
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2010

An open source graphics engine for three-dimensional video An open source graphics engine for three-dimensional video

games games

David Lee Gardner Stover

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Graphics and Human Computer Interfaces Commons

Recommended Citation Recommended Citation
Stover, David Lee Gardner, "An open source graphics engine for three-dimensional video games" (2010).
Theses Digitization Project. 3848.
https://scholarworks.lib.csusb.edu/etd-project/3848

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3848?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3848&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

AN OPEN SOURCE GRAPHICS ENGINE

FOR THREE-DIMENSIONAL VIDEO GAMES

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

David Lee Gardner Stover

June 2010

AN OPEN SOURCE GRAPHICS ENGINE

FOR THREE-DIMENSIONAL VIDEO GAMES

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

David Lee Gardner Stover

June 2010

Computer Science

Arturo I.

David Turner
and E

Approved by:

G/g/j-otO
Date f

©2010 David Lee Gardner Stover

ABSTRACT

Mythic is a new three-dimensional (3D) game being developed at CSUSB. To support

Mythic, a new game engine called Geng, which is derived from “game” and “engine”,

is being developed in the School of Computer Science and Engineering at CSUSB.

Geng consists of several modules, including core graphics, physics, artificial intelli­

gence, and a high-level application programming interface (API). The focus of this

master’s project is the development of the Geng core graphics engine, which is called

the Multi-platform All-purpose Graphics Engine (MAGE). The platforms supported

by MAGE include Windows, Linux, Mac OS X, and the iPhone 3GS. For Windows

platforms, Mage provides support for both Direct3D and OpenGL, the two leading

lower level APIs for 3D graphics development. The architecture of MAGE is based on

a unified 3D graphics API that hides the specific implementation details of OpenGL

and Direct3D. MAGE also provides support for keyframe animation, Cg vertex and

fragment shaders, GLSL vertex and fragment shaders, loading static models stored

in the Collada file format, loading static and dynamic models stored in Microsoft’s

X file format, support for graphical user interface (GUI) elements, support for video,

support for text, and support for 3D picking. Although MAGE has been developed

within the context of Geng, it is not dependent on Geng, and therefore can be used

as the core graphics engine for other applications as well.

iii

ACKNOWLEDGEMENTS

There are many people I would like to thank for helping me with this project.

First and foremost is my project advisor, Dr. Turner. He gave me a lot of encour­

agement and advice along the way. I would also like to thank my committee members

Dr. Concepcion and Dr. Yu. They also provided tremendous support. I would like

to thank Dr. Mendoza, my graduate advisor.

Last but not least, I would like to thank my family. My mother and father provided

encouragement. My wife provided love and support. My children, Evan and Kyle,

provided inspiration.

This work is supported by National Science Foundation CPath Award No. CNS-

0938964.

iv

TABLE OF CONTENTS

Abstract... iii

Acknowledgements iv

List of Tables... viii

List of Figures ix

1. Introduction.. 1

1.1 Background.. 1

1.2 Purpose.. 1

1.3 Project Scope.. 2

1.4 Tools and Compatibility... 2

1.5 Project Limitations.. 3

1.6 Definitions, Acronyms, and Abbreviations .. 3

2. An Overview of Three-dimensional Graphics... 7

2.1 Description of Three-dimensional Graphics.. 7

2.2 Real-time Interactive Three-dimensional Graphics.............................. 12

2.3 The Illusion of Three-dimensions ... 13

3. Architecture and Design... 15

3.1 Relationship To Geng... 15

3.2 The Unified Application Programming Interface................................. 16

v

3.3 Geometry................. 21

3.4 Transformations.. 23

3.5 Coordinate Systems.. 25

3.6 Angles... 25

3.7 Texture Mapping... 26

3.8 Shaders .. 27

3.9 The Graphical User Interface ... 29

3.10 Three-dimensional Picking.. 30

4. Three-dimensional Models... 32

4.1 Model Class Structure.. 32

4.2 Loading Three-dimensional Models.. 33

4.3 Loading Collada Models... 33

4.4 Loading X File Models.. 34

4.5 Model Instancing... 35

5. Keyframe Animation.. 37

5.1 Overview of Keyframe Animation.......................... 37

5.2 The Tweening Process.. 40

5.3 The Skinning Process... 42

6. Examples and Usage... 47

6.1 Using Blender to Create An Animated Model.................................... 47

6.2 Graphical User Interface Demo in Geng.. 56

6.3 Physics Demo in Geng.. 57

6.4 Animation Demo... 58

7. Future Work and Conclusion... 59

7.1 Future Work... 59

vi

7.1.1 Multiple Animation Sequences... 59

7.1.2 Terrain... 59

7.1.3 Shadows.. 60

7.1.4 Reflections... 60

7.1.5 Three-dimensional Text .. 61

7.1.6 Three-dimensional Video.. 61

7.2 Conclusion................................... 61

Bibliography.. 64

vii

LIST OF TABLES

3.1 The Abstract Graphics Class.. 18

5.1 The Source Listing for Tweening ... 41

5.2 The Cg Vertex Shader Used for Skinning... 43

viii

LIST OF FIGURES

2.1 Rectangular Solid Drawn With Perspective Projection........................ 8

2.2 Rectangular Solid Drawn With Orthographic Projection 9

2.3 The Graphics Pipeline.. 11

2.4 Shaded Rectangles Optical Illusion.. 14

3.1 Geng Block Diagram... 16

3.2 Graphics Class Structure... 17

3.3 The Vertex Buffer and Index Buffer Class Structure........................... 23

3.4 Texture Mapping Class Structure... 27

3.5 Vertex Shader and Fragment Shader Class Structure 28

3.6 The Graphical User Interface Class Structure 30

4.1 The Model Class Structure.. 32

4.2 The Class Structure for Reading Collada Files.................................... 34

4.3 The Class Structure for Reading X Files... 35

4.4 Model Class Structure With SceneNode.. 36

5.1 Distortion Effect When Rotating a Square.. 38

5.2 Cosine Wave.. 38

5.3 Sine Wave... 39

5.4 The Animation Class Structure.. 42

6.1 The Initial View In Blender.. 48

6.2 Side View After Thinning the Cube.. 50

ix

6.3 The Subdivide Button in Blender....................... 51

6.4 The Robot Model in Blender.. 52

6.5 Robot With First Bone Added... 53

6.6 Robot With Parent And Child Bone ... 54

6.7 Blender With Skeleton... . 55

6.8 The Graphics Engine Demo Using Geng.. 57

6.9 Robots Chasing Each Other.. 58

x

1. INTRODUCTION

1.1 Background

Mythic [B4] is a 3D video game project in development at CSUSB. To provide the

future functionality needed by Mythic, a new game engine is being developed in

the School of Computer Science and Engineering at CSUSB. This game engine is

called Geng, which is derived from the words “game” and “engine.” Geng contains

several modules, including a graphics engine. The focus of this master’s project is

the development of the graphics engine for Geng which is called the Multi-platform

All-purpose Graphics engine (MAGE).

1.2 Purpose

The purpose of MAGE is threefold. The primary purpose is to provide a 3D graphics

foundation for the Geng project, which is a CSUSB project to develop a game engine.

The second purpose is to facilitate the teaching of 3D graphics programming. In this

regard, it will serve as both a sample of graphics engine organization and as a possible

starting point for further development by students at CSUSB. The third purpose is

to construct a 3D graphics engine capable of shader-based skeletal animation that

runs on as many platforms as possible. The platforms supported include Windows,

Mac OS X, Linux, and the iPhone 3GS.

1

1.3 Project Scope

The scope of the project consists of the architecture, design, and implementation of

the core graphics functionality required by Geng. This includes vertex buffer objects,

vertex and fragment shaders, keyframe animation, and the loading and rendering of

3D art assets. These features are supported on multiple platforms.

In order to fully support the Windows platform, support was added for DirectX,

a multimedia framework developed by Microsoft that is used for games and other

multimedia applications. To support both OpenGL and Direct3D, a unified class

structure was created that hides the differences between OpenGL and Direct3D.

The result is a unified API that can be used on platforms that support OpenGL,

such as Linux and MacOS X, as well as the Windows platform, which supports both

OpenGL and Direct3D. An additional benefit is gained on machines that support

both OpenGL and Direct3D since the developer can switch between the two APIs

and immediately compare the visual similarities and differences.

The advantage of this approach is clear: any application developed using MAGE

on one of these platforms can be used, without modification, on all of the other

platforms mentioned. The only exception is the limitation imposed by the underlying

hardware, which potentially affects the number and detail of rendered objects.

MAGE is designed to take advantage of the 3D graphics acceleration provided

by modern GPUs. This is achieved by using advanced features of the underlying

graphics APIs, including, but not limited to, vertex buffer objects (VBOs), index

buffer objects (IBOs), texture mapping, and vertex and fragment shaders.

1.4 Tools and Compatibility

MAGE is an open-source 3D graphics class library that is built using open source

and other freely available libraries. This includes SDL, OpenGL, the Cg Toolkit,

2

ffmpeg, Bullet physics, and the DirectX SDK. It is written in the C+d- language

and is primarily developed in the Windows XP platform using Visual Studio 2008.

Subversion (SVN) is used as the source control tool, and Tortoise is used as the SVN

client. Cygwin, a Windows port of the Unix command-line interface, is used as the

command-line interface.

1.5 Project Limitations

MAGE is designed to support multiple platforms. It can be built and run on Windows,

Mac OS X, Linux, and the iPhone 3GS. The minimum requirements for using MAGE

are DirectX 9 (for Windows only), OpenGL version 2.0, the Cg Toolkit version 2.0,

and a graphics card that supports Shader Model 2.0. For the iPhone, the Cg shader

language is not available, so the only shading language supported is GLSL. The iPhone

is also limited in the use of OpenGL since it only supports OpenGL ES. OpenGL ES

is an OpenGL implementation designed for embedded systems. Other limitations of

the iPhone are hardware related, including a relatively small amount of memory, a

small screen size, and the lack of a physical keyboard.

1.6 Definitions, Acronyms, and Abbreviations

• Blending: The process of combining multiple images in some proportion to create

a single image. This is related to the process of transparency.

• Bump Mapping: Adds texture to images by performing lighting calculations with

respect to the normals assigned to vertices. Creates the illusion of a bumped

surface by causing perturbations in the surface normals.

• Cg Shading Language: Cg is a language for writing vertex and fragment shaders

created by Nvidia.

3

• Direct3D: A 3D API developed by Microsoft designed for use on Windows ma­

chines. Direct3D is a module within DirectX.

• DirectX: A set of modules that serves as a software development kit for creating

multimedia applications on Windows machines. It was originally called the Game

SDK and was motivated by the need of game programmers to bring cutting edge

graphics to early Windows releases.

• Face Culling: When drawing a polygon, only one of the faces can be seen. The

other face can be culled, which means it is not drawn.

• Geng: A game engine being developed at CSUSB to support Mythic.

• GLSL: The OpenGL shading language.

• Glow Effect: A glow is a bright diffuse light that emanates from an object. Where

the object has well-defined boundaries, the glow has a fuzzy boundary. This can

be achieved by blending a special glowing image with the original image.

• Graphics Engine: Provides support for graphics functionality needed by an ap­

plication. Also called a graphics library or a graphics API.

• GPU: Graphics Processing Unit. Also called a Graphics Card. Previously called

a Graphics Accelerator, modern GPUs are also used for scientific computation

and in some cases are designed solely for scientific computation.

• HUD: Stands for heads-up-display. Pixels that are always in front of other pixels

and are transformed with the camera. That is, the HUD is effectively part of

the camera. May include GUI objects.

• Keyframe Animation: A skeletal structure is associated with vertices. Each bone

is a transformation, and each vertex is controlled by a set of bones. Each frame

of animation is a specification of each bones transformation for that frame. The

4

bone transformations are hierarchical in nature, so transformations are releative

to the parents transformation. The two basic parts of the process are called

tweening and skinning. Tweening is done on the CPU, and skinning is done in

the vertex shader on the GPU.

• Khronos Group: A non-profit consortium that manages OpenGL and other tech­

nologies, primarily associated with 3D graphics technologies.

• MAGE: Multi-platform All-purpose Graphics Engine.

• Mesh: A collection of polygons connected together. Commonly, a mesh will

consist of connected quads forming a rectangular pattern.

• Mythic: A 3D game being developed at CSUSB.

• Normal: A vector that is conceptually orthogonal to a polygon (for the purposes

of 3D graphics, a normal is not required to be perpendicular to a surface). Used

in lighting calculations to determine how much light is reflected by a surface.

• Linear Interpolation: Intermediate positions between points are calculated based

on a linear function.

• Object Culling: Objects that are not in the view volume or are obstructed by

other objects are not drawn.

• OpenGL ES 2.0: An OpenGL specification designed for embedded systems, such

as the iPhone 3GS. It is a streamlined version of OpenGL that provides advanced

features such as vertex buffer objects, frame buffer objects, and shader support.

• Particle Effects: Individual vertices, or small polygons, are controlled indepen­

dently to simulate effects such as dust or smoke.

• Shader: A program that is compiled and downloaded to a graphics card. There

are two main types of shaders: vertex and fragment. Vertex shaders manipu­

5

late the vertices as they come through the graphics pipeline. Fragment shaders

manipulate pixel properties as pixels are processed in the graphics pipeline.

• Stencil buffer: A buffer that contains a value for each pixel. The value indicates

that the pixel should be drawn or ignored.

• Texture Mapping: The mapping of a 2D image onto a 3D object.

• Transparency: Simulating the effect of being able to see a background object

through a foreground object.

• Vertex Buffer Object: A container of vertices that represent the geometry of one

or more 3D objects. Usually used with an index buffer that defines the polygons

that comprise the 3D objects.

• Z-buffer: A data buffer that contains a depth value for each pixel. If the depth

of an incoming pixel is less than that in the buffer, then it is drawn over the

previous pixel, otherwise it is ignored.

6

2. AN OVERVIEW OF THREE-DIMENSIONAL GRAPHICS

In order to set the stage for the following technical discussion of MAGE, an overview

of three-dimensional (3D) graphics programming is presented.

2.1 Description of Three-dimensional Graphics

Current video displays are flat. That is, the images that the user sees are displayed

on a two-dimensional surface, or screen. The challenge for three-dimensional (3D)

graphics programmers, then, is to realistically display a 3D scene on a 2D surface.

Traditionally, artists have represented 3D scenes on 2D canvases using what is

called perspective geometry. The main idea is that objects that are farther away are

smaller, and the size is proportional to the distance along an imaginary line that is

drawn from the object to a designated vanishing point. For example, if you look at

straight railroad tracks at a distance, the rails appear to converge at the horizon.

Figure 2.1 shows a rectangular solid drawn using a perspective view.

7

Fig. 2.1: Rectangular Solid Drawn With Perspective Projection

Another geometric method for displaying objects in a scene is called the ortho­

graphic projection. In this method, lines are drawn the same length without regard

to the distance from the viewer. Figure 2.2 shows a rectangular solid drawn using

orthographic projection. This projection does not present a realistic rendering of

3D, and is not generally used for displaying 3D virtual worlds. It is useful when the

emphasis is not realism, but accuracy in angles and length, such as 3D architecture.

8

Fig. 2.2; Rectangular Solid Drawn With Orthographic Projection

The three-dimensional (3D) graphics programmer is concerned with rendering ob­

jects in a 3D virtual world. The objects to be rendered are represented internally

by vertices in a 3D Euclidean space. The vertices have three components, sometimes

called width, height, and depth, and can be represented by an ordered triple, such as

(x, y, z). Although the designation is arbitrary, x usually represents the horizontal

position, y represents the vertical position, and z represents the depth. After the

final positions for all of the vertices are determined, a perspective calculation is per­

9

formed to realistically display the vertices on a 2D space. The perception of depth is

achieved by performing what is called a perspective projection on the vertices. Per­

spective projection is a mathematical technique that uses a linear transformation to

project 3D geometry onto flat surfaces.

Besides the perception of depth, there are other considerations that a 3D graph­

ics programmer must deal with. If the viewpoint is changed, the geometry in the

scene needs to be transformed accordingly. Another consideration is an object that

obstructs another object. For example, an object in the foreground may obstruct

the view of an object in the background. To render the objects correctly, a depth

buffer is used to determine which vertices can be seen by the viewer. To render the

objects efficiently, the vertices that are obstructed can be culled. This means they are

removed from the scene before the scene is rendered.

Modern day graphics processing units (GPUs) are designed to efficiently perform

these fundamental transformation and culling operations. Graphics programmers

need to be familiar with the basic architecture of the GPU in order to create programs

that effectively render 3D objects. The basic GPU architecture is built on top of a

pipeline structure [B7, Bll]. The graphical objects can be conceptualized as sets of

polygons defined over vertices, also called the geometry of the scene. The programmer

defines the geometry of the scene and the GPU processes the vertices to produce the

pixels that are displayed on a screen. The graphics pipeline consists of several stages,

as exhibited in Figure 2.3.

10

Fig. 2.3: The Graphics Pipeline

The programmer provides the vertices in containers called vertex buffers. In order

to prevent the duplication of vertices due to the fact that polygons can share vertices,

an index buffer can also be used. The index buffer is a container of references to

vertices in the vertex buffer.

The graphics API developed for this project requires the use of vertex buffers to

represent the vertices, and the use of index buffers to define the triangles for models

in the scene. One reason is the efficiency gained, both in space and in time. The

other reason is that some systems are restrictive in how the vertices are represented

and the geometry is presented. For example, Direct3D allows only vertex buffers to

represent vertices, and OpenGL ES allows only triangles to represent the 3D geometry

(OpenGL ES also supports individual points and lines). On the other hand, general

OpenGL allows vertices to be set on an individual basis and geometry to be defined

by more general polygons.

Another fundamental concept in 3D programming is that of texture mapping. Tex­

ture mapping is heavily used in modern 3D applications and is one of the fundamental

operations that GPUs support. Texture mapping is the process of applying 2D im­

ages, such as digitized pictures, to the polygons of 3D objects. Texture mapping is

generally a very efficient way to add realistic patterns of colors to 3D objects, and is

used in many advanced 3D graphical techniques, such as bump mapping.

The last topic discussed in the overview of 3D graphics is that of vertex and frag­

ment shaders. Figure 4 shows the different stages of the graphics pipeline. Modern

graphics cards generally allow two of these stages to be programmed by the appli­

11

cation developer. One of these stages is the vertex processor, and the other is the

pixel processor. Essentially the vertex processor determines the final positions of the

vertices, and the pixel processor determines the final color of the pixels that are dis­

played on the screen. A vertex processing program is called a vertex shader, and a

pixel processing program is called a pixel shader, or alternatively, a fragment shader.

Utilizing the processing power of the GPU, many effects can be achieved, such as wa­

ter waves, particle effects, and customized lighting effects, that would not be practical

for a real-time application otherwise.

2.2 Real-time Interactive Three-dimensional Graphics

MAGE was designed to be used for the creation of real-time three-dimensional (3D)

graphics applications. Real-time applications include, but are not limited to, com­

puter games, scientific simulations, 3D presentation applications, and educational

software. In this type of application, graphical objects are updated and rendered on

a frame-by-frame basis, at a frame rate that is sufficiently high to give the illusion

of smooth motion. This is the same principle that gives motion pictures the illusion

of motion, even though a motion picture consists of fixed images. These images are

shown in sequence, usually at the rate of 24 per second. To achieve this smooth­

motion effect for computer games, generally a higher frame rate is needed, such as

50 frames per second, or higher. The higher frame rate for games is needed due to

the existence of graphical artifacts, or anomalies, that are perceived by the human

eye as a result of the digital nature of computer displays and the level of detail of

rendered objects. It is also important to match the frame rate with the refresh rate

of the computer monitor. If a scene is updated during the screen refresh process,

a graphical artifact known as tearing may result. To put the challenge of creating

real-time graphical applications into perspective, consider that, in order to achieve 50

frames per second, all of the computations required to manipulate all of the objects

12

in a scene must be done within 20 milliseconds. If you play a modern game with this

in mind, you can see how amazing modern games are as a technical achievement.

MAGE is also designed to support interactions with the user. This is needed in a

computer game, and is provided by supporting both 2D and 3D picking. This means

that user can use a mouse to select 3D objects in the scene. Two dimensional overlays

are also supported, for which icons serve as examples.

2.3 The Illusion of Three-dimensions

The term ’’three-dimensional” can have different meanings. For three-dimensional

(3D) movies, special glasses are required to correctly show the slight difference in

images that the left and right eye are viewing, called parallax. This could be called

true 3D, since it simulates true depth of field that the eyes see in the real world. But

this is not the 3D representation that is usual used for 3D computer applications.

For 3D computer applications and games, 3D means that the underlying geometry

is represented using three directions, or coordinates, even though the final image is

displayed on a standard two-dimensional display. That is, it is not true 3D, but

nevertheless our minds perceive it as being 3D.

So how is it, then, that we can perceive a three-dimensional scene displayed in two

dimensions? There are many articles and books that deal with this topic, which is

usually under the moniker of optical illusions. It is the same mechanisms that allows

us to perceive three dimensions when, in actuality, only two dimensions are rendered.

A simple example of an optical illusion is shown in Figure 2.4. The rectangle that

appears to be farther away also appears to be larger than the other rectangle, but

they are the same size. Some more examples of optical illusions are presented in [B3].

13

Fig. 2.4: Shaded Rectangles Optical Illusion

14

3. ARCHITECTURE AND DESIGN

One of the goals of MAGE is to create a unified class structure and execution pattern

that works for both OpenGL and Direct3D. In essence, the graphics engine hides the

specific functionality of both APIs. This was achieved by comparing the similarities

and differences between OpenGL and Direct3D. The result is a unified model that

works for both APIs and represents a practical common denominator between the

two.

3.1 Relationship To Geng

MAGE is designed to be used as the graphics module for games and other multi-media

applications. It was initially intended to be used with Geng, which is a CSUSB project

to develop a game engine, and has been developed alongside Geng, which serves as

the primary example of how to use MAGE. Figure 3.1 shows a layered diagram of

Geng [Bl3]. MAGE consists of the Core Graphics, GUI, Text, Video, and Model

components. Core Graphics includes the functionality that uses the OpenGL and

Direct3D components. Many of the initial requirements for MAGE resulted from the

graphics functionality required by Geng. Although Geng depends on MAGE, MAGE

does not depend on Geng and therefore can be used in other applications.

15

External Program

GEN(3 API

GENG CORE

GUI Tex! Video Model Terrain

SDL
MultiThread

&
Events

Bullet Physics
&

Math

Core Graphics

OpenGL Direct3D SDL
Graphics

Fig. 3.1: Geng Block Diagram

3.2 The Unified Application Programming Interface

The unified application programming interface (API) is encapsulated in an interface

called Graphics. This interface is implemented for OpenGL using a concrete class

called GLGraphics, and for Direct3D using a concrete class called D3DGraphics. A

class diagram for the Graphics class can be seen in Figure 3.2.

16

Graphics

♦sotBackgroundCclorO
+getScreenWidth()
♦gctScrecnHeightO
♦gctAbsolutcScroonCoordsQ
+gefAbsoluteScreenPosition()
+readFromBackBuffcr()
+croatoToxturo()
♦createVertexBufferQ
♦createlndexBufferf)
+onabloMode{)
+disableModc()
+sctPerspcctivoProjcction()
+sotGuiProjoctlon()
+pushMatrix()
♦popMatrixQ
+sotMatrlxModo()
+setldentityMatrix()
♦rotateXQ
♦rotate YQ
♦rotateZQ
♦translated
♦applyT ransformf)
♦startRendering PhaseQ
♦stopRcnderingPhaseQ
♦drawIndoxcdTrlanglosQ
♦getModelVlewProjectionMatrix(): float
♦gctModelCreatorf): ModelCreator

Fig. 3.2: Graphics Class Structure

The Graphics class is the core interface to the unified class structure. Do to the

significance of this class for this project, a listing of the source code for the Graphics

class is provided in 3.1.

17

Tab. 3.1: The Abstract Graphics Class

class Graphics

{

public:

// Error checking

virtual void checkError(const std:;string & message =

std:: string ()) = 0;

virtual void clearError(unsigned int errorCodeToClear) = 0;

// Window functions

virtual void initialize () « 0; // Tasks performed after window

creation.

virtual void setBackgroundColor(float r, float g, float b, float a)

= 0;

virtual void clearDepthAndScreenBuffers() - 0;

virtual int getScreenWidth() = 0;

virtual void setFullScreen(bool useFullScreen) = 0;

virtual int getScreenHeight() • 0;

virtual bool isFullScreen() = 0;

virtual void setViewPort(int x, int y, int width, int height)' = 0;

virtual ScreenCoords getAbsoluteScreenCoords(int guiOrientation,

int offsetX, int offsetY, int width, int height) = 0;

virtual Screenposition getAbsoluteScreenPosition (int x, int y) =■ 0;

virtual bool ScreenCoordsContainsPosition(ScreenCoords coords,

Screenposition pos) =■ 0;

virtual void readFromBackBuffer(int x, int y, int width, int

height, unsigned char *pixels) = 0;

18

// Graphics object creation

virtual TextureReference *createTexture(Textureinfo *info) = 0;

virtual VertexBufferReference *createVertexBuffer(VertexBufferlnfo

*info) = 0;

virtual IndexBufferReference *createIndexBuffer(IndexBufferlnfo

*info) = 0;

virtual ShaderReference *createShader(Shaderinfo *info) - 0;

// Graphics attributes

virtual void enableMode(int mode) = 0;

virtual void disableMode(int mode) ■= 0;

virtual void setAttributesFor3DPicking() = 0;

virtual void unsetAttributesFor3DPicking() « 0;

virtual void setColor (float r, float g, float b, float a) = 0;

virtual void setColor(unsigned int color) = 0;

// Scene transformation functions

virtual void setPerspectiveProjection(float fovy, float aspect,

float zNear, float zFar) = 0;

virtual void setGuiProjection () = 0; // Set the view for GUI mode.

virtual void pushMatrixO = 0;

virtual void popMatrix() = 0;

virtual void setMatrixMode(int mode) - 0;

virtual void setldentityMatrix() = 0;

virtual void rotateX(float angle) = 0; // degrees

virtual void rotateY(float angle) = 0; // degrees

virtual void rotateZ(float angle) = 0; // degrees

virtual void translate (float x, float y, float z) = 0;

// This is conceptually equivalent to glMultMatrix. The matrix

values

// are required to be in column major order.

19

// Use array of floats to maintain independence from a specific

math library

virtual void applyTransformffloat matrix[16]) = 0;

// Rendering functions

virtual void startRenderingPhase() = 0; // Call this before

rendering graphics objects.

virtual void stopRenderingPhase() = 0; // Call this when finished

rendering graphics objects.

virtual void drawIndexedTriangles(int count, int startindex) « 0;

// Draws from currently active vertex and index buffers

virtual void swapBuffers () - 0;

// Misc

virtual float *getModelViewProjectionMatrix () = 0; // row-major

format

virtual bool usingDirect3D () - 0;

virtual void bindOpenGLExtensions () = 0;

// OpenGL and Direct3D have different creators due to some

// underlying differences in vertex formats.

virtual Modelcreator *getModelCreator() = 0;

virtual GuilmageCreator *getGuiImageCreator () « 0;

virtual FontGeometry *createFontGeometry () - 0;

virtual void setShaderlsActive(bool value) ~ 0;

enum {

ALP HA_TRANSPARENCY,

CULLING,

PROJECTION,

MODELVIEW,

TEXTURE_2D,

DEPTH_TEST,

20

ALPHA_TEST,

BLEND,

LIGHTING,

WIREFRAME

};

};

The following sections will discuss the details of the various features provided by

the unified graphics API.

3.3 Geometry

The core functionality of a 3D graphics engine is the handling of 3D geometry and

the transformations of the geometry. The geometry consists of vertices and geometric

primitives defined using the vertices. The primitives include points, lines, and poly­

gons. Although general polygons are supported for both OpenGL and Direct3D, the

use of triangles is usually considered more efficient. For this reason, and also for the

sake of simplicity, MAGE only supports triangles.

OpenGL and Direct3D use different methods for specifying the geometry. OpenGL

is more versatile than Direct3D in this regard. OpenGL allows the vertices to be

specified individually or as arrays of vertices. Direct3D only allows vertices to be

specified as a collection of vertices called a vertex buffer. Later versions of OpenGL

also support the use of vertex buffers and are called vertex buffer objects, or VBOs.

To take advantage of the common support for VBOs, MAGE supports VBOs. Index

buffers can also be used in conjunction with VBOs.

Index buffers contain indicies, or references, to the vertices in a vertex buffer.

The main advantage of using index buffers is to avoid the duplication of vertices for

triangles that share common vertices with other triangles. MAGE requires the use of

index buffers for specifying the triangles.

21

In MAGE, vertex buffers are represented by a VertexBufferReference object, and

index buffers are represented by an IndexBufferReference object. Both of these classes

are abstract, and have OpenGL and Direct3D concrete classes called, respectively,

GLVertexBufferReference, GLIndexBuffer Reference, D3DVertexBufferReference, and

D3DIndexBufferReference. In order to use a vertex buffer, a VertexBufferlnfo object

must be created. This object defines the properties of the vertex buffer. The Graphics

class has a factory method called create Vert exBuffer that creates a VertexBufferRef­

erence. The same pattern is used for creating an IndexBufferReference. First, an

IndexBufferlnfo object is created, then a factory method in Graphics called createln-

dexBuffer is called to create the IndexBufferReference. When a model is drawn, its

vertex buffer and index buffer are activated, and these objects are deactivated after

the drawing is complete. Figure 3.3 shows the structure of the classes related to

vertex buffer objects.

22

Fig. 3.3: The Vertex Buffer and Index Buffer Class Structure

3.4 Transformations

Once the geometry is specified, linear transformations are specified to move the ver­

tices around in the 3D world and control the view. The linear transformations are

represented by matrices. OpenGL and Direct3D have different models for handling

matrix operations. These differences include the representation of the matrices, the

matrix modes used, and the execution model for the matrix operations.

23

I

OpenGL stores matrix values using what is called column-major order. Direct3D

uses row-major order. For multiplication, OpenGL multiplies the vertex on the right,

and Direct3D multiplies the vertex on the left. This difference is actually not a

problem to deal with since the reverse order of the operations is offset by the matrix

order.

The matrix modes used by OpenGL and Direct 3D are slightly different. The

primary matrix modes used in OpenGL are the projection mode and model-view

mode. The model-view matrix moves vertices in the virtual world. Since vertex

movement and camera movement are relative to each other, OpenGL uses a combines

the model matrix and the view matrix. For example, moving the object forward

is equivalent to moving the camera back. Direct3D, on the other hand, uses three

primary matrix modes: the projection matrix, the world matrix, and the view matrix.

The projection matrix is common to both APIs. But instead of combining the model

and the view matrix, Direct3D uses separate model and view matrices. This difference

has an affect on the execution models of the APIs.

OpenGL uses a matrix stack to keep track of the current matrix for both the

projection matrix and the model-view matrix. The concept of a matrix stack is closely

related to the combined model-view matrix. When a scene consists of multiple 3D

objects that move independently of each other, each object will be associated with

a model matrix. But there will still be only a single camera, so only a single view

matrix operation is required. The solution to this is to save the current matrix state

before applying a transformation to a specific model, and then restoring the matrix

state after the transformation is applied. A stack can be used for saving and restoring

the matrix state, and this is the reason the OpenGL execution model uses a matrix

stack. Direct3D, on the other hand, does not need a matrix stack. Each model can be

associated with its own transformation matrix, and a single matrix is used to specify

the position and orientation of the camera, which is shared by all of the models.

24

MAGE uses the OpenGL paradigm with respect to the matrix stack. This is

ultimately an arbitrary decision, but resulted from the need to convert OpenGL code

into a common framework. Therefore the graphics engine implements a matrix stack

explicitly when Direct3D is the targeted lower-level API (since Direct3D does not

provide a matrix stack).

3.5 Co ordin ate Systems

It is usually stated that OpenGL uses a right-handed coordinate system and Direct3D

uses a left-handed coordinate system. This is true, but only with respect to the

default behavior when using certain common utility functions. The handedness of

the coordinate system is ultimately determined by the projection matrix that is used.

The default projection matrix for OpenGL results in a right-handed system. Direct3D

offers utility functions for both a left-handed projection matrix and a right-handed

projection matrix. For both OpenGL and Direct3D, it is quite simple to specify

a custom projection matrix. Nevertheless, MAGE uses a right-handed coordinate

system as the default.

3.6 Angles

For mathematical functions that perform rotations, or otherwise operate on angles,

OpenGL uses degrees. Direct3D, on the other hand, uses radians. Many common

math libraries also use radians. Although an arbitrary decision, MAGE uses degrees.

As with the execution model for transformations, this is a result of moving existing

OpenGL code into a common framework.

25

3.7 Texture Mapping

Texture mapping is the process of applying a standard 2D image to a 3D object, and

is one of the primary techniques used to add realism to a real-time interactive 3D

application. Therefore, texture mapping is one of the fundamental operations per­

formed by specialized graphics cards. Since OpenGL and Direct3D are both designed

to support the use of modern graphics cards for 3D acceleration, it seems plausible

that there may be a similar design pattern between the two APIs. Indeed this is the

case. The implementation developed for this project represents one possibility for a

unified approach to texture mapping.

To use texture mapping in OpenGL, a texture object is created with arguments

indicating the properties of the texture. OpenGL returns an integer that represents

the ID of the texture object. When a graphical object that uses the texture is to

be drawn, the texture object is activated using its ID. After the object is drawn, the

texture object is deactivated.

The texture mapping process is very similar when using Direct3D, although the

underlying implementation details are quite different. Instead of an ID, the Direct3D

library returns a pointer to a texture object. When the graphical object that uses the

texture is be drawn, the texture is activated using the pointer to the texture object.

After the object is drawn, the texture can be deactivated.

A design pattern was created for MAGE that accommodates the common func­

tionality used by OpenGL and Direct3D. This can be seen in Figure 3.4. In order

to create a texture object, a Textureinfo object is created. A Textureinfo object

encapsulates the description and properties of the texture and how it will be applied.

A factory method in the Graphics object creates a TextureReference object from the

Textureinfo object.

26

Fig. 3.4: Texture Mapping Class Structure

Once a TextureReference object is created, it can be activated and deactivated

in order to apply the texture to a specific object. The implementation details for

activation and deactivation are different for OpenGL and Direct3D, and so there are

concrete classes called GLTextureReference and D3DTextureReference that provide

the specific functionality for the two APIs.

3.8 Shaders

Support for customized vertex and fragment shaders is supported through the use of

the Cg language. Cg was chosen as a shading language because it supports multiple

platforms and graphics APIs. It works with both OpenGL and Direct3D. Runtime

libraries for Cg are available for Windows, Linux, and Mac OS X. In addition to Cg,

GLSL is also supported. GLSL is the OpenGL shading language. Cg and GLSL

support the same fundamental features, and they both use a C-style syntax. Support

for the GLSL shading language was added for platforms that support OpenGL but

27

may not support the Cg language. The structure for the classes that support shaders

is shown in Figure 3.5.

Fig. 3.5: Vertex Shader and Fragment Shader Class Structure

The process for using vertex and fragment shader programs is as follows. First the

shader programs are written and saved as text files. In MAGE, a Shaderinfo object

is created for each shader program. For each Shader Info object, a Shader Reference

object is created. Then the load method of each ShaderReference is called by passing

the associated Shaderinfo object. This creates a reference to each shader program.

The shader programs are compiled and loaded onto the graphics card.

Shader programs usually require access to data that the main application main­

tains. In order to set the appropriate data values for a shader, the ShaderReference

28

methods setUniformParameter, setUniformTexture, setUniform Array, and setUnifor-

mMatrix can be called. The names of the data values used must be bound to the

shader program before it is used by calling the bindParameterName method.

When a shader program is used to render a model, the corresponding Shader-

Reference object is activated. When the rendering of the model is complete, the

corresponding Shader Reference object is deactivated. When a shader program is no

longer needed, the corresponding Shader Reference object is destroyed.

3.9 The Graphical User Interface

A graphical user interface generally consists of buttons, text input controls, combo

boxes, and other graphical controls that a user operates on using a mouse or other

pointing device. In a 3D application, where the user also interacts with 3D objects and

can manipulate the 3D scene, the entire application can be thought of as a graphical

user interface. The distinction can be made between the 2D controls and the 3D

scene by referring to the collection of 2D controls simply as the GUI. The elements in

the GUI move with the camera and are always displayed in front of other objects in

the scene, i.e. they are fixed with respect to the view. The GUI can also be referred

to as the HUD, for heads-up-display, and the individual elements of the GUI can be

referred to as overlay elements, since they overlay the objects in the 3D scene. The

elements in the GUI are subclasses of the GuiOverlay class. They include GuiText,

Guilmage, and GuiVideo. The class structure of the GUI in shown in Figure 3.6.

29

Fig. 3.6: The Graphical User Interface Class Structure

The GUI elements are drawn onto polygons, so the underlying geometry is rendered

using the same functionality as the 3D objects in the virtual world. For this reason,

the separate classes D3D Font Geometry and GLFont Geometry are used, respectively,

to access Direct3D and OpenGL specific functionality.

3.10 Three-dimensional Picking

Three-dimensional (3D) picking refers to the process of selecting a 3D object in the

scene using a pointing device, such as a mouse. The method used for MAGE uses

the back buffer and is a pixel-perfect picking method. The Graphics class provides

a method called readFromBackBuffer. When a user selects an object in the scene,

30

each object is given a unique color and drawn to the back buffer. This image is not

displayed on the screen. Instead, we look at the position selected, get the color at

that position, and find the object that was drawn with that color.

31

4. THREE-DIMENSIONAL MODELS

4.1 Model Class Structure

A three-dimensional (3D) model encapsulates the graphical attributes of an object

that exists in a 3D virtual world. They are represented as instances of the Model

class, shown in Figure 4.1.

Fig. 4.1: The Model Class Structure

The main method in the Model class is draw, and it takes an argument called

picking. If picking represents a true value, then the model is drawn for the purpose

of 3D picking. In this case, the model is drawn with its unique picking color.

A model is created by first creating a Modelinfo object that contains all of the

32

information needed to describe the model. Then the method createModel in the

Graphics concrete class is used to create a Model object from the Modelinfo object.

Due to the underlying differences in the vertex structures for OpenGL and Direct3D,

each lower level API has its own class. For OpenGL there is the GLModelCreator,

and for Direct3D, there is the D3DModelCreator.

GeneralModel is a special subclass of Model that supports animation and texture

mapping using Cg shaders. Depending on whether the model has a texture defined

for it, or whether or not it has an animation sequence, GeneralModel will choose the

appropriate shaders to correctly render the model.

4.2 Loading Three-dimensional Models

One of the major challenges of three-dimensional (3D) graphics programming is the

creation and integration of content. The content consists of 3D art assets that are

displayed in the scene. Generally, external programs are used to create the art assets,

including 3D models, which are then exported into an intermediary file format, and

eventually imported into the 3D graphics application. One such file format is called

Collada. Blender, a free 3D model creation tool, can be used to create 3D models

and export them to a Collada file. Another file format that is often used is the X file

format, which is also supported by this graphics engine.

4.3 Loading Collada Models

For this graphics engine, a simple XML file reader is used to read Collada files.

Currently, only static models consisting of a single mesh are supported. Figure 4.2

shows the class structure for the loading of a 3D model from a Collada file. This class

structure represents the nodes In the Collada file that are relevant to storing a single

mesh object.

33

1

DaeFlla Dae Co Had aH ode DaeL I bra ry Effec laN od e DaeEffectNode

1 f* 1 1 1

<r< i
Da eLibrary 1 mag esNode DaelmageNoda

1
1

IE
D aeLlbrary Vlsu alScone sNode OeeVlaualSceneNode

-A.
DaeSceneNode

1 ■ 1 •

1

D a e <J bra ry M alerts! s N o do

♦1___
DaeMaterlalNoda Dm! n sta nceGeom a try N o de

1

I

DaelnalervceEffeciNode

1

Fig. 4.2: The Class Structure for Reading Collada Files

Once the model data is loaded, an instance of the Model class is created, and can

be used in the 3D scene.

4.4 Loading X File Models

Another format that is supported is called the X file format. Blender can be used to

export 3D models to the X file format. These files have the extension x, for example

box.x. The graphics engine supports models in this format that have a single mesh

and can include keyframe animation data as well as surface normals and texture

34

coordinates.

To support the X file format, a simple adhoc parser was developed. Figure 4.3

shows the classes responsible for reading the data from an X file and creating a 3D

model with the data. After the X file is parsed, a ModellnfoCreator object is created.

A ModellnfoCreator creates a Modelinfo object, which is used to create the Model

object. The XFile object is also responsible for creating a KeyframeAnimation object

from the information stored in the X file.

Fig. 4.3: The Class Structure for Reading X Files

4.5 Model Instancing

Model instancing is an important feature and is supported in this graphics engine.

Instancing refers to the concept whereby multiple objects in a scene can share the

same underlying geometric data. For example, a scene can consist of several Orcs.

Each Orc will be in a different state of behavior and motion. But the geometric data

35

for an Orc can be large, and if this data is duplicated for each Orc the system resources

can be quickly used up. Figure 4.4 shows the class structure for the representation

of 3D models. The geometrical data is contained in the Model class. The dynamic

properties of an object in the scene, including current position, are contained in the

SceneNode class.

Fig. 4.4: Model Class Structure With SceneNode

36

5. KEYFRAME ANIMATION

5.1 Overview of Keyframe Animation

Animation can refer to any dynamic motion of objects in a scene. A distinction is

made between real-time animation and pre-rendered animation. For real-time ani­

mation, the positions and orientations of objects are calculated when the program is

running. For pre-rendered animation, the positions and orientations of objects are

calculated before the program runs, and are stored in the file system. Due to the time

constraints of real-time applications, it is advantages to pre-compute animation se­

quences when possible. In some animation sequences, such as running or walking, the

motions are highly repetitive in nature and lend themselves to pre-computation with­

out loss of realism. One technique that uses pre-computed values is called keyframe

animation.

Keyframe animation is a technique that uses pre-calculated positions to represent

individual frames of an animated object. To get the position of an object at an instant

of time that is in between two keyframes, linear interpolation is applied between the

two frames to get the approximate position.

Using linear interpolation for rotations can have an interesting side-effect if the

angle of rotation between successive snapshots is too large. For example, a square is

to be rotated 90 degress in the counter-clockwise direction. If linear interpolation is

used for the rotation, the square appears to shrink as it rotates from 0 to 45 degrees,

and then increases in size as it rotates from 45 to 90 degrees. This is shown in

Figure 5.1.

37

Fig. 5.1: Distortion Effect When Rotating a Square

The effect is caused by performing a linear approximation of a cosine wave and a

sine wave. The x and y values for a rotating point are given by x = r * cos(a) and

y = r * sin(a), where r is the distance from the point to the axis of rotation and a

is the angle of rotation. Figure 5.2 shows the graph of a cosine wave, and Figure 5.3

shows the graph of a sine wave.

Fig, 5.2: Cosine Wave

38

In each graph, a straight line is drawn to represent a linear approximation for the

curve as the angle a varies from 0 to p/2 radians. It is observed that both the x

and y values are smaller for the line than for the cosine and sine waves, which is the

reason the square appears to shrink when the angle goes from 0 to 45 degrees. Using

more snapshots, or frames, in the animation minimizes the amount of distortion.

Experiments show that using approximately 10 frames is sufficient to show a smooth

rotation without perceivable distortion.

For more complex animation motions, such as animating a human figure, a basic

bone structure, or skeleton, can be created. Each vertex in the figure that represents

the human being is associated with one or more bones in the skeleton. At regular

intervals, the position of each bone is recorded. In this way we can determine the

position of each vertex for each interval of time. To get the position of a vertex at a

specific instant in time, the average between two recorded positions can be performed.

This process is also known as morphing or tweening. The tweening implementation

for MAGE is discussed in Section 5.2.

39

To get more realistic behavior for vertices, they can be associated with multiple

bones. The final position of each vertex is a weighted average between several bones.

Linear interpolation can also be used to get the final approximated position of each

vertex. This process is called skinning, since it used to simulate how skin is stretched

when connected bones move relative to each other. The skinning implementation for

MAGE is discussed in Section 5.3.

5.2 The Tweening Process

Each frame in a keyframe animation is a snapshot of the positioning of a skeleton,

which consists of a collection of bones. Each vertex is associated with a number of

bones. A bone is represented by a transformation, which determines the position of

the bone. A bones transformation is applied to the vertices that it influences. To

find the final position of a vertex for a given frame, its bone transformations are

applied to it. The first step is to get the bone transformations at a given instant

of time. This step is known a tweening. Assume an animation takes T seconds and

consists of N frames. So each frame has a time interval of T/N. For each bone, there

is a transformation defined for each interval. Let ■ ••Xv represent the boundary

points for the time intervals. Let t be the current time, and assume 0 < t < N.

Then there is an i and j such that ti < t < tj. For each bone, we can get the

transformation at ti and tj, and then perform a linear interpolation computation to

get the transformation at t. Once we have all of the bone transformations at time

t, we can determine the influence of the bones on the vertices, which is the skinning

process and is discussed in Section 5.3. MAGE performs the tweening process in

a class called GeneralModel. This class reads a model from an X file. The model

could be a static model or it can include keyframes. The model can also have texture

coordinates and normals defined for it, in which case the GeneralModel class will

apply the appropriate operations to render it correctly. Below is the source code in

40

GeneralModel that performs the tweening process (Listing 5.1).

Tab. 5.1: The Source Listing for Tweening

float elapsedTimeRatio => currentTime / totalTime;

int currentKeyframe = elapsedTimeRatio * (numberOfKeyframes - l.Of);

int nextKeyframe = currentKeyframe + 1;

float perFrameTime = totalTime / (numberOfKeyframes - l.Of);

float frameStartTime = (float) currentKeyframe * perFrameTime;

float frameTimeRatio = (currentTime - frameStartTime) / perFrameTime;

int boneTransformsIndex = 0;

for (int boneindex = 0; boneindex < numberOfBones; ++bonelndex) {

int currentFrameStartlndex =

(boneindex * numberOfKeyframes + currentKeyframe) * 16;

int nextFrameStartlndex « currentFrameStartlndex +■ 16;

for (int matrixindex = 0; matrixindex < 16; ++matrixlndex) {

boneTransforms[boneTransformsIndex++] =

keyframeTransforms[currentFrameStartlndex + matrixindex]

* (l.Of - frameTimeRatio)

+ keyframeTransforms[nextFrameStartlndex +

matrixindex] * frameTimeRatio;

}

}

vertexShader->setUniformArray("boneTransforms", 0,

(int) numberOfBones * 4,

boneTransforms);

41

The animation object is an instance of the Keyframe Animat ion class shown in

Figure 5.4.

Fig. 5.4: The Animation Class Structure

5.3 The Skinning Process

The tweening process will determine the bone positions at a given time t. The next

step is to determine the influence of the bones on each vertex, which is called the

skinning process. Since this is a per-vertex operation, it can be more efficiently done

in a vertex shader.

For each vertex v, we get the bone transformations and bone weights that influence

the vertex. Assume that v is influenced by four bone transformations called Bi, B^

B^, and and that the weights are, respectively, w2, w3) and w4. An important

condition for the weights is that wi 4- w2 4- w3+w4 = 1. To calculate the final influence

on v, the linear interpolation equation is applied to get the resultant transformation

42

Br = Wi * Bi + k?2 * B2 + W3 * B3 + W4 * B4. The resultant transformation Br is applied

to v to get its final position.

MAGE performs the skinning process in a Cg vertex shader. As mentioned in

Section 5.2, the class called GeneralModel loads a model from an X file. If the

model contains animation data, then the appropriate shader is invoked to render the

animation. Below is the code for the vertex shader that performs the skinning (Listing

5.2).

Tab. 5.2: The Cg Vertex Shader Used for Skinning

struct appin {

float3 position : POSITION;

float3 normal : NORMAL;

f loat2 texcoordO ;: TEXCOORDO

float2 texcoordl ;: TEXCOORD1

float2 texcoord2 : TEXCOORD2

};

struct fragment (

float4 position : POSITION;

float2 texcoordO :: TEXCOORDO;

};
n---

// IN - incoming per-vertex data to be processed

// transform - matrix representing current animation

// worldViewProj - combined world-view-projection matrix

//---

fragment main(appin IN,

43

uniform float4 offsetTransforms[40],

uniform float4 boneTransforms[40],

uniform float4x4 worldViewProj) {

fragment OUT;

int i = 0;

int j = 0;

int bonelndexO == IN.texcoordl.x;

int bonelndexl = IN.texcoordl.y;

float boneWeightO = IN.texcoord2,x;

float boneWeightl = IN.texcoord2.y;

// Normalize the weights (just in case)

float totalweight = boneWeightO + boneWeightl;

if (totalWeight > 0) {

boneWeightO = boneWeightO / totalWeight;

boneWeightl = boneWeightl / totalWeight;

float4x4 boneOffsetO « float4x4(offsetTransforms[bonelndexO * 4],

offsetTransforms[bonelndexO *4+1],

offsetTransforms[bonelndexO * 4 +2],

offsetTransforms[bonelndexO * 4 + 3]);

float4x4 boneOffsetl = float4x4(offsetTransforms[bonelndexl * 4],

offsetTransforms[bonelndexl *4+1],

offsetTransforms[bonelndexl *4+2],

offsetTransforms[bonelndexl * 4 + 3]);

float4x4 boneTransformO = float4x4(boneTransforms[bonelndexO * 4],

boneTransforms[bonelndexO * 4 + 1],

boneTransforms[bonelndexO * 4 + 2],

boneTransforms[bonelndexO * 4 +3]);

float4x4 boneTransforml - float4x4 (boneTransforms[bonelndexl * 4],

44

boneTransforms[bonelndexl *4+1]

boneTransforms[bonelndexl *4+2],

boneTransforms[bonelndexl * 4 + 3]);

float4x4 boneResultO = mul(boneOffsetO, boneTransformO);

float4x4 boneResultl = mul (boneOffsetl, boneTransforml);

//

//

// Interpolate the 2 bones according the the weights

//

//

float4x4 resultTransform = float4x4 (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

// Do the interpolation to set the result animation transform

for (i •= 0; i < 4; i++) {

for (j = 0; j < 4; j++) {

resultTransform[i][j] = boneWeightO * boneResultO[i] [j]

+ boneWeightl * boneResultl[i][j];

}

}

///

//

// Get the final position by applying the result transform

//

///

float4 initialposition = float4 (IN.position.x,

IN.position.y,

IN.position.z,

l.Of);

float4 resultposition « float4(IN.position.x,

45

IN.position.y

IN.position,z,

l.Of) ;

resultposition = mul(resultposition, resultTransform);

// Vector on the right since worldViewProj matrix is transposed,

OUT.position = mul(worldViewProj, resultposition);

// Pass texture coordinates to the fragment shader.

OUT.texcoordO = IN.texcoordO;

return OUT;

46

6. EXAMPLES AND USAGE

One of the features provided by MAGE is the loading of 3D models from external

resource files. For example, a 3D model can be created using an open-source tool

called Blender [Bl]. MAGE requires that the data exported from Blender follows a

strict format. Therefore, a tutorial is presented that shows how to create a 3D model

that can be used in MAGE. After the Blender tutorial, demonstration applications

that use Geng are discussed.

6.1 Using Blender to Create An Animated Model

Blender [Bl] is an open-source application for creating 3D objects. It is the free

alternative to programs like 3D Studio Max and Maya, which can cost thousands of

dollars. Blender is available for Windows, Linux, and Mac OS X. This tutorial will

show how to create a very simple robot, how to add an animation sequence, how to

create the texture coordinates, and how to export the model to the X file format.

The tutorial will also cover the how to add the model to a scene using Geng and this

graphics engine.

When Blender is first opened, there is a default scene consisting of a cube, a light,

and a camera. The light and camera can be ignored for the purposes of this tutorial.

Initially there are two panels. There is the view panel and the button panel. The

view panel is used to edit the 3D model. The button panel is used to set various

properties of the model. In the lower left corner of the view panel is a 2D graph

showing the y-axis pointing up and the x-axis pointing to the right. This indicates

47

that the current view is the top view. Figure 6.1 shows the initial view panel when

Blender starts up.

Fig. 6.1: The Initial View In Blender

When the up-arrow is pressed while holding the control key, the view that the

mouse pointer is over will become maximized. This can be useful to see some of the

smaller items in the view, or when buttons in the panel are difficult to see. Pressing

the up-arrow again while holding the control key returns to the multiple view state.

To zoom in to get a closer look at the object, the + key on the number pad is pressed.

To zoom out, the - key is pressed.

There are several modes associated with a view. These include object mode and

48

edit mode. Initially the view is in object mode. Object mode is used to modify the

object as an individual unit. Edit mode is used to modify the individual vertices of

the object. Initially the view is in object mode.

The menu bar can be used to switch to the front view. This is done by pressing the

view menu and selecting front from the available choices. The first step is to move the

cube so that it is resting on the red line. This is done while in object mode. Pressing

the A key will toggle the selection of all the objects. Press the A key until all of the

objects are deselected, and then right-click on the cube to select only the cube. Once

the cube is selected, press G to grab the cube and move the mouse until the cube

is resting on the red line. The next step is to change the thickness of the cube. To

do this, switch to the side view and then switch to edit mode by pressing the TAB

key until Edit mode is displayed in the menu bar below the view. Groups of vertices

can be selected by pressing the B key and using the mouse. The left mouse button is

pressed and then the mouse is moved to create a rectangle. All of the vertices inside

the rectangle are selected. Select the vertices on the left of the cube, press the G

key to grab the vertices, and then use the mouse to move the vertices to the right.

Use the A key to deselect everything, then use the B key to grab the vertices on the

right and move them closer to the center. Now the object will be thinner, as shown

in Figure 6.2. The faces of the object can be made transparent by using the Z key

while in object mode.

49

7 Yis^-. SB|B-P* Mash, | A Edit Mods , I s] ID I Globa) [©I?| |^|j

Fig. 6.2: Side View After Thinning the Cube

Basic operations on the initial cube can transform it into a simple robot. The

operations include subdivision and extrusion. Subdivision creates new vertices in

between existing vertices. Extrusion creates new vertices from existing vertices by

copying the existing vertices and allowing the user to pull or extrude the vertices to

create new polygons. These new polygons become part of the existing mesh.

The next step is to subdivide the object so that arms and legs can be created.

To do this switch to the front view and make sure the current mode is edit mode.

Press A until all of the vertices are selected. Then press subdivide in the menu panel,

shown, in Figure 6.3. The model now represents the body of the robot. Extrusion can

be used to create the limbs and the head.

50

Fig. 6.3: The Subdivide Button in Blender

In edit mode and with all of the vertices deselected, select the two right-most

bottom vertices. Since this is a 3D model, the hidden vertices behind the selected

vertices should also be selected. Now press the E key and select Region from the

extrude menu. Then the mouse is moved to pull the vertices down to create a leg.

The G key can be used to grab the vertices to move them to the desired position.

This same process can be used to create the other leg, the arms, and the head. The

robot model is shown in Figure 6.4. This is a very crude model, but the same basic

operations can be used to create a much more detailed model.

51

Fig. 6.4: The Robot Model in Blender

The next step is to create the skeleton. For this, the view should be in object

mode. Then press the space bar and select armature from the pop-up menu. Press

the G key to grab and then move the armature so that it is over the right leg, then

press the R key to rotate the armature so that it is parallel to the right leg. Figure 6.5

shows the first armature in position. Now switch to edit mode and press the space

bar. From the pop-up menu, select add and then select bone. Using a combination

of the G key and the R key, move the bone into position over the other leg.

52

Blender
■ Eg

JTR> Rfe Add Timeline Game “Render He Ip. |SR:2- Model jX |:f-*[SCE:Scene ’ ; 1*

Fig. 6.5: Robot With First Bone Added

Next, the new bone must be assigned to the first bone. In other words, the new

bone is a child of the first bone. For the purposes of this tutorial, one bone will be

the primary bone, called the parent bone, and the other bones will be children of the

primary bone. To assign the bone, select the child bone by right-clicking it, and hold

down the shift key and select the parent bone. Then press CTRL-P and select keep

offset. There should be a dashed line from the end of the parent bone to the base of

the child bone. This is shown in Figure 6.6.

53

BJeniler

Fig. 6.6: Robot With Parent And Child Bone

Using a similar process, create a bone for each limb and parent them to the first

bone that was created. After the bone structure is in place, switch back to object

mode, then select the robot and shift-select the skeleton. Then press CTRL-P and

select armature to make the robot a parent of the skeleton. Now the robot is attached

to the skeleton. With the armature and robot selected, use G to move the robot so

that it is above the red line. You can hold down the CTRL key and press 2, 4, 6, and

8 keys on the number pad to move the view down, left, right, and up, respectively.

The robot and skeleton are shown in Figure 6.7.

54

Fig. 6.7: Blender With Skeleton

The next step is to assign vertices to the bones. Blender does its best to assign

vertices, but usually you will need to change the assignments. While in object mode,

select the robot, and then switch to edit mode. In the button panel, there is a vertex

groups panel. This is where vertices are assigned to the bones. First, select a bone

by name and then press the select button. This should select the vertices that the

specified bone is assigned to. To change the assignment press remove, then select the

vertices in the view pane, and then press assign in the vertex groups panel.

Once the vertices have been properly assigned to the bones, it is time to create the

keyframes. Just below the Figure is a small window with a 1 in it. This indicates the

current frame. The small arrows can be pressed to increase or decrease the current

55

frame number. Switch back to object mode and select the skeleton. Then switch to

pose mode. Now the individual bones can be selected, moved, and rotated to their

desired placement. Once the bones are in their proper positions, select all of the bones

using the A key and then press the I key. Select LocRot from the pop-up menu. Now

the transformations are set for the current frame. The same process can be repeated

for any number of frames until the desired animation sequence has been created.

The next step is to create the texture coordinates so that texture mapping can be

used with the model. Select the robot and switch to edit mode. Seams need to be

created. The robot will be unfolded onto a flat surface using the seams. To create a

seam, select the vertices for the seam and press CTRL-E, and then select mark seam.

Once all of the seams are created, press the U key and select unwrap in the pop-up

menu. This will perform the operation that maps the 3D model to a 2D surface. The

last thing to do is export the model to the proper format.

Before saving the model, make sure double sided in the buttons panel is not se­

lected. In edit mode, press CTRL-N and select recalculate normals outside. Then

save the blender file. Once the blender file is saved, export the file to the X file for­

mat, also called the DirectX format. In the export screen, select anim to export the

animations, select Flip z to select left-handed coordinate system, then select export

all. Now the model is ready to use in the graphics engine.

6.2 Graphical User Interface Demo in Geng

Figure 6.8 shows a screen shot for the graphical user interface (GUI) demo. The

elements shown are sample GUI controls. In the upper left corner some text is

displayed. In the upper right corner a video is playing. There are selectable icons

displayed in the lower left and lower right corners. Selecting the icon in the lower right

corner with the left mouse button causes the program to exit. The user can move

through the scene using the W key to move forward, the S key to move backward, the

56

A key to strafe left, and the D key to strafe right. If the user holds the right mouse

button, moving the mouse will control the direction of the camera.

Fig. 6.8: The Graphics Engine Demo Using Geng

6.3 Physics Demo in Geng

A box is shown near the center of the view, as seen in Figure 6.8. The box represents

a static object in the scene. As the user uses the W key to move forward, the user will

collide with the box, halting the forward motion, and will slide off of the box. The

collision detection and sliding effect are handled in the Bullet physics engine [B2],

57

6.4 Animation Demo

Several animated robots have been placed at random locations in the scene, as seen

in figure 6.9. These robots were created in Blender [Bl] and exported in the X file

format. One of the robots is caused to wander around-the scene, and the other robots

are chasing it. As the robots move beyond the boundary, they reappear at the other

side. As the wandering robot moves beyond the boundary and reappears at the other

side, it is interesting to see the pursuing robots change direction. The source code for

the Al is provided by the Al textbook found in [BIO]. The user can use the movement

keys W, S, A, and D, to move through the scene and take part in the chasing.

58

7. FUTURE WORK AND CONCLUSION

7.1 Future Work

Although MAGE provides the basic graphics support needed by a 3D application,

the features it has can be improved, and new features can be added. For example,

MAGE supports 3D models with single keyframe animation sequences, but does not

support multiple keyframe animation sequences. The following sections discuss some

additional improvements that can be added to MAGE.

7.1.1 Multiple Animation Sequences

Currently the graphics engine supports single animation sequences. That is, a graph­

ics object can have only one animation associated with it. This functionality should

be extended to support multiple animations per model. For example, the animation

sequences may include a running animation, a walking animation, an idle animation,

and an attacking animation.

In order to support multiple animations, it is also necessary to support the blending

between animations. This avoids sudden changes in motion caused when switching

between animations. One animation should have a smooth transition to another

animation.

7.1.2 Terrain

The graphical representation of terrain is supported by the graphics engine since

terrain can be by a. textured mesh. But there is more to real terrain than a simple

59

mesh. One necessary improvement is support for a height map. This allows the

physics engine to properly place objects on the terrain and perform collision detection

with the terrain. Another requirement for terrain support is space partitioning.

To support a large virtual world, a large terrain is required. The standard practice

is to split the terrain into smaller sections called quads. The quads are placed in

a special data structure called a partitioning tree. The partitioning tree can then

be used to load only the sections of the terrain that are in the viewable area. So

support for a space partitioning tree should be added to the graphics engine. An

excellent reference for creating space partitioning trees and other advanced topics for

the development of terrain can be found in [B12].

7.1.3 Shadows

There are several techniques for calculating shadows in real-time. The simplest and

most limited uses projection. For this technique each model is drawn twice. First the

model is drawn normally, and second a projection transformation is applied to the

model to essentially flatten it, and then it is drawn with a dark color to represent the

shadow.

There are two remaining techniques that are more advanced, and new functionality

must be added to the Graphics class to support them. One technique is called volume

shadows, and uses the depth buffer to determine what pixels are in a shadow. Another

technique uses the stencil buffer to determine which pixels are in a shadow. To support

these techniques, access to the depth buffer and stencil buffer will need to be added

to the graphics engine.

7.1.4 Reflections

Real-time reflections can be added by using environment mapping. Essentially, the

scene is drawn to an off-screen buffer from the perspective of the objects that are

60

reflected. The off-screen buffer is then converted to an image and a texture object is

created for the image. Then the texture is applied to the objects that are reflecting.

In order to support this functionality, the ability to draw to an off-screen buffer

will need to be added. Additionally, support for creating a texture object using the

off-screen buffer will need to be added.

7.1.5 Three-dimensional Text

Text is currently supported by this graphics engine, and is implemented in the context

of an overlay element. This limits the use of text to the graphical user interface. It

would be valuable to be able to display text within the 3D virtual world. Since the

current text implementation uses texture mapping as its basis, it should be a straight

forward process to create a 3D text class that can be used to display text on 3D

objects within the 3D scene.

7.1.6 Three-dimensional Video

For some applications, it may be desirable to play a video on the polygonal surfaces of

3D models. Video, like text, is currently supported only in the context of an overlay

element. Also similar to the implementation of text, video has texture mapping as

its basis, and therefore it should be a straightforward process to use video within the

3D scene.

7.2 Conclusion

Mythic is a new 3D game being developed at CSUSB. A game engine called Geng

is being developed for use by Mythic. The subject of this paper is a project called

MAGE, which is the core graphics engine used by Geng.

Real-time interactive 3D graphics is a complex problem that brings together many

different fields of study. This includes linear algebra, classical physics, artificial intel­

61

ligence, computer architecture and optimization, as well as many other fields. This is

further complicated by the ever changing technological landscape and the multitude

of libraries available, which includes OpenGL and Direct3D.

MAGE can be used as the rendering vehicle for creating 3D real-time interac­

tive computer applications. Support is provided for creating graphical user interface

controls, including the use of text and playing movies. Support is also provided for

importing models created using Blender and adding the models to a 3D virtual scene.

The models created can include keyframe animation sequences. Attention has been

paid to the efficient rendering of models via the use of vertex and index buffers, vertex

and fragment shaders, and model instancing. Support for. pixel-perfect 3D picking

is provided for applications that require the real-time selection of 3D models in the

scene.

Particular attention has been paid to fundamental design concepts, so the graphics

engine can be used as a pedagogical tool for teaching how to develop a 3D graphics

engine. The implementation of fundamental rendering concepts using both OpenGL

and Direct3D is an advantage to students for the understanding of core concepts. A

deeper understanding of these concepts can be gained by comparing and contrasting

the two implementations.

The graphics engine developed also supports multiple platforms, including Win­

dows, Linux, and Mac OS X. The graphics API developed both simplifies the program­

ming process and provides support for advanced features. For Windows development,

support is provided for both OpenGL and Direct3D. Besides allowing the program­

mer to choose the underlying API that provides the best performance, an additional

advantage is gained in the development process. That is, if a new feature does not

work for either OpenGL or Direct3D, then it is likely that the underlying logic of the

new feature is faulty. If it works for one but not the other, then this is an indication

that the logic is correct, so the programmer can focus on the one that is not working.

62

Once the feature is working for both underlying APIs, the logic can be modified until

the functionality is visually equivalent for both. The visual equivalency of the feature

for both APIs serves as a positive indicator that the feature has been implemented

successfully.

63

BIBLIOGRAPHY

[Bl] Blender Web Page, http://www.blender.org/.

[B2] Bullet Web Page, http://bulletphysics.org/wordpress/.

[B3] Google Commons, http://commons.wikimedia.org.

[B4] Mythic Home Page, http://cse.csusb.edu/games/mythic/.

[B5] Nvidia Developer Home Page, http://developer.nvidia.com/.

[B6] OpenGL Home Page, http://www.opengl.org/.

[B7] Akenine-Moller, T., Real-time Rendering, 2nd Ed. A. K. Peters, 2002.

[B8] Buss, S., 3-D Computer Graphics - A Mathematical Introduction with OpenGL

Cambridge Press, 2003.

[B9] Granberg, C., Programming an RTS Game with Direct 3D Charles River Media,

2007.

[BIO] Millington, I., and Funge, J., Artificial Intelligence for Games Morgan Kauf­

mann, 2009.

[Bll] Munshi, A., Ginsburg, D., and Shreiner, D., OpenGL ES 2.0 Programming

Guide Addison Wesley, 2009.

[B12] Snook, G., Real-time 3D Terrain Engines using C++ and DirectX 9 Charles

River Media, 2003.

64

http://www.blender.org/
http://bulletphysics.org/wordpress/
http://commons.wikimedia.org
http://cse.csusb.edu/games/mythic/
http://developer.nvidia.com/
http://www.opengl.org/

1

[B13] Yu, T., Turner, D., Concepcion, A., and Stover, D., “Incorporating Video

in Platform-Independent Video Games Using Open-Source Software,” Third

IEEE International Conference on Computer Science and Information Technol­

ogy, July 2010.

65

	An open source graphics engine for three-dimensional video games
	Recommended Citation

