorem 6.6]:
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Theorem 2.12. The Group Law Algorithm

Let E : y2 = x3 + Ax + B be an elliptic curve and let P = (x, y) and Q = (x′, y′) be

points on E.

1. If P = O or Q = O, then P ⊕Q = Q or P ⊕Q = P respectively.

2. If x = x′ and y = −y′ then P ⊕Q = O.

3. Otherwise let

λ =


y′−y
x′−x if P 6= Q,

3x2+A
2y if P = Q.

and let x′′ = λ2 − x− x′ and y′′ = λ(x− x′′)− y and P ⊕Q = (x′′, y′′)

Proof. Let E : y2 = x3+Ax+B be an elliptic curve and let P = (x1, y1) and Q = (x2, y2)

be points on E.

1. We must prove if P = O or Q = O, then P ⊕ Q = Q or P ⊕ Q = P respectively.

Let P = O. Then the line L through P and Q is a vertical line. Let the third

intersection point of L and E be R. Since L is a vertical line, R is the reflection of

Q across the x-axis. Then reflecting R across the x-axis will land you back at Q.

So, P ⊕Q = Q. A similar argument can be made for the case when Q = O.

2. We must prove if x1 = x2 and y1 = −y2 then P ⊕ Q = O. Let P = (x1, y1) and

Q = (x2,−y2). The line L through P and Q is a vertical line. The third point of

intersection between E and L will be the point at infinity O. Thus, P ⊕Q = O.

3. There are two cases to consider, P 6= Q and P = Q.

Case 1: Suppose P 6= Q. We must prove if P 6= Q, then P ⊕ Q = (x3, y3) with

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1, and λ = y2−y1
x2−x1 . Observe x1 6= x2. This is

because if x1 = x2, then either y1 = y2 and P = Q (Case 2), or y1 = −y2 and we

would use step 2 of the algorithm. The line L through P and Q is given by,

y − y1 = λ(x− x1).

y = λx− λx1 + y1.
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We can let b = −λx1 + y1, so y = λx+ b. Then to find the intersection of L and E

we can substitute L into E. We then have,

(λx+ b)2 = x3 +Ax+B

(λx)2 + 2λbx+ b2 = x3 +Ax+B

We can then combine like terms,

0 = x3 − λ2x2 + (A− 2λb)x− b2 +B

We already know that x1 and x2 are roots of this cubic, we can let x3 represent the

third root. So,

(x− x1)(x− x2)(x− x3) = x3 − λ2x2 + (A− 2λb)x− b2 +B

We then expand the left-hand side and we have,

x3−(x1+x2+x3)x
2+(x1x2+x2x3+x3x1)x−x1x2x3 = x3−λ2x2+(A−2λb)x−b2+B

If we look at the x2 coefficient we can see that −λ2 = −(x1 + x2 + x3). Then we

can solve for x3, so x3 = λ2− x1− x2. Then plugging x3 back into the line through

P and Q, we have y3 = λx3 + b. Thus, P ⊕ Q = (x3, y3) with x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3)− y1, and λ = y2−y1

x2−x1 .

Case 2: Suppose P = Q. We must prove if P = Q, then P ⊕ Q = (x3, y3) with

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3) − y1, and λ = 3x2+A
2y . A similar argument to

case 1 can be made but λ will be the slope of the tangent line instead of the slope

of the line through P and Q.

We mentioned earlier that for every elliptic curve, there exists an isomorphic

curve that can be represented in Weierstrass form. There also is a shared value that will

be invariant between isomorphic curves, the j-invariant.

Definition 2.13. The j - invariant of an elliptic curve in Weierstrass form is defined

by the equation,

j = −1728
(4A)3

∆
.
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Theorem 2.14. Two elliptic curves defined over k are isomorphic over k̄, the algebraic

closure of k, if and only if they both have the same j-invariant.[Sil16]

A proof of Theorem 2.15 can be found in [Sil16, Chapter 3].

When using elliptic curves in cryptography it is particularly important to focus

our attention on those defined over finite fields. We can show that taking the group law as

defined earlier and applying it to elliptic curves over finite fields will result in the points

being a finite group. We will now look at an example of an elliptic curve over a finite

field.

Example 2.15. We will first look at the curve y2 = x3 + 1 over R.

Figure 2.4: E : y2 = x3 + 1 over R

Now we look at that same equation but look at its roots, E(F433). We wrote code

in Sage to produce Figure 2.5 which shows the plot of E(F433) in F2
433.
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Figure 2.5: E : y2 = x3 + 1 defined over F433

You can see that the curve defined over F433 is much more chaotic than the

curve over R, which makes it much more useful in the world of cryptography.

We can find all points of E(F433) by checking all possible tuples (x, y) to find

solutions with x, y ∈ F433. Let us consider two points that are in E(Fp): P = (151, 13)

and Q = (162, 383). We can verify that these points are in the solution set by plugging

in the values into the cubic.

132(mod 433) = 1513 + 1(mod 433)

169(mod 433) = 3442951 + 1(mod 433)

169 = 168 + 1(mod 433)

169 = 169(mod 433).

So we can see P is in E(Fp). Following this same process we can show Q is in E(Fp) as

well. We can now use the algorithm from the group law, Theorem 2.12, to find the value

of P ⊕Q.

Since P 6= Q, we can proceed to step 3 of the algorithm. So λ = (383−13)
(162−151) =

370/11 = 73, since we are working in the finite field F433. Then,

x′′ = 732 − 151− 162 = 5016 ≡ 253(mod 433),
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y′′ = λ(x− x′′)− y = 73(151− 253)− 13 = −7459 ≡ 335(mod 433).

So, P ⊕Q = (253, 335).

The process of repeatedly adding a point to itself, n ∗P , on E is not quick even

with a computer, however we can use an algorithm that will make adding a point to itself

multiple times significantly more efficient. In Chapter 3, we present the Fast Powering

Algorithm as described in [HPS14, Chapter 1.3].

Finding all points of the an elliptic curve is a cumbersome task that can take a

long time, even for computer, if the field is large, i.e. p is large. However, Hemlut Hasse

discovered an upper bound for the number of points in the finite group E(Fp).

Theorem 2.16. Hasse Theorem [HPS14, Theorem 6.11]

If E is an elliptic curve over Fp, then

#E(Fp) = p+ 1− tp with tp satisfying |tp| ≤ 2
√
p.

Let tp = P + 1 −#E(Fp) we call tp the trace of the Frobenius map (see Definition 2.17

below).

For a detailed proof of this theorem, see [Sil16, Theorem 1.1]. One definition

used within that proof that will be useful for us later the Frobenius Map.

Definition 2.17. If p is prime and k ∈ Z+, then the (p-power) Frobenius map τ is the

map from Fpk to itself defined by

τ : Fpk → Fpk , α 7→ αp

Proposition 2.18. The (p-power) Frobenius map τ is a ring homomorphism from Fpk
to itself.

Proof. First we show that τ(1) = 1, by observing τ(1) = 1p
k

= 1. We now show τ

preserves multiplication. Let a, b ∈ Fpk . Consider, τ(ab) = (ab)p. Since a, b are ele-

ments of a commutative ring then, τ(ab) = (ab)p = apbp = τ(a)τ(b). Thus, τ preserves

multiplication.

We now show that τ preserves addition. Let a, b ∈ Fpk . Consider,

τ(a+ b) = (a+ b)p.



11

We know that, (a+ b)n =
∑(

n
i

)
aibn−i. So,

(a+ b)p =
∑(

p

i

)
aibp−i =

(
p

0

)
a0bp−0 +

(
p

1

)
a1bp−1 + ...+

(
p

p− 1

)
ap−1b1 +

(
p

p

)
apb0.

Notice
(
p
0

)
and

(
p
p

)
are both equal to 1. Also since p|

(
p
i

)
for all 0 < i < p, then

(
p
i

)
≡

0(mod p) for 0 < i < p. Then,

(a+ b)p =
∑(

p

i

)
aibp−i

=

(
p

0

)
a0bp−0 +

(
p

1

)
a1bp−1 + ...+

(
p

p− 1

)
ap−1b1 +

(
p

p

)
apb0

= bp + ap

= ap + bp.

So,

τ(a+ b) = (a+ b)p = ap + bp = τ(a) + τ(b).

Thus τ preserves addition. Therefore, the set map τ : Fpk → Fpk , where α 7→ αp, is a

ring homomorphism.

Let us look back at Example 2.17 to see the Hasse Theorem in practice. Let

E : y2 = x3 + 1 be an elliptic curve defined over F433. If we apply the theorem we can see

the upper bound #E(F433) ≤ 2
√

433 + 433 − 1. This is a reasonable upper bound since

the actual size #E(Fp) = 432. We will see later a special class of elliptic curves where

the trace of the Frobenius map is always 0.

Knowing the upper bound for the number of points of an elliptic curve is useful

because it narrows the number of prospects, however for cryptographic applications it is

often very important for us to know exactly how many points are in E(Fp). By checking

all possible tuples (x, y) with x, y ∈ Fp we can achieve this. However, as mentioned earlier

this process is very inefficient and, once the size of the group is too big, counting this

way is infeasible. Rene Schoof offered an algorithm for finding the number of points in

the group in polynomial-time in [Sch85]. The algorithm was later improved and today

the best known way at finding the number of points of an elliptic curve over a finite field

is the Schoof-Elkies-Atkin Algorithm (SEA). The proof of the algorithm is beyond the

scope of this paper but one can be found in [Sch95].
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Another useful piece of information when working with elliptic curve groups is

finding all points of a specific order. For example, if E is an elliptic curve defined over a

finite field Fp, and m ∈ Z+, then we may want to find all points of order m.

Definition 2.19. Let E be an elliptic curve over k, k′/k a field extension and let m ∈ Z

with m > 1. The m-torsion points of E(k′), denoted E(k′)[m], is the set of points of

E(k′) of order m,

E(k′)[m] = {P ∈ E(k′) : [m]P = O}.

The collection of these points actually form a group themselves.

Proposition 2.20. [HPS14, Chapter 6.8.1] Let E be an elliptic curve and let m ∈ Z

with m > 1. The m-torsion points form a subgroup.

Remark 2.21. The m-torsion subgroup may not be cyclic.

Example 2.22. Let E : y2 = x3 + 1 be an elliptic curve define over Fp. Using the SEA

algorithm in Sage we can compute that #E(Fp) = 84. Recall that Lagrange’s theorem

[Gal17, Theorem 7.1] states that the order of an element must divide the order of the

group. We can then look to see if there exist an element of order 6 using Sage and find

that (2, 3) ∈ E has order 6. We can then define E[6]. Again we use Sage and see that

E[6] = ((2, 3), (2, 94), (25, 3), (25, 94), (70, 3), (70, 94)).

We have seen one map, the Frobenius map, between elliptic curves. We now

look at isogenies.

Definition 2.23. If E1 and E2 are elliptic curves, then an isogeny from E1 to E2 is a

morphism

φ : E1 −→ E2 satisfying φ(O) = O

The degree, `, of an isogeny is the size of its kernel.

Remark 2.24. A morphism is a rational map that is defined at every point.

Isogenies are a core concept of this paper. Researchers are using the difficulty

of computing these maps as hard problems within both cryptosystems as well as hash

functions. Later we will look at graphs in order to visualize isogenies and their complexity.

The following definitions will be useful when we discuss possible attacks on the

Elliptic Curve Diffie-Hellman Key Exchange.
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Definition 2.25. Let E be an elliptic curve over Fp and let m > 1 be an integer with

p - m. The embedding degree of E with respect to m is the smallest value of k such

that

E(Fpk)[m] ∼= Z/mZ× Z/mZ.

Definition 2.26. If E is an elliptic curve in Weierstrass form,

E : y2 = x3 +Ax+B

and f(x, y) is a nonzero rational function of two variables, then the divisor is the sum

div(f) =
∑
P∈E

nP [P ].

Where nP is the exponents of the zeros and poles of f .

Definition 2.27. Let P,Q ∈ E(k′)[m]. Let fP and fQ be rational functions on E satis-

fying

div(fP ) = m[P ]−m[O] and div(fQ) = m[Q]−m[O].

The Weil pairing of P and Q is the quantity

em(P,Q) =

fP (Q+S)
fP (S)

fQ(P−S)
fQ(−S)

.

Where S is any element in E such that S /∈ {P,−Q,P ⊕−Q,O}

Remark 2.28. By construction using Millers algorithm, Algorithm 4.9, we know fP and

fQ exist. For a proof that the Weil pairing is well-defined we direct the reader to [Mil04].

Definition 2.29. If B ∈ Z, then an integer n is called B-Smooth if all of its prime

factors are less than or equal to B.

Definition 2.30. The factor base of B is the set of primes less than or equal to B.

In Chapter 4 we will discuss the MOV algorithm. This attack uses the Weil

pairing and the embedding degree, k, of E to reduce the elliptic curve discrete log problem

the classical discrete log problem in Fpk . Elliptic curves with small embedding degrees

are vulnerable to this type of attack. We will also see how researchers have taken these

vulnerable elliptic curves with small embedding degrees, and used them to create new

quantum resistant systems.
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Chapter 3

Cryptography Background

3.1 Key Exchanges

Cryptography can be defined as the process of protecting communication be-

tween parties by encoding their messages. Within cryptography it is common to refer to

the two parties attempting to communicate as Alice and Bob, and we refer to a third

party attempting to intercept, alter, or steal information as Eve.

In cryptography one form of exchanging information is a private key cryptosys-

tem. These schemes are referred to as symmetric key exchanges. The basic idea behind

these systems is that Alice uses the private secret key to encrypt the data she wants to

send to Bob. Bob then receives the data in its encrypted form. Bob then uses the same

private, secret key to decrypt the data. Throughout history this was a very common way

of exchanging sensitive information. However, one important aspect to notice is that in

order for the system to work both Alice and Bob must have access to the private key. In

the past the agreed upon private key may have been communicated in person, however

in today’s world a majority of communication happens on the internet. If Alice wants to

prevent Eve from knowing the information she is sending to Bob, she cannot simply send

the key to him. Alice and Bob need to find a way to agree upon a private key without

running the risk of Eve stealing it. The problem of agreeing upon a shared private key is

solved by key exchanges.

One of the most important discoveries in the world of cryptography was by Diffie

and Hellman. In their paper, New Directions in Cryptography [DH76], they defined both
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public key cryptography and one-way functions. Public key Cryptography is also known as

asymmetric cryptography. The important characteristic of public key cryptography is the

ability of Alice and Bob to securely share information without having a prior discussion

about a key. Asymmetric cryptography offers the ability for a private key to be created

by using an algorithm and a public key.

One-way function are functions that are very easy to compute, but very hard

to invert. It is important to note that for cryptographers, computations that are “easy”

are those that are fast, and computations that are “hard” are those that are slow. These

one way functions are related to hard problems. Cryptography is largely based on the

concept of hard problems. Much of cryptography can be boiled down to simple concepts

of number theory, however the security lies in the fact that some computations can take

an extremely long time to complete. If we want communication between two parties,

Alice and Bob, to be secure, then we want the process of decoding the messages between

them to be hard. Even if the process for decoding is understood, we want it to be

extremely time consuming. It is interesting fact that there is no proof of the existence of

one-way functions, however the assumption that one-way functions exist is necessary for

cryptography [HPS14, Chapter 1.7].

3.2 The Discrete Log Problem and Diffie-Hellman Key Ex-

change

Here we will define one of the most common hard problems that is used in

cryptography today.

Definition 3.1. Let g be a primitive root for Fp and let h be a nonzero element of Fp.

The Discrete Log Problem (DLP) is the problem of finding an exponent x such that

gx ≡ h(mod p).

The number x is called the discrete logarithm of h to the base g and is denoted by logg(h).

Compared to logarithms over R, the Discrete Log Problem is much harder. For

real numbers a and b the loga b is the real number x such that ax = b. This is similar

to the DLP, however the important thing about the Discrete Log Problem is that it is

working over a finite group.



16

The Diffie-Hellman Key Exchange (DH) makes use of the Discrete Log Problem

to allow Alice and Bob to exchange a secret key on an unsecured platform.

Before moving on to the Diffie-Hellman Key Exchange we will describe the Fast-

Powering algorithm. We now present the fast powering algorithm as described in [HPS14,

Chapter 1.3].

Algorithm 3.2. The Fast-Powering Algorithm

We want to compute gA(mod N).

1. Compute the binary expansion of A,

A = A0 +A12 + ...+Ar2
r with A0, ..., Ar ∈ {0, 1}

2. Compute the powers of g2
i
(mod N) for 0 ≤ i ≤ r,

a0 ≡ g (mod N)

a1 ≡ a20 ≡ g2 (mod N)

...

ar ≡ a2r−1 ≡ g2
r

(mod N)

3. Then,

gA = gA0+A12+...+Ar2r

= gA0 · (g2)A1 · (g22)A2 · · · (g2r)Ar

= aA0
0 · a

A1
1 · · · a

Ar
r (mod N).

Key Exchange 3.3. Diffie-Hellman Key Exchange.

First a large prime p and integer g(mod p) with large order in Fxp will either

be provided by a trusted third party or chosen by Alice and Bob. Alice and Bob will

both be using p and g for their computations so these values will be made public. Alice

and Bob will both pick a secret integer, which we denote a and b, respectively. Alice

computes A ≡ ga(mod p) and Bob computes B ≡ gb(mod p). Each of them then sends
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their computed values to one another. Next Alice computes A′ ≡ Ba(mod p) and Bob

computes B′ ≡ Ab(mod p). We can see that A′ = B′, since

A′ ≡ Ba(mod p) ≡ (gb)a(mod p) ≡ (ga)b(mod p) ≡ Ab(mod p) ≡ B′(mod p).

Thus, Alice and Bob now have their shared secret key.

If Eve now wants to attempt to steal this shared secret key she is left with the

task of solving the Discrete Log Problem. To make this clearer let us look at an example.

Public Parameters
Large prime p, and integer g(mod p) with large order

Alice Bob

Alice picks random integer a Bob picks random integer b
Alice computes A ≡ ga(mod p) Bob computes B ≡ gb(mod p)
Alice sends A to Bob −−−−−−−−−−−−−−→

←−−−−−−−−−−−−−− Bob sends B to Alice
Alice computes A′ ≡ Ba(mod p) Bob computes B′ ≡ Ab(mod p)

Shared secret key is B′ = A′

Table 3.1: Summary of Diffie-Hellman Key Exchange

Example 3.4. Public Parameters

p = 53, g = 21

Alice Bob

Alice picks random integer a = 3 Bob picks random integer b = 7
Computes A ≡ 213(mod 53) ≡ 39 Computes B ≡ 217(mod 53) ≡ 35
Alice sends A to Bob −−−−−−−−−→

←−−−−−−−−− Bob sends B to Alice
Alice computes (353)mod 53 Bob computes (397)mod 53

Shared secret key is (353)(mod 53) ≡ 51 ≡ (397)(mod 53)

Consider the information available to Eve. Eve knows p, g, A, and B. For Eve

to find A′ ≡ B′ ≡ 51, she must solve 21a ≡ 39(mod 53) and 21b ≡ 35(mod 53). This may

seem simple because the parameters chosen for this example are small, however current

standards of security require picking primes that are 1024 bits. If Eve was to attempt to

attack a key exchange by using brute force trial and error it would take linear time in P ,
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O(P ). In terms of fast and slow, algorithms that run at linear in P are considered slow

and algorithms that run at polynomial time are considered fast. This is what makes the

DLP a hard problem.

3.3 Solving the DLP

Over the years people have uncovered algorithms that speed up the time it takes

to solve the DLP, in certain circumstances dramatically. Shank’s Babystep-Giantstep

Algorithm is a collision algorithm that creates two lists and by searching each list and

finding a match you can solve the DLP. The complexity of an algorithm like this is

approximately is O(
√
N), where N is the order of the element g. This is far better than

the linear time O(N) of brute force. We then have the Pohlig–Hellman Algorithm which

hinges on the use of the Chinese Remainder Theorem to solve a set of congruence and the

index calculus method both of which have subexponetial running time [HPS14, Chapter

2]. The index calculus method is the fastest known way to solve the DLP, which can take

less than O(P ε) steps with ε > 0 [Sil16, Chapter 11]. We will next give a brief overview

of the index calculus method which will be useful later in this paper.

Index Calculus Method.

We first pick a value B and the set of all primes l ≤ B will be our factor base. We then

run a loop taking random powers of g and save the values that are B-smooth (Definition

2.29). We can then view these quantities as linear combinations of discrete log problems

of primes in the factor base. Using these linear combinations we now have a set of

linear equations that we can solve using Gaussian Elimination. We now how found xi

for congruences gxi ≡ vi(mod p) for all vi in the factor base. We then take h(g−k)mod p

for random k until we find a solution that is B-smooth. Since we have already solved

the DLP for values in the factor base we can then combine the information to solve the

original DLP.

Index Calculus Sage Code

def index_calculus(g,h,p,B):

order = p - 1

factbase = prime_range(B+1)

print(factbase)

L = []

m = []
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j = 1

while j<500 and (len(L))<(len(factbase)+1):

x = ZZ.random_element(p)

w = FPA(g,x,p)

if w!=1 and w.factor()[-1][0]<= factbase[-1]:

s = (g^(x))%p

exp = []

for n in factbase:

e = 0

temp = s

while temp%n == 0:

e+=1

temp = temp // n

exp.append(e)

exp.append(x)

L.append(exp)

j += 1

ordfact = order.factor()

solutions = []

print(L)

for k in range (len(ordfact)):

o = int(ordfact[k][0])

A = matrix(IntegerModRing(o),L).rref()

if A.rank() != len(factbase):

print(’Rank issue, automatic re_run’)

new = index_calculus(g,h,p,B)

return(new)

m.append(A)

for j in range (len(m)):

x = []

for i in range (len(L)):

x.append(int(m[j][i][-1]))

solutions.append(x)

mod = []

for i in range (len(ordfact)):

mod.append(ordfact[i][0])

cong = []

for g1 in range (len(factbase)):

h1=[]

for v in range (len(solutions)):

h1.append(solutions[v][g1])

cong.append(h1)

Z = []

for y in range (len(cong)):
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sol = CRT_list(cong[y],mod)

Z.append(sol)

t = 0

while t == 0:

x2 = ZZ.random_element(p)

pot = (h*(inverse_mod(g^(x2),p)))%p

if pot !=0 and pot!=1 and pot.factor()[-1][0]<= factbase[-1]:

t = 1

exp1 = []

for a2 in factbase:

e1 = 0

temp2 = pot

while temp2%a2 == 0:

e1+=1

temp2 = temp2 // a2

exp1.append(e1)

total = x2

for l in range (len(exp1)):

total += exp1[l]*Z[l]

print(g,’^’,total%(p-1),’=’,h,’( mod’,p,’)’)

return(total%(p-1))

We will now look at an example comparing the brute force computation time

versus that of the Index Calculus Method.

Example 3.5. Let p = 90239, g = 7, and 7x(mod 90239) = 51198. To solve this using

brute force, we can use the following code:

p = 90239

g = 7

h = 51198

start = time.time()

for i in range (p):

if (g^i)%p == h:

print(i)

break

end = time.time()

x = end - start

print(’Time taken for brute force is’,x)

The output of this code:

41506

Time taken for brute force is 22.68076229095459
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We can then solve for x using the Index Calculus Method.

p = 90239

g = 7

h = 51198

B = 11

start1 = time.time()

index_calculus(g,h,p,B)

end1 = time.time()

x1 = end1 - start1

print(’Time taken using Index Calculus Method’, x1)

The output for this code:

7 ^ 41506 = 51198 ( mod 90239 )

Time taken using Index 0.7332439422607422

We can see that using the Index Calculus Method significantly decreased the time it took

to solve the DLP, even for this small example.



22

Chapter 4

Classical Elliptic Curve

Cryptography

4.1 Elliptic Curve Discrete Log Problem

Similar to the hard problem used in the Diffie-Hellman key exchange, there

exists an analogous hard problem within the field of elliptic curves.

Definition 4.1. Let E be an elliptic curve over a finite field Fp and let P and Q be

points in E(Fp). The Elliptic Curve Discrete Log Problem is the problem of finding

an integer n such that Q = n ∗ P.

To emphasize the similarities between the DLP and ECDLP we can write this

as

n = logp(Q).

Cryptographers have exploited the difficulty in finding n by creating elliptic curve based

cryptosystems that have similar protocols to Diffie-Hellman and ElGamal [HPS14, Chap-

ter 2.4]. In order to compute the values needed for the key exchange, Alice and Bob are

required to compute d ∗ P = P ⊕ P ⊕ ...⊕ P , d times. If we pick d to be big, finding the

point d ∗P can take a long time. The Double-and-Add Algorithm is an effective and

can compute n ∗ P in O(log2 d) time.

Algorithm 4.2. Double-and -Add

Input Point P ∈ E(Fp)
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1. Set Q = P and R = O.

2. Loop while d > 0.

3. If n ≡ 1(mod 2), set R = R⊕Q.

4. Set Q = 2 ∗Q and d = |d/2|.

5. If d > 0, continue with loop at Step 2.

6. Return the point R, which equals d ∗ P .

If the ECDLP is analogous to DLP and there also exist The Double-and-Add

Algorithm which is analogous to The Fast Powering Algorithm (Algorithm 3.2), then you

might ask why would we use elliptic curves over F∗p? It turns out that even the fastest

algorithms today used to solve the ECDLP have a complexity approximately O(
√
p).

This stands in contrast to DLP over F∗p, for which there exist algorithms that can run at

subexponetial time, i.e. The Index Calculus Method.

Remark 4.3. With the implementation of certain algorithms the Discrete Log Problem

over F∗p is easier to solve than the Elliptic Curve Discrete Log Problem. However, any

cryptosystem could be made sufficiently secure if the parameters were picked accordingly,

i.e. pick extremely large primes. The ECDLP is more secure than DLP over F∗p, when

picking primes of similar size for both. Cryptographers must always balance security with

representability and implementability.

4.2 Elliptic Curve Diffie-Hellman

Leveraging the similarities the between ECDLP and the DLP over F∗p we can

easily define a key exchange using elliptic curves that is analogous to Diffie-Hellman Key

Exchange 3.3.

Key Exchange 4.4. Elliptic Curve Diffie-Hellman Key Exchange

For Alice and Bob to begin exchanging information, a trusted third party must first publish

public parameters. This trusted third party will publish a prime p, an elliptic curve E(Fp),

typically via the Weierstrass coefficients [A,B], and a base point P ∈ E(Fp). Then Alice

will pick a secret key a ∈ Z and she will compute, using the Double-and-Add Algorithm,



24

A = a ∗ P . She will then send her point A to Bob. Similarly, Bob will pick a secret key

b ∈ Z and he will compute, using the Double-and-Add Algorithm, B = b ∗P . He will then

send his point B to Alice. Alice will then take Bob’s point B and compute a∗B, and Bob

will take Alice’s point A and compute b ∗A. Since a ∗B = a ∗ (b ∗P ) = b ∗ (a ∗P ) = b ∗A,

the shared secret point on the curve between Alice and Bob will be a ∗ B = b ∗ A. These

are points in F2, for the shared secret key Alice and Bob will take the first coordinate of

their shared secret point.

If Eve intends to steal the secret key that Bob and Alice now posses, Eve must

figure out the values of either a or b. This boils down to Eve solving n ∗ P = A or

n ∗ P = B for n which is precisely the ECDLP.

Public Parameters

Prime p, Elliptic Curve E(Fp). Point P ∈ E(Fp)
Alice Bob

Alice picks random integer a Bob picks random integer b
Alice computes A = a ∗ P Bob computes B = b ∗ P
Alice sends A to Bob −−−−−−−−−−−−−−→

←−−−−−−−−−−−−−− Bob sends B to Alice
Alice computes a ∗B Bob computes b ∗A

Shared secret point is a ∗B = b ∗A

Table 4.1: Summary of ECDH Key Exchange

Example 4.5. ECDH

Public Parameters

p = 97, E(F97) : y2 = x3 + x+ 4, P = (39, 80)

Alice Bob
Alice picks random integer a = 61 Bob picks random integer b = 86
Alice computes A = a ∗ P = (0, 2) Bob computes B = b ∗ P = (26, 90)
Alice sends A to Bob −−−−−−−→

←−−−−−−− Bob sends B to Alice
Alice computes a ∗B = (54, 73) Bob computes b ∗A = (54, 73)

Shared secret point is a ∗B = (54, 73) = b ∗A
Shared secret key is 54
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4.3 Sending and Certifying Messages

Continuing to expand on the analogy between the DLP and ECDLP, we now

present an ElGamal style cryptosystem based on elliptic curves.

4.3.1 Elliptic Curve ElGamal Public Key Cryptosystem

Similar to Elliptic Curve Diffie-Hellman, a trusted third party will publish a

prime p, an elliptic curve E(Fp), and a base point P ∈ E(Fp). Alice will then choose a

private key nA and compute a point QA = nA ∗ P . Alice will then send the point QA to

Bob. Bob can then choose a plain text M ∈ E(Fp), and a random element k. He then

computes two values C1 = k ∗P and C2 = M ⊕k ∗QA, and sends these values as an order

pair, (C1, C2), to Alice. Using C1 and C2, Alice computes C2 − nA ∗ C1 = M ∈ E(Fp).

[HPS14, Chapter 6.4.2]

Public Parameters

a prime p, an elliptic curve E(Fp), and a base point P ∈ E(Fp)
Alice Bob

Alice picks a private key nA
Alice computes QA = nA ∗ P
Alice sends QA to Bob −−−−−−−−−−−−−−→

Bob chooses plain text M ∈ E(Fp).
Bob chooses random element k
Bob computes two values C1 = k∗P
and C2 = M ⊕ k ∗QA

←−−−−−−−−−−−−−− Bob sends (C1, C2) to Alice
Alice computes C2−nA ∗C1 = M ∈
E(Fp)

Table 4.2: Summary of Elliptic Curve ElGamal Key Exchange

4.3.2 Digital Signatures

One of the main uses of elliptic curves in the world of cryptography is in digital

signatures. The digital currency, Bitcoin, uses the Elliptic Curve Digital Signature Algo-

rithm for its security (ECDSA). Before we summarize the ECDSA we will first give some

background on digital signatures.
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What is a digital signature?

Digital signatures are used in a slightly different way than the way in which our

regular handwritten signatures are used, they serve to certify the authenticity and fidelity

of digital documents. This is different from the public key cryptosystems which allow Alice

and Bob to share information, but the methods used in public key cryptosystems are also

used in digital signature algorithms. Digital signature algorithms have been created in

such a way that if Alice signs a digital document, Bob can then use Alice’s public key

to verify that Alice is the actual sender and the document has not been tampered with.

This is important because it is possible that Eve may tamper with the information sent

to Bob. Without digital signatures, Bob may unknowingly believe this information was

from Alice.

Prior to the use of elliptic curves in cryptography the Digital Signature Algorithm

(DSA) was the standard for signing digital documents. A complete explanation of the

DSA can be found in [HPS14, Chapter 6, Section 5]. For our purpose we will focus on the

ECDSA. Moving from Diffie-Hellman and ElGamal to ECDH and Elliptic curve ElGamal

was useful because the level of security was higher while keeping the parameters (bitsize)

at a manageable size. Similarly moving from DSA to ECDSA was an obvious transition.

We now explain the steps in the Elliptic Curve Digital Signature Algorithm.
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Algorithm 4.6. Elliptic Curve Digital Signature Algorithm

Public Parameters

A finite field Fp, an elliptic curve E/Fp, and a point P ∈ E(Fp) of prime order N

Alice Bob

1) Alice picks a private key a
2) Alice computes A = a ∗ P ∈
E(Fp)
3) Alice then chooses document

d(mod N) to sign and random
integer k(mod N)

4) Alice then computes:
s1 ≡ X(k ∗ P )(mod N) and
s2 ≡ (d+ as1)k

−1(mod N)
5) Alice publishes (s1, s2)

1) Bob computes v1 ≡ ds−12 (mod N)

and v2 ≡ s1s−12 (mod N)
2) Bob then computes v1∗P+v2∗A.
3) Bob then verifies

X(v1∗P+v2∗A) ≡ s1(mod N)

Table 4.3: Summary of Elliptic Curve Digital Signature Algorithm [Sil16, Chapter 11]

Remark 4.7. We use X to denote taking the x-coordinate of a point (x, y), i.e. X(x, y) =

x.

We can show that if Alice follows the steps above then Bob will be able to verify

her as the sender.

Proof. Let P ∈ E(Fp) be prime order N , and A = a ∗ P ∈ E(Fp). For all computations

we will be working mod N , so for simplicity we will drop mod N for some parts of the

proof. Also let s1 ≡ X(k ∗ P )(mod N) and s2 ≡ (d + as1)k
−1(mod N) for random

integer k(mod N), and v1 ≡ ds−12 (mod N) and v2 ≡ s1s
−1
2 (mod N). We must show

X(v1 ∗ P + v2 ∗ A) ≡ s1(mod N). Consider X(v1 ∗ P + v2 ∗ A). If we substitute for v1,

v2, and A then,

X(v1 ∗ P + v2 ∗A) = X[(ds−12 ) ∗ P + (s1s
−1
2 )(a) ∗ P ]

= X[s−12 (d+ as1)] ∗ P.
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We can then substitute in for s2,

X(v1 ∗ P + v2 ∗A) = X[((d+ as1)k
−1)−1(d+ as1)] ∗ P

= X[((d+ as1)
−1k1)(d+ as1)] ∗ P

= X[k ∗ P ]

= s1.

We can see that Bob can accurately verify the identity of the sender as Alice.

This is secure because Alice never sends her private key so only she knows it. Also, if Eve

was able to intercept the document and tamper with it this would obstruct Bob’s ability

to verify in step 3 of the algorithm, in which he would infer the message was tampered

with and discard it.

4.3.3 Attacks on Elliptic Curve Cryptography

If Alice and Bob are exchanging information using Diffie-Hellman or ElGamal,

Eve must find an effective way to solve the DLP. If, instead, Alice and Bob are using

ECDH or Elliptic Curve ElGamal, Eve is then left with the task of solving the ECDLP.

We have already discussed that in general the fastest known algorithms used to solve

the ECDLP have a complexity approximately O(
√
p). However, if cryptographers are

not careful in how they choose the curves being used, they may be leaving themselves

vulnerable to faster attacks.

We will now discuss the special cases for which the ECDLP can be turned into

the DLP over Fpk . In [MVO93], Menezes, Okamoto, and Vanstone were able to show

that the ECDLP can be reduce to the DLP over Fpk with k being the embedding degree

of the elliptic curve.

We now summarize the algorithm described in that paper.

Algorithm 4.8. MOV Algorithm

Let E be an elliptic curve over Fp of embbedding degree k and P ∈ E(Fp) be a point of

order `. If Q = n∗P for some n, then given Q and P the following algorithm can produce

n.
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1. Compute N = #E(Fpk)

2. Pick a random point T ∈ E(Fpk) with T ∈ E(Fp).

3. Compute T ′ = (N/`) ∗ (T ). If T ′ = O, then pick new random point T . Otherwise

T ′ has order `.

4. Compute Weil Pairing α = e`(P, T
′) and β = e`(Q,T

′). Note: both α and β are in

F∗
pk
.

5. Solve DLP β = αn for n.

6. Then Q = n ∗ P .

A proof of the the MOV can be found in [Sil16, Chapter 11, Section 6] or [MVO93].

One issue that arises when attempting to implement the MOV Algorithm is the

necessity to compute the Weil pairing. To compute the Weil pairing we must compute

rational functions with specific divisors. Victor Miller offers an efficient way to find this

value [Mil04]. Miller’s Algorithm is described in [HPS14], and we describe it here.

Algorithm 4.9. (Miller Algorithm) Let E be an elliptic curve and let P = (xP , yP ) and

Q = (xQ, yQ) be nonzero points on E.

(a) Let λ be the slope of the line connecting P and Q, or the slope of the tangent line

to E at P if P = Q. Define a function gP,Q on E as follows:

gP,Q =


y−yP−λ(x−xP )
x+xP+xQ−λ2 if λ 6=∞,

x− xP if λ =∞.

Then

div(gP,Q) = [P ] + [Q]− [P +Q]− [O].

(b) (Miller’s Algorithm) Let m ≤ 1 and write the binary expansion of m as

m = m0 +m12 +m22
2 + ...+mn−12

n−1

with mi ∈ 0, 1 and mn−1 6= 0. The following algorithm returns a function fp whose

divisors satisfies

div(fP ) = m[P ]− [mP ]− (m− 1)[O],

where the functions gT,T and gT,P used by the algorithm are as defined in (a).
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1) Set T = P and f = 1

2) Loop i = n− 2 down to 0

3) Set f = f2(gT,T )

4) Set T = 2 ∗ T

5) If mi = 1

6) Set f = fgT,P

7) Set T = T ⊕ P

8) Return the value f

In particular, if P ∈ E[m], then div(fP ) = m[P ]−m[O].

We now offer a sample of Sage code to implement the MOV Algorithm

def gfunc(P,Q,p):

F = GF(p)

R.<x,y> = PolynomialRing(F)

if P == Q:

slope = (((3*(P[0])^2+a)/(2*P[1]))%p)

elif P[0] == Q[0]:

slope = ’infinity’

else:

slope = (((Q[1]-P[1])/(Q[0]-P[0]))%p)

if slope == ’infinity’:

g = x-P[0]

else:

g = (y - P[1] - slope*(x-P[0]))/(x + P[0] + Q[0] - (slope)^2)

return(g)

def Miller(m,P,Q,a,b,p):

T = P

f = 1

m=m.digits(2)

n = len(m)

for i in range(n-2,-1,-1):

f = (f^2)*gfunc(T,T,p)

T = Group_Law(T,T,a,p)

if m[i] == 1:

f = f*gfunc(T,P,p)

T = Group_Law(T,P,a,p)

return(f)

def weil(m,P,Q,a,b,p,S):
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f_p = Miller(m,P,Q,a,b,p)

num = (f_p(Group_Law(Q,S,a,p)))/(f_p(S))

f_q = Miller(m,Q,P,a,b,p)

negS = (S[0],-S[1])

den = (f_q(Group_Law(P,negS,a,p)))/(f_q(negS))

weil = (num/den)%p

return(weil)

def MOV2(p,a,b,P,Q):

E = EllipticCurve(GF(p), [a,b])

l = E.cardinality()

k = embedding_degree(P,p)

if k > 6:

print(’---------------------------------------\

-----------------------------------------\

-------------’)

return(’Embedding Degree is too large, \

DLP over GF(P^K) is just a difficult\

as ECDLP over E(GF(p))’)

E2 = EllipticCurve(GF(p^k),[a,b])

N = E2.cardinality()

P=E2(P)

Q=E2(Q)

T2 = (E2.random_element())*\

(((E2.random_element()).additive_order())//l)

while T2.additive_order() == 1:

T2 = (E2.random_element())*\

(((E2.random_element()).additive_order())//l)

#print(T2)

alpha = P.weil_pairing(T2,l)

beta = Q.weil_pairing(T2,l)

for i in range (p):

if alpha^i == beta:

return(i)

We can now look at an example of the MOV algorithm in action.

Example 4.10. Let p = 8111, E(F8111) : y2 = x3 + z + 300, P = (6116, 2715) and

Q = (3786, 7380). We want to find n such that n ∗ P = Q. We will first offer Sage code

to compute this by brute force.

start =time.time()

for i in range (p):

if P*i == Q:

print(i)



32

break

end =time.time()

print(end-start)

The output for this code:

4034

1.448946475982666

We now look at the same problem computed using the MOV algorithm.

start1 =time.time()

n = MOV(p,a,b,P,Q)

end1 =time.time()

print(n,end1 - start1)

The output for this code:

4034 0.05069732666015625

We can see that both brute force and MOV produce the same result 4034, however the

in the example the MOV algorithm was almost 30 times as fast. This difference in speed

becomes even clearer as we pick larger primes.

Remark 4.11. Within the code we have offered for the MOV algorithm we use brute

force to solve the DLP. If the index calculus method is used instead our code would solve

the ECDLP even faster, possibly in subexponetial time.
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Chapter 5

Supersingular Isogeny

Diffie-Hellman Key Exchange

As we mentioned earlier the growing danger of quantum computers has lead

to the need to develop a cryptosystems that is secure against such computers. Many

systems have been developed and proposed, one of which is based on isogenies between

supersingular elliptic curves [DFJP11]. In this chapter we cover the SIDH public key

system.

In Chapter 4 we discussed a vulnerability within classical ECC that allowed the

attacker to reduce the Discrete Log Problem in E(Fp) to the Discrete Log Problem in

Fp. That vulnerability was supersingular curves, however for the Supersingular Isogeny

Diffie-Hellman (SIDH) key exchange we make use of these curves.

5.1 Supersingular Elliptic Curves

There are many equivalent ways to define supersingular elliptic curves. We

will define it in a way that is most relevant to this paper.

Definition 5.1. An elliptic curve E(Fp) for p > 3 is supersingular if the embedding

degree k of E(Fp) is k ≤ 6.

The MOV Algorithm discussed in Chapter 4 exploits the small embedding degree

of supersingular curves in order to solve the ECDLP. Though these curves are avoided

in classical elliptic curve cryptography, in post-quantum cryptography the properties of
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these curves can be used to strengthen security. One of the hard problems that researchers

have proposed for the use in cryptography is the computing of isogenies. However, there

already exists an algorithm to compute isogenies for ordinary curves in sub-exponential

time on quantum computers. On the other hand, the endomorphism rings of supersingular

curves are not necessarily commutative, which prevents the use of the sub-exponential

algorithm to compute isogenies.

Another practical characteristic of supersingular elliptic curves is the size of

E(Fp).

Proposition 5.2. If E(Fp) is a supersingular elliptic curve, then #E(Fp) = p+ 1.

It is very useful for cryptographers to easily know #E(Fp). When picking pa-

rameters for cyrpotsytems there are standard size of parameters that are chosen to add

a certain level of security.

We now present the Supersingular Isogeny Diffie-Hellman Key Exchange. This

key exchange is conducted by constructing isogenies between supersingular elliptic curves.

Jacques Vélu, discovered formulas to construct these isogenies [Vé71]. The precise state-

ment and proof of Velu’s formula is outside the scope of this paper. As such we will not

present it here, and rather, we refer the reader to [Vé71] or [MS16]. For our purposes,

it is sufficient to understand that Velus formula allows us to input the equation of an

elliptic curve over a field k and a point P ∈ E(k′), and in return we get an isogenous

curve E/〈P 〉 and the isogeny φ : E → E/〈P 〉.

5.2 Supersingular Isogeny Diffie-Hellman Key Exchange

Key Exchange 5.3. Supersingular Isogeny Diffie Hellman Key Exchange

To begin some public parameters must be set. A trusted third party will publish a

prime p. This prime will be of the form p = leaa l
eb
b f + 1. Standard practice is to let la = 2

and lb = 3 with ea, eb ∈ Z. Along with p, the third party will publish a supersingular

elliptic curve, E0, in Weierstrass form defined over Fp2. Lastly, points Pa, Qa ∈ E[leaa ]

and Pb, Qb ∈ E[lebb ] will be published.

Alice will then use Pa, Qa ∈ E[leaa ] and two, secret, random integers ma and na

to form a subgroup. Using Velu’s formula [MS16], Alice can now compute a secret isogeny

φa to a new curve Ea with her constructed subgroup as the kernel of φa. She then sends
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Bob Ea, φa(Pb) and φa(Qb). Following these same steps Bob will send Eb, φb(Pa) and

φb(Qa) to Alice.

Alice will then take φb(Pa) and φb(Qa) and her secret random integers ma and

na to form another subgroup. She then uses this subgroup as a kernel of an isogeny from

Eb to a new curve Eba. Bob will follow these same steps using the information Alice has

sent to him and he will arrive at a curve Eab. The key exchange relies on the result:

The two elliptic curves Eba and Eab are isomorphic. This is summarized in Theorem 5.4.

Alice and Bob then use the j-invariant of these curves as their shared secret key. Table

5.1 summarizes this process. [DFJP11]

Theorem 5.4. [DFJP11, ] If p = leaa l
eb
b f + 1, Eo = E(Fp2) is a supersingular curve,

Pa, Qa ∈ E[leaa ] and Pb, Qb ∈ E[lebb ], ma, na ∈ Z/leaa Z, mb, nb ∈ Z/lebb Z and;

1. φa = Eo/〈ma ∗ Pa ⊕ na ∗Qa〉 and φb = Eo/〈mb ∗ Pb ⊕ nb ∗Qb〉

2. φa : Eo → Ea and φb : Eo → Eb

3. φ′a = Eb/〈ma ∗ φb(Pa)⊕ na ∗ φb(Qa)〉 and φ′b = Ea/〈mb ∗ φa(Pb)⊕ nb ∗ φa(Qb)〉

4. φ′a : Eb → Eba and φ′b : Ea → Eab

Then Eba ∼= Eab.

Public Parameters

Prime p = leaa l
eb
b f + 1, supersingular elliptic curve E(Fp2)

Points Pa, Qa ∈ E[leaa ] and Pb, Qb ∈ E[lebb ]

Alice Bob

Computes φa = E/〈ma ∗ Pa ⊕ na ∗Qa〉 φb = E/〈mb ∗ Pb ⊕ nb ∗Qb〉
Sends Ea,φa(Pb),φa(Qb) Sends Eb,φb(Pa),φb(Qa)
Computes φ′a = Computes φ′b =
Eb/〈ma ∗ φb(Pa)⊕ na ∗ φb(Qa)〉 Ea/〈mb ∗ φa(Pb)⊕ nb ∗ φa(Qb)〉
Arrives at Eba Arrives at Eab

Since Eba ∼= Eab the shared secret key is their j-invariant

Table 5.1: Summary of SIDH Key Exchange

Let us now look at a simple example using Sage to do the computation.
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Example 5.5. Public Parameters: As is common practice we will let la = 2 and lb = 3.

We then let ea = 2, eb = 3 and f = 1. We then have p = 2233 − 1 = 107. Let the

beginning curve be Eo : y2 = x3 + x.

Pa = (69i+ 45, 37i+ 65), Qa = (69i, 39i+ 106)

Pb = (69i+ 48, 39i+ 19), Qb = (14i+ 79, 106i+ 33)

Note: i =
√
−1 in Fp2.

Alice:

Alice then picks her secret integers ma = 53 and na = 50.

Then Ea = y2 = x3 + (47i+ 104)x+ (99i+ 98).

Alice sends Bob (Ea, φa(Pb), φa(b))

Bob:

Bobs then picks his secret integers mb = 5 and nb = 68.

Then Eb = y2 = x3 + (45i+ 52)x+ (83i+ 82).

Bob sends Alice (Eb, φb(Pa), φb(Qa)).

Alice:

Alice uses information sent from Bob to arrive at Eba.

Eba : y2 = x3 + (30i+ 33)x with j-invariant 16.

Bob:

Bob uses information sent from Alice to arrive at Eab.

Eab : y2 = x3 + (30i+ 33)x with j-invariant 16.

Thus the shared secret key is 16.
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Figure 5.1: Pathway taken by Alice and Bob in Example 5.6

In Figure 5.1, the vertices of the graph are elliptic curves within the key exchange

represented by their j-invariant. The edges of the graph are the isogenies between the

elliptic curve labeled by their degree. We use this graph as a representation of the pathways

taken by Alice and bob. The idea of pathways is convenient because we will later look at

isogeny graphs that give a visual representation of all the possible paths Alice and Bob

could have taken.

5.3 Hard Problem

Like all cryptosystems, the SIDH key exchange is based on a hard problem.

Earlier in this paper we looked at the Diffie-Hellman Key Exchange which bases its se-

curity on the difficulty of solving the Discrete Log Problem. We then moved to the

Elliptic Curve Diffie-Hellman Key Exchange, which similarly based its security on the

Elliptic Curve Discrete Log Problem. What then is the hard problem associated with

Supersingular-Isogeny based cryptosystems? Although the SIDH has strong connections

with ECDH the hard problem is not a version of the DLP, instead it is rooted in the

difficulty of finding isogenys between elliptic curves. This problem is known as the Com-
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putational Supersingular Isogeny, (CSSI), problem [CGL06]. Throughout the protocol

Eve has the potential to steal information such as Ea and Eb, however knowing these

curves as well as Eo does not give her any information about the isogenies between them,

φa and φb. Since she has no information on φa or φb she cannot then have any infor-

mation on Alice and Bob’s secret keys, which will prevent her from reaching the final

shared key. The complexity of CSSI is complicated and still being understood. In the

world of quantum computers, cryptographers must consider attacks from both classical

computers and quantum computer. In their paper on SIDH [DFJP11], Jao, De Feo and

Plut state the time complexity of CSSI to be O(p1/4) for classical computer and slightly

faster for quantum computers at O(p1/6). Early on, researchers believed that the best

way to solve CSSI was a meet-in-the-middle algorithm, however recently it was showed in

[ACVCD+19] that the collision algorithm offered by van Oorschot and Wiener in [vOW96]

preformed better. The basic idea behind these attacks is to start at 2 elliptic curves and

take random walks along edges of isogeny graphs until they meet. In the next section we

cover the constrcution of these isogeny graphs.

5.4 Supersingular Isogeny Graphs

Super singular isogeny graphs serve many uses within the field of cryptography.

These graphs have been considered for the use of creating attacks on isogeny based

cryptosystems, as well as being used to create hash functions. They are examples of

a type of highly connected graph called expander graphs. Further information for the

use of expander graphs can be found in [CGL06]. We begin by going over necessary

definitions.

Definition 5.6. The supersingular `-isogeny graph over F̄p, G`(F̄p), is the graph

whose vertices are the F̄p-isomorphism classes of supersingular elliptic curves labeled by

their j-invariant over Fp2 and there is an edge between 2 vertices if there exists an isogeny

between them of degree ` .[ACNL+19]

Definition 5.7. The spine S is the full subgraph of G`(F̄p) with vertices defined over Fp
and edges being isogenies in G`(F̄p).[ACNL+19]

Definition 5.8. The supersingular l-isogeny graph over Fp, G`(Fp), is the graph

whose vertices are the Fp-isomorphism classes of supersingular elliptic curves labeled by
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their j-invariant, and edges of the graph are isogenies of degree `. [ACNL+19]

A detailed investigation of these graphs can be found in [ACNL+19]. We now

give sample Sage code to produce these graphs.

#automatically produce isogoney graph for isogenies of degree l

def SIG3(p,l):

F = GF(p)

graph2 = []

V = []

J = []

L = []

M = []

W = []

coef = []

for i in range (p):

for j in range (p):

if (4*i^3 + 27*j^2)%p != 0:

m = [i,j]

if (EllipticCurve(F,m)).is_supersingular() == True:

M.append(m)

for m in M:

E = EllipticCurve(F,m)

j = E.j_invariant()

if j not in set(J):

coef.append(m)

V.append((m,j))

W.append((m))

J.append(j)

#print(W)

for a in W:

for m in M:

if EllipticCurve(F,a).j_invariant() ==

EllipticCurve(F,m).j_invariant() and

EllipticCurve(F,a).is_isomorphic(EllipticCurve(F,m))==False:

V.append((m,EllipticCurve(F,m).j_invariant()))

coef.append(m)

break

print(V,len(V))

print(’--------------------------------------------------’)

#print(coef)

for i in range (len(V)):

E1 = EllipticCurve(F, V[i][0])

print(E1,V[i][1])

affine_points = []
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for P in E1:

if P.order() == l:

affine_points.append(list(P)[:2])

print(affine_points)

for P1 in affine_points:

E2 = E1.isogeny(E1(P1))

E3 = E2.codomain()

if E2.degree() == l :

for y in coef:

if EllipticCurve(F,y).is_isomorphic(E3):

E3 = EllipticCurve(F,y)

graph2.append(((E1.j_invariant(),

(E1.a_invariants()[3],E1.a_invariants()[4])),

(E3.j_invariant(),

(E3.a_invariants()[3],E3.a_invariants()[4])),l))

print(’---------------------------------------------------\

---------------------------------------’)

print(graph2,len(graph2))

if len(J) < 2:

print("All supersingular curves over GF(",p,") are isomorphic")

else:

G = Graph(graph2,loops = True)

return(G)

Figure 6.2 offers an example of the implementation of the above code for p = 101

and ` = 3. Observe each vertex is labeled (j, (A,B)) where [A,B] are the Weierstrass

coefficients and j is the j-invariant of the associated curve.

Figure 5.2: G`(Fp) for p = 101

We can also overlap two of these graphs to have the edges represent isogenies of
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two different degrees. We show an example of this in Figure 6.3.

Figure 5.3: Supersingular Isogoney Graph G2,3(F431)

In Figure 5.3, the vertices are all Fp-isomorphism classes of supersingular elliptic

curves over F431. The edges of this graph isogenies between these curves off degree 2 and

3, represented by blue and red respectively. This graph gives a visual representation of

the possible paths taken by Alice and Bob within the SIDH key exchange. Eve will have

access to Ea and Eb, the first paths taken by Alice and Bob respectively. She will not have

access to the next paths taken by Alice and Bob, this is where the security of SIDH can

be found. These graphs are highly connected, making the quantity of possible pathways

for Alice and Bobs to take very high. The complexity and connectivity of these graphs

will only grow as we pick larger primes. In Figure 5.3 we are using a p = 431, this is

a relatively small prime, and an example offered by De Feo, Jao, and Plut in [DFJP11]

uses p = 3700444163740528325594401040305817124863.
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The National Institute of Standards and Technology is conducting a competition

to find a secure option for post-quantum cryptography. One of the submissions for the

competions by David Jao et al. is the Supersingular Isogeny Key Encapsulation. The

Supersingular Isogeny Diffie–Hellman key exchange is the basis for the Supersingular

Isogeny Key Encapsulation (SIKE).
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Chapter 6

Cyclic Subgroup Diffie-Hellman

Key Exchange

6.1 CSDH

As way of better understanding Supersingular Isogeny Diffie-Hellman Key Ex-

change we offer an analogues cryptographic system that is rooted in cyclic groups. We call

this Cyclic Subgroup Diffie-Hellman Key Exchange, (CSDH). The CSDH key exchange is

very similar to the SIDH. In both systems we see Alice and Bob each making two moves

along the way to an end shared secret key. We can now summarize the Cyclic Subgroup

Key Eexchange.

Key Exchange 6.1. CSDH

First a trusted third party will publish ZS and Pa, Qa, Pb, Qb ∈ Z.

1. Alice and Bob both pick secret integers ma, na and mb, nb respectively.

2. Alice then computes A = Pa(na)+Qa(ma) and Bob computes B = Pb(nb)+Qb(mb).

3. Alice then finds ZS
/
〈A〉 = Ga and Bob finds ZS

/
〈B〉 = Gb.

4. Alice computes φ(Pb), φ(Qb) with φ : ZS → Ga and Bob computes ψ(Pa), ψ(Qa)

with ψ : ZS → Gb.

5. Alice sends Bob Ga, φ(Pb), φ(Qb), and Bob sends Alice Gb, ψ(Pa), ψ(Qa).
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6. Alice computes Ā = ψ(Pa)(na) + ψ(Qa)(ma), and Bob computes B̄ = φ(Pb)(nb) +

φ(Qb)(mb).

7. Alice computes GendA = Gb

/
〈Ā〉, and Bob computes GendB = Ga

/
〈B̄〉

8. GendA = GendB

9. The shared secret key is |GendA| = |GendB|

Figure 6.1: Summary of Cyclic Subgroup Diffie-Hellman Key Exchange

For CSDH, the shared secret key is the order of the end cyclic group that Alice

and Bob both compute separately. The current representation of the algorithm uses the

language of cyclic groups, however we can reinterpret this into the language of number

theory using modular arithmetic and gcd. This is useful because although the repre-

sentation is more clean when using cyclic group notation, the computations are easier
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when boiled down to number theory. The following theorem allows us to move from the

language of cyclic groups to basic number theory.

Theorem 6.2. [Gal17, Theorem 4.2] Let a be an element of order n in a cyclic group

and let k be a positive integer. Then 〈ak〉 = 〈(a)gcd(n, k)〉 and |ak| = n/gcd(n, k).

Using Theorem 6.2 we can see from Key Exchange 6.1 |〈A〉| = S/ gcd(S,A).

Then we have |Ga| = |ZS
/
〈A〉| = |ZS |

/
|〈A〉| = S

/
S/ gcd(S,A) = gcd(S,A). We now

represent our CSDH using only number theory concepts.

Key Exchange 6.3. A trusted third party publishes S ∈ Z and Pa, Qa, Pb, Qb < S.

1. Alice and Bob pick secret random integers na,ma, nb,mb ∈ Z.

2. Alice computes A = Pana +Qama and Bob computes B = Pbnb +Qbmb.

3. Alice computes newA = gcd(S,A), and Bob computes newB = gcd(S,B).

4. Bob computes ImPa = Pa(mod newB) and ImQa = Qa(mod newB) and Alice

computes ImPb = Pb(mod newA) and ImQb = Qb(mod newA)

5. Alice sends Bob newA, ImPb, ImQb, Bob sends Alice newB, ImPa, ImQa.

6. Alice computes Ā = ImPana+ImQama and Bob computes B̄ = ImPbnb+ImQamb.

7. Shared secret key is gcd(newB, Ā) = gcd(newA, B̄).

Figure 6.2: Summary of CSDH
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The following core result certifies that, if Alice and Bob follow the key exchange

correctly, then they will always have the same shared secret key.

Theorem 6.4. If S ∈ Z and Pa, Qa, Pb, Qb < S and na,ma, nb,mb ∈ Z and;

1. A = Pana +Qama and B = Pbnb +Qbmb

2. newA = gcd(S,A) and newB = gcd(S,B)

3. ImPa = Pamod (newB) and ImQa = Qamod (newB)

4. ImPb = Pbmod (newA) and ImQb = Qbmod (newA)

5. Ā = (ImPa)na + (ImQa)ma = A + c1(newB) and B̄ = (ImPb)nb + (ImQb)mb =

B + c2(newA)

Then gcd(newB, (ImPa)na + (ImQa)ma) = gcd(newA, (ImPb)nb + (ImQa)mb).

Before we prove this theorem we must prove a lemma.

Lemma 6.5. Using the notation above, Ā = (ImPa)na + (ImQa)ma = A + c1(newB)

and B̄ = (ImPb)nb + (ImQb)mb = B + c2(newA).

Proof. We will start by showing Ā = (ImPa)na + (ImQa)ma = A + c1(newB). Since

ImPa = Pa(mod newB), then ImPa = Pa − q1(newB) for some q1 ∈ Z. Similarly,

ImQa = Qa − q2(newB) for some q2 ∈ Z. So we have,

Ā = [Pa − q1(newB)]na + [Qa − q2(newB)]ma.

After rearranging and combining like terms, we have,

Ā = Pana +Qama + (−q1 − q2)newB.

Since A = Pana + Qama and (−q1 − q2) ∈ Z, then Ā = A + c1(newB) for some c1 ∈ Z.

A similar argument can be made to show B̄ = B + c2(newA) for some c2 ∈ Z.

We now prove Theorem 6.4.

Proof. We must show gcd(newB, Ā) = gcd(newA, B̄). We can show this by showing

gcd(newB, Ā)| gcd(newA, B̄) and gcd(newA, B̄)| gcd(newB, Ā).
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Since gcd(gcd(a, b), c) = gcd(a, b, c), then gcd(newB, Ā) = gcd(S,B, Ā) and

gcd(newA, B̄) = gcd(S,A, B̄). So we must show gcd(S,B, Ā)| gcd(S,A, B̄).

We will first show gcd(S,B, Ā)| gcd(S,A, B̄). By definition gcd(S,B, Ā)|S. We

now show gcd(S,B, Ā)|A. We can show that if d|newB and d|Ā, then d|A. Since d|Ā,

then by Lemma 5.5 dz = Ā = A+ c(newB) for some z ∈ Z. Since we know d|newB then

d must divide A. Since gcd(S,B, Ā) divides newB and Ā, then gcd(S,B, Ā)|A.

We now show gcd(S,B, Ā)|B̄ = B + c(newA). Since newA = gcd(S,A) and

gcd(S,B, Ā) divides S and A, then gcd(S,B, Ā)|newA.

So gcd(S,B, Ā)|B and gcd(S,B, Ā)|newA and so gcd(S,B, Ā)|B̄. Thus

gcd(S,B, Ā) divides S, A, and B̄, so gcd(S,B, Ā)| gcd(S,A, B̄). By a similar argument,

we can show gcd(S,A, B̄)| gcd(S,B, Ā).

So gcd(S,B, Ā) = gcd(S,A, B̄).

Example 6.6. Public Parameters

S = 2310, Pa = 595, Qa = 1825, Pb = 598, Qb = 1947

Alice Bob
Alice picks random integers ma =
42, and na = 66

Bob picks random integers mb =
1155 and nb = 770

Alice computes: Bob computes:
A = 115920 B = 2709245
newA = 210 newB = 385
ImPb = 1780 and ImQb = 57 ImPa = 210 and ImQa = 285

Alice sends newA, ImPb and ImQb
to Bob −−−−−−−→

←−−−−−−− Bob sends newB, ImPa
and ImQa to Alice

Alice computes Ā = 25830 Bob computes B̄ = 202895

Shared secret key is gcd(newB, Ā) = 35 = gcd(newA, B̄)

From this example we can see that the shared secret key is 35. In order for Eve

to uncover this information she would have to know either newA and B̄ or newB and

Ā. For Eve to have that information she would need both A and B, however finding out

A and B is extremely difficult for Eve because ma, na,mb and nb are all secret and only

Alice and Bob know them respectively.
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However if Alice and Bob are not careful, then Eve can have a pretty good idea

that the end shared secret key will be 1. The following example demonstrates what can

go wrong with poor parameter selection.

Example 6.7. Again we will let S = 2310. Let Pa = 1339, Qa = 1916, Pb = 1604 and

Qb = 1102. Alice picks randomly her private keys ma = 2 and na = 7. Bob picks his

private keys mb = 462 and nb = 770. After doing their calculations Alice has newA = 5

and Bob has newB = 15. Then the end shared secret key is endA = 1 = endB. The

exchange is summarized here in this diagram.

Figure 6.3: CSDH with poor parameter selection.

Through experimentation we found that it was very common for the final shared

secret key to be 1. This is a significant vulnerability in the key exchange because if Eve

is interested in stealing information, she can with high certainty assume that the shared

secret key is 1.

Proposition 6.8. Following the steps from Key Exchange 6.3, if A < S, then the prob-

ability of newA = 1 is φ(S)
S where φ is Euler’s totient function.

Proof. Let A < S, and φ be Euler’s totient function. Observe, newA = gcd(A,S). There

are exactly φ(S) many positive integers less than S that are relatively prime to S. Thus,

if A < S, then the probability of newA = 1 is φ(S)
S .
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We can however make some adjustments to the parameter selection in the key

exchange that make it unlikely or even impossible for the end result to be 1. We now

explain those adjustments.

6.2 Statistical Analysis

Recall from the original Key Exchange 6.1, Alice and Bob must construct values

A and B. For Alice A = Pa(ma)+Qa(na) and for Bob B = Pb(mb)+Qb(nb). The integers

Pa, Qa, Pb and Qb are public parameters, so they are known to everyone, including Eve.

In order to make values A and B secure from Eve we keep ma, na,mb, and nb secret. We

originally picked the private secret keys randomly, however this lead to vulnerabilities

with our end result. If we pick these private keys more wisely, then we can have a much

higher level of security. Notice that newA, newB, endA and endB are all constructed by

computing the gcd. In order to prevent the end from boiling down to 1, we must have

higher levels of shared divisibility between the integers for which we are computing the

gcd. We now introduce the k-factor.

Definition 6.9. If S is an integer and d|S, then the k-factor is the percent of prime

factors of S which divide d.

We use this k-factor when picking our private keys. When picking these integers

if, instead of only picking randomly, we pick randomly with the restriction that it must

be built out of high percent of primes in S, we can then have a higher shared divisibility

between A,B and S.

Example 6.10. Let S = 210 = 7 · 5 · 3 · 2, a product of 4 primes. If we let k = 50%

then Alice and Bob will pick their private secret keys out of a random combination of 2

primes.

We wrote Sage Python code to compute this.

def point_gen(n,k):

L = []

i = 0

while i<(n*k):

x = random.choice(primes_first_n(n))

if x not in set(L):
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L.append(x)

i +=1

h = prod(L)

return(h)

Theorem 6.11. If S be the product of the first N primes, Pa, Qa, Pb, Qb < S,

na,ma, nb,mb ∈ Z with k-factor, k, and;

1. A = Pana +Qama and B = Pbnb +Qbmb

2. newA = gcd(S,A) and newB = gcd(S,B)

3. ImPa = Pamod (newB) and ImQa = Qamod (newB)

4. ImPb = Pbmod (newA) and ImQb = Qbmod (newA)

5. Ā = ImPana + ImQama = A + c1(newB) and B̄ = ImPbnb + ImQamb = B +

c2(newA)

6. endA = gcd(newB, ImPana+ImQama) = gcd(newA, ImPbnb+ImQamb) = endB.

Then, at worst, the k-factor of newA or newB is (2( k
100%) − 1)% and endA = endB is

(4( k
100%)− 3)%.

Proof. We will first show the k-factor of newA or newB is (2( k
100%) − 1)%. Let Ma =

{x | x is a prime factor of ma} and Na = {y | y is a prime factor of na}. Consider, Ma ∩
Na = {h | h ∈ Ma and h ∈ Na}. Since both Ma and Na are sets containing k% of

the primes in S, then by the inclusion–exclusion principle, Ma ∩ Na is a set containing

at least (2( k
100%) − 1)% of the primes in S. We now consider A = Pana + Qama. Let

L = Ma − (Ma ∩ Na) and G = Na − (Ma ∩ Na).

A = Pana +Qama

= Pa
∏
x∈Ma

x+Qa
∏
y∈Na

y

= Pa
∏

h∈Ma∩Na

h
∏
l∈L

l +Qa
∏

h∈Ma∩Na

h
∏
g∈G

g

=
∏

h∈Ma∩Na

h(Pa
∏
l∈L

l +Qa
∏
g∈G

g).

Let (Pa
∏
l∈L l+Qa

∏
g∈G g) = w. Since w ∈ Z and gcd(w, S) may be 1, then the newA =

gcd(S,A) = gcd(S,
∏
h∈Ma∩Na

h(Pa
∏
l∈L l+Qa

∏
g∈G g) is at worst

∏
h∈Ma∩Na

h. Observe
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∏
h∈Ma∩Na

h is the product of all h ∈ Ma ∩ Na which is the product of (2( k
100%) − 1)%.

Thus, the k-factor of newA is at least (2( k
100%)− 1)%. Using a similar argument we can

show the k-factor of newB is at least (2( k
100%)− 1)%.

We now prove the k-factor of endA = endB is at least (4( k
100%) − 3)%. Since

endA = endB it is sufficient to provide the argument for either endA or endB, we will

show for endA. Recall, endA = gcd(newB, Ā). By the above argument we know the

k-factor of newB is at least (2( k
100%)− 1)%. Also by a similar argument given for A we

can show that the k-factor of Ā is at least (2( k
100%) − 1)% also. We can then use the

inclusion-exclusion principle again.

We then have,

newB ∪ Ā = newB + Ā− newB ∩ Ā

In terms of k-factor this gives us,

1 =

(
2(

k

100%
)− 1

)
% +

(
2(

k

100%
)− 1

)
% + k-factor of gcd(newB, Ā)

We then simplify terms.

Thus, k-factor of gcd(newB, Ā) = endA = endB = (4( k
100%)− 3)%.

A consequence of the theorem is the following proposition.

Proposition 6.12. Let S =the product of the first N primes. Let k = 80%. If Alice and

Bob follow the steps described in Key Exchange 6.1, then at worst the end shared secret

key will be a product of 20% of the primes used to build S.

After doing further experimentation with different values for k, we found that

k = 80% seemed to be an optimal value. Eve knows that the end secret key is the product

of some amount of primes that were used to build S. Let us say S is build out of the

first N primes. Her success in stealing that shared secret key lies in choosing the correct

combination of some set of primes in S. We know by the binomial distribution that the

greatest number of possibilities for Eve to try occurs when the end result is built out of

N/2 number of primes,
(N

N
2

)
. Through our experimentation we consistently found that
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when k = 80%, our expected number of primes in the end secret key was close to half of

that in S.

We ran an experiment such that the number of primes to build S ranged from

10 to 300, moving in increments of 10. For each size S we ran 100 trials. We let k = 80%,

picked public parameters randomly, and picked private secret keys using the above code.

The results are summarized in Table 6.1 and Figure 6.4.

Figure 6.4: Random trials with S ranging from 10 - 290 and k = 80%
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Number of primes in Average number of primes in end
S shared secret key

10 5.46000000000000
20 8.90000000000000
30 13.2100000000000
40 17.1200000000000
50 21.6000000000000
60 25.4000000000000
70 29.3800000000000
80 34.0500000000000
90 37.7000000000000
100 41.9800000000000
110 46.1500000000000
120 50.8100000000000
130 53.8500000000000
140 58.5100000000000
150 61.3200000000000
160 66.7700000000000
170 70.7900000000000
180 74.7600000000000
190 78.6100000000000
200 84.1200000000000
210 86.7500000000000
220 92.5800000000000
230 95.5000000000000
240 99.0300000000000
250 102.530000000000
260 107.680000000000
270 111.520000000000
280 115.550000000000
290 118.960000000000

Table 6.1: Results from experiment of CSDH

Based of these trials, it seems that when the k-factor is set to be 80% the number

of primes in the end shared key is approximately half of the number of primes that were

used to build S. To further explore and understand this we used Sage to enumerate all

possible combinations of private secret keys with fixed public parameters. Within the key

exchange there are four private keys, two for Alice and two for Bob, so the number of all

possible combinations is
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(
# of primes in S

# of primes in S · ( k
100)

)4

.

The number of possible combinations can be extremely large. Although having

a large number of possibilities is very useful for the security of the exchange, enumerating

all possible combinations can be time consuming, making analysis difficult.

Example 6.13. For the purpose of these computations we will choose the public parame-

ters to be small. We let S = 2310 which is a product of 5 primes and we build the private

keys using with k = 80% or 4 primes. We can use the above equation to calculate the

total number of combinations of private keys. We then have,

(
# of primes in S

# of primes in S · ( k
100)

)4

=

(
5

(5 ∗ ( 80
100)

)4

=

(
5

4

)4

= 54

= 625

So we have 625 possible combinations. Using code we wrote in Sage, we ran

through all 625 combinations and collected the data into a spread sheet. The collection of

this data can be found in Appendix A. After analyzing the data, we found that, if we take

the average number of primes in the end shared key, then we get 2.55, which is 51% of

5. This is consistent with our earlier findings that with k = 80% the amount of primes

in the endA or endB is approximately half of S. P

We did many enumerations of this kind, computing all possible combinations of

private keys. As a reminder of notation N is the number of primes used to construct S,

and EV is the percentage of primes from S in the end shared secret key. We display some

of those results here in the following table.
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Pa Qa Pb Qb N k EV

2 3 4 5 5 80% 51%
2 3 4 5 5 90% 69%
216 949 1493 183 5 80% 48%
2 3 4 5 6 50% 14%
2 3 4 5 6 67% 28%
2 3 4 5 6 83% 56%
2 3 4 5 6 100% 100%
2 3 4 5 10 80% 46%
4747641764 3477213385 4437360853 11606517 10 80% 46%

Table 6.2: Results from enumerations of CSDH

Using access to a computer cluster we were able to compute some larger trials

[ATI22]. For N = 5, we were able to enumerate all possible combinations of ma, na,mb

and nb while allowing the public keys to range from 1 to 10. This may seem small,

however as mentioned above there are 625 combinations of secret keys. If we pair that

with allowing each of the 4 public keys to range from 1 to 10, then the total number of

possible combinations is 6250000.

Proposition 6.14. Let S = 2310 the product of the first 5 primes, and let k = 80%.

If we compute all combinations of Pa, Qa, Pb, and Qb, where Pa, Qa, Pb, Qb ∈ {1, ..., 10},
then the average number of primes in the endA and endB is 2.57 or 51% of those in S.

If we take the above parameters and use the product of the first 10 primes

instead of 5 we end up with similar results. The number of possible combinations for

these parameters is much larger at 41006250000. Due to the size of this enumeration we

could not compute it. We did however enumerate all possible combinations of secret keys

for N = 10 with fixed public keys. Those results are shown in Proposition 6.15.

Proposition 6.15. Let S = 6469693230 the product of the first 10 primes, and let k =

80%. If we fix Pa = 2, Qa = 3, Pb = 4, and Qb = 5, then the average number of primes

in the endA and endB is 4.85 or 46% of those in S.

To further our exploration of the trends of the key exchange we fixed S and

picked the public and private parameters randomly with k = 80%. For this example we

fixed S = 7799922041683461553249199106329813876687996789903550945093032474868511536164700810 or the product of

the first 46 primes. We wrote Sage code to run 300 trials. The results of those trials
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showed the minimum number of primes in the end shared key to be 14 and the maximum

number of primes to be 26. We also plotted the results in a histogram.

Figure 6.5: Histogram 300 trials

Looking at this histogram we can see the most common number of primes within

the end shared key was somewhere between 20 and 22. This is fairly consistent with our

previous findings that the end result on average would have approximately half the primes

used to construct S. Also, the distribution of the results is very nice in the following sense.

If Eve was interested in guessing by brute force the shared secret key she could not rely

on checking only the the low and high areas because a majority of the results fell near

the middle of the curve. Also as mentioned earlier guessing of the end secret key is most

difficult for Eve when the end key is known to be made up of half the amount of primes

in S.

Let us now consider the difficulty Eve would have if she attempted to brute force

guess the shared secret key. If we made the simplifying assumption that all combinations

of primes in S are equally as likely then the number of possible end shared secret keys

Eve would have to try would be 2i, where

S = p1 · p2 · p3 · ... · pi.
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Since we know endA and endB are a result of taking the gcd with S, we know that

endA = endB is made up of some combination of primes of S. We can interpret this as

taking each prime in S and either turning it on or off. So,

endA = pe11 · p
e2
2 · p

e3
3 · ... · p

ei
i such that ei ∈ {0, 1}

Since there are i many primes in endA and each prime has two options for its exponent,

this results in 2i many possibilities. For large i this is impractical for eve to check all

possibilities.

In summary, we ran experiments with large values for S and computed exact

expected value for small parameters. Based off the results found we are sufficiently

confident reasonable security is achieved when k = 80%.

6.3 Implementation

Like any other cryptosytem, an important question is how fast the key exchange

can be computed. Looking at Key Exchange 6.1, the most expensive step, as far a time

goes, is the computation of the gcd. Within the exchange the gcd has to be computed

three times by each Alice and Bob. The most efficient way to compute the gcd of two

integers is the Euclidean Algorithm. So the CSDH time complexity is approximately

O(log n). The speed of computation is beneficial for key generation and does not lower

the security of the exchange. Since Eve knows that endA is a divisor of S but has no

knowledge of Ā or B̄ she has no reason to compute the gcd she instead can just look at

divisors of S to find the shared secret key. By our analysis in Section 6.2, we concluded

that a high level of security can be achieved when the k-factor was set to k = 80%. This

tended to produce shared secret keys built out N
2 primes, so we can pick parameters based

on a the level of security we are trying to achieve.

6.4 Analogy between Cyclic Subgroup Graphs and Isogeny

Graphs

The CSDH Key Exchange that we have constructed has its roots in strong

analogies with the post-quantum SIDH Key Exchange. We continue here with another

strong parallel that can be made between the two systems.
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Consider the representation of the CSDH that is in cyclic groups Key Exchange

6.1. Following the steps within the algorithm Alice and Bob each make two stops along

their way. First they stop at Ga and Gb respectively, and then they each reach their final

destination GendA = GendB. Notice that by construction Ga, Gb, and GendA = GendB are

all subgroups of G. We can then use subgroup inclusion to represent possible pathways

that Alice and Bob could have potentially made. Let us look back at our earlier Example

6.6 where G = Z2310. Figure 6.6 is the subgroup lattice.

Figure 6.6: Subgroup Lattice for Z2310

The structure of the subgroup lattice is very nice. We can see that as you move

from bottom to top each tier of the lattice is built of more primes. However, looking at

the lattice we see that it is missing some edges. For example, in Example 6.6 Bob makes

his first stop at 210, and Alice makes her first stop at 385. Looking at Figure 5.6 we see

that there is an edge representing the path Bob has taken to get to newB, however the

pathway Alice has taken is not represented, there is not an edge from 2310 to 385. In

order to correct this we introduce the subgroup graph.
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Definition 6.16. The Subgroup Graph of a cyclic group G of order S is the graph

whose vertices are all cyclic subgroups of G, labeled with their order. The edges of the

graph being inclusion.

Before returning to our previous example, let us look at a simple subgroup

graph. Figure 5.7 shows the subgroup graph of Z30 whose cardinality is 30. The divisors,

which make up all vertices, of 30 is the set 30, 15, 10, 6, 5, 3, 2, 1. Using the Definition 6.16

edges should exist between any vertex that divides another. So the edge set should be

(1, 2), (1, 3), (1, 5), (1, 6), (1, 10), (1, 15), (1, 30), (2, 6), (2, 10), (2, 30), (3, 6), (3, 15), (3, 30),

(5, 10), (5, 15), (5, 30), (6, 30), (10, 30), (15, 30).

Figure 6.7: Subgroup Graph for Z30

We now look at a special case of the subgroup graph for groups of order prime

power.

Example 6.17. Let G = Z1024. The divisors of 1024 is the set {1, 2, 4, 8, 16, 32, 64, 128,

256, 512, 1024}. Notice that these are all of the form 2k for k ranging from 1 to 10. This
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leads to all vertices having the same number of edges. So the subgroup graph for Z1024 is

the complete graph on 11 vertices. Figure 6.8 shows this.

Figure 6.8: Subgroup Graph for Z1024

Proposition 6.18. Let G = Zpk for some prime p and k ∈ Z. The subgroup graph of G

is isomorphic to the complete graph on k + 1 vertices.

We now turn back to our example using the product of the first 5 primes S =

2310. We can think of these vertices as all the possibilities Eve must try, so as mentioned

earlier the number of vertices would be 2N where N is the number of primes in S.
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Figure 6.9: Subgroup Graph for Z2310

Looking at these graphs we can see that they are highly connected. The nature

of these graphs reveals what makes this system secure, Alice and Bob have many potential

pathways they can take throughout the exchange.

In summarry, the analogies between the CSDH and SIDH systems offer useful

tools to help better understand the SIDH system. Further research needs to be done to

better understand if CSDH is a viable cryptosystem in its own right.
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Chapter 7

Conclusion

In this paper, we looked to investigate the use of elliptic curves in cryptography.

We covered necessary definitions and theorems for the understanding of the use of ellip-

tic curves in today’s cryptosystems. We discussed hard problems associated with these

cryptosystems, and covered some possible vulnerabilities associated to classical elliptic

curve cryptography. As a means of better understanding the use of elliptic curves in the

post-quantum world, we proposed our own cryptosystem, CSDH. We showed how our

own system had strong parallels to the post-quantum system, SIDH. We then analyzed

our algorithm and proved corresponding propositions. To further our research of CSDH,

we enumerated many different cases and ran many large experiments on Sage. These

calculations and trials lead us to make conjectures regarding expected outcomes of our

algorithm.

Further research can be done to prove the expected number of primes in the end

shared secret key of CSDH. Research can also be done to further analyze the relationship

between N , the number of primes in S, and the k-factor. Research can be done to

understand what size parameter selections offer sufficient security. Also, like any other

cryptosystem, we must always ask what possible vulnerabilities are in CSDH that leaves

it open to attacks? As we continue to advance technologically as a society, new and

creative ways of protecting our information must be discovered.
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Appendix A

Table A.1: All combinations of secret keys from Example 6.13

S # end # % Pa Qa Pb Qb ma na mb nb

2310 5 210 4 0.8 2 3 4 5 210 210 210 210

2310 5 30 3 0.6 2 3 4 5 210 210 330 210

2310 5 210 4 0.8 2 3 4 5 210 210 462 210

2310 5 105 3 0.6 2 3 4 5 210 210 1155 210

2310 5 70 3 0.6 2 3 4 5 210 210 770 210

2310 5 30 3 0.6 2 3 4 5 210 210 210 330

2310 5 30 3 0.6 2 3 4 5 210 210 330 330

2310 5 30 3 0.6 2 3 4 5 210 210 462 330

2310 5 15 2 0.4 2 3 4 5 210 210 1155 330

2310 5 10 2 0.4 2 3 4 5 210 210 770 330

2310 5 42 3 0.6 2 3 4 5 210 210 210 462

2310 5 6 2 0.4 2 3 4 5 210 210 330 462

2310 5 42 3 0.6 2 3 4 5 210 210 462 462

2310 5 21 2 0.4 2 3 4 5 210 210 1155 462

2310 5 14 2 0.4 2 3 4 5 210 210 770 462

2310 5 210 4 0.8 2 3 4 5 210 210 210 1155

2310 5 30 3 0.6 2 3 4 5 210 210 330 1155

2310 5 210 4 0.8 2 3 4 5 210 210 462 1155

2310 5 105 3 0.6 2 3 4 5 210 210 1155 1155

2310 5 70 3 0.6 2 3 4 5 210 210 770 1155
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2310 5 70 3 0.6 2 3 4 5 210 210 210 770

2310 5 10 2 0.4 2 3 4 5 210 210 330 770

2310 5 70 3 0.6 2 3 4 5 210 210 462 770

2310 5 35 2 0.4 2 3 4 5 210 210 1155 770

2310 5 210 4 0.8 2 3 4 5 210 210 770 770

2310 5 30 3 0.6 2 3 4 5 330 210 210 210

2310 5 30 3 0.6 2 3 4 5 330 210 330 210

2310 5 30 3 0.6 2 3 4 5 330 210 462 210

2310 5 15 2 0.4 2 3 4 5 330 210 1155 210

2310 5 10 2 0.4 2 3 4 5 330 210 770 210

2310 5 30 3 0.6 2 3 4 5 330 210 210 330

2310 5 30 3 0.6 2 3 4 5 330 210 330 330

2310 5 30 3 0.6 2 3 4 5 330 210 462 330

2310 5 15 2 0.4 2 3 4 5 330 210 1155 330

2310 5 10 2 0.4 2 3 4 5 330 210 770 330

2310 5 6 2 0.4 2 3 4 5 330 210 210 462

2310 5 6 2 0.4 2 3 4 5 330 210 330 462

2310 5 6 2 0.4 2 3 4 5 330 210 462 462

2310 5 3 1 0.2 2 3 4 5 330 210 1155 462

2310 5 2 1 0.2 2 3 4 5 330 210 770 462

2310 5 30 3 0.6 2 3 4 5 330 210 210 1155

2310 5 30 3 0.6 2 3 4 5 330 210 330 1155

2310 5 30 3 0.6 2 3 4 5 330 210 462 1155

2310 5 15 2 0.4 2 3 4 5 330 210 1155 1155

2310 5 10 2 0.4 2 3 4 5 330 210 770 1155

2310 5 10 2 0.4 2 3 4 5 330 210 210 770

2310 5 10 2 0.4 2 3 4 5 330 210 330 770

2310 5 10 2 0.4 2 3 4 5 330 210 462 770

2310 5 5 1 0.2 2 3 4 5 330 210 1155 770

2310 5 30 3 0.6 2 3 4 5 330 210 770 770

2310 5 42 3 0.6 2 3 4 5 462 210 210 210

2310 5 6 2 0.4 2 3 4 5 462 210 330 210
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2310 5 42 3 0.6 2 3 4 5 462 210 462 210

2310 5 21 2 0.4 2 3 4 5 462 210 1155 210

2310 5 14 2 0.4 2 3 4 5 462 210 770 210

2310 5 6 2 0.4 2 3 4 5 462 210 210 330

2310 5 6 2 0.4 2 3 4 5 462 210 330 330

2310 5 6 2 0.4 2 3 4 5 462 210 462 330

2310 5 3 1 0.2 2 3 4 5 462 210 1155 330

2310 5 2 1 0.2 2 3 4 5 462 210 770 330

2310 5 42 3 0.6 2 3 4 5 462 210 210 462

2310 5 6 2 0.4 2 3 4 5 462 210 330 462

2310 5 42 3 0.6 2 3 4 5 462 210 462 462

2310 5 21 2 0.4 2 3 4 5 462 210 1155 462

2310 5 14 2 0.4 2 3 4 5 462 210 770 462

2310 5 42 3 0.6 2 3 4 5 462 210 210 1155

2310 5 6 2 0.4 2 3 4 5 462 210 330 1155

2310 5 42 3 0.6 2 3 4 5 462 210 462 1155

2310 5 21 2 0.4 2 3 4 5 462 210 1155 1155

2310 5 14 2 0.4 2 3 4 5 462 210 770 1155

2310 5 14 2 0.4 2 3 4 5 462 210 210 770

2310 5 2 1 0.2 2 3 4 5 462 210 330 770

2310 5 14 2 0.4 2 3 4 5 462 210 462 770

2310 5 7 1 0.2 2 3 4 5 462 210 1155 770

2310 5 42 3 0.6 2 3 4 5 462 210 770 770

2310 5 105 3 0.6 2 3 4 5 1155 210 210 210

2310 5 15 2 0.4 2 3 4 5 1155 210 330 210

2310 5 105 3 0.6 2 3 4 5 1155 210 462 210

2310 5 105 3 0.6 2 3 4 5 1155 210 1155 210

2310 5 35 2 0.4 2 3 4 5 1155 210 770 210

2310 5 15 2 0.4 2 3 4 5 1155 210 210 330

2310 5 15 2 0.4 2 3 4 5 1155 210 330 330

2310 5 15 2 0.4 2 3 4 5 1155 210 462 330

2310 5 15 2 0.4 2 3 4 5 1155 210 1155 330
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2310 5 5 1 0.2 2 3 4 5 1155 210 770 330

2310 5 21 2 0.4 2 3 4 5 1155 210 210 462

2310 5 3 1 0.2 2 3 4 5 1155 210 330 462

2310 5 21 2 0.4 2 3 4 5 1155 210 462 462

2310 5 21 2 0.4 2 3 4 5 1155 210 1155 462

2310 5 7 1 0.2 2 3 4 5 1155 210 770 462

2310 5 105 3 0.6 2 3 4 5 1155 210 210 1155

2310 5 15 2 0.4 2 3 4 5 1155 210 330 1155

2310 5 105 3 0.6 2 3 4 5 1155 210 462 1155

2310 5 105 3 0.6 2 3 4 5 1155 210 1155 1155

2310 5 35 2 0.4 2 3 4 5 1155 210 770 1155

2310 5 35 2 0.4 2 3 4 5 1155 210 210 770

2310 5 5 1 0.2 2 3 4 5 1155 210 330 770

2310 5 35 2 0.4 2 3 4 5 1155 210 462 770

2310 5 35 2 0.4 2 3 4 5 1155 210 1155 770

2310 5 105 3 0.6 2 3 4 5 1155 210 770 770

2310 5 210 4 0.8 2 3 4 5 770 210 210 210

2310 5 30 3 0.6 2 3 4 5 770 210 330 210

2310 5 210 4 0.8 2 3 4 5 770 210 462 210

2310 5 105 3 0.6 2 3 4 5 770 210 1155 210

2310 5 70 3 0.6 2 3 4 5 770 210 770 210

2310 5 30 3 0.6 2 3 4 5 770 210 210 330

2310 5 30 3 0.6 2 3 4 5 770 210 330 330

2310 5 30 3 0.6 2 3 4 5 770 210 462 330

2310 5 15 2 0.4 2 3 4 5 770 210 1155 330

2310 5 10 2 0.4 2 3 4 5 770 210 770 330

2310 5 42 3 0.6 2 3 4 5 770 210 210 462

2310 5 6 2 0.4 2 3 4 5 770 210 330 462

2310 5 42 3 0.6 2 3 4 5 770 210 462 462

2310 5 21 2 0.4 2 3 4 5 770 210 1155 462

2310 5 14 2 0.4 2 3 4 5 770 210 770 462

2310 5 210 4 0.8 2 3 4 5 770 210 210 1155
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2310 5 30 3 0.6 2 3 4 5 770 210 330 1155

2310 5 210 4 0.8 2 3 4 5 770 210 462 1155

2310 5 105 3 0.6 2 3 4 5 770 210 1155 1155

2310 5 70 3 0.6 2 3 4 5 770 210 770 1155

2310 5 70 3 0.6 2 3 4 5 770 210 210 770

2310 5 10 2 0.4 2 3 4 5 770 210 330 770

2310 5 70 3 0.6 2 3 4 5 770 210 462 770

2310 5 35 2 0.4 2 3 4 5 770 210 1155 770

2310 5 210 4 0.8 2 3 4 5 770 210 770 770

2310 5 30 3 0.6 2 3 4 5 210 330 210 210

2310 5 30 3 0.6 2 3 4 5 210 330 330 210

2310 5 30 3 0.6 2 3 4 5 210 330 462 210

2310 5 15 2 0.4 2 3 4 5 210 330 1155 210

2310 5 10 2 0.4 2 3 4 5 210 330 770 210

2310 5 30 3 0.6 2 3 4 5 210 330 210 330

2310 5 30 3 0.6 2 3 4 5 210 330 330 330

2310 5 30 3 0.6 2 3 4 5 210 330 462 330

2310 5 15 2 0.4 2 3 4 5 210 330 1155 330

2310 5 10 2 0.4 2 3 4 5 210 330 770 330

2310 5 6 2 0.4 2 3 4 5 210 330 210 462

2310 5 6 2 0.4 2 3 4 5 210 330 330 462

2310 5 6 2 0.4 2 3 4 5 210 330 462 462

2310 5 3 1 0.2 2 3 4 5 210 330 1155 462

2310 5 2 1 0.2 2 3 4 5 210 330 770 462

2310 5 30 3 0.6 2 3 4 5 210 330 210 1155

2310 5 30 3 0.6 2 3 4 5 210 330 330 1155

2310 5 30 3 0.6 2 3 4 5 210 330 462 1155

2310 5 15 2 0.4 2 3 4 5 210 330 1155 1155

2310 5 10 2 0.4 2 3 4 5 210 330 770 1155

2310 5 10 2 0.4 2 3 4 5 210 330 210 770

2310 5 10 2 0.4 2 3 4 5 210 330 330 770

2310 5 10 2 0.4 2 3 4 5 210 330 462 770
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2310 5 5 1 0.2 2 3 4 5 210 330 1155 770

2310 5 30 3 0.6 2 3 4 5 210 330 770 770

2310 5 30 3 0.6 2 3 4 5 330 330 210 210

2310 5 30 3 0.6 2 3 4 5 330 330 330 210

2310 5 30 3 0.6 2 3 4 5 330 330 462 210

2310 5 15 2 0.4 2 3 4 5 330 330 1155 210

2310 5 10 2 0.4 2 3 4 5 330 330 770 210

2310 5 30 3 0.6 2 3 4 5 330 330 210 330

2310 5 330 4 0.8 2 3 4 5 330 330 330 330

2310 5 330 4 0.8 2 3 4 5 330 330 462 330

2310 5 165 3 0.6 2 3 4 5 330 330 1155 330

2310 5 110 3 0.6 2 3 4 5 330 330 770 330

2310 5 6 2 0.4 2 3 4 5 330 330 210 462

2310 5 66 3 0.6 2 3 4 5 330 330 330 462

2310 5 66 3 0.6 2 3 4 5 330 330 462 462

2310 5 33 2 0.4 2 3 4 5 330 330 1155 462

2310 5 22 2 0.4 2 3 4 5 330 330 770 462

2310 5 30 3 0.6 2 3 4 5 330 330 210 1155

2310 5 330 4 0.8 2 3 4 5 330 330 330 1155

2310 5 330 4 0.8 2 3 4 5 330 330 462 1155

2310 5 165 3 0.6 2 3 4 5 330 330 1155 1155

2310 5 110 3 0.6 2 3 4 5 330 330 770 1155

2310 5 10 2 0.4 2 3 4 5 330 330 210 770

2310 5 110 3 0.6 2 3 4 5 330 330 330 770

2310 5 110 3 0.6 2 3 4 5 330 330 462 770

2310 5 55 2 0.4 2 3 4 5 330 330 1155 770

2310 5 330 4 0.8 2 3 4 5 330 330 770 770

2310 5 6 2 0.4 2 3 4 5 462 330 210 210

2310 5 6 2 0.4 2 3 4 5 462 330 330 210

2310 5 6 2 0.4 2 3 4 5 462 330 462 210

2310 5 3 1 0.2 2 3 4 5 462 330 1155 210

2310 5 2 1 0.2 2 3 4 5 462 330 770 210



69

2310 5 6 2 0.4 2 3 4 5 462 330 210 330

2310 5 66 3 0.6 2 3 4 5 462 330 330 330

2310 5 66 3 0.6 2 3 4 5 462 330 462 330

2310 5 33 2 0.4 2 3 4 5 462 330 1155 330

2310 5 22 2 0.4 2 3 4 5 462 330 770 330

2310 5 6 2 0.4 2 3 4 5 462 330 210 462

2310 5 66 3 0.6 2 3 4 5 462 330 330 462

2310 5 66 3 0.6 2 3 4 5 462 330 462 462

2310 5 33 2 0.4 2 3 4 5 462 330 1155 462

2310 5 22 2 0.4 2 3 4 5 462 330 770 462

2310 5 6 2 0.4 2 3 4 5 462 330 210 1155

2310 5 66 3 0.6 2 3 4 5 462 330 330 1155

2310 5 66 3 0.6 2 3 4 5 462 330 462 1155

2310 5 33 2 0.4 2 3 4 5 462 330 1155 1155

2310 5 22 2 0.4 2 3 4 5 462 330 770 1155

2310 5 2 1 0.2 2 3 4 5 462 330 210 770

2310 5 22 2 0.4 2 3 4 5 462 330 330 770

2310 5 22 2 0.4 2 3 4 5 462 330 462 770

2310 5 11 1 0.2 2 3 4 5 462 330 1155 770

2310 5 66 3 0.6 2 3 4 5 462 330 770 770

2310 5 15 2 0.4 2 3 4 5 1155 330 210 210

2310 5 15 2 0.4 2 3 4 5 1155 330 330 210

2310 5 15 2 0.4 2 3 4 5 1155 330 462 210

2310 5 15 2 0.4 2 3 4 5 1155 330 1155 210

2310 5 5 1 0.2 2 3 4 5 1155 330 770 210

2310 5 15 2 0.4 2 3 4 5 1155 330 210 330

2310 5 165 3 0.6 2 3 4 5 1155 330 330 330

2310 5 165 3 0.6 2 3 4 5 1155 330 462 330

2310 5 165 3 0.6 2 3 4 5 1155 330 1155 330

2310 5 55 2 0.4 2 3 4 5 1155 330 770 330

2310 5 3 1 0.2 2 3 4 5 1155 330 210 462

2310 5 33 2 0.4 2 3 4 5 1155 330 330 462
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2310 5 33 2 0.4 2 3 4 5 1155 330 462 462

2310 5 33 2 0.4 2 3 4 5 1155 330 1155 462

2310 5 11 1 0.2 2 3 4 5 1155 330 770 462

2310 5 15 2 0.4 2 3 4 5 1155 330 210 1155

2310 5 165 3 0.6 2 3 4 5 1155 330 330 1155

2310 5 165 3 0.6 2 3 4 5 1155 330 462 1155

2310 5 165 3 0.6 2 3 4 5 1155 330 1155 1155

2310 5 55 2 0.4 2 3 4 5 1155 330 770 1155

2310 5 5 1 0.2 2 3 4 5 1155 330 210 770

2310 5 55 2 0.4 2 3 4 5 1155 330 330 770

2310 5 55 2 0.4 2 3 4 5 1155 330 462 770

2310 5 55 2 0.4 2 3 4 5 1155 330 1155 770

2310 5 165 3 0.6 2 3 4 5 1155 330 770 770

2310 5 30 3 0.6 2 3 4 5 770 330 210 210

2310 5 30 3 0.6 2 3 4 5 770 330 330 210

2310 5 30 3 0.6 2 3 4 5 770 330 462 210

2310 5 15 2 0.4 2 3 4 5 770 330 1155 210

2310 5 10 2 0.4 2 3 4 5 770 330 770 210

2310 5 30 3 0.6 2 3 4 5 770 330 210 330

2310 5 330 4 0.8 2 3 4 5 770 330 330 330

2310 5 330 4 0.8 2 3 4 5 770 330 462 330

2310 5 165 3 0.6 2 3 4 5 770 330 1155 330

2310 5 110 3 0.6 2 3 4 5 770 330 770 330

2310 5 6 2 0.4 2 3 4 5 770 330 210 462

2310 5 66 3 0.6 2 3 4 5 770 330 330 462

2310 5 66 3 0.6 2 3 4 5 770 330 462 462

2310 5 33 2 0.4 2 3 4 5 770 330 1155 462

2310 5 22 2 0.4 2 3 4 5 770 330 770 462

2310 5 30 3 0.6 2 3 4 5 770 330 210 1155

2310 5 330 4 0.8 2 3 4 5 770 330 330 1155

2310 5 330 4 0.8 2 3 4 5 770 330 462 1155

2310 5 165 3 0.6 2 3 4 5 770 330 1155 1155
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2310 5 110 3 0.6 2 3 4 5 770 330 770 1155

2310 5 10 2 0.4 2 3 4 5 770 330 210 770

2310 5 110 3 0.6 2 3 4 5 770 330 330 770

2310 5 110 3 0.6 2 3 4 5 770 330 462 770

2310 5 55 2 0.4 2 3 4 5 770 330 1155 770

2310 5 330 4 0.8 2 3 4 5 770 330 770 770

2310 5 42 3 0.6 2 3 4 5 210 462 210 210

2310 5 6 2 0.4 2 3 4 5 210 462 330 210

2310 5 42 3 0.6 2 3 4 5 210 462 462 210

2310 5 21 2 0.4 2 3 4 5 210 462 1155 210

2310 5 14 2 0.4 2 3 4 5 210 462 770 210

2310 5 6 2 0.4 2 3 4 5 210 462 210 330

2310 5 6 2 0.4 2 3 4 5 210 462 330 330

2310 5 6 2 0.4 2 3 4 5 210 462 462 330

2310 5 3 1 0.2 2 3 4 5 210 462 1155 330

2310 5 2 1 0.2 2 3 4 5 210 462 770 330

2310 5 42 3 0.6 2 3 4 5 210 462 210 462

2310 5 6 2 0.4 2 3 4 5 210 462 330 462

2310 5 42 3 0.6 2 3 4 5 210 462 462 462

2310 5 21 2 0.4 2 3 4 5 210 462 1155 462

2310 5 14 2 0.4 2 3 4 5 210 462 770 462

2310 5 42 3 0.6 2 3 4 5 210 462 210 1155

2310 5 6 2 0.4 2 3 4 5 210 462 330 1155

2310 5 42 3 0.6 2 3 4 5 210 462 462 1155

2310 5 21 2 0.4 2 3 4 5 210 462 1155 1155

2310 5 14 2 0.4 2 3 4 5 210 462 770 1155

2310 5 14 2 0.4 2 3 4 5 210 462 210 770

2310 5 2 1 0.2 2 3 4 5 210 462 330 770

2310 5 14 2 0.4 2 3 4 5 210 462 462 770

2310 5 7 1 0.2 2 3 4 5 210 462 1155 770

2310 5 42 3 0.6 2 3 4 5 210 462 770 770

2310 5 6 2 0.4 2 3 4 5 330 462 210 210
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2310 5 6 2 0.4 2 3 4 5 330 462 330 210

2310 5 6 2 0.4 2 3 4 5 330 462 462 210

2310 5 3 1 0.2 2 3 4 5 330 462 1155 210

2310 5 2 1 0.2 2 3 4 5 330 462 770 210

2310 5 6 2 0.4 2 3 4 5 330 462 210 330

2310 5 66 3 0.6 2 3 4 5 330 462 330 330

2310 5 66 3 0.6 2 3 4 5 330 462 462 330

2310 5 33 2 0.4 2 3 4 5 330 462 1155 330

2310 5 22 2 0.4 2 3 4 5 330 462 770 330

2310 5 6 2 0.4 2 3 4 5 330 462 210 462

2310 5 66 3 0.6 2 3 4 5 330 462 330 462

2310 5 66 3 0.6 2 3 4 5 330 462 462 462

2310 5 33 2 0.4 2 3 4 5 330 462 1155 462

2310 5 22 2 0.4 2 3 4 5 330 462 770 462

2310 5 6 2 0.4 2 3 4 5 330 462 210 1155

2310 5 66 3 0.6 2 3 4 5 330 462 330 1155

2310 5 66 3 0.6 2 3 4 5 330 462 462 1155

2310 5 33 2 0.4 2 3 4 5 330 462 1155 1155

2310 5 22 2 0.4 2 3 4 5 330 462 770 1155

2310 5 2 1 0.2 2 3 4 5 330 462 210 770

2310 5 22 2 0.4 2 3 4 5 330 462 330 770

2310 5 22 2 0.4 2 3 4 5 330 462 462 770

2310 5 11 1 0.2 2 3 4 5 330 462 1155 770

2310 5 66 3 0.6 2 3 4 5 330 462 770 770

2310 5 210 4 0.8 2 3 4 5 462 462 210 210

2310 5 30 3 0.6 2 3 4 5 462 462 330 210

2310 5 210 4 0.8 2 3 4 5 462 462 462 210

2310 5 105 3 0.6 2 3 4 5 462 462 1155 210

2310 5 70 3 0.6 2 3 4 5 462 462 770 210

2310 5 30 3 0.6 2 3 4 5 462 462 210 330

2310 5 330 4 0.8 2 3 4 5 462 462 330 330

2310 5 330 4 0.8 2 3 4 5 462 462 462 330
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2310 5 165 3 0.6 2 3 4 5 462 462 1155 330

2310 5 110 3 0.6 2 3 4 5 462 462 770 330

2310 5 42 3 0.6 2 3 4 5 462 462 210 462

2310 5 66 3 0.6 2 3 4 5 462 462 330 462

2310 5 462 4 0.8 2 3 4 5 462 462 462 462

2310 5 231 3 0.6 2 3 4 5 462 462 1155 462

2310 5 154 3 0.6 2 3 4 5 462 462 770 462

2310 5 210 4 0.8 2 3 4 5 462 462 210 1155

2310 5 330 4 0.8 2 3 4 5 462 462 330 1155

2310 5 2310 5 1.0 2 3 4 5 462 462 462 1155

2310 5 1155 4 0.8 2 3 4 5 462 462 1155 1155

2310 5 770 4 0.8 2 3 4 5 462 462 770 1155

2310 5 70 3 0.6 2 3 4 5 462 462 210 770

2310 5 110 3 0.6 2 3 4 5 462 462 330 770

2310 5 770 4 0.8 2 3 4 5 462 462 462 770

2310 5 385 3 0.6 2 3 4 5 462 462 1155 770

2310 5 2310 5 1.0 2 3 4 5 462 462 770 770

2310 5 21 2 0.4 2 3 4 5 1155 462 210 210

2310 5 3 1 0.2 2 3 4 5 1155 462 330 210

2310 5 21 2 0.4 2 3 4 5 1155 462 462 210

2310 5 21 2 0.4 2 3 4 5 1155 462 1155 210

2310 5 7 1 0.2 2 3 4 5 1155 462 770 210

2310 5 3 1 0.2 2 3 4 5 1155 462 210 330

2310 5 33 2 0.4 2 3 4 5 1155 462 330 330

2310 5 33 2 0.4 2 3 4 5 1155 462 462 330

2310 5 33 2 0.4 2 3 4 5 1155 462 1155 330

2310 5 11 1 0.2 2 3 4 5 1155 462 770 330

2310 5 21 2 0.4 2 3 4 5 1155 462 210 462

2310 5 33 2 0.4 2 3 4 5 1155 462 330 462

2310 5 231 3 0.6 2 3 4 5 1155 462 462 462

2310 5 231 3 0.6 2 3 4 5 1155 462 1155 462

2310 5 77 2 0.4 2 3 4 5 1155 462 770 462
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2310 5 21 2 0.4 2 3 4 5 1155 462 210 1155

2310 5 33 2 0.4 2 3 4 5 1155 462 330 1155

2310 5 231 3 0.6 2 3 4 5 1155 462 462 1155

2310 5 231 3 0.6 2 3 4 5 1155 462 1155 1155

2310 5 77 2 0.4 2 3 4 5 1155 462 770 1155

2310 5 7 1 0.2 2 3 4 5 1155 462 210 770

2310 5 11 1 0.2 2 3 4 5 1155 462 330 770

2310 5 77 2 0.4 2 3 4 5 1155 462 462 770

2310 5 77 2 0.4 2 3 4 5 1155 462 1155 770

2310 5 231 3 0.6 2 3 4 5 1155 462 770 770

2310 5 42 3 0.6 2 3 4 5 770 462 210 210

2310 5 6 2 0.4 2 3 4 5 770 462 330 210

2310 5 42 3 0.6 2 3 4 5 770 462 462 210

2310 5 21 2 0.4 2 3 4 5 770 462 1155 210

2310 5 14 2 0.4 2 3 4 5 770 462 770 210

2310 5 6 2 0.4 2 3 4 5 770 462 210 330

2310 5 66 3 0.6 2 3 4 5 770 462 330 330

2310 5 66 3 0.6 2 3 4 5 770 462 462 330

2310 5 33 2 0.4 2 3 4 5 770 462 1155 330

2310 5 22 2 0.4 2 3 4 5 770 462 770 330

2310 5 42 3 0.6 2 3 4 5 770 462 210 462

2310 5 66 3 0.6 2 3 4 5 770 462 330 462

2310 5 462 4 0.8 2 3 4 5 770 462 462 462

2310 5 231 3 0.6 2 3 4 5 770 462 1155 462

2310 5 154 3 0.6 2 3 4 5 770 462 770 462

2310 5 42 3 0.6 2 3 4 5 770 462 210 1155

2310 5 66 3 0.6 2 3 4 5 770 462 330 1155

2310 5 462 4 0.8 2 3 4 5 770 462 462 1155

2310 5 231 3 0.6 2 3 4 5 770 462 1155 1155

2310 5 154 3 0.6 2 3 4 5 770 462 770 1155

2310 5 14 2 0.4 2 3 4 5 770 462 210 770

2310 5 22 2 0.4 2 3 4 5 770 462 330 770
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2310 5 154 3 0.6 2 3 4 5 770 462 462 770

2310 5 77 2 0.4 2 3 4 5 770 462 1155 770

2310 5 462 4 0.8 2 3 4 5 770 462 770 770

2310 5 210 4 0.8 2 3 4 5 210 1155 210 210

2310 5 30 3 0.6 2 3 4 5 210 1155 330 210

2310 5 210 4 0.8 2 3 4 5 210 1155 462 210

2310 5 105 3 0.6 2 3 4 5 210 1155 1155 210

2310 5 70 3 0.6 2 3 4 5 210 1155 770 210

2310 5 30 3 0.6 2 3 4 5 210 1155 210 330

2310 5 30 3 0.6 2 3 4 5 210 1155 330 330

2310 5 30 3 0.6 2 3 4 5 210 1155 462 330

2310 5 15 2 0.4 2 3 4 5 210 1155 1155 330

2310 5 10 2 0.4 2 3 4 5 210 1155 770 330

2310 5 42 3 0.6 2 3 4 5 210 1155 210 462

2310 5 6 2 0.4 2 3 4 5 210 1155 330 462

2310 5 42 3 0.6 2 3 4 5 210 1155 462 462

2310 5 21 2 0.4 2 3 4 5 210 1155 1155 462

2310 5 14 2 0.4 2 3 4 5 210 1155 770 462

2310 5 210 4 0.8 2 3 4 5 210 1155 210 1155

2310 5 30 3 0.6 2 3 4 5 210 1155 330 1155

2310 5 210 4 0.8 2 3 4 5 210 1155 462 1155

2310 5 105 3 0.6 2 3 4 5 210 1155 1155 1155

2310 5 70 3 0.6 2 3 4 5 210 1155 770 1155

2310 5 70 3 0.6 2 3 4 5 210 1155 210 770

2310 5 10 2 0.4 2 3 4 5 210 1155 330 770

2310 5 70 3 0.6 2 3 4 5 210 1155 462 770

2310 5 35 2 0.4 2 3 4 5 210 1155 1155 770

2310 5 210 4 0.8 2 3 4 5 210 1155 770 770

2310 5 30 3 0.6 2 3 4 5 330 1155 210 210

2310 5 30 3 0.6 2 3 4 5 330 1155 330 210

2310 5 30 3 0.6 2 3 4 5 330 1155 462 210

2310 5 15 2 0.4 2 3 4 5 330 1155 1155 210
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2310 5 10 2 0.4 2 3 4 5 330 1155 770 210

2310 5 30 3 0.6 2 3 4 5 330 1155 210 330

2310 5 330 4 0.8 2 3 4 5 330 1155 330 330

2310 5 330 4 0.8 2 3 4 5 330 1155 462 330

2310 5 165 3 0.6 2 3 4 5 330 1155 1155 330

2310 5 110 3 0.6 2 3 4 5 330 1155 770 330

2310 5 6 2 0.4 2 3 4 5 330 1155 210 462

2310 5 66 3 0.6 2 3 4 5 330 1155 330 462

2310 5 66 3 0.6 2 3 4 5 330 1155 462 462

2310 5 33 2 0.4 2 3 4 5 330 1155 1155 462

2310 5 22 2 0.4 2 3 4 5 330 1155 770 462

2310 5 30 3 0.6 2 3 4 5 330 1155 210 1155

2310 5 330 4 0.8 2 3 4 5 330 1155 330 1155

2310 5 330 4 0.8 2 3 4 5 330 1155 462 1155

2310 5 165 3 0.6 2 3 4 5 330 1155 1155 1155

2310 5 110 3 0.6 2 3 4 5 330 1155 770 1155

2310 5 10 2 0.4 2 3 4 5 330 1155 210 770

2310 5 110 3 0.6 2 3 4 5 330 1155 330 770

2310 5 110 3 0.6 2 3 4 5 330 1155 462 770

2310 5 55 2 0.4 2 3 4 5 330 1155 1155 770

2310 5 330 4 0.8 2 3 4 5 330 1155 770 770

2310 5 42 3 0.6 2 3 4 5 462 1155 210 210

2310 5 6 2 0.4 2 3 4 5 462 1155 330 210

2310 5 42 3 0.6 2 3 4 5 462 1155 462 210

2310 5 21 2 0.4 2 3 4 5 462 1155 1155 210

2310 5 14 2 0.4 2 3 4 5 462 1155 770 210

2310 5 6 2 0.4 2 3 4 5 462 1155 210 330

2310 5 66 3 0.6 2 3 4 5 462 1155 330 330

2310 5 66 3 0.6 2 3 4 5 462 1155 462 330

2310 5 33 2 0.4 2 3 4 5 462 1155 1155 330

2310 5 22 2 0.4 2 3 4 5 462 1155 770 330

2310 5 42 3 0.6 2 3 4 5 462 1155 210 462
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2310 5 66 3 0.6 2 3 4 5 462 1155 330 462

2310 5 462 4 0.8 2 3 4 5 462 1155 462 462

2310 5 231 3 0.6 2 3 4 5 462 1155 1155 462

2310 5 154 3 0.6 2 3 4 5 462 1155 770 462

2310 5 42 3 0.6 2 3 4 5 462 1155 210 1155

2310 5 66 3 0.6 2 3 4 5 462 1155 330 1155

2310 5 462 4 0.8 2 3 4 5 462 1155 462 1155

2310 5 231 3 0.6 2 3 4 5 462 1155 1155 1155

2310 5 154 3 0.6 2 3 4 5 462 1155 770 1155

2310 5 14 2 0.4 2 3 4 5 462 1155 210 770

2310 5 22 2 0.4 2 3 4 5 462 1155 330 770

2310 5 154 3 0.6 2 3 4 5 462 1155 462 770

2310 5 77 2 0.4 2 3 4 5 462 1155 1155 770

2310 5 462 4 0.8 2 3 4 5 462 1155 770 770

2310 5 105 3 0.6 2 3 4 5 1155 1155 210 210

2310 5 15 2 0.4 2 3 4 5 1155 1155 330 210

2310 5 105 3 0.6 2 3 4 5 1155 1155 462 210

2310 5 105 3 0.6 2 3 4 5 1155 1155 1155 210

2310 5 35 2 0.4 2 3 4 5 1155 1155 770 210

2310 5 15 2 0.4 2 3 4 5 1155 1155 210 330

2310 5 165 3 0.6 2 3 4 5 1155 1155 330 330

2310 5 165 3 0.6 2 3 4 5 1155 1155 462 330

2310 5 165 3 0.6 2 3 4 5 1155 1155 1155 330

2310 5 55 2 0.4 2 3 4 5 1155 1155 770 330

2310 5 21 2 0.4 2 3 4 5 1155 1155 210 462

2310 5 33 2 0.4 2 3 4 5 1155 1155 330 462

2310 5 231 3 0.6 2 3 4 5 1155 1155 462 462

2310 5 231 3 0.6 2 3 4 5 1155 1155 1155 462

2310 5 77 2 0.4 2 3 4 5 1155 1155 770 462

2310 5 105 3 0.6 2 3 4 5 1155 1155 210 1155

2310 5 165 3 0.6 2 3 4 5 1155 1155 330 1155

2310 5 1155 4 0.8 2 3 4 5 1155 1155 462 1155
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2310 5 1155 4 0.8 2 3 4 5 1155 1155 1155 1155

2310 5 385 3 0.6 2 3 4 5 1155 1155 770 1155

2310 5 35 2 0.4 2 3 4 5 1155 1155 210 770

2310 5 55 2 0.4 2 3 4 5 1155 1155 330 770

2310 5 385 3 0.6 2 3 4 5 1155 1155 462 770

2310 5 385 3 0.6 2 3 4 5 1155 1155 1155 770

2310 5 1155 4 0.8 2 3 4 5 1155 1155 770 770

2310 5 210 4 0.8 2 3 4 5 770 1155 210 210

2310 5 30 3 0.6 2 3 4 5 770 1155 330 210

2310 5 210 4 0.8 2 3 4 5 770 1155 462 210

2310 5 105 3 0.6 2 3 4 5 770 1155 1155 210

2310 5 70 3 0.6 2 3 4 5 770 1155 770 210

2310 5 30 3 0.6 2 3 4 5 770 1155 210 330

2310 5 330 4 0.8 2 3 4 5 770 1155 330 330

2310 5 330 4 0.8 2 3 4 5 770 1155 462 330

2310 5 165 3 0.6 2 3 4 5 770 1155 1155 330

2310 5 110 3 0.6 2 3 4 5 770 1155 770 330

2310 5 42 3 0.6 2 3 4 5 770 1155 210 462

2310 5 66 3 0.6 2 3 4 5 770 1155 330 462

2310 5 462 4 0.8 2 3 4 5 770 1155 462 462

2310 5 231 3 0.6 2 3 4 5 770 1155 1155 462

2310 5 154 3 0.6 2 3 4 5 770 1155 770 462

2310 5 210 4 0.8 2 3 4 5 770 1155 210 1155

2310 5 330 4 0.8 2 3 4 5 770 1155 330 1155

2310 5 2310 5 1.0 2 3 4 5 770 1155 462 1155

2310 5 1155 4 0.8 2 3 4 5 770 1155 1155 1155

2310 5 770 4 0.8 2 3 4 5 770 1155 770 1155

2310 5 70 3 0.6 2 3 4 5 770 1155 210 770

2310 5 110 3 0.6 2 3 4 5 770 1155 330 770

2310 5 770 4 0.8 2 3 4 5 770 1155 462 770

2310 5 385 3 0.6 2 3 4 5 770 1155 1155 770

2310 5 2310 5 1.0 2 3 4 5 770 1155 770 770
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2310 5 70 3 0.6 2 3 4 5 210 770 210 210

2310 5 10 2 0.4 2 3 4 5 210 770 330 210

2310 5 70 3 0.6 2 3 4 5 210 770 462 210

2310 5 35 2 0.4 2 3 4 5 210 770 1155 210

2310 5 70 3 0.6 2 3 4 5 210 770 770 210

2310 5 10 2 0.4 2 3 4 5 210 770 210 330

2310 5 10 2 0.4 2 3 4 5 210 770 330 330

2310 5 10 2 0.4 2 3 4 5 210 770 462 330

2310 5 5 1 0.2 2 3 4 5 210 770 1155 330

2310 5 10 2 0.4 2 3 4 5 210 770 770 330

2310 5 14 2 0.4 2 3 4 5 210 770 210 462

2310 5 2 1 0.2 2 3 4 5 210 770 330 462

2310 5 14 2 0.4 2 3 4 5 210 770 462 462

2310 5 7 1 0.2 2 3 4 5 210 770 1155 462

2310 5 14 2 0.4 2 3 4 5 210 770 770 462

2310 5 70 3 0.6 2 3 4 5 210 770 210 1155

2310 5 10 2 0.4 2 3 4 5 210 770 330 1155

2310 5 70 3 0.6 2 3 4 5 210 770 462 1155

2310 5 35 2 0.4 2 3 4 5 210 770 1155 1155

2310 5 70 3 0.6 2 3 4 5 210 770 770 1155

2310 5 70 3 0.6 2 3 4 5 210 770 210 770

2310 5 10 2 0.4 2 3 4 5 210 770 330 770

2310 5 70 3 0.6 2 3 4 5 210 770 462 770

2310 5 35 2 0.4 2 3 4 5 210 770 1155 770

2310 5 70 3 0.6 2 3 4 5 210 770 770 770

2310 5 10 2 0.4 2 3 4 5 330 770 210 210

2310 5 10 2 0.4 2 3 4 5 330 770 330 210

2310 5 10 2 0.4 2 3 4 5 330 770 462 210

2310 5 5 1 0.2 2 3 4 5 330 770 1155 210

2310 5 10 2 0.4 2 3 4 5 330 770 770 210

2310 5 10 2 0.4 2 3 4 5 330 770 210 330

2310 5 110 3 0.6 2 3 4 5 330 770 330 330
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2310 5 110 3 0.6 2 3 4 5 330 770 462 330

2310 5 55 2 0.4 2 3 4 5 330 770 1155 330

2310 5 110 3 0.6 2 3 4 5 330 770 770 330

2310 5 2 1 0.2 2 3 4 5 330 770 210 462

2310 5 22 2 0.4 2 3 4 5 330 770 330 462

2310 5 22 2 0.4 2 3 4 5 330 770 462 462

2310 5 11 1 0.2 2 3 4 5 330 770 1155 462

2310 5 22 2 0.4 2 3 4 5 330 770 770 462

2310 5 10 2 0.4 2 3 4 5 330 770 210 1155

2310 5 110 3 0.6 2 3 4 5 330 770 330 1155

2310 5 110 3 0.6 2 3 4 5 330 770 462 1155

2310 5 55 2 0.4 2 3 4 5 330 770 1155 1155

2310 5 110 3 0.6 2 3 4 5 330 770 770 1155

2310 5 10 2 0.4 2 3 4 5 330 770 210 770

2310 5 110 3 0.6 2 3 4 5 330 770 330 770

2310 5 110 3 0.6 2 3 4 5 330 770 462 770

2310 5 55 2 0.4 2 3 4 5 330 770 1155 770

2310 5 110 3 0.6 2 3 4 5 330 770 770 770

2310 5 14 2 0.4 2 3 4 5 462 770 210 210

2310 5 2 1 0.2 2 3 4 5 462 770 330 210

2310 5 14 2 0.4 2 3 4 5 462 770 462 210

2310 5 7 1 0.2 2 3 4 5 462 770 1155 210

2310 5 14 2 0.4 2 3 4 5 462 770 770 210

2310 5 2 1 0.2 2 3 4 5 462 770 210 330

2310 5 22 2 0.4 2 3 4 5 462 770 330 330

2310 5 22 2 0.4 2 3 4 5 462 770 462 330

2310 5 11 1 0.2 2 3 4 5 462 770 1155 330

2310 5 22 2 0.4 2 3 4 5 462 770 770 330

2310 5 14 2 0.4 2 3 4 5 462 770 210 462

2310 5 22 2 0.4 2 3 4 5 462 770 330 462

2310 5 154 3 0.6 2 3 4 5 462 770 462 462

2310 5 77 2 0.4 2 3 4 5 462 770 1155 462
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2310 5 154 3 0.6 2 3 4 5 462 770 770 462

2310 5 14 2 0.4 2 3 4 5 462 770 210 1155

2310 5 22 2 0.4 2 3 4 5 462 770 330 1155

2310 5 154 3 0.6 2 3 4 5 462 770 462 1155

2310 5 77 2 0.4 2 3 4 5 462 770 1155 1155

2310 5 154 3 0.6 2 3 4 5 462 770 770 1155

2310 5 14 2 0.4 2 3 4 5 462 770 210 770

2310 5 22 2 0.4 2 3 4 5 462 770 330 770

2310 5 154 3 0.6 2 3 4 5 462 770 462 770

2310 5 77 2 0.4 2 3 4 5 462 770 1155 770

2310 5 154 3 0.6 2 3 4 5 462 770 770 770

2310 5 35 2 0.4 2 3 4 5 1155 770 210 210

2310 5 5 1 0.2 2 3 4 5 1155 770 330 210

2310 5 35 2 0.4 2 3 4 5 1155 770 462 210

2310 5 35 2 0.4 2 3 4 5 1155 770 1155 210

2310 5 35 2 0.4 2 3 4 5 1155 770 770 210

2310 5 5 1 0.2 2 3 4 5 1155 770 210 330

2310 5 55 2 0.4 2 3 4 5 1155 770 330 330

2310 5 55 2 0.4 2 3 4 5 1155 770 462 330

2310 5 55 2 0.4 2 3 4 5 1155 770 1155 330

2310 5 55 2 0.4 2 3 4 5 1155 770 770 330

2310 5 7 1 0.2 2 3 4 5 1155 770 210 462

2310 5 11 1 0.2 2 3 4 5 1155 770 330 462

2310 5 77 2 0.4 2 3 4 5 1155 770 462 462

2310 5 77 2 0.4 2 3 4 5 1155 770 1155 462

2310 5 77 2 0.4 2 3 4 5 1155 770 770 462

2310 5 35 2 0.4 2 3 4 5 1155 770 210 1155

2310 5 55 2 0.4 2 3 4 5 1155 770 330 1155

2310 5 385 3 0.6 2 3 4 5 1155 770 462 1155

2310 5 385 3 0.6 2 3 4 5 1155 770 1155 1155

2310 5 385 3 0.6 2 3 4 5 1155 770 770 1155

2310 5 35 2 0.4 2 3 4 5 1155 770 210 770
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2310 5 55 2 0.4 2 3 4 5 1155 770 330 770

2310 5 385 3 0.6 2 3 4 5 1155 770 462 770

2310 5 385 3 0.6 2 3 4 5 1155 770 1155 770

2310 5 385 3 0.6 2 3 4 5 1155 770 770 770

2310 5 70 3 0.6 2 3 4 5 770 770 210 210

2310 5 10 2 0.4 2 3 4 5 770 770 330 210

2310 5 70 3 0.6 2 3 4 5 770 770 462 210

2310 5 35 2 0.4 2 3 4 5 770 770 1155 210

2310 5 70 3 0.6 2 3 4 5 770 770 770 210

2310 5 10 2 0.4 2 3 4 5 770 770 210 330

2310 5 110 3 0.6 2 3 4 5 770 770 330 330

2310 5 110 3 0.6 2 3 4 5 770 770 462 330

2310 5 55 2 0.4 2 3 4 5 770 770 1155 330

2310 5 110 3 0.6 2 3 4 5 770 770 770 330

2310 5 14 2 0.4 2 3 4 5 770 770 210 462

2310 5 22 2 0.4 2 3 4 5 770 770 330 462

2310 5 154 3 0.6 2 3 4 5 770 770 462 462

2310 5 77 2 0.4 2 3 4 5 770 770 1155 462

2310 5 154 3 0.6 2 3 4 5 770 770 770 462

2310 5 70 3 0.6 2 3 4 5 770 770 210 1155

2310 5 110 3 0.6 2 3 4 5 770 770 330 1155

2310 5 770 4 0.8 2 3 4 5 770 770 462 1155

2310 5 385 3 0.6 2 3 4 5 770 770 1155 1155

2310 5 770 4 0.8 2 3 4 5 770 770 770 1155

2310 5 70 3 0.6 2 3 4 5 770 770 210 770

2310 5 110 3 0.6 2 3 4 5 770 770 330 770

2310 5 770 4 0.8 2 3 4 5 770 770 462 770

2310 5 385 3 0.6 2 3 4 5 770 770 1155 770

2310 5 770 4 0.8 2 3 4 5 770 770 770 770

Table A.1:
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