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Abstract

An algebra A is a vector space over a base field F which is not necessarily 
commutative nor unital. Though an algebra may be generated by a finite number of ele­
ments, this does not necessarily imply that the algebra is finite-dimensional over F. This 
study will be investigation of Alekander Kurosh’s problem, in the attempt to establish 
the necessary hypotheses to ensure that a finitely generated algebra is finite-dimensional.

An algebra A is algebraic if for each a G A, anan + an_iH------ F Qo = 0 for
some at G IF and n > 0. Additionally, an algebra is said to satisfy a polynomial identity 
if there exists an f G F{x^ ..., x<i) such that /(ai,..., af) = 0 for every ai,..., G A. 
In this study we will arrive at the conclusion that if A is finitely generated, algebraic 
and satisfies a polynomial identity, then A is finite-dimensional, providing a sufficient 
condition to the Kurosh Problem.
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Chapter 1

Introduction

In this work, an algebra A is a vector space over a base field T7 which has a 

bilinear associative multiplication and is not necessarily commutative nor unital. If every 
finitely generated subalgebra of A is finite-dimensional then A is locally finite. In the 

case that A is finite-dimensional it will naturally occur that A is locally finite, since every 

finitely generated subalgebra is a subspace of A. In the case that A is infinite-dimensional, 

would A be locally finite? The answer to this question is no since the algebra -77[x] of the 

polynomials in x is infinite-dimensional, but is generated as an algebra by {1, a?}.
In 1902, William Burnside posed a group theoretic conjecture on whether a finite 

collection of elements of finite order generates a finite group. Alekander Kurosh, in 1941 
[Ami74, p.2], posed an analogous question in terms of algebras to that of Burnside’s in an 

attempt to add a hypothesis to guarantee the local finiteness of algebras. An algebra A 

is said to be algebraic if for each element a G A, the subalgebra generated by a is finite­
dimensional; that is for some n > 1 and for some ao,...,an G F, anan + an_ian_1 4- 

---- F cvo — 0. The conjecture proposed by Kurosh can then be stated as follows:

Suppose that an algebraic algebra A has a finite number of algebra generators, is A 

locally finite?

Although Kurosh validated this conjecture in the specific case for algebraic al­

gebras each whose elements satisfy a minimal polynomial of degree no greater than three, 

in 1963 E.S. Golod and I.R. Shafarevitch disproved Kurosh’s conjecture by constructing 

an infinite-dimensional finitely generated algebraic algebra proving Kurosh’s general con­

jecture in the negative. In order for A to be finite-dimensional an additional hypothesis
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is needed to limit the length of the words • • • Xin € ..., Xd), the free associative,
non-commutative algebra in the indeterminates zi,..., x([-

For example, if the condition of commutativity is imposed on the algebra A 

then the subalgebra generated by {aj, a%} CA will then be locally finite, since the degree 
of each word a”1 a™1 • • -a^a^ — a^+-+n3 a^1+'"+mi -n subalgebra is bounded by 

the degrees of the polynomials satisfied by ai and a2 respectively. To see this process in 

detail, let aj and a2 be nil with a\ = 0 and = 0, then ai and a2 are algebraic and 
cq1+ +mj _ a™ a™, for some 0 < n < r, 0 < m < s. Thus the typical element

of the subalgebra generated by ai and a2 is spanned by these finitely many a™ a™, and so is 
finite-dimensional. The same iterative process may be used to show in the algebraic, but 

not necessarily nil case, that A is locally finite. Though every commutative nil algebra is 
locally finite, in the absence of commutativity and nil-potency we will need the inclusion 

of a polynomial identity.
Let A be a algebra, then A satisfies a polynomial identity (P.I.) if there exists 

some f(xi,..., Xd) E F(xi,..., Xd) such that /(ai,...,of) = 0 for every ai,..., ad E A. 
Kurosh’s theorem can now be stated as,

Suppose that an algebraic algebra A satisfies a polynomial identity, then A is locally 
finite.

In order to comprehend Kurosh’s throem, we will need to investigate the notion 
of a module over a ring. A module At over a ring R (R-Module) is a ring homomorphism 

R —> End(A4), the ring of all endomorphisms of the abelian group At. For a given R- 
module At, a specific ring homomorphism that will be frequently used in this thesis will 

be the map R —> End(At) which sends at—>Sa where (b)Sa = ba (b G At). Furthermore 
a module is faithful if the ring homomorphism is 1-1, and is irreducible if there does 
not exist any proper submodules of At other than {0}.

For example Z7 is a right (or left) X-module given by the ring homomorphism 

4>: Z —> End(%g) where for r GZ, St is well-defined by (x)Sr = xr (x G Z7). Since the 

only proper subgroup of Z7 is (0), Z7 does not contain any proper submodules, hence 

it is an irreducible Z-module. In addition Z7 is not faithful as a Z-module since any 

two multiples of 7 produce the same image in End(Z7). In particular for 7,14 6 Z, 
(x)S7 = 7x = 0 = 14a; = (x^Sid, thus $ is not 1-1 since Ker($)=7Z. To correct this we 

may consider the ring Z/Ker(4>) = Z/7Z, and by the first isomorphism theorem of rings 
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'P : Z/7Z —> End(%7) is a 1-1 mapping. We have constructed a Z/7Z-module Z7 that 

is faithful and irreducible. Alternatively, the abelian group Ze is neither a faithful nor 

irreducible Z module, since multiples of 6 will produce the same image under and it 

contains the proper subgroups and hence submodules (2) and (3).

In this project we will also need to present the commuting ring A of an 'R- 

module Ad, which is the subring of EndfM) consisting of all endomorphisms of Ad that 

commute with the endomorphisms Sa (a € 7?-). We will then examine Jacobson Den­
sity, which is a generalization of all A-linear endomorphisms on Ad, and the concept of 

primitive rings (rings having a faithful irreducible module). These ideas will be necessary 

to prove Kaplansky’s theorem an important breakthrough in P.I. theory and in the 
development of Kurosh’s theorem; it states that a primitive algebra that satisfies a P.I. 
is finite dimensional over it’s center.

This masters project will be an exposition of the Kurosh Theorem and the 

necessary and sufficient condition that A must be algebraic and satisfy a P.L to be locally 
finite.
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Chapter 2

7Z -Modules & Schur’s Lemma

2.1 7^-modules

In this chapter we will introduce the concept of a module over a ring, which 
will be referred to as an 72-module. Generally an 72-module is a vector space over a ring. 
Formally an 72-module may be described using representation theory (Chapter 1) but it 

will be beneficial to the reader for an axiomatic description.

Definition 2.1. Let Tt be a ring and JA an additive abelian group. Then Ad is a right 
TZ-module if there is a map M. x 7? —>jM, sending (m, r) i—► mr and for which the 

following holds for all m E Ad and r 6 72,

1. (mi + rrfr ~ myr + 7712^

2. m(ri + rf) = mn 4-

3. (mri)r2 = 77i(rir2).

Though the rings that we consider do not necessarily have unity, an 72- module 

JA is unital if there exists 1 G 72 such that m(l) = m for every m € Ad. Additionally we 

could define a left 72-module by allowing the ring elements to act on the group elements 

on the left, but throughout this study an 72-module will simply be a right 72-module.

Example 2.2. 6Z is a right Z module, 6Z x Z —► 6Z with the action defined as 
(x 4- 6Z)y = xy 4- 6Z (x, y € Z). Since 6Z is a two-sided ideal of Z, the properties of 6Z 
as a Z-module are satisfied.
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In the context of a vector space V, a subspace of V is a subset which is a vector 

space itself under the operations of V. It will be natural for us to define an analogous 

concept in terms of modules.

Definition 2.3. A submodule J\f of At is an abelian subgroup of At which is closed under 

scalar multiplication: if x eN, r €72 then xr G AC

Example 2.4. 7? itself is a right 72-module with the action defined as usual ring multi­
plication. In addition any right ideal ideal U of 72 is a submodule of 72.

We will often denote the action of 72 on At by multiplication. That is At72 = 

{mr | m € At, r 6 72}. This will serve to remove any confusion that might arise by 

implementing function notation.

Proposition 2.5. Let A4 be an IZ-module then for a fixed m G At, rriTZ is a submodule 

ofM.

Proof. To verify this we will first show that m72 is a subgroup of At. A4 is an 72-module, 
hence m72 C At. For mr±, mr2 G m72 we have mry — mr2 = m(r± — r2) € m72. By the 

standard subgroup test m72 is a subgroup of At. To see that it preserves multiplication 

by ring elements, it follows from the fact that At is an 72-modulc that for r± G 72, 
(mri)r2 = m(rir2) G m72. □

Example 2.6. Let A/ be a submodule of A4. The quotient module JA/J\f is an 72-module 

by defining the action (A 4- mfr = A 4- mr for every r G 72, m 6 At.

Proposition 2.7. If U is an ideal of 72 then the submodules of At as an Lt-module 
correspond to the submodules of Ad as a 72/ U-module.

We will defer the reader to [Jac09,p.3] for the proof of this proposition.

Definition 2.8. If At and Af are 72-modules then the mapping : A4 —Jf is a module 

homomorphism if and only if for mi, m2 G At, r G 72

1. (mi 4- m2)1F = (mi)^ 4- (m2)1F

2. (mirf# ~

Definition 2.9. A module At is irreducible if the action on A4 by 72 is non-trivial 
(At72 / {0}) and if the only submodules of A4 are {0} and At.
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Definition 2.10. An ideal I of 7% is maximal if for every ideal S of R such that I C S C 

7%, then S — R.

The next result provides a family of examples of irreducible modules.

Proposition 2.11. Let I be a maximal ideal ofR then R/I is an irreducible R-module.

Proof. Let I be a maximal right ideal of R. Since R/I is an 7^-module, it suffices to show 

that R/I contains no non-zero proper submodules. If A is a non-zero proper submodule 

of R/I, then the preimage of J\f under the map v: R -+R /I is a right ideal of R. 

Furthermore this right ideal is not equal to R and properly contains I. A contradiction, 

since I is maximal. Hence A = {0}. □

Example 2.12. For any prime p, Z/pZ is an irreducible Z-module.

Example 2.13. For a field J7, let q(x) be an irreducible polynomial in ^[rc]. Define the 

principle ideal of Afx] generated by q(x) to be = {f(x)q(x) | f(x) G T7^]}, then

is an irreducible C[rr]-module.

Proposition 2.14. Let JA be an irreducible R-module, then for every non-zero m G At, 

mR = /A.

Proof. Let m/0 be an element of At. Then mR and A = {a; G At ] xR = 0} are both 

submodules of At. From irreducibility, both submodules are either 0 or At. We see that 
A = {0}, otherwise J\fR = {0} = JAR which implies that the action is trivial. As a 
result A = {0} and since m/ 0, we have that mR 0 {0}. We see that mR = JA. □

This result will be often referred to in Chapter 4.

For an R-module At if JAr = 0, it does not necessarily imply that r = 0, In 

Example 2.2 for 6 G 2 and for every x 6 Z we have (x + 6Z)6 = z6 + 6Z = 0 4- 6Z. In 

Example 2.13, any polynomials g, h € P[x} with g(x) = h(x)q(x)y g(x) will be mapped to 

0 under the action on T7]#]/^^)) by ^[a;]. We will look to classify these ring elements 

that annihilate the module by the given action.

Definition 2.15. Ann(JA) = {r 6 R | JAr = {0}}. Furthermore, a module At is faithful 
if Ann(JA) = {0}.

We will leave it to the reader to verify that Ann(JA) is a two-sided ideal of R.
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Proposition 2.16. Ad is a faithful 7£/Ann(Ad)-module.

Proof. Consider 0 : Ad x R/Ann(Ad) —> Ad, (m,r 4- Ann(Ad)) •—> m(r + Ann(Ad)) = 

mr + Ann(A4). With the presence of cosets we must first show that this mapping is well- 
defined. To see this suppose (m, r +Ann(Ad)) = (m, r'A Ann(Ad)). Sincer 4-Ann(Ad) = 

r'AAnn(Ad), we haver—r' G AnnfAd). In particular, mfr—P)AAnn(A4) = 0+Ann(Ad). 
From this we obtain the desired result mr 4- Ann(Ad) = mr' + Ann(Ad). One can verify 

that the defined action preserves the necessary properties of an 7£/Ann(Ad)-module.

We will proceed to show that $ is faithful by proving that only the zero element 

in 7^/Ann(Ad) annihilates Ad. Let mfr 4- Ann(Ad)) = 0 for every m G Ad. From the 
definition of Ann(Ad), we see that mr = 0 for every m G Ad. This places r G Ann(Ad). 

We have the showed that r + Ann(Ad) = 0 4- Ann (Ad). So Ad is a faithful 7?./Ann(Ad)- 
module. □

2.2 Module Representation

Proposition 2.17. 1) Let Ad be an R-module then there exists a ring homomorphism 

R —> End(Ad), the ring of all endomorphisms of Ad. 2) Let Ad be an abelian group and 

let $ 'R —> End(Ad) be a ring homomorphism. Then Ad is an R-module.

Proof. (1) For every r G R let Sr : Ad —> Ad with the evaluation (m)5r = mr. Since Ad 
is an AL-module we see that for mi, m2 G Ad,

(mi 4- mf)Sr = (mi 4- m2)r

= mir 4- m2r

= (mi)Sr 4- (m2)5r,

so Sr is an endomorphism of the abelian group Ad. End(Ad) is a ring with respect to the 

binary operations of addition and multiplication given by: for 0, 6 End(Ad) we define

addition as (m)(</>4-V>) = (m)^4- (m)^, and multiplication as (m)(^</>) = [(m)^]<£.
Let $ : R —> End(Ad) with (r)4? = Sr. Then for r, s G R and m G Ad, 

(m)Sr+s = (m)Sr 4- (m)5s which results in (r 4- s)$ = (r)$ 4- (s)3>. In addition we see 

that (m)Srs = (m)(rs) = (mr)s = [(m)Sr]Ss. Thus (rs)£ = (r)$(s)^. We see that $ is 
a homomorphism.
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(2) Define the map JA x 7% —> JA with (m, r) i-)> (m)$r. Where the evaluation 

at r of the endomorphism, (r)<E> is 4>r. By applying the fact that $r is an endomorphism 

of JA we see that the axioms of JA as a 7^-module are satisfied.

1. (mi + m2)$r = (wK’r + (m2)$r

2. (m)0r+s = (m)$r 4- (m)£s

3. (m)£rs = [(m)#r]$s.

Thus the ring homomorphism $ defines an 7%-module. □

What arises from this proposition is an alternate way to define an 7£-module.
In addition to the axiomatic approach, we may consider an 7%-inodule JA to be a rep­
resentation of 7Z. That is there exists a ring homomorphism from 7% —> End(JA). This 
approach will be used primarily in Chapter 3, in an attempt to describe special char­
acteristics of 7£-modules. The definitions defined earlier in this chapter may be viewed 

in the context of Proposition 2.17. For instance, a faithful module may be viewed as a 
injective homomorpism 7Z —> End(JA).

In addition, a consequence that arises from Proposition 2.17 is that every r € 7% 

may be identified with a specific endomorphism of JA, Sr- In the proceeding definition 
we will look to characterize the endomorphisms of JA that commute with the particular 
endomorphisms Sr.

Definition 2.18. C(JA )={<+> G End(JA) | </>Sr = Sr(p for every r G 7?}

Proposition 2.19. C(JA) is the ring of all module endomorphisms of JA.

Proof Since the identity endomorphism lm: m i-> m is in C'(AI) we see it is a non­

empty subset of End(JA). For G C(JA), we have — -0) = — if) =

(mr)</) — = (mSr)$ — (mSr)i/> = (m<^)Sr — (mip)Sr = (m)(</> — if)Sr, which places

G To see that G C(JA) observe that (m)5r(0^) — (7n)(^Sr^>) =
(m)(<A?/))Sr. It may be concluded that CfM) is a subring of End(JA).

Let T be the collection of all module endomorphisms of JA. For an arbitrary 
$ G C(JA), by definition (mi 4- m2)$ = 4- (m2)C> and (mr)$ = (mSr)$ =

(m$)Sr = (m#)r. As a result C(JA) C T. Conversely, any module endomorphism of T 

must preserve the scalars of 71, hence must commute with every Sr so T C C(JA). With 

both inclusions proved we see that C(JA) = T. □
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2.3 Schur’s Lemma

Definition 2.20. A division ring is a ring in which every non-zero element has a multi­
plicative inverse.

Theorem 2.21. (Schur’s Lemma) Let Nt be an irreducible TZ-module, then C(Nf) is a 

division ring.

Proof. For C(jVt) to be a division ring we must show that any non-zero element of C(Nt) 

is invertible. That is if 0 0 0 and G C(M): there exists a </»-1 such that = 

= lm. Note that this can be reduced to proving that if G C(Nt) that there is 
a G End(Nt). This is because if Srf = </)Sr for every r G R, then ^_1(Sr0)0_1 = 
^>-1(^>»Sr)^_1, which results in (j^Sr = Srd>~^ placing </>-1 G C'(jM).

Let 0 G C(A't) and denote (A4)<^ = N. For every r G 7Z we see that 
Nr — (N)Sr = (Nt</>)Sr = (A4Sr)0 C (A4)^» C N. Thus N is closed under multiplication 

of elements of the ring 1Z. From this we see that N is a submodule of Nt. Since Nt 

is irreducible, N is either Nt or {0}. This implies that (Nl)</> = Nt or (A1)</> = {0}. 

Since / 0 the latter case cannot occur, thus (A4)0 = Nt. We see that 0 is surjective. 

From definition the kernel of this mapping, Ker(0) is a submodule of Nt. In addition it 
cannot be all of Nt thus, Ker(0)={O}. Note that <f> is injective, since if mi, m2 G Nt with 
(mi)0 = (m2)^», then (mi — — 0 which implies that mi — m2 € Ker(</>) = {0}. Thus
mi = m2. We have proven that 0 is a bijection. Thus there is an inverse which is a 
endomorphism of Nt. From the previous remarks, we have proven that <£-1 G C(A4). □
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Chapter 3

The Density Theorem

3.1 The Density Theorem

Definition 3.1. A ring is primitive if and only if it has a faithful irreducible module.

From Schur’s Lemma, for an irreducible module Ad, it was proven that the 

commuting ring C(Ad) is a division ring. With this result, we may view Ad as a right 

vector space over <7(Ad). In fact denoting C'(Ad) = A, then for v € Ad and a E A, va 

is the evaluation of v by the module homomorphism a. Since Ad is an 72.-module, vector 
addition is identical to addition of group elements of Ad. The scalars of Ad are elements 
of .End(Ad), so both distributive laws are satisfied and by the properties of composition 

of functions: v(a + fl) — va 4- vfl, v(afl) = (ya)fl. Since A is a division ring the scalars 
do not necessarily commute. Aside from this, most properties of a vector space over a 

field (i.e linear independence) are preserved.

Definition 3.2. 72. is a dense ring of linear transformations on Ad over A, if for any 

k linear independent elements (over A) 6 JA (k > 1) and for any elements

mi,..., mj, G Ad there is an r G 72. such that -t/r = m; for i = 1,2,.... ,k.

A dense ring of linear transformations is also said to act densely on Ad.

Lemma 3.3. Let V be a finite-dimensional subspace of AA over A. Suppose m E Ad and 

then there exists an r E 72 such that Vr = {0} and mr 7^ 0.

Proof. Suppose that dim(y)=& (k > 0). We will proceed by induction on the dimension 

of the subspace V over A.
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If dim(P)=O, we have that V = {0}. Since At is irreducible from Proposition 2.14, if 
mfO there exists a r G 72 such that mr / 0. Naturally Pr = {0} and the base case is 
proved.

Suppose that the hypothesis is valid for every subspace of W of At over A with 

dim(W) < k — 1. If we let ..., Vfc be a basis of V then each element in V may be written 
35 52?=i viai = 52i=2 Vfai+viai (a$ € A). Thus V may be decomposed into P = W+vA 

(y = vi W). Define A(hV) = {a; G 72 [ Wx = 0). Observe W is a finite-dimensional 

subspace with dim(>V)= dim(P) — 1 = k — 1. By induction, if m G At and m W then 
there exists x G 72 with Wx = 0 and mx f 0. In short, for this particular m there exists 
x G A(W) such that mx f 0. The induction hypothesis may be stated that if m G At 

and mA(yV) = 0 then m G W.

We see immediately that A(W) is right ideal of 72. In fact from the converse of 

the above statement since v W, vA(W) / {0}. We see that uA(W) is a submodule of 
At that is a non-zero. By irreducibility we have that = At.

For P = W + vA we will choose a m! G At with m' $ P. By contradiction, 

suppose that for every r G 72, if Pr = {0} then m'r = 0. We will show that this is not 
possible thus proving the theorem. Since = At, for every x G At there is an

a G A(W) such that va = x. Consider the following map fl : At —>At , x >—> m'a, where 
x = va. It follows immediately that fl is well-defined and is an endomorphism of At. In 
addition for xr = (ya)r = v(ar) we have,

(xr)fl = m'(ar) ~ (m!a)r = (x)flr.

Hence /? is a module homomorphism of Al which places it in A. For a G

m'a = (x) (3 = (va)fl = (v)fla.

From this we have that m'a = (v)fla or equivalently,

(m' — (v)fl)a = 0 for every a G A(W).

Since (m' — (v)fl)A(W) = {0}, by the induction hypothesis m' — (v)fl G W. But this 

leads us to conclude that m' G W + (v)fl C W + vA = P. This is a contradiction to 

the hypothesis that m‘ £ P. Thus for m G At,m P there exists an r G 72 such that 

Pr = {0} and mr / 0. □
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Theorem 3.4. (Density Theorem). Let R be a primitive ring with a faithful irreducible 

module Nt, then R is dense on Nt.

Proof. Let Vi,... ,vn G Nt be linearly independent over A, and let wi,..., wn G Nt. 

Denote by Vi the linear span of Vj for j / i. Thus Vi = span(w2,V3,... ,vn). From 

Lemma 3.3, since vi G Nt and vi £ Vi there exists a n € R with Viri = {0} and 
vin f 0. From Proposition 2.14 we have that (v\r\)R — Nt.

From the above there exists a si in R such that Wi = (vjri)si = v-Ji (tj 6 R). 

In addition Viti = Vi(riSi) = (Viri)si = {0}. This process may be conducted iteratively 

for each V2, • • •, Vn. As a result for every Vi there is a t{ such that vJi — W{ and ¥& = {0}. 

Consider t = ti +t2 + • •1 + tn, then from the fact that Vj G Vi for all j f i we have,

Vit = Vi(ti +12 H------ 1- tn) = vjj + vJi = Wi
3#

exhibiting that R acts densely on At □

Theorem 3.5. Let R be a primitive ring. Then for some division ring A either,

1. R = An, the ring of all nx n matrices with entries in A.

2. Given any integer k there exists a subring Ik of R which maps homomorphically 

onto A/t-

Proof. R is primitive, thus by Theorem 3.4 it is dense on a vector space V over some 
division ring A. We will consider two cases:

Suppose V is finite-dimensional over A with dim^V) = n. It will be proven 

that R is isomorphic to the ring of all n x n matrices over A. Recall that we may define a 
ring homomorphism R —> End&,(y), r *—> ST where for v G V, r G R we have (y)Sr = vr. 

Note that End&fV) = the ring of all A-linear maps from V —> V. Since
every A linear map (with respect to a given basis) is uniquely determined by a n x n 

matrix with entries in A, we see that Hom^fV, V) = An. Our argument now reduces to 

proving R = End^(V). Let {ei,..., en} be a basis of V over A. Then for f G End^(V), 

(e-i)f = wi (wi G V). But from density there exists an r such that

(ei)Sr ~ eir = Wi

Since Sr and f agree on the generators of V, they are equal. Hence r w Sr = /, which 

proves surjectivity.
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In addition R acts faithfully in V. As a result for R —> Endpjy) is an injective 

mapping. From above we have proved that R = Endyy'), thus it is isomorphic to An.

Suppose V is not finite-dimensional over A, and let k be a positive integer. We 

will construct subring Ik = Let Vi,..., v*, ... G V be a infinite linear independent 
set. Consider the finite-dimensional subspace Q = viA-j-t^A-l------ Fv^A. In addition let

= {r G R | Qr C Q}. It then follows directly that Ik is a subring of R. From density 
we may assert that > EndffQ'), r h-> Sr is a surjective ring homomorphism. Thus Ik 

maps homomorphically onto A&. □

It will be beneficial for the reader to note that the linear independence of 

vi,... ,vn G V is a necessary condition for the Density Theorem. Suppose v\,... ,vn 

are linearly dependent and take wi,..., wn to be a linearly independent collection in V. 

From Theorem 3.4 there is a t G R such that vzt, = wt i = 1,2,..., n. Suppose that from 
the assumption of dependence, vi can be written as

vi = v2ai2 4------ F vnan (<*n  € A)

V]t = (v2O'2)£H------ F

wi = (v2t)a2 4------ F (vnt)ctn

= W20t2-\------ Fwnain.

This would imply that wi,..., wn is a collection of linearly dependent elements over A 
which is a contradiction. Thus the independence of vi,..., vn is. a necessary condition for 
the Density Theorem.
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Chapter 4

The Jacobson Radical

4.1 The Jacobson Radical

Definition 4.1. Let R be a ring. The radical of R, F(R) is the collection of all ring 
elements r such that Ntr = {0} for all irreducible 7?-modules Nt. If Nt has no irreducible 

modules then J(R) = R.

It directly follows from Definition 4.1 that J (R) is a ideal of R, and is equivalent 

to F(R) = fj Ann(Nt) where the intersection runs across all irreducible 7?-modulcs Nt. 
We will defer to [Her05, p.13], in which it is proven that J(R) when considering irre­

ducible 7^-modules is the same when considering irreducible left 7^-modules. For a fixed 
R, consider Q to be the non-empty collection of all irreducible 7^-modules. If a G <J(R) 
then for every Nt C Q, (Nt)Sa = Nta = {0}. This means that for every Nt C Q the 
image of a under the representation determined by Nt is the zero endomorphism.

4.2 Characterization of the Jacobson Radical

Definition 4.2. A right ideal F of R is called regular if there exists a b G R such that 
for every x G R, x — bx G F.

Example 4.3. For a commutative ring R containing unity, every ideal is regular.

Example 4.4. Let 2Z be the non-unital ring generated by the even integers. Then the



15

ideal in 2Z, (6) = (67 | j G 2Z} is regular. If b = 4 then for x G 2Z,

x — 4x = 2q — 4(2q) q G Z

= — Gq G (6).

Example 4.5. In the ring referenced in Example 4.4, the ideal (4) = {4j | j G 2Z} is not 
regular. That is there does not exist a b G 2Z such that x — bx G (4) for every x G 2Z. 

To see this, take 4 G 2Z then,

4 — 5(4) = 4 — (2r)4 r G Z

= 4 —8r

= 4(1 -2r)£ (4).

Proposition 4.6. Let JA be an irreducible R-module, then JA = R/F for some maximal 
regular right ideal F of R.

Proof. Let Q = {q G JA | qR = {0}}. We see that Q is a submodule of JA. Since JA is 

irreducible, Q, = {0} or Q = JA. If Q = JA, then Q72 = {0} = JAR; a contradiction on 
the irreducibility of JA. This forces Q = {0}. Since JAR. / {0} there exists a noil-zero 

element m such that mR / {0}. From Proposition 2.14 we may conclude that mR = JA.
Consider the mapping ip: R ~^>JA by (r)ip = mr. We claim that ip is a surjective 

module homomorphism from R onto JA. For ri,r2 G 72. we have that ,

(ri + r2)^ = m(ri + r2) = mri + mr^ = (ri)V’ + (^tp, and

(ria)ip = m(ria) = (mri)a = (rifipa.

This proves that ip is a module homomorphism. To show that ip is surjective, we recall 

that the direct image (R)ip = mR = JA. Denote the kernel of ip as Ker(^) = F, then by 

the standard isomorphism theorem,

R/Ker(ip) (F?)ip which is equivalent to,

R/F JA.
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To see that F is maximal, suppose there is a right ideal I of 7% such that 
F c I Q7Z. The image of I under ip is a submodule of JA. By irreducibility of JA, 
is equal to {0} or JA. If = {0}, then I C Ker(if) — F which results in I = F, which 

is a contradiction. If (1)^ = JA then = (Jtyf Let x G 7Z, then there exists a i G I 
such that (x)ip = (i)-if or equivalently, (x — i)ip = 0. This places x — i G Kerib — F. Thus 

(x — ?) + « = rcGl and as a result I = 71. Since the only ideal that properly contains F 

is 7%, we may conclude that F is maximal.

We will now prove the existence of a element b G 7% such that x — bx G 7? 

for every x G 71. With mF, = JA there exists a b 6 7% such that mb = m. For every 

x € 71 we have mx — (mb)x = 0. Since JA is an 7^-module, m(x — bx) =0 which places 
x — bx € F. □

Proposition 4.7. Let F be a proper regular right ideal of 71, then it can be embedded in 
a maximal right ideal that is regular.

Proof. Since F is regular there exists a b G 7t such that x — bx G F for every x G 7?. If 
b € F then as a right ideal bx G F, which implies that (x — bx) + bx = x G F thus F = 71. 
This is a contradiction, and we have b £ F.

Let W be a collection of proper ideals Ii that contain F. One can easily verify 
that W is a po-set with respect to the relation of inclusion. Denote C = {/$ | It C W} to 

be a totally ordered subset of W. Note that (Jc 7$ serves as an upper bound for C. This 
ideal is regular since x — bx € F G(JC It is important to note that b £ Uc Ij, otherwise 
this would lead to |JC It = 7Z which is a contradiction. Since every totally ordered set of 
regular ideals that contain F has an upper bound, Zorn’s Lemma may be applied. There 
then exists a maximal regular ideal of 7t which clearly contains F. □

It is understood that a maximal regular right ideal of a ring 7?, is a maximal right ideal 
of 7C which is regular.

Definition 4.8. Let I be an ideal of 7%, then (I: 7Z) = {x C7Z\ TZx C I}.

Proposition 4.9. J(7Z) = fj(-F: 7Z) where the intersection runs across all maximal 
regular right ideals of 71.

Proof. By definition, J\7t) = fjAnn(AI) where the intersection runs across all irre­

ducible 7%-modules. It is then required for us to show that Ann(JA) = (F: 7Z) for some 
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maximal regular right ideal F. From Proposition 4.6 every irreducible 7^-module is iso­
morphic to R/F for some maximal regular right ideal F. Let us denote Nt = R/F. If 

x G Ann(Nt) then Ntx = (r + F)x — F for every r G R. Thus rx G F for every r G R 

which can be written as Rx C F. We see that x G (F: R), hence Ann(Nt) C (F: R).

To show the other inclusion let x G (F: Rfi then Rx C F. This implies that 

rx G F for every r G R which is equivalent to (r 4- F)x = F for every r G R. This places 

x G Ann(Nt). We see that for every irreducible 7£-module, Nt that Ann(Nt) = (F: R) 

for a maximal regular right ideal. The Jacobson radical of a ring R is then J(R) = 

(}Ann(Nt) = Q(F: R). □

Proposition 4.10. (T(R) is the intersection of the maximal regular right ideals ofR.

Proof Let F be a maximal regular right ideal of R and let b G R such that x-bxtFfor 
every x GR. Then for any r G (F: R) we have (r — br) 4- br = r G F thus (F: R) C F, 
for every maximal regular right ideal F of R. Intersecting over all maximal regular right 

ideals gives us Q(F: R) C p|F. From Proposition 4.9 this results in F(R) C QF.

For the other inclusion let x G fj F. We will first construct a regular right ideal 

R = {xu 4- ti|u G R} (x — —6) that is equal to R. If R! f R then by Proposition 

4.7 R C Ff for some proper maximal regular right ideal F' of R. Since x G Q F we 
see that x G Fz. As a right ideal of R, xu G Fl. Since R C Ff, xu 4- u G Ff thus 
(xu 4- u) — xu = u G F' for every u G R, implying that Fl = R. The proper ideal R 
cannot be embedded in a maximal regular right ideal. A contraction, thus R1 = R. From 

this equality, there exists a b1 G R such that xb’ 4- V = —x or x 4- xbf 4- bf = 0.

If QF C then <J(R) = fj an<t we are done. Suppose that p| F J(Rf 
then there exists an irreducible 7£-module Nt such that A4(p|F) 0 {0}. There then 

is a non-zero m G Nt with m(QF) 0 {0}. It follows from Proposition 2.14 that the 

submodule, m(f)F) = Nt. From this there exists a t G ("]F such that mt = — m. It was 

established earlier that for t G QF that {tu-f- u\u G R} = R, which implies tftv+v = 0. 

With these two relations we have 0 = —m(0) = — m(t 4- tv 4- v) — — [mt 4- m(tv) 4- mv] = 

—(—m — mv + mv) = m, which is a contradiction under the assumption that m f 0. 
Thus the hypothesis -M(QF) {0} is invalid. As a result pF annihilates all irreducible 

7^-modules. From this we may conclude that QF C J(R). □

Definition 4.11. An element x G R is right-quasi-regular if there exists a b G R such 
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that x + xb + b = 0. Furthermore, a right ideal, I is a right-quasi-regular ideal if every 
element in I is right-quasi-regular.

Corollary 4.12. J\R) is a right-quasi-regular ideal ofR.

Corollary 4.13. ff(R) contains all right-quasi-regular ideals ofR.

Proposition 4.14. Let R be commutative ring with unity. If the non units ofR form 

an ideal X} then X(R) = Z.

Proof. First we will show that T C Suppose x G X. If 1 + x is not a unit then

we would have (1 4- a;) — re = 1 G T. This is a contradiction that every element of X is a 

non-unit. From this we see that 1 4- x is a unit and there exists b G R such that

(I 4-^)6 = —1

b + xb — —1

—bx — x(bx) = x

x 4- x(bx) 4- bx = 0.

Which proves that X is right-quasi-regular ideal. From Corollary 4.13, X C ff(R). Con­
versely if ic G ff(R) and if x is a unit then —1 G <7(7C). Since J(R) is a right-quasi-regular 
ideal for some b we have

-14- (-1)6 4-6 = 0

—1 — 6 4~ 6 = 0

1 = 0

which is a contradiction. We see that x is not a unit thus J(R) = X. □

From this proposition we have the following example of the Jacobson radical of a ring.

Example 4.15. R[[a:]] is the ring of the formal power series in one indeterminant with 

coefficients in R. The non-units of R[[z]] form an ideal and its elements are the poly­
nomials of R[[ic]] with zero constant term (easy check). We see that c7(R[[x]]) = (x) — 

WW I f W £
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4.3 Algebras

Definition 4.16. Let A be a ring and let F be a field. Then A is an algebra over F if,

1. A is an F-module with the action written as (x, a) i—► ax.

2. For every a G F and x,y G A,

a(xy) = (xa)y = x(ay).

Definition 4.17. A right ideal T of an algebra A over a field F is a linear subspace 

which for every a G A, x ET then xa G Z.

Definition 4.18. A set 5 is a subalgebra of A over F if 5 is both a subring and a 

submodule of A.

Proposition 4.19. Let A be a algebra over a field F then every maximal regular right 

ideal of A as a ring is a maximal regular right ideal of A as a algebra.

Proof. Suppose F is a maximal regular right ideal in A as a ring. By definition there is 

a b G A with x — bx G F for every x G A. Note that for a G F, aF is a right ideal of A.

If aF 0 F1, then aF + F is a right ideal of A which properly contains F. From 
the maximality of F we have aF + F = A. The element b G A may be expressed as

b = xi + ax2 (xi,X2^F)

b2 = (x\ + ax2)b

= xfij + X2(abf

From this we see that b2 6 F. From the definition of F being a regular right ideal, 

b — b2 G F. This results in (b — b2) + b2 = b G F. With this element in F it follows 

that F = A, which is a contradiction of the maximality of F. Therefore aF C F for 

every a G F. Thus F is a subspace of A over F and is a regular right ideal of A as an 
algebra. Since any ideal that contains F is an ideal of A as a ring, we see that F must 

be a maximal regular right ideal of A as an algebra.
Suppose F is a maximal regular right ideal of A as an algebra. It immediately 

follows that F is a regular right ideal of A as a ring. By Proposition 4.7, F may be 
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embedded in a maximal regular right ideal F( From above, F' is a maximal regular right 

ideal of A as a algebra. Since Ff is maximal F = F'. Thus F is a maximal regular right

□

Corollary 4.20. Let A be an algebra, then J(A) = fjF where the intersection runs 

across all maximal regular right ideals of A as an algebra.

Definition 4.21. An algebra A is called algebraic if for every a 6 A the subalgebra 

generated by a is finite-dimensional. That is there exists a n (dependent on a) and 

ai G F such that an + an~ian~1 + • • • + cto — 0. The least such n is the degree of a. 
Furthermore an algebraic algebra is bounded of degree n if every a G A has degree n.

Definition 4.22. An element a is nilpotent if there exists an integer n > 0 such that 
an = 0. An ideal X is nil if each of its elements is nilpotent.

Proposition 4.23. If A be an algebraic algebra, then J(.4) is nil.

Proof. Since J (A) is a subset of X, every element of J (A) is algebraic. Let a G y(-4), 

then let U be the subalgebra generated by a. This finite-dimensional subalgebra U consists 

of the elements (a£ £ F). In addition U D cdA, since for au G all, au =

a aia* = <*£-1 € U. In general we have a descending chain condition where
for k = 0,1,... we have akll D ak+1U. Since U is finite dimensional akU = ak+ill for 
some k. As a result G akU = ak+1U so there exists a b G U such that afc+1 = ak+1b 
or equivalently, — a/c+15 = 0. Since b G <7(A), there exists a right-quasi inverse b' 

such that b + bf — bbf = 0. We can now see that a is nilpotent since,

afc+i = ak+i _ak+\b + b' _bb')

= ak+1 - ak+1 b - aM b’ + ak+1bb'

= -ak+1b'+ ak+1bb' 

0.

Therefore J (A) is nil. □
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4.4 Properties of Rings with no Nilpotent Elements

Definition 4.24. An element u of an algebra A is idempotent if u2 = u.

Lemma 4.25. Suppose R is a ring with no nilpotent elements, then all idempotent ele­

ments ofR lie in its center, Z(R).

Proof. Let u be a idempotent element of 7?.Thcn for every r G R we have,

(ur — uru)2 = urur — ururu — uru2r 4- uru2ru = 0.

Similarly,
(ru — uru)2 = 0.

Since R contains no nilpotent elements, ur — uru = O.ru — uru = 0 . This leaves us with 

ur — uru — ru, hence ur = ru. We have proven that u G Z(R). □

Proposition 4.26. Let A be an algebraic algebra that contains no nilpotent elements. 
Let I be an ideal and F QI a finite subset. Then there exists an idempotent of A that 

acts as unity on F.

Proof. Suppose that F — {ai,..., a&}. Let a± f 0 be a non-invertible element in F. As 
an element of A it satisfies a polynomial relation

aP + aiaf 1 + • • • -j- ana™ n = 0, (cij G F)

where m — n > 0. Note that,

01(0” 4- ctia^ 1 4~ • • • 4" — (df 4- 1 4" ■ • * 4- an)al‘

From this fact we see that

[ai(a? + «1ar1 + -.- + an)]m-n

= (ay + aia”-1 + • • ■ + ana'?-n)(a'l + aja?’1 + • • • + a„)m"n-1

= 0.

It follows from the hypothesis that F contains no nilpotent elements thus, l 4-

---- F otn) — 0. Next, we will construct a specific idempotent ui from this polynomial with 
the property that aiUi = ai. We have 0 = a”+14-dianH----- |-a:nai. Rewriting this relation

O.ru
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we have — cxnai = a™4*1 + ctian 4------ |- an_^_^af j > 2. Factoring a2 on the right leaves

us with, ai = a2p(ai), which we will denote as a\ = aiUi. Where ui = aip(af).

Observe that u2 = a2p2(ai) = aip(ai) = ui. Since cq is non-invertible nor 0, 

0 0,1. In general for a given non-invertible, non-zero element ai G F a specific idem- 
potent element Ui exists with a2 = aiu^ Note that the idempotent Ui G F is constructed 

from the polynomial that ai satisfies. Induction will be used to show that there is an 

idempotent u such that aiU = ai for all a$ € F.

From the previous paragraph there exists a u± such that a^ui = cq. Next, 

suppose that 02'111 = a2, azUi = a$,..., a^-iui = a^-i. If a^ui = a^, we may take u = ui 

and we are done. If a^ui / tq, from Lemma 4.25 all idempotent elements of I lie in 

3(T). Then by using the idempotent we have (cq — = a^ — a^ui. From
this we see that, a/qq — a^uiUk = a^ — a^ui, and we may rearrange this relation to get 

a/c = a^u/c — a/gUiUk 4~ OfcUi. Factoring an an, we have,

nk — 4” uf).

Let u = Uk~ uiUk 4*  Ui- It can be easily verified that u2 = u. Furthermore for 

i = 1,2, — 1, we see that a^u = afiu^ — UiUk 4- iq) = aiU^ — aiUjUk 4- UfUi = <q.

Thus an idempotent u G F has been constructed such that for every a G F, au — a. □

4.5 Free Algebra

Definition 4.27. A set M is a monoid if there exists a binary operation (a, b) a • b 
called multiplication which satisfies the following for every a, b, c G M.

1. (a • b) • c = a • (b ' c)

2. There exists 1 G M with 1 • a = a • 1 = a.

Consider the set Af = {aq,..., zn}, then the free monoid generated by X is a 

monoid whose elements consists of all finite sequences of X. That is the set consisting of 

1 and elements which are written as,

These elements are called monomials. Multiplication is defined as
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In addition, xtlxt2 ■ • • xtj = • • • xqk if and only if tj = qi, t2 = q%,... ,tj = qk.

Let F be a field, then , xn) is the free algebra generated by the non­

commuting variables xi,..., xn. This algebra is spanned by all sums of products of the 

indeterminates a?i,...,a;n. From the previous explanation of the free monoid on M, 

elements of , xn) may be expressed as a finite sum

f = Z S Z+'

The degree of each monomial occurring in /, x^^x^2^ • • -x^m^ is the sum <r(ii) + 

a(?2) 4---- The degree of f is the greatest degree of all of the monomials occurring

in f. In most cases f & F(xi,..., xn) will be expressed as f(xi,..., xn).

Definition 4.28. f G F(xi,..., is multilinear if for k = 1,2,... ,n and for every 

ft G F
fci/i kth

f (3^1, *̂2;  •••(#4*3?,...,  Xji) = f (aq, xq, ... , x, ..., xn) 4- f (®ij ^2) ... , x , ..., xn) 

kth kth
2. f(x1,X2,.. .'/ax',... ,xn) = af(x!,X2,.. f/x/\. .,xn)

As a consequence f is of the form, f = 52 a(ii,i2,...,in)xiixi2xi3 ' ”xin (Q e T7), where the 
monomials ... xZn in the summation range over some permutations of a?i, X2,..., xn.

Example 4.29. In F{xi,... ,xn), f(xi, X2, X3) = axiX2X3 —/8X2X1X3 (a,/3 G T7) is a 
multi-linear polynomial. While g(xi, X2, £3) = 7£2#2:r3 — (7,6 G F) is not.
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Chapter 5

Kaplansky’s Theorem

5.1 Polynomial Identities

Definition 5.1. Let A be a algebra. Then A satisfies a polynomial identity (P.I.) if 
there exists some f(xi,..., xf) G F{xi,.. xf), such that f(ai,..., af) = 0 for every 

Qi- • ■ • iad G A.

Example 5.2. If A is a commutative algebra then it satisfies the polynomial identity 

f(xi,X2) = X1X2-X2Xi.

Example 5.3. Let F2 be the algebra of 2x2 matrices with entries in field F. Then F2 
satisfies the polynomial identity /(a;, y, z) = z(xy — yx)2 — (xy — yx)2z.

Example 5.4. Let F be field such that = 0 for every x G IF. Then ^(iri, x2 | a?iiC2 — 

^2^1 — 1) satisfies the polynomial identity f(x,y) = (xy + yx)2 + 2xyxy + xy + 1. This 
is a variation of the Weyl algebra algebra where the characteristic of F is 3.

Lemma 5.5. Let / 7^ 0 be in F{xi,..., xn) then there is a positive integer m such that 

Fm does not satisfy f.

Proof. Let f be of degree t. Consider Q to be the ideal of . ,xn) generated

by the monomials in xi,...,xn of degree greater than t. As a result the algebra, 

A = F{xi,..., xn)/Q is spanned by the representatives that are contained in subspace 
consisting of all monomials of degree no greater than t. Since A is finite-dimensional over 

F it may be represented as a subalgebra of Fm (m = Dim^A), where F = EndjAAl). Let
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f be the image of / under the map F(xi,., xn) F{x-l, ... ,xn)/Q. Since f is of degree 

t it is not contained in Q, thus f is not zero. Since 1 € A the representation of of f in 

Frn not zero as well. There then exists matrices a±,... ,an G Fm with f(ai, . ■., an) f 0. 

This establishes the lemma. □

Proposition 5.6. Let A be an algebra that satisfies a polynomial identity f of degree d. 

Then A also satisfies a multilinear identity of degree < d.

Proof. We1 will defer to [Her05, p.157] for the proof of this proposition. □

We will demonstrate the following process as described in Proposition 5.6. Let 
f(xi, X2,xf) = x^X3X2 — X2xl be a polynomial identity of degree 4. We will now construct 

a multilinear polynomial identity from f. By letting h(x±, a:2, <c3> ^4) = x2, xf) —

f(x\, X2, xf) — /(^4, X2) x$) it directly follows that A satisfies h. The calculation of h gives 
us,

h{x\,X2, X3, X4) = (rri + - ^2X3 - (a:23733:2 + x2x2) — (a;2X3X2 + 3:2^3)

= (X1X4 + 374371)373372 - 3x2x1

= X1X4X3X2 + a?4a?ia;3a:2 — 3x2x$

which produces an identity that is linear in a?i. By applying the same iterative process to 

£3 we have, g(X[, X2, X3, X4. = h(yCi,X2,X3 + X5,X4)-h(xi,X2,X3,X4)-h(xi,X2,X5,X4).
Simplifying this gives us,

g(xi,X2,X3,X4,x5) = 371374(373 + 375)a?2 + a^i (373 + 375)372 - 3a72 (373 + 375)2

-(X1X4X3X2 + ai4Zia?3a?2 - 3a72372)

— (X1X4X5X2 + 374371375372 — 3a;2a;2)

= — 3a;2a;3a?5 — 3X2X5X3.

We see that g(a?i, 372) 3?3,374,375) is a polynomial identity of degree 3 that is multilinear. 
Since any algebra homomorphism preserves both products and sums we have the following 
result.

Proposition 5.7. Let A be a algebra that satisfies a polynomial identity f. If Q is an 

algebra homomorphism $ : A —> B, then $(A) satisfies the same identity.
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5.2 Tensor Product

Definition 5.8. Let E be a field, then E is a field extension of F if F C E and if F is 

a field with respect to the operations of E restricted to F.

Definition 5.9. Let A be an algebra over field F with a field extension E. Then the 

tensor product of A and E over F, written as A E is an algebra constructed by 
“extending the base field1 to E.n If {a7} is an JF basis of A then ® 1} is an E basis of 

A ® jr E. The elements of A E are expressed as a finite sum of o(a ® e) for a G A, 

e G E,a G IF and which satisfies the following properties

1. (ai 0 ei)(a2 ® e2) = aia2 ® eie2

2. (ai 4- a2) ® e = ai ® e + a2 ® e

3. a ® (ei 4- e2) = a 0 ei 4- a 0 e2

J. a(a 0 e) = aa® e = a® ae

5. O0e = a0O = O.

It follows from the above properties that the tensor product is bi-linear and that 

DimglA E) = Dim^A. We will refer the reader to [Jac09,p.215 — 220], 
[Hun74,p.2O7 — 216], for further details on the construction of this algebra.

Lemma 5.10. If A satisfies a multilinear polynomial identity f then for any extension 
field E of field F, A ®j^ E satisfies f.

We will demonstrate a particular example of Lemma 5.10 where A is commu­

tative. Note that A satisfies the identity /(iri,x2) = ^1^2 — ^2^1- Then for the tensor 
product A ®f E we have

J(ai 0 ei,a2 0 e2) = (ai 0 ei)(a2 ® e2) - (a2 0 e2)(ai 0 ei)

= aia2 0 eie2 - «2«i ® e2ei

= aia2 ® eie2 — a2ai 0 eie2

= (aia2 — a2ai)'® eie2

= 0 tg> eie2

0.
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This shows that A E satisfies f.

5.3 Kaplansky’s Theorem

Definition 5.11. Let Rn be the ring of n x n matrices with entries in a commutative 

unital ring R. Then 7£(ln) is the subring of Rn consisting of all diagonal matrices of the 

form r(ln) (r G R), where ln is the nx n identity matrix of Rn.

Theorem 5.12. Let R be a ring with unity. Then Z(Rn) = S(7£)(lra).

Proof. Since an arbitrary element in Z(R)(ln) may be written as z(ln) for some z G 

Z(R), it follows directly from the definition of the center that it lies in Z(/Rn). For 

X G Rn we see that

X(zln) = (Xz)ln = (zX)ln = z(Xln) = zX = (zln)X

thus £(72.) (ln) C Z(Rn). For the other inclusion, let Y G Z(Rn). We will denote the 
entries of Y as z^i for k, I = 1,2,..., n. Let 1^ denote the n X n matrix with 1 in the ith 

row and jth column and all remaining entries 0. Since Y commutes with every element 

of Rm Y(lfi) = (lii)Y- From this we have the following equivalent ith rows and columns 

that my be compared.
ithcolum ithcolum

f 0 .......................... ... 0 1

... 0

• •• Zin

... 0

...
...

...
...

...
...

...
...

...
...

...
...

 o
...

...
...

...
...

...
...

...
...

...
...

...
 o Zli

Z2i

Zu

0 . . 0 1

0 ............

Zil Zi2 ...

0 ............

zn

o ............ ... 0 ) >0 ... 0 zni 0 . • 0/

By equating the entries of each matrix we have z^. = z^i = 0 for i f k. From 

repeating this process and and equating Y(lkk) = (lkk)Y for k = 1,2,..., n we may 
conclude that z^i = 0 for every k f I. We have shown that all non-diagonal entries of Y
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are zero. We will now prove that the remaining entries are equal. For i < j the relation 

K(ltf) = (ly)K will result in,

jthcolum

< 0 ................................ 0

0 ... 0

0 ... 0
itflrow Zj! ... zjn

0 ... 0

1 0 ...
0

jtllcohj,m

itflrow

<0 ... 0 Zli

Z2i

ZZi

Zii

0 ... 0>

... 0 Zni 0 ... o)

Since the entries of each matrix must be equal we have that zn = Zjj. By 

continuing this process for all j we see that Zu = z22 — • • ■ = znn = z. Since Y must 

commute with any element in Rn we see that z G Z(R). this shows that Y = z(ln)> thus 
Z(Rn) C Z(7£)(ln). □

Theorem 5.13. Let R be a ring with unity. Then Z(R)(ln) — Z(R), as sub R-modules.

Proof. Define f: Z(R) —► ,3(7£)(ln), z h-> z(1„). We see that f is well defined since if 
z = z', then f(z — z') = (z — z')ln = 0. Thus z(ln) = z'(ln). It follows directly from the 
properties of matrix multiplication that f preserves addition and scalar multiplication. 
Hence f is a module homomorphism. Since any element in Z(R) (ln) may be written 

as 2(ln) for some z G Z(R), f is surjective. Lastly, to show that f is injective suppose 

that f(z) = f(z'). Then z(ln) = z^ln) which gives us the (z — z')ln = 0. By equating 

the entries of the two matrices, we see that z = Z. We have proven that Z(R)(ln) = 

Z{R). □

Corollary 5.14. Let R be a ring with unity, then Z(Rn) = Z(R).

Definition 5.15. Let S be a subfield of a division ring A. Then S is maximal if for 

every proper subfield Q of A with S C Q C A then Q = A.
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Lemma 5.16. Let A be a division ring with center 3(A). If K is a maximal subfield of 

A then A (g>Z(A) K is a dense ring of linear transformations on A as a vector space over

K.

Proof We will defer the proof of this lemma to [Jac64, p.95]. □

Theorem 5.17. (Kaplansky’s Theorem). Let A be a primitive algebra that satisfies a 

polynomial identity. Then A is finite-dimensional over its center Z(A).

Proof. Since A is primitive, from Theorem 3.5 it is either isomorphic to An for some 
integer n, or for every integer k there exists a subalgebra of A that maps homomorphically 

onto Afc.
Suppose that the latter of the two occured. For each k, let S& be the subalgebra 

of A that maps homomorphically onto Afc. From Proposition 5.6 we may assume f be 

the multilinear identity that A satisfies. Since any subalgebra or homomorphic image 
of A satifies the polynomial identity on A, Afc satisfies f as well. From this the center 
of Afc, 3(Afc) (a field) satisfies f for every k. From Lemma 5.5 we see that this is an 
impossibility. As a result the first case must occur, thus A = An.

Let K be a maximal subfield of A. From the above isomorphism, A satisfies the 

polynomial identity f. With this result and the multi-linearity of /, A ®^(A) K satisfies 
this identity as well. In addition from Lemma 5.16, A K is a dense ring of linear 
transformations on A over K thus the above argument may be applied. It follows that 

A ®^(A) H — Kq for some positive integer q. From the definition of the tensor product 

we have q2 — DimxfA. ®2(A) K) = In addition A„ is finite-dimensional
over A, thus Dim&(An) = n2.

From the fact that An over A and A over 3(A) are finite-dimensional, the 
spanning set of A„ over 3(A) is finite. Thus An is finite-dimensional over 3(A). In 

other words Dim2^(^n) = p, for some positive integer p. From Corollary 5.14, 3(A) = 

3(An), thus Dimg(^n) (An) = p. Since it was established earlier that An = A, we may 
conclude that p = D«m^^nj(An) = Dimz^(A). We have proven that A is finite­

dimensional over its center. □
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Chapter 6

Locally Finite Algebras

6.1 Locally Finite Algebras

Definition 6.1. Let X — {a?i, a?2,...} be a subset of A, then the subalgebra generated by 
X, denoted (X) is the intersection of all subalgebras of A containing X.

Definition 6.2. A is locally finite if and only if every finite subset X = {xi,a?2,..., a?n} 
of A generates a finite-dimensional subalgebra.

Proposition 6.3. Let A be an algebraic algebra that is commutative, then A is locally 
finite.

Proof. Let {ai,..., a*}  be a finite subset of A and take It be the subalgebra of A generated 

by this set. Since A is algebraic there exists a polynomial fa of degree ni > 0 that at 
satisfies for i = 1,2,.. .k. Note that each generator az has its corresponding ni. A is 
commutative thus the multiplication of two monomials in U may be rewritten as follows

••■<$ = <1+S1a?+S2 n, Si > o.k

From this, every element in U is a finite sum of monomials of the above form. 

We will prove that U is finite dimensional by showing that for an arbitrary element each 

monomial in the summand has generators Oj with an exponent no greater than m, the 

degree of the polynomial satisfied by az. It will suffice to show that the generator a± can 

be iteratively reduced to that of degree less than m. Given u = 52 • • -a™k € U
we will use induction on the exponent of ai- Assume that ni < mi. If mi = m then

«=E«ri«r • • • =E
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U is algebraic thus a/1 = Oicq1-1 + * • • + oeni, (a, € A). We will denote this as a/1 = 

cqa™1-1 +p(ai), where the highest exponent of Gq in p(cq) is less than rq — 1. Substituting 

this into the sum we now have

u=+ x«i)]a?2 • • • +£p(«i)«r • • ■ <c.

The exponent of cq has been iteratively reduced to that of less than np Suppose that for 

mi = ni + ti and for some ti > 1 the exponent of a± may be reduced to that which is 

less than m + ii- Let mj = Hi + (fy + 1) then applying the previous technique we have

= +p(ai)]a‘i‘+1a?2 • • • C

= + a‘1+1p(ai)K2 • • • a™”

= £ O1a^a^ ... + £ a‘'+1p(ai)a^

Where the highest exponent of ai in a* 1+1p(ai) is less than n, +ti. By induction, 

u may be expressed as a sum where ai has an exponent less than ni. This process may be 

applied to a2,..., a^ successively and as a result the finite set of monomials of1 of2 • • • a™k 

(mi < m) spans U. Therefore, U is finite-dimensional which proves that A is locally 
finite. □

Proposition 6.4. Let U be a finitely generated algebraic algebra containing unity. If U 
is finite-dimensional over its center 2(11) (a field) cthen U is finite-dimensional over F.

Proof. By hypothesis U is finite-dimensional over 2(U). There then exists elements ei,..., 
em in U such that every element in U is a linear combination of the e/s with scalars in 

3(W). From this fact if ai Ell, then it may be expressed as tq = i zitei (ztt G -£(£/))■ 

In addition if ai,aj Ell, then aqzj = 52^ zijkCk (zijk € 2(H)).

Note that for a finitely generated algebra U over F, if it is also locally finite over 
F then U is finite-dimensional over F. Let X = {cq,..., an} be a subset of U. We will 

show that (X) the algebra over F generated by this set, is finite-dimensional over F. Let 

X be the subalgebra of 2QA) generated by the set {zu, z^k} i, j,k = 1,2,..., m. Since 

X Q 2 (fl) C U, we see that X is commutative and algebraic. From Proposition 6.3, X 

is locally finite. With the added property that X is finitely generated we may concluded 

that X is finite-dimensional over F.
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Let W = I A 6 T}. Since I contains 1 it may be considered as a
field, thus W is a finitely generated algebraic algebra over I. From this we see that W 

is a finite-dimensional algebra over I. Since I is a finite-dimensional algebra over F 

we may conclude that W is a finite-dimensional algebra over F With Zit,zijk G I the 

subalgebra generated {ai,..., un}, {X} C W. Thus (TV) is finite-dimensional, hence U is 

locally finite. Since U itself is finitely generated over F, it may be concluded that it is 

finite-dimensional over F. □

Lemma 6.5. If B and A/B are finite-dimensional vector spaces then A is finite dimen­

sional.

Proof Let v: A A/B. Then v is a surjective linear map with B as its kernel. A well 

know linear algebra result [Hun74, p.5] is that dim(kernel(v)) + dim(image(v)) = dim(A). 
Which is equivalent to dim(B) + dim(A/B) = dim (A). Since from the hypothesis B and 

A/B are finite-dimensional, it follows that A is finite-dimensional. □

Definition 6.6. An ideal T of an algebra A is a locally finite ideal if when regarded as 
an algebra it is locally finite.

Proposition 6.7. LetC be an ideal of a algebra A. If A/C and C are locally finite, then 

A is locally finite.

Proof. Let {«i,..., a&} C A. We will show that the subalgebra of A generated by this 
set is finite-dimensional. We will denote {ai,... to be the image of this set under 

the map A —> A/C. Since A/C is locally finite, the subalgebra generated by {ai,... ,dk} 

is finite-dimensional. Let {aT,..., a^+i? • • • 5 Un} be a spanning set of this subalgebra.
From this every element in A/C may be expressed as 22 aiai, (<*f  € F). The multiplication 
of two elements ai,dj 6 A/C may be expressed as afidj = Using the properties

of cosets, a inverse image of this product will be a^j = J2 + Cy, (cy G C).

Denote S to be the subalgebra generated by {ai,..., an}. It will be beneficial
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for the reader to observe the product of elements in A. We see that,

QjjfcQfe 4~ cij)aq

” OlijiQClf^Clq T Cijdq

= ; (Xijk(0kqpap 4" C^g) 4" Cijaq

— (aijkftkqp)ap 4- CKijkCkq + CijOq.

In addition.

Lastly, we need to consider the product above by an additional ar,

We will let Q be the subalgebra generated by {cij.a^Cjq, ci:jaq,azcjqar}. Since each of 

these elements are in C, a locally finite ideal, Q is finite dimensional. In addition Q is a 

subspace of <S in which clearly qa, aq G Q. (a € A, q € Q), hence is an ideal of S.

Consider the map S —> S/Q, sending a a = a + S. Since C C Q, the image

of the product of didj is aiaj = aijk®k, in which we see that {af,..., an} is a spanning 
set of S/Q. This set of vectors can be reduced to a finite basis by removing any vectors 
that are linearly dependent, thus S/Q is finite-dimensional over F. Since S/Q and Q are 
finite-dimensional over 2F from Lemma 6.5 we may conclude that 5 is finite-dimensional

Lemma 6.8. Let (/>: U —> V be a ring homomorphism. If 14 is locally finite, then the 

image ofU under (f, <f(U) is locally finite.

We will leave the proof of this lemma to the reader.

Proposition 6.9. LetU andV be a locally finite ideals of A, then 14 4-V is locally finite.

Proof. Define 14 + V 14/K C\V, sending uiUHV. Note that this map is

surjective, since for any coset u' 4- U Cl V, we have that, ffiy! 4- v) = uf 4- U 0 V. Next, we 

will show that 0 is a homomorphism. Let u 4- v, v! 4- vr G 14 4- V then,



34

<j)[(u + v) 4- (u' 4- v7)] = f>[(u + uf) + (v 4-1/)] = (u 4- uf) 4- Id A V

— u Aid nV 4” u' 4" id nv

= <p(u 4- u) 4- </>(u' 4- vf).

In addition, we may note that the kernel of this mapping satisfies, Ker(</>) =V. From the 

standard isomorphism theorem,

U + V/Ker^ £*  0(W 4- V)

Since <f is surjective we have,

Id A V/V = U/UnV.

From the use of Lemma 6.8 and the fact that U/ld A V is a homomorphic image of U, 

we see that IdfU A V is locally finite. Applying this lemma to the isomorphism above we 

may conclude that U + V/V is locally finite. By hypothesis V is locally finite. Then by 
applying Theorem 6.7 implies that Id 4*  V is locally finite. □

Proposition 6.10. For every algebra A there exists a maximal locally finite ideal which 

contains all locally finite ideals of A.

Proof We will first show the existence of a maximal locally finite ideal of A then proceed 
to show it contains all locally finite ideals of A. Let W be a collection of locally finite 

ideals of A. One may verify that TV is a po-set related by containment. Let us denote 
C = {M4 | W, C W} to be a totally ordered subset of W. We will show that |JC is a 

upper bound of C. If X is a finite subset of Uc Wf, then since C is totally ordered there 
exists a Wp of A such that X C thus {X} is finite-dimensional. This implies that 

IJc Wj is an element of C. In addition, |JC clearly contains Wj G C, thus is an upper 
bound of C. Since every totally ordered subset of W contains an upper bound, Zorn’s 

Lemma may be applied. As a result, there exists a maximal locally finite ideal denoted 

as L(A).

Next we will show that LfA) contains all locally finite ideals of A. Let U be 

a locally finite ideal of A. By Proposition 6.9, L(A) 4- Id is also a locally finite ideal of 

A. As a result, X(A) C L(A) Aid. By maximality we see that L(A) = L(A) Aid, which 
implies that Id C L(A). This completes the proof. □
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From here on we will denote L(A) to be the maximum locally finite ideal of A.

Corollary 6.11. A is locally finite if and only if L (A) = A.

The proof of this theorem follows directly from Proposition 6.10. We will leave the proof 

to the reader.

Theorem 6.12. L(A/L(A)) = {0}.

Proof. Consider the homomorphism v: A A/L(A). Let C be a locally finite ideal 

of A/L(A). From the correspondence theorem C = CjL(A) for some ideal C of A 

containing L(A). With C and L(A) as locally finite ideals of >1, from Proposition 6.7 it 

may be concluded that C is locally finite as well. Since C is locally finite, C C L(A) and 

as a result L(.4) = C. This implies that the locally finite ideal, C ~ C/L(A) = {0}. We 
see that every locally finite ideal of A/L(A) is {0}. Thus it follows from Proposition 6.10 

that L(A/L(A)) = {0}. □

In Proposition 6.10 it was proven that L(A) contains all locally finite ideals of 

A. We will look to extend this result by proving L(A) contains all one-sided locally finite 

ideals of A as well.

Proposition 6.13. Let 11 be a locally finite right (or left) ideal of A then U C L(A).

Proof. Let 11 be the image of the right ideal U under the homomorphism v : A —> 
A/L(A} = A. Since L(^4) = L(A/L(Af) = {0}, if U is locally finite as a two-sided ideal 
W = {0}. From the properties of cosets this would imply that U C L(A), hence being 
locally finite. With this we see that the proof of this theorem reduces to showing that 
the locally finite right ideal U = {0}.

Since v is a surjective map U is a right ideal of A. To prove that U = {0} we will 

first show that the ideal A U is locally finite ideal of A. Let {xi,..., xn} be a non-empty 

subset of ALL Then

Xi •— ^4, H and,
S'i&k “ \
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We will denote Uijdia = qijkl- Let W be the subalgebra generated by {qijkh'U'ki}- From 
Proposition 5.7, bl is locally finite. In addition, q^i E U so the subalgebra W is finite­

dimensional over A. The product Xi%k — 5? a>ijqijklukl £ 52 % Let Q =
Since W is finite-dimensional and Q is a finite sum, it follows that Q is finite dimen­

sional and that it contains any product any two x*  ’s. To show that Q is closed under 

multiplication it will suffice just to compute the following

xtXiXk C xt ajjW

C atpUtp) UijW = atpqtpij W

C

£ Q.

Since the product of any collection of x’s is contained in Q, the subalgebra 
generated by {a?i,..., rrn} will be contained in this finite dimensional vector space as 

well. Thus the subalgebra generated by {mj,..., xn} is finite-dimensional over F. It has 

been shown that A U is a locally finite ideal of A hence A U = {0}. With the additional 

fact that U is a right ideal of A we see that U is a two sided ideal of A. Since U is locally 

finite, we see that U = {0}. In reference to the earlier remarks, we have that U C L(A), 
the desired result. □

Theorem 6.14. Let A f {0} be finitely generated algebraic algebra that satisfies a poly­

nomial identity. If A contains no nilpotent elements then L(A) f {0}.

Proof. Since A is algebraic, from Proposition 4.23 J7(A) is nil. With the additional hy­

pothesis that A contains no nilpotent elements, we may conclude that f (A) = {0}. Since 

J/A) f A, there exists an irreducible A-module Af. From Proposition 2.16 we see that 

Af is a faithful A/Ann(Af)-module. A problem that may occur is Af over A/Ann(Af) may 

not be irreducible. Since from Proposition 2.7 the submodules of Af over A correspond 

to the submodules of Af over A/Ann(Af), AJ is a faithful irreducible A/AnntAQ-module. 
Generally, we may conclude that there exists an ideal I such that A/T is primitive.

Let v : A —> AfT, sending a a. By hypothesis, A satisfies a polynomial 

identity. Since v is a homomorphism, from Lemma 5.7 A/Z satisfies the same polynomial 

identity. With the previous paragraph in mind, we have shown that A/Z is a primitive
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algebra that satisfies a polynomial identity. From Kaplansky’s Theorem, A/Z is finite 
dimensional over its center Z(A/T).

From the hypothesis A is generated by some finite set {ai,..., a^}. It is evident 

that the image of the set under the mapping v,{aT,... , generates A/T. Since A/T is 

finitely generated, we may now apply Proposition 6.4 and conclude that A/T is finite­

dimensional over F.

Let {ei,..., em} be a basis of A/T. Although v is not an injective map, we may 

still determine a inverse image {ei,..., em} of {ei,..., em}. For an a$ G A/T, we have 

di — 52 aij (aij e Z”). A ^is element is of the form ai — ctijej = bi, (bi G Z). 
We have showed that

flj — Otij Sj 4” bz.

Similarly for ei e3 G A,

Si&j — 4~ bij bij G Z.

Let Z' be an ideal of A generated by finite set {bi, bij], i,j = 1,..., n. We will 

now prove that Z = X!, showing that Z is finitely generated. Clearly the generators of Z' 
imply Z' C Z. Let a G Z then from above we may conclude that a = £27ie$ 4- 2/ (bf G Z', 

7i G F). Since a, b' G Z, a — b' = 52 7iei G Z. The image a — b' — 52 7i ~ 0- The efs 
form a basis for A/T. By linear independence 7i = 0 for every i, which results in a = 
hence Z CZ. This proves that T = Tf.

From Proposition 4.26 there is an idempotent element u G Z(T) where ubi = bi 

and ubij = bij for all i,j. With this idempotent element we can apply the left Pierce 
decomposition [Jac64, p48] of A which results in

A = Au ® A(1 — u)

where Au and X(1 — u) = {a — au | a G A} are two sided ideals of A. Since u is in the 
center of Z, Z = Au and the left Pierce decomposition can be reduced to,

A/T — A/Au = A(1 — u).

A/X corresponds to a two sided ideal A(1 — u) of A. It was previously proven 

that A/T is finite dimensional over F. Its isomorphic image A(1 — u) must also be finite 

dimensional, hence locally finite. We may conclude that >1(1 — fl) is a non-zero locally 

finite ideal of A which is contained in L(A). We have proven that L(A) 0 {0}. □
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Chapter 7

Kurosh’s Theorem

7.1 Overview

Recall that a finitely generated algebra is not necessarily finite-dimensional. 
There are numerous examples that can confirm this. In particular the algebra F[x] is not 
finite-dimensional but is generated as an algebra by 1 and x. Conversely there are natural 

examples in which a finitely generated algebra is finite-dimensional. In the case in which 

A is algebraic and commutative, any finite subset of A generates a finite-dimensional 
algebra. In general is there a condition that is both necessary and sufficient to ensure 

that an algebra is locally finite?
Alekander Kurosh in 1962 discovered that an algebra that is algebraic and sat­

isfies a polynomial identity is locally finite. Note that ^[x] is not locally finite, nor is 
it algebraic, since there does not exists a non-zero polynomial that x satisfies. We will 
conclude our exposition by proving Kurosh’s Theorem.

7.2 Kurosh’s Theorem

Theorem 7.1. (Kurosh’s Theorem) Let A be an algebraic algebra over field F that 

satisfies a polynomial identity, then A is locally finite.

Proof. From Proposition 5.6 we may assume that the polynomial identity is multilinear. 

Since any finitely generated subalgebra of A will satisfy the same identity we may assume 
that A is finitely generated. Our argument will be reduced to proving that a finitely 
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generated algebraic algebra A that satisfies a multilinear polynomial identity of degree d 

is locally finite.

Recall that the maximum locally finite ideal of A, L(A) contains all locally finite 

ideals of A. From Corollary 6.11, A is locally finite if and only if L(A) — A. In this proof 

we will consider the quotient A = A/L(A), and arrive at the conclusion that A = {0} 

which will result in L(A) = A.

From Theorem 6.12 we have that L(?l) = L(A/L(A)) = {0}. We will assume 

that A f {0} and distinguish two cases both resulting in L(A) / {0}, which is a contra­

diction. This will show that A — {0} and prove that A is locally finite. We will proceed 
with the first case.
Case 1. (A contains no non-zero nilpotent elements)

Since A is the homomorphic image of the natural map, v : A A/L(A), A 
satisfies the polynomial identity of .4. Let f(xi,..., be the identity satisfied by A. By 

assumption A is generated by some non-empty set {ai,..., a&} and the image of these 
elements under v will also generate A. Thus A is finitely generated algebraic algebra that 

satisfies an identity. From Theorem 6.14 we have that L(A) A {0}-
Case 2. (A contains a non-zero nilpotent element)

We may assume there exists a non-zero nilpotent element u G A is such that 
u2 = 0. We will look at the left ideal Au = {au j a G >1} of A.

If Au = {0}, then u G Ann(.4). Note that Ann(.4) is locally finite since for 
any finite subset {'tti, U2, • • •, u^} C Ann(A) the subalgebra generated by this set will be 
spanned by {ui,U2,...(ujUj = 0, i,j = 1,2,.. .n). Hence Ann(A) is a non-empty 
locally finite ideal of A. This implies L(A) A {0}.

In the case that Au f {0}, we will use induction on the degree of the polynomial 

identity to show that Au is locally finite and is thus contained in L(A). As previously 

stated we may assume A to satisfy a multilinear polynomial identity ,xa) of

degree d. The proof will proceed by induction on d.

If d = 2, then the polynomial identity that is satisfied by A is of the form 
f(xi, x2) = (XX1X2+0X2X1 (a. 3 G F). Asa result A is either commutative or A? — {0}. 

In the former case, Proposition 6.3 may be used to prove that A is locally finite. If 
.4 = {0} then clearly any subalgebra generated by a finite subset of A will be finite­

dimensional.
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We will now assume that every algebraic algebra that satisfies a polynomial 
identity of degree less than d is locally finite. By assumption A satisfies a multilinear 

identity of degree d. Since Au is a subspace of A it satisfies f as well. Next, we will 

decompose f into

...,xd) = xxg(x2,... ,xd) + hfa,..., xd)

where never appears first in any of the monomials in h. Setting xi = u, 

x2 = a^u, x$ = dRu,..., xd = ojtz, we have

f(u,O2U,... = ug(dju,... ,a^u) + h(u,... talu).

From the fact that h is multilinear the evaluation hfujfyu,..., dju) = 0. This is be­

cause every monomial in the summand has a factor of the form XjXi which substitutes 
to (aju)u = aju2 = 0 for some j = 2,...,d. We are left with 0 = f(u,.. .fadu) = 
ugfa^u,..., aju).

In Au, let T> = [x E Au | ux = 0}. Since (Au)D = {0}, P is a two sided 
ideal of Au. In addition D2 C (Au)'D, hence 7?2 = {0} and from the above remarks we 

may conclude that V is locally finite. It follows directly from T> that Au/D satisfies 
<7(m2,..., xf) under the map sending du >—* du + D.

Since AufD satisfies a polynomial of degree d — 1, by induction we can conclude 
that Au I'D it is locally finite. Since D is locally finite, by Proposition 6.7 it follows that 
Au is locally finite. We have proven that Au is a non-empty locally finite left ideal of A. 
From Proposition 6.13, Au C L(A) which implies that L(A) 0 {0}.

From both cases it has been shown that if L(A) f {0}, but from Theorem 6.12, 

£(A) = L(A/L(Af) = {0}. For this to be valid it must be that A = {0}, which implies 
that L(A) = A revealing to us that A is locally finite. □
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Chapter 8

Conclusion

The origin of Kurosh’s initial question can be traced to the Burnside Problem. 

Similar to the Kurosh Theorem, the Burnside Problem’s hypothesis is whether a group 
in which any finite collection of group elements all of which have finite order generates a 

finite group. In 1963 Golod and Shafarevitch introduced a technique in which a nilpotent 
algebra was constructed that is not locally finite. Thus showing that in absence of a 
polynomial identity an algebraic algebra may not be locally finite. With this, Kurosh’s 

Theorem provides the necessary and sufficient conditions for an algebra to be locally 
finite. From the Golod/Shafarevitch result an analogous group may be constructed that 

provides a negative answer to the Burnside Problem. We will recommend [Her05, p.187- 
193] to the reader that is curious of Golod and Shafarevitch’s construction of an algebraic 

algebra that is not locally finite.
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