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Abstract

We prove the Mathieu group M22 contains two symmetric generating sets with 
control group £3(2). The first symmetric generating set consists of order 3 elements 
while the second consists of involutions. With this knowledge we give two constructions 
of M22; the first as a homomorphic image of the progenitor 2* 14 : £3(2) and the second 
as a homomorphic image of the progenitor 3* 14 : £3(2). We prove both groups are M22 
by means of the presentation and the action on the Cayley graph, which is provided via 
double coset enumeration. The opportunity to present this work as a mathematics thesis 
gives the author great pleasure. All the work presented is orginal except for the material, 
for which sources are cited.
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Chapter 1

Introduction

1.1 The Classification of the Finite Simple Groups

The Classification Theorem of the Finite Simple Groups (CFSG) is heralded as 
perhaps the most important result of the 20th Century. The CFSG states that any simple 
group is one of the following types:

• Cyclic of Prime Order

• Alternating

• Classical

• Exceptional Group of Lie Type

• One of the 26 Sporadic Groups

The CFSG was prematurely announced as completed around 1980; however, 
some errors were found in proofs. Such problems are a consequence of the CFSG’s nature. 
Michael Ashbacher and Stephen Smith fixed the last known error in 2004 [Asc04], They 
presented a 1,200 page long proof.

Richard Brauer pioneered the search for all finite simple groups in 1940 [GLS94]. 
However, in 1963 Walter Feit and John Griggs Thompson motivated the CFSG in a 
landmark paper on solvability. In their, at the time, extroardinarily long paper (255 
pages), they show every group of odd order is solvable implying every (nonAbelian) simple 
group is of even order [FT63], This result is often called the Feit-Thompson theorem or 
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odd order theorem. The CFSG is a collection of large papers like the Feit-Thompson 
theorem. As such, there is doubt over the CFSG’s validity; however, even if the proof is 
not fully accurate, the general consensus is the CFSG is complete [Wil09].

Recent work with the CFSG has been done by Daniel Gorenstein, Richard Lyons, 
and Ronald Solomon. Largely motivated by Gorenstein, the so called GLS program was 
created to write the CFSG clearly in one place; however, this program is ongoing. Of the 
eleven projected volumes, seven are completed [Wil09], [ALSS11J. It is unfortunate that 
Gorenstein died in 1992 before he saw his work’s completion. The most recent volume, 
published in 2011, bears the names of Ashbacker and Smith near Lyons and Solomon 
[ALSSUJ.

1.2 The Mathieu Groups

The french mathematician Emil Mathieu found 5 highly transitive groups de
noted Mu, Ml2j M22, and M24. The small Mathieu groups, Mu and il/12 found in 
1861, are sharply 4 and 5-transitive groups, respectively. The only sharply 4-transitive 
groups are S4, S$, A5, and Mu, while the only sharply 5-transitive groups are 5s, 
A7, and M12. The large Mathieu groups, M22, M23, and M24 found in 1873, are 3,4, and 
5-transitive groups, respectively [Rot95].

We will largely focus on constructing M22- There are many ways M22 arises. One 
involves constructing a transitive extension of £3(4). Another involves Steiner Systems 
and their corresponding automorphism groups. It is well known that the automorphism 
group of the Steiner System of type 5(3,6,22), possesses a simple normal subgroup of 
index 2 isomorphic to M22. Of course, there is a relationship between the construction 
of M22 given as a transitive extension of £3 (4) and as a subgroup of the automorphism 
group of 5(3,6,22) [Rot95].

This thesis presents a novel construction. We show M22 can be generated two 
ways: the first by taking 14 elements of order 3 whose set normalizer is £3(2) and the 
second by taking 14 elements of order 2 whose set normalizer is the same, £3(2).
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1.3 The History of the Progenitor

A group may be regarded as a collection of objects that interact with each other 
somehow. It is the study of these interactions that sheds light on the meaning of the 
group. Given all objects and all interactions the group is known. However, we do not 
always need this much information to determine the group. We may present the group 
more economically. Our studies will be directed towards such a presentation called a 
progenitor.

The progenitor is a (group) construction developed by Robert T. Curtis in his 
studies of the Mathieu groups Afi2 and M24. Upon analyzing the structure of these 
Mathieu groups, Curtis discovered that these groups possess highly symmetric generating 
sets. Within Afo he found 5 generating elements of order 3 whose set normalizer is As
in the M24 case, he found 7 generating involutions whose set normalizer is L2 (7). We will 
see that progenitors model this behavior. Curtis constructs these groups and elements 
explicitly via a special action on conjugacy classes which we investigate in Chapter 6. He 
later finds them as images of certain progenitors[Cur07].
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Chapter 2

Group Theoretic Preliminaries

2.1 Groups

Groups are a natural consequence of studying symmetry in mathematics. We 
begin with the definition.

Definition 2.1. A group (@, *)  is a nonempty set $ equipped with an associative binary 
operation *,  such that:

(i) there is an element e eQ with e * a = a*  e = a for all a G U;

(ii) for every a G G, there is an element b G <? witha*b  = e = b*a.

To avoid cumbersome notation, we omit the group operation * of Q, with the 
understanding that * exists. That is, in place of (Q, *)  we write Q.

Example 2.2. Let Q be a finite set. Define the symmetric group Sq to be the set of 
all bijections of fl with itself. Then Sq is a group under composition of functions.

Example 2.3. Let V be a vector space over a field K. Define the general linear group 
GL(V) to be the set of invertible linear maps from V to itself. Then GL(V) is a group 
under composition of functions. If a basis for V is specified, then there is a natural corre
spondence between GL(y) and GL(n,K'), the set ofnxn matrices over K with nonzero 
determinant. It is easy to see that GL(n, K) is a group under matrix multiplication.

Definition 2.4. Let Q and H be groups. A function f : Q H is a homomorphism 
if for all a.b G G,

f(ab) = f(a)f(b).
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An isomorphism is a homomorphism that is also a bijection. We say that G is isomorphic 
to H, denoted by Q = H, if there exists an isomorphism f : G —> 7Y.

It is immediate that the relation = is an equivalence relation on the set of all 
groups.

Example 2.5. Let GL(V) be as in Example 2.3. Fix a basis fi for V. Then the groups 
GL(V) and GL(n,K) are isomorphic via the map f : GL(V) —> GL(n,K) given by

fV) = [T]^.

Example 2.6. Let fi = {ai,..., an}. Then the symmetric group on fi is the set of 
bijections of the n elements of fi. That is, elements of Sq permute the n subscripts 
of the a{ >s. Hence, there is an isomorphism between Sq and Sn, where Sn is the set of 
bijections of {1, For this reason, we say that Sn is the set of permutations of n
letters.

Example 2.7. Let Q be a group. An isomorphism f : G —> G is called an automorphism 
ofG- Denote the set of all automorphisms ofG by Aut(G). Then Aut(G) is a group under 
composition of functions.

2.2 Group Action

The study of groups and how they interact with various structures is of tremen
dous importance. In Examples 2.2 and 2.3, we constructed groups in relationship to an 
underlying structure. The symmetric group <Sq has a natural way of interacting with the 
elements of fi. The general linear group interacts instead with vectors. In this section, 
we investigate this group action on structures.

Definition 2.8. [Rot95] If fi is a set and G is a group, then fi is a G-set if there is a 
function a : G x fi —> fi (called an action), denoted by a : (g, a) i—*■  ga, such that:

(i) la = a for all a 6 fi; and

(ii) g(ha) = (gh)a for all g,h G G and a 6 fi.

One also says that G acts on fi. If |fi| = n, then n is called the degree of the G-set fi.
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It is customary to omit a, since the action, can be written as ga for g G Q and 
a £ fl, with the understanding that a exists.

Example 2.9. The symmetric group on n letters has an action on the set of n letters 
given by permutation. We see that both conditions are satisfied in Definition 2.8, the 
latter following from associativity of functions (permutations).

The next theorem states that provided we have some £-set fl, then there is an 
explicit homomorphism f : Q —* <Sh. This will be very useful in the later chapters when 
we prove simplicity of certain groups.

Theorem 2.10. [Rot95] If D is a Q-set, then there is a homomorphism f : Q —> Sq.

Proof. Since Q is a £7-set, each element g € Q is a permutation of the elements of Q, say 
7t5. Define f : G <Sq by f(g) = tfp. We see that f(gh) = Kgh- But irgha = [gh)a = 
g(ha) - irg(ha) = TTg^a. Thus, f(gh) = f(g)f(h). □

Definition 2.11. [Rot95] If D is a Q-set and a G fl, then the Q-orbit of a is

O(a) = {ga:geQ} C fi.

We typically say the orbits of a under Q, or simply the orbit of a when no 
confusion arises, instead of orbit.

Definition 2.12. [Rot95] If D. is a Q-set and a G Q, then the stabilizer of a, denoted 
by Qa, is the subgroup

Qa = {g G Q\ga = a} < Q.

Theorem 2.13. [Rot95] If D is a Q-set and aGfi, then

|O(a)| = [S : g“\.

Proof. Define a map f : O(a) —* Q/Qa by f {y) — gQa, where ga = y. This map is well 
defined for if ga = ha, then h-1g(a) = a and h~1g G Qa. Thus, gQa = hQa. The function 
f is injective: for if f(ga) = f(ha), then gQa = hQa and h~*g  G Qa. We have hJ^ga = a 
and so ga = ha. Now f is surjective, for if g G Q, then f(ga) = gQa. We conclude that f 
is a bijection and so

IWI = p:n

□ 
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Corollary 2.14. [Rot95] Ifa€.(J, the number of conjugates of a is equal to the index of 
its centralizer:

|ae| = [Q : C'p(a)],

and this number is a divisor of |<7|, when is finite.

Proof. The set [as} of conjugates of a is a £7-set, so we may apply the preceeding theorem. 
Note that Qa = Cg(a). The result follows. □

2.2.1 Transitivity

Definition 2.15. [Rot95] Let fi be a Q-set of degree n and let k <n be a positive integer. 
Then fi is k-transitive if, for every pair of k—tuples having distinct entries in fi, say 
(ai,a*)  and (&i, there is a g G G with gai = bi for i = 1,k

Example 2.16. The symmetric group Sn is n—transitive for it is the set of all bijections 
of {1,..., n} with itself.

Example 2.17. Any group Q is transitive (1-transitive) on itself, where the action is 
given either by left or right multiplication.

Theorem 2.18. [Rot95] If Pl is a transitive Q-set of degree n} and if a G Q, then

If Pl is faithful, then |^“| is a divisor of (n —1)1.

Proof. By Theorem 2.13, for a e fi, the orbit of a, O(a) has size: |O(a)| = [G : Ua]. But 
G is transitive and so O(a) = Pl. We have [G : Ga] =n as desired. The last claim follows 
since < 5n_i. □

Theorem 2.19. [Rot95] If7i<G, then G acts transitively on the set of all right cosets 

ofH.

Proof. Clearly, G has a well defined action on the set of right cosets. Suppose there exists 
7i9i,Iig2 € QfH. By Cayley’s theorem, there exists a g e G such that gig = g2- We 
conclude that Hgig = Hg2 and so the action of Q is transitive. □
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2.3 Blocks, Primitivity, and Simplicity Criterion

There are properties of group action that we need to investigate before we can 
find a simplicity criteria. The action of a group G on a set Q tells us information about 
the structure of the group. We begin this section with block systems, then we will move 
to primitivity, and finally criterion for determining simplicity.

Definition 2.20. [Rot95] If is a G-set, then a block is a subset B of fl such that, for 
each g € G, either gB = B or gB r\B = 0.

Example 2.21. The subsets 0, fl, and the set of one-point sets of a G-set X are called 
trivial blocks. Other blocks are called nontrivial.

Example 2.22. Let 22 = ((1,2)(3,4), (1,3)(2,4)), then the subsets B = {1,3} and B' = 
{2,4} are blocks offl = {1,2,3,4}.

Definition 2.23. [Rot95] A transitive G-set fl is primitive if it contains no nontrivial 
block; otherwise, it is imprimitive.

Example 2.24. The symmetric group Sn with natural action on fl = {1, ...,n} is prim
itive. For if B = {ii, ...At} is a nontrivial block, then there is a j G fl such that j B. 
Let 7T G Sn such that x(im) ~ im for m = 1, ...,k — 1 and 7r(ifc) = j. Then rvB f B and 
ttB flB / 0.

The next result will tell us when the action of G is primitive. Recall, a subgroup 
H of G is maximal if for every H < X < G, we have either H = X or X = G-

Theorem 2.25. [WU09] Suppose that the group G acts transitively on fl, and let Ga be 
the stabilizer of a 6 fl. Then G is primitive if and only if Ga is a maximal subgroup of G. 

Proof. Suppose that G is primitive and Ga is not maximal. Then there exists a subgroup 
X of G with Ga < X < G> Since the cosets of Ga in G are in one to one correspondence 
with the points in fl, the cosets of Ga in X forms a block of fl.

Conversely, suppose that Ga is maximal and the action of G is imprimitive. 
Then there exists a nontrivial block B of X such that gB — B or gB H B =■ 0 for all 
g G G- Since G is transitive, there exists gf 6 G and b G B such that g'b = a. Let 
X = {g e G\ggfB = g'B}, K is obviously a subgroup. Furthermore, Ga < X < Q. The 
first containment follows from gf 6 X and g' $Ga, while the latter follows from B being 
nontrivial. This contradiction completes the proof. □
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We need one more result before we end our discussion on primitivity but first a 
lemma.

Lemma 2.26. [Rot95] let Q is a group acting faithfully and primitively on fl of degree 
n>2. If H is a normal nontrivial subgroup of Q, then fl is a transitive H-set.

Proof. If H is nontrivial, then Ha is a block for all a G fl. Since the action of Q is 
primitive, Ha = 0 (plainly impossible), Ha = {a}, or Ha = fl. Suppose Ha = {a}, 
then we must have H < Qa, the stabilizer of a. But Q is transitive, so there exits g G G 
with ga = b. By normality of H. we have that H = gHg~x < gQag~1 = Qb. Hence, 
H < AtenC?6 = 1. This contradiction shows H must be transitive. □

We will end this section with a result from Kenkichi Iwasawa, originally proved in 
1941 [Iwa41]. Recall, a group is said to be perfect if it is equal to its derived subgroup 
(commutator subgroup). That is, Q is perfect if Q = Q', where Qf = G &).

Theorem 2.27 (Iwasawa’s Lemma). [WU09] If Q is a finite perfect group, acting faith
fully and primitively on a set ff such that the point stabiliser Qa has a normal Abelian 
subgroup A whose conjugates generate Q, then Q is simple.

Proof. Let H be a normal subgroup of Q with 1 < H < Q, then H is transitive on fl by 
Lemma 2.26. By hypothesis, each g G G is of the form g = where gi G Q and
ai G A. Since H acts transitively, we have Q — HQa. Any element g of Q can be written 
as g = hsa, where h G H and sa G Qa. In particular, gt = hiS{. Now

g =

But A. is normal in Qa and so siaisf1 G A, we conclude g 6 HAH < HA. This implies 
that Q = HA which gives us

G/H = HA/H = A/(HftA).

But A is Abelian, therefore any quotient of A is Abelian. Thus & < H. Since Q is 
perfect, we must have H = Q. We conclude Q is simple. □
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2.4 Finitely Presented Groups, Free Products, and the Semidi
rect Product

Consider the symmetric group S3 on {1,2,3}. It is easily seen that S3 = 
{(1,2)(1,2,3)). In fact, Sn — ((1,2), (1, Suppose we set x = (1,2) and y ~ (1,2,3).
We notice that xy — (2,3) has order 2. We can then say S3 is generated by x and y sub
ject to the relations x2 = 1, — 1, and (xy)2 = 1. This is called a-presentation for S3.
We generalize this idea of presenting groups on generators subject to some relations now.

Definition 2.28. [Rot95] Let Q be a group generated by X satisfying a set of relations 
R. Then a presentation for Q is an ordered pair (A’|7?).

In the previous case, we had T = {x, y] and R, = [x2 = 1, y3 = 1, (xy)2 = 1}. 
We conclude that (<V|7£) is a presentation for S3 and write S3 = (x, y|x2 = y3 = (xy)2 = 

1).
Suppose now we have a collection of groups where I is some indexing

set. We endow this set with the group operation given by juxtaposition, which we denote 
by *.  We will call this the free product of the groups If the IQ are isomorphic,
then denote this group K,* 1, where /C = /Q. The next example will make this clear.

Example 2.29. Let C2 be the cyclic group of order 2, which we denote by 2. Define 
JCi ~ 2 fori = 1,2,3. Then the free, product of the {JC*}  is the group 2* 3. Suppose now 
that ICi = (ti), then we have

2* 3 = (ii) * (t2) * (t3).

In terms of presentations, we may write:

2* 3 = (ti,t2,ts\tl =tl = tj = 1).

Eventually, we will define groups containg groups such as 2* 3. We need to intro
duce another group construction called the semidirect product. The semidirect product is 
a group constructed by two subgroups in which one subgroup acts on the other subgroup. 
We follow the standard construction provided by Curtis in [Cur07].

Definition 2.30. [Cur07] Let IC be a group and Q < Aut(JC), be a subgroup of the 
automorphism group of IC. Let Q = Q x JC be the Cartesian product. Define a binary 
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operation o by (a,x) o (&,y) = (ab,xby), for a,b e Q and x,y G /C. We call Q the 
semidirect product of K, by Q and write G = AS : Q.

Proposition 2.31. [Cur07] Let G be the semidirect product of AS by Q as in Definition 
2.30. Then G is a group under o.

Proof. It is clear the G is closed. The identity is given by (1q, Ia:)- The inverse of 
(a,x) G G is (a"1, (a?-1)0”1). Finally,

[(a, a?) (6, j/)](c, z) = (ab,xby)(c,z) = (abc,xb?ycz),

and
(^[(^(c^)] = (a,x)(bc,ycz) = (abc, xbcycz),

for all a, b, c G Q and x,y,z G AS. □

It should be noted that the semidirect product AS : Q is often constructed from 
the Cartesian product AS x Q. However, for this thesis the construction given above 
is more favorable in terms of utility. Futhermore, AS : Q has two natural subgroups 

= {(1q, 3?)|rr G £} = AS and Q = {(a, ljc)|a & Q} = Q such that AS: Q — QIC. For this 
reason, we often ignore the notation (a, x) for an arbitrary element of AS : Q (this is called 
the external semidirect product). Instead of (a, a?) we write ax where multiplication is 
given by

axby = abxby.

We will use this internal semidirect product for the duration of the thesis. Before we go 
further, suppose we set a = 6_1 and y — Ia:- We would arrive at b_1xb — xb, which is 
conjugation by b. This observation allows us to perform simplifications of elements inside 
the groups we construct in this manner.

2.5 The Progenitor and Symmetric Presentations

We introduce the progenitor via the following example. Let G — 5n+i and T — 
{(1,2),..., (l,n + 1)}. Then T = {((1, i))}^1. The subgroup can only permute
the second entry in (l,i). It follows that A/g(T) = <Sn, where Sn acts on {2, ...,n + 1}. 
We could venture to say that <Sn+i = (5n,t), with t = (1,2). This motivates the next 
definition.
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Definition 2.32. [Cur07] Let Q be a group and T = {to,ti, ...,tn} C Q, then define 
T = {7o, 7i,7^}, where 7^ = (£), the cyclic subgroup generated by ti. We further define 
Af = the set normalizer ofT inQ. We say that T is a symmetric generating set
for Q if the following conditions hold:

(i) Q = (T), and

(ii) Af permutes T transitively, not necessarily'faithfully.

IfQ possesses a symmetric generating set T, then Q is said to be symmetrically 
generated. We refer to the subgroup Af as the control subgroup and to generators of 
the free product as the symmetric generators.

Considering 5n+i, we see that condition (i) holds: for T is known to generate Q. 
Since Sn is ^.-transitive, we have that condition (u) holds as well. By the preceding defi
nition, T is a symmetric generating set for We can now say <Sn+i is symmetrically
generated.

Notice, the conjugates of t = (1,2) under Sn have relations among them. That 
is, (1,2)(1,3) = (1,2,3) has order 3, etc. Suppose there.are no such relations. This results 
in an infinite free product of cyclic groups together with some permutation group acting 
via conjugation.

Definition 2.33. [CurOl] An involutory progenitor is a semidirect product of the 
following form:

P & 2* n : Af = {7rw|7T G Af}w a reduced word in the ti},

where 2* n denotes a free product of n copies of the cyclic group of order 2 generated by 
involutions ti for i = 1, and Af is a transitive permutation group of degree n which 
acts on the free product by permuting the generators.

We may generalize 5n+i to a progenitor in the following way. Recall, 2* n = 
(ti) * • • • * (tn). Define Af = <Sn on {1,n}. We have arrived at 2* n : Sn. Moreover, any 
transitive permutation group Af on n letters generalizes to a progenitor 2* n : Af.

Now, if we add relations to 2* n : 5n, namely (tjtj)3 — 1 for i,j = l,...,n, 
then we may obtain some finite group. Appropriate relations would yield The 
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process of adding relations is called factoring by the relations. If we add a relation, 
say (7ruj)a = 1, then the factored progenitor is denoted:

g ~ 2*"  : Sn
y “ (Ma ‘

If G is also finite then we say G is a finite homomorphic image of the progenitor 
2* n : Af. The meaning of homomorphic image is illustrated in the next theorem.

Theorem 2.34. [Cur07] Let G be a finite nonAbelian simple group. Then G is the 
homomorphic image of the progenitor 2* n : Af, where Af is a transitive subgroup of the 
symmetric group Sn-

Proof. The Feit-Thompson theorem, [FT63], guarantees G is of even order and hence 
contains and element of order 2. Furthermore, G is generated by such elements. If A4 
is a maximal subgroup of G, there exists an element x G G such that G = (A4,x). This 
follows by maximality of Ad.

We now show that Let mi,m G Ad. Then = xmmi G (xM).
Now since x = xe, we have x,x~*  G {xM). Hence for m G M, we have x~1xmx G (xM). 
Since Q = (Ad,x), we must have (s/1) <1Q. But we must necessarily have that {x^} = G 
since {xM) / 1 and G is simple.

Now define Ad = Af and let n = l^^l. If we index the set of conjugates xM, 
we may define a mapping (/> : 2* n : TV —► <7 by = Xi and 0((?) = g for all g G bf. 
Furthermore, we have that Ad acts faithfully: for if x™ = Xi for every element X{ of the 
generating set, then m G Z(G)> Since G is simple, it has trivial center and so m — 1. □

The progenitor generalizes to symmetric generators of arbitrary order.

Definition 2.35. [Cur07] Let Q be a group and T = {ti,t2, ...,tn} be a symmetric gen
erating set for G with |tj| = m. Then if Af = Afg(T), then we define the progenitor to 
be the semidirect product : N, where m* n is the free product of n copies of the cyclic 
group Cm.

Note, we may define Af to act in a nonpermuation way on T. However, we will 
not need this for this thesis. We see Theorem 2.34 generalizes to arbitrary groups.

Theorem 2.36. [Cur07] Let G be a group and T = {<i, t2, ...,tn}, with |i$| = m for all i, 
be a symmetric generating set for G- Then G is a homomorphic image of the progenitor 
P — m* n : Af, where Af = Afg (T).
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Proof. Define a homomorphism </> : P —> g by = it and 0(m) = m for all G T and 
m G Af. □

If g is a finite homomorphic image of the progenitor m* n : JV, then </>(7rw) = 1 
for some element tvw G m* n : Af. Associating d(vr) with % and with uj, we see that 
0(7ru>) = 1 if w = 7r-1. Hence, a finite homomorphic image is factored by elements of 
Af A 2* n. The following lemma, which will we refer to as the Famous Lemma (named by 
John Bray), tells us which relations to factors the progenitor P by so that we may look 
for finite homomorphic images.

Lemma 2.37 (The Famous Lemma). [Cur07]

Af A

where Afij denotes the stabilizer in Af of the two points i and j.

Proof. If 7T G Af and 7r = w(ti, tj) is a word in the ti, tj, and if a G Afij, then

7Ta = w(ti,tj)a = w(ti,tj) = TV.

Since rva — tv, we must have tv G Cxt-Mj)- □

Note, that the lemma generalizes to any number of generators. That is,

Af A (ti, ...,tn) < Cv(>A/i„,n)i

where we use the arbitrary indexing of {1,n} on the tjs to avoid cumbersome notation.
We defined the presentation of a progenitor to be of the form 2* n : Af, where Af 

permutes the t^s transitively. Since Af is transitive on {ii,tn}, we may determine the 
number of conjugates of ii by taking the index of the point stabilizer Af1 in Af. In terms 
of presentations, we see that if Af = (X |7Z). then

2* n -.Af^{X,t\R,t\[Af\t]).

That is, we define t to commute with the point stabilizer Af1 and so = [V : 
.A/1] as desired. To illustrate this, the natural progenitor 23 : 53 has point stabilizer S2. 
Hence, we have the presentation 23 : S3 = (x,y,tjx3,y2, (xy)2, t2, [y, tj), where S2 = (y).

In lieu of the famous lemma, we add the relations (w)G = 1 to the presentation 
of 2* n : Af, where a is an integer. Of course, we may add more than one such relation. 
We can then compute which integers a result in finite groups.
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2.6 Coset Enumeration

When we have found a finite image Q of a progenitor P, we desire to construct 
a homomorphism from G to Sn for some n. We do this via the action of G on the cosets 
of the control group fif of P. To accomplish this, we exploit the properties of AT within 
G- Since G is an image of P, any element g of G can be represented in the form g = nw, 
where tt E J\f and w is a reduced word in the t^’s. Through conjugation of g by AT, we 
arrive at several elements of G represented by a permutation followed by a word of length 
the same as lu.

What this means is we can represent a large amount of the single cosets A/w via 
A/b*  for 7T G AT. Observe that Nuitv = Nnir-hvir — Ntvcj17 = NF. That is, we may 
represent some of the cosets of A/ in G by double cosets Recall, if H and X are
subgroups of G, then the H — X double coset is a subset of G of the form TigX, where 
g G G, and the H—X double cosets partition G- This provides a useful tool for constructing 
a coset table for G, one which we will use to give a permutation representation of M22. 
The following lemma allows us to see how many elements are in a given double coset.

Lemma 2.38. [Cur07] IfH and X are finite subgroups of the group G and x G G, then 
\HxX\ = IHIIKI/Ift® n£|.

Proof. We will count the right cosets of H in HxX. Suppose we have two distinct cosets 
'Hxk\ and Hxk2, where k\, £ X, then 'Hxkik^x-1 / H implies that xkik^x-'1
7L But this implies that kik^1 x^Kx and so kik^1 $ 7ix C\X. Finall, we have

OX)ki f (TLX A X)k2- This arguement works in the reverse direction as well. Thus 
the single cosets of H in HxX are in one to one correspondence with the single cosets of 
Hx A X in X. The result follows. □

In the special case that AT = H — X, then this amounts to determining the 
number of elements in the double coset fifwN or equivalently the number of single cosets 
of J\f in fifwfif. Investigating this further, we have that that if 7r is in the coset stabilizer 
fifW = {-7T G A/’|A/’tu7r = then A/ww-1 = Af. But then 7r G Arw and tt G A/ implies
that tt G AA A A/-. In fact, = AA A A/*.  That is, we may determine the number of 
single cosets of AfcoAf by computing lA/’l/lA/'^|.

What have gathered so far is that instead of enumerating the single cosets A/iw, 
we can enumerate the double cosets Afwfif and arrive at a complete list of single cosets.
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We will define what is meant by a complete list shortly. But first let us illustrate the 
process of double coset enumeration with the following example.

Example 2.39. Consider the symmetric group S3 on {1,2,3}. Let T = {(1,2), (1,3)} 
with ti = (1,2) and t2 = (1,3). Then J\f = Ns3(T) = ((2,3)) = 82- We will begin with 
the double coset NeJ\f, which we denote by [*]  for brevity. Since fifefif — ff, there is only 
one element here.

We will find new single cosets by multiplying by elements of S3. If we mul
tiply Af by elements of If, then we do not arrive at a new double coset, we do not 
even arrive at a new single coset! We must then multiply by ti and t2. If we take 
the single co set representative fife of [*]  and multiply by ti and t2, then we get Afti 
and Jft2. But do these belong to the same double coset or are they in distinct double 
cosets? Consider ir = (2,3) e M. Then = fift2 and so these single cosets are in 
the same double coset. We may denote the double coset NtiAf by [1]. We know that 
][1]| = |A/'|/|A/'^|, butj\f(u) is easily seen to be trivial. But then we have |[1]| = 2. Since 
|S31 = 6, we have found the double coset decomposition

S = A/'uXtiA',

which amounts to the single coset decomposition

S = ((2,3))U((2,3))ii U «2,3))t2.

In the preceding example, we knew that IS3I = 6 and it was clear when to stop 
the process. Had we not known when the process stops, we would have to multiply the 
single coset representative Nt\ of [1] by and t2 to look for new single cosets. However, 
we know that t\t2 = (1,3,2) = (2,3)(1,2) G G [1]. So the process would have stopped 
regardless. In general, the next lemma provides us with a way to determine when we have 
stopped.

Lemma 2.40. [Rot95] Let Q be a finite group, X a set of generators of Q, H < Q a 
subgroup and 7/wi, some distinct cosets ofTl. It Cf-YHvJi is closed under right
multiplication by every a G XU X~*,  then G = Uf=17-£a>i, and [Q : H] = n and Q — n|H|.

Proof. Suppose there is another single coset 7Yu>. Since Q is transitive on Q/Tl, there 
exists a word a on the set X U X~r such that TLwa = for some 1 < k < n. Hence



17

Up-xTfuJi is not closed under multiplication, a contradiction. The later claim follows from 
Lagrange. □

In terms of progenitors, when multiplication by the symmetric generating set 
{ti} and the inverses {tf1} ceases to produce new single cosets we have found a complete 
list. For completeness, we include the double coset enumeration process beginning with 
an arbitrary double coset:

(a) Determine the coset stabilizer Af^ of the single coset representative Afw of [tv].

(b) Multiply Af<m on the right by the orbits of Af^ on {ti} U {t^-1}.

(c) Determine if there are any new single cosets.

This simple process takes quite a bit of time and we will spend the majority of 
the construction of M22 in this phase.

2.7 Double Coset Enumeration over a Maximal Subgroup

Manual double coset enumeration can get complicated, which results in compu
tations that axe quite messy. To remedy this we will take a closer look at this process. 
Recall, double coset enumeration is a process by which we decompose a group Q into sets 
of the form AfwAf, where w is a word in the fys. This allows us to enumerate the single 
cosets and embed G into Sn, where Q = {7Vp}.

If we instead find the single coset decomposition of G over A4, where Af < A4 < 
G, we see the number of elements of fl' = {A4p} is less than Q. Hence, the number of 
double cosets of the form AAwAf decrease. We then find the single coset decomposition 
of AA over Af, which is equivalent to finding the double coset decomposition of A4 over 
Af. If T is a transversal for Af in A4, then

;Vt = Ua^r-Afc.

Similarly if S is a transversal for A4 in G, we have:

G = CyesAdy.

Hence,
G — CytsAAy = Ucer Afxy = Ux^r,yesAfxy.
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But this is exactly what double coset enumeration of G over JV accomplishes.
Recently (2003), Wiedorn has used this technique in [Wie03] to decompose the 

symmetric presentation for the smallest Janko group, j/i given by:

J1~ (xty '

into double cosets of the form where £ = £2(11) and A = A5, w is a word in the 
tj’s of length at most 6. We illustrate this idea with an example.

2.7.1 Double Coset Enumeration of S5 over S3

We consider a known presentation of S5 [Cur07], Consider the progenitor P = 
2* 4 : A4, with natural action on the fys factored by the relation ((0, l,2)to)4 = 1- We 
have the result:

2»4:A,
5 (0,1, a)* 4’

We proceed to manual Double Coset Enumeration of S5 over the group generated 
by S4 = (A4, totito)• We will then do manual double coset enumeration of S4 over A4.

2.7.2 S5 over

Let S5 = JA. We begin with the double coset AdeAf. The stabilizer of AAe is 
easily seen to be all of A/, which is transitive on the {to,ti,t2,t3}. Take an element form 
the orbit, say to an^ multiply it by the single coset representative AAe. This results in a 
new double coset which we denote [0].

2.7.3

We compute the point stabilizer A/0 to be A3 on {1,2,3}. Since we have no ad
ditional relations we conclude that A^0) > A/0. The orbits of j/W are {{to}, {ti, t2> £3}}- 
Now take an element from each orbit ,say to and ti, and multiply by the single coset 
representative Adto- We get the following:

Adtoto = Ad 6 [*]  and Adtoti = Ad to G [0],

the later relation being given by Adtotito = M. since totito G Ad.
Since there are no new double cosets, the process ends.
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Figure 2.1: The Cayley Graph of S5 Over £>4

2.7.5 <S4 over X4

We now perform manual double coset enumeration of £4 over X4. Note [S4 : 
X4] = 2, so we anticipate that there are two double cosets, both consisting of a single 
element. Now <$4 = thus the tiS in this case or rather the s/s are the
conjugates of so = toil io- There are 12 conjugates of so under A4, we seek to find which 
are equal.

The relation toil ~ tot2 grants totito ~ io^o- Conjugating by x — (1,2,3), 
we see that tot2to ~ tot3to- Now we again use the relation (0,1,2)tot2tito — 1. By 
multiplying on the left by £2^0(0,2,1), we achieve:

£i£0 - (0,2, l)t!t2.

Thus the we get the relation totito ~ to(0,2, l)tit2 ~ t2t]t2. We conclude that titjti ~ 
tktitk for A j, 6. {0,1,2,3}. Hence the 12 conjugate of so, reduce to 1.

We conclude that there are two double cosets AfeAf and AftotitoAf.
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2.7.6 The Cayley Graph of S4 over A4

Figure 2.2: The Cayley Graph of S4 Over A4

2.7.7 The Single Coset Decomposition of A4 in S5

We now replace the group A4 with its coset decomposition with respect to A4. 
We have that,

AA — A4 U

and
<7 = At U AAto U JAti U Mt2 U A4t3.

By substituting in At, we have that the single cosets are:

A4, A^otito, yUtO:-44^0^1) yUtotlto^l5-44^2) A4totitot2, A4t3, A4iotltot3-

But since ~ t/Jlth, we may make suitable adjustments to get the list of single cosets:

A4, A4totito, AJo, A^toti, Aiti, Ajfa, A4i2tj, A^tz, Afati.

Notice, that [S5 : A4] = 10, which is the number of single cosets that we have 
arrived at. Now by computing the action of G on the set of single cosets, we arrive at a 
transitive embedding of <Sg into <Sio-
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Chapter 3

Symmetric Generating Sets for
M22

Curtis constructs a symmetric generating set for M\2 and M24 in [Cur07]. He 
constructs the symmetric generating set for M2 by looking at the conjugacy class A of 
a = (1,2,3,4,5) in A$. From here, he defines a special type of conjugation of elements 
of order 3 on A (see Section 6.1.1). In turn, this defines an element 51 of 512- If a is the 
image of a given by conjugation on A, then he shows M2 = (sj, a). Furthermore, s4 has 
5 conjugates under a, say si, S2,S3,S4, S5. He then shows that M2 = (si, S2, S3, s4, S5) = 
(si,d). That is the set {si,S2,s3,s4,55} is a symmetric generating set for M12 with 
control group A5 [Cur07].

For M24, Curtis considers the group L2(7) = £3(2) and takes the class A of 
a = (1,2,3,4,5,6,7). Again, he acts on A in a particular way by involutions in -£*2(7).  
This will define an element si of S24. If a is the image of a given by conjugation on 
A, then he shows that M24 = (si,a). Again, he shows si has 7 conjugates under 
a, say 51,52,33,54,35,56,57. Moreover, M24 = (si, S2, S3, s4, S5,56, S7). Thus the set 
{si, s2, S3, s4, S5, S6, S7} is a symmetric generating set for M24 with control group L2(7) 
[Cur07].

It is a tragedy that no such nice way seems to exist for M22. The groups M2 
and M24 are truly exceptional. To find a symmetric generating set for M22 we will instead 
look inside permutation representations of high degree. Let us first show how to construct 
the smallest of the large Mathieu groups, M22, in a natural way.
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3.1 The Mathieu Group M22

Let Q be a fc-transitive group. If we stabilize a point, then we are returned a 
(k — Intransitive group. Transitive extensions arise by beginning with a (k — l)-transitive 
group and finding its corresponding /c-transitive group. That is, transitive extensions 
take a point stabilizer and find the original group (not that it is necessarily unique). The 
reader is referred to the maximal subgroups of M22 in the ATLAS, [CCN+85]. You will 
find that £3(4) is maximal in M22. It will be shown that £3(4) acts doubly transitively 
on 21 letters, while M22 is 3-transitive on 22 letters. We might think that we could begin 
with £3(4) and attempt to find M22 via a transitive extension. In this section, we will 
show that M22 is a 3-transitive simple group of order 443,520 whose point stabilizer is 
£3(4). However, we will not use this information to find symmetric generating sets. The 
order of £3(4) is 20,160, which would be quite a large control group. We find in Section
3.2 that we can use £3(2) as the control group instead.

3.1.1 The Projective Plane P2(4)

As usual, let V be a vector space over a field K and denote the set [a?] = {y\y = 
Xx, x € V# — V — {0}, A G K} be the homogeneous coordinates for x. If V is (n+1)- 
dimensional, denote Pn(V) = {[#]|® G V#} be the projective n-space. If V is a vector 
space over GF(q), denote Pn(V) by Pn(q").

Lemma 3.1. [Rot95] Let V be a (n + 1)-dimensional vector space over GF^q), then:

(i) For every n > 0 and every prime power q,

l^n(Q)l = Qn + ^_1 + - + Q + L

(ii) The group Ln+i(q) acts doubly transitively on Pn(q).

If n = 2 and q = 4, then |P2(4) | = 21 and £3(4) acts doubly transitively on P2(4).

Proof, (i) : Since V# has qn+1 — 1 vectors and Pn(q) partitions these vectors into equiv
alence classes of (g — 1) vectors, we have that

|Pn(«)l = («n+1 -1)/(9 -!) = «” + r-1 +... + g +1.
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Sketch of (ii) : Take two pairs of projective points ([a;], [y]) and ([a/], [2/]). Ex
tend the linearly independent sets {ir,y} and {s', 3/} to bases {t,y,...,^-1} and 
{x^y^z^, ...^z^^} for V. Then there exists a g G GL(V) such that g(x) = x', g(y) — y' 
and g(zi) = zl. If det(g) = A / 1, then define h G GL(V) by h(x) = X^x', h(y) = y' and 
h(zi) = zl. Then h G Xn+i(g) and Ln±i(q) acts doubly transitively as desired. □

3.1.2 Transitive Extensions

The idea is to extend the doubly transitive group £3(4) on 21 letters to a 3- 
transitive group on 22 letters. To do this and to prove simplicity of the constructed 
groups we need a few lemmas.

Lemma 3.2. [Rot95] Let fi be a G-set. If k> 2, then fi is k-transitive if and only if, for 
each atfl, the Ga-set fi — {a} is (k — 1)-transitive

Proof If fi is A>transitive. then it is clear that fi — {a} is (fc — Intransitive. Suppose 
that for each a G fi, fi — {a} is (k — 1) transitive. Let (ai, and (bi,...,bk) be
k — tuples consisting of distinct elements of fi. Then there exists g G Gak such that 
5(01,..., a*)  = and h e Gbl such that h(bi,...,bk-i,xk) = (&i,...»&*).  We
conclude that hg is the desired element and fi is Zc-transitive. □

Lemma 3.3. [Rot95] Let fi be a faithful primitive k-transitive G-set with Ga a simple 
group. Then either G is simple or every nontrivial normal subgroup H of G is a regular 
normal subgroup. Furthermore, if k > 3 and |fi| is not a power of 2, then either G — S3 
or G is simple.

Proof. (Sketch) Let 77 be a nontrivial normal subgroup of G, then TI is transitive. Let Ga 
be a stabilizer of a point a G fi. Since Ga is simple, either ’HQGa = 1 orTlr\Ga = Ga- 
1£HC\Ga = 1 for all a G fi, then fi is regular. If H D Ga = Ga, then Ga < 77. But fi is 
primitive and so Ga is maximal. Thus H — G and G is simple.

Now suppose that k > 3 and |fi| is not a power of 2. If G is not simple, then any 
normal subgroup 77 is regular. Now let Ga act on 77#, — {1}, by conjugation. For
h G 77, the set [h, hr1} is easily seen to be a block: for ghg^1 = h, then ghg~T = hr1 or 
if ghg"1 = A-1, then gli^g"1 = h. Since k > 3, we have that 77# is a doubly transitive 
(/“-set. But then 77# is primitive and so 77# = {ft, h-1} or {h, h~1} = {/j} for all h G 77#.
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The latter case cannot happen for this would imply that H is a elementary Abelian 2- 
group. Since H is regular, |Q| divides jft|. Thus |Q| — 2n! for some m. If H# = {h, hr1} 
then |7Y| = 3 and so 7Y = Z3. Thus |Q| — 3, for |Q| = |7Y| and so we must have that 
G = 83. □

Lemma 3.4. [Rot95] If Q is a doubly transitive Q-set and a G Q, then G — GaU GagGa 
for some g </Ga-

Proof. (Sketch) Define a map f : {Ga —orbits} —> {(£7°-ga)- double cosets} by f(Gab) = 
GagGa, where ga = b. It can be shown f is bijective. Since Q is doubly transitive, there are 
only two orbits of Qa on Q, Q —{a} and {a}. Hence Q = QaeGaUGagGa = GaUGagGa- □

Definition 3.5. [Rot95] Let Q be a permutation group on Q and let Q = QU {00}, where 
00 Q. A transitive permutation group Q on Q is a transitive extension ofQifQ<G 
and g°° = Q.

Theorem 3.6. [Rot95] Let G be a doubly transitive permutation group on a set X. Sup
pose there is a G Q, 00 $ Q, g & Q, and a permutation h of Q = Q U {00} such that:

(i) 9t <3a;

(ii) h(oo) G Q;

(iii) h2 G Q and (gh)3 G G; and

(iv) hQah = Qa.

Then Q = (Q,h} < SOr^ega is a transitive extension of Q.

Proof. Let Q = (Q, h), then it is clear that Q is transitive on Q by condition (ii). We show 
that Q = Q U QhQ, for then G°° = G as desired. Now Q U QhQ C Q and so if Q U GhQ is a 
group, then we must have equality. It follows that QuQhG is a group if it is closed. We 
have:

(G C GhG)(G U GhQ) Q GG UQQhQ uGhGG uGhQQhQ

C QU QhQ U QhQhQ,

where we have made the identification QG = Q. Hence, we must have QhQhQ C Qu QhQ 
or equivalently hQh C QuQhQ, since gxhg2hg3 G QuQhQ if and only if yf1 gihg^hg^g^1 = 
hg2h G G U QhG.
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Now Q acts doubly transitively on Q and so G — Qa U GagGa, g 0 Ga- By
(iii) and (w) there exists 6 G such that h2 — 7 and (gh)3 = 6. This implies 
hr?"1 — hr1 — 7-1A and hgh = g^h^g^S. We compute hQh now:

hGh = h(Ga u GagGa)h,

= hGahUhGagGah,

= hG^U&G^h^gh-^hGVi),

= GaCGah~1gh~1Ga,

= GaUGa(^1h}g(hy~1)Gai

C GU GhghG,

= SUSg-^g-^Q,

■= gugh^g,

— g u g^ng,

— GcGhG.

We conclude that G = (G, h} is a transitive extension of G>
□

3.1.3 M22 as a Transitive Extension of £3(4)

We now construct M22 as a transitive extension of £3(4) acting on F2(4) U {00}. 
We then show that M22 is a simple group of order 443,520. There is only one simple 
group of order 443,520, the Mathieu group M22 [Par70]. One may also check the ATLAS, 
[CCN+85].

Theorem 3.7. [Rot95] There exists a 3-transitive group M22 of degree 22 and order 
443,520 = 22 ■ 21 ■ 20 • 48 = 27 • 32 ■ 5 ■ 7 • 11 such that the stabilizer of a point is £3(4).

Proof. (Sketch) We will show that M22 is a transitive extension of £3(4) acting on P2(4) = 
P2(4) U {00}. Let x = [1,0,0] G P2(4), ^[A,^, 1/] = [p,X, z/], and h = (x 00) f with 
/[A, /i, 1/] = [A2 + py, p2, i/2]. Note, that f fixes x and so h is well-defined and g does not 
fix x. It can be shown that (gh)3 — 1 and h2 = 1 as well.

Now take k G Ga, then we see that hkh(oo) — (00) and hkh(x) = x. Hence, 
we can suppose hkh acts solely on F2(4) only since hkh = (xoo)fk(xoo)f = fkf. But 
f 6 Ga implies that hkh G Ga and so M22 = (£3(4), h) is a transitive extension of A/22.
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Now M22 is 3-transitive since 1*3(4)  was doubly transitive. Since [M22I = 
|P2(4) U {oo}||£7°°| and the stabilizer of 00 is £3(4) which has order 20,160, we conclude 
that | M221 = 22 • 20160 = 22 ■ 21 • 20 ■ 48 as desired. □

Theorem 3.8. [Rot95] The group M22 is simple.

Proof. Since M22 is a faithful 3-transitive group with C?°° = £3(4) and |P2 (4) | = 22, we 
must have that G is simple. □

One can also construct a transitive extension M23 of M22- Similarly, one can 
construct a transitive extension M24 of M23. This results in a simple 4-transitive group 
and a simple 5-transitive group on 23 and 24 letters, respectively. The groups M22, M23, 
and M24 make up the large Mathieu groups. One can also obtain the small Mathieu 
groups Mu and M12 in a similar way, with the exception of the stabilizers. That is, one 
builds Mu as a transitive extension of the non-simple group Mio- Then M12 is built as 
a transitive extension of the simple group Mu [Rot9 5].

The interested reader is referred to [DM96] and [Rot95] for a treatment of the 
Mathieu groups and the nesting property. It is known that all Mathieu groups are sub
groups of the largest Mathieu group M24. While this is obvious for M22 and M23, it is 
not clear for the smaller Mathieu groups Mu and Mj2.

3.2 Two Symmetric Generating Sets for M22

The reader is referred to the ATLAS, [CCN+85], for the permutation repre
sentations used in this section. We will look inside the group structure of M22 for two 
symmetric generating sets, both with the same control group. We will find that both 
symmetric generating sets have 14 elements, one consisting of elements of order 3 and 
the other of order 2.

Theorem 3.9. There exist a symmetric generating set T = {£1, ...,£14} ofM22, such that 
|£i| = 3 andAfuz/T) = £3(2), where T = {(£1),..., (£14)}.

Proof. Consider the permutation representation of M22 on 176 letters given by the action 
of M22 on the set of cosets of the maximal subgroup A7. Within the maximal subgroup 
23 : £3(2) there are three class of subgroups isomorphic to 1*3(2)  = Af. In one of these
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classes, there exists a point stabilizer isomrphic to A4 such that the centralizer Cm22 — 
A4. Take an element of order 3 in the centralizer, say t G Now we have that
Af1 = — Aj. Since the number of conjugates |£^| = \Af : Af1], we have that
It^XI = |X : X4I = 14. That is, £ has 14 conjugates under the action of Af. We 
can label these conjugates as ti, ...,ti4 so that the generators x and y of £3(2) act like 
x = (1,2,3,4,5,6,7)(8,9,10,11,12,13,14) and y = (1,8)(2,13)(3,10)(4,5)(6,9)(11,12) 
on {ti,..., £j4}.

Let H — ^i).-.,£i4). It is clear that £3(2) < AfM22(fH). Furthermore, 23 : 
£3(2) = (£*3(2),  is also a subgroup of the normalizer AfMrJfHf). But 23 : £3(2) 0
A/* m22(^)> since £1 23 : £3(2). This implies that the maximal subgroup 23 : £3(2) is a
proper subgroup of AfM22{fH). Hence, AfM22(H) — lest we contradict the maximally 
of 23 : £3(2). But then H <1M22. Since H is nontrivial, we conclude H = M22. Moreover, 
£3(2) is the normal closure of {(tj),(ti4)} and acts transitively on the tfs. □

Corollary 3.10. M22 is a homomorphic image of the progenitor 3* 14 : £3(2).

Proof. A symmetric generating set is supplied by Theorem 3.9. □

Theorem 3.11. There exist a symmetric generating set T = {£i,-.-,£i4} of M22} such 
that |ti| = 2 and A/m22(T) = £3(2), where T = {(£1),..., (<i4)}.

Proof. As in Theorem 3.9, there is a copy of £3(2) within 23 : £3(2) such that the 
stabilizer of a point is A4 and Cm22(A4) = A4. Take an involution with ^22(^4), 
say t. Then as before there are 14 conjugates of t under £3(2). We may label the 
conjugates as £j, ...,ti4 so that the generators x and y of £3(2) act like the permutations 
x = (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), y = (1,12)(2,3)(4,11)(5,8)(6,13)(9,10) on 
the set {£1,£i4}.

Let H — (£1, ...,£i4)- As before, we find that 23 : £3(2) = (£3(2),tits) and 
23 : £3(2) is properly contained in A6v/22 (7£). Again, we must have that 7Y is normal in 
M22 and so Ti = M22. Moreover, £3(2) is the normal closure of {(£1),(£i4)} and acts 
transitively on the t/s. □

Corollary 3.12. M22 is a homomorphic image of the progenitor 2* 14 : £3(2).

Proof. A symmetric generating set is supplied by Theorem 3.11. □
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3.3 The Progenitors 3* 14 : £3(2) and 2* 14 : £3(2)

Since M22 is a homomorphic image of the progenitor 3* 14 : £3(2) and 2* 14 : £3 (2) 
by Corollary 3.10 and Corollary 3.12, respectively, we are now in a position to find M22. If 
we have the presentation N = £3(2) = (x,y\x7,y2, (xy)3, (cc, y)4), then we may construct 
the progenitors via the familiar formula:

zn* 14 : £3(2) = (x,y,t\x7 ,y2,.(xy)3,(x,y')i,tm,[N7 ,t]).

In Theorem 3.9 and Theorem 3.11, £3(2) acted differently on the t/s and so N7 will not 
be the same in both cases. We present the progenitors now:

3* 14 : £3 (2) = {x, y, tfa;7, y2, (xy)3, (x, y)4, t3, (tx\ xy), (i, y)),

wherex ~ (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), y ~ (1,8)(2,13)(3,10)(4,5)(6,9)(11,12) 
and t ~ £7,

2* 14 : L3(2) = (x, y, t|rr7, y2, (xy)3, (x, y)4, t3, (tx2, yir-1), (t, y)),

where x ~ (1,2, 3,4,5,6,7)(8,9,10,11,12,13,14), y ~ (1,12)(2,3)(4,11)(5,8)(6,13)(9,10) 
and t ~ t7.

Note, that since x and y act as permutations of the tf’s, we must have that 
x and y act identically on t^s. This is apparent since — tj, implies that

= (tj1)17 = i”1, for 7T G £3(2). With this iii mind, we have written the generators 
x and y acting on {ii, ...,£14} instead of {ti, ■■■)ii4,ti, where tj1 = tj.

We see that in both cases the two point stabilizer is trivial and so we are 
free of restrictions in our relations.

Table 3.1: Relations of the Progenitors m*14 : £3(2) That We Are Considering
2* 14 : £s(2) 3* 14 : £3(2)
(xt7)a ~ 1 (xt7)a = 1
(^2? = 1 (e”1^/ — 1

(x~1yxyt2)c = 1 (xyt7)c = 1
(xyt7)d = 1 (xyt71)d = 1

(ajyt2)e = 1
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Chapter 4

M22 as a Homomorphic Image of

We will first enumerate the single cosets of the form where £3 (2) < M <Q, 
w is a word in the ’s, and Q is a factored progenitor. This will supply us with an action 
of Q on the set of single cosets of M in Q. It will follow Q acts faithfully and primitively 
on these single cosets. Furthermore, the subgroup M. of Q will possess a normal Abelian 
subgroup whose conjugates generate Q. Applying Iwasawa’s lemma, we see that G is 
simple. Checking the ATLAS, [CCN+85], there is only one simple group of order |C/|, 
which is M22.

Factor the progenitor 3* 14 : £3(2) by the relations (xyt)5,(xyt~1)\(xytx2')5 to 
obtain the following homomorphic image:

c_ 3«14:L3(2)
(au/t)5, (xyt~1')5, (xytx2)5

Set % — xy, then 7r = (1,13,14)(2,10,12)(3,5,9)(6,7,8). The relation (xyt)b =
1 yields TFt^tqt^2— 1, which is:

7r2ist7 = tft&tQ.

The relation (xyt 4) = 1 yields tyty = 1, where we have made the
identification t'1 — t. We arrive at:

2— —7T tgi? = tjtstQ.
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The relation (wytx2) yields — 1, which is:

?t2£io£2 = ^2?lo?l2

Consider the subgroup of G generated by Af = 1*3(2)  and titgti, say Ad = (A/tiigti).

4.1 Some Relations

Being a coset enumeration process, double coset enumeration involves know
ing relations among the cosets of Ad in Q. For example, Adt^ti^t? — Ad which means 

= A4£7£i4 by right multiplication. Define an equivalence relation ~ on the set 
of words on {£*,  tf1} by as ~ os' if Adas = Adas'. Since the set of single cosets of Ad in G 
partition G, the relation ~ is a well defined equivalence relation. Note, that any element 
of G is of the form 7tlj, where % &Af and w is a word. Hence, we only require ~ defined 
on the set of words on for if was ~ w'as', then Adwas = Adas and Adst'as' = Adas'.
We conclude Adas = Adas' and so a> ~ os'.

Any relation in the presentation gives a strict equality among the elements. 
However, the relation ~ gives no such promise. While equality is more desirable, we 
often can only guarantee ~ holds. Let us now prove some relations.

Since t ~ tr, it is beneficial to write the relations in t?ti ~ tjtkti form. We begin 
with iFtgt? = i7t3i6. Conjugating by (1,14,8,7)(2,6,5,11)(3,10)(4,9,13,12), we have 
the following relation:

(1.5.7) (3,6,4)(8,12,14) (10,13, ll)t7£i = hMs-

We conjugate the relation 7t2£io£2 = £2£10^12 by (1,5,10,7,11,13,2) (3,14,4,6,9,8,12) 
and obtain:

(1.3.7) (2,5,4) (8,10,14) (9,12, 11)£7£i = Wa-

We will see later that £7/1 tit?. So relations involving t?ti are useful. Conju
gating both of the relations above by (1,7)(2,12)(4, ll)(5,9)(6,13)(8,14), yields:

(1,7,9)(2,8,14) (3,13,11) (4,10, 6)£i£7 = Mitg,

and
(1,7,3) (2,4,5) (8,14,10) (9,11,12)£i£7 = £7£i£3.
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Lemma 4.1. t^t^ ~ *6*3*7

Proof. Since = tqtft^, we have that if t = (1,5,8,12) (2,4,7,10) (3,9,11,14) (6,13), 

then (7r2)r£i2*io*i3  = *10*12-  Now by the relation 7t2£io*2  = *2*10*12,  we have:

7T2*10*2  = t2(F2ytl2tlotl3,

= (7r2)Tt4*l 2*10*13-

Now conjugate by (1,5,10,7,11,13,2)(3,14,4,6,9,8,12). □

4.2 M = 23 : L3(2)

Lemma 4.2. iitsii has order 2.

Proof. See Appendix E for code. □

Lemma 4.3. £i£g£j has 7 distinct conjugates under £3(2).

Proof. The element titsti is an involution and so txtstit^ti — 1 and isiiis = ti. Hence 
*1tgtitstititg = tit8 and so tgtit&ti = tgtitg. Finally, £i£g£i = *8*1*8- □

Lemma 4.4. Let ti,8 = *1*8*1-  Then fif acts as £3(2) on {ii,g, •••,*7,14}-

Proof. Follows from the identification titgti = *8*1*8- □

Lemma 4.5. The group (£1,3, ...,<7,14) is an elementary Abelian 2-group of order 23.

Proof. We compute £1,3*2,9  = *4,11  = (*4,n) -1 = (*i ,8*2,9 )_1- Hence, every element of 

(*1,85  *7,14)  is an involution. Now *5,12  = *2,9*3,10,  *6,13  = *3,10*4,11  = *3,10*1,8*2,9,  and
*7,14 = *4,11*2,9*3,10  = *1,8*2,9*2,9*3,10  = *1,8*3,10-  Thus *4,n,  £5,12, *6,13,  and *7,14  may be 
omitted from the generating set. We have (*1,8,  *2,9,  *3,10)  is elementary Abelian of order 
23. □

Theorem 4.6. M “ 23 : £3(2).

Proof. Let Tl be the elementary Abelian 2-group of order 23. Then A/*  acts as £3(2) on 
7i and so

M = (AT, H) = H : M * 23 : £3(2).

□
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4.3 Double Coset Enumeration over 23 : £3(2)

We proceed to do manual double coset enumeration over JA. Where we use the 
notation [u>] to be the double coset JAatjV, where w is a word in the t/s.

Throughout the process, we will consider orbits on {/1, ...,£14}. The orbits on 
{fi,tu} will be the same since AT acts the same on the inverses.

4.3.1 JAeJV

We begin with the double coset AdeAf, which we will denote [e]. This coset has 
one single coset in it, namely JA. The single coset stabiliser is then just JA, which has

I 
two orbits:

o = {{1..... 14}}.

So that we take an element from each orbit say t? and and multiply the single 
coset representative Ad by each to obtain JAt^ and' JAN. We have two new double cosets 
JANJV, denote it [7], and JA^JV, denote it [7].

4.3.2 MtiN

Continuing with the double coset JAtyN we find the single coset stabiliser by 
first computing the point stabiliser AT7. This is found to be

V7 > <(1,8)(2,13)(3,10)(4,5)(6,9)(U, 12), (1,6,12)(2,11,3)(4,10,9)(5,8,13)).

Since |J\A7) [ > 12, the number of elements in [7] is 168/12 < 14. Furthermore, 
the orbits of AfV) on {tj, tu} are:

0 = {{7},{14},{113}}.

We now take an element from each orbit and multiply on the right by the single 
coset representative JAN of the double coset JAtyN. We have:
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M.t7t7 = Alt- G [7],

Wi G [7,1],

G [7,14],

Mt7t7 = M g [*],
■Wi e [7,1],

AtM14 — At7 G [7].

We see that the new double cosets are [7,1], [7,14], [7,1].

4.3.3 Mt7Af

We have that > AA7) and so the orbits are the same as the previous section.
We again take the single coset representative and multiply on the right by an element 
from each of the six orbits. We have:

A4t7t7 = At G [*],

AtMi = AWii[7,1],

AtMu = Mt7 G [7],

Mt7t7 = M.t7 g [7],

AtiVi G [7,i],
Att7ti4 = Aft7ii4ti4 = AAt7t\4 G [7,14].

We see that there is only one new double coset, which is [7,1].

4.3.4 Mt7t\Af

We have that TV7’1 is trivial. The relation A4t7t± = MtJ7 adds the element 
7r = (1,7)(2,12)(4,11)(5,9)(6,13)(8,14) to N^. We have AA7’1) > (tv).

Since |AA7,1)| > 2, we have that [7,1] contains lAfl/lAA7’1) | < 84 single cosets. 
The orbits of AA7’1) are

O = {{1,7}, {2,12}, {3}, {4,11}, {5,9}, {6,13}, {8,14}, {10}}.
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Taking an element from each orbit and multipling the single coset representative Mt7t\ 
on the right we arrive at:

Mtrfiti = W1G[7,I],

A4i7tit2 = G [7,1],

G [7,1], 

= A4i6t2 G [71],

Ws = A4t7ii G [7,1],

We = e [7,1],

A4t7iii8 = A4t2^i G [7,1],

•A4t7tiiio = jVtteii3 G [7,14],

and now by the inverses:

A4t7titi = A4i7 G [7],

Mtqti Zjj = -Mtgtio G [7,1],

Mt-fah G [7,1,3],

A4i7tit4 = Aftgtg G [7,1],

A4i7iit5 = G [7,1,3],

A4t7tit6 = c [7,1],

AdWs = A4iiti3 G [7,1], 

jVtt7titio = fAt7t\ G [7,1].

4.3.5 Mt7tuAf

Continuing with the double coset we find the point stabiliser satisfies
AZ7’14 = J\f7. Since |t7ti4i7| = 2, we have

^7^14^7^14 ~ ^7^14^14^7^14 = ^7^14^7 6) 
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where ti4t7ti4 = t7. This relation implies JVtt7ti4 = A4ti4t7 and expands the single coset 
stabilizer to:

X(7’14) > (IV7’14, (1,9,10,13)(2,3,6,8)(4,12,11,5)(7,14))

Since |AV’14)| > 24, the number of elements in [7,14] is 168/24 < 7. Further
more, the orbits of A/^7,14) on {ti,<14} are:

0 = {{7,14},{1,.... 13}}.

We now take an element from each orbit and multiply on the right by the single 
coset representative A^iu of the double coset JAt7ti4J\f. We have:

J\At7ti4ti = JAtstis g [71],

A4t7ti4ti = A4t5tis g [7,1],

Af^f 14^14 = JAt7 G [7],

JAt7ti4ti4 = M.t7 G [7],

4.3.6

Continuing with the double coset we find AT7,1 = A/7,1 = 1. The
relation Adt7ti = expands the single coset stabilizer to:

AV’1’ > ((1,8)(3,5)(4,11)(6,14)(7,13)(10,12)).

Since |A^7,1) | > 2, the number of elements in [7,1] is 168/2 < 84. Furthermore, 
the orbits of A/^7,1) are:

O = {{1,8}, {2}, {3,5}{4,11}, {6,14}, {7,13}, {9}, {10,12}}.

We now take an element from each orbit and multiply on the right by the single 
coset representative Mfrfti of the double coset JAt7i-\Af. We have:
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MU = A4t7 g [7],

A4f7£it2 = A4£3ti4£s[7,1,3],

Adt7t]t3 = Adt-jU G [7,1],

MU = Adt4t5 e [7,1],

MU = Adt2t4 e [7,1],

MU = Adhtsk 6 [7,1,3],

Adt7titQ = Adtstn G [7,1],

AMfifio = Adt7t4 G [7,1],

and by the inverses:

A4£7iJi = Mt7ti G [7,1],

Adt7tit2 — Adt^tii G [7,1],

Adt7tit3 ~ Adt2tst5 G [7,1,3],

MM — Adt$ G [7],

Adt7tit6 — -MF3F1 G [7,1],

Adt7tit7 — Adt§t4 G [7,1],

AMiitg = Adtioiisis G [7,1,3],

A4£7ti£io = Adtgtg g [7,1].

4.3.7 AdtfaAf

Continuing with the double coset A4t7t\Af, we find A/”71 = A/71 = 1. The 
relation Adt7ti = Adl\t7 expands the single coset stabilizer to:

V'7’1’ > ((1,7)(2,12)(4,11)(5,9X6,13)(8,14)).

Since |AA7,i)| > 2, the number of elements in [7, Ips 168/2 < 84. Furthermore, 
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the orbits of Aft7,1) are:

O = {{1,7}, {2,12}, {3}{4,11}, {5,9}, (6,13}, {8,14}, {10}}.

We now take an element from each orbit and multiply on the right by the single 
coset representative Adt?ti of the double coset Adt?tiAl. We have:

A/ttyFiii =

Adt7tit2 —

Adtytits —

=
Adt^tit^ =

Adt/jlc, =

=

Mt? G [7],

Mt/ti G [7,1],

S [7,1,

W3E[7j],

-M£iti2ti3 € [7,

Af£i3£i4 6 [7,1]

A4titi3e[7,l], 

and now by the inverses:

.MMiti = Mt?ti = jM£3£ii. G [7,1],

A4£7£i£2 = Adt^t^ G [7,1],

Adt^tit^ = Adt?ti G [7,1],

£ [7,1],

Adi/tits = Mt7ti G [7,1],

Adtytits = Adt^ts G [7,1],

AAt?titg = Adt^ti G [7,1],

= A4£e£i3 €= [7,14],
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4.3.8

Continuing with the double coset JANNNN', we find the point stabilizer to be 
trivial. The relation — Mtifrfa adds the element

(1,7)(2,12)(4,11)(5,9)(6,13)(8,14)

to the coset stabilizer. The relation A4t77it3 = JAtstgtio adds the element

(1,9)(2,8)(3,10)(5,7)(6,13)(12,14)

to the coset stabilizer. We conclude

ATP'1'3’ > <(1,7)(2,12)(4, 11)(5,9)(6,13)(8,14), (1,9)(2,8)(3,10)(5,7)(6,13)(12,14)).

Since lAA7’1’3) [ > 4, the number of elements in [7,1,3] is 168/4 < 42. Further
more, the orbits of AA7,1>3) are:

O = {{1,5,7,9}, {2,8,12,14}, {3,10}{4,11}, {6,13}}.

We now take an element from each orbit and multiply on the right by the single 
coset representative Adfytifa of the double coset JANtiN-N. We have:

JAt^tiNN = JAffa G [7,1], 

A4t7/it3ti4 = Adtiiti G [7,1],

JANNNN — JANN g [7,1],

JAtrtiNti — JAt7tQ g [7,1],

JANtiNte = Mtgtstio G [7,1,3]

JANtit^t^ = JANN g [7,1],

JANhNN4 = -NtiiiN £ [7,1],

JANNNN = JAtrNN ~ JANN G [7,1],

MfytitNN = Adtsfio G [7,1],

JAt7t\NN = A4ti77/3 G [7,1,3]

We see the set of cosets JAw is closed under multiplication by {7Z} U {7£ 1}. 
Hence, we have arrived at a full list of single cosets.
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4.4 The Cayley Graph of Q Over M

We now represent the process of double coset enumeration as a Cayley graph. 
The circles represent double cosets and lines represent multiplication by t/s. The numbers 
inside of the circles represent the number of single cosets within the double coset, while 
the numbers on the outside of the circles indicate the number of t/s going to the next 
double coset.

Figure 4.1: The Cayley Graph of Q Over AA

4.5 Q “ M22

We will use Iwasawa’s Lemma and the transitive action of G on the set of single 
cosets {AAto\io is a word in the

Lemma 4.7. The order of Q is 4/3,520. Furthermore, G acts faithfully on the set 
{AAbj\w is a word in the t^s}.

Proof Since Q = {AAco} is a transitive <7-set of degree 330, we have:

|9| = 330I51!,
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where G1 is the stabilizer of the single coset JA. But JA is only stabilized by elements 
of JA. Hence G1 = JA and l^1! = |A4| = 1344. We conclude that |<7| = 443,520. 
Furthermore, we must have that Q is faithful, lest |£7| > 443,520. □

Lemma 4.8. The group G acts primitively on {A4w}.

Proof. Since G is transitive, if B is a nontrivial block then we may assume that JA G B. 
If JAti G B, then JAt/f G B\ for JA G B and JAJf = JA implies BJf = B. Similarly, 
if JAti G B, then JAtf/ G B. We show that if JAti G B, then B = {A4w}. Suppose 
JAty G B, then JAt^tr — JA G B implies Bty — B. Hence, B = Bty. Furthermore, 
B = BJ\f = Bt^JJ = Bt-jN implies that multiplication under tfs and Jj’s stabilizes B. 
But this is exactly coset enumeration, hence B = {A4w}.

Now suppose B is any block not containing an element JAti for i = 1,14. By 
the Cayley graph, we may assume that B = {JAyJAt^tu,..., A4£i£s}: for the other double 
cosets are stabilized by a ti and so JAti G B. But since |B| must divide |{A4w}| = 330, 
we cannot have |B| = 8. We conclude the action is primitive. □

Lemma 4.9. The group G is perfect.

Proof. Since G = (Af,*),  we have that Af < Gr, for J\f is simple and therefore perfect. 
We show that t G G- We consider the following two commutators: [*7*6,  *6*7],  [*7,  *e];  
Evaluating the first, we have:

[*7*6 ,*6*7]  ~~ *7*6*6*7*6*7*7*61

= *7*6*7*6*6,

= *7*6*7-

Evaluating the second:
[*7i*6]  = *7*6*7*6i

But then [£7*6,  £©*7][£7,  *6]  = *6-  Thus G' > (A/-, to) = G- We conclude that Q is perfect. □

Lemma 4.10. The point stabilizer JA ofG posseses an Abelian normal subgroup K whose 
conjugates generate G-

Proof. Since JA £= 23 : £3(2), we have the normal Abelian subgroup X — (tit^ti) = 23, 
for i = 1,...,7. Since *1*8*1  £ K is an involution, we want *8*1  G K, for then *8*i*i*8*i  = 
£1 Gif.
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Now tsthtits G AS, for = tail and fiistj1 = tits- Hence, by conjugation
we must have titi+7,ti+7ti G AS. Now consider the elements tits,t7ti4. We have the 
product:

= tltst7ti4 = tint7tst$ti4 = TVtistitststi^.

But then 0^14/7 = 'Xti3t7t$t6t7 = a/. Since tstet7 = -Tr^is, we have of = tfyt^tsts. This 
simplifies to = fits- Finally, (tits)-1 = tsti G IC. Hence, AS = (ti, ...,<14).

It remains to be shown that x,y G IC. From the factored relations, we have 
xy G IC. Moreover, let xy — w, where w is either relation. Then x = toy and y = x^oj. 
Now x — uiy = wa;-1w. But conjugating by x we have x = x^uiixF. Now x2 — tvJ. 
Since G IC, we have a?2 G IC. Of course, we have x G AS and since xy = w, y G AS. □

Theorem 4.11. The group Q is simple. Furthermore, Q = M22.

Proof. We have that Q is a perfect group acting faithfully and primitively on {jMid}. 
The stabilizer of the single coset A4 possesses a normal Abelian subgroup AS = 23 whose 
conjugates generate Q. By Iwasawa’s lemma, Q is a simple group. But ]£] = 443,520 
and a quick check in the ATLAS, [CCN+85], and [Par70] shows there is only one simple 
group of this order, M22. We conclude Q = M22. □
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Chapter 5

M22 as a Homomorphic Image of

To prove the result, we adopt the same approach as in Chapter 4. That is, we 
will find a faithful and primitive action of G on 330 points that satisfies Iwasawa’s lemma. 
It will then follow G is isomorphic to M22.

Factor the progenitor 2* 14 : £3(2) by the relations (yt^2)5 * * * * *, (xy/)1 *1, (ytxt)3 to 
obtain the homomorphic image:

23 : £3(2)
(yt®2)5, (xyt)11, (yt^t)3'

Now (yt®2)5 = 1 can be written as 1 = (yt2)5 = which is the relation:

yt2t3 = *2*3<2-

Let 7r = xy — (1,3,11)(4,8,10)(5,13,14)(6,7,12), then (xyt)11 = 1 can be 
written as 1 = which yields the following calculation:

1 = (7r£7)n,

= TT2t7t7t72tyt7f^2t7t7t72

7r£12*7*6*12*7*6*12*7*6*12*7-

Thus, we have the relation:

7T$i2t7^12t7 = <7^12*647^12^6-
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Now (ytxt)3 = 1 can be written as 1 = (ytit^3 = ytit7t^i^tit7, which is the 
relation:

yiit7ti2 = t7tit7.

Define the subgroup JVl of Q to be the group generated by the control group 
X = £3(2) and t7ti4 = ttxyx2. That is,

M = (X.tt^2).

We decompose Q into the double cosets where w is a word in the tfs,
via double coset enumeration.

5.1 Some Relations

Lemma 5.1. Mi+i ~ titi+yti for i = 1,..., 6.

Proof. Consider the relation £2^3 ~ i2^3^2- By conjugating this relation by powers of x, 
the result follows immediately. □

Lemma 5.2. For j z + 7, titj ~ titjti.

Proof. Apply Lemma 1.1, with z = 1 to get titz ~ tititi- We now compute the stabilizer 
J\[° of to. This is computed to be:

;V° = <(2,11,12)(3,7,13)(4,5,0)(6,10,14), (2,4,14)(3,12,6)(5,13,10)(7,9,11)).

The orbits of are {{ti}, {is}, is> —i t7> ts> Since jV is transitive, we con
clude that this holds for all other i. □

Lemma 5.3. For i = 1,..., 6, ijii+i ~ Mi+s and t7t\ ~ i7ts.

Theorem 5.4. t7tit5 ~tst7.

Proof. Consider the relation tit7ti2 ~ t7iit7 ~ i7ii- Now if we conjugate by

aT1^3^-2 ~ (1,7,8,14)(2,3,11,6)(4,13,9,10)(5,12),

then we get i7isis ~ ht7. But by the previous lemma, t7is ~ t7t\. Thus i7iiis ~ tsi7. □
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5.2 AL = 23 : L3(2)

Lemma 5.5. t{ti+7 has order 2.

Proof. See Appendix E □

Lemma 5.6. titi+? has 7 conjugates under the action off/.

Proof. Since has inverses tits and tsti, by uniqueness, we must have ti£s = ish- 
But tits has 14 conjugates under the action of Af and so by above there are only 7 
conjugates. □

Lemma 5.7. Let Si = titi+7 for i = 1,7. Then x acts as (1,2,3,4,5,6,7) and y acts 
as (1,5)(2,3) on {si,...,S7}.

Proof. Follows from the observation tjfs = □

Lemma 5.8. The group ($i,S7) is an elementary Abelian 2-group of order 23.

Proof. We compute S7S1 = sg. Hence, (S7S1)-1 = s^1 = S5 = S7S1 and so S7S1 is an 
involution. Moreover, we have stSj must also be an involution. Since s7si = sg, we may 
omit sg from the generating set. Similarly, we may also omit Se, 54, and S3: for sq = S1S2, 
S4 = S6S7 — S1S2S7, s3 = S7S1S6 = S7S1S1S2 = S7S2. We have (si,..., $7) = {s7, si, s2}. 
Now we may not omit sj, s2, nor 57 for s3, s4, S5, S6 rely on them. Hence (s7i Si, $2) is an 
elementary Abelian 2-group of order 23. □

Theorem 5.9. A4 = 23 : £3(2).

Proof. Let H = 23 be the elementary Abelian 2-group of order 8 in AA. The group Af 
acts as £3(2) on H. Hence, A4 = H : Af = 23 : £3(2). □

5.3 Double Coset Enumeration Over 23 : £3(2)

We proceed to do manual double coset enumeration over AA. Denote [id] to be 
the double coset AAcaAf, where id is a word in the Vs.
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5.3.1 MeAf

We begin with the double coset JAeN, denote it [e]. This double coset contains 
only one single coset, namely Af. The single coset stabiliser is N, which has one orbit:

0 = {{1,2,..., 14}}.

Take an element from O say £7 and multiply the single coset representative JA 
by it to obtain JAt7. This is a new double coset Mt^Af, denote it [7].

5.3.2 Mt7Af

Continuing with the double coset JAt-AJ, we find the point stabiliser AT7. This
is

AT7 = ((1,12)(2,3) (4,11)(5,8)(6,13) (9,10), (1,6,9)(2,8,13) (3,12,11)(4,10,5)).

We have the relation JAt7 = JAt^. and so the element (2,13) (3,4) (5,12) (6,9) (7,14) (10,11) 
belongs to the coset stabilizer AA7). We conclude that:

A7'7> > (IV7, (2,13)(3,4)(5,12)(6,9)(7,14)(10,11)).

Since |AA7) | > 24, the number of elements in [7] is 168/24 < 7. Furthermore, 
the orbits of on {ti, ...,£14} are:

O = {{7,14}, {1, ...,6,8,..., 13}}.

Take an element from each orbit and multiply on the right by the single coset 
representative JAt7 of the double coset JAtyU'. We have:

A4*7*7  = Ad e [*],

A4£7£i G [7,1],

The single coset JAt7t\ is new, so we must have a new double coset JAt7t\ =

[7,1]-
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5.3.3

Continuing with the double coset A4t?t\Af we find the single coset stabiliser 
A/’t7,1). The relation AAtJ\ = Adtuti enlarges the coset stabilizer to

V'7'1’ > ((2,13)(3,4)(5,12)(6,9)(7,14)(10,11)).

Now the relation A4 £7^ = A4t?t^ is stabilized by (1,8) (2,10)(3,9) (4,6)(5,12)(11,13) 
and so belongs to Af We conclude that

V<71> > ((2,13)(3,4)(5,12)(6,9)(7,14)(10,.11), (1,8)(2,10)(3,9)(4,6)(5,12)(11,13)).

Since |«AA7,1)| > 4, the number of elements in [7,1] is 168/4 < 42. Furthermore, 
the orbits of A/^71) on {£i, ...,£14} are:

O = {{1,8}, {5,12}, {7,14}, {2,10,11,13}, {3,4,6,9}}.

We now take an element from each orbit and multiply on the right by the single 
coset representative Adt7t]Af of the double coset Adt^tiAf. We have:

A4£7£i£i = Adt? 6 [7],

Adt?tit2 G [7,1,2],

A4£7£i£3 G [7,1,3],

Adt?tit7 = Adt?ti G [7,1],

Adt^tit^ = Adtgt? 6 [7,1]

The new double cosets have single coset representatives Adt^t^ and A4t7£i£3, 
we represent them as [7,1,2] and [7,1,3] respectively.

5.3.4 Adt7t1t2A/'

Continuing with the double coset A4t7tit2A/' we find the single coset stabiliser
is trivial. However, the relation Adtrfit^ = A4£s£i£g will add the element

(2,9)(3,11)(4,10)(5,7)(6,13)(12,14)

to the coset stabilizer jV^7,1,2\ We conclude:

V'7’1’2’ > ((2,9)(3,11) (4,10)(5,7)(6,13)(12,14)).
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Since |AA7’1,2)| > 2, the number of elements in [7,1,2] is 168/2 < 84. Further
more, the orbits of AA7,1’2) on {ti, .-.,*14}  are:

O = {{!}> {8}, {2,9}, {3,11}, {4,10}, {5,7}, {6,13}, {12,14}}.

We now take an element from each orbit and multiply on the right by the single 
coset representative M.t7t\t2 of the double coset Mt7t\t2Af. We have:

A4t7tit2ti = = A4iuiit2 = A4*4* i*2  G [7,1,3],

A4t7*i*2*2  = Mt7ti G [7,1],

AAt7tit2t3 G [7,1,2,3],

AAt7t\t2t4 G [7,1,2,4],

JAt7t\t2t§ — A4*8*5*n*3  G [7,1,2,3]

AtW2*6  = Aftl2*2*8  G [7,1,2]

/At7t\t2t3 = A4t7tit2 G [7,1,2]

AtW2*i2  = AtWntis G [7,1,2,3]

The new double cosets are AAtrtit2t3Af and A4t7tit2t4A/\ which we represent 
by [7,1,2,3] and [7,1,2,4] respectively.

5.3.5 A^Ws-V

Continuing with the double coset we find the single coset stabiliser
is trivial. However, the relation A4t7tit3 = A4ti2tiiio will add the element

(2,6)(3,10)(4,11)(5,14)(7,12)(9,13)

to the coset stabilizer AA7,1,3). We conclude:

JV'7’1’3’ > ((2,6)(3,10)(4,ll)(5,14)(7,12)(9,13)>.

Since [V^7,1,31| > 2, the number of elements in [7,1,3] is 168/2 < 84. Further
more, the orbits of on {t,,..., tu} are:

O = {{!},{8}, {2,6},{3,10}, {4,11}, {5,14}, {7,12}, {9,13}}.



48

We now take an element from each orbit and multiply on the right by the single 
coset representative JAt^tiN of the double coset JANtiNN. We have:

A4/13/1/3 = A4/2/1/10 G [7,1,2]

JAtfliNN = A4/2/6/3/7e[7,l,2,3]

JANNNts = A4/7/i[7,l]

A4/7/1/3/4 = Ad/g/io/i 6 [7,1,3]

A4/7/1/3/5 — Ad^^/e/i G [7,1,2,3]

A4/7/1/3/7 = A4/4/10/2/5 G [7,1,2,3]

A4/7/1/3/8 = Ad/7/1/3 G [7,1,3]

A4/7/1/3/9 € [7,1,3,9].

We see that the only new double coset is JANNtztgJV, which is represented by 
[7,1,3,9],

5.3.6

Continuing with the double coset JANNNteJV we find the single coset stabiliser 
is trivial. However, the relation .>14/7/1/2/3 = Ad/ufg^/io will add the element

(1,6)(3,10)(4,12)(5,11)(7,14)(8,13)

to the coset stabilizer aA7,1,2,3). We conclude:

V<7-w> > ((Ii6)(3,io)(4,12)(5, 11)(7,14)(8,13)).

Since |aA7123)| > 2, the number of elements in [7,1,2,3] is 168/2 < 84. Further
more, the orbits of AA7,1,2*3) on {N,..., <14} are:

O = {{2}, {9}, {1,6}, {3,10}, {4,12}, {5,11}, {7,14}, {8,13}}.

We now take an element from each orbit and multiply on the right by the single 
coset representative JANNtzN of the double coset A4tjtititsJ'S. We have:
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Adt7tit2t3ti = Mtituts e [7,1,2]

Mt7tit2t3t2 = A4t7ti2t2t3 = A4i3ii3i2i7 G [7,1,2,3]

A4t7tit2t3t3 = A4W2e[7,l,2]

AAt7tit2t3t4 = statists e [7,1,2]

= W3i4€[7,l,31

A4t7tit2t3t7 = A4ti3t5t9 G [7,1,3]

A4t7tit2f3i8 = A4t3t4ts G [7,1,3]

A4t7tit2t3tQ = MtrfW*  G [7,1,2,3]

5.3.7 AWi^Af

Continuing with the double coset we find the single coset stabiliser
is trivial. However, the relation JAt7tit2t4 — will add the element

TH = (1,8) (3,14) (4,5) (6,13) (7,10) (11,12)

to the coset stabilizer aA7,1,2,4\ The relation A4t7tit2t4 = A4ti3ti2f2i7 will add the 
element

tt2 = (1,12,10) (3,8,5)(4,7,13) (6,11,14)

to the coset stabilizer A/^7,1’2’4). We conclude:

^(7,1,2,4) •> ^1j7F2^

Since |AA7124)j > 12, the number of elements in [7,1,2,4] is 168/12 < 14. Fur
thermore, the orbits of Af^7124^ are:

^ = {{2}, {9}, {1,3, ...,8,10,..., 14}}.

We now take an element from each orbit and multiply on the right by the single 
coset representative Adt7tit2t4 of the double coset Mtit&ttN. We have:
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G [7,1,2]

= JAt3tQtgt7 € [7,1,3,9]

A4t7tit2i4i9 = A4t7iii2i4 G [7,1,2,4].

5.3.8

Continuing with the double coset Mt7tit3tgJ\f we find the single coset stabiliser 
is trivial. However, the relation Adt7tit3tQ — will add the element

7T! = (1,11) (2,9) (4,8) (5,6)(7,14) (12,13)

to the coset stabilizer Ar(7,1,3’9\ The relation Jvtt^titstg = ^<12^14^3^6 will add the 
element

7T2 = (1,14,5)(2,13,11)(4,9,6)(7,12,8)

to the coset stabilizer A/’^7,1)3,9L We conclude:

^(7,1,3,9) •>

Since |AA7,1’3,9)| > 12, the number of elements in [7,1,3,9] is 168/12 < 14. 
Furthermore, the orbits of A/l7,1*3,9) are:

O = {{3}, {10}, {1,2,4, ...,9,11, ..,14}}.

We now take an element from each orbit and multiply on the right by the single 
coset representative A4t7iit3ig of the double coset AAtrtitstgM. We have:

WiWi = 6 [7,1,3]

Att7tlt3tgi3 = A4t7t8t3i9 = Mtititstg G [7,1,3,9] 

A4t7tit3tgtio = jMi7i8iio^6 G [7,1,2,4],

5.4 Cayley Graph of Q Over 23 :1/3(2)

We now represent the process of double coset enumeration as a Cayley graph. 
The circles represent double cosets and lines represent multiplication by tfs. The numbers 
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inside of the circles represent the number of single cosets within the double coset, while 
the numbers on the outside of the circles indicate the number of tfs going to the next 
double coset.

1+2

Figure 5.1: The Cayley Graph of G Over Ad

5.5 Q M22

Again, we use Iwasawa’s Lemma and the transitive action of G on the set of single 
cosets is a word in the fjs}. It will follow that Q is simple of order 443,520. By,
insert paper,, there is only one simple group of order 443,520, the Mathieu Group M22. 
We will conclude that G — M22.

Lemma 5.10. The order of G is 443,520. Furthermore, G acts faithfully on G/Ad.

Proof. Since is a transitive £7-set of degree 330. Then

|S| = 330[^|,

where G1 is the stabilizer of the single coset A4. But A4 is only stabilized by elements of 
M. Hence G1 = Ad and 1^1 = |A4| = 1344. We conclude that |0| = 443,520. Finally, 
{A4c<j} is faithful, lest [£7| > 443,520. □
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Lemma 5.11. The group Q is perfect.

Proof. We apply Iwasawa’s lemma using the transitive action of G on {Adw}. We first 
show that G is perfect. Since G = we have that J\f < G', for J\f is simple and
therefore perfect. We show that t G G, Consider, the relation:

7T_1 = £12*7£6*12*7*6*12*7£6*12*7 i

= [£12*6,  £6*7][*  12^6,*6 £7]*6-

We see that £g = tt[£i2^6, *6*7] 2 G Gf and so Q > Q' > (x,y,tQ) = Q. We conclude that 
G = G*  and G is perfect. □

Lemma 5.12. The stabilizer G1 < G, possesses a normal Abelian subgroup X whose 
conjugates generate G-

Proof Now G1 = JA and JA = 23 : £3(2) possesses a normal Abelian subgroup X = 
(£z£i+7) — 23. We have (htnf1 = £i*7£i4£i  G X. But then *i£7£i4£i  = 2/a;5*i*7£i£i4£i  and 
so yx5t? G X. We compute yx5 = (fytg/12*11. This completes the proof. □

Lemma 5.13. The group G acts primitively on G/JA =■ {Ado;}.

Proof. Since G is transitive, if B is a nontrivial block then we may assume that Ad G B. 
Now if JAti € B, then we must have B = {Adw}: for Ad is stabilized by Af and Ad*i*i  G B 
implies JAt7ti € B. Hence, JA^ti)-^ E B. Continuing in this manner, we have B is 
the complete list and is therefore nontrivial. For any other coset JAoj 6 B, we have 
JAiz G JAujJJ and so there exists a £j such that JAwti £ JAwN by the Cayley graph. 
That is, each single coset representative on two letters or more is stabilized by a £<. But 
of course this implies JAwti G B and we have JAti G B. Hence, B is trivial. □

Theorem 5.14. The group G is simple. Moreover, G = M??.

Proof. The group G acts faithfully and primitively on the set {Adw}. Furthermore, the 
point stabilizer JA = 23 : £3(2) possesses a normal Abelian subgroup (* i£8i*2£9 j£7£14)} 
whose conjugates generate Q. By Iwasawa’s lemma, we have G is simple. Since |£| = 
443,520, we have Q = M22 by ATLAS, [CCN+85], and [Par-70]: for there is only one 
simple group of this order. □



53

Chapter 6

Class Action on Groups

As Curtis describes in his construction of M2 and M22, we may build larger 
groups from smaller ones by action on conjugacy classes [Cur07]. We can enumerate 
the elements of a conjugacy class then act on it via elements of the group to obtain a 
homomorphism into a larger permutation group.

Consider S4. Take the elements of the conjugacy class Cx of x = (1,2,3,4). We 
may write them in a table.

Table 6.1: Conjugacy Class of x = (1,2,3,4)
1 (1.2.3,4) 2 (1,2,4,3)
3 (1.3,2,4) 4 (1,3,4,2)
5 (1.4.2,3) 6 (1,4,3,2)

Define an element to to act on Cx in the following manner:

t0 : (1, fK, y, z) w (l,x,y,z)^ = (1, z,z,y).

This action is well defined since (y,z) G <S4 for all y,z G {1,2,3,4}. If we compute 
£0 : Cx —> Cx, we obtain the permutation

to = (1,2)(3,4)(5,6).

Now x acts on Cx by conjugation to yield: x = (2,5,4,3). Let S = (to,x) = £5. Notice 
that S is transitive on {1,2,3,4,5,6}. Hence, 5s has a transitive action on 6 points.

We did not have to take the permutation (y,z), instead we could have used 
(x, z) or (a;, y). While (x, y) will yield 5s in the same way as above, (x, z) will yield 4x2. 
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This begs the question: What are the other possible groups? First let us make this idea 
clear.

Let G be a permutation group acting on containing an n-cycle x. Let
Gx be the conjugacy class of x. Note, we can represent any element y G Cx as y = 
(1,3/2, —lUn)- Take G1, the point stabilizer of Q. Let t G G1, then xl = (1,®^, 
defines a permutation to of the subscripts {2, Define G = (x,to), then we can view
G as being induced by t and x.

Furthermore, if G has been induced from G, say from to and x. If jfol = m, then 
G is a homomorphic image of the progenitor:

m* n : Q.

6.1 The Alternating Group An

Since the method for constructing the class action relies on the ability to fix a 
point within the conjugacy class, we can apply these methods when n is odd. Since the 
conjugacy classes of An get large very quickly, we only look at A5. One can do A? in a 
similar manner; however, the images do not appear to be very interesting.

6.1.1 A

Consider As and the class of x = (1,2,3,4,5). Curtis showed that by taking 
3-cycles and x, we obtain M12. We will see what the involutions will give us.

As above, we enumerate the class Cx. We compute the action of the involutions 
of A5, the fourgroup, on Cx. That is, define:

to : (l,x,y,z,w) i-> (1, x,y, z,w/x'w^y'z) - (1,

Table 6.2: Conjugacy Class of x = (1,2,3,4,5)
1 (1, 5, 2, 4, 3) 2 (1, 3, 2, 5,4)
3 (1, 5, 4, 3, 2) 4 (1, 4, 5, 2, 3)
5 (1, 4, 2, 3, 5) 6 (1, 3, 4, 2,5)
7 (1, 2, 3, 4, 5) 8 (1, 2, 4, 5, 3)
9 (1, 4, 3, 5, 2) 10 (1, 2, 5, 3,4)

11 (1, 3, 5, 4, 2) 12 (1, 5, 3, 2, 4)
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Again, let to and % be the images of to and x, respectively. Then

G = (x = (1,11,12,9,2)(4,>6,8,5,10),to = (1,6)(2,4)(3,7)(5,12)(8,11)(9,10)).

Since [x,io] = 1, we must have that G — 5 x 2 = 10.
Now consider to = (x,y)(z,w). As above we obtain:

to = (l,10)(2,7)(3,4)(5,8)(6,9)(ll, 12).

Let G = (to,X), then we find that G = 2*(2 4 : <Sq). The results are summarized in the 
following table. We include Curtis’s result on Afo for completeness.

Table 6.3: Groups Induced from As

*0 Conjugates of to under x G
Id(A4) 1 5

5 A/12
(x,y)(z,w) 5 2 (24 : <S6)
(x,w)(y,z) 1 10

6.2 The Symmetric Group Sn

The symmetric group Sn is divided into conjugacy classes based upon cycle 
types. Hence, we may apply the method of construction for all n, both odd and even. 
We will consider n = 4 and n = 5.

6.2.1 S4

In the beginning of this section, we considered the involutions of 84 to define the 
action. We may also consider the 3-cycles of 83 on {x, y, z}. Let x = (1,2,3,4) and Cx be 
its conjugacy class. Where y G Cx can be taken to be y = (l,x,y,z). Let to = (®,y,^). 
Then we may enumerate the class Cx as before. In this way, we achieve

to = (1,4,5)(2,6,3).

Again, x = (2,5,4,3) and so G =■ (to, x) = Sq- For completeness, if to = e, then 
G = (x) S 4. Hence the possible images of 84 acting on itself are as follows:
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Table 6.4: Groups Induced from <Sj

to to G
Ws) Id(S6) 4
O,z) (1,6)(2,4)(3,5) 4x2

(1,2)(3,4)(5,6) <$5
(x,y,z) (1,4,5)(2,6,3) Se

6.2.2 S5

We will take x — (1,2,3,4,5) and enumerate the conjugacy class Cx of a?. Let 
(l,<E,y, z,w) be an arbitrary element of Cx. Then the point stabilizer, S4, consists of 
permutations on {x,y, z,w}. We present the table.

Table 6.5: Groups Induced from S5

to Conjugates of to under x G
Id(S4) 1 5
O,y) 5 (£2(11) x L2(ll)) : 2

(jE,-z,y) 5 .A412 X A/12
(x,w,z,y) 5 (A12 x A12) : 2

(y,z) 5 2-(24 : S6)
(x, y,w,v) . 1 20

6.3 The Linear Group £3(2)

The projective special linear group £3(2) has a transitive action on both 7 
points and 14 points. If we consider the action on 7 points, then we may fix a point 
in the class of (1,2,3,4,5,6,7). If we consider the action on 14 points, by fixing 1 in 
(1,2,3,4,5,6,7)(8,9,10,11,12,13,14) we also fix 8. We conclude that we may compute 
the action on classes in this case as well. However, we should not expect to get the same 
result, since point stabilizers depend on the action. That is, the stabilizer of a point in 
£3(2) on 7 letters is S4, while the stabilizer of a point in £3(2) on 14 letters is A4.

6.3.1 £3(2) on 14 Points

Again, one of the justifications for M24 to be considered as a homomorphic image 
of the progenitor 2* 7 : £3(2) is due to this class action. Since we have arrived at M22 as 
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a homomorphic image of both 3* 14 : £3(2) and 2* 14 : £3 (2), we may wonder if M22 arises 
in this natural way. It is unfortunate that this is not the case. However, we investigate 
the other possible induced groups in this section.

As before, begin with x = (1,2,3,4,5,6,75(8,9,10,11,12,13,14). Since x is not 
transitive on 14 points, we will need another element of £3(2). Let y=(l, 8)(2, 13)(3, 
10)(4, 5)(6, 9)(11, 12). If we consider an arbitrary element

(1, x, y, z, u, v, w)(8, x, yl, z!, v!v', w7)

of the conjugacy class of x. Then we would ask what permuations of {re, y, z, u, v, w, z', yf, 
z', u'> vf, w' } are allowed. To answer this, take an element of the point stabilizer (£3 (2))1 
and conjugate x by it. For example, the element to = (2,14,12) (3,6,11)(4,10,13)(5,9,7) 
takes x to (1,14,6,10,9,11,5)(8,7,13,3,2,4,12). If x were to be represented as (1, x, y, 
z, u, v, w)(8, xf, yf, z1’, u', v', it/), then to = (x,w,v')(y,u!, z)(xf,u/, v)(yr, u, z') would 
act as desired.

Enumerate the conjugacy class Cx of x. Since |CX| = 24, we only give the table 
and present the code in the appendix. We omit duplicate results in the table, unless they 
arise from elements that have different orders.

Table 6.6: Groups Induced from £3(2) on 14 Points

to Conjugates of to under £3(2) G
Zd(L3(2)) 1

(s, w, vf)(y, u', z)(x', 11/, v)(y', u, z') 7 A24
(x, u, y)(z, v, w)(x', u'y')(z', v', wf) 7 3.L3(2)

(x, v)(w, w')(a/, z') 7 m24

Notice that M24 appears in the list; however, the number of conjugates of to 
under £3(2) is still 7 (but this is not new). In fact, this is true for all of the groups in 
the table. One may wonder if the number of conjugates is independent of the action.

6.3.2 £3(2) on 7 Points

Curtis showed that if we fix 1 in the class of (1,2,3,4,5,6,7), and label the po
sitions (1, x, y, z, u, v, w), then we may take any of the nontrivial elements of the elements
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{(v, z)(x,y), (x,y)(u,w), (u, w)(y,z)} to get M24. We now see what happens to the rest 
of the elements.

We can figure out how to act on (l,x,y,z,u,v,w) by Section 6.3.1. Enumerate 
the class Cx of x. Since x is transitive on 7 points, we will only find x, ignoring the other 
generator. Note, we required the other before, since we were looking for 14 conjugates 
and x was not a 14-cycle. We again only present the table and omit duplicate results 
unless they arise in a different way.

Table 6.7: Groups Induced from £3(2) on 7 Points

*0 Conjugates of to under x G
1 7

(x,v)(y,u) 7 -424
(x,u,z,v)(y,w) 7 A24

(y,w)(u,v) 7 M24
(y, u)(y,w) 7 (37 : 23) : 14

(x,u,y)(z,v,w) 1 21
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Appendix A

Some Images of m* n : Sn

We will consider the progenitors 5* 3 : S3, 5* 4 : S4, 7* 3 : S3, and 7* 4 : S4. What 
follows is largely based on computer proofs given by a permutation representation induced 
by coset action.

(

Table A.l: Presentations of the Progenitors m* n : Sn That We Are Considering
~(i) (m,y,t|a:3,y2, (xy)2,t5,(t,y)) 5* 3 : S3

® ~ (0,1,2), y ~ (1,2), t ~ t0
(ii) (x, y, t\x3, y2, (xy)2, t7, (t, y)} * 7* 3 : S3

x~ (0,1,2), y ~ (1,2), t ~ t0
(iii) (x, y, tjm4, y2, (xy)2, t5, (t, y)} ~ 5* 4 : S4

s~(0,1,2,3), y~(1,2), t~t0
(iv) (x,y,t\x\y2, (xy)2,t7, (t,y)) 7* 4 : S4

x ~ (0,1,2,3), y ~ (1,2), t ~ t0

The lemma says that S3 fl (to, ii) < ^((Ss)0,1). But any two point stabilizer 
in S3 is trivial and so we may take any zr G S3 and any product of to and ti. Moreover, 
by taking S4 A (to, ti,t2), we have that the three point stabilizer is trivial and so we may 
again taken any zr G S4 and any product of io,^,^- We now list the relations and the 
some images. We have made this distinction between necessary relations and unnecessary 
relations by putting the value in bold.
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Table A.2: Relations of the Progenitors m* n : Sn That We Are Considering

3 14 294 T2 T2 7r7S^

5* 3 : S3 7* 3 : S3
((0,l,2)to)“ = l

((0, l)to)b = 1
(O,l,2)to)“ = l
((0, l)l0)6 = 1

5* 4 : S4 7* 4 : S4
((0, l,2,3)io)“ =1
((1, 2)(3,4)t0)i = 1

((l,2,3)to)° = 1

((O,l,2,3)to)“ = l 
((l,2)(3,4)to)‘ = l 

((1,2,3)to)c = 1

Table A.3: Some Finite Images of the Progenitor 5*3 : S3
Parameters Order of G Shape of (£o,£i) Shape of (T) Shape of G
a b
3 10 150 52 52 52 :S3
5 6 124800 173(4) %(4) 113(4): 2
6 5 95040 L2(U) G M12.

Table A.4: Some Finite Images of the Progenitor 7*3 : S3
Parameters Order of G Shape of (*o>  £1) Shape of (T) Shape of G
a b
3 14 294 72 72 72 :<S3
7 4 2184 £2(13) £2(13) £2 (13) : 2

Table A.5: Some Finite Images of the Progenitor 5* 4 ; S3 
Parameters Order of G Shape of (£o,ti) Shape of (T) Shape of G
a b c



61

A.l 52 : S3

Consider the factored progenitor:

c ~ S* 3 : S3
(z£)3

Notice that (xt)3 = 1, implies £2ti = to. Conjugating by (1,2), we have that 
ti*2  = to and,so [ij,t2] = 1- Also, [to,*1]  “ [to,h] = 1 as can be seen. Hence, <ti,t2) — 52. 
Since there are no relation involving the control group, we conclude that S3 has no image 
in 52. This can only mean that it’s action is preserved in the image. Hence, Q = 52 : S3.

Furthermore, we see that G has three maximal subgroups of index 2,3, and 25, 
respectively: Hi = (®, y), H2 = (y, (£x)2), and H3 = (z, (tx)2}.

Now the group Hi is of order 6. Our group possess only one subgroup of order 
6. This subgroup is isomorphic to S3. We can also see that the group H2 is of order 
50 and is hence isomorphic to 52 : 2. Finally, the group H3 is of order 75 and is hence 
isomorphic to 52 : 3, where 3 < S3.

A.2 1/3(4) : 2

Adding the relations (zi)5, (y^t)6 to the progenitor 5* 3 : S3 we obtain the finite 
homomorphic image:

g^ 5‘3:g3

(st)5, (yx2t)G
The composition factors of this group are E73(4) and 2. Define a subgroup H of 

G to be generated as follows:

H = (y,£).
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Now define : G —+ 835 by

0(x) = (1,2,5)(3,8,6) (4,10,19) (7,14,25) (9,17,15)(11,18,31)(12,22,35)(13,24,21)

(16.28.36) (20,26,41) (23,37,50) (27,42,34) (29,44,49) (30,46,54) (32,48,56) 

(38,45,47) (39,40,52)(51,59,62)(53,60,65)(55,61,58) (57,64,63),

0(y) = (1,3)(2,6) (4,9)(5,8) (7,13) (10,15) (11,18) (12,16) (14,21) (17,19) (20,27) (22,36)

(23,29)(24,25) (26,34) (28,35) (30,32) (33,43) (37,49) (38,45) (39,40) (41,42)

(44,50) (46,56) (48,54) (51,53)(55,58) (57,63) (59,65) (60,62),

<£(t) = (1,4,11,21,34) (2,7,15,27,43) (3,9,18,14,26) (5,12,23,38,28) (6,13,10,20,33) 

(8,16,29,45,35) (17,30,37,44,55) (19,32,49,50,58) (22,24,39,51,60)

(25.40.53.62.36) (31,47,52,61,64) (41,48,57,65,46) (42,54,63,59,56).

A. 3 M12

Adding the relations (xt)G, (yx2t)5 to the progenitor 5* 3 : S3 we obtain the finite 

homomorphic image:

_5^3_ 
(xt)G, (yx2t)G

Define a subgroup Ti of G by:

We define the map </>: G —» S12 by computing the action of G on the set of cosets of Ti in 

G:

= (1,2,4)(3,6,5)(7,11,8)(9,10,12)

0(y) = (1,3)(2,5)(4,6)(7,9)(8,10)(ll, 12) 

0(t) = (2,6,10,12,7)(4,8,ll,9,5).

A.4

Adding the relations ((x2y)2t)G, (xt)8, and ((a;y)yi)7 to the progenitor 5* 4 : S4 
to obtain the finite homomorphic image:
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$ ((s2y)2t)6, (xt)8, ((xy)vt)7'

Defina a subgroup H of G to be generated as follows:

H = (x,y, txt~l,xi,t2xt~2).

The action of G on the set of cosets of H in G induces a map 0 : G —> <$8 by

= (5,6,8,75,

= (7,8),

= (1,2,4,5,3).

We compute the maximal subgroups of G to be:

7Y1 = (x2t~1x~1t~1x2t~1xt~1,t~1xt~1x2t~1xt2x~1t~1)i

H.2 — (x2yt2x~1txt~1x~1t~2, txt~^x~^tx~^tx, y, x^yx-1),

Hz — {x2yt~1xytx~1,x2yt2xyt~1x~1t~2,x2tx~1tx~1tx~1tx,xyx2y,

x2yt~2xtr1xt~2x~1t~1,x2ytx~1t2xt~2x~1t~1,x2yt~1x~1t,txyt~1x~1t~1x2t~2x},

7Y4 = Fx^t^x^yxt^xt},

Hz = {xyx2y,txt2x2txtx~1},

Hq = (xyx2y, x~1yt~1xyt~1xt, £2yt2x-1t~2, xtxyt^x^1, Fxt^x^t,

x2ytx~1t2xt~2x~1t~1, xytx2t2xt2x-1, yt2a:-1yt23:"1t, yt~1x~1't~2xt2x~1t),

H7 = (x2yt~2xt~1xt~2x~1t~1, xt2x~1yt~1xyt~1x~1).

We compute these groups to be:

Hi £2(7): 2,

h2 ■S5 X $3,

Hz (^4 : 24) :2,

H± <?6 X $2->

Hz /■s/ S7

Hz (24 : 32) : Vs,

h7 A.



64

A.5 53 : S4

Adding the relation (x£)4 to the progenitor 5* 4 : 84 we obtain the following finite 
homomorphic image:

(xt)4 ‘
The relation (xt)4 = 1 yields £3£2<i*o = 1- Now [to, tj = toiitoti = =

1. Conjugating [to, ti] by the point stabilizer 83 on {1,2,3} shows [to, t,] = 1. Similarly, 
we conjguate by 83 on {0,2,3} to obtain [t4, t{\ — 1. Of course, this implies [£{. tj] = 1. 
Now the relation t3i2ti — to implies (ti, *2, 4s, 4o) = (41,42,43)- The group (ii,^2,<3) is 
elementary Abelian of order 53 = 125. Moreover, the action of 84 is preserved and so we 
must have:

G - 53 : 84.

We see that the maximal subgroups of G are:

H2

(x,x2yx \yx2y, (x2y)2),

(yxt_1xy£”1x, ytx_1t, x_1t~2xt~2, xt^x^t-2, x2t2xt~2x), 

(x, yx2y, (x2yi)2, x-1t~2xt-2, xt~2x~rt~2, x2t2xt~2x}, 

{x2yx~\yx2y, (x2yt)2, x^t^xt-2, xt-2x_1t“2, x2t2xt~2x}.

We compute these groups to be:

St

H2 53:S3

Hz 53:D8

h4 53 : At.

A.6 72 : S3

Adding the relation (xt)3 to the progenitor 7* 3 : 83 we obtain the following finite
homomorphic image:

7* 3 : S3
(xt)3
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As in Appendix A.2, we have the relation (z£)3 implies that [t«,tj] = 1 for 
i,j = 1,2,3. Furthermore, we have t2$l = to and so (to, ^1, *2)  — (£i,£2). Furthermore, 
(£i,£2) is elementary Abelian of order 72. Hence, we have:

G = 72 : S3.

We compute the maximal subgroups of G to be:

Hi = (x,y),

H2 = (y- (x-1*’1®)3,®^2®"1*),

H3 = (z, (®-1t-1®)3,®i-2®-1t).

We compute these groups to be:

Hi

H2

h3

A.7 L2(13) : 2

Adding the relations (z£)7, (yx2£)4 to the progenitor 7* 3 : S3 we obtain the 

following finite homomorphic image:

7* 3 : S3 
(xty/y^t/'

Let H be a subgroup of G generated as follows:

H = (z, ytxt2, yt2xt).

By computing the action of G on the set of cosets of H in G we may define 

fy'.Q S14 by

^(z) = (3,7,9)(4,10,11)(5,12,13)(6,8,14),

M = (1,2)(3,5)(4,6)(7,13)(8,11)(9,12)(10,14) 

<ftt) = (1,3,8,10,7,12,4)(2,5,11,14,13,9,6).
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We compute the maximal subgroups of Q to be:

Hi = (x~1t~1x~1txtix,xFxFx''1,xyt~2,x~l,t2,x~1t),

7Y2 = (x~lt~2xtxt, x*,  xyt~2xt2, xt~2xt2x),

H.3 = {yxt^x^txt3, m“1t2m_1t"1 m_1t2, t2aj-1t-13;-1t2, tx~'1tx~1t2xt2},

7^4 = (xt^xt^^yxt^xFxyX^t^x^txFx, xt^xtx^t2),

Hs = (tx~1tx~lt~2x~1t.,t2x~1t~lx).

We compute these groups to be:

Hi 7 : 22,

H2 r^y 6:22,

H3 22 : £2 (2)

h4 13 : 12,

Hi £2(13).

A.8 73 : S4

Adding the relation (mt)4 to the progenitor 7* 4 : S4 we obtain the following finite 
homomorphic image:

(mt)4
As in Appendix A.5, we have that (mt)4 = 1 implies [tt-, tj] = 1 and ^3^2^! = to, 50 

(to, ii) t2, *3)  = (ti, t2, $3)- Hence, (ti, t2, is) is elementary Abelian of order 73. Therefore:

P = 73 : S4.

We compute the maximal subgroups of Q to be:

Hi = (x,y),

H2 = (yxt~1xyt~1x,ytx~1t,x~1t~2xt~2,xt~2x~it~2,x2t2xt~2x),

H3 — {x,yx2yi(x2yt)21x~1t~2xt^2ixt''2x''1t~2ix2t2xt~2x)1

H4 = {x2yx~1, yx2y, (x2yt)2,x~1t~2xt~2,xt~2x~1t~2,x2t2xt~2x).



67

We compute these groups to be:

s4,
73 : S3,

7*3 73 : D3,

7*4 rJ 73:X4-
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Appendix B

Some Images of 2* 14 : £3(2) and
3* 14 : L3(2)

We detailed the construction of 2* 14 : £3(2) and 3* 14 : £3(2) in Section 3.3. The 
presentations are therefore assumed.

B.l X7

Adding the relation (x~x£)4 to the progenitor 3* 14 : £3(2) we obtain the finite 
homomorphic image:

3“14 : £3(2)
(z-ity1 '

Let H be a subgroup of Q generated as follows:

W = (y, fa:-1, f31, a:-2f)

This induces a map : G —»S7 given by

0(a:) = (1,2,3,4,6,7,6),

0(y) = (1,2)(4,6),

«f) = (3,5,7).

The group (0(a:), 0(y), 0(f)) contains all 3-cycles and even permutations. Hence,
A,
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B.2 24 : Ar

Adding the relations (xyt)4, (xyt-1)5 to the progenitor 3* 14 : £3(2) we obtain 
the finite homomorphic image:

3-m:£3(2)
(a>3/i)4, (a^l-1)5'

We compute the composition factors of G to be X7,2,2,2,2. Also, we compute 
that there is a minimal normal subgroup of order 16. Hence, G = 24 : A7

Define a subgroup 7*  of G generated as follows:

7*  = (x,y,txt~1,t~1x-2tx~1t,t~1x2t~1x~3t,t-1x2yx2yx~1t).

This induces a map 0 : Q —> <Sie by

0(a) = (3,4,6,11,10,9,5)(7,8,15,13,16,12,14),

*(1/) = (4,7)(5,8)(6,12)(9,10)(ll, 15)(13,16), 

<£(t) = (1,2,3)(4,8,9)(5,10,7)(6,13,11)(12,16,15).

The maximal subgroups of Q are:

7*i  =

7*2  — (xtx^ytxft, x~1yxyt~1x~1t~1x~1t, yx~1t~1xt^1xtx~1t, 

xtxtx~1ytx,x2yx~1t~1xtx~1yx, (xyx-1t)2, (xt-1)4 ,txyx-1t-1xyx-1t, (jc-1*) 4),

7*3  = (xt^xtx^t^x^t-1 J^xyt^x^txt^x-1 ,(xyx-1t)2, (xt-1)4, 

txyx~1t~1xyx~1t, (aF1*) 4),

7*4  = (x2tx~3yt~1, yt^xt^xtxt^x, (xyx^t)2, (x£-1)4,

txyx~1t~1xyx~1t, (a?-1*) 4),

7* 5 = (tx2yt~1xt~1x~1t, xt~1x~2txtx~1t~1x, (xyx-1t)2, (xt-1)4,

txyx~1t~1xyx~1t, (a;-1*) 4),

7* 6 = (xyx-1t)2, (rri-1)4,

txyx~1t~1xyx~1t, (a;-1*) 4).
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We compute these groups to be:

At,

H2 24 : (A. x 3 : 2)

Hz 24 : <S5,

h4 24 : L2(7)

7Y5 24 : £2(7),

Hq 24 : As.

B.3 2'A/22

Adding the relations (art)5, (a?-1t)5 to the progenitor 3* 14 : £3(2) we obtain the
finite homomorphic image:

3-14:£3(2)
(otf)5, (as-1£)5’

The composition factors for Q are M22 and 2. Where Z(G) = 2. Hence G is the
double cover for M22.

B.4 3*  71^22

Adding the relations (y£x2)5, (ytxt)3 to the progenitor 2* 14 : £3(2) we obtain the

finite homomorphic image:

2* 14 : £3(2) 
(ytx2)5,(ytxt)3

We compute the composition factors of G to be M22 and 3. Futhermore, Z(G) —
3 and we conclude G — 3’M2, the triple cover for M22.

B.5 23 : £3(2)

Adding the relations (xt)7, (ytx2)4, and (re- 1yxytx2)4 to the progenitor 2* 14 :

£3(2) we obtain the finite homomorphic image:

2* 14 : £3(2)
(xt)7, (yi®2)4, (a;"1y3?y£®2)4
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We consider the relation (xt)7 = 1. This yields tx6tx5tx4tx3tx2t?t = 1 which may 

be written as follows:

*7*6*5 = *1*2*3*41

*7*6*1*5 = *2*3*4)

*7*6*3*9 ~ *2*4*3)

*7*6*3*9*3 = *2*4,

*7*6*9 = *2*4-

t7*6*5  = *1*2*3*4-

Now consider (ytx2 )4 = 1. This yields — 1} which may be written

as follows:
£3*2  = *2*3-

Finally, the relation (x~1yxyt®2)4 — 1. Note that

7T = x_1yxy = (1,12,8,5)(2,6,10,4)(3,11,9,13)(7,14),

and so the relation yields = 1, which may be written as:

*4*10  = *2*6-

We proceed to show that G is indeed 23 : £3(2).

Lemma B.l. For j / i + 7 and i <8, t{tj = t^.

Proof. Fix i = 1, then the point stabilizer TV1 has three orbits: {{1}, {8}, {2,7,9,..., 14}}. 
Hence titj = t-fa for all j ± 8- F°r arbitrary ?, we may conjugate this relation by powers 
of x. Provided j / i + 7, equality will hold. This completes the proof. □

In G, we have that [t<, tj] = 1 most of the time. The one exception occuring 
when i=7j.

Lemma B.2. For j / z + 7 and i <8, tfij = £*  for some k.

Proof. We consider the relation t7t$t5 = £i£2*3*4  as our playground. Now by relation 
*4*10  = *2*6,  we get £3£9 = £i£a. Hence, we have the following:
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Again, consider the relation t<tio = By the lemma we get £2^4 = £io£e; and 
we may now consider:

t^tQtG = t2t4,

t^tgto — £io£g,

Mo — £io-

□

Theorem B.3. For all i, ti ~ ti+?.

Proof. By the previous lemma, we have that t7tg = £io. Now by the relation = tits, 
we take conjugate by an element of N9 to get tyfg = £i2£i3. Finally, take the relation 
t?tg = tig and conjugate by

7T = (2,6)(3,10) (4, 11) (5,14) (7,12)(9,13),

to get £i2£i3 = £3- From here we have the sequence of equalities

£10 = t?tg = ti2ti3 = £3-

We find ti = ti+i by conjugating by various powers of x. □

Theorem B.4. The group (ti, ...,t7) = (£7, £1, £2) is elementary Abelian of order 23.

Proof. We have t?t2 = ts and so £3 may be omitted from the generating set. Similarly, 
£4 = £i£3 = £i£?£2> £5 = £2£4 = t2tit7t2 — tit7, and £g = t3ts — £7£2£i£7 = £2£i- We may 
not omit £7, £1, or £2 because these elements are needed to represent £4. This completes 
the proof. □

Theorem B.5. The group Q is isomorphic to 23 : L3(2).

Proof. Since Q is a homomorphic image of the progenitor 2* 14 : L3(2), we need only 
remark that (£7,£j, t2} is a normal subgroup. □
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Appendix C

Class Action Code

S14:=Sym(14);
G<x,y>:=sub<S14|(1,2,3,4,5,6,7)(8,9,10,11,12,13,14),
(1,8)(2,13)(3,10)(4,5)(6,9) (11,12)>;
S24:=Sym(24);
C:=Classes(G);
C;

Cl:=Setseq(Class(G,G!(1,2,3,4,5,6,7)(8,9,10,11,12,13,14)));
Cl;
/*  Class of order 7 elements */

/*  Conver C to a sequence that way we may define the element sequences*/

T:=[[1,1“(Cl [1] ) , 1“ ( (Cl [1] ) "2) , 1" ( (Cl [1] ) “3) , 1“ ( (Cl [1] ) *4)  ,
1"((Cl[1])“5),1"((Cl[1])“6),8,8“(Cl[1]),8“((Cl[1])“2),8“((Cl[1])“3),
8“((Cl[1] )“4),8“((Cl[1])“5),8"((Cl[1])“6)]];
for i in [2..#C1] do T:=T cat
[[1,1“ (Cl Ci]), 1"((Cl Ci])~2), 1“((Cl Ci] )*3),  1" ((Cl [i])“4),
1“((Cl[i])“5),1“((Cl[il)"6),8,8“(C1 [i]),8“((C1[i])“2),8“((C1[i])"3),
8“((Cl[i] )~4) ,8"((Cl[i] )“5) ,8“((Cl[i] )“6)1] ; end for;
T;
/*Defines  a sequence of sequences T such that an element (1,2,3,4,5,6,7) 
is represented as [1,2,3,4,5,6,71 */

N:=Stabilizer(G,1);
CN:=Classes(N);
CN;

for n in N do 
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nn:-T[l] ;
zz:®[l,l"(Cl[l] *n)  ,l~(Cl[l]"2*n)  ,1"(Cl [1]"3*n)  ,1"(Cl[1]"4*n)  , 
1"(Cl[1]"5*n) ,1"(Cl[1]"6*n) ,8,8“(Cl[1]*n) ,8“(Cl[1] “2*n) ,8“(Cl[1]"3*n)  
,8‘(Cl[l]‘4*n)  ,8"(Cl[1]"5*n)  ,8"(Cl[1]"6*n)]  ;

CIT: = [l,2,3,4,5.,6,7,8,9,10,12,13,14] ;
for i in [1..14] do for j in [1..14] do 
if nn[i] eq zz[j] then CIT[i] :=j;
end if; end for; end for;
t:=S14!CIT;
t;
/★Stabilize the point 1 and defines a rule,
t, based off of the action of y on Cl[l]*/

CIT: = [i: i in [1. .#T]J ;
for k in [1. .#T] do h:=T[k];
for j in [1..#T] do
for i in [1. . 14] do h[i"t] :=T[k] [i] ; end for;
if h eq T[j] then CIT[k]:=j;
end if; end for; end for;
tt:=S24!CIT;
/*  Computes the image of t via placement switching in T*/

CIT:-[i: i in [1.,#T]J;
for i in [l..#T] do for j in [l..#T] do
if Cl[i]"x eq Cl[j] then CIT [i] : = j ;
end if;
end for; end for;
xx:=S24!CIT;
/♦Computes the image of x by conjugation, 
note Cl is ordered the same as T by above 
definition so the labellings are the same*/

CIT:<=[i: i in [1. .#T]] ;
for i in [l..#T] do for j in [l..#T] do
if Cl[i]“y eq Cl[j] then CIT[i] :=j;
end if;
end for; end for;
yy:=S24!CIT;
/★Computes the image of x by conjugation,
note Cl is ordered the same as T by above definition
so the labellings are the same*/

M:=sub<S24]xx,yy,tt>; H:=sub<MIxx,yy>;
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CompositionFactors(M); n; #Conjugates(H,tt); 
end for;
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Appendix D

General MAGMA Code

For Chapters 4, 5, and 6 we made use of the computer program MAGMA. 
In Chapters 4 and 5, MAGMA was able to tell verify our relations. In Chapter 6, we 
used MAGMA to compute the class action. More details on MAGMA can be found at 
http: //magma.maths.usyd.edu.au/magma/handbook/

We will describe the following commands we used most often.

• G < ml, ..,mn >:= Group < ml, ..,mn|ri(mi, ...,mn), xn) >; - Defines a
finitely presented group on n generators, subject to the relations r$.

• SchreierSystemfG, sub < G\Id(G) >); - Returns a list of elements of a finitely 
presented group G.

• U sub < G|yl, ...,yn >; - Defines a subgroup H of G, generated by yl,.,yn.

• f,Gl,k := GosetAction(G,H'); - Computes the action of G on the cosets of a 
subgroup H in G, provided the coset table is closed. Defines the image of G by G1 
with corresponding homomorphism f and kernel k.

• CompositionFactors(G)‘, - Returns the composition factors for a group G.

• Classes(G)-, - Returns a set of representatives of the conjugacy classes of G, together 
with the order and length of the class.

• Class(G, m); - Returns the conjugacy class of m in G.

• Conjugates(H,x)’, - Returns the conjugates of m in H.

file:////magma.maths.usyd.edu.au/magma/handbook/
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• LowIndexSubgroups(G, <m,n>);- Returns a set of subgroups that have index k 
such that m< k <n.

• for i in [l..k] do r[i]; end for; - Iterates a process r[i] over some indexing set and 
returns the outputs for each i.

• if S eq T then R; end if; - Returns R if true and returns nothing if false.
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Appendix E '
I

MAGMA Code for M22 from 
3* 14 : L3(2)

I

1
G<x,y,t>:=Group<x,y,t |x'‘7,y"2, (x*y)~3, (x,y)"4,t"3, (t" (x“4) ,x*y) , 
(t,y) ,(x*y*(t"-l))"5,(x*y*t"(x"2))"5>; •
Hl:=sub<G|x,y>; '
H2: =sub<G 1 x, y, t ~x* (V (x*y)) ~-l*t ',x>; !
#DoubleCosets(G,H2,Hl); (

I 
S:=Sym(28); 1
p:=S!(1,2,3,4,5,6,7)(8,9,10,11,12,13,14) I
(15,16,17,18,19,20,21)(22,23,24,25,26,27,28); 1
q:=S! (1,8) (2,13) (3,10) (4,5) (6,9) (11,12) (15,22) 
(16,27)(17,24)(18,19)(20,23)(25,26); 1
N:=sub<Slp,q>;
#N;

cst := [null : i in [1 .. 2640]] where null is [Integers() I ]; 
f, Gl, k:=CosetAction(G,sub<G|x,y>);
IN:=sub<GlIf(x),f(y)>;

ts:=[Id(Gl) :i in [1. .28]] ;
ts[7] :=f (t);
ts[l] :=(f(t)"f(x));
ts[2] :=(f(t)“f(x~2));
ts [3]:=(f(t)~f(x"3));
ts[4] :=(f(t)*f(x"4)) ;
ts[5] :=(f(t)“f(x'5));
ts[6] : = (f (t)“f (x“6)) ;
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ts[8] :=ts[l]"f (y);
ts[9]:=ts [6]"f(y) ;
ts [10] : -ts [3] "f (y) ;
ts[ll] :=ts[10]"f(x);
ts[12] :=ts[ll] “f (x);
ts[13] : =ts [12] ~f (x) ;
ts [14] : =ts [13] "f (x) ;
ts [15] :=ts [1] “-1;
ts [16] :=ts [2]"-1;
ts[17] :=ts[3]*-l;
ts[18] :=ts[4]A-l;
ts[19] :=ts[5]~-l;
ts [20] :=ts [6] "-1;
ts [21] :=ts [7] “-1;
ts[22] :=ts[8]"-l;
ts[23] :=ts[9]"-l;
ts [24] : =ts [10] “-1;
ts[25] :=ts[ll]"-l;
ts[26] :=ts[12]"-l;
ts [27] :=ts [13] "-1;
ts [28] : =ts [14] “-1;
Nl:=sub<Gl If (x) ,f (y) ,ts [1] *ts[22]  *ts[l]  >;

prodim := function (pt, G), I)
/*
Return the image of pt under permutations Q[I] applied sequentially.
*/
v := pt;
for i in I do
v := v"(Q[i]) ;
end for;
return v;
end function;

N7:=Stabiliser(N,7);
S:=<[7]1;
SS:=S“N;
SSS:=Setseq(SS);
for i in [l..#SSS] do
for n in N1 do
if ts[7] eq n*(ts  [(Rep(SSS[i] )) [1]] )
then print Rep(SSS[i]);
end if;
end for;
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end for;

T7:=Transversal(N,N7);
for i in [l..#T7] do
ss : = [7] "T7 [i] ;
cst[prodim(l, ts, ss)] : = ss;
end for;
m:=0;
for i in [1..2640] do if cst[i] ne []
then m:=m+l; end if; end for; m;

Orbits(N7);

N21:=Stabiliser(N,21);
S:«{[21]};
SS:=S“N;
SSS:=Setseq(SS);
for i in [l..#SSS] do
for n in N1 do
if ts[21] eq n*(ts[(Rep(SSS[i]))  [1]] )
then print Rep(SSS[i]);
end if;
end for;
end for;

T21:=Transversal(N,N21);
for i in [l..#T21] do
ss: = [21] ~T21[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0;
for i in [1..2640] do if cstfi] ne 0
then in:=in+l; end if; end for; m;

Drbits(N21);

N71:“Stabiliser(N7.1);
S:={ [7,1]};
SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SSS] do
for n in N1 do
if ts[7]*ts[l]  eq n*(ts[(Rep(SSS[i]))  [l]]*ts[(Rep(SSS[i]))  [2]]) 
then print Rep(SSS[i]);
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end if;
end for;
end for;

for n in N do if [7,l]~n eq [1,7]
then N71:=sub<N|N71,n>; end if; end for;

T71:=Transversal(N,N71);
for i in [1..#T71] do
ss: = [7,l] “T71[iJ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0;
for i in [1..2640] do if cst[i] ne □
then m:=m+l; end if; end for; m;

Orbits(N71);

N714:=Stabiliser(N7,14);
S:-{[7,14]};
SS:=S“N;
SSS:=Setseq(SS);
for i in [l..#SSS] do
for n in N1 do
if ts[7]*ts[14]  eq n*(ts  [(Rep(SSS[i])) [1]] *ts  [(Rep(SSS[i])) [2]]) 
then print Rep(SSS[i]);
end if;
end for;
end for;

for n in N do if [7,14]~n eq [14,7]
then N714:=sub<N|N714,n>; end if; end for;

T714:=Transversal(N,N714);
for i in [l..#T714] do
ss:«[7,14] ~T714[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m: =0 ;
for i in [1..2640] do if cst[i] ne []
then m:=m+l; end if; end for; m;

Orbits(N714);
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N715:=Stabiliser(N7,15);
S:={[7,15]};
SS:=S~N;
SSS:=Setseq(SS);
for i in [l..#SSS] do
for n in N1 do
if ts[7]*ts[15]  eq n*(ts  [(RepCSSS [i] )) [l]]*ts[(Rep(SSS  [i] )) [2]] ) 
then print Rep(SSS[i]);
end if;
end for;
end for;

for n in N do if [7,15]"n eq [13,22]
then N715:=sub<N|N715,n>; end if; end for;

T715:-Transversal(N,N715);
for i in [l..#T715] do
ss:-[7,15] ~T715[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0;
for i in [1. . 2640] do if cst [i] ne []
then m:=m+l; end if; end for; m;

0rbits(N715);

N2115:=Stabiliser(N7,15);
S:={ [21,15]};
SS:=S'N;
SSS:=Setseq(SS) ;
for i in [1..#SSS] do
for n in N1 do
if ts [21]*ts  [15] eq n*(ts  [(RepCSSS[i] )) [1]] *ts  [(Rep(SSS[i] )) [2]] ) 
then print Rep(SSS[i]);
end if;
end for;
end for;

for n in N do if [21,15]"n eq [15,21]
then N2115:=sub<N|N2115,n>; end if; end for;

T2115:=Transversal(N,N2115);
for i in [l..#T2115] do
ss: = [21,15] "T2115[i];
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cst [prodim(l, ts, ss)] := ss;
end for;
m:=0;
for i in [1, .2640] do if cst[i] ne []
then m:=m+l; end if; end for; m;

Orbits(N2115);

N713:=Stabiliser(N71,17);
S:={[7,1,17]};
SS:=S“N;
SSS:=Setseq(SS);
for i in [l..#SSS] do
for n in N1 do
if ts [7] *ts  [1] *ts  [17] eq n*(ts[(Rep(SSS[i] )) [1]]*  
ts [ (Rep (SSS Ci])) [2] ] *ts  [ (Rep (SSS [i])) [3] ]) 
then print Rep(SSS[i]);
end if;
end for;
end for;

for n in N do if [7,1,17]"n eq [15,21]
then N2115:=sub<N|N2115,n>; end if; end for;

T713:=Transversal(N,N713);
for i in [1..#T713] do
ss; = [7,l,17] “T713[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0;
for i in [1..2640] do if cst[i] ne []
then m:=m+l; end if; end for; m;
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Appendix F

MAGMA Code for M22 from
2* 14 : L3(2)

G<x,(y,t> :=Group<x,y,t |x“7,y~2, (x*y)"3,  (x,y)'"4,t"2, (t ,x“2*y*x"-3)  , 
(t ,y), (y*t~  (x~2)) ''5, (x*y*t)"ll , (y*t"x*t) “3>;
H:=sub<G|x,y>;
Index(G,H);
/*(t  ,x~2*y*x''-3)  = (t“(x’~2) ,y*x'-l)*/
c:=G!t*t''(x'~~l*y*x) ;
H:=sub<G|x,y,c>;
f, Gl, k:=CosetAction(G,H);
IN:=sub<Gl[f(x),f(y)>;
N1:=sub<GlIf(x),f(y),f(c)>;

S:=Sym(14);
p:=S!(1,2,3,4,5,6,7)(8,9,10,11,12,13,14);
q:=S!(1,12)(2,3)(4,11)(5,8)(6,13)(9,10);
N:=sub<S|p,q>;
#N;

cst := [null : i in [1 .. 2640]] where null is [Integers 0 I ];

ts: = [Id(Gl) :i in [1. . 14]] ;
ts[7] :=f (t) ;
ts[l] :=(f(t)"f(x));
ts[2] : = (f (t)"f (x"2)) ;
ts[3] :=(f(t)~f(x"3)) ;
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ts[4] :=(f (t)~f (x"4));
ts[5]:=(f(t)“f(x*5)) ;
ts[6] :=(f(t)"f(x*6) );
ts[12] :=ts[l]~f (y);
ts[13]:=ts[12]"f(x) ;
ts[14] :=ts[13]"f(x);
ts [8] : =ts [14] “f (x);
ts [9] :=ts [8] "f (x);
ts[10]:=ts[9]~f(x);
ts[ll] :=ts[10] “f (x) ;

prodim := function(pt, Q, I)
/*
Return the image of pt under permutations Q[I] applied sequentially.
*/
v := pt;
for i in I do
v := v*(Q[i]);
end for;
return v;
end function;

N7:=Stabiliser(N,7);
S:={[7]};
SS:=S~N;
SSS:=Setseq(SS);
for i in [l..#SSS] do
for n in N1 do
if ts[7] eq n*(ts  [(Rep(SSS [i])) [1]])
then print Rep(SSS[i]);
end if;
end for;
end for;

for n in N do if 7"n eq 14 then N7:=sub<N|N7,n>; end if; end for;

T7:=Transversal(N,N7);
for i in [l..#T7] do
ss: = [7] ~T7[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0;
for i in [1..2640] do if cst[i] ne []
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then. m:=m+l; end if; end for; m;

Orbits(N7);

N71:=Stabiliser(N7,l);
S:={[7,1D;
SS:=S“N;
SSS:=Setseq(SS);
for i in [1..#SSS] do
for n in N1 do
if ts[7]*ts[l]  eq n*(ts[(Rep(SSS[i] )) [1]J)*
(ts [ (Rep (SSS [i] ) ) [2] ] )
then print Rep (SSS [i]);
end if;
end for;
end for;

for n in N do if [7,l]“n eq [7,8]
then N71:=sub<N|N71,n>; end if; end for;
for n in N do if [7,l]“n eq [14,8]
then N71:=sub<N|N71,n>; end if; end for;
for n in N do if [7,l]“n eq [14,1]
then N71:=sub<NIN71,n>; end if; end for;

Orbits(N71);

T71:=Transversal(N,N71);
for i in [l..#T71] do 
ss: = [7,l] "T71[il; 
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..2640] do if cst[i] ne [] 
then. m:=m+l; end if; end for; m;

N712:“Stabiliser(N71,2);
S: ={ [7,1,2] };
SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SSS] do
for n in N1 do
if ts[7]*ts [1]*ts [2] eq n*(ts[(Rep(SSS[i] )) [1]])*
(ts [(Rep (SSS [i])) [2] ]) * (ts [(Rep(SSS [i])) [3] ]) 
then print Rep(SSS[i]);
end if; ’



87

end for;
end for;

for n in N do if [7,1,2] “n eq [5,1,9] 
then N712:=sub<N|N712,n>; end if; end for;

Orbits(N712);

T712:“Transversal(N.N712);
for i in [1..#T712] do
ss: = [7,l,2] "T712[il ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..2640] do if cst[i] ne [] 
then m:=m+l; end if; end for; m;

N713:“Stabiliser(N71,3);
S:={[7,1,3]};
SS:=S“N;
SSS:=Setseq(SS);
for i in [l..#SSS] do
for n in N1 do
if ts [7] *ts  [1] *ts  [3] eq n*  (ts [ (Rep (SSS [i])) [1] ]) * 
(ts [ (Rep (SSS [i])) [2] ]) * (ts [ (Rep (SSS [i])) [3]]) 
then print Rep(SSS[i]);
end if;
end for;
end for;

for n in N do if [7,1,3]"n eq [12,1,10] 
then N713:=sub<N|N713,n>; end if; end for;

T713:=Transversal(N,N713);
for i in [l..#T713] do
ss: = [7,l,3] "T713[i] ;
cst[prodim(l, ts, ss)] := ss; 
end for;
m:=0; for i in [1..2640] do if cst[i] ne []
then m:=m+l; end if; end for; m;

N7123:=Stabiliser(N712,3);
S:={[7,1,2,3]};
SS:=S“N;
SSS:=Setseq(SS);
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for i in [l..#SSS] do
for n in N1 do
if ts[7]*ts[l]*ts[2]*ts[3]  eq n*(ts[(Rep(SSS[i] )) [1]] )*
(ts [ (Rep (SSS [i] ) ) [2] ] ) * (ts [ (Rep (SSS [i] ) ) [3] ] ) * (t s [ (Rep (SSS [i] ) ) [4] ] ) 
then print Rep (SSS [i]);
end if;
end for;
end for;

for n in N do if [7,1,2,3]'‘n eq [ 14, 6, 2, 10 ] 
then N7123:=sub<N|N7123,n>; end if; end for;

T7123:=Transversal(N,N7123);
for i in [l..#T7123] do
ss:=[7,1,2,3] "T7123[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..2640] do if cst[i] ne H
then m:=m+l; end if; end for; m;

N7124:=Stabiliser(N712,4);
S:={[7,1,2,4D;
SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SSS] do
for n in N1 do
if ts[7]*ts[l]*ts[2]*ts[4]  eq n*(ts[(Rep(SSS[i] )) [1]])*
(ts [ (Rep (SSS [i] )) [2] ]) * (ts [ (Rep (SSS Ci]) ) [3] ]) * (ts [ (Rep (SSS [i])) [4] ]) 
then print Rep(SSS[i]);
end if;
end for;
end for;

for n in N do if [7,1,2,4] "n eq [ 10, 8, 2, 5 ] 
then N7124:=sub<N|N7124,n>; end if; end for;
for n in N do if [7,1,2,4] “n eq [ 13, 12, 2, 7 ]
then N7124:=sub<N|N7124,n>; end if; end for;
for n in N do if [7,1,2,4] "n eq [4, 10, 2, 13 ]
then N7124:=sub<N|N7124,n>; end if; end for;
for n in N do if [7,1,2,4]‘n eq [5, 7, 2, 6 ] 
then N7124:=sub<N|N7124,n>; end if; end for;
for n in N do if [7,1,2,4]“n eq [ 1, 5, 2, 3 ] 
then N7124:=sub<N|N7124,n>; end if; end for;
for n in N do if [7,1,2,4]'‘n eq [14, 6, 2, 12 ]
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then N7124:=sub<N|N7124,n>; end if; end for;
for n in N do if [7,1,2,4]"n eq [ 12, 3, 2, 8 ] 
then N7124:=sub<N|N7124,n>; end if; end for;
for n in N do if [7,l,2,4]~n eq [ 11, 14, 2, 1 ] 
then N7124:=sub<N|N7124,n>; end if; end for;
for n in N do if [7,1,2,4]“a eq [8, 4, 2, 14 ]
then N7124:=sub<N|N7124,n>; end if; end for;
for n in N do if [7,1,2,4]~n eq [3, 13, 2, 11 ]
then N7124:=sub<N|N7124,n>; end if; end for;
for n in N do if [7,l,2,4]~n eq [ 6, 11, 2, 10 ]
then N7124:=sub<N|N7124,n>; end if; end for;

T7124:=Transversal(N,N7124);
for i in [l..#T7124] do
ss: = [7,l,2,4] ~T7124[i];
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..2640] do if cst[i] ne []
then m:=m+l; end if; end for; m;

N7139:=Stabiliser(N713,9);
S :={ [7,1,3,9] ]■;
SS:=S‘N;
SSS:=Setseq(SS);
for i in [l..#SSS] do
for n in N1 do
if ts[7]*ts[l]*ts[3]*ts[9]  eq n*(ts[(Rep(SSS[i]))  [1]])*
(ts [ (Rep (SSS [i])) [2] ]) * (ts [ (Rep (SSS [i])) [3] ]) * (ts [ (Rep (SSS [i] ) ) [4] ]) 
then print Rep(SSS [i]);
end if;
end for;
end for;

for n in N do if [7,1,3,9]“n eq [14, 11, 3, 2 ] 
then N7139:=sub<N|N7139,n>; end if; end for;
for n in N do if [7,1,3,9]"n eq [ 12, 14, 3, 6 ]
then N7139:=sub<N|N7139,n>; end if; end for;
for n in N do if 17,1,3,9]^ eq [ 11, 12, 3, 1 ]
then N7139:=sub<N|N7139,n>; end if; end for;
for n in N do if [7,1,3,9]“n eq [9, 4, 3, 7 ]
then N7139:=sub<N|N7139,n>; end if; end for;
for n in N do if [7,1,3,9]"n eq [4, 6, 3, 8 ]
then N7139:=sub<N|N7139,n>; end if; end for;
for n in N do if [7,1,3,9]"n eq [2, 8, 3, 14 ]
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then N7139:=sub<N|N7139,n>; end 
for n in N do’ if [7,1,3,9] "n eq 
then N7139:=sub<N|N7139,n>; end 
for n in N do if [7,1,3,9]“n eq 
then N7139:=sub<N|N7139,n>; end 
for n in N do if [7,1,3,9]"n eq 
then N7139:=sub<N|N7139,n>; end 
for n in N do if [7,1,3,9]~n eq 
then N7139:=sub<N|N7139,n>; end 
for n in N do if [7,1,3,9]"n eq 
then N7139:=sub<N|N7139,n>; end 
for n in N do if [7,1,3,9]*n  eq 
then N7139:=sub<N|N7139,n>; end

if; end for;
[ 1, 13, 3, 11 ] 
if; end for;
[ 5, 2, 3, 13 ] 
if; end for;
r 6, 9, 3, 12 ] 
if; end for;
[ 13, 7, 3, 5 ] 
if; end for;
[7, 1, 3, 9]
if; end for;
[ 8, 5, 3, 4 ] 
if; end for;

T7139:=Transversal(N,N7139); 
for i in [l..#T7139] do 
ss : = [7,1,3,9] ~T7139[i] ; 
cst[prodim(l, ts, ss)] := ss; 
end for;
m:=0; for i in [1..2640] do if cst[i] ne [] 
then m:=m+l; end if; end for; m;
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