
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2011

An algorithm for facial expression recognition to assist An algorithm for facial expression recognition to assist

handicapped individuals with eating disabilities handicapped individuals with eating disabilities

Anthony Rudolph De La Loza

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Medical Biomathematics and Biometrics Commons, and the Software Engineering

Commons

Recommended Citation Recommended Citation
De La Loza, Anthony Rudolph, "An algorithm for facial expression recognition to assist handicapped
individuals with eating disabilities" (2011). Theses Digitization Project. 3829.
https://scholarworks.lib.csusb.edu/etd-project/3829

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/667?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3829?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3829&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

AN ALGORITHM FOR FACIAL EXPRESSION RECOGNITION TO ASSIST

HANDICAPPED INDIVIDUALS WITH EATING DISABILITIES

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Anthony Rudolph De La Loza

March 2011

AN ALGORITHM FOR FACIAL EXPRESSION RECOGNITION TO ASSIST

HANDICAPPED INDIVIDUALS WITH EATING DISABILITIES

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Anthony Rudolph De La Loza

March 2011

Approved by:

Haiyan Qiao

©2011 Anthony Rudolph De La Loza

ABSTRACT

Assistive technology has allowed individuals with special needs to inter­

act more actively and independently with their environment by allowing

that individual to perform tasks that were impossible without it. In recent

years, attempts at making efficient computer based assistive technologies

have been made, which include speech recognition software and computer­

ized wheelchairs. However, due to the complexity of the task, progress is

very slow in the development of fast, efficient, and accurate computer based

assistive technology. In addition, given that the needs of each individual

vary, developing a device that meets the requirements of every individual

is very difficult. As a result, this contributes to the slowing of development

of such devices because the device would not be marketable if it was only

made to handle a specific case. This thesis aims to present a solution to

allow a special needs individual to eat more efficiently and foster indepen­

dence, while providing a platform for further research in the area of feature

detection to assist individuals with special needs. The proposed computer

system aims to assist severely handicapped individuals with eating diffi­

culties by using facial expression recognition to determine the individual’s

specific need that he or she wants to be performed in regards to the eating

process. Upon determination of the facial expression made by the user, a

specific feeding action would then performed by a spoon holding robotic

arm. This solution was achieved by the use of five algorithms. The Canny

edge detector algorithm was used to convert a webcam image of the user

to an edge image. This was used to represent the bodily features of the

user as simple edge lines. Then an edge connecting algorithm was used to

modify the existing edge representation of the user’s bodily features to a

iii

more well defined outline of those features. Once the edge connecting was

complete, an edge walking algorithm was used to locate edges that had a

high probability of representing the user’s mouth. Then an image registra­

tion algorithm was used to locate the position of the user’s mouth in a input

image. Finally, an image matching algorithm was used to determine which

mouth expression the user made based upon predefined mouth expression

reference images. Based on this determination of the mouth expression

made, a specific feeding action would then be carried out by a robotic arm.

iv

ACKNOWLEDGEMENTS

I would like to thank all the faculty and staff at CSUSB that assisted me in achieving

my educational goals.

v

DEDICATION

To my family and friends that have always been there to support me in all

my endeavors.

TABLE OF CONTENTS

Abstract.. .. iii

Acknowledgements v

List of Tables.. x

List of Figures ... xi

1. Introduction... 1

1.1 Overview of Thesis.. 1

1.2 Purpose of Thesis... 1

1.3 Background.. 2

1.4 Literature Survey of Feeding Methods.. 4

1.5 Contributions .. 7

1.6 Assumptions Made in Developing the Computer System 7

1.7 Limitations of the Computer System.. 8

1.8 Documentation Organization.. 8

2. Considerations When Feeding the Special Needs Individual........................... 11

2.1 Chapter Overview... 11

2.2 Body Posture... 12

2.3 Head and Mouth Control... 12

2.4 Mental Capability... 13

vii

2.5 Safe Feeding Practices and Type of Food... 14

2.6 Lighting... 15

3. Identifying Edges in Images.. 17

3.1 Chapter Overview... 17

3.2 Introduction.. 18

3.3 Literature Survey of Canny Edge Detection Applications................... 18

3.4 Canny Edge Detector Algorithm.. 20

3.5 Canny Edge Detector Algorithm Use in the Computer System 21

4. Determining Which Edges in the Images to Consider................................. 25

4.1 Chapter Overview................................. 25

4.2 Introduction.. 26

4.3 Edge Walking Algorithm Design.. 26

4.4 Edge Walking Algorithm Use in the Computer System..................... 28

5. Connecting Separate Edges Together.. 35

5.1 Chapter Overview... 35

5.2 Introduction.. 36

5.3 Edge Connecting Algorithm Design.. 36

5.4 Edge Connecting Algorithm Use in the Computer System.................. 42

6. Use of Fourier Transforms in Feature Location .. 55

6.1 Chapter Overview... 55

6.2 Introduction.. 56

6.3 Image Registration Algorithm Design... 58

6.4 Image Registration Algorithm Use in the Computer System............... 59

6.4.1 First Implementation... 61

6.4.2 Second Implementation... 62

viii

7. Matching the Reference Image to the Input Image 65

7.1 Chapter Overview... 65

7.2 Introduction.. 66

7.3 Image Matching Algorithm Design ... 67

7.4 Image Matching Algorithm Use in the Computer System.................... 69

8. Results .. ;.............................. 72

8.1 Chapter Overview... 72

8.2 Mouth Expression Testing Results... 72

9. Conclusion 78

9.1 Chapter Overview... 78

9.2 Contribution.. 79

9.3 Current Problems and Limitations of the Computer System 79

9.3.1 Effects of Lighting.. 80

9.3.2 Distance from Camera to Individual’s Face.............................. 80

9.4 Future Directions... 81

9.4.1 Exploring Other Facial Features to Control the System 81

9.4.2 Increasing the Number of Frames Executed Per Second 81

9.4.3 Using the System to Control Other Devices 82

Appendix A: Source Code... 83

A.l Functions Source Code.. 84

A.2 Main Program Source Code... 217

References.. 247

ix

LIST OF TABLES

8.1 Results of Sequence Chart... 73

x

LIST OF FIGURES

3.1 Input Image.. 22

3.2 The result of applying the OpenCV Canny edge detector function with

a low threshold value of 20 and high threshold value of 20 to an input

image... 23

3.3 A poor quality edged image by applying the OpenCV Canny edge

detector function with a low threshold value of 0 and high threshold

value of 0 to an web cam image.. 24

4.1 The basic steps needed to perform the edge walking procedure........... 27

4.2 The eight possible pixel neighbors a pixel can have............................... 28

4.3 A possible configuration of neighboring pixels a pixel that is being

examined can have... 29

4.4 An input image (1) and pixels walked in that image (2)....................... 30

4.5 The result of performing the edge walking procedure that finds the

edges that consist of a pixel count that falls within the minimum pixel

count size and maximum pixel count size... 31

4.6 The result performing the edge walking procedure that finds the edge

with the largest pixel count... 32

4.7 The result of using the edge walking function (FindLargestEdge) and

the gap filling function with a maximum allowed gap fill of one pixel. 34

xi

5.1 An image of edges (1), an image of found endpoints (2), and an image

of connections made (3)... 39

5.2 The basic procedure that is performed to fill in the gaps between nearby-

edges.. 40

5.3 The eight possible areas that can be searched from an endpoint pixel

(yellow pixel).. 40

5.4 The eight possible scanners that an endpoint pixel can utilize.............. 41

5.5 The two basic scanner structures.. 42

5.6 The connection that is made for each scanner....................................... 43

5.7 Example of an edged input image that is used by the system................ 46

5.8 Result of using the GapFiller function with gap filling pixel size pa­

rameter of one pixel and FindLargestEdge function.............................. 47

5.9 Result of using the GapFiller function with gap filling pixel size pa­

rameter of two pixels and FindLargestEdge function............................ 48

5.10 Result of using the GapFiller function with gap filling pixel size pa­

rameter of three pixels and FindLargestEdge function.......................... 49

5.11 Result of using the GapFiller function with gap filling pixel size par

rameter of one pixel and EdgeWalker function...................................... 50

5.12 Result of using the GapFiller function with gap filling pixel size pa­

rameter of two pixels and EdgeWalker function..................................... 51

5.13 Result of using the GapFiller function with gap filling pixel size pa­

rameter of three pixels and EdgeWalker function.................................. 52

5.14 The result of not using the GapFiller function, but using the Find­

LargestEdge function... 53

5.15 The result of not using the GapFiller function, but using the Edge­

Walker function.. 54

6.1 The division of the image based on pixel shift values before shifting. . 59

xii

6.2 The rearrangement of the image based on pixel shift values................. 60

6.3 Calculation of pixel shift between two images.. 60

6.4 A reference image, labeled “Image 1”, and an input image, labeled

“Image 2”.. 61

6.5 Example of basic usage of FFTW functions... 63

7.1 Inserting new edge pixels around existing edge pixels in the reference

image... 68

7.2 Inversing pixel values in the reference image.. 68

7.3 Performing an AND operation with the input image’s pixels with the

reference image’s pixels.. 68

7.4 One mouth expression is a big mouth expression (1). The second mouth

expression is a small mouth expression (2). The last mouth expression

is a closed mouth expression (3).. 70

7.5 An example of correctly matching a mouth expression reference image

to an mouth expression input image.. 71

xiii

1. INTRODUCTION

1.1 Overview of Thesis

This thesis in computer science is to develop a novel method to assist severely hand­

icapped individuals with eating difficulties by using facial expression recognition to

determine the individual’s specific need that he or she wants to be performed in re­

gards to the eating process. This specific need would then performed by a robotic

arm. By classifying a given facial expression, and associating an action that should

be performed with that facial expression, it becomes possible to allow an individual

with no arm control to feed themselves independently. The feature that will be the

main focus for this thesis and will be the main controller of the software system will

be the mouth of the individual. In addition, it should be noted that even though the

system was designed to control a robotic arm to assist individuals in eating, it could

be adapted to control other devices or applications that special needs individuals may

use.

1.2 Purpose of Thesis

The purpose of this thesis is to describe an algorithm and implement a software system

based upon facial expression recognition that will accurately determine the specific

need of a handicapped individual pertaining to the eating process. Then based upon

1

that need, determine the appropriate action that should be executed. Examples of

such actions include scooping food portions and delivering to the individual’s mouth,

and changing to different food to be scooped. The proposed system will consist of

PC camera and laptop computer, where the laptop computer will process the video

images from the PC camera. To verify that the final output is correct, a text of the

action to be executed will be outputted, since there is currently no robotic arm or

components to construct one that is strong enough for this system available to me.

The proposed system will allow the user to control a robotic arm that will assist the

user in the process of eating. Consider this instance, if the user wants the robotic arm

to scoop a large amount of food and bring the food portion close to user’s mouth, the

user just has to open his or her mouth all the way, which the system would recognize it

as a “big mouth expression”. Likewise, if user wants a small portion of food served to

him or herself, the user just has to open his or her mouth partially, which the system

would recognize it as a “small mouth expression”. Finally if the user wants to halt

execution of the current scooping and delivering process, closing of the mouth tightly

should be made, which is recognized by the system as a “closed mouth expression”.

1.3 Background

It has been estimated that there are about 48.9 million people in the United States

that have a disability [1]. In addition, it has been estimated that about 9.2 million

people in the United States over the age of 5 need personal assistance with one or

more activities, which can include activities like “bathing, dressing, eating, [and]

walking” [1]. So, the development of devices that assist in helping a disabled person

2

accomplish everyday tasks is of great importance in improving their quality of life.

For this research, the target group will be those individuals that have no or very

little upper extremity control, more specifically those diagnosed with quadriplegia or

cerebral palsy. Among this group it has been found that 60.7 percent of those that

have this condition of “partial [or] complete paralysis of extremities” have an activity

limitation [1].

According to the Department of Health and Human Services, it defines cerebral

palsy as a condition that affects “a person’s ability to move [their extremities] and

to maintain balance and posture” [5]. This loss of ability is the result of part of the

brain known as the cerebrum becoming damaged and no longer being able to control

muscle tone [14]. Cerebral palsy is non-progressive, meaning that the individual’s

condition does not worsen, but their symptoms may change over time. At the current

time, there is no known cure for cerebral palsy and the only approach to handle it is

limited to treatment and prevention of problems that arise from the condition [14].

Quadriplegia is where an individual losses all or partial control of all their ex­

tremities as a result from damage to the brain or spinal cord. There are different

forms of quadriplegia, but one of the most severe forms is spastic quadriplegia [28].

In addition to loss of muscle control, individuals with spastic quadriplegia suffer from

hemiparetic tremors, “mental retardation, problems with muscles that control the

mouth and tongue, and difficulty in speaking” [28].

3

1.4 Literature Survey of Feeding Methods

One method to assist individuals with eating difficulties is to have another individual

spoon feed them. Spoon feeding is where a non-handicapped individual assists a

handicapped individual in eating by placing the food item that is to be eaten on a

spoon and delivering the food item to the handicapped individual’s mouth, so that

he or she can eat it. However, this method may not be suitable for some handicapped

individuals because he or she may not have another individual to assist them in eating.

In addition, a handicapped individual may seek methods that foster independence.

Another widely accepted method is to utilization a device called a percutaneous

endoscopic gastrostomy tube (PEG tube). A PEG is “a procedure for placing a

feeding tube directly into the stomach through a small incision in the abdominal

wall using an instrument known as an endoscope” [7]. This is the preferred method

to be utilized when a handicapped individual has difficulty swallowing food or is

not able to consume food by mouth over long periods of time. In addition, ’’they

[may] have muscle weakness,” which can allow “food to leak [through] into the lungs

when they swallow [food]” [7]. As a result, through the use of the PEG tube, the

appropriate amount of fluids and nutrients can be placed directly into the stomach

without the risk of facing respiratory problems from swallowing food through the

mouth [7]. However, the disadvantage of this device is that a handicapped individual

will need to have the assistance of another individual to use the device if he or she

does not possess the necessary skill to use it properly. In addition, lower functioning

handicapped individuals may repetitively attempt to remove the PEG tube, which

can cause complications in the feeding process. These complications then would need

4

to be addressed by the caretaker of that individual.

Another method that is used, but still undergoing continual improvements and de­

velopment, is the utilization of a robotic arm to feed a handicapped individual. One

mentionable device was developed in 1979 by R.L.- Ramey et al. of the University of

Virginia. They developed a system which allowed handicapped individuals to eat in­

dependently using a microcomputer-controlled manipulator [4]. By engaging a switch,

the system would have the spoon holding robotic arm execute a pre-programmed path

to the plate to scoop the food portion, and then follow a pre-programmed path to the

user’s mouth to deliver the scooped food portion [4], Their preliminary results indi­

cated that a handicapped individual could eat food independently and easily given

that the food was in small portions [4], In addition, it was noted that the dropping

of food pieces occurred, but designing a spoon with the appropriate shape would

hopefully solve this problem [4]. However, this problem can be overcome by using the

concept of facial expression recognition proposed for this thesis. When the food por­

tion is scooped, the system would recognize a certain facial expression that indicates

the food portion was not scooped properly, and thus must re-execute the scooping

procedure. This same technique can be applied to situations when food portion fall

off the spoon on its path to the individual.

As technology improved and more research has been done on eating assist robots,

other devices have been integrated into the robotic arm to improve the ease of use

for the user while fostering more independence. One robotic arm system integrated

the use of lights, a spoon, and a switch to allow a user to choose and scoop food,

[15]. A series of lights would scan the columns that were behind a food portion, [15]

5

The user would then press the switch when the light arrived to a column that had

the food portion that the user wanted to eat, [15].

Another robotic arm system integrated the use of a PC display, a CCD (charge-

coupled device) camera, a spoon, a puff switch, head pointing device, and a GSR

(galvanic skin reflex) sensor to allow a user to scoop and serve food portions to

oneself, [18]. A straw mouth tube served as the puff switch, where the user would

puff into the straw in order to click items on the user interface, [18]. By wearing the

head pointing device, the user then could control the robotic arm by his or her head

movement, [18]. The user would move his or her head in order to move a pointer

on a display and once that pointer reached the target position, the user would click

using the puff switch [18]. The GSR sensor served in determining a safe speed for the

robotic arm’s movement for a given user [18].

Not only have there been single-user robotic arm systems been developed or pro­

posed, but also multiple-user robotic arm systems. One robotic arm system was pro­

posed that integrated the use of a vision system interface to allow one to four users

to be fed [19]. The vision system would be used to recognize food, forks, spoons, and

cups [19]. A specific user-interface was not proposed for this system, but mentioned

that a user-interface that was “applicable in a dining environment that is suscep­

tible to food or drink spills and be usable for the elderly with different upper-limb

disabilities” would be the best choice [19].

6

1.5 Contributions

The main focus of this thesis is to develop a system that uses facial feature recognition

to assist special needs individuals with little or no arm control with eating a meal.

By classifying a certain mouth expression and classifying it to certain action to be

performed, it becomes possible for a individual to control a device or complete a task

that otherwise could not be accomplished on his or her own. The implementation

of this system will provide a foundation for further research in the area of feature

recognition systems that can assist special needs individuals. In addition, the use

of such a system provides the opportunity to foster individual independence, while

improving quality of life for that individual.

1.6 Assumptions Made in Developing the Computer System

There were several assumptions made for this thesis. The assumptions include:

1. The distribution of light throughout the room that the system is to be used in

should be uniform.

2. The individual should be able to make the three defined mouth expressions.

These mouth expressions were a small mouth expression, a big mouth expression,

and a closed mouth expression.

3. The individual would remain about the same distance from the webcam through­

out the feeding period.

7

1.7 Limitations of the Computer System

There were several limitations discovered throughout the development of the thesis.

The first limitation noted was that the distribution of light in the room greatly effected

how well the system performed. Too much light or too little amount of light from a

certain direction caused the system to perform poorly. Another limitation was that as

the number of mouth expressions that were searched for by the system increased, the

amount of time greatly increased to find if any of these mouth expression reference

images could be found in the captured webcam image. So the number of mouth

expression images was limited to three different mouth expressions. These mouth

expressions were a small mouth expression, a big mouth expression, and a closed

mouth expression. The last limitation of the system is that the individual must

remain about the same distance from the webcam throughout the feeding period. If

the individual moves closer or moves farther away from the webcam, it makes it more

difficult for the system to locate the mouth expressions.

1.8 Documentation Organization

1. Chapter 1 provides an overview of past developments in assistive technologies.

In addition, it presents the purpose and contribution of this thesis, while noting

the limitations discovered and assumptions that were made.

2. Chapter 2 provides background information on what needs to be considered when

feeding a special needs individual and how precautions should be made to insure

the overall safety of the individual.

8

3. Chapter 3 covers the procedure of how to convert an image captured from a

webcam and converting it into an image made of edges.

4. Chapter 4 covers the procedure used to locate and collect edges of a certain

size in an image . It also presents the idea how keeping certain edges and

removing unwanted edges in an image is the basis for more accurate calculations

in upcoming steps.

5. Chapter 5 covers the procedure used to connect separate, but in close proximity,

edges together to form a single edge. It also presents the idea that image modi­

fication can enhance the image’s content and provides a better basis to perform

calculations upon.

6. Chapter 6 presents the concept on how performing calculations in the frequency

domain rather than the spatial domain, can provide a more effective means of

calculation. It covers how the use of discrete Fourier transforms provide a means

to calculate the amount of pixel shift there is between two similar images.

7. Chapter 7 covers the procedure on how to determine how well a reference image

matches to an input image, by inverting pixel values and using logical AND

operations.

8. Chapter 8 provides and overviews the results from testing the system through

the use of a sequence chart.

9. Chapter 9 concludes with presenting the contributions made from completing

this thesis. It presents the idea how assistive technologies not only can help an

individual complete a task, but also fosters independence. It also presents the

9

current problems faced when developing the system, such as the distribution

of light in the room, and recommends ideas and areas to explore for further

research.

10

2. CONSIDERATIONS WHEN FEEDING THE SPECIAL NEEDS INDIVIDUAL

2.1 Chapter Overview

This chapter provides background information on what needs to be considered when

feeding a special needs individual and how precautions should be made to insure the

overall safety of the individual.

1. Section 2.2 covers how the ability of the user to maintain an upright body position

and to hold their position in front of the camera is essential in being able to use

the system.

2. Section 2.3 covers how the ability of the user to position their head in front of

the camera and to be able to make the appropriate mouth expression is essential

in being able to use the system.

3. Section 2.4 covers how it is essential that the user possesses the mental capability

that allow him or her to complete the tasks that are required by the system in

order to use the system properly.

4. Section 2.5 covers how performing the correct procedure to feed a special needs

individual is essential in ensuring the overall safety of the individual.

5. Section 2.6 covers how the manner in which light is distributed in the room

greatly affects the overall performance of the system,and how certain types of

11

lighting can affect some individuals in dangerous ways.

2.2 Body Posture

The ability of the user to maintain an upright body position and to hold their position

in front of the camera is essential in being able to use the system. In deciding whether

an individual can utilize the system, the user must demonstrate the ability to maintain

an upright body position in front of the camera for the duration of time it takes to

be fed a meal. Failure to do so would limit the possibility to utilize the system and

its functionality.

If the individual is unable to maintain an upright posture for extended periods of

time, one possible solution would be to have the individual be placed in a chair with

side supports to help him or her maintain an upright posture. If this maintaining

of upright body posture cannot be achieved, then other feeding methods should be

explored to better suit that individual’s specific needs.

2.3 Head and Mouth Control

The ability of the user to position their head in front of the camera and to be able to

make the appropriate mouth expression is essential in being able to use the system.

In order to use the system, the user must be able to make the three different mouth

expressions, and to be able to hold their head in front of the camera while making

these mouth expressions. However, there are some individuals that do not have the

ability or muscle control to complete these tasks, or find it very difficult to fully

complete these tasks. As a result, this would prevent them from being able to use

12

the system.

If the individual is unable to easily move their head in front of the camera, one

possible solution is to position the individual in such a way that it results in little or no

repositioning needed by the individual to place his or her head in front of the camera.

If the individual has difficulty in making the different mouth expression, one possible

solution is to attempt to find other mouth expressions that can be made easily by the

individual. If such mouth expressions can be found, then these mouth expressions

can replace the defaulted mouth expressions used by the system. If completing any of

these tasks proves to be difficult and it is found the system cannot be used efficiently,

then other feeding methods should be explored to better suit that individual’s specific

needs.

2.4 Mental Capability

It is essential that the user possesses the mental capability that allow him or her

to complete the tasks that are required by the system in order to use the system

properly. Such tasks as moving the individuals head in front of the camera, and

making the necessary mouth expressions are required to use the system successfully.

However, not all individuals have the mental capability to perform such tasks. For

example, the individual may not understand commands such as to make a “big mouth

expression” or to “move your head in front of the camera”. Such inabilities will cause

difficulties in using the system properly. In addition, the individual may not have the

ability to understand that certain actions can cause dangerous situations that lead

to harming himself or herself or the system itself. For example, an individual may

13

grab the camera or the robotic arm with their hands out of curiosity, even though

the individual should not touch it. So it is necessary that the individual that uses

the system is capable of following and understanding commands.

If the individual is unable to understand the commands presented to him or her,

one possible solution is to have another individual model the task to that special needs

individual. By having another individual demonstrate the task, such as a making a

big mouth expression, it may be possible for the special needs individual to correspond

the command with the demonstrated task. However, such a solution is based on the

special needs individual having the ability to learn new concepts in a timely manner.

It may be helpful to teach the individual the different mouth expression before using

the system. Once the individual has demonstrated an adequate understanding of the

commands and expressions, then attempts can be made to see if the individual can

successfully use the system. However, if it is determined that the individual does not

possess the mental capability to use the system , then other feeding methods should

be explored to better suit that individual’s specific needs.

2.5 Safe Feeding Practices and Type of Food

Performing the correct procedure to feed a special needs individual is essential in

ensuring the overall safety of the individual. The possibility of feeding the individual

too quickly by the robotic arm is present, and the possibility of choking on the given

food portion is possible.

Feeding too quickly can occur when the individual request another food portion

before completely swallowing the food portion that is currently in his or her mouth.

14

This action can possibly cause a choking hazard and is likely to occur when the

individual does not possess the mental capability to understand to swallow the current

food portion before requesting another food portion. Also it could also occur when

the individual has difficulty in exhibiting patience and wanting to eat quickly. One

possible solution to avoid this from occurring is to have the special needs individual

monitored by another individual. This individual can insure that the special needs

individual eats at a safe rate and can assist the special needs individual in the event

that he or she is choking.

The type of food should be considered that works best in being scooped by the

robotic arm, while being safe to eat for the individual that has special needs. The

type of food should be able to be scooped in the desired portion size easily by the

robotic arm, and to be safely transferred to the plate to the individual’s mouth. Food

portions that are too large or a food that is of material that is difficult to chew and

swallow can present a choking risk because some individuals may not possess the

necessary muscle control in their mouth and tongue to efficiently chew and swallow

certain types of food. So it is of great importance to use a type of food that is easy

for the robotic arm to handle, yet safe for the special needs individual to eat.

2.6 Lighting

The manner in which light is distributed in the room greatly affects the overall per­

formance of the system. Too much light, too little light, or more light coming from a

certain direction than others, affect the systems performance in negative ways. How­

ever, not only does the configuration of the lighting in the room affect the system, it

15

can affect some individuals in dangerous ways. Flashing light or damaged fluorescent

light bulbs that have a low flicker rate can cause some individuals to have seizures. If

the individual has a past history of having seizures, one alternative solution is to use

natural lighting. By using a room that has windows that allow enough light to enter

the room, the likelihood of triggering a seizure can be reduced.

16

3. IDENTIFYING EDGES IN IMAGES

3.1 Chapter Overview

This chapter covers the procedure of how to convert an image captured from a webcam

and converting it into an image made of edges. An algorithm that converts a webcam

image to an edge image is needed in this computer system because a edge representa­

tion of the user’s bodily features provides a simpler means to perform computations

upon. This conversion aims to make it easier to locate the user’s mouth.

1. Section 3.2 provides a brief overview on why converting a image to an edged

image can provide a better format to perform computations upon.

2. Section 3.3 provides a brief overview on why the Canny edge detection algorithm

was chosen.

3. Section 3.4 covers the steps of the Canny edge detection algorithm

4. Section 3.5 covers how the Canny edge detection algorithm was used to convert

webcam captured images into edge images for the system to use as a basis for

performing computations upon.

17

3.2 Introduction

The process of converting the. current image from the webcam into an edged image

is essential in allowing the image to be processed in such a manner that it efficiently

locates the users predefined mouth shapes. The data found in this two-dimensional

edged image of the users environment will be the basis for calculation and manipula­

tion, in order to find the users mouth given the predefined mouth shapes.

Even though the entire current image is converted to an edged image, a predefined

square subarea located in the edged image will be the area in which calculations will

be carried out on. This was done in order to reduce the amount of computations done

because of the smaller number of pixels that are used for calculations. In addition,

it gives a higher likelihood of the users mouth being present in that location of the

edged image because it is located in the edged image in such a manner that is close

to where the users mouth is most likely to be present, and if not, the user can easily

navigate their mouth within that region. The method chosen to produce these edged

images was the Canny edge detector.

3.3 Literature Survey of Canny Edge Detection Applications

Given that the Canny edge detection algorithm is commonly used in image processing,

many research papers on applications that used the Canny edge detection algorithm

were found. Many papers covered the implementation of the Canny edge detection

algorithm [23] [25] [26], However, other papers did a comparison study instead of

doing an implementation.

In a comparison study performed by Raman Maini and Himanshu Aggarwal, it

18

was discovered that the Canny edge detection algorithm performed the best under a

variety of conditions [22]. They found that gradient-based edge detection algorithms

had the disadvantage of being easily susceptible to noise [22]. In addition, since the

kernel filter size and coefficients are a fixed value, they cannot be adapted to a certain

image [22]. With the Canny edge detection algorithm they discovered that the algo­

rithm provided a “robust solution that is adaptable to the varying noise levels,” which

in turn helped to “distinguish valid image contents from visual artifacts introduced

by noise” [22]. Given that the Canny algorithm has adjustable parameters, it allows

the user to adjust these parameters to better suit the given scenario presented, and

thus generate a better quality edged image [22].

In another comparison study performed by Wang Luo, it was discovered that

the Canny edge detector provided the best results on colony images [27]. It was

found that edge detection methods “such as Roberts Cross, the Sobel Operator and

Prewitt operator failed to perform adequately in such applications due to the noisy

nature of remotely sensed data,” while the Canny edge detector “presented the best

performance both visually and quantitatively based on the measures such as mean

square distance, error edge map and signal to noise ratio” [27].

Upon completion of reviewing these papers, it was decided that the Canny edge

detection algorithm would be used to generate the edged images for this application.

Given the positive results of using the Canny edge detector from these papers, and

its ability to perform well under a variety of environment conditions, it presents itself

as a valid choice for our application.

19

3.4 Canny Edge Detector Algorithm

The first step in the algorithm is to convert the image to gray scale if the image is

not. Then the next step is to smooth the image using a Gaussian filter to eliminate

noise [2]. The Gaussian filter is moved over the image, where it transforms the values

of those pixels within that area. The result of this process is an array of smoothed

data.

The next step is to calculate the gradient magnitude and orientation. The gradient

of the smoothed array is calculated by using 2x2 first-difference approximations to

produce two arrays for the x and y partial derivatives [2]. The gradient orientation

and magnitude then be calculated by using rectangular-to-polar conversion formulas

[2].

In the third step, nonmaxima suppression most be used to reduce the size of the

ridges in the magnitude array to one pixel wide. This result is achieved by setting

all values along the line of the gradient that are not peak values to zero [2]. These

non-peak values are set to zero by moving a 3 x 3 neighborhood across the magnitude

array [2]. The center element of the neighborhood is compared with its two neighbors

along the line of the gradient, and if the value of the center is not greater than the

values of its two neighbors its value is set to zero [2].

Thresholding is then applied in the fourth step to eliminate false edge fragments,

and to produce an array of edges that were detected in the image [2]. However, since

only one threshold value was used this can result in false edges because of a low

threshold value, or missing portions of contours because the threshold value was too

high. To lessen this problem, a thresholding algorithm that utilizes two thresholds

20

should be applied [2]. By doing so, two thresholded edge images are created. The

edges of the higher thresholded edge image are then linked into contours. Once a

contour ends, the algorithm looks in the lower thresholded edge image for edges that

can be linked to that specific contour [2]. This process is repeated until the gap is

filled in and that edge now connects to another edge.

3.5 Canny Edge Detector Algorithm Use in the Computer System

Since the OpenCV library provided a function that implemented the Canny edge

detection algorithm, it was decided to utilize this function to produce the needed

edged images. The function has five parameters, which include an input image, an

output image, two threshold hold values, and an aperture size. In the system, these

two threshold values can be changed during runtime by the user in order to produce

an edged image that is the best quality given the lighting and the users seating

arrangement at the given time. It is essential for the user to set the threshold values

to the proper values to ensure that the system performs at optimal performance.

In Figure 3.2 it shows the result of applying the Canny edge detector function on

Figure 3.1, with threshold values that were set by the user to produce a suitable

edged image. It must be noted that the input image must be converted to grayscale

before apply the Canny edge detector function.

By comparing Figure 3.2 with Figure 3.3, it is seen how it is essential to set the

threshold values to the proper values because otherwise minor edges that do not

correspond to physical features would be present in the image. More importantly, it

makes it difficult to locate key features, in this case the mouth, in the output image.

21

■Fig. 3.1: Input Image.

I
/

22

Fig. 3.2: The result of applying the OpenCV Canny edge detector function with a low threshold value of 20

and high threshold value of 20 to an input image.

23

Fig. 3.3: A poor quality edged image by applying the OpenCV Canny edge detector function with a low

threshold value of 0 and high threshold value of 0 to an web cam image.

24

4. DETERMINING WHICH EDGES IN THE IMAGES TO CONSIDER

4.1 Chapter Overview

This chapter covers the procedure used to locate and collect edges of a certain size in

an image. It also presents the idea how keeping certain edges and removing unwanted

edges in an image is the basis for more accurate calculations in upcoming steps. An

edge walking algorithm is needed in this computer system because a means to locate

edges that have a high probability of representing the user’s mouth is essential. These

found edges would then serve as the basis of for computation and classification in

upcoming steps in determining the mouth expression made by the user.

1. Section 4.2 provides a brief overview on how it is important to realize that not

all the edges present in the image are necessary in being used to locate key

features, and how discarding certain edges in an image can provide more precise

calculations in upcoming computational steps.

2. Section 4.3 covers the steps of how the system walks the edges in the image and

then retains or discards the edges based on their pixel count.

3. Section 4.4 covers the use of the edge walking algorithm in the system and how

it is used locate edges that are likely to define the user’s mouth.

25

4.2 Introduction

It is important to realize that not all the edges present in the image are necessary

in being used to locate key features, which in this case is the user’s mouth. Large

features normally are made up of very large pixel counts. A large feature may consist

of a single edge or is made up a many large edges that define it. It is these large edges

that should be considered for being used as a basis for calculation because of the

higher likelihood that these edges define the shape of the user’s mouth. Given this,

there are two basic approaches that could be used to decide which edges to consider.

The first is to only consider those edges that have a pixel count that falls between a

minimum pixel count and a maximum pixel count. The second approach is to just

consider the edge that has the largest pixel count among all the edges in the area

that is being considered.

4.3 Edge Walking Algorithm Design

For the basic procedure that is performed to identify edges of a certain pixel count

size, see Figure 4.1. The mentioned pixel neighbors that a given pixel can have is

illustrated in Figure 4.2 and shows that the current pixel that is being examined

can have at most eight pixel neighbors. Figure 4.3 shows an example of a possible

configuration of neighboring pixels a pixel that is being examined can have. Upon

examination of Figure 4.3, it is seen that the current pixel being examined has two

pixel neighbors which are neighbor 3 and neighbor 7.

Figure 4.4 it provides an illustration of the steps that are performed in the algo­

rithm. The illustration labeled (1) shows an input image that contains an edge to be

26

walked. The illustration labeled (2) shows the procedures that are taken to perform

the edge walking algorithm. The edge walking procedure starts at the pixel that is

colored purple. It continues along it path, which is represented by the blue arrow. A

backtrack pixel (green pixel) is found upon arrival at the red pixel. The backtrack

pixel is stored and the edge continues to be walked until its end. In this case, since

there is a backtrack pixel, the edge has not been completely walked. So edge walking

resumes at the backtrack pixel (green pixel). The edge walking continues to the end

of the edge (yellow arrows). Edge walking is complete once there is no longer any

backtrack pixels remaining. In addition, the above algorithm can be slightly modified

to only find the largest edge by changing the condition that an edge is valid if it has

the largest pixel count among all the edges.

• Locate an edge pixel
• While edge not walked

o Calculate neighbors of edge pixel
o If pixel has no edge pixel neighbors

■ If there are no backtrack pixels to consider
• Al I pixel sih edge have been found
• If pixel count In edge meets size requirements

o Add edge to the list of valid edges
• Else pixel count in edge does not meet size requirement

o Discard edge
■ Else there are backtrack pixels to consider

• Go to that pixel to continue walking edge1
o Else pixel has edge pixel neighbors

a Walk to a neighboring edge pixel
■ If the edge pixel has more than 1 edge pixel neighbor add them to the list of

backtrack pixels

Fig. 4.1: The basic steps needed to perform the edge walking procedure.

27

Fig. 4.2: The eight possible pixel neighbors a pixel can have.

NeighborO Neighbor 1 Neighbor2

Neighbor3 ... Neighbor4

Neighbors Neighbor6

II

Neighbor?

4.4 Edge Walking Algorithm Use in the Computer System

The given basic edge walking algorithm was used to implement 2 different edge walk­

ing functions. The first function is named EdgeWalker, which takes ten parameters.

These parameters include:

1. An input image

2. An x coordinate position in the image to start performing the procedure

3. A y coordinate position in the image to start performing the procedure

4. The minimum number of pixels that must be present in a single edge for it to

be valid

28

Fig. 4.3; A possible configuration of neighboring pixels a pixel that is being examined can have.

NeighborO Neighbor 1 Neighbor2

2 - N e i g h b o
Will

||a Neighbor4

Neighbors Neighbor6

5. The maximum number of pixels that can be present in a single edge for it to be

valid

6. The width of the area to perform the procedure in

7. The height of the area to perform the procedure in

8. A vector of “x” coordinates that represent valid edge pixels

9. A vector of corresponding “y” coordinates to the “x” coordinates that represent

valid edge pixels

10. The number of pixels found that belong to valid edges

This function locates those edges that have a pixel count that falls between a

minimum pixel count and a maximum pixel count. The result is an image that only

29

(1)

(2)

Fig, 4.4: An input image (1) and pixels walked in that image (2).

30

Fig. 4.5: The result of performing the edge walking procedure that finds the edges that consist of a pixel

count that falls within the minimum pixel count size and maximum pixel count size.

has the edges that meet the size requirement remaining, See Figure 4.5. In Figure 4.5

the area of the image that contains these valid edges are found inside the bounded

square region.

The second function is named FindLargestEdge, which takes eight parameters.

These parameters include:

1. An input image

2. An x coordinate position in the image to start performing the procedure

3. A y coordinate position in the image to start performing the procedure

4. The minimum number of pixels that must be present in the largest edge for it

to be valid

31

Fig. 4.6: The result performing the edge walking procedure that finds the edge with the largest pixel count.

5. The maximum number of pixels that can be present in the largest edge for it to

be valid

6. The width of the area to perform the procedure in

7. The height of the area to perform the procedure in

8. The number of pixels present in the largest edge

This function locates the edge that has the largest pixel count among all the edges

in the area that is being considered. The result is an image that only has the largest

edge that meet the requirement remaining, see Figure 4.6. In Figure 4.6 the area of

the image that contains these valid edges are found inside the bounded square region.

32

The advantage of using the EdgeWalker function is that it allows multiple edges

to be present, which give more information in describing the shape of a given feature.

The advantage of the FindLargestEdge function is that since it only finds the largest

edge, it is more highly likely that the edge describes the shape of only one feature.

However, there are disadvantages to consider when choosing which method to

utilize. If the EdgeWalker function is used, it is possible to have edges that belong

to separate features present. For example, there can be edges that define the user’s

nose and other edges that define the user’s mouth. Those edges that define the nose

can thus possibly cause miscalculation in the location of the user’s mouth and current

mouth expression. Also by using the EdgeWalker function it is possible to exclude

important smaller edges that don’t meet the size requirement because a feature can be

defined by a variety of edges of different sizes based on the given lighting configuration

in the room and the user’s distance from the camera.

The disadvantage of using the FindLargestEdge function was that there is a pos­

sibility that the largest edge found does not capture the entire shape of a feature.

This can result from insufficient lighting in the room that may possible cast shadows.

Thus causing these edges located in the shadow to not be detected.

Testing of the edge walking functions involved the subject to be tested in four set­

tings (living room, classroom, kitchen, and bedroom), two lighting situations (stan­

dard fluorescent and incandescent aimed at the face), and three times of the day

(morning, noon, and late afternoon) to cover plausible situations for the software

might be used. In addition, only the thesis author was used as a subject because of

human subject testing regulations. A method and setting combination was consid-

33

Fig. 4.7: The result of using the edge walking function (FindLargcstEdge) and the gap filling function with

a maximum allowed gap fill of one pixel.

ered passable if it provided passable if it provided a usable output in the 90 percent

of trials overall. There were five runs for each test, and the basis for selection on

what was considered passable output was how well a usable outline of a feature was

generated. If the outlined generated defined approximately 80 percent of the feature,

the output was deemed passable. Through the testing of the images by using the

two different edge walking functions separately on each image, in combination with

the gap filling function that is covered in Chapter 5, it was discovered that the Find-

LargestEdge function provided the best representation of the user’s mouth expression,

see Figure 4.7. The pixel gap parameter value that worked best for the gap filling

function, in combination with the FindLargestEdge function, was to have it set to

only connect edges with a one pixel gap between each other.

34

5. CONNECTING SEPARATE EDGES TOGETHER

5.1 Chapter Overview

This chapter covers the procedure used to connect separate, but in close proximity,

edges together to form a single edge. It also presents the idea that image modification

can enhance the image’s content and provides a better basis to perform calculations

upon. An edge connecting algorithm is needed in this computer system because a

means to modify the existing edge representation of the user’s bodily features to

a more well defined outline of those features is essential in making the process of

locating and classifying a given mouth expression made by the user easier.

1. Section 5.2 provides a brief overview on how image modification can provide a

better basis for computation.

2. Section 5.3 covers the steps of how the system fills in the gaps between edges

that are in close proximity,

3. Section 5.4 covers how the system uses the gap filling algorithm to construct a

better defined representation of the user’s mouth.

35

5.2 Introduction

Before an edged image can be used in order to locate the user’s mouth, an attempt in

producing a better quality edged image must be made. In some cases, a given input

image may not be of optimal quality because given the contours of the user’s face

and mouth, it is possible that gaps between edges can be present, and can result in

an edge to not be considered as part of a key feature. In order to link all of these

separate edges that are in close proximity together to form more complete figure, it is

essential to fill in gaps between these edges. In the image, these gaps are represented

by black colored pixels, while an edge is represented by a gray colored pixel.

5.3 Edge Connecting Algorithm Design

For the the basic procedure that is performed to fill in the gaps between edges, see

Figure 5.1. The first image, which is labeled (1), represents the given image of edge

pixels, the second image, which is labeled (2), represents the found endpoints of those

edges. The endpoints are represented as yellow pixels in the image. The third image,

image labeled (3), represents the connections that were found for these edges. These

new edge pixels that are added are the red pixels in the image. Upon examination of

Figure 5.1, it is found that these images can be expanded and translated to more a

precise algorithms that lends itself to easier implementation, see Figure 5.2.

An endpoint of an edge has at most eight possible areas that can be searched

for other nearby edge pixels, see Figure 5.3. In Figure 5.3, the endpoint pixel is

represented by the yellow pixel in the center, while each area that can be searched is

represented by a different color. It should be noted that the figures and algorithm are

36

assuming at most a three pixel gap, but the figures and algorithm can be generalized

for a pixel gap sizes greater than three. Upon examination of Figure 5.3, it is found

that each colored area can be broken down into their own separate area scanner,

see Figure 5.4. The illustrations labeled (1) through (8) show the possible eight

individual scanners that can be created from area of pixels surrounding an endpoint

pixel as shown in Figure 5.3. The grey pixel represents the current endpoint pixel,

while the blue pixels represent the pixels that can be searched to possible make a

connection to. The black pixels represent pixels that are outside the search area for

that scanner.

Upon examination of Figure 5.4, it is seen that there are two basic scanner struc­

tures with three levels of pixels common among them, see Figure 5.5. The brown

pixels represent the first level to be scanned. The orange pixels represent the second

level to be scanned. The green pixels represent the third level to be scanned. The

yellow pixel serves as a check to make sure there is not already a connection made. In

addition, the structure of the different levels in the scanner labeled (1) can be applied

to those scanners labeled (1), (2), (3), and (4) in Figure 5.4 by doing a simple rota­

tion. The structure of the different levels in the scanner labeled (2) can be applied to

those scanners labeled (5), (6), (7), and (8) in Figure 5.4 by doing a simple rotation.

Referring back to Figure 5.4, if an edge pixel is found in the blue pixel area, then

a connection can be made to that endpoint pixel. The connection that can be made

is demonstrated in Figure 5.6. The connection illustrations labeled (1), (2), (3), (4),

(5), (6), and (7) illustrate the possible seven connections that can be made for a three

pixel gap using the scanner labeled (4) from Figure 5.4. The red pixels represent the

37

pixels that connect together two edge pixels. These seven possible connections are the

same for the scanners labeled (1), (2), and (3) from Figure 5.4 because the scanner’s

structure is the same and can be achieved by a simple rotation. The connection

illustration labeled (8) illustrate the only possible connection that can be made for a

three pixel gap using the scanner labeled (5) from Figure 5.4. In addition, if a smaller

gap needs to be filled, the same concept applies like above, but now the “Found Pixel”

replaces the red pixel in level 2 for a two pixel gap fill or the red pixel in level one for

a one pixel gap fill.

38

Fig. 5.1: An image of edges (1), an image of found endpoints (2), and an image of connections made (3).

39

• Locate an edge pixel
• While edge not walked

o
o
o

o

Calculate neighbors of edge pixel
Determine if that pixel Is an endpoint or not
If pixel has no edge pixel neighbors

■ If there are no backtrack plxelsto consider
• All pixels In edge have been found
• Forall endpoints collected

o Take an endpoint pixel that was stored and determine If it can
be connected to another pixel using one of the eight different
pixel connectorfunctions

■ Else there are backtrack pixels to consider
• Go to that pixel to continue walking edge

Else pixel has edge pixel neighbors
• Walk to a neighboring edge pixel
■ If the edge pixel has more than 1 edge pixel neighbor add them to the list of

backtrack pixels

Fig. 5.2: The basic procedure that is performed to fill in the gaps between nearby edges.

Fig. 5.3: The eight possible areas that can be searched from an endpoint pixel (yellow pixel).

40

Fig. 5.4: The eight possible scanners that an endpoint pixel can utilize.

41

(') (!)

Fig. 5.5: The two basic scanner structures.

5.4 Edge Connecting Algorithm Use in the Computer System

The given gap filling algorithm was implemented by a function named GapFiller,

which takes six parameters. These parameters include:

1. An input image

2. An x coordinate position in the image to start performing the procedure

3. A y coordinate position in the image to start performing the procedure

4. The maximum number of pixels to use to connect edges together

5. The height of the area to perform the procedure in

6. The width of the area to perform the procedure in

It was decided to limit the maximum number of pixels to be used to fill in a

gap to be no more than three because this would eliminate likelihood of connecting

edges that should not be connected to each other. For example, it is possible that

an edge that represents the top portion of the lip to be connected to an edge that

represents bottom portion of the nose. If this connection happened, it would result

in the incorrect constructing of user’s mouth, which would make it difficult for the

system to locate the mouth in the upcoming processing steps.

42

n> (I)

Fig. 5.6: The connection that is made for each scanner.

43

The gap filling function was tested and used in combination with either the edge

walking function that found the largest edge or the edge walking function that re­

turned edges that met the a set size requirement. Testing involved the subject to be

tested in four settings (living room, classroom, kitchen, and bedroom), two lighting

situations (standard fluorescent and incandescent aimed at the face), and three times

of the day (morning, noon, and late afternoon) to cover plausible situations for the

software might be used. In addition, only the thesis author was used as a subject

because of human subject testing regulations.A method and setting combination was

considered passable if it provided passable if it provided a usable output in the 90

percent of trials overall. There were five runs for each test, and the basis for selection

on what was considered passable or usable output was how well all the edges of a

given feature were connected together. This was verified through visual inspection of

the images. In addition, if the majority of the edges were connected to other edges

on different features, the output was deemed unusable. All testing was performed on

input images similar to Figure 5.7. The pixels within the bounded square region are

used for the basis of computation and manipulation.

The first step in testing was to start with a gap filling pixel size parameter of one

pixel. In other words, edges that are one pixel apart would be connected together

to form a single edge. Figure 5.8 shows the result of using the gap filling function

with a gap filling pixel size parameter of one pixel, in combination with the edge

walking function that finds the largest edge. While in Figure 5.11 shows the result of

using the gap filling function with a gap filling pixel size parameter of one pixel, in

combination with the edge walking function that finds edges that meet a set pixel size

44

requirement. The pixel size requirement used for testing was edges were valid edges

if they had a minimum pixel count size of 50, but less than or equal to a maximum

pixel count size of 1000.

The next step in testing was to increment the gap filling pixel size parameter to two

pixels. Figure 5.9 shows the result of using the gap filling function with a gap filling

pixel size parameter of two pixels, in combination with the edge walking function that

finds the largest edge. While in Figure 5.12 shows the result of using the gap filling

function with a gap filling pixel size parameter of two pixels, in combination with

the edge walking function that finds edges that meet a set pixel size requirement.

The pixel size requirement used for testing was edges were valid edges if they had a

minimum pixel count size of 50, but less than or equal to a maximum pixel count size

of 1000.

The final step of testing was to increment the gap filling pixel size parameter to

three pixels. Figure 5.10 shows the result of using the gap filling function with a

gap filling pixel size parameter of three pixels, in combination with the edge walking

function that finds the largest edge. While in Figure 5.13 shows the result of using

the gap filling function with a gap filling pixel size parameter of three pixels, in

combination with the edge walking function that finds edges that meet a set pixel

size requirement. The pixel size requirement used for testing was edges were valid

edges if they had a minimum pixel count size of 50, but less than or equal to a

maximum pixel count size of 1000.

In addition, for comparison purposes, Figure 5.14 and Figure 5.15 show the result­

ing image if no gap filling is performed on an image. From these images it is seen how

45

Fig. 5.7: Example of an edged input image that is used by the system.

important it is to perform a gap filling between the edges in order to construct an

accurate representation of the user’s mouth expression. Upon completion of testing,

it was found that having the gap size parameter of the gap filling function set to a

pixel gap size of one, and in combination of using the edge walking function that

finds the largest edge, provided the best representation of just the user’s mouth in

the bounded region of the image. This was concluded because the gap filling pixel

size parameter of one pixel provided a well defined outline of the user’s mouth, while

having a lesser likelihood of having edges be connected to other facial features. As the

gap filling pixel size parameter was increased, the likelihood of edges being connected

to other edges that should not have been connected together was increased.

46

Fig. 5.8: Result of using the GapFiller function with gap filling pixel size parameter of one pixel and Find-

LargestEdge function.

47

Fig. 5.9: Result of using the GapFiller function with gap filling pixel size parameter of two pixels and

FindLargestEdge function.

48

Fig.
FindLargestEdge function.

49

Fig. 5.11; Result of using the GapFiller function with gap filling pixel size parameter of one pixel and

EdgeWalker function.

50

I

Fig. 5.12; Result of using the GapFiller function with gap filling pixel size parameter of two pixels and

EdgeWalker function.

51

EdgeWalker function.

52

53

Fig. 5.15: The result of not using the GapFiller function, but using the EdgeWalker function.

54

6. USE OF FOURIER TRANSFORMS IN FEATURE LOCATION

6.1 Chapter Overview

This chapter covers the concept on how performing calculations in the frequency

domain rather than the spatial domain, can provide a more effective means of cal­

culation. It covers how the use of discrete Fourier transforms provide a means to

calculate the amount of pixel shift there is between two similar images. An image

registration algorithm is needed for this computer system because a means is needed

to locate the position of the user’s mouth in a input image.

1. Section 6.2 provides an overview on Fourier theory and the advantage of per­

forming computations in the frequency space.

2. Section 6.3 covers the steps of how the system calculates the two-dimensional

discrete Fourier transform of an image.

3. Section 6.4 covers how the. system uses the two-dimensional discrete Fourier

transform of two images to locate the user’s mouth expression in the image.

4. Section 6.4.1 provides an overview of the first implementation of a two-dimensional

discrete Fourier transform and its effectiveness in locating the user’s mouth ex­

pression in the image.

5. Section 6.4.2 provides an overview of the second implementation of a two-dimensional

55

discrete Fourier transform and its effectiveness in locating the user’s mouth ex­

pression in the image.

6.2 Introduction

The basic idea behind Fourier theory is that it shows that “it is possible to form any

one-dimensional function f(x) as a summation of a series of sine and cosine terms of

increasing frequency” [11]. As a result, it becomes possible to take data that is in

the spatial domain and transform it into the frequency domain [13]. The advantage

to processing data in the frequency domain is that the data gets configured in such

a manner that it allows the ability to perform operations that would be difficult to

perform in the spatial domain. The Fourier transform, which is donated as F(u), for

the continuous function is defined below [11].

F(u)= rf^e~^dx (6.1)
J—oo

The corresponding inverse Fourier transform is defined below [11].

f(x) = [°° F^e^dx (6.2)
J—OO

The benefit of having a forward and inverse Fourier transform is that it becomes

possible to go from the spatial domain to the frequency domain, and then back to

the spatial domain.

Given that we are working with images that are not continuous and are “limited

by the finite spacing of the sampled points in the image,” we must use a transform

known as the discrete Fourier transform (DFT) [11]. In addition, since the images are

two-dimensional and the above defined Fourier transform was for a one-dimensional

56

function, we must make the appropriate substitutions so that the transform is for

two-dimensional functions. The two-dimensional discrete Fourier transform is defined

below [12].

(M
A a=0 6=0

Where 6 is equal to:

<’ = 27r(y-t4) (6-4)

The corresponding inverse DFT is defined below [12].

M = <6-5)
k=o 1=0

It should be noted that the terms in the above Fourier transform equations can

be expanded upon, which can allow a more straight forward implementation of the

transform. Consider Euler’s formula below: [13]

e10 = cos(ff) + isin(0) (6.6)

Notice that Euler’s formula can be substituted in both the forward and inverse Fourier

transform equations. Also consider that f(a, b) is equal to a complex number in

the form of R + il, where R and I are real numbers and i is equal to \/^T [13].

Now by multiplying R + il by cos(0) — ism(0) and making the substitution in the

forward Fourier transform equation, the forward Fourier transform equation can now

be written as: [13]

F(k, I) = — (Rcos(0) + lsin(0)) 4- i(lcos(0) — Rsinty)) (6.7)
a=0 b=0

Now by multiplying R + il by cos(0) + and making the substitution in the

inverse Fourier transform equation, the inverse Fourier transform equation can now

57

be written as:

1 N-l N~1
f(a, b) — -—i 5? 52 (Jlcosfjty — Isin[0)) + i(lcos(0) + Rsin(0)) (6.8)

™ k=o 1=0

6.3 Image Registration Algorithm Design

The use of DFT’s serve as an efficient means to calculate the amount of pixel shift that

needs to be applied to a reference image in order for that image to match or closely

resemble the input image. See Figure 6.4 for an example of a reference image and a

shifted input image. Presented below is the algorithm that calculates the amount of

pixel shift in the “x” and “y” directions that needs to be applied to a reference image

in order for it to better match the input image. See Figure 6.3 for an illustration of

the algorithm.

1. Perform a DFT on the input image

2. Perform a DFT on the reference image

3. Normalize the two images into a single image by divide the result of performing

the DFT on the input image by the result of performing the DFT on the reference

image

4. Perform an inverse DFT on the normalized image result

5. Locate the pixel with the largest value. The indices of this pixel serve as the

amount of pixel shift to be done to the reference image

6. Shift the reference image by the calculated pixel shift values

58

“y" shill
JL

Widlh -’y’shift

1

Fig. 6.1: The division of the image based on pixel shift values before shifting.

Once the pixel shift values in the “x” and “y” directions are calculated, the image

is divided into the appropriate number of sections based on these pixel shift values.

These sections are illustrated in Figure 6.1. Once the image is divided into sections,

these sections are rearranged in the image to match the configuration that is illus­

trated by Figure 6.2.

6.4 Image Registration Algorithm Use in the Computer System

The basic algorithm for calculating the amount of pixel shift between two images

presented above was implemented and used in the system in order to shift the mouth

expression reference images by the appropriate pixel shift amount so to better match

the current location of the user’s mouth in the input image. This step is essential

in preparing the images for the upcoming step where the system will determine how

59

Fig. 6.2: The rearrangement of the image based on pixel shift values.

Actual
Image

Normalized
Image

Inverse DFT
of

Normalized
Image

Reference
Image

OFT of
Reference

Image

Fig. 6.3: Calculation of pixel shift between two images.

60

Image 1

Fig. 6.4: A reference image, labeled “Image 1”, and an input image, labeled “Image 2”.

well the reference image fits to the input image.

Image 2

6.4.1 First Implementation

The first implementation involved coding the above mentioned algorithm. The mar

jority of the implementation involved implementing the function that calculated the

two-dimensional DFT of an input image. The implementation for the forward DFT

function was based on the equation below:

-i JV-lAT-l
F(fc, I) = E E (Rcos(0) 4- /sin(0)) 4- i(lcos(0) — Rsin^O)) (6.9)

a=0 5=0

The implementation for the inverse DFT function was based on the equation below:

■t AT-l N—l
f(a, &) = ^ E E (^cos(0) - lsin(0)) 4- i(lcos(0) 4- Rsinffl) (6.10)

fc=o i=0

Testing involved 5 runs each for every room, lighting, and time of day combination.

However, upon testing of the functions, it was found that the execution time was far

61

too slow for practical use in the system. The overall time to complete all procedures

including edge processing and the calculation using DFT’s for the amount of shift

needed given one reference image and one input image was on average 64 seconds.

Only the edge processing procedures took on average .1 seconds. This shows that the

calculation for the amount of shift needed using this DFT implementation consumed

most of the overall execution time. Since the number of reference images that are

going to be used by the system is three, the total execution time for one input

image and three reference images would be roughly three times as long using this

implementation. Given that the time for execution is too long to be practical, another

approach needed to be developed.

6.4.2 Second Implementation

Since the first implementation of the algorithm was far too slow in execution, specifi­

cally the DFT implementation portion, an alternative solution had to be found. Upon

further research, an alternative solution was found. The solution was to use a free

software called FFTW that provided C routines to compute discrete Fourier trans­

form. The figure below illustrates a basic example how to use the FFTW routines to

compute a two-dimensional DFT. Before using the routines, memory must be allo­

cated for the input and output arrays. Then a plan must be created that contains all

the information needed to compute the DFT. See Figure 6.5 for an example of how to

set up and execute a plan to compute a two dimensional DFT. Once the plan is cre­

ated it is executed by calling the function Iftw_execute. Finally the plan is destroyed

and the allocated memory for the input and output arrays are deallocated. Testing

62

^Include Mfftw3.h”

^define SIZE 120

int _tmain(int argc, _tchar* argv[])
{

4 4 4

fftw_complex "in, *out;

fftw-plan p;

in = (fftw-complex*) fftw^maliocfsizeof(fftw_complex) * size * size);

out - (fftw_complex*) fftw_malloc(sizeof(fftw_camplex) * SIZE * SIZE);

p = fftw_plan_dft_2d(sizE, size, in, out, fftw_forward, fftw_estimate);

fftw_execute(p);

fftw_destroy_plan(p);

fftw_free(in);

fftw_free(out);

Fig. 6.5: Example of basic usage of FFTW functions.

63

involved 5 runs each for every room, lighting, and time of day combination. After ex­

tensive testing it was found that this implementation provided the best performance.

This implementation executed quick enough to not hinder the overall performance of

the system. It was found that up to three reference images, which included the big

mouth expression, the small mouth expression, and the closed mouth expression, still

provided an adequate execution time. Anymore than three would cause the execution

time for each input image to increase to a point that the system would run too slow

to be effective.

The overall time to complete all procedures including edge processing and the

calculation for the amount of shift needed given one reference image and one input

image was on average .1 seconds. The edge processing procedures took on average

.09 seconds, while the procedures to calculate the shift amount took a time of on

average .01 seconds. With three reference images and one input image, the total time

was on average 0.14 seconds. From these results, it is shown that this implementa­

tion was a vast improvement over the first implementation, and thus would be the

implementation that would be used by the system.

64

7. MATCHING THE REFERENCE IMAGE TO THE INPUT IMAGE

7.1 Chapter Overview

This chapter covers the procedure on how to determine how well a reference image

matches to an input image. This is accomplished by inverting pixel values and using

logical AND operations. An image matching algorithm is needed for this computer

system because a means is needed to determine which mouth expression the user

made based upon predefined mouth expression reference images. It is essential that

this matching process is accurate because based on this determination of the mouth

expression made, a specific feeding action would then be carried out by a robotic arm.

1. Section 7.2 provides an overview of the idea that since it is unlikely that an input

image would match a reference image perfectly, calculations should be performed

to determine how well an input image matches to a reference image.

2. Section 7.3 covers the steps of how the system calculates how well an input image

matches to a reference image.

3. Section 7.4 covers how the system uses this matching algorithm to determine

which mouth expression the user’s was making.

65

7.2 Introduction

In order to determine the given mouth expression made by the user, the use of refer­

ence images can be used. Each reference image would have a single mouth expression

of the user. By comparing different reference images to the input image, it can be

discovered which mouth expression was made by the user in that given moment. This

determination is done by comparing how well the pixels in reference image and the

input image match up to each other. Based on the how well the match is, it can be

determined which is the most likely mouth expression that was made by the user.

Given that it is very unlikely that a user can make a mouth expression that exactly

matches a given reference image, it is important to increase the edge thickness of the

reference image to make it possible that a given user’s mouth expression has the

better possibility of fitting to a reference image. This procedure of inserting new

edge pixels around existing edge pixels is going to be referred to as “thickening” the

reference image.

In order to determine if a pixel in the reference image matches a pixel in the

input image, a logical AND operation is performed. But before performing the AND

operation between a pixel in the input image and a pixel in the reference image, the

pixel values in the reference image must be inversed. That is if a pixel is an edge pixel,

it must be changed to a nonedge pixel. However, if a pixel is a nonedge pixel, it must

be changed to an edge pixel. This inverse procedure is important in ensuring that if

two pixels match that they are removed from final image once the AND operation is

performed. Upon completion of performing logical AND operation between the pixels

in the two images, a final image remains with only the pixels that do not match up

66

in reference image and input image. It is this unmatched pixel count and total pixel

count for the images that can then be used to determine how well the reference image

fits to the input image.

7.3 Image Matching Algorithm Design

Below is the basic procedure that is performed to determine if a given reference image

is a good match to the input image captured:

1. Thicken the reference image by inserting new edge pixels around existing edge

pixels, see Figure 7.1.

2. Inverse pixel values in reference image (1 to 0 and 0 to 1) where 0 represents a

unlighted pixel (nonedge pixel) and 1 represents a lighted pixel (edge pixel), see

Figure 7.2.

3. Perform an AND operation with the reference image’s pixels with the input

image’s pixels, see Figure 7.3.

4. Count the number of remaining lighted pixels. The number of remaining pixels

represent the number of pixels that do not match up with the reference image.

5. Determine if input image is either a big mouth expression, small mouth expres­

sion, closed mouth expression, or none of the earlier mentioned based on the

percentage of pixels from the input image that match the pixels found in the

reference image

67

Fig. 7.1: Inserting new edge pixels around existing edge pixels in the reference image.

Fig. 7.2: Inversing pixel values in the reference image.

Fig. 7.3: Performing an AND operation with the input image’s pixels with the reference image’s pixels.

68

7.4 Image Matching Algorithm Use in the Computer System

The given basic image matching algorithm was implemented in order to match one

of the three predefined mouth expressions to a user’s current mouth expression, see

Figure 7.4. The correct matching of the user’s current mouth expression is essential

in determining which feeding action the robotic arm should execute.

In order to determine which mouth expression had the best fit, the calculation of

the percentage of pixels that matched between the reference image and input image

would be used. If the percentage value for that reference image met a set minimum

percentage, it was then decided that the reference image was a good enough fit to the

input image.

Testing involved the subject to be tested in four settings (living room, classroom,

kitchen, and bedroom), two lighting situations (standard fluorescent and incandescent

aimed at the face), and three times of the day (morning, noon, and late afternoon) to

cover plausible situations for the software might be used. In addition, only the thesis

author was used as a subject because of human subject testing regulations.A method

and setting combination was considered passable if it provided passable if it provided

a usable output in the 90 percent of trials overall. There were five runs for each test,

and the basis for selection on what was considered passable or usable output was if

the system matched the input image to one of the reference images correctly. The

minimum percentage value was either incremented or decremented based on how well

the system matched the input image to one of the reference images until an optimal

minimum percentage value was found. This was verified through visual inspection of

the images.

69

(1) (2) (3)

Fig. 7.4: One mouth expression is a big mouth expression (1). The second mouth expression is a small

mouth expression (2). The last mouth expression is a closed mouth expression (3).

Through testing it was found that a value 70 percent was an adequate minimum

percentage that should be met in determining the correct mouth expression. In other

words, if 70 percent of the pixels in the input image were matched, and 70 percent

of the pixels in the reference image were matched, then that reference image would

be considered a good match. In Figure 7.5, it shows a user making a big mouth

expression, and the system matching the correct big mouth expression reference image

to the input image. This correct matching is represented by having the reference

image of the big mouth expression overlapping the input image of the user’s big

mouth expression.

70

Fig. 7.5: An example of correctly matching a mouth expression reference image to an mouth expression

input image

71

8. RESULTS

8.1 Chapter Overview

This chapter provides and overviews the results from testing the system through the

use of a sequence chart. Section 8.2 provides the results on how well the system

was able to locate the three defined mouth expressions. In addition, it provides an

analysis of these results on why the system performed in the manner it did.

8.2 Mouth Expression Testing Results

In order to test the accuracy of the system, a sequence chart was constructed and

utilized. The sequence chart consisted of a random sequence of mouth expressions to

be made by the user. The mouth expressions that were included in the chart were the

big mouth expression, the small mouth expression, and the closed mouth expression.

Testing involved the subject to be tested in four settings (living room, classroom,

kitchen, and bedroom), two lighting situations (standard fluorescent and incandescent

aimed at the face), and three times of the day (morning, noon, and late afternoon)

to cover plausible situations for the software might be used. In addition, only the

thesis author was used as a subject because of human subject testing regulations. An

output was deemed passable if it correctly matched the output listed on the sequence

chart. A total of 60 mouth expressions were tested throughout the session. Upon

72

Tab. 8.1: Results of Sequence Chart

Type of Number of Number of Number of

Mouth Expression True Positives False Positives False Negatives

Big Mouth Expression 20 0 0

Small Mouth Expression 17 2 1

Closed Mouth Expression 17 0 3

completion of making all the mouth expressions in the sequence chart, the results

were tallied and percentages were calculated. Table 8.1 summarizes the results from

the sequence chart to show the number of matches and non-matches made by the

system for each mouth expression. The parameters that were rim during the test are

listed below:

1. Distance from camera to individual’s face: approximately 1.5 feet

2. Low threshold value: 20

3. High threshold value: 20

4. Edge mode: Largest edge

5. Gap size for constructing reference image: 1 pixel gap

6. Gap size for constructing input image: 1 pixel gap

After tallying the results from the sequence chart, it was found that 54 out of the

60 mouth expressions, or 90 percent of the mouth expressions, made were matched

correctly. Upon further review of the chart it is seen that 20 counts of each mouth

73

expression made. Out of the 20 big mouth expressions made throughout the session,

20 were matched correctly. This shows that the system matched 100 percent of the big

mouth expressions correctly. Out of the 20 small mouth expressions made throughout

the session, 17 were matched correctly. This shows that the system matched 85

percent of the small mouth expressions correctly. Finally, out of the 20 closed mouth

expressions made throughout the session, 17 were matched correctly. This shows that

the system matched 85 percent of the closed mouth expressions correctly.

From the results, it is seen that the big mouth expression was the most frequent

correctly matched mouth expression. This maybe due to the fact that if the user

makes the biggest opening with his or her mouth possible, it serves as a natural stop­

ping point because the jaw cannot be extended any further. Thus making it possible

to better match the big mouth expression reference image and doing it repetitively

with a high rate of accuracy. In addition, since in the edge processing step, the tech­

nique of only keeping the largest edge present was used, it presents an advantage for

the big mouth expression. Since the big mouth expression usually consists of a large

number of pixels that defines it, there usually is no edges that define other features

around the mouth that have a greater pixel count than the big mouth expression. As

a result, the edge that defines the big mouth expression, is more likely to show up in

every image, thus leading to a higher ra.te of detection.

Given that the detection rate for the small mouth expression and closed mouth

expression were the same, it can not be concluded on which one had the worst de­

tection rate. However, there were observations made that could possible explain the

much lower detection rate than the big mouth expression. The lower rate of detec­

74

tion for the small mouth expression could be due to the fact that it can be difficult

to repetitively make the a small mouth expression that closely matches the small

mouth reference image. Since when attempting to make the small mouth expression,

there is no natural stopping point to help in making a consistently shaped small

mouth expression, this can possible lead to making a small mouth expression that

does not match the small mouth expression reference image well. This also leads to

the possibility of making an incorrect mouth expression match. This would be were

an attempted small mouth expression is made, but the system classifies it as a big

mouth expression. Since there is no natural stopping point for making a small mouth

expression, the possibility of extending the mouth opening beyond what is considered

a small mouth expression is possible. Thus leading the system to incorrectly match

the mouth expression. Lastly, the low detection rate can be due to the fact that since

in the edge processing step, the technique of only keeping the largest edge present

was used, there is a possibility that there is another edge that defined another fea­

ture that had a larger pixel count than the edge that defines small mouth expression,

thus causes the edge that defines the small mouth expression to be removed from the

image. This possibility is likely to occur, because of a bad lighting configuration in

the room.

The lower rate of detection for the closed mouth expression was observed to be

due to the fact that since in the edge processing step, the technique of only keeping

the largest edge present was used, and in most cases the closed mouth expression

was defined by an edge that had a low pixel count, other edges that defined other

features usually had larger pixel counts than the edge that defined the closed mouth

75

expression. As a result, the edge that defined that other feature would remain in

the image, thus leading to the system in being unable to detect the closed mouth

expression. Compared to the other mouth expression, the pixel count of the closed

mouth expression was hugely dependent on the lighting configuration in the room.

If the light was not distributed evenly throughout the room, it was very difficult to

make a well defined closed mouth expression to show up in the input image (input

image) so that it can be used as a reference image. If a well defined closed mouth

expression reference image could not be made, it made it more difficult to detect the

user’s closed mouth expression.

In addition to testing the accuracy of the computer system on matching the user’s

mouth expression to one of the mouth expression reference images, the amount of

time taken to find a mouth expression that matched the user’s mouth expression was

recorded. When the computer system was set to only locate one mouth expression

out of the three possible mouth expressions, on average it took .2 seconds to calculate

the user’s mouth expression that matched that single mouth expression reference

image. When the computer system was set to only locate two mouth expressions out

of the three possible mouth expressions, on average it took .25 seconds to calculate

the user’s mouth expression that matched one of the two mouth expression reference

images. When the computer system was set to locate all three mouth expressions,

on average it took .28 seconds to calculate the user’s mouth expression that matched

one of the three mouth expression reference images. From these results, it is seen

how the calculation time increased as the number of different mouth expressions that

were searched for was increased. Given this, it is possible for the computer system’s

76

response time to become too great for a given user to use the computer system

effectively and comfortably. So decreasing the number of mouth expressions that are

searched for should be attempted to see if greater performance and overall comfort

for the user is achieved.

In the end, it is seen that the system has a overall high detection rate for the

different mouth expressions. However, this accuracy rate is entirely dependent on the

current lighting configuration in the room, and how well the user is able to consistently

make these mouth expressions. Inability to meet these requirements would result in

a loss of accuracy and overall performance of the system.

77

9. CONCLUSION

9.1 Chapter Overview

This chapter concludes with presenting the contributions made from completing this

thesis. It presents the idea how assistive technologies not only can help an individual

complete a task, but also fosters independence. It also presents the current problems

faced when developing the system, such as the distribution of light in the room, and

recommends ideas and areas to explore for further research.

1. Section 9.2 provides an overview of the contribution made upon completion of

this thesis.

2. Section 9.3 covers the current problem encountered upon development and test­

ing of the system. Also presents the limitations that exist with the current

system.

3. Section 9.3.1 covers the effects that lighting has on the system.

4. Section 9.3.2 covers the how the distance from which the user is seated from the

camera can effect the systems performance.

5. Section 9.4 covers how several possible areas for further research were discovered

and noted.

78

6. Section 9.4.1 presents the idea that different facial features to control the system

should be explored.

7. Section 9.4.2 presents how achieving a speedup in the number of frames executed

per second would enhance the system’s performance.

8. Section 9.4.3 presents the idea that the system could be adapted to allow a user

to control other applications and devices.

9.2 Contribution

In this thesis it was shown how it can be possible for severely handicapped individuals

with eating difficulties to be assisted by using facial expression recognition to deter­

mine the individual’s specific need that he or she wants to be performed in regards to

eating a meal. By using the user’s current mouth expression and matching it to one of

the three mouth expression reference images, it becomes possible to classify a mouth

expression with 90 percent or better accuracy, and then correspond it to a specific

action to be performed by a robotic arm. Such a system will foster the development

in independence and provide a basis in further research of feature recognition system

to assist the special needs individual.

9.3 Current Problems and Limitations of the Computer System

Throughout the development of this thesis, several problems and limitations were

discovered and are noted below.

79

9.3.1 Effects of Lighting

The manner in which the light is distributed throughout the room that the system

was in greatly affected how well the system performed overall, specifically, how well

the system was able to classify the current mouth expression. If the light was not

distributed evenly throughout room and more light was coming in from a certain

direction, it would cause poorly constructed edged images. Since the images would

then be of poor quality, it would cause the system to inaccurately identify the mouth

expression or to not be able to identify the mouth expression at all. In addition,

there was the possibility that the light would cast shadows which would cause un­

wanted edges in the image which would cause misidentification of the current mouth

expression.

9.3.2 Distance from Camera to Individual’s Face

The distance from the individual is from the camera did affect how well the system

performed. The best results were achieved when the individual maintained roughly

the same distance from the camera throughout the execution of the program. The

distance that provided the best results was to have the individual’s head about 1.5

feet away from the camera. If the individual moved closer or further away from

the where the reference images were taken during the execution of the program, the

system had difficulty in locating any of the defined mouth expressions. For example,

if the individual moved further away from the camera, the mouth expression would

be smaller in size. However, even though it may have the general shape of a mouth

expression reference image, the system has no means to scale the image to the size of

80

the reference image. As a result, it is most likely that the system will not recognize

the mouth expression.

9.4 Future Directions

Throughout the development of this thesis, several possible areas for further research

were discovered and noted.

9.4.1 Exploring Other Facial Features to Control the System

Even though the mouth provided an adequate amount of different expressions to

cover the basic feeding actions to be performed, other features should be explored

to see if they provide better performance. Using other features like the eyes may

provide better and more natural control of the system, and possible provide a wider

array of actions that can performed. However, more detailed images would need to

be captured because the current images created by the system do not provide much

detail of the human eye to provide for a wide array of different eye expressions.

9.4.2 Increasing the Number of Frames Executed Per Second

Currently, the method used to classify the different mouth expressions is the DFT.

However, as the number of mouth expressions searched for in each image increases,

the overall execution time for each image increases. It is extremely important that

the number of mouth expression reference images is not so great that it causes the

system to rim at a speed that makes it unpractical and dangerous. The system should

be done with classifying a certain mouth expression before the user makes another

81

expression because if the system was still performing the classification for a mouth

expression when the user made another mouth expression, the system would not be

able to perform the action that the user wanted at that moment. The current number

of mouth expression reference images used by the system is three. However, if more

mouth expression reference images are to be added, other methods of classification

should be considered.

9.4.3 Using the System to Control Other Devices

Even though in the system was designed to control a robotic arm to assist individuals

in eating, it could be generalized to control other devices that special needs individuals

may use. With a slight modification, other expressions can be defined to control a

device and carry out a specific action. For example, the system could control the

lights in a room or control a television. Further research would have to be done to

see if applying the system to other devices in the individual’s life would be practical

and further benefit the individual.

82

APPENDIX A

SOURCE CODE

83

A.l Functions Source Code

#include <vector>

^include <math.h>

using namespace std;

#define PI 3.141592653

void DFT(double *»*img_space , double »**fspace, int height,

int width, double n)

{

double angle ;

double R,I,x,y,a,b;

for(int xi = 0; xi < height; xi++)

{

for (int yi = 0; yi < width; yi++)

{

for(int ai = 0; ai < height; ai-H-)

{

for(int bi = 0; bi < width; bi++)

{

x = xi; y = yi; a = ai; b = bi;

angle = 2*PI * ((x*a/n) 4- (y*b/n));

R= img.space [0] [ai] [bi];

I = img.space [1][ai][bi];

fspace [0] [xi] [yi] = fspace [0] [xi] [yi] 4- (R+cos (angle) + I*sin (angle));

I = img.space [1J [ai][bi];

R = img.space [0] [ai] [bi];

fspace [1][xi][yi] = fspace [1][xi][yi] + (I * cos (angle) — R* sin (angle)) ;

}

}

fspace [0] [xi][yi] = fspace [0] [xi][yi]*(1/ (n*n));

84

fspace [1][xi][yi] = fspace [1][xi][yi]*(1/(n*n));

}

}

}

void iDFT(double ***img_space , double ***fspace, int height,

int width, double n)

{

double angle ;

double R,I,x,y,a,b;

forfint xi = 0; xi < height; xi++)

{

for (int yi = 0; yi < width; yi++)

{

for(int ai = 0; ai < height; ai++)

{

for (int bi = 0; bi < width; bi++)

{

x = xi ; y = yi ; a = ai ; b = bi ;

angle = 2*PI*((x*a/n) 4- (y*b/n));

R = img_space [0] [ai] [bi];

I = img.space [1] [ai] [bi];

fspace [0][xi][yi] = fspace [0] [xi][yi] + (R*cos(angle) — I*sin (angle));

I = img-space [1] [ai] [bi];

R = img-space [0] [ai] [bi];

fspace [1)[xi][yi] = fspace [1][xi][yi) + (I * cos (angle) + R*sin (angle));

}

}

fspace [0] [xi][yi] = fspace [0] [xi][yi]*(l/(n*n));

fspace [1][xi][yi] = fspace [1] [xi][yi]*(l/(n*n));

85

}

}

}

void ArrayToFFTWFormat (double **»img, fftw.complex *dest ,

i-height , int i.width)

{

for(int i = 0; i < i.height; i-H-J

(

for (int j = 0; j < i.width; j++)

{

for(int k= 0; k< 2; k++)

{

dest[j + i.width ♦ i] [k] = img [k] [i] [j];

}

}

}

}

void GetMaxValueFFTWf f ft w-complex *dest , int &index_x,

int &index_y , int i-height , int i.width)

{

double current-max = 0;

double value = 0;

for(int i = 0; i < i-height; i++)

{

for (int j = 0; j < i.width; j++)

{

value = dest [j -I- i.width * i] [0];

if (value > current-max)

{

86

current-max = value;

index_x = i;

index-y = j;

}

}

}

}

void NormalizeFFTW(fftw.complex *fspacel , fftw.complex *fspace2 ,

fftw.complex ♦norfspace, int f.height ,

int f.width)

{

double real-value , real_value2 , img„value , img_value2 ;

int x, y;

double num_real , numJmg;

double dem;

for (x = 0; x < f-height; x-H-)

{

for(y = 0; y < f.width; y++)

{

real-value = fspacel [y + f.width * x] [0];

real_value2 = fspace2 [y 4- f-width * x] [0] ;

img-value = fspacel [y + f-width ♦ x] [1];

img_value2 = fspace2 [y 4- f-width * x] [1] ;

num.real = real-value*real_value2 4- img_value*img_value2 ;

numJmg = real_value2*img_value — real_value*img_value2 ;

dem = pow(real_value2 ,2) + pow(img-value2 , 2);

i f (dem = 0)

{

norfspace [y 4- f.width * x] [0] = 0;

87

norfspace[y + f-width ♦ x][0] = 0;

}

else

{

norfspace [y + f_width * x] [0] = num_real/dem;

norfspace [y + f.width ♦ x] [1] = num_img/dem;

}

}

}

}

void revisedDFT (double ♦ **img_space , double ***fspace, int height,

int width, double n, vector<int> &x_points ,

vector<int> &y-points)

{

double angle ;

double R, I , x ,y, a, b;

int x_point , y .point;

forfint xi = 0; xi < height; xi-t-4-)

{

for (int yi = 0; yi < width; yi+4-)

{

for (int index = 0; index < x.points . size (); index++)

{

x = xi; y = yi;

a = x.points[index];

b = y.points [index];

X-point = x.points [index];

y-point = y-points [index];

angle = 2*PI*((x*a/n) + (y*b/n));

88

R = img_space [0] [x.point] [y.point];

I = img_space [1] [x.point] [y.point];

fspace [0] (xi][yi] = fspace [0] [xi] [yi] + (R*cos (angle) + I*sin (angle));

I = img-space [1][x.point][y.point];

R = img.space [0] [x.point] [y.point];

fspace [1][xi][yi] = fspace [1][xi][yi] + (I*cos (angle) — R+sin (angle));

}

fspace [0] [xi][yi] = fspace [0] [xi][yi]♦ (l/(n*n));

fspace [1][xi][yi] = fspace [1][xi][yi]♦(1/(n*n));

}

}

x. points.clear();

y. points . clear ();

}

void Padimage (double ♦♦♦padded, double ♦♦♦image, int pad-height,

int pad-width, int image-height , int image-width)

{

int pad.x = (pad_height/2) — (image-height /2);

int pad.y = (pad_width/2) — (image_width/2);

for (int i = 0; i < image-height; i++)

{

for (int j = 0; j < image-width; j++)

{

padded [0] [pad_x] [pad_y] = image [0] [i] [j];

if(pad_y = (pad.width/2) — (image-width/2) + image-width — 1)

{

pad-x++;

pad.y = (pad-width/2) — (image-width/2);

}

89

else

{

pad_y++;

}

}

}

}

void OverLapimage (double ♦♦♦image, Ipllmage ♦ source,

int startx , int starty , int image-height ,

int image.width)

{

CvScalar pixel ;

int tempx = startx ;

int tempy = starty;

int c, c2;

for(c = 0; c < image-height; c-H-)

{

for(c2 = 0; c2 < image-width; c2++)

(

if (image [0] [c][c2] >= 100)

{

pixel, val [0] = 255;

cvSet2D (source , tempx, tempy, pixel);

}

if (tempy = starty + image-width — 1)

{

tempx++;

tempy = starty ;

90

else

{

tempy++;

}

}

}

}

void Shiftimage (double ***source , double »**shifted ,

int shift.x , int shift.y , int source-height ,

int source-width, int &cx , int &cy)

{

ex = source-height/2;

cy = source-width/2;

bool done = false;

int sx.counter = 0;

int sy-counter = 0;

if(shift-x = 0 && shift.y = 0)

{

//do nothing

}

else i f (shift-x > 0 && shift.y = 0)

{

sx. counter = shift.x;

sy. counter = 0;

for (int x = 0; x < source-height — shift.x; x++)

{

for(int y = 0; y < source-width; y++)

{

shifted [0] [sx.counter] [sy.counter] = source [0] [x] [y];

91

i f (x = ex && y = cy && done false)

{

ex = sx.counter ;

cy = sy-counter ;

done = true;

}

i f (sy_counter = source-width—1)

{

sx-counter-t-4-;

sy.counter = 0;

}

else

{

sy _counter++;

}

}

}

sx-counter = 0;

sy-counter = 0;

for(int x = shift.x; x < source-height; x++)

{

for (int y = 0; y < source-width; y++)

{

shifted [0] [sx.counter][sy.counter] = source[0][x][y

if(x ex && y cy && done = false)

{

ex = sx-counter ;

cy = sy-counter;

done = true;

92

}

i f (sy.counter source-width—1)

{

sx_counter++;

sy_counter = 0;

}

else

{

sy.counter++;

}

}

}

}

else if(shift_x = 0 && shift-y > 0)

{

sx. counter = 0;

sy. counter = shift_y ;

for(int x = 0; x < source-height; x++)

{

for (int y = 0; y < source-width — shift-y; y++)

{

shi fted [0] [sx.counter][sy.counter] = source [0][x][y

i f (x = ex && y = cy && done = false)

{

ex = sx.counter ;

cy = sy.counter ;

done = true ;

}

i f (sy.counter = source-width—1)

93

{

sx_counter++;

sy.counter = shift.y ;

}

else

{

sy_counter4—H

}

}

}

sx_counter = 0;

sy.counter = 0;

for(int x = shift_x ; x < source-height; x+-1-)

{

for (int y = 0; y < source-width — shift-y; y++)

{

shifted [0] [sx.counter][sy.counter] = source [0][x][y

if(x ex && y = cy && done = false)

{

ex — sx.counter ;

cy = sy.counter ;

done = true;

}

i f (sy.counter = source-width—1)

{

sx_counter4-+;

sy.counter = shift-y;

}

else

94

{
J

sy_counter++;

}

}

}

}

else

{

//section a

sx.counter = shift.x ;

sy-counter = shift.y ;

for(int x = 0; x < source-height — shift.x; x++)

{

for(int y = 0; y < source.width — shift.y; y++)

{

shifted [0] [sx.counter] [sy.counter] = source[0][x][y

if(x = ex && y = cy && done ;= false)

{

ex = sx.counter ;

cy = sy.counter;

done = true;

}

i f (sy.counter = source.width—1)

{

sx. counter+4-;

sy. counter = shift.y;

}

else

{

95

sy_counter++;

}

}

}

//section b

sx.counter = shift.x;

sy-counter = 0;

for(int x = 0; x < source-height — shift.x ; x++)

{

for (int y = source-width — shift.y; y < source-width; y++)

{

shifted [0] [sx.counter] [sy.counter] = source [0] [x] [y];

if(x = ex && y = cy && done = false)

<

ex = sx.counter;

cy = sy.counter ;

done = true;

}

if (sy.counter = shift.y — 1)

{

sx_counter++;

sy.counter = 0;

}

else

{

sy.counter+4-;

}

}

}

96

//section c

sx. counter = 0;

sy. counter = sliift.y;

for(int x = source-height — shift_x ; x < source-height; x++)

{

for(int y = 0; y < source-width — shift.y; y-H-)

{

shifted [0] [sx.counter][sy.counter] = source[0][x][y];

if(x ex && y = cy && done = false)

{

ex = sx-counter ;

cy = sy.counter;

done = true;

}

if(sy.counter source-width — 1)

{

sx_counter++;

sy.counter = shift.y;

}

else

{

sy~counter++;

}

}

}

//section d

sx. counter = 0;

sy. counter = 0;

for (int x = source-height — shift.x; x < source-height; x+4-)

97

{

for (int y = source-width — shift.y; y < source-width; y-H-)

{

shifted [0) [sx_counter][sy.counter] = source [0] [x] [y];

if (x = ex && y = cy && done = false)

{

ex = sx.counter ;

cy = sy.counter ;

done = true;

}

if (sy.counter = shift.y — 1)

{

sx_counter++;

sy.counter = 0;

}

else

{

sy.counter++;

}

}

}

}

}

void MakeBorders (int &top , int &bottom , int &left ,

int &right , int s.height , int s.width ,

int p.height , int p.width , int centerx ,

int centery)

{

98

bottom = centerx + s-height/2;

if (bottom > p_height — 1)

{

bottom = p.height — 1;

}

top = centerx — s_height/2;

i f(top < 0)

{

top = 0;

}

left = centery — s-width /2;

if(left < 0)

{

left = 0;

}

right = centery + s_width/2;

if(right > p.width — 1)

{

right = p.width — 1;

}

}

void ImageToArray (Ipllmage * source, double ***fspace,

int startx , int starty , int i_height , int

{

CvScalar pixel;

int m = 0;

int n = 0;

forfint a = startx; a < startx + i-height; a++)

i-width)

99

{

for (int b = starty; b < starty + i-width; b++)

{

pixel = cvGet2D (source , a, b);

fspace [0] [m] [n] = pixel . val [0];

fspace [1] [m] [n] = 0;

if(n = i_width — 1)

{

m4-+;

n = 0;

}

else

{

n++;

1

1

}

}

void GetMaxValuef double **♦ img.array , int &index_x ,

int &index_y , int i-height , int i-width)

{

double current-max = 0;

double value = 0;

for(int a = 0; a < i-height; a++)

{

for (int b = 0; b < i.width; b++)

{

value = img.array [0] [a] [b];

if (value > current-max)

100

{

current-max = value;

index.x = a;

index.y = b;

J

}

}

cout « index.x « ” ” « index.y « endl;

}

void TakeSnapShot (Ipllmage ♦ image, GvArr * shot,

int startx , int starty , int shot-height ,

int shot-width)

CvScalar pixel-retrieved ;

int cl, c2 ;

int tempx = startx;

int tempy = starty ;

for(cl = 0; cl < shot-height; cl++)

{

for(c2 = 0; c2 < shot-width; c2++)

{

pixel-retrieved = cvGet2D (image , tempx, tempy);

cvSet2D (shot , cl, c2 , pixel-retrieved);

if (tempy = starty 4- shot-width — 1)

{

tempx4-4-;

tempy = starty ;

}

else

101

{

tempy++;

}

}

}

}

void Normalize(double ♦ ♦♦fspacel, double ♦ ♦♦fspace2 ,

double ♦ ♦♦ norfspace , int f-height , int f.width)

{

double real-value, real_value2 , img.value, img_value2;

int x, y;

double num-real , numJmg;

double dem;

for(x = 0; x < f.height ; x++)

{

for(y = 0; y < f.width; y++)

{

real-value = fspacel [0] [x] [y];

real_value2 = fspace2 [0] [x] [y];

img.value = fspacel [1] [x] [y];

img_value2 = fspace2 [1] [x] [y];

num_real = real_value*real_value2 4- img_value*img_value2 ;

num-img = real_value2*img.value — real_value*img_valuc2 ;

dem = pow(real_value2 ,2) 4- pow(img-value2 , 2);

i f (dem 0)

{

norfspace [0] [x] [y] = 0;

norfspace [0] [x] [y] = 0;

}

102

else

{

norfspace [0] [x] [y] = num_real/dem;

norfspace [1] [x] [y] = numJmg/dem;

}

}

}

}

void FormatFilter(Ipllmage * image, int startx , int starty ,

int filter-height, int filter-width)

{

CvScalar pixel, pixelchange;

forfint a = startx; a < startx + filter-height; a-H-)

{

forfint b = starty; b < starty + filter-width; b++)

{

pixel = cvGet2D (image , a, b);

if(pixel.val[0] > 99)

{

pixelchange . val [0] = 100;

cvSet2D (image , a, b, pixelchange);

}

else

{

pixelchange . val [0] = 0;

cvSet2D (image , a, b, pixelchange);

}

}

}

103

}

void EdgeWalker (Ipllmage ♦ image, int startx , int starty ,

int mingroupsize , int maxgroupsize ,

int fi It er-heigh t , int filter-width ,

vector<int> &x_pts , vector<int> &y_pts ,

int &size)

{

double ♦♦subframe;

subframe = new double *[filter-height];

for(int i = 0; i < filter-height; i++)

{

subframe [i] = new double [filter-width];

}

int borderxl = 0;

int borderx2 = 0 + filter-height — 1;

int borderyl = 0;

int bordery2 = 0 + filter-width — 1;

int icounter = 0;

int jcounter = 0;

int m = 0;

int n = 0;

int c,c2,c3,o ,p;

int tx , ty;

int tn , tm;

int tempx, tempy;

int curposx = 0;

int curposy = 0;

int finalcounter = 0;

int walk_to ;

104

int backtrack_pixel;

double nO, nl, n2, n3 , n4 , n5, n6 , n7;

CvScalar pixel, pixelchange;

vector<double> neighbors; //all neighbors and pixel values

vector<int> w.neighbors; // all white pixel neighbors

vector<int> neighbor.id ;

vector <int> x.coords;

vector <int> y_coords;

vector<int> x.backtrack;

vector<int> y_backtrack;

vector<int> x.final ;

vector <int> y-final;

bool edged.walked = false;

//copy subframe pixels into array

forfint a = startx; a < startx + filter-height; a++)

{

for(int b = starty; b < starty 4- filter_width ; b++)

<

pixel = cvGet2D (image , a, b);

subframe [m] [n] = pixel.val[0];

if(n = filter-width — 1)

{

m++;

n = 0;

}

else

{

n++;

}

105

}

m = 0;

n = 0;

for(o=0; o < filter-height; o++)

{

for(p = 0; p < filter-width; p++)

{

if (subframe [o][p] 100) //not a black pixel

{

m = o;

n = p;

while (edged.walked 1= true)

{

if(m != borderxl && m != borderx2

&& n != borderyl && n != bordery2) //inner pixels

{

//calculate neigbor pixel values

nO = subframe [m— 1] [n —1];

nl = subframe [m—1] [n];

n2 = subframe [m—1] [n + 1];

n3 = subframe [m] [n — 1];

n4 = subframe [m] [n+1];

n5 — subframe [m+1] [n —1);

n6 = subframe [m+l][n];

n7 = subframe [m+l][n+l];

neighbors . push-back (nO);

neighbors . push-back (nl);

neighbors . push-back (n2);

106

neighbors . push-back (n3);

neighbors . push-back (n4);

neighbors . push-back (n5);

neighbors . push-back (n6);

neighbors . push-back (n7);

neighbor-id . push-back (0);

neighbor-id . push-back (1);

neighbor-id . push-back (2) ;

neighbor.id . push-back (3);

neighbor-id . push-back (4);

neighbor-id. push-back (5);

neighbor-id . push-back (6);

neighbor-id . push-back (7);

}

else if (m != borderxl && m != borderx2

&& n = borderyl) //vertical left side pixels

{

nl = subframe [m—1] [n] ;

n2 = subframe [m—l][n4-l];

n4 = subframe [m] [n-f-1];

n6 = subframe [m+l][n];

n7 = subframe [m+l][n + l];

neighbors . push-back (nl);

neighbors . push-back (n2);

neighbors . push-back (n4);

neighbors . push-back (n6);

neighbors . push-back (n7);

neighbor_id . push-back (1);

neighbor„id . push-back (2);

107

neighbor-id . push-back (4);

neighbor-id . push-back (6);

neighbor-id . push-back (7);

}

else if (m = borderx2 && n = borderyl) // bottom left pixel

{

nl = subframe [m—1] [n];

n2 = subframe [m—1][n + 1];

n4 = subframe [m] [n + 1];

neighbors . push-back (nl);

neighbors . push-back (n2);

neighbors . push-back(n4);

neighbor-id . push-back (1);

neighbor-id . push-back (2);

neighbor-id . push-back (4);

}

else if (m borderx2 && n != borderyl

&&; n != bordery2) //horizontal bottom side pixels

{

nO = subframe [m—1] [n —1];

nl = subframe [m—1] [n];

n2 = subframe [m—l][n+l];

n3 = subframe [m] [n —1];

n4 = subframe [m] [n+1];

neighbors . push-back (nO);

neighbors . push-back (nl);

neighbors . push-back (n2);

neighbors . push-back (n3);

neighbors . push-back (n4);

108

neighbor _id . push .back (0);

neighbor-id. push-back (1);

neighbor-id. push-back (2);

neighbor_id .push-back (3);

neighbor_id . push-back (4);

}

else if (m = borderx2 && n = bordery2) // bottom right corner pixel

{

nO = subframe [m—l][n — l];

nl = subframe [m—1] [n];

n3 = subframe [m] [n — 1];

neighbors . push-back (nO);

neighbors . push-back (nl);

neighbors . push-back (n3);

neighbor-id . push-back (0);

neighbor-id. push-back (1);

neighbor-id . push-back (3);

}

else if (m != borderxl && m 1= borderx2

&& n = bordery2) // vertical right side pixels

{

nO = subframe [m—1][n — 1];

nl = subframe [m—1] [n];

n3 = subframe [m] [n — 1];

n5 — subframe [m+1] [n — 1];

n6 = subframe [m+1] [n];

neighbors . push-back (nO);

neighbors.push-back(nl);

neighbors . push-back (n3);

109

neighbors . push-back(n5);

neighbors . push-back(n6);

neighbor-id . push-back (0);

neighbor-id . push-back (1);

neighbor-id . push-back (3);

neighbor-id. push-back (5);

neighbor-id . push-back (6);

J

else if (m = borderxl && n bordery2) // top right pixel

{

n3 = subframe [m] [n — 1];

n5 = subframe [m+1] [n —1];

n6 = subframe [m+l][n];

neighbors . push-back (n3);

neighbors . push-back (n5);

neighbors . push-back (n6);

neighbor_id . push-back (3);

neighbor-id . push-back (5);

neighbor-id. push-back (6);

}

else if (m borderxl && n != borderyl

&Sc n 1= bordery2) //horizontal top side pixels

{

n3 = subframe [m] [n —1];

n4 = subframe [m] [n + 1];

n5 = subframe [m+l][n —1];

n6 = subframe [m+1] [n];

n7 = subframe [m+l][n + l];

neighbors . push-back (n3);

110

neighbors . push-back (n4);

neighbors . push-back(n5) ;

neighbors . push-back(n6);

neighbors . push-back(n7) ;

neighbor-id . push-back (3);

neighbor-id . push-back (4);

neighbor-id . push-back (5);

neighbor-id . push-back (6);

neighbor-id. push-back (7);

}

else if (m borderxl && n = borderyl) //top left pixel

{

n4 = subframe [m] [n+1];

n6 = subframe [m+1] [n];

n7 = subframe [m+1] [n+1];

neighbors . push-back (n4);

neighbors . push-back (n6);

neighbors . push-back (n7) ;

neighbor-id . push-back (4);

neighbor-id . push-back (6) ;

neighbor-id . push-back (7);

}

//find all pixel neighbors that are white

for(c = 0; c < neighbors. size (); c++)

{

i f (neighbors [c] = 100)

{

w.neighbors . push-back (neighbor-id [c]);

}

111

}

i f (w.neighbors . empty ()) //if no connecting pixel

{

subframe [m] [n] = 0; //black out pixel

x.coords . push_back (m);

y .coords.push-back(n);

i f (x_backtrack . empty ())

{

edged.walked = true;

//check to see if number of points in group meets min.

i f (x.coords . size () >= mingroupsize

&& x.coords . size () <= maxgroupsize)

{

forfint y = 0; y < x-coords . size (); y++)

{

x _f i n al.push-back(x.coords(y]);

y_f i n al•push-back(y.coords[y]);

x.pts. push-back (x.coords [y]);

y _pts . push-back (y .coords [y]) ;

}

}

x. coords.clear();

y. coords.clear();

}

else // backtrack not empty

{

m = x.backtrack.back();

n = y-backtrack.back ();

x.backtrack.pop-back();

112

y.backtrack.pop-back();

}

}

else // w_neighbors not empty, connecting pixel

{

subframe [m] [n] = 0;

x.coords . push-back (m);

y-coords . push-back (n);

walk.to = w.neighbors . back ();

w.neighbors . pop-back ();

tm = m;

tn = n;

i f (walk.to = 7)

{

m = m+1;

n = n+1;

}

else if (walk.to = 6)

{

m = m+1;

n = n;

}

else if(walk_to = 5)

{

m = m+1;

n = n — 1;

}

else if(walk_to 4)

{

113

m = m;

n = n+1;

}

else iffwalk.to = 3)

{

m = m;

n = n—1;

}

else if(walk_to 2)

{

m = m—1;

n = n+1;

}

else if(walk_to = 1)

{

m = m—1;

n = n;

}

else if(walk_to = 0)

{

m = m—1;

n = n —1;

}

for(int h = 0; h < w .neighbors . size () ; h++)

{

backtrack.pixel = w-neighbors [h];

i f (backtrack.pixel 7)

{

x.backtrack . push-back (tm+1);

114

y.backtrack . push-back (tn + 1);

subframe [tm+l][tn + l] = 0;

}

else if (backtrack.pixel = 6)

{

x.backtrack. push-back (tm+1);

y-backtrack.push-back(tn);

subframe [tm+1][tn] = 0;

else if (backtrack.pixel 5)

{

x.backtrack. push-back (tm+1);

y-backtrack . push-back (tn —1);

subframe [tm+l][tn—l] — 0;

}

else i f (backtrack.pixel = 4)

<

x-backtrack . push-back (tm);

y-backtrack . push-back (tn + 1);

subframe [tm][tn + 1] = 0;

)

else if (backtrack.pixel 3)

{

x. backtrack . push-back (tm);

y. backtrack . push-back (tn — 1);

subframe [tm] [tn—1] = 0;

}

else if (backtrack.pixel = 2)

{

115

x_backtrack . push-back (tm— 1);

y.backtrack . push-back (tn + 1);

subframe [tm —1] [tn + 1] = 0;

}

else i f (backtrack.pixel 1)

{

x. back track . push-back (tm—1);

y. backtrack . push-back (tn);

subframe [tm —l][tn] = 0;

}

else i f (backtrack.pixel = 0)

{

x-back track . push .back (tm—1);

y.backtrack . push-back (tn —1);

subframe [tm— 1] [tn—1] = 0;

}

}//for loop

}

w.neighbors . clear () ;

neighbors, clear ();

neighbor .id . clear ();

}//whi!e loop

x. backtrack.clear();

y. backtrack.clear();

}//if statement, white pixel

edged.walked = false ;

}//inner for loop

} //outer for loop

size = x.final . size ();

116

while (x-final . size () 1= 0)

{

tx = x-final . back ();

ty = y_final.back ();

subframe [tx][ty] = 100;

x_fi nal. pop-back ();

y-final . pop-back ();

}

x_final . clear ();

y-final . clear () ;

tempx = startx ;

tempy = starty ;

for(c2 =0; c2 < filter-height; c2++)

{

for(c3 =0; c3 < filter-width; c3++)

{

pixelchange . val [0] = subframe [c2][c3];

cvSet2D (image , tempx, tempy, pixelchange);

if(tempy = starty + filter.width — 1)

{

tempx++;

tempy = starty ;

}

else

{

tempy++;

}

}

}

117

for(int i = 0; i < filter-height; i++)

{

delete [] subframe [i];

}

delete [] subframe;

}

void FindLargestEdge (Ipllmage * image, int startx , int starty ,

int filter-height , int filter-width , int min,

int max, int &size)

{

double **subframe;

subframe = new double*[filter-height];

for(int i = 0; i < filter-height; i++)

{

subframefi] = new double [filter-width];

}

int borderxl = 0;

int borderx2 = 0 + filter-height — 1;

int borderyl = 0;

int bordery2 = 0 + filter-width — 1;

int icounter = 0;

int jcounter = 0;

int m = 0;

int n = 0;

int c , c2 , c3 , o ,p;

int tx, ty;

int tn, tm;

int tempx, tempy;

int curposx = 0;

118

int curposy = 0;

int finalcounter = 0;

int walk-to ;

int backtrack_pixel;

double nO , nl , n2 , n3 , n4 , n5 , n6 , n7;

CvScalar pixel , pixelchange;

vector<double> neighbors; //all neighbors and pixel values

vector <int> w_neighbors; // all white pixel neighbors

vector<int> neighbor-id ;

vector<int> x_coord8 ;

vector<int> y.coords ;

vector<int> x_backtrack ;

vectorCint > y-backtrack ;

vector <int> x_final ;

vector<int> y-final ;

bool edged-walked = false;

//copy subframe pixels into array

for (int a = startx; a < startx + filter-height; a++)

{

for (int b = starty ; b < starty 4- filter-width ; b++)

{

pixel = cvGet2D (image , a, b);

subframe [m] [n] = pixel . val [0];

if(n = filter-width — 1)

{

nH-+;

n = 0;

}

else

119

{

n++;

}

}

}

m = 0;

n = 0;

for(o = 0; o < filter-height; o++)

{

for(p = 0; p < filter-width; p++)

{

if (subframe [o] [p] = 100) //not a black pixel

{

m = o;

n = p;

while (edged.walked 1= true)

{

if(m 1= borderxl && m 1= borderx2

&&; n != borderyl && n != bordery2) //inner pixels

{

//calculate neigbor pixel values

nO = subframe [m—l][n —1];

nl = subframe [m—l][n];

n2 = subframe [m—1] [n+1];

n3 = subframe [m] [n— 1];

n4 = subframe [m] [n+1];

n5 = subframe [m+1] [n — 1];

n6 = subframe [m+l](n];

n7 = subframe [m+l][n + l];

120

neighbors . push-back (nO);

neighbors . push-back (nl);

neighbors. push_back(n2);

neighbors, push-back (n3);

neighbors . push-back (n4);

neighbors . push-back (n5);

neighbors . push-back (n6);

neighbors . push-back (n7);

neighbor-id . push-back (0);

neighbor-id . push-back (1);

neighbor-id . push-back (2) ;

neighbor-id . push-back (3);

neighbor-id . push-back (4);

neighbor-id . push-back (5);

neighbor-id. push-back (6);

neighbor-id . push-back (7);

}

else if (m 1 = borderxl && m != borderx2

&& n = borderyl) //vertical left side pixels

{

nl = subframe [m—1] [n];

n2 = subframe [m—1] [n +1];

n4 = subframe [m] [n+1];

n6 = subframe [m+l][n];

n7 — subframe [m+l][n + lj;

neighbors . push-back (nl);

neighbors . push-back (n2);

neighbors . push-back (n4);

neighbors . push-back (n6);

121

neighbors . push-back(n7);

neighbor-id . push-back (1);

neighbor-id . push-back (2);

neighbor-id. push-back(4);

neighbor-id . push-back (6);

neighbor-id . push-back (7);

}

else if (m = borderx2 && n = borderyl) // bottom left pixel

{

nl = subframe [m—1] [n];

n2 = subframe [m—1] [n + 11];

n4 = subframe [m] [n + 1];

neighbors . push-back (nl);

neighbors . push-back (n2),;

neighbors . push-back (n4);

neighbor-id . push-back (1');

neighbor_id. push-back (2);

neighbor-id - push-back (4);

}

else if (m borderx2 && n != borderyl

&& n != bordery2) //horizontal bottom side pixels

{

nO = subframe [m—1] [n —1];

nl = subframe [m—1] [n];

n2 = subframe [m—1] [n + 1];

n3 ~ subframe [m] [n — 1];

n4 = subframe [m] [n + 1];

neighbors . push-back (nO);

neighbors . push-back (nl);

122

neighbors, push-back(n2);

neighbors . push-back (n3);

neighbors . push-back (n4);

neighbor_id . push-back (0);

neighbor-id . push-back (1);

neighbor-id . push-back (2);

neighbor_id. push-back (3);

neighbor-id . push-back (4);

}

else if (m = borderx2 && n = bordery2) // bottom right corner pixel

{

nO = subframe [m—1][n —1];

nl = subframe [m—1] [n];

n3 = subframe [m] [n — 1];

neighbors . push-back (nO);

neighbors . push-back (nl);

neighbors . push-back (n3) ;

neighbor-id. push-back (0);

neighbor.id . push-back (1);

neighbor-id. push-back (3);

}

else if (m 1= borderxl && m 1= borderx2

&& n = bordery2) // vertical right side pixels

{

nO = subframe [m—1] [n —1);

nl = subframe [m—l][n];

n3 = subframe [m] [n—1];

n5 = subframe [m+l][n — l];

n6 = subframe [m+1] [n];

123

neighbors . push-back (nO);

neighbors . push-back (nl);

neighbors . push-back (n3);

neighbors . push-back (n5);

neighbors . push-back (n6);

neighbor_id . push-back (0);

neighbor_id. push-back (1);

neighbor-id. push-back (3);

neighbor-id . push-back (5);

neighbor_id . push-back (6);

}

else if (m = borderxl && n bordery2) // top right pixel

{

n3 = subframe [m] [n — 1];

n5 = subframe [m+l][n — l];

n6 = subframe [m+1] [n];

neighbors . push-back (n3);

neighbors . push-back (n5);

neighbors . push-back (n6);

neighbor_id . push-back (3);

neighbor-id . push-back (5);

neighbor-id. push-back (6);

}

else if (m = borderxl && n != borderyl

&& n 1= bordery2) //horizontal top side pixels

{

n3 = subframe [m] [n—1];

n4 = subframe [m] [n + 1];

n5 = subframe [m+1] [n —1];

124

n6 = subframe [m+l][n];

n7 = subframe [m+l][n+l];

neighbors . push-back(n3);

neighbors . push-back (n4);

neighbors . push-back(n5);

neighbors . push-back(nG);

neighbors . push-back (n7);

neighbor-id . push-back (3);

neighbor-id . push-back (4);

neighbor _id . push-back (5);

neighbor-id . push-back (6);

neighbor-id . push-back (7);

}

else if (m borderxl && n = borderyl) //top left pixel

{

n4 = subframe [m] [n + 1];

n6 = subframe [m+1] [n];

n7 = subframe [m+1] [n + 1];

neighbors . push-back (n4);

neighbors.push-back(n6);

neighbors . push-back (n7);

neighbor-id . push-back (4);

neighbor_id . push-back (6);

neighbor_id . push-back (7);

}

//find all pixel neighbors that are white

for(c = 0; c < neighbors . s ize (); c++)

{

i f (neighbors [c] = 100)

125

{

w. neighbors . push-back (neighbor-id [c]) ;

}

}

if (w.neighbors .empty()) //if no connecting pixel

{

subframe [m] [n] = 0; //black out pixel

x.coords . push-back (m) ;

y-coords.push-back(n);

i f (x.backtrack . empty ())

{

edged_walked = true;

if (x-coords . size () >= min && x.coords . size () <= max)

{

if (x.coords . size () > x-final, size ())

{

x. final . clear ();

y. final . clear ();

for(int y = 0; y < x.coords.size (); y++)

{

x_fi nal . push-back (x-coords [y]);

y.final . push-back (y.coords [y]);

}

}

}

x. coords.clear();

y. coords.clear();

}

else // backtrack not empty

126

{

m = x.backtrack.back();

n = y-backtrack.back();

x-backtrack.pop-back();

y.backtrack.pop.back();

}

}

else // w.neighbors not empty, connecting pixel

{

subframe [m] [n] = 0;

x. coords . push-back (m);

y. coords.push-back(n);

walk.to = w.neighbors . back ();

w-neighbors . pop-back ();

tm = m;

tn = n;

i f (walk-to = 7)

{

m = m+1;

n = n+1;

}

else if(walk_to = 6)

{

m = m+1;

n = n;

}

else if (walk-to = 5)

{

m = m+1;

127

n = n—1;

}

else if(walk_to = 4)

{

m = m;

n = n+1;

}

else if(walk_to = 3)

{

m = m;

n = n—1;

}

else if(walk_to = 2)

{

m = m—1;

n = n+1;

}

else if(walk_to 1)

{

m = m—1;

n = n;

}

else if(walk_to = 0)

{

m = m—1;

n = n — 1;

}

for(int h = 0; h < w-neighbors . size (); h++)

{

128

backtrack.pixel = w.neighbors [h];

i f (backtrack-pixel = 7)

{

x. backtrack . push-back (tm+1);

y. backtrack . push-back (tn + 1);

subframe [tm+1] [tn + 1] = 0;

}

else if (backtrack.pixel = 6)

{

x_b ack track . push-back (tm+1);

y.backtrack.push-back(tn);

subframe [tm+1] [tn] = 0;

}

else i f (backtrack.pixel = 5)

{

x. backtrack . push-back (tm+1);

y. backtrack . push-back (tn — 1);

subframe [tm+1] [tn—1] = 0;

}

else i f (backtrack.pixel 4)

{

x. backtrack . push-back(tm);

y. backtrack. push_back(tn + l);

subframe [tm] [tn + 1] = 0;

}

else i f (backtrack-pixel 3)

{

x-backtrack . push-back (tm) ;

y.backtrack . push-back (tn — 1);

129

subframe [tm][tn —1] = 0;

}

else i f (backtrack.pixel = 2)

{

x.backtrack . push-back (tm—1);

y-backtrack . push-back (tn + 1);

subframe [tm — l][tn + l] = 0;

}

else 1 f (backtrack.pixel = 1)

{

x.backtrack . push-back (tm—1);

y_backtrack.push-back(tn);

subframe [tm —l][tn] = 0;

}

else i f (backtrack.pixel = 0)

{

x-backtrack . push-back (tm—1);

y .backtrack . push .back (tn — 1);

subframe [tm —1] [tn —1] = 0;

}

}//for loop

}

w.neighbors . clear ();

neighbors . clear ();

neighbor_id . clear ();

}//while loop

x. backtrack.clear ();

y. backtrack.clear ();

}//if statement, white pixel

130

edged .walked = false ;

}//inner for loop

} //outer for loop

size = x.final . size ();

while (x.final . size () != 0)

{

tx = x.final . back ();

ty = y-final . back ();

subframe [tx] [ty] = 100;

x_final . pop-back ();

y _fi nal . pop-back ();

}

x.final . clear () ;

y-final . clear () ;

tempx = startx ;

tempy = starty;

for(c2 = 0; c2 < filter-height; c2-H-)

{

for(c3 =0; c3 < filter-width; c3++)

{

pixelchange . val [0] = subframe [c2][c3];

cvSet2D (image, tempx, tempy, pixelchange);

if (tempy = starty + filter-width — 1)

{

tempx++;

tempy = starty ;

}

else

{

131

tempy++;

}

}

}

forfint i = 0; i < f i 1 ter _he i gh t ; i++)

{

delete [] subframe [i];

}

delete [] subframe;

}

void EndpointVerifier (double **sframe , int walkable_size ,

int nonwalkable-size , vector<int> &endpx ,

vector<int> &endpy, int x, int y,

int f.height , int f.width)

{

if(nonwalkable_size + walkable.size > 1)

{

if(x != f_height—1 && x != 0 && y != f_width— 1 && y != 0)

{

if (((sframe [x] [y — 1] 105 sframe [x] [y— 1] != 100) &&

(sframe [x] [y+1] != 105 II
((sframe [x — l][y] != 105 sframe [x — 1] [y] != 100) &&

!= 100)) && //l,6(sframe [x +1] [y] 105 sframe [x +1] [y]

((sframe [x —l][y+l] != 105 11 sframe [x — 1] [y+1] != 100) &&

(sframe [x+l][y—1] != 105 11 sframe [x + l][y—1] != 100)) && //2.,5

((sframe [x —l][y—1] 1= 105 || sframe [x —l][y—1] 1= 100) &&

(sframe [x + l][y+l] 1= 105 11 sframe [x +1] [y+1] != 100)) //0,7

((sframe [x-l][y] 1= 105 || sframe [x —1] [y] != 100) &&

(sframe [x][y-l] 1= 105]] sframe [x] [y — 1] 1= 100)) && //1,3

132

((sframe [x-lj[y] != 105 || sframe [x -i][y] != 100)

(sframe (x](y+l) != 105 II sframe [x][y+U i= 100)) && //l,4

((sframe [x][y—1] != 105 || sframe [x][y-i] i= 100) &&

(sframe |x+l)[y) != 105 || sframe [x + i][y] != 100)) && //3,6

((sframe [x-l][y-1] 1= 105 11 sframe [x-l][y-l] != 100) &&

(sframe [x — l][y+l] != 105 11 sframe [x-l][y+l] != 100)) && //0,2

((sframe 1[*+i][y-i] 105 11 sframe [x + l][y—1] != 100) &&

(sframe 1[x+l][y+l] != 105 11 sframe [x + l][y+l] != 100)) && //5,7

((sframe [x — l][y —1] != 105 11 sframe [x-i][y-l] != 100) &&

(sframe [x + l][y-l] != 105 |] sframe [x + l][y-l] != 100)) && //0,5

((sframe |[x-l][y+l] != 105 |] sframe [x-l][y+l] != 100) &&

(sframe |[x+l][y + l] != 105 11 sframe [x + l][y+l] != 100)) && //7,2

((sframe [x —l][y—1] != 105 11 sframe [x-l][y-l] != 100)

(sframe [x + l][y] != 105 || sframe [x +i](y] != 100)) && //0,6

((sframe [x-l][y+l] != 105 11 sframe [x-l][y+l] 1= 100) &&

(sframe [x + l][y] != 105 || sframe [x +i][y] i= 100)) && //2,6

((sframe [x-l][y] != 105 || sframe [x -i][y] != 100) &&

(sframe [x + l][y—1] 1= 105 | | sframe [x + l][y-l] != 100)) && //l,5

((sframe [x-l][y] != 105 II sframe [x -i][y) != 100) &&

(sframe |[x + l][y+l] != 105 11 sframe [x+l] [y+1] != 100)) //l,7

((sframe |[x][y-l] != 105 || sframe [x][y-i] != 100)

(sframe |[x-l][y+l] != 105 11 sframe [x-l][y+l] != 100)) && //3,2

((sframe |[x][y-l] != 105]| sframe [x] [y-i] != 100) &&

(sframe |[x + l][y+l] 1= 105 11 sframe [x +1] [y+1] 1= 100)) //3,7

((sframe |>)[y+l] != 105 || sframe [x Hy+1) != 100)

(sframe | x —l][y —1] != 105 11 sframe [x-l][y-l] != 100)) && //4,0

((sframe |[xHy+1] != 105 [I sframe [x l[y+i] 100) &&

(sframe |"x + l][y—1] != 105]] sframe [x + l][y-l] != 100)) && //4,5

((sframe |>][y+i] != 105 || sframe [x][y+i] 1= 100) &&

133

(sframe [x + l][y] != 105 || sframe [x + 1] [y] != 100)) //4,6

)

{

endpx.push-back(x);

endpy.push-back(y);

}

}

}

else //I pixel neighbor or zero

{

if(x != f-height “1 && x != 0 &&: y != f-width—1 && y 1= 0)

{

endpx.push-back(x);

endpy.push-back(y);

}

}

}

bool RightScannerForward (double ♦♦sframe, int sx_c , int sy_c ,

int Ievels_of_scan , int f-height , in

{

int swidth-c;

int act-width ;

int found-x , found.y ;

bool status = false;

bool found.connO = false;

bool found-conn = false ;

bool found_conn2 = false ;

sy-c = sy_c + l;

//Check to make sure in bounds

f _w i d t h)

134

if(sy_c > f.width — 2)

{

return status ;

}

//Check to see if already has pixel connected

i f (sframe [sx.c][sy.c] = 105)

{

status = true;

return status;

}

swidth_c = sy_c + 3;

act-width = 4;

if(swidth_c > f.width — 1)

{

act_width = 4 — (swidth.c — (f.width — 1));

swidth.c = f.width — 1;

if(act_width = 1)

{

return status ;

}

}

if (levels-of.scan >= 1)

{

i f (act-width >= 2)

{

i f (sframe [sx.c][sy.c+ 1] = 105 || sframe [sx.c][sy.c+1] = 100)

{

found.x = sx.c ;

found.y = sy.c + 1;

135

found.connO = true;

status = true;

}

i f (found_connO true)

{

sframe [sx_c][sy_c] = 105;

return status;

}

}

}

if (levels_of_scan >= 2)

{

if (act-width >= 3)

{

if (sframe [sx_c][sy_c+2] = 105 11 ' sframe [sx_c][sy_c+2] = 100)

{

found.x = sx_c ;

foundry = sy.c+2;

found.conn = true ;

status = true;

}

if (found.conn = true)

<

sframe [sx.c][sy_c] = 105;

sframe [sx.c][sy_c+l] = 105;

return status;

}

}

}

136

i f (levels-of.scan = 3)

{

if(act_width = 4)

{

i f (sframe [sx_c](sy_c+3] = 105 || sframe [sx.c] [sy_c+3] = 100)

{

found_x = sx_c ;

found_y = sy_c+3;

found_conn2 = true;

status = true;

}

i f (found_conn2 = true)

{

sframe [sx_c][sy_c] = 105;

sframe [sx_c][sy_c + l] = 105;

sframe [sx_c][sy_c+2] = 105;

return status;

}

}

}

return status ;

}

bool UpScanner(double **sframe , int sx_c , int sy_c ,

int levels _of_scan , int f-height , int f.width)

{

int sheight.c ;

int act-height;

int found_x , found.y;

bool status = false;

137

bool found.connO = false ;

bool found-conn = false ;

bool found_conn2 = false ;

sx.c = sx.c — 1;

//Check to make sure in bounds

i f (sx.c < 1)

{

return status ;

}

//Check to see if already has pixel connected

if (sframe [sx_c] [sy_c] = 105)

{

status = true;

return status;

}

sheight.c = sx_c — 3;

act-height = 4;

i f (sheight.c < 0)

{

act-height = 4 + sheight.c ;

sheight.c = 0;

i f (act-height = 1)

{

return status ;

}

}

i f (levels_of_scan >= 1)

{

138

i f (act-height >= 2)

{

if (sframe [sx_c—l][sy_c] 105 || sframe [sx.c — 1] [sy_c]

{

found.x = sx_c — 1;

found.y = sy.c;

found.connO = true ;

status = true;

}

i f (found.connO true)

{

sframe [sx.c][sy_c] = 105;

return status;

}

}

}

if (levels_of_scan >= 2)

{

i f (act-height >= 3)

{

i f (sframe [sx_c—2] [sy_c] = 105 || sframe [sx.c —2][sy_c]

{

found-x = sx_c —2;

found-y = sy_c ;

found-conn = true;

status = true;

= 100)

= 100)

}

i f (found_conn == true)

{

139

sframe [sx_c][sy-c] = 105;

sframe [sx.c—1] [sy_c] = 105;

return status ;

}

}

}

if (Ievels_of_scan = 3)

{

if(act-height 4)

{

i f (sframe [sx_c—3] [sy-C] = 105 || sframe [sx_c-3] [sy_c]

{

found-x = sx.c- 3;

foundry = sy_c ;

found_conn2 = true ;

status = true;

}

if (found_conn2 = true)

{

sframe [sx.c][sy.c] = 105;

sframe [sx_c —1] [sy_c] = 105;

sframe [sx.c—2] [sy_c] = 105;

return status ;

}

}

}

return status ;

}

bool DownScanner(double **sframe , int sx_c , int sy_c ,

= 100)

140

int levels_of_scan , int f-height , int f.width)

{

int sheight.c ;

int act-height ;

int found.x , found.y ;

bool status = false;

bool found.connO = false ;

bool found_conn = false ;

bool found_conn2 = false ;

sx.c = sx_c + l;

//Check to make sure in bounds

if(sx_c > f-height — 2)

{

return status;

}

//Check to see if already has pixel connected

i f (sframe [sx.c] [sy_c] = 105)

{

status = true ;

return status ;

}

sheight.c = sx.c + 3;

act-height = 4;

if(sheight_c > f_height — 1)

{

act-height = 4 — (sheight.c — (f-height — 1));

sheight.c = f_height — 1;

i f (act-height = 1)

{

141

return status;

}

}

i f (le vels_of_scan >= 1)

{

i f (act.height >= 2)

{

i f (sframe [sx_c+ 1] [sy_c] = 105 || sframe [sx_c 4-1] [sy_c] = 100)

{

found_x = sx_c4-l;

found.y = sy_c ;

found_conn0 = true ;

status = true ;

}

i f (found-COnnO = true)

{

sframe [sx_c][sy_c] = 105;

return status;

}

}

}

if (levels_of_scan >= 2)

{

i f (act-height >= 3)

{

i f (sframe [sx.c+2] [sy_c] 105 || sframe [sx_c 4*2] [sy_c] 100)

{

found-x = sx-c+2;

found.y = sy_c ;

142

found.conn = true;

status = true ;

}

i f (found_conn true)

{

sframe [sx_c][sy_c] = 105;

sframe [sx_c+ 1] [sy_c] = 105;

return status ;

}

}

}

if (levels_of_scan = 3)

{

i f (act-height = 4)

{

if (sframe [sx_c+3] [sy_c] 105 |[sframe [sx_c 4-3] [sy_c] = 100)

{

found_x = sx_c+3;

found.y = sy_c ;

found_conn2 = true;

status = true;

}

i f (found_conn2 = true)

{

sframe [sx_c][sy_c] = 105;

sframe [sx_c 4-1] [sy_c] = 105;

sframe [sx_c 4-2] [sy~c] = 105;

return status ;

}

143

}

}

return status ;

}

bool LeftScannerForward (double ♦♦sframe , int sx.c, int sy.c,

int levels.of.scan , int f.height , int f.width)

{

int swidth.c;

int act.width ;

int found-X , found.y;

bool status = false;

bool found.connO = false ;

bool found.conn = false ;

bool found_conn2 = false ;

sy.c = sy.c—1;

//Check to make sure in bounds

i f (sy.c < 1)

{

return status ;

}

//Check to see if already has pixel connected

i f (sframe [sx.c][sy.c] = 105)

{

status = true;

return status;

}

swidth.c = sy.c — 3;

act.width = 4;

if (swidth.c < 0)

144

{

act.width = 4 + swidth.c;

swidth.c = 0;

if(act_width = 1)

{

return status;

}

}

i f (le vels.of-sc an >= 1)

{

if (act_width >= 2)

{

i f (sframe [sx.c] [sy_c — 1] = 105 || sframe [sx.c] [sy_c — 1] = 100)

{

found_x = sx_c;

found.y = sy_c —1;

found.connO = true ;

status = true;

}

i f (found.connO = true)

{

sframe [sx.c][sy_c] = 105;

return status;

}

}

}

if (levels.of.scan >= 2)

{

145

if(act-width >= 3)

{

i f (sframe [sx.c][sy_c —2] 105]] sframe [sx.c][sy_c —2] = 100)

{

found.x — sx_c ;

found.y = sy.c—2;

found-conn = true ;

status = true;

}

i f (found-conn = true)

{

sframe [sx.c][sy.c] = 105;

sframe [sx.c][sy.c —1] = 105;

return status ;

}

}

}

i f (levels.of.scan = 3)

{

if (act-width 4)

{

i f (sframe [sx.c][sy.c—3] = 105 || sframe [sx.c][sy.c—3] = 100)

{

found.x = sx.c ;

found.y = sy.c —3;

found.conn2 = true;

status = true;

}

i f (found_conn2 = true)

146

{

sframe [sx.c][sy_c] = 105;

sframe [sx.c][sy_c —1] = 105;

sframe [sx.c][sy_c —2] = 105;

return status ;

}

}

}

return status ;

}

bool RightScannerUp(double **sframe , int sx.c , int sy_c ,

int levels.of.scan , int f.height , int f.width)

{

int sheight-c , swidth.c;

int act_width , act-height;

int found-x , found_y;

int range;

bool status = false;

bool found.connO = false;

bool found.conn = false ;

bool found_conn2 = false;

bool level_zero_ver = true

bool level .zero.hor = true

bool level_one_ver = true ;

bool level_one_hor = true ;

bool level-two-ver = true ;

bool level-two-hor = true;

sx.c = sx_c —1;

sy_c = sy-c+1;

147

//Check to make sure in bounds

if(sx_c <0 || sy.c > f.width — 1)

{

return status ;

}

//Check to see if already has pixel connected

i f (sframe [sx.c][sy.c] 105)

{

status = true;

return status;

}

swidth.c = sy.c + 3;

sheight.c = sx.c — 3;

act.width = 4;

act-height = 4;

if(swidth_c > f.width — 1)

{

act.width = 4 — (swidth.c — (f.width — 1));

swidth.c = f.width — 1;

if(act_width = 1)

{

level_zero_ver = false;

level-one.ver = false;

level_two_ver = false ;

}

else if (act_width = 2)

{

level-one.ver = false;

leveL_two.ver = false ;

148

}

else if(act-width 3)

{

level_two_ver = false ;

}

}

if (sheight-c < 0)

{

act-height = 4 + sheight.c;

sheight-c = 0;

i f (act-height = 1)

{

level-zero_hor = false;

level_one_hor = false ;

level-two-hor = false;

}

else i f (act_height = 2)

{

level_one-hor = false;

level_two_hor = false ;

else i f (act-height = 3)

{

level_two_hor = false;

}

}

if (levels-of-scan >= 1)

{

//scan level zero

149

if(level.zero.ver = true)//vertical

{

range = sx.c —1;

i f (act-height < 2)

{

range = sheight.c ;

}

for (int al = sx.c; al >= range; al—)

{

if (sframe [al][sy_c + l] = 105 || sframe [al][sy.c+1] = 100)

{

found.x = sx.c—1;

found.y = sy _c ;

found.connO = true;

status = true;

break;

}

}//for

}// if

//scan level zero

i f (level.zero.hor = true && found.connO false)//horizontal

{

i f (sframe [sx.c — 1] [sy.c] = 105 || sframe [sx.c—1] [sy.c] = 100)

{

found.x = sx.c—1;

found.y = sy.c;

found.connO = true;

status = true;

}

150

}// if

if (found.connO = true)

{

sframe [sx.c][sy_c) = 105;

return status;

}// if

}

if (levels_of_scan >= 2)

{

//scan level one

if (level_one_ver = true)//vertical

{

range = sx_c —2;

i f (act-height < 3)

{

range = sheight.c;

}

for (int al = sx.c ; al >= range; al—)

{

i f (sframe [al][sy_c+2] = 100 || sframe [al][sy_c+2] = 105)

{

found_x — al;

found.y = sy_c+2;

found_conn = true;

status = true;

break;

}

}//for

}// if

151

i f (level.one.hor true && found.conn false)//horizontal

{

range = sy_c + l;

if(act_width < 3)

{

range = swidth.c;

}

for (int al = sy_c ; al <= range; al++)

{

i f (sframe [sx.c—2] [al] = 100 || sframe [sx.c—2] [al] = 105)

{

found_x = sx.c — 2;

found.y = al;

found-conn = true;

status = true;

break ;

}

}//for

}// if

i f (found-conn = true)

{

if (found.x = sx.c)

{

sframe [sx.c][sy.c+1] = 105;

sframe [sx.c][sy.c] = 105;

}

else if (found.y = sy.c)

152

sframe [sx.c —1] [sy.c] = 105;

sframe [sx.c][sy.c] = 105;

}

else

{

sframe [sx.c—1] [sy_c + l] = 105;

sframe [sx.c][sy.c] = 105;

}

return status ;

}// if

}

if (levels.of.scan = 3)

{

//scan level two

i f (level.two.ver true)//vertical

{

for(int al = sx.c; al >= sheight.c; al—)

{

i f (sframe [al][sy_c+3] = 100 |] sframe [al][sy.c+3] = 105)

{

found.x = al;

found.y = sy_c+3;

found.conn2 = true;

status = true;

break;

}

}//for

153

i f (level_two_hor = true && found_conn2 = false)//horizontal

{

for (int al = sy_c; al <= swidth_c; al++)

{

i f (sframe [sx.c — 3] [al] = 100 || sframe [sx_c —3] [al] 105)

{

found_x = sx_c —3;

found-y = al;

found_conn2 = true ;

status — true ;

break;

}

}//for

}//if

if (found_conn2 = true)

{

if(found_x = sx.c)

{

sframe [sx.c][sy_c + 1] = 105;

sframe [sx_c][sy_c+2j = 105;

sframe [sx.c][sy_c] = 105;

}

else if (found.y = sy_c)

{

sframe [sx-C — 1] [sy_c] = 105;

sframe [sx_c—2] [sy_c] = 105;

sframe [sx.c][sy_c] = 105;

}

154

else if (found.x = sx.c—1)

{

sframe [sx.c — 1][sy.c + 1] = 105;

sframe [sx.c — 1][sy_c+2] = 105;

sframe [sx.c][sy.c] = 105;

}

else if (found.y = sy.c + 1)

{

sframe [sx.c — 1][sy.c + 1] = 105;

sframe [sx.c — 2][sy_c+l] = 105;

sframe [sx.c][sy.c] = 105;

}

else

{

sframe [sx.c — 1] [sy.c+1] = 105;

sframe [sx.c—2] [sy.c+2] = 105;

sframe [sx.c][sy.c] = 105;

}

return status ;

}

}

return status ;

}

bool RightScannerDown (double ♦♦sframe, int sx.c, int sy.c,

int levels.of.scan , int f-height, int f.width)

{

int sheight.c, swidth.c;

int act_width , act-height ;

int found_x , found.y;

155

int range;

bool status = false;

bool found.connO = false ;

bool found-conn = false;

bool found_conn2 = false ;

bool level.zero.ver = true

bool level.zero.hor = true

bool level-one.ver = true ;

bool level.one.hor = true ;

bool level -two-ver = true ;

bool level.two.hor = true ;

sx.c = sx_c+l;

sy.c = sy_c+l;

//Check to make sure in bounds

if(sx.c > f_height — 1 || sy_c > f.width — 1)

{

return status ;

}

//Check to see if already has pixel connected

i f (sframe [sx.c][sy_c] = 105)

{

status = true ;

return status ;

}

swidth.c = sy.c + 3;

sheight.c = sx.c + 3;

act-width = 4;

act-height = 4;

if (swidth.c > f.width — 1)

156

{

act-width = 4 — (swidth.c — (f-width — 1));

swidth.c = 79;

if(act_width = 1)

{

le ve 1 .zero _ver = false;

level_one_ver = false ;

level_two_ver = false ;

}

else if(act_width = 2)

{

level.one.ver = false;

level_two_ver = false ;

}

else if(act_width = 3)

{

level_two_ver = false ;

}

}

if (sheight.c > f.height — 1)

{

act-height = 4 — (sheight.c — (f.height — 1));

sheight.c = f.height — 1;

i f (act-height = 1)

{

level-zero.hor = false;

level-one.hor = false;

level-two.hor = false ;

}

157

else i f (act-height = 2)

{

level_one_hor = false ;

level_two_hor = false ;

}

i f (act-height = 3)

{

1 e vel .two _ho r = false;

}

}

if (levels_of_scan >= 1)

{

//scan level zero

i f (level.zero.ver = true)//ver tical

{

range = sx_c+l;

i f (act-height < 2)

<

range = sheight.c;

}

for (int al = sx.c; al <= range; al++)

{

if (sframe [al][sy_c + l] 105)

{

found.x = al;

found.y = sy_c + l;

found.connO = true ;

status = true;

break;

158

}

}//for

}// if

//scan level zero

i f (level.zero.hor true &&: found.connO = false)//horizontal

{

if (sframe [sx_c + l][sy.c] = 105 || sframe [sx.c 4-1] [sy.c] = 100)

{

found.x = sx.c + 1;

found.y = sy.c;

found.connO = true;

status = true;

}

}// if

i f (found.connO = true)

{

sframe [sx.c][sy.c] = 105;

return status ;

}// if

}

i f (levels.of.scan >= 2)

{

//scan level one

if (level-one.ver true)//vertical

{

range = sx_c4-2;

i f (act-height < 3)

{

range = sheight.c;

159

}

for (int al = sx.c; al <= range; al++)

{

i f (sframe [al][sy.c+2] = 100 [[sframe [al][sy.c+2] = 105)

{

found_x = al ;

found.y = sy.c+2;

found.conn = true ;

status = true;

break;

}

}//for

}// if

i f (levei_one_hor = true && found.conn = false)//horizontal

{

range = sy.c+1;

if(act_width < 3)

{

range = swidth.c;

}

for (int al = sy.c; al <= range; al++)

{

i f (sframe [sx.c+2] [al] = 100 || sframe [sx.c+2] [al] = 105)

{

found.x = sx_c+2;

found.y = al;

found.conn = true;

status = true;

break ;

160

}

}//for

}//if

i f (found_conn = true)

{

if(found_x = sx_c)

{

sframe [sx_c][sy_c + l] = 105;

sframe [sx_c][sy_c] = 105;

}

else if(found_y = sy_c)

{

sframe [sx_c+1] [sy_c] = 105;

sframe [sx.c][sy_c] = 105;

}

else

{

sframe [sx.c +1] [sy_c+l] = 105;

sframe [sx-C][sy-c) = 105;

}

return status ;

}//if

}

if (levels_of_scan = 3)

{

//scan level two

i f (level_two_ver = true)//vertical

{

for(int al = sx.c; al <= sheight.c ; al++)

161

{

i f (sframe [al][sy.c+3] = 100 || sframe [al}[sy.c +3] 105)

{

found.x = al;

found.y = sy_c+3;

found_conn2 = true;

status = true;

break ;

}

}//for

}// if

i f (level.two.hor = true found_conn2 = false)//horizontal

{

for (int al = sy.c; al <= swidth.c; al-H-)

{

i f (sframe [sx.c+3] [al] 100]] sframe [sx.c+3] [al] = 105)

{

found-X = sx.c+3;

found.y — al ;

found_conn2 = true;

status = true;

break ;

}

}//for

}// if

i f (found_conn2 = true)

{

if(found_x sx.c)

{

162

sframe [sx.c][sy.c+1] = 105;

sframe [sx.c][sy_c+2] = 105;

sframe [sx.c][sy.c] = 105;

}

else if(found_y = sy_c)

{

sframe [sx.c+1] [sy.c] = 105;

sframe [sx_c4-2][sy_c] = 105;

sframe [sx.c][sy.c] = 105;

}

else if(found.x = sx_c4-l)

{

sframe [sx.c +1] [sy.c + 1] = 105;

sframe [sx.c+1] [sy.c+2] = 105;

sframe [sx.c][sy.c] = 105;

}

else ifffound.y = sy_c+l)

{

sframe [sx.c+ 1][sy.c + 1] = 105;

sframe [sx.c+2][sy.c+1] = 105;

sframe [sx.c][sy.c] = 105;

}

else

{

sframe [sx.c+ 1] [sy.c+1] = 105;

sframe[sx_c+2][sy_c+2] = 105;

sframe [sx.c][sy.c] = 105;

}

return status;

163

}

}

return status;

}

bool LeftScannerUp (double ♦♦sframe, int sx.c, int sy_c ,

int levels.of.scan , int f.height , int f.width)

{

int sheight.c , swidth.c;

int act.width , act-height;

int found-x , found.y;

int range;

bool status — false 1

bool found.connO = false ;

bool found-conn = false ;

bool found_conn2 = false ;

bool level_zero~ver = true

bool level.zero.hor = true

bool level -one.ver = true;

bool level-one.hor = true ;

bool level-two.ver = true ;

bool le vel-t wo.hor = true;

bool done = false ;

SX-C = sx.c —1;

sy.c = sy-c-l;

//Check to make sure in bounds

if(sx_c <0 || sy_c < 0)

{

return status;

}

164

//Check to see if already has pixel connected

i f (sframe [sx_c][sy_c] = 105)

{

status = true ;

return status;

}

swidth.c = sy_c — 3;

sheight.c = sx.c — 3;

act.width = 4;

act_height = 4;

if (swidth.c < 0)

{

act.width = 4 + swidth.c;

swidth.c = 0;

if (act.width = 1)

{

level_zero_ver = false;

level_one_ver = false;

level-two_ver = false ;

}

else if(act_width = 2)

{

level-one.ver = false ;

level-two.ver = false ;

}

else if (act.width = 3)

{

Ievel_two-ver = false ;

}

165

}

i f (sheight-c < 0)

{

act_height =4+ sheight_c;

sheight.c = 0;

i f (act-height 1)

{

level_zero_hor = false;

level_one_hor = false ;

Ievel-two.hor = false;

}

else i f (act-height 2)

{

level_one_hor = false ;

level_two_hor = false ;

}

else i f (act-height = 3)

{

level_two_hor = false;

}

}

i f (levels_of-scan >= 1)

{

//scan level zero

i f (level_zero_ver = true)//vertical

{

range = sx.c —1;

i f (act-height < 2)

{

166

range = sheight.c;

}

for (int al = sx.c; al >= range; al—)

{

i f (sframe [al][sy.c —1] = 105 |] sframe [al][sy.c —1] = 100)

{

found.x = al;

found.y = sy.c—2;

found.connO = true;

status = true ;

break;

}

}//for

}// if

//scan level zero

if (level-zero.hor = true && found.connO false)//horizontal

{

if (sframe [sx_c—1] [sy.c] = 105 |] sframe [sx.c —l][sy_c] = 100)

{

found.x = sx.c ;

found.y = sy.c ;

found.connO = true;

status = true;

}

}// if

i f (found.connO = true)

{

sframe [sx.c] [sy.c] = 105;

return status ;

167

}

if (levels.of.scan >= 2)

{

//scan level one

i f (level_one_ver true)//vertical

{

range = sx_c —2;

i f (act-height < 3)

{

range = sheight.c ;

}

for (int al = sx.c ; al >= range; al—)

{

if (sframe [al][sy.c—2] 100 || sframe [al][sy.c—2] = 105)

{

found-x = al ;

found.y = sy.c—2;

found.conn = true ;

done = true;

status = true ;

break;

}

}//for

}//if

if (level.one.hor = true && found.conn = false)//horizontal

{

range = sy.c —1;

if(act.width < 3)

168

{

range = swidth.c;

}

for (int al = sy_c ; al >= range; al—)

{

i f (sframe [sx.c — 2] [al] = 100 || sframe [sx.c — 2] [al] = 105)

{

found_x = sx_c—2;

found.y = al;

found_conn = true ;

done = true;

status = true ;

break;

}

}//for

}// if

i f (found_conn true)

{

if(found_x = sx.c)

{

sframe [sx.c][sy_c —1] = 105;

sframe [sx.c][sy_c] = 105;

}

else if(found_y = sy_c)

{

sframe [sx_c—1] [sy_c] = 105;

sframe [sx.c][sy_c] = 105;

}

else

169

{

sframe [sx_c — 1] [sy_c—1] = 105;

sframe [sx_c][sy-c] = 105;

}

return status ;

>// if

}

if (Ievels_of_scan 3)

{

//scan level two

i f (level-t wo_ver = true)//ver tic al

{

for (int al = sx,c ; al >= sheight.c ; al—)

{

i f (sframe [al J [sy-c —3] = 100 [| sframe [al] [sy_c —3] = 105)

{

found.x = al;

found.y = sy_c —3;

found_conn2 = true ;

status = true ;

break;

}

}//for

>//if

i f (leve 1 _t wo.h or = true && found_conn2 = fa Is e)//horizontal

{

for (int al = sy„c ; al >= swidth.c; al—)

{

if (sframe [sx_c—3)[al] = 100 || sframe [sx.c —3] [al] = 105)

170

{

found.x = sx.c— 3;

found.y = al;

found_conn2 = true;

status = true;

break;

}

}//for

}// if

i f (found.conn2 = true)

{

if(found_x sx.c)

{

sframe [sx_c][sy.c —1] = 105;

sframe [sx.c][sy.c—2] = 105;

sframe [sx.c][sy.c] = 105;

}

else if (found.y = sy.c)

{

sframe [sx.c —1] [sy.c] = 105;

sframe [sx.c—2] [sy.c] = 105;

sframe [sx.c][sy.c] = 105;

}

else if (found.x = sx.c—1)

{

sframe [sx.c—1][sy.c—1] = 105;

sframe [sx.c — 1] [sy.c—2] = 105;

sframe [sx.c][sy.c] = 105;

}

171

else if (found.y = sy.c—1)

{

sframe [sx.c—1] [sy.c—1] = 105;

sframe [sx.c—2] [sy.c—1] = 105;

sframe [sx.c][sy.c] = 105;

}

else

{

sframe [sx.c—1][sy.c—1] = 105;

sframe [sx.c—2] [sy.c—2] = 105;

sframe [sx.c][sy.c] = 105;

}

return status ;

}// if

}

return status ;

}

bool LeftScannerDown(double ♦♦sframe, int sx.c, int sy.c,

int levels.of.scan , int f.height , int f.width)

{

int sheight.c, swidth.c;

int act.width , act-height ;

int found.x , found.y;

int range;

bool status = false;

bool found.connO = false ;

bool found.conn = false ;

bool found.conn2 = false ;

bool level _ze ro.ver = true;

172

bool level-zero-hor = true;

bool level-one_ver = true;

bool level_one_hor = true;

bool level-two.ver = true;

bool level_two_hor = true;

sx.c = sx-c+1;

sy.c = sy-c-1;

//Check to make sure in bounds

if(sx_c > f.heiglit — 1 || sy_c

{

return status;

}

//Check to see if already has pixel connected

i f (sframe [sx.c][sy.c] = 105)

{

status = true;

return status ;

}

swidth.c = sy_c — 3;

sheight.c = sx.c + 3;

act.width = 4;

act-height = 4;

i f (swidth-c < 0)

{

act-width = 4 + swidth-c;

swidth_c = 0;

if(act_width = 1)

{

level_zero_ver = false;

173

level_one_ver = false;

level_two_ver = false ;

}

else if(act_width = 2)

{

level_one_ver = false ;

level.two.ver = false ;

}

else if(act_width 3)

{

level.two.ver = false;

}

}

if(sheight_c > f-height — 1)

{

act.height = 4 — (sheight.c — (f-height — 1));

sheight.c = f.height — 1;

i f (act.height = 1)

{

level_zero-hor = false ;

level.one.hor = false ;

level.two.hor = false;

}

else i f (act-height = 2)

{

level_one-hor = false ;

level_two_hor = false;

}

else i f (act-height = 3)

174

{

level_two_hor = false ;

}

}

if (levels.of.scan >= 1)

{

//scan level zero

i f (level-zero_ver = true)//vertical

{

range = sx.c + 1;

i f (act-height < 2)

{

range = sheight.c;

for (int al = sx.c; al <= range; al++)

{

i f (sframe [al][sy.c—1] = 105 || sframe [al][sy.c—1] = 100)

{

found.x = al;

found.y = sy.c—1;

found.connO = true;

status — true;

break;

)

}//for

}// if

//scan level zero

i f (level.zero.hor = true && found.connO = false)//horizontal

175

{

if (sframe [sx.c+ 1] [sy_c] = 105 || sframe [sx.c + 1] [sy.c] = 100)

{

found.x = sx_c + l;

found.y = sy.c ;

found.connO = true;

status = true ;

}

}// if

i f (found.connO true)

{

sframe [sx.c][sy.c] = 105;

return status ;

}// if

}

if (levels.of.scan >— 2)

{

//scan level one

i f (level.one.ver = true)//vertical

{

range = sx_c4-2;

i f (act-height < 3)

{

range = sheight.c;

}

for (int al = sx.c; al <= range; al++)

{

i f (sframe [al][sy.c—2] = 100]| sframe [al][sy.c—2] = 105)

{

176

found.x = al;

found.y = sy.c—2;

found.conn = true;

status = true;

break;

}

}//for

}// if

i f (level.one.hor = true && found.conn false)//horizontal

{

range = sy.c —1;

if(act_width < 3)

{

range = swidth.c;

}

for (int al — sy.c; al >= range; al—)

{

i f (sframe [sx.c + 2] [al] = 100 || sframe [sx.c+2] [al] = 105)

{

found.x = sx.c+2;

found.y = al;

found.conn = true;

status = true;

break ;

}

}//for

}// if

if (found.conn = true)

{

177

if(found_x = sx_c)

{

sframe [sx_c][sy_c—1] = 105;

sframe [sx.c][sy_c] = 105;

J

else if(found_y = sy_c)

{

sframe [sx_c + l][sy_c] = 105;

sframe [sx.c] [sy_c] = 105;

}

else

{

sframe [sx_c+ 1] [sy_c—1] = 105;

sframe [sx.c] [sy_c] = 105;

}

return status ;

}// if

}

if (levels-of-scan = 3)

{

//scan level two

i f (level_two_ver = true)//vertical

{

for (int al = sx_c; al <= sheight-c; al++)

{

i f (sframe [al] [sy_c — 3] 100 || sframe [al] [sy_c —3] = 105)

{

found.x = al;

found.y = sy_c —3;

178

found_conn2 = true ;

status = true;

break;

}

}//for

}//if

i f (level.t wo.hor true && found_conn2 = false)//horizontal

{

for (int al = sy.c; al >= swidth.c; al—)

{

if (sframe [sx.c+3] [al] = 100 || sframe [sx.c+3] [al] = 105)

{

found-x = sx_c+3;

found.y = al;

found_conn2 = true ;

status = true ;

break;

}

}//for

}// if

i f (found.conn2 = true)

{

ifffound.x = sx.c)

{

sframe [sx.c][sy.c—1] = 105;

sframe [sx.c][sy.c—2] = 105;

sframe [sx.c][sy.c] = 105;

}

else if (found.y = sy.c)

179

{

sframe [sx.c 4-1] [sy_c] = 105;

sframe [sx.c 4-2] [sy_c] = 105;

sframe [sx.c][sy.c] = 105;

}

else if(found_x sx_c4-l)

{

sframe [sx.c 4-1] [sy.c—1] = 105;

sframe [sx.c+1] [sy.c—2] = 105;

sframe [sx.c][sy.c] = 105;

}

else if (found.y = sy.c —1)

{

sframe [sx.c 4-1] [sy.c—1] = 105;

sframe [sx.c 4-2] [sy.c—1] = 105;

sframe [sx.c][sy.c] = 105;

}

else

{

sframe [sx.c4-1][sy.c—1] = 105;

sframe [sx.c 4-2] [sy.c—2] = 105;

sframe [sx.c][sy.c] = 105;

}

return status ;

}// if

}

return status ;

}

void GapFiller (Ipllmage » image, int startx, int starty,

180

int levels , int fi 1 ter-height , int filter-width)

{

double **subframe;

subframe = new double*! filter-height];

for(int i = 0; i < filter-height; i++)

(

subframe [i] = new double [filter-width];

}

int borderxl = 0;

int borderx2 = 0 + filter-height — 1;

int borderyl = 0;

int bordery2 = 0 + filter-width — 1;

int icounter = 0;

int jcounter = 0;

int m = 0;

int n = 0;

int c , c2 , c3 ,o,p;

int tn, tm;

int tempx, tempy;

int curposx = 0;

int curposy = 0;

int finalcounter = 0;

int walk_to ;

int backtrack_pixel;

double nO , nl , n2 , n3 , n4, n5 , n6 , n7;

CvScalar pixel , pixelchange;

int sx,sy;

int number-of.connections = 0;

bool connected = false ;

181

vector<int> endpoint.x ;

vector<int> endpoint.y;

vector <double> neighbors; //all neighbors and pixel values

vector<int> w-neighbors; // all walkable pixel neighbors

vector <int> nw.neighbors ; //all nonwalkable pixel neighbors

vector<int> neighbor.id ;

vector <int> x.backtrack;

vector<int> y-backtrack;

bool edged.walked = false ;

//copy subframe pixels into array

for(int a = startx; a < startx + filter-height; a++)

{

for(int b = starty; b < starty + fi Iter.wid t h ; b++)

{

pixel = cvGet2D (image, a, b);

subframe [m] [n] = pixel . val [0];

if (n = filter.width — 1)

{

m++;

n = 0;

}

else

{

n++;

}

}

}

m = 0;

n = 0;

182

for(o=0; o < filter-height ; o++)

{

for(p = 0; p < filter-width; p++)

{

i f (subframe [o] [p] = 100) //not a black pixel

<

m = o;

n = p;

while(edged_walked != true)

{

if (m 1= borderxl m 1= borderx2

&& n 1= borderyl && n != bordery2) //inner pixels

{

//calculate neigbor pixel values

nO = subframe [m—1] [n — 1];

nl = subframe [m—1] [n];

n2 = subframe [m—l][n + l];

n3 = subframe [m] [n — 1];

n4 = subframe [m] [n+1];

n5 = subframe [m+l][n —1];

n6 = subframe [m+1] [n];

n7 = subframe [m+l][n + l];

neighbors . push-back (nO);

neighbors . push-back (nl);

neighbors . push-back (n2);

neighbors . push_back(n3);

neighbors . push-back (n4);

neighbors . push-back (n5);

neighbors . push-back(n6);

183

neighbors . push-back(n7);

neighbor_id . push-back (0);

neighbor_id . push-back (1);

neighbor-id. push-back (2);

neighbor„id. push-back (3);

neighbor-id. push-back (4);

neighbor-id. push-back (5);

neighbor-id . push-back (6) ;

neighbor_id . push-back (7);

}

else if (m != borderxl && m != borderx2

&& n = borderyl) //vertical left side pixels

{

nl = subframe [m—l][n];

n2 = subframe [m—1] [n + 1];

n4 = subframe [m] [n+1];

n6 = subframe [m+1] [n];

n7 = subframe [m+1] [n+1];

neighbors . push-back (nl);

neighbors . push-back (n2);

neighbors . push-back (n4) ;

neighbors . push-back(n6);

neighbors, push-back (n7);

neighbor_id . push-back (1);

neighbor-id . push-back (2);

neighbor_id. push-back (4);

neighbor_id. push-back (6);

neighbor_id. push-back (7);

}

184

else if (m borderx2

&fc n = borderyl) // bottom left pixel

{

nl = subframe [m—1] [n);

n2 = subframe [m—1] [n+1];

n4 = subframe [m] [n + 1];

neighbors . push_back(n]);

neighbors . push-back (n2);

neighbors . push-back (n4);

neighbor_id . push-back (1);

neighbor-id . push-back (2);

neighbor_id. push-back (4);

}

else if (m == borderx2 && n != borderyl

&& n 1= bordery2) //horizontal bottom side pixels

{

nO = subframe [m—1] [n — 1];

nl = subframe [m—1] [n];

n2 = subframe [m—l][n + l];

n3 = subframe [m] [n — 1];

n4 = subframe [m] [n +1];

neighbors . push-back (nO);

neighbors . push-back (nl);

neighbors . push-back (n2);

neighbors . push-back (n3);

neighbors . push-back (n4);

neighbor-id . push-back (0);

neighbor_id . push-back (1);

neighbor-id . push-back (2);

185

neighbor-id . push-back (3);

neighbor_id . push-back (4);

}

else if (m = borderx2

&& n = bordery2) // bottom right corner

{

nO = subframe [m—1] [n —1];

nl = subframe [m—1] [n];

n3 = subframe [m] [n — 1];

neighbors . push-back (nO);

neighbors . push-back (nl);

neighbors . push-back (n3);

neighbor_id. push-back (0);

neighbor-id. push-back (1);

neighbor-id . push-back (3);

}

else if (m != borderxl && m != borderx2

&& n = bordery2) // vertical right side

{

nO = subframe [m—l][n —1];

nl = subframe [m—1] [n];

n3 = subframe [m] [n — 1];

n5 = subframe [m+l][n — l];

n6 = subframe [m+1] [n];

neighbors . push-back (nO);

neighbors . push-back (nl);

neighbors . push-back (n3);

neighbors . push-back (n5);

neighbors . push-back (n6);

186

pixel

pixels

neighbor_id. push-back(0);

neighbor-id. push-back (1);

neighbor-id . push-back (3);

neighbor_id . push-back (5);

neighbor_id . push-back (6);

}

else if (m = borderxl

&& n = bordery2) // top right pixel

{

n3 = subframe [m] [n — 1];

n5 = subframe [m+l][n — l];

n6 = subframe [m+1] [n];

neighbors . push-back (n3);

neighbors . push-back (n5);

neighbors . push-back (n6) ;

neighbor-id . push-back (3);

neighbor_id . push-back (5);

neighbor-id . push-back (6);

}

else if (m = borderxl && n != borderyl

&& n != bordery2) //horizontal top side pixels

{

n3 = subframe [m] [n — 1];

n4 = subframe [m] [n+1];

n5 = subframe [m+l][n — l];

n6 = subframe [m+1] [n];

n7 = subframe [m+1] [n + 1],;

neighbors . push-back (n3);

neighbors . push-back (n4);

187

neighbors . push-back(n5);

neighbors . push-back(n6);

neighbors . push-back(n7);

neighbor-id. push-back (3);

neighbor-id . push-back (4);

neighbor-id . push-back (5);

neighbor-id . push-back (6);

neighbor-id . push-back (7);

}

else if (m= borderxl && n = borderyl) //top left pixel

{

n4 = subframe [m] [n+1];

n6 = subframe [m+l][n];

n7 = subframe [m+1] [n + 1];

neighbors . push-back(n4) ;

neighbors . push-back (n6);

neighbors . push-back (n7);

neighbor.id . push-back (4);

neighbor-id . push-back (6);

neighbor_id . push-back (7);

}

//find all pixel neighbors that are white

for(c = 0; c < neighbors ■. size (); c++)

{

i f (neighbors [c] > 99)

{

if (neighbors [c] = 100)

{

w_neighbors . push-back(neighbor_id [c]);

188

}

else if (neighbors [c] = 105)

{

nw.neighbors . push-back (neighbor-id [c J);

}

}

}

EndpointVerifier (subframe , w.neighbors . size () , nw.neighbors . size () ,

endpoint.x, endpoint_y , m, n, filter-height ,

filter-width);

if (w.neighbors .empty ()) //if no connecting pixel

{

subframe [m] [n] = 105; //non—walkable pixel

i f (x.backtrack . empty ())

{

edged.walked = true;

while (endpoint.x . size () != 0)

{

sx = endpoint.x . back () ;

sy = endpoint.y . back ();

endpoint-x . pop.back () ;

endpoint.y . pop-back ();

if ((subframe [sx — l][sy —1] = 105 ||

subframe [sx — 1] [sy—1] = 100) ||

(subframe [sx][sy —1] = 105 |[

subframe [sx] [sy —1] = 100) ||

(subframe [sx + l][sy — l] = 105 [|

subframe [sx + 1][sy — 1] = 100)

) //right scanner

189

{

i f ((subframe [sx —1] [sy] = 105 ||

subframe [sx — l][sy] 100))

{

connected = DownScanner (subframe , sx , sy , levels,

filter .height , fi Iter .width);

if(connected = false)

{

connected = RightScannerDown (subframe , sx , sy , levels ,

filter-height , filter-width);

}

if(connected = false)

{

connected = LeftScannerDown(subframe , sx , sy , levels,

filter-height , filter .width) ;

}

if(connected = false)

{

connected = RightScannerForward (subframe , sx , sy , levels,

filter-height , filter-width);

}

}

else i f ((subframe [sx +1] [sy] = 105 ||

subframe [sx + l][sy] = 100))

{

connected = UpScanner(subframe , sx , sy , levels ,

filter-height , filter-width);

iffconnected = false)

{

190

connected = RightScannerUp (subframe , sx , sy , levels,

filter-height , fi Iter-width);

}

if(connected = false)

{

connected = LeftScannerUp(subframe , sx , sy , levels ,

filter-height , filter-width);

}

if (connected false)

{

connected = RightScannerForward (subframe , sx , sy , levels ,

filter-height , filter-width);

}

}

else

{

connected = RightScannerForward(subframe , sx , sy , levels ,

fi It er _he ig ht , filter-width);

if(connected = false)

{

connected = RightScannerUp(subframe , sx , sy , levels ,

filter-height , filter-width);

}

if(connected = false)

{

connected = RightScannerDown(subframe , sx , sy , levels ,

filter-height , filter-width);

}

iffconnected = false)

191

{

connected = UpScanner (subframe , sx , sy , levels ,

filter-height , filter-width);

}

if(connected = false)

{

connected = DownScanner(subframe , sx , sy , levels ,

filter-height , filter-width);

}

}

} //right scanner

else if ((subframe [sx — 1][sy+1] = 105 ||

subframe [sx—1] [sy + 1] = 100) ||

(subframe [sx] [sy + 1] = 105 ||

subframe [sx][sy + 1] = 100) ||

(subframe [sx+ 1] [sy+1] 105 ||

subframe [sx + l][sy+l] 100)

) //left scanner

{

if ((subframe [sx—1] [sy] = 105 ||

subframe [sx — l][sy] = 100))

{

connected = DownScanner(subframe , sx , sy , levels ,

filter-height , filter-width);

if(connected = false)

{

connected = RightScannerDown (subframe , sx , sy , levels,

filter-height , filter-width) ;

192

if(connected = false)

{

connected = LeftScannerDown (subframe , sx , sy , levels,

filter-height , filter-width);

}

if (connected = false)

{

connected = LeftScannerForward (subframe , sx , sy , levels ,

filter-height , filter-width);

}

}

else i f ((subframe [sx + 1] [sy] = 105 ||

subframe [sx + l][sy] = 100))

{

connected = UpScanner (subframe , sx , sy , levels ,

filter-height , filter-width);

if(connected = false)

{

connected = LeftScannerForward (subframe , sx , sy , levels,

filter-height , filter-width);

}

if(connected = false)

{

connected = LeftScannerForward (subframe , sx , sy , levels ,

filter-height , filter-width);

if(connected = false)

{

connected = RightScannerUp (subframe , sx , sy , levels ,

193

filter-height , filter-width);

}

}

else

{

connected = LeftScannerForward (subframe , sx , sy , levels ,

filter-height , filter-width);

iffconnected = false)

{

connected = LeftScannerUp (subframe , sx , sy , levels ,

filter-height , filter-width);

}

if(connected = false)

{

connected = LeftScannerDown (subframe , sx , sy . levels ,

filter-height , filter-width);

}

if(connected = false)

{

connected = UpScanner(subframe , sx , sy , levels ,

filter-height , filter.width);

}

if (connected = false)

{

connected = DownScanner(subframe , sx , sy , levels ,

filter-height , filter-width);

}

}//Ieft scanner

194

else if ((subframe [sx + l][sy] = 105 [[

subframe [sx + l][sy] = 100) &&

subframe [sx — 1] [sy] = 0) //up scanner

{

connected = UpScanner(subframe , sx , sy , levels ,

filter-height , filter-width);

iffconnected = false)

{

connected = LeftScannerUp(subframe , sx , sy , levels ,

filter-height , filter-width) ;

}

if(connected false)

{

connected = RightScannerUp(subframe , sx , sy , levels ,

filter-height, filter-width);

}

if(connected = false)

{

connected = LeftScannerForward (subframe , sx , sy , levels ,

filter-height , filter-width);

}

if(connected = false)

{

connected = RightScannerForward (subframe , sx , sy , levels ,

filter-height , filter-width);

}

}

else i f ((subframe [sx — 1] [sy] = 105 ||

subframe [sx—1][sy] = 100) &&

195

subframe [sx + l][sy] = 0) //down scanner

{

connected = DownScanner(subframe , sx , sy , levels ,

filter-height , filter-width);

if(connected = false)

{

connected = LeftScannerDown(subframe , sx , sy , levels,

filter-height , filter-width);

}

if (connected = false)

<

connected = RightScannerDown(subframe , sx , sy , levels ,

filter-height , filter-width);

}

if (connected = false)

{

connected = LeftScannerForward (subframe , sx , sy , levels,

filter-height , filter-width);

}

if(connected false)

{

connected = RightScannerForward (subframe , sx , sy , levels,

filter-height , filter-width);

}

}

else if (subframe [sx—1] [sy—1] = 0 subframe [sx — l][sy] = 0 && '

subframe [sx—1] [sy+1] = 0 && subframe [sx][sy—1] = 0 &&

subframe [sx][sy+1] = 0 && subframe [sx + 1] [sy —1] = 0 &&

subframe [sx + 1] [sy] = 0 subframe [sx +1] [sy+1] = 0

196

) //up scan, single pixel

<

connected = UpScanner(subframe , sx , sy, levels ,

filter-height , filter-width);

if(connected = true)

{

number _of .connect ions++;

}

if (connected = false [[(connected = true

&& number_of-connections < 2))

{

connected = LeftScannerUp (subframe , sx , sy , levels ,

filter-height , filter-width);

if(connected = true)

{

number_of_connections++;

}

}

if (connected = false || (connected = true

&& number_of_connections < 2))

{

connected = RightScannerUp(subframe , sx , sy , levels ,

filter-height , filter-width);

if(connected = true)

{

nu m ber.of.connect ions++;

}

}

if (connected = false || (connected = true

197

&& number_of_connections < 2))

{

connected = LeftScannerForward (subframe , sx , sy , levels ,

filter-height, filter-width);

if(connected = true)

{

number _of .connect ions++;

}

}

if (connected = false || (connected = true

number.of.connections < 2))

{

connected = RightScannerForward (subframe , sx , sy , levels ,

filter-height , filter-width);

if (connected = true)

{

number.of .connect ions++;

}

}

number_of_connections = 0;

}

}//while loop

endpoint.x . clear ();

endpoint.y. clear ();

}

else // backtrack not empty

{

m = x.backtrack.back();

n = y-backtrack.back();

198

x.backtrack.pop-back ();

y-backtrack.pop-back();

}

}

else // w_neighbors not empty, connecting pixel

{

subframe [m] [n] = 105;

walk-to = w.neighbors . back ();

w.neighbors . pop-back ();

tm = m;

tn — n;

if (walk_to = 7)

{

m = m+1;

n = n+1;

}

else if (walk-to = 6)

{

m = m+1;

n = n;

1

else if (walk-to = 5)

{

m = m+1;

n = n—1;

}

else if(walk-to = 4)

{

m = m;

199

n = n+1;

}

else if (walk.to = 3)

{

m = m;

n = n—1;

}

else if(walk_to = 2)

{

m = m—1;

n = n+1;

}

else if (walk.to = 1)

{

m — m—1;

n = n;

}

else if(walk_to = 0)

{

m = m—1;

n = n—1;

}

for(int h= 0; h< w.neighbors .size (); h++)

{

backtrack-pixel = w.neighbors [h];

if (backtrack_pixel = 7)

{

x.backtrack . push-back (tm+1);

y_backtrack . push-back (tn +1);

200

subframe [tm+l][tn + l] = 105;

}

else if (backtrack-pixel = 6)

{

x. backtrack. push-back (tm+1);

y. backtrack.push-back(tn);

subframe [tm+l][tn] = 105;

}

else i f (backtrack-pixel = 5)

{

x_backtrack. push-back (tm + 1);

y-backtrack . push-back (tn — 1);

subframe [tm+1][tn —1] = 105;

}

else i f (backtrack-pixel = 4)

{

x.backtrack . push-back (tm);

y-backtrack . push-back (tn + 1);

subframe [tm] [tn + 1] = 105;

}

else i f (backtrack-pixel = 3)

{

x-backtrack . push-back (tm);

y-backtrack . push-back (tn — 1);

subframe [tm] [tn—1] = 105;

}

else if (backtrack-pixel = 2)

{

x.backtrack . push-back(tm— 1);

201

y.backtrack . push_back(tn + l);

subframe [tm —1] [tn+1] = 105;

}

else if (backtrack.pixel = 1)

{

x. backtrack . push_back (tm —1);

y. backtrack . push .back (tn);

subframe [tm—l][tn] = 105;

}

else i f (backtrack.pixel = 0)

{

x. backtrack . push.back (tm—1);

y. backtrack . push.back (tn — 1);

subframe [tm—1] [tn— 1] = 105;

}

}//for loop

}

w.neighbors . clear ();

nw.neighbors . clear ();

neighbors, clear ();

neighbor .id . clear ();

}//while loop

x. backtrack.clear ();

y. backtrack.clear();

}//if statement, white pixel

edged.walked = false;

}//inner for loop

) //outer for loop

tempx = startx;

202

tempy = starty ;

for(c2 = 0; c2 < fi 11er.height ; c2++)

{

for(c3 = 0; c3 < filter-width ; c3++)

{

pixelchange.val[O] = subframe [c2] [c3];

cvSet2D (image , tempx , tempy, pixelchange);

if (tempy = starty + filter_width — 1)

{

tempx++;

tempy = starty ;

}

else

{

tempy++;

}

}

} //end for loop

for(int i = 0; i < filter.height ; i++)

{

delete [] subframe [i];

}

delete [] subframe;

}

void Thickenlmage(double ***subframe, int f.height, int f.width)

{

int borderxl = 0;

int borderx2 = 0 + f.height — 1;

int borderyl = 0;

203

int bordery2 = 0 + f.width — 1;

int m= 0;

int n = 0;

int c , c2 , c3 , o ,p;

double nO , nl , n2, n3 , n4 , n5 , n6 , n7;

vector<double> neighbors; //all neighbors and pixel values

vector<int> um.neighbors; // unmarked pixel neighbors

vector <int> neighbor-id ;

m = 0;

n = 0;

for(o=0; o < f.height ; o++)

{

for(p = 0; p < f.width; p++)

{

if (subframe [0] [o] [p] = 100)

{

m = o;

n = p;

if(m 1= borderxl m != borderx2 && n != borderyl

&& n != bordery2) //inner pixels

{

//calculate neigbor pixel values

nO = subframe [0] [m—1][n —1];

nl = subframe [0] [m—1][n];

n2 = subframe [0] [m—1][n + 1];

n3 = subframe [0] [m] [n — 1];

n4 = subframe [0] [m] [n + 1];

n5 = subframe [0] [m+l][n —1];

n6 = subframe [0] [m+l][n];

204

n7 = subframe [0] [m+l][n+l];

neighbors . push-back (nO);

neighbors . push-back (nl);

neighbors . push-back(n2);

neighbors . push-back (n3); ,

neighbors . push-back(n4);

neighbors . push-back(n5);

neighbors . push-back(n6);

neighbors . push-back (n7);

neighbor-id. push-back (0);

neighbor-id . push-back (1);

neighbor-id . push-back (2);

neighbor-id . push-back (3);

neighbor-id . push-back (4);

neighbor-id . push-back (5);

neighbor-id . push-back (6);

neighbor-id . push-back (7);

}

else if (m 1= borderxl && m != borderx2

&& n = borderyl) //vertical

//left side pixels

{

nl = subframe [0] [m—l][n];

n2 = subframe [0] [m—l](n + l];

n4 = subframe [0] [m] [n+1];

n6 = subframe [0] [m+l][n];

n7 = subframe [0] [m+l][n + l];

neighbors . push-back (nl);

neighbors . push-back (n2);

205

neighbors . push-back (n4);

neighbors . push-back(n6) ;

neighbors . push-back(n7) ;

neighbor_id . push-back (1);

neighbor-id . push-back (2);

neighbor-id . push-back (4);

neighbor_id. push-back (6);

neighbor-id . push-back (7);

}

else if (m = borderx2 &&

n = borderyl) // bottom left pixel

{

nl = subframe [0] [m—1][n];

n2 = subframe [0] [m—l][n+l];

n4 = subframe [0] [m] [n+1];

neighbors . push-back (nl);

neighbors . push-back (n2) ;

neighbors . push-back (n4) ;

neighbor_id. push-back (1);

neighbor-id . push-back (2);

neighbor_id . push-back (4);

}

else if (in borderx2 n 1= borderyl

&& n != bordery2) //horizontal

//bottom side pixels

{

nO = subframe [0] [m—l][n —1];

nl = subframe [0] [m—1] [n];

n2 = subframe [0] [m—l][n+l];

206

n3 = subframe [0] [m] [n — 1];

n4 = subframe [0] [m] [n+1];

neighbors . push-back (nO) ;

neighbors . push-back (nl);

neighbors . push-back(n2);

neighbors . push-back(n3);

neighbors . push-back (n4);

neighbor-id . push-back (0);

neighbor_id .push-back(l);

neighbor-id . push-back (2);

neighbor_id . push-back (3);

neighbor_id . push-back (4);

}

else if (m = borderx2

&& n = bordery2) // bottom right corner pixel

{

nO — subframe [0] [m—l][n —1];

nl = subframe [0] [m— 1] [n];

n3 = subframe [0] [m] [n — 1];

neighbors . push-back (nO);

neighbors . push-back (nl);

neighbors . push-back (n3);

neighbor-id. push-back (0);

neighbor _id . push-back (1);

neighbor-id. push-back (3);

}

else if (m != borderxl && m != borderx2

&& n = bordery2) //vertical

//right side pixels

207

{

nO = subframe [0] [m—1] [n — 1];

nl = subframe [0] [m—l][n];

n3 = subframe [0] [m] [n—1];

n5 = subframe [0] [m+1][n — 1];

n6 = subframe [0] [m+l][n];

neighbors . push-back (nO);

neighbors . push-back (nl);

neighbors . push-back (n3);

neighbors . push-back(n5);

neighbors . push-back (n6);

neighbor-id . push-back (0);

neighbor-id. push-back (1);

neighbor_id . push-back (3);

neighbor-id. push-back (5);

neighbor-id . push-back (6);

}

else if (m = borderxl &&

n = bordery2) // top right pixel

{

n3 = subframe [0] [m] [n — 1];

n5 = subframe [0] [m+l][n —1];

n6 = subframe [0] [m+1][n];

neighbors . push-back (n3) ;

neighbors . push-back (n5);

neighbors . push-back (n6);

neighbor-id . push-back (3);

neighbor-id . push-back (5);

neighbor-id . push-back (6);

208

}

else if (m = borderxl && n != borderyl

&& n != bordery2) //horizontal

//top side pixels

{

n3 = subframe [0] [m] [n — lj;

n4 = subframe [0] [m] [n+1];

n5 = subframe [0] [m+l][n — l];

n6 = subframe [0] [m+l][n];

n7 = subframe [0] [m+l][n4-l];

neighbors . push-back (n3) ;

neighbors . push-back (n4);

neighbors . push-back (n5);

neighbors . push-back (n6);

neighbors . push-back(n7) ;

neighbor_id. push-back (3);

neighbor_id. push-back (4);

neighbor-id . push-back (5);

neighbor-id . push-back (6);

neighbor-id . push-back (7);

}

else if (m = borderxl &&

n = borderyl) //top left pixel

{

n4 = subframe [0] [m] [n + 1];

n6 = subframe [0] [m+1] [n];

n7 = subframe [0] [m+l][n + l];

neighbors . push-back (n4) ;

neighbors . push-back (n6);

209

neighbors . push-back (n7);

neighbor_id. push-back (4);

neighbor-id . push-back (6);

neighbor-id . push-back (7);

}

//find all pixel neighbors that are white

for(c = 0; c < neighbors . size (); c++)

{

if (neighbors [c] = 0)

{

um_neighbors . push-back (neighbor_id [c]);

}

}

if (um.neighbors . size () > 0)

{

for(int h = 0; h< urn-neighbors. size (); h++)

{

i f (um-neighbors [h] = 0)

{

subframe [0] [m—l][n—1] = 105;

}

else i f (um.neighbors [h] = 1)

{

subframe [0] [m—1] [n] = 105;

}

else if (um.neighbors [h] == 2)

(

subframe [0] [m—1] [n+1] = 105;

}

210

else i f (um.neighbors [h] = 3)

{

subframe [0] [m] [n—1] = 105;

}

else if (um.neighbors [h] == 4)

{

subframe [0] [m] [n + 1] = 105;

}

else i f (um.neighbors [h] = 5)

{

subframe [0] [m+l][n—l] = 105;

}

else i f (um.neighbors [h] = 6)

subframe [0] [m+1][n] = 105;

}

else if (um.neighbors [h] = 7)

{

subframe [0] [m+l][n+l] = 105;

}//for loop

}

um_neighbors . clear ();

neighbors . clear ();

neighbor.id . clear ();

}// i f statement , white pixel

}//inner for loop

} //outer for loop

for(c2 = 0; c2 < f-height ; c2++)

211

{

for(c3 = 0; c3 < f_width; c3++)

{

i f (subframe [0][c2][c3] = 1'05)

{

subframe [0] [c2] [c3] = 100;

}

}

} //end for loop

}

void InvertPixelValues (double *** reference , int r-height ,

int r-width)

{

for(int i = 0; i < r.height ; i++)

{

for (int j = 0; j < r.width; j++)

{

if(reference [0] [i][j] = 0)

{

reference [0][i][j] = 100;

}

else if(reference[0][i][j] = 100)

{

reference[0][i][j] = 0;

}

212

void AND -Images (double ♦♦♦reference, double ♦♦♦actual,

double ♦♦♦result, int r.height , int r .width ,

int &count , int &top , int &bottom , int &right ,

int &left , int &removed)

{

removed = 0;

count = 0;

for(int i = 0; i < r.height ; i++)

<

for (int j = 0; j < r_width; j++)

{

if ((i < bottom && i > top) &&

(j < right && j > left))

{

if(reference [0] [i][j] =0 [|

actual [0] [i] [j] = 0)

{

result[0][i] [j] = 0;

}

else if (reference [0] [i][j] = 100 &&

actual[0][i][j] = 100)

{

result [0] [i] [j] = 100;

count++;

}

}

else

{

if(actual[0][i][j] = 100)

213

{

removed++;

}

}

}

}

}

void CountNonMatchingPixels (double ***result, int r.height ,

int r.width , int fecount)

{

count = 0;

for(int i = 0; i < r.height ; i++)

{

for(int j = 0; j < r .width; j++)

{

if(result [0][i][j] = 100)

{

count++;

}

}

}

}

bool DetermineMouthExpression (int unmatched-count, int edge-size,

int ref_size , bool &mouth_expression ,

double min_percentage-ref ,

double min_percentage_act)

{

double matched = 0;

double t.pixels = edge_size;

214

double percentage-act = 0;

double percentage.ref = 0;

if(edge.size = 0)

{

mouth-expression = false ;

return false ;

}

if (edge-size — unmatched-count = 0)

{

mouth-expression = false ;

return false;

}

matched = t.pixels — unmatched-count;

percentage.act = 100*(matched/t.pixels);

if (percentage-act >= min_percentage_act)

{

percentage.ref = 100*(matched/r ef.size);

if (percentage.ref >= min_percentage_ref)

{

mouth-expression = true;

return true ;

}

else

{

mouth-expression = false ;

return false ;

}

}

else

215

{

mou t h.expression = false;

return false ;

}

}

bool DrawRectangle (Ipllmage * source , int pointx ,

int pointy , int recheight ,

int recwidth, int grayscale)

{

int imageheight;

int imagewidth;

imageheight = source—>height ;

imagewidth = source—>width;

CvScalar pixel ;

pixel, val [0] = grayscale;

if (pointx <0 [| pointy <0 ||

pointx > imageheight — 1 11 pointy > imagewidth — 1 | |

pointx + recheight — 1 > imageheight | |

pointy + recwidth — 1 > imagewidth)

{

cout « ’’Can’t draw” « endl;

return false;

}

for (int top = pointy; top < pointy + recwidth; top++)

{

cvSet2D (source , pointx, top, pixel);

}

for (int bottom = pointy; bottom < pointy + recwidth; bottom++)

{

216

cvSet2D (source , pointx + recheight — 1, bottom, pixel);

}

for (int left = pointx; left < pointx + recheight — 1; left++)

{

cvSet2D (source , left, pointy, pixel);

}

for(int right = pointx + 1; right < pointx + recheight — 1; right++)

{

cvSet2D (source , right, pointy + recwidth — 1, pixel);

}

return true ;

}

void CountPixelsInRef (double ***result, int height, int width, int &count)

{

count = 0;

for (int i = 0; i < height; i++)

{

for (int j = 0; j < width; j-H-)

{

if(result[0][i][j] = 100)

{

count++;

}

}

}

}

A. 2 Main Program Source Code

^include ‘ ‘ stdafx .h”

217

^include <cv.h>

#include Ccxcore.h>

^include <highgui. h>

^include <iostream>

#include <vector>

#include <string>

#include “fftw3 .h”

#include ‘ ‘ image.pro.functions .h”

using namespace std ;

#define PADWIDTH 120

#define PADHEIGHT 120

#define SSWIDTH 90

#define SSHEIGHT 90

#define N 120.0

#define SIZE 120

int l_threshpos = 20;

int h-threshpos = 20;

int l_thresh = 20;

int h_thresh = 20;

void changeLThresh(int lpos)

{

l.thresh = lpos ;

}

void changeHThresh(int hpos)

{

h_thresh = hpos;

}

int _tmain(int argc , _TCHAR* argvfj)

{

218

0;int cex

nt cey = 0;

nt mat chper cent age = 70

nt top.b = 0;

nt top_c = 0;

nt top_s = 0;

nt bottom.b = 0;

nt bottom.c = 0;

nt bottom-s = 0;

nt left_b = 0;

nt left.c = 0;

nt Left-s = 0;

nt right_b = 0;

nt right.c = 0;

nt right.s = 0;

nt removed = 0;

nt removed = 0;

nt edge_max_size = 500;

nt edge_min_size = 80;

nt startx = 175;

nt starty = 270;

nt shift = 30;

nt unmat-s-count = 0;

nt unmat_b_count = 0;

nt unmat.c.count 0;

nt b_total — 0;

int S-total = 0;

int c.total = 0;

int ref.size = 0;

219

int act-size = 0;

bool bigmouth = false ;

bool smallmouth = false ;

bool closedmouth = false ;

bool locate.bi gm ou t h = true;

bool locate.smallmouth = true;

bool 1 ocat e.closed mouth = true;

string expression-made = “no known mouth expression made”;

vector<int> final.x ;

vector<int> finally ;

char key;

CvCapture* capture = cvCaptureFromCAM(CVjCAP-ANY);

if(1 capture)

{

fprintf(stderr, “Error with capture —> null \n”);

getchar ();

return —1;

}

cvCreateTrackbar (‘ ‘Low Threshold”, “Edged Image”, &l_threshpos ,

cvNamed Window (“Image”, CV-WINDOW^UTOSIZE);

cvNamed Window (“Edged Image” ,CV_WINDOW_AUTOSIZE);

cvNamedWindow (‘ ‘ Big Mouth” ,0);

cvNamedWindow (“Small Mouth",0);

cvNamedWindow (“Closed Mouth”,0);

100, changeLThresh);

cvCreateTrackbar (‘ ‘ High Threshold”, “Edged Image”, &h_threshpos ,

100, changeHThresh);

Ipllmage *gray = NULL;

Ipllmage *edges = NULL;

220

IpIImage *original = NULL;

Ipllmage *snap_shot = cvCreateImage(cvSize(SSWIDTH, SSHEIGHT) ,

IPL_DEPTH_8U, 1);

Ipllmage *frame = NULL;

IpIImage *reference = NULL;

Ipllmage *reference2 = NULL;

Ipllmage *reference3 = NULL;

bool show_frame_data = false ;

bool show.oncel = false ;

bool show_once2 = false ;

bool show_once3 = false ;

bool show_once4 = false ;

bool show_messagel = true ;

bool show_message2 = false ;

bool show_message3 = false;

bool shots.taken = false;

bool begin_execution = false;

bool calculations = false ;

bool bigmouth-cal = false;

bool smallmouth_cal = false ;

bool largest.edge = true;

bool live_image = true;

int height = 0;

int width = 0;

int pos_x = 0;

int pos.y = 0;

int pos.x2 = 0;

int pos_y2 = 0;

int pos_x3 = 0;

221

int pos_y3 = 0;

int gapnumber =1;

fftw.complex *in, *in2 , *in3 , *in4 , *out , *out2, *out3, *out4 , *nor , *res;

fftw.plan p, p2, p3, p4, p5, p6 , p7;

in = (fftw.complex *) fftw.malloc (sizeof (fftw.complex) * SIZE * SIZE);

out = (fftw.complex*) fftw.malloc (sizeof (fftw.complex) ♦ SIZE ♦ SIZE);

in2 = (fftw.complex*) fftw.malloc (sizeof (fftw.complex) * SIZE * SIZE);

out2 = (fftw.complex*) fftw.malloc (sizeof (fftw.complex) * SIZE * SIZE);

in3 = (fftw.complex*) fftw.malloc (sizeof (fftw.complex) * SIZE * SIZE);

out3 = (fftw.complex*) fftw.malloc (sizeof (fftw.complex) * SIZE * SIZE);

in4 = (fftw.complex*) fftw.malloc (sizeof (fftw.complex) ♦ SIZE * SIZE);

out4 = (fftw.complex*) fftw.malloc(sizeof(fftw.complex) * SIZE ♦ SIZE);

nor = (fftw.complex*) fftw.malloc (sizeof (fftw.complex) * SIZE * SIZE);

res = (fftw.complex*) fftw.malloc (sizeof (fftw.complex) * SIZE * SIZE);

double ***i2 = new double**[2];

double ***i3 = new double**[2];

double ***i4 = new double** [2];

for (int x = 0; x < 2; x++)

{

i2 [x] = new double*[SSHEIGHT];

i3[x] = new double * [SSHEIGHT];

i4 [x] = new double*[SSHEIGHT];

for (int y = 0; y < SSHEIGHT; y++)

{

i2[x][y] = new double [SSWIDTH];

i3[x][y] = new double [SSWIDTH];

i4[x][y] = new double [SSWIDTH];

for (int z = 0; z < SSWIDTH; z++)

{

222

i2 [x] [y] [z] = 0;

i3[x][y][z] = 0;

i4[x][y][z] = 0;

}

}

}

double *** i = new double**[2];

double ***pd = new double**[2];

double ***pd2 = new double** [2];

double ***pd3 = new double**[2];

double ***sf = new double**[2];

double ***map = new double** [2];

double ***map2 = new double** [2];

double ***map3 = new double** [2];

double ***and = new double** [2];

for (int x = 0; x < 2; x++)

{

i [x] = new double * [PADHEIGHT];

pd[x] — new double ♦ [PADHEIGHT];

pd2[x] = new double * [PADHEIGHT];

pd3[x] = new double * [PADHEIGHT];

sf[x] = new double * [PADHEIGHT];

map[x] = new double * [PADHEIGHT];

map2[x] = new double * [PADHEIGHT];

map3[x] = new double * [PADHEIGHT];

and[x] = new double * [PADHEIGHT];

for (int y = 0; y < PADHEIGHT; y-H-)

{

i [x] [y] = new double [PADWIDTH];

223

pd[x][y] = new double [PADWIDIH];

pd2 [x][y] = new double [PADWIDTH];

pd3[x][y] = new double [PADWIDIH];

sf [x] [y] = new double [PADWIDIH];

map[x][y] = new double [PADWIDIH];

map2[x][y] = new double [PADWIDIH];

map3[x][y] = new double [PADWIDIH];

and [x] [y] = new double [PADWIDIH];

for(int z = 0; z < PADWIDIH; z++)

{

*lxl[y J[z] =

pd[x][y][z] = 0;

pd2[x][y][z] = 0;

pd3[x][y][z] = 0;

sf[x][y][z] = 0;

map[x] [y] [z] = 0;

map2[x] [y] [z] = 0;

map3 [x] [y] [z] = 0;

and[x][y][z] = 0;

}

}

}

while (1)

{

frame = cvQueryFrame(capture);

gray = cvCreatelmage (cvGetSize(frame) , IPLJDEPTHJSU, 1);

edges = cvCreatelmage (cvGetSizef frame), IPL-DEPTHJJU, 1);

original = cvCreatelmage (cvGetSize (frame) , IPL_DEPTH_8U, 1);

i f (show_frame_data = false)

224

{

height = edges—>height;

width = edges—>width;

printf(‘‘The width %d\n” , width);

pri n t f (‘ ‘ The height %d\n” , height);

show_frame_data = true;

}

if (show.messagel = true && show_oncel = false)

{

cout « ‘‘Make a big mouth expression and press the spacebar”

« endl;

cout « endl;

show-oncel = true;

}

else if (show_message2 = true && show_once2 = false)

{

cout « ‘‘Make a small mouth expression and press the spacebar”

« endl;

cout « endl;

show_once2 = true ;

}

else i f (show_message3 = true && show_once3 = false)

{

cout « ‘ ‘Make a closed mouth expression and press the spacebar”

« endl;

cout « endl;

show_once3 = true;

}

else if (begin.execut i on = true && show_once4 = false)

225

{

cout « 11 Press the spacebar to begin execution” « endl;

cout « endl;

show.once4 = true;

}

iff! frame)

{

fprintff stderr, ‘‘Error with frame —> null\n”);

getchar ();

break;

}

cvGvtColor (frame , gray , CV-BGR2GRAY);

cvSmoothfgray, gray, CV-GAUSSIAN, 9, 9);

cvCannyf gray, edges , l_thresh , h.thresh , 3);

original = cvClonelmage (edges);

if (shots.taken = false)

{

FormatFilter (edges , startx, starty ,SSHEIGHT, SSWIDTH) ;

GapFiller (edges , startx starty , gapnumber, SSHEIGHT, SSWIDTH);

FormatFilter(edges , startx, starty, SSHEIGHT, SSWIDTH);

if (largest.edge = false)

{

EdgeWalker(edges , startx , starty , edge.min.size , edge_max_size ,

SSHEIGHT, SSWIDTH, final.x , final.y , ref.size);

final_x . clear (); final_y . clear ();

}

else

{

FindLargestEdge (edges , startx, starty, SSHEIGHT, SSWIDTH, 0,

226

SSHEIGHT*SSHEIGHT, ref-size);

}

if(show.messagel = false && show.oncel = true &&

bigmouth_cal = false)

{

reference = cvLoadlmagef ’’big_mouth_open.jpg”, 0);

FormatFilter(reference , 0, 0, SSHEIGHT, SSWIDTH);

ImageToArray(reference , i2 , 0, 0, SSHEIGHT, SSWIDTH);

CountPixelsInRef (i2 , SSHEIGHT, SSWIDTH, b-total);

Padimage(pd, 12 , PADHEIGHT, PADWIDTH, SSHEIGHT, SSWIDTH);

ArrayToFFTWFormatfpd, in2 , PADHEIGHT, PADWIDIH);

p2 = fftw_plan_dft-2d (SIZE, SIZE, in2 , out2 , FFTWFORWARD,

FFTWTST1MATE);

fftw.execute (p2);

fftw_des troy .plan (p2);

bigmouth_cal = true;

}

i f (show_message2 = false && show_once2 = true

smallmouth-cal = false)

{

reference2 = cvLoadlmagef” small_mouth_open . jpg” , 0);

FormatFilter(reference2 , 0, 0, SSHEIGHT, SSWIDTH);

ImageToArray (reference2 , i3 , 0, 0, SSHEIGHT, SSWIDTH);

CountPixelsInRef(i3 , SSHEIGHT, SSWIDTH, s-total);

Padlmage(pd2, i3 , PADHEIGHT, PADWIDTH, SSHEIGHT, SSWIDTH);

ArrayToFFTWFormat (pd2 , in3 , PADHEIGHT, PADWIDIH);

p4 = fftw.plan_dft_2d (SIZE, SIZE, in3 , out3 , FFIWJFORWARD,

FFTWJ2STIMATE);

fftw_execute(p4);

227

fftw_destroy_plan(p4);

smallmouth.cal = true;

}

i f (show_message3 = false && show_once3 = true

&& calculations false)

{

reference3 = cvLoadImage(” closed_mouth . jpg” , 0);

FormatFilter (reference3 , 0, 0, SSHEIGHT, SSWIDTH);

ImageToArray(reference3 , i4 , 0, 0, SSHEIGHT, SSWIDTH);

CountPixelsInRef(i4 , SSHEIGHT, SSWIDTH, c.total);

Padimage (pd3, i4 , PADHEIGHT, PADWIDTH, SSHEIGHT, SSWIDTH);

ArrayToFFTWFormat(pd3 , in4 , PADHEIGHT, PADWIDIH);

p6 = fftw_plaii-dft_2d (SIZE, SIZE, in4 , out4 , FFIWFORWARD,

FFIWESTIMATE);

fftw.execute (p6);

fftw_destroy_plan (p6);

calculations = true;

}

DrawRectangle (edges , startx — 1, starty — 1, SSHEIGHT + 2,

SSWIDTH + 2, 200.0);

}

else

{

FormatFilter (edges , startx — shift , starty, PADHEIGHT,

PADWIDIH);

GapFiller (edges , startx — shift, starty, gapnumber,

PADHEIGHT, PADWEIH);

FormatFilter (edges , startx — shift, starty, PADHEIGHT,

PADWIDIH);

228

i f (largest.edge = false)

{

EdgeWalker(edges , startx — shift , starty , edge.min.size ,

edge_max_size , PADHEIGHT, PADWIDTH, fin al .x ,

final.y , actJsize);

final.x . clear ();

final.y . clear () ;

}

else

{

FindLargestEdge(edges , startx — shift, starty, PADHEIGHT,

PADWIDTH, 0, 1000, act .size);

}

ImageToArray (edges , i, startx — shift , starty, PADHEIGHT,

PADWIDTH);

ArrayToFFTWFormat(i , in , ’PADHEIGHT, PADWIDTH);

p= fftw.plan_dft_2d (SIZE, SIZE, in, out ,FFTWJ!ORWARD,

FFTWJESTIMATE);

fftw.execute (p);

//Big Mouth

i f (locate.bigmouth = true)

{

NormalizeFFTW(out, out 2 , nor, PADHEIGHT, PADWIDIH);

p3 = fftw_plan_dft_2d (SIZE, SIZE, nor, res, FFTW1BACKWARD,

FFTWJiSTIMATE);

fftw.execute (p3);

GetMaxValueFFTW(res , p‘os.x , pos.y, PADHEIGHT, PADWIDIH);

Shiftimage (pd, map, pos.x , pos.y, PADHEIGHT, PADWIDTH, cex, cey);

MakeBorders(top.b , bottom.b , left.b , right.b , SSHEIGHT,

229

SSWIDTH, PADHEIGHT, PADWIDTH, cex, cey);

for (int thicken = 0; thicken < 2; thicken++)

{

Thickenlmage(map, PADHEIGHT, PADWIDTH);

}

InvertPixelValues (map, PADHEIGHT, PADWIDIH);

ANDJmages(map, i , and, PADHEIGHT, PADWIDTH, unmat_b-count ,

top.b , bottom.b , right_b , left_b , removed);

DetermineMouthExpression (unmat_b_count , act.size—removed, b-total ,

bigmouth, matchpercentage, matchpercentage);

fftw-destroy .plan (p3) ;

}

//Small mouth

if (locate.smallmouth = true)

{

NormalizeFFTW (out , out3 , nor, PADHEIGHT, PADWIDIH);

p5 = fftw.plan_dft_2d (SIZE, SIZE, nor, res, FFIWJ3ACKWARD,

FFTW-ESTIMATE);

fft w.execute (p5);

GetMaxValueFFTW(res , pos_x2 , pos_y2 , PADHEIGHT, PADWIDTH) ;

Shiftimage (pd2 , map2, pos_x2 , pos_y2 , PADHEIGHT, PADWIDIH, cex, cey);

MakeBorders(top.s , bottom_s , left_s , right.s , SSHEIGHT,

SSWIDTH, PADHEIGHT, PADWIDIH, cex, cey);

for(int thicken = 0; thicken < 2; thicken++)

{

Thickenlmage (map2, PADHEIGHT, PADWIDIH);

}

InvertPixel Values (map2, PADHEIGHT, PADWIDIH);

ANDJmages(map2, i, and, PADHEIGHT, PADWIDIH, unmat-s.count ,

230

top_s , bottom_s , right.s , left.s , removed);

DetermineMouthExpression (unmat-8.count , act-size—removed, s.total ,

smallmouth, matchpercentage, matchpercentage);

fftw.des troy-plan (p5);

}

//Closed mouth

if (locate.closedmouth = true)

{

NormalizeFFTW(out , out4 , nor, PADHEIGHT, PADWIDTH);

p7 = fftw_plan_dft_2d (SIZE, SIZE, nor, res, FFIWBACKWARD,

FFTWJESTIMATE);

fftw.execute (p7);

GetMaxValueFFTW (res , pos_x3 , pos_y3 , PADHEIGHT, PADWIDTH);

Shiftimage (pd3, map3, pos.x3 , pos_y3 , PADHEIGHT, PADWIETH,

cex , cey);

MakeBorders (top_c , bottom_c , left.c , right-c , SSHEIGHT, SSWIDTH,

PADHEIGHT, PADWIDTH, cex, cey);

for (int thicken = 0; th'icken < 2; thicken-H-)

{

Thickenlmage(map3, PADHEIGHT, PADWIDTH);

}

InvertPixelValuesfmap3, PADHEIGHT, PADWIDTH);

AND-Images (map3, i, and, PADHEIGHT, PADWIDTH, unmat _c-count ,

top.c , bottdm.c, right-c, left.c , removed);

DetermineMouthExpression (unmat_c_count, act.size—removed , c-total ,

closedmouth , matchpercentage , matchpercentage) ;

fftw_destroy_plan(p7);

}

if (bigmouth = true locate.bigmouth = true)

231

{

Shiftimage (pd, sf , pos_x , pos.y , PADHEIGHT, PADWIDIH, cex , cey) ;

OverLapimage (sf , edges , ’startx — shift, starty, PADHEIGHT,

PADWIDIH);

expression.made = ‘‘big mouth expression”;

cout « expression-made << endl;

}

else if (smallmouth = true && locate.smallmouth = true &&

bigmouth = false)

{

Shiftimage (pd2, sf , pos_x2 , pos_y2 , PADHEIGHT, PADWIDTH, cex, cey);

OverLapimage (sf , edges, startx — shift , starty, PADHEIGHT,

PADWIDIH);

expression-made = “small mouth expression”;

cout « expression-made « endl;

}

else if (closedmouth true locate.closedmouth = true &&

smallmouth = false &Sc bigmouth = false)

Shiftimage (pd3, sf , pos_x3 , pos_y3 , PADHEIGHT, PADWIDIH, cex, cey);

OverLapimage (sf , edges, startx — shift, starty, PADHEIGHT,

PADWIDIH);

expression-made = ‘‘closed mouth expression”;

cout « expression-made « endl;

}

unmat_b_count = false ;

unmat-s-count = false ;

unmat_c_count = false;

bigmouth = false ;

232

smallmouth = false;

closedmouth = false;

fftw-destroy-plan(p);

DrawRectangle (edges , startx — shift — 1, starty — 1,

PADHEIGHT + 2, PADWIDIH + 2, 200.0);

}

cvShowImage (‘ ‘ Edged Image" , edges);

if (live-image = true)

{

cvShowImage (* * Image" , frame);

}

if (shots.taken = true)

{

cvShowImage (‘ ‘ Big Mouth”, reference);

cvShowImage (1 ‘ Small Mouth” , reference2) ;

cvShowImage (‘ ‘ Closed Mouth”, reference3);

}

key = cvWaitKey (10);

if (key = 27)

{

bieak;

}

else if(key = 32 && show_messagel = true)

{

TakeSnapShot(edges , snap-shot , startx , starty , SSHEIGHT,

SSWIDTH);

if (! cvSavelmage (‘1 big_mouth_open .jpg” , snap-shot))

{

cout « “Image did not save, big_mouth_open.jpg”

233

« endl;

}

show.message 1 = false;

show_message2 = true ;

}

else if(key = 32 && show_message2 = true)

{

TakeSnapShot(edges , snap_shot , startx , starty ,

SSHEIGHT, SSWIDTH);

i f (! cvSavelmage (‘ ‘ small_mouth_open . jpg” , snap .shot))

{

cout « ‘ ‘Image did not save , small_mouth_open .jpg”

« endl;

}

show_message2 = false ;

show_message3 = true;

}

else iff key = 32 && show_message3 = true)

{

TakeSnapShot (edges , snap_shot , startx, starty,

SSHEIGHT, SSWIDTH);

if (! cvSavelmage (‘ ‘ closed_mouth . jpg” , snap_shot))

{

cout « ‘‘Image did not save, closed_mouth.jpg”

« endl;

}

show_message3 = false ;

begin_execution = true;

}

234

else if (key = 32 && begin-execution = true)

{

shots.taken = true;

J

else if (key = 119 || key = 87) //Move frame up,

// press w key

{

if (startx - 10 > PADHEIGHT)

{

startx = startx — 10;

}

}

else if (key = 100]] key = 68) //Move frame right ,

//press d key

{

if (starty + 10 < width — PADWIDIH)

{

starty = starty + 10;

}

}

else if (key = 97 |] key = 65) //Move frame left ,

//press a key

{

if(starty — 10 >= 2)

{

starty = starty — 10;

}

}

else if (key = 115 || key = 83) //Move frame down,

235

//press s key

{

if(startx + 10 < height - PADHEIGHT)

{

startx = startx + 10;

}

}

else if (key = 71 || key = 103) //Increase gap fill size ,

//press g key

{

if (gapnumber < 3)

{

gapnumber+4-;

cout « “Current Gap Size: ” « gapnumber « endl;

}

}

else if (key = 98]| key = 66) //Decrease gap fill size ,

// press b key

{

if (gapnumber > 1)

{

gapnumber---- ;

cout « “Current Gap Size: ” « gapnumber « endl;

}

}

else if (key = 85 || key = 117) //Increase match

//percentage , press

//u key

{

236

if(matchpercentage < 100)

{

matchpercentage = matchpercentage + 10;

cout « ’’Current Match Percentage: ” «

matchpercentage « endl;

}

}

else if (key = 89 || key = 121) //Decrease match

//percentage , press

//y key

{

if (matchpercentage > 0)

{

matchpercentage = matchpercentage — 10;

cout « ’’Current Match Percentage: ’’ «

matchpercentage « endl;

}

}

else if (key = 99 || key = 67) //Take edge capture of

//screen and cam, press

//c key

{

if (! cvSavelmage (“origin al.jpg”, original))

{

cout « “Image did not save, original.jpg” « endl;

}

if (1 cvSavelmage (1 ‘cam. jpg” , frame))

{

cout « “Image did not save, cam.jpg” « endl;

237

}

}

else if (key = 118 || key = 86) //Take cam capture

//of screen , press v key

{

if (I cvSavelmage (‘ ‘ cam .jpg" , frame))

{

cout « ‘‘Image did not save, cam.jpg” « endl;

}

}

else if (key = 69 || key 101) //display mouth expressions

//searched for , press e key

<

cout « endl;

cout « ‘‘Current mouth expressions being searched for:” « endl;

if (locate_bigmouth = true)

{

cout « ‘‘big mouth expression” « endl;

}

i f (locate_smallmouth = true)

{

cout « ‘‘small mouth expression” « endl;

}

if (locate_closedmouth = true)

{

cout « ‘‘closed mouth expression” « endl;

}

i f (locate-bigmouth = false &&; locate_smallmouth false &&

locate.closedmouth = false)

238

{

cout « “None” « endl;

}

cout « endl;

}

else if (key = 74 || key = 106) //decrease min edge size ,

//press j key

{

i f (edge_min_size > 1 && largest.edge = false)

{

edge_min_size = edge_min_size — 10;

cout « 1 ‘Minimum edge size : ” « edge_min_size « ‘ ‘ ”

« ‘‘Maximum edge size: ” « edge_max-size « endl;

}

}

else if (key = 78 || key = 110) //increase min edge size ,

//press n key

{

if (shots.taken =; false largest-edge = false)

{

if (edge_min_size + 10 < edge-max.size)

{

edge_min_size = edge_min_size + 10;

cout « ‘‘Minimum edge size: ” « edge_min_size « “ ”

« ‘‘Maximum edge size: ” « edge_max_size « endl;

}

}

else i f (shots_taken = true && largest .edge = false)

{

239

if (edge_min_size + 10 < edge-max-size)

{

edge_min_size = edge_min_size + 10;

cout « ‘‘Minimum edge size: ” « edge_min_size « “ ”

« ‘ ‘Maximum edge size : ” « edge_max_size « endl;

}

}

}

else if (key = 75 || key = 107) //decrease max edge size ,

// press k key

<

if (edge-max-size — 10 > edge_min_size

&& Iargest.edge = false)

{

edge„max_size = edge_max_size — 10;

cout « ‘‘Minimum edge size: ” « edge_min_size « “ ”

« ‘‘Maximum edge size: ” « edge_max_size « endl;

}

}

else if(key = 77 || key = 109) //increase max edge size ,

//press m key

i f (shots_taken = false && Iargest.edge = false)

{

if (edge_max_size + 10 <= SSHEIGHT*SSWIDTH)

{

edge_max_size = edge_max_size + 10;

cout « ‘‘Minimum edge size: ” « edge_min_size « ‘‘ ”

« ‘‘Maximum edge size: ” « edge_max_.size « endl;

240

}

}

else i f (shots.taken = true && largest.edge = false)

{

i f (edge.max.size 4- 10 <= PADHEIGHT*PADWIDIH)

{

edge.max.size = edge.max.size + 10;

cout « ‘‘Minimum edge size: ” « edge.min.size « “ ”

« ‘‘Maximum edge size: ” « edge.max.size « endl;

}

}

}

else if (key = 76 || key 108) //switch between largest

//edge or edges in range,

// press 1 key

{

if (largest.edge = false)

{

largest.edge = true;

cout « ‘ ‘ Largest Edge Mode On” « endl;

}

else

{

largest.edge = false;

cout « ‘‘Edges in Certain Size Range Mode On” « endl;

}

}

else if(key = 70 || key = 102) //switch on or off live image,

//press f key

241

{

if (live.image false)

{

live-image = true;

cvNamedWindow(“Image”, CV_WINDOW_AUTOSIZE);

}

else

{

live-image = false;

cvDestroyWindow(“Image”);

}

}

else if (key = 82 |] key = 114) //retake reference images,

//press r key

{

show.oncel = false ;

show_once2 = false ;

show_once3 = false ;

show_once4 = false;

show_messagel = true ;

show_message2 = false ;

show_message3 = false ;

shots-taken = false ;

begin-execution = false ;

calculations = false ;

bigmouth.cal = false ;

smallmouth_cal = false ;

locate-bigmouth = true;

Locate_smallmouth = true ;

242

locate.closedmouth = true;

}

//turn on/off bigmouth

//expression search,

//press i key

{

if (locate.bigmouth = true)

locate.bigmouth = false;

{

cout « ‘ 1 Big mouth expression search : off” « endl;

}

else

locate.bigmouth = true ;

{

cout « 11 Big mouth expression search: on” « endl;

}

}

//turn on/off smallmouth

//expression search ,

//press o key

{

if (locate.smallmouth = true)

locate.smallmouth = false ;

cout « tl Small mouth expression search: off” « endl;

}

else

{

locate.smallmouth = true ;

243

cout « “ Small mouth expression search: on” « endl;

}

}

else if (key = 80 || key = 112) //turn on/off closedmouth

//expression search ,

//press p key

{

i f (locate.closedmouth = true)

{

locate.closedmouth = false ;

cout « ‘‘Closed mouth expression search: off” « endl;

}

else

{

locate_closedmouth = true;

cout « ‘‘Closed mouth expression search: on” « endl;

}

}

cvReleaseImage(&gray);

cvReleaseImage(&edges);

cvReleaselmagef&original);

}

fftw-free (in); fftw.free (out); fftw.free (in2); fftw_free (out2);

fftw-free(in3); fftw.free (out3); fftw.free(in4); fftw_free(out4);

fftw.free (nor); fftw.free (res);

for (int x = 0; x < 2; x++)

{

for(int y = 0; y< PADHEIGHT; y++)

{

244

delete []

delete [] pd[x][y];

delete [] pd2[x][y];

delete [] pd3[x][y];

delete [] sf [x] [y];

delete [] map[x] [y];

delete [] map2[x] [y]

delete [] map3 [x][y]

delete [] and[x][y];

}

delete [] > M;

delete [] Pd[x];

delete [] pd2[x];

delete [] pd3[x];

delete [] sf [x];

delete [] map[x];

delete [] map2 [x];

delete [] map3 [x];

delete [] and[x];

}

delete [] 1;

delete [] pd;

delete [] pd2;

delete [] pd3;

delete [] sf;

delete [] map;

delete [] map2;

delete [] map3;

delete [] and;

245

for(int x = 0; x< 2; x++)

{

for (int y = 0; y < SSHEIGHT; y-H-)

{

delete [] i2 [x J [y];

delete [] i3 [x] [y];

delete [] i4 [x] [y];

}

delete [] i2 [x];

delete [] i3 [x];

delete [] i4 [x];

}

delete [] i2 ;

delete [] i3 ;

delete [] i4 ;

cvRelease!mage(&snap_shot);

cvReleaselmagef&reference);

cvReleaseImage(&reference2) ;

cvReleaseImage(&reference3);

cvReleaseCapture (^capture);

cvDestroyAllWindows ();

return 0;

}

246

REFERENCES

[1] Access to Disability Data, http://www.infouse.com/disabilitydata/disability/,

2010.

[2] Jain R, Kasturi R, Schunck B. Machine Vision. McGraw Hill, 169-172, 1995.

[3] Kumar V, Rahman T, Krovi, V. Assistive Devices For People With Motor

Disabilities. Wiley Encyclopedia of Electrical and Electronics Engineering, 1997.

[4] Ramey RL, Aylor JH, Williams RD. Micro Computer-Aided Eating for the

Severely Handicapped. Computer, 12:54-61, 1979.

[5] Developmental Disabilities, http://www.cdc.gov/ncbddd/dd/cp2.htm, 2010.

[6] Spastic Quadripelgia. http://www.brainandspinalcord.org/cerebral-palsy/

types/spastic-quadriplegia.html, 2010.

[7] Percutaneous Endoscopic Gastrostomy, http://www.gi.org/patients/gihealth/

peg.asp, 2010.

[8] Ohara E, Ken’ichi Y, Horihata S, Aoki T, Nishimoto Y. Development of Tremor-

Suppression Filter for Meal-Assist Robot. Third Joint Eurohaptics Conference

and Symposium on Haptic Interfaces, 2009.

247

http://www.infouse.com/disabilitydata/disability/
http://www.cdc.gov/ncbddd/dd/cp2.htm
http://www.brainandspinalcord.org/cerebral-palsy/
http://www.gi.org/patients/gihealth/

[9] Ju J, Shin Y, Kim E. Intelligent Wheelchair (IW) Interface using Face and

Mouth recognition. ACM, 2009.

[10] Bergasa LM , Mazo M, Gardel A , Barea R, Boquete L. Commands Generation

by Face Movements Applied to the Guidance of a Wheelchair for Handicapped

People. IEEE, 2000.

[11] Russ, J. The Image Processing Handbook: Second Edition. CRC Press, 1995.

[12] Transforms: Fourier Transform. http://homepages.inf.ed.ac.uk/rbf/HIPR2/

fourier.htm, 2003.

[13] Yoo, Y. Tutorial on Fourier Theory, http://www.cs.otago.ac.nz/cosc453/student

_tutorials/fourier_analysis.pdf, 2001.

[14] Cerebral Palsy: Hope Through Research, http://www.ninds.nih.gov/disorders/

cerebraLpalsy/detaiLcerebraLpalsy.htm?css=print, 2010.

[15] Topping, M. HANDY 1: A Robotic System to Assist the Severely Disabled.

Knowledge Enterprise, 2002.

[16] Regalbuto, M. Toward a practical mobile robotic aid system for people with se­

vere physical disabilities. Journal of Rehabilitation Research and Development,

2002.

[17] Takahashi Y, Kobayashi T. Upper Limb Motion Assist Robot. ICORR, 1999.

[18] Takahashi Y, Hasegawa N. Human Interface Using PC Display With Head

Pointing Device for the Eating Assist Robot and Emotional Evaluation by

GSR Sensor. IEEE, 2001.

248

http://homepages.inf.ed.ac.uk/rbf/HIPR2/
http://www.cs.otago.ac.nz/cosc453/student
http://www.ninds.nih.gov/disorders/

[19] Pourmohammadali H, Kofman J, Khajepour A. Design of a Multiple-user Intel­

ligent Feeding Robot for Elderly and Disabled People. University of Waterloo,

2008.

[20] Xie H, Hicks N, Keller R, Huang H, Kreinovich V. An IDL/ENVI implementa­

tion of the FFT-based algorithm for automatic image registration. Computers

and Geosciences, 2003.

[21] Banerjee R, ICundu M, Banerjee A. FEEDING for the child with cerebral palsy.

IICP, 1995.

[22] Maini R, Aggarwal H. Study and Comparison of Various Image Detection

Techniques. International Journal of Image Processing.

[23] Ding L, Goshtasby A. On the Canny edge detector. Pattern Recognition, 2001.

[24] Edge detection. http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.

pdf

[25] Wang B, ShaoSheng F. An improved CANNY edge detection algorithm. 2009

Second International Workshop on Computer Science and Engineering, 2009.

[26] Er-sen L, Shu-long Z, Bao-shan Z, Yong Z, Chao-gui X, Li-hua S. An Adaptive

Edge-Detection Method Based on the Canny Operator. 2009 International

Conference on Environmental Science and Information Application Technology,

2009.

[27] Wang L. Comparison for Edge Detection of Colony Images. IJCSNS Interna­

tional Journal of Computer Science and Network Security, 2006.

249

http://www.cse.unr.edu/%7Ebebis/CS791E/Notes/EdgeDetection

[28] Quadriplegia and Cerebral Palsy, http://www.cerebralpalsysource.com/Types_of

_CP/quadriplegia_cp/index.html, 2005.

250

http://www.cerebralpalsysource.com/Types_of

	An algorithm for facial expression recognition to assist handicapped individuals with eating disabilities
	Recommended Citation

