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iii

Abstract

This project is an expository survey of the Universal Coefficient Theorem for 

Cohomology, which allows one to express cohomology, with arbitrary coefficients, of a 

chain complex in terms of homology with integer (universal) coefficients. Algebraic pre

liminaries, homology, and cohomology axe discussed prior to the proof of the theorem. 

The theorem’s importance will be illustrated through a number of examples.
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Chapter 1

Introduction

The following work investigates the Universal Coefficient Theorem for Coho

mology. This theorem says that the cohomology groups, with arbitrary coefficients, for 

a given chain complex C = {Cn. c?} of abelian groups can be expressed in terms of ho

mology groups with integer coefficients. There are other Universal Coefficient Theorems 

to be studied, which allow one translate data from integer homology or cohomology to 

homology or cohomology with arbitrary coefficients; however, we focus on examining the 

Universal Coefficient Theorem for Cohomology.

To understand the significance of the Universal Coefficient Theorem, one must 

understand how homology is used in Algebraic Topology. Algebraic topologists use ho

mology among other tools to analyze toplogical spaces in an algebraic setting as an 

alternative to applying a less practical and intuitive based geometric approach. Homol

ogy groups partition a topological space into homology classes (equivalence classes) that 

are designed to capture portraits of certain geometrical data. This in turn, allows one to 

differentiate between objects based on whether or not they share this homological data 

[Hil88]. In a sense, cohomology can be thought of as the dual to homology (we will be 

more precise in Chapter 3), although there are interesting differences in the construction 

of cohomology that illuminate different characteristics of the space. Cohomology is also 

used to examine topological spaces in a similar way, but it may possess information for 

a space that homology does not. For instance, there, is an interesting ring structure in 

cohomology for general topological spaces that can distinguish spaces such as S1 V S1 V S2 

and S'1 x S1, but we will not discuss this structure in this thesis.
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Given a topological space X, an algebraic topologist wishing to obtain algebraic 

topological data for the space could compute both homology and cohomology. We will 

see that the process for computing cohomology is essentially the same to that of homol

ogy; however, cohomology requires an intermediate step not required for homology. One 

could calculate both homology and cohomology for X, but it would be nice to have the 

machinery to calculate, say homology, and then be able to transfer that data in a way to 

obtain cohomology. The Universal Coefficient Theorem is the tool for this job.

In the ensuing chapters, we define and prove the preliminary notions required 

to not only prove the theorem, but to also understand its meaning. These topics form a 

prelude to the theorem, yet one should note that each may lead to a discussion on their 

own. For this study, we will focus on how the preliminaries build and are related to the 

Universal Coefficient Theorem.

After completing the preliminaries we turn our attention to the proof of the 

Universal Coefficient Theorem and its applications. The proof is quite lengthy, so Chapter 

4 has been devoted to the proof.

The following is a brief outline of the thesis. In Chapter 2 we introduce the 

topic of J?-modules, and investigate many of the algebraic ideas associated with it through 

proofs and examples. Chapter 3 will focus on defining homology and cohomology, supple

mented by a series of examples and proofs, which will aid in understanding key notions 

pertinent to the proof of the Universal Coefficient Theorem. Chapter 4 features the proof 

of the Universal Coefficient Theorem, which has been divided into two parts. Finally, in 

Chapter 5 we illustrate the importance of the theorem through a number of examples.
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Chapter 2

Algebra

As mentioned before, homology allows one to study topological spaces from an 

algebraic perspective. As a result, we begin our studies with some algebraic preliminaries. 

First, in Section 2.1, we define what it is to be a module over a ring R, and investigate 

special cases. In Section 2.2, we examine sequences of abelian groups and define exactness. 

In Section 2.3, we define free and projective modules over a ring, and discuss necessary 

and sufficient conditions to determine whether they are the same. Finally, in Section 2.4, 

we consider Hom groups, and learn how to map between them using duality.

2.1 7^-Modules

Definition 2.1.1. [Hun74] Let R be a ring. A (left) R-module is an additive abelian 

group A together with a function R x A A such that given any r,s 6 R and a,b 6 A:

1. r(a 4-6) — ra + rb;

2. (r 4- s)a = ra + sa;

3. r(sa) — (rs)a.

If R has an identity element 1.r and = a for all a e A then A is said to be a unitary 

R-module.

In Definition 2.1.1, we see that the ring R acts on the abelian group A, which 

may or may not be closed under the operation of R. That said, one may wonder how 

ring elements act on the additive; identity of A.
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Lemma 2.1.2. Suppose A is an R-module over a ring, and let Ox be the additive identity 

of A. Then rOx = Ox for all r G R.

Proof. Let Ox be the additive identity of an /?-module A, and let r 6 R- Then we have 

rOx = r(0x+0x) = rOx+rOx- Now subtracting rOx from both sides yields rOx = Ox- □

Modules over a ring R are abelian groups with additional algebraic structure. 

Every additive abelian group is a Z-module, where Z is the integers (see Theorem 2.1.3): 

however, any arbitrary.abelian group is not necessarily an K-module for certain R. In the 

following theorem, we show that any additive abelian group is a Z-module with a very 

natural module structure. This fact will prove to be useful in Chapter 4.

Theorem 2.1.3. [Hun74] Let G be an additive abelian group. Then G is a unitary Z- 

module under the action (n,g) i-> ng for all n 6 Z and g G G, where ng is repeated 

additions of g.

Proof. We show that the action Z x G —> G given by (n,g) f—> ng satisfies Definition 

2.1.1. Let n,m€Z and g,h EG. Then

n(g + h) = (g + h) + (g + h) + ... 4- (g + h) 
'---------------- -------- V------------------------ '

n—many

= (g + g + ... + g) + (h + h+... + h)
'---------V z ---------v

n—many n—many

= ng A- nh,

(n + m)g = g + g +... + g

(n+m) —many

= (^ + 0 + ■ • • + 3) + ($ + g + ...+g)
n—many m—many

= ng A mg,

and finally,



5

n(mg) — + g + ... + g)
S'

m—many

- (g 4- g 4- • ■ • 4- 9) 4- (g + g +... + g) +...(3 + g +... + a))

m—many m—many m—many
"---------------------------------------V----------------------------------------'

n—many

= (nm)g

So G is a Z-module. To show it is unitary, we see that the multiplicative identity of Z, 

namely 1 G Z, functions as the element in Z where lp = g. □

With groups there are the notions of group homomorphisms and subgroups. 

In the next two definitions we define similar notions for J?-modules, namely R-module 

homomorphisms and submodules.

Definition 2.1.4. [Hun74] Let A and B be modules over a ring R. A function f : A—> B 

is an R-module homomorphism provided that for all a,c G A and r G R:

1. f(a + c) = /(a) 4-/(c);

2. f(ra) = rf(a).

Let / : 4 -> B be an R-module homomorphism. We define the kernel of f to 

be its kernel as an additive group homomorphism, that is, Ker f = {a G A | f(a) = 0#}. 

Similarly, define the image of f as Im f = {f(a) | aS A}.

Definition 2.1.5 (Submodule). [Hun74] Let R be a ring, and A an R-module and B a 

nonempty subset of A. B is said to be a submodule of A provided B is an additive subgroup 

of A and rb G B for all r G R.

A submodule of an .R-module A is itself an .R-module. Let f : A —> B be an 

.R-module homomorphism. Then it is easy to verify that Ker f and Im f are submodules 

of A and B, respectively. We now turn our attention to two special submodules which 

we will refer to in Chapters 3-5.

Example 2.1.6 (Torsion Submodule). Suppose A is an .R-module over an integral 

domain R Then the collection T(A) = {a € A | ra = 0^ for some nonzero r G jR} is a 

submodule of A. T(A) is said to be the collection of all torsion elements of A.
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Proof. Let Oa be the additive identity of A. Then Oa € T(A) since Oa 6 A and given any 

rtR, tOa = Oa by Lemma 2.1.2. Therefore, T(A) is nonempty. Let a,b G T(A). We 

show a — b G T(A), that is, we will find a nonzero r G R such that r(a — &) = Oa- Now 
a, b G T(A) implies there exists nonzero r±, r2 G R so that rja = Oa and r2b = Oa- Since 

R is an integral domain, choose the nonzero rir2 G R with

rirjfa — b)= ri(r2a - r2b) = ri(r2a - Oa) = r2rya = t20a — Oa-
Thus, a — b G T(A). To complete the proof let r G R and a. 6 T(A). Now a G T(A) means 

ria = 0 for some nonzero rj G R. Again, since R is an integral domain nr — rn / 0, 

and ri(ra) = (nr)a = (rrf)a = r(na) = tOa = Oa- So ra 6 T(A). Therefore, T(A) is a 

submodule of A. □

Theorem 2.1.7. [Hun74] Let B be a submodule of a module A over a ring R. Then the 

quotient group A/B is an R-module over the quotient group A/B under the action given 

by r(a + B) = ra + B for all a G A,r G R. The map it : A —t A/B given by 7r(a) = a + B 

is called the canonical map (projection), and it is easy to see Ker 7T = B.

The theorem allows us to define another module structure. The cokernel of an 

R-module homomorphism f : A —> B is defined to be Coker/ = B/Im/ which is an 

R-module. The cokernel will be used in the proof of the Universal Coefficient Theorem. 

In the next section, we use the fact that we can map between R-modules via R-module 

homomorphisms to construct a sequence of module homomorphisms.

2.2 Exact Sequences

Definition 2.2.1. [Hun74] A sequence of module homomorphisms

fn-i A fn 4 fn+1 k A fn-H2 .' ‘ * * An_i > An > > • • •

is said to be exact provided Imfn = Kerfn+i for all n G Z.

If n is the degree of An in the sequence above, then we intend for an exact 

sequence to also be on which could decrease in degree. The following theorem supplies 

necessary and sufficient conditions for determining whether or not a given sequence of a 

special from, is exact without having to use Definition 2.2.1.
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Theorem 2.2.2. [Hun74] Let A and B be modules over a ring R. Then

f
1. 0 —> A B is exact if and only if f is a module monomorphism (injective).

2. B -2*  C —> 0 is exact if and. only if g is a module epimorphism (surjective).

Proof.

j
1. (=>) Assume 0 —* A A B is exact. Then Im 0 = {0} = Ker/. Hence, f is injective. 

(<=) Assume f is injective. Then Kerf — {0} = Im 0. Hence, we have exactness at 

A.

2. (=>) Assume B C —> 0 is exact. Then Img = Ker 0 = C. Thus, g is surjective. 

(<=) Assume g is surjective. Then Inn/ = C = Ker 0. Thus, we have exactness at 

C.

□
Theorem 2.2.2 will aid us in determining whether or not a sequence of the form 

0—>A—►C—>0is exact at A and C. An exact sequence of such a form is of great 

importance to our studies, and is defined below.

Definition 2.2.3. [Hun74] An exact sequence of the form is called

a short exact sequence.

Consider a short exact sequence 0—> A B C —*0.  By exactness, we 

know that f : A —> B is injective and g : B C is surjective. These observations 

lead to conditions (1) and (2) from the next theorem, yet we obtain a special short exact 

sequence, essential to proving and understanding the Universal Coefficient Theorem, when 

B * A © C.

Theorem 2.2.4. [Hun74] Let R be a ring and 0 -» Ai B A2 -> 0 a short exact 

sequence of R-module homomorphisms. Then the following conditions are equivalent:

1. There is an R-module homomorphism h : A2 —> B such that gh — 1a2>

2. There is an R-module homomorphism k : B —> Aj such that kf =

3. B = Ai © A2.
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Any short exact sequence of R-module homomorphisms satisfying any condition of 

Theorem 2.2.4 is said to be split exact. We will take Theorem 2.2.4 as fact without proof 

in this paper; refer to [Hun74] for a detailed proof. Next we establish the existence of a 

particular short exact sequence, which will be applied in Chapter 4.

Theorem 2.2.5. Let A and B be ^.-modules, and f : A —> B a surjective module homo

morphism, then there exists the following short exact sequence

0-> Kerfi*A^B->0,

where i is the inclusion map.

Proof. This is easily verified, using Theorem 2.2.2, and that Im i = Ker f. □

The proof of the Universal Coefficient Theorem and many of its preliminary no

tions will require examining special diagrams called commutative diagrams. The diagram 

found in Figure 2.1 is said to commute if for any a G A, g'jfaj — ffg(a), where /, f',g, 

and g' are homomorphisms. We use this defining property of commutative diagrams to 

prove the next theorem.

Figure 2.1: Commutative Diagram

Theorem 2.2.6. Consider the commutative diagram, where ai, cq, 03 are isomorphisms:

0

0

■>0.

0

1/0—>A-^B-^Cf—>0«s exact, then so is 0 —> Af Bf C’ -> 0.

Proof. By Theorem 2.2.2, to show exactness, it suffices to verify the following:
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1. B' is injective.

2. gf : B*  —> Cf is surjective.

3. Im/' = Ker#'.

1. Let x G Ker/' C A1. We will show x — 0. Now there exists a unique element a € A such

that a = aq1^). Then /(a) = /(af1(x)) G B, and therefore, a2/(a) = € B!.

So, by commutativity, 0 = f(x) = a2foif1(x) which implies that x = 0 since a2/ctf1, 

being the composite of injective maps, is injective. Thus, /' is injective.

2. Let o' G C'. Now there is a unique element c G C such that c = 031(c'). By Theorem 

2.2.2, g : B C is surjective, so there exists b G B with g(b) = c = o^’1(c'). Next 

a2(b) — b' for a unique b' 6 B'. So given c' G C' choose b' G B' so that a^ga^ 1(b/) = c', 

then #'(b') = ci3#a^1(b') = a^glb) ■= 03(c) = c'. Therefore, g' is surjective.

3. (C) Let f(a') G Im/'. Then /of1 (a') G Im/ = Ker#. By commutativity, we have

/'(a*)  — O2/of1(a'). Now observe that for any b' G B', g'(ti) = 03503 1(b'). Finally, 

/'(o') G B' and #'(/'(a')) = o3#a^ 1(o2/af1 (a')) = = “3(0) = 0. Thus,

f(a') G Ker#'. (□) Let x G Ker#'. Then gr(x) = 0, and by commutativity, #a^1(a?) = 0. 

So O2X(^) G Ker# = Im/. Thus, there exists a G A such that /(a) = o^fz). We claim 

that /'(01(a)) = x. Now /'(01(a)) = o2/(a) = o2(a21(x)) = x. So x G Im/'. □

We conclude this section by mentioning that any long exact sequence can be 

made into a sequence of short exact sequences and we describe that construction here. 

Consider the long exact sequence:

fn+1 fn fn —1 fn—2. . . —> c^n+l * > ^n—1 * '-'n—2 * ■ • • .

We show presently that the long exact sequence above can be made into the sequence 

of short exact sequences 0 —► Coker/„+2 Cn Ker /n-i —> 0; we define the 

map fn+i presently as well. By definition, Coker/n4_2 = im/n+2' ^ow’ exactness, it 

follows that Im/n+2 = Ker/n+i, and consequently, /n^i(Im/n+2) = /n+i(Ker/n+i) = 0. 

Thus, /n+i induces a homomorphism /n+1 on i^/n+2 = Coker/n+2. Observe that the 

sequence Cn Ker/n_i —> 0 is exact since Im fn = Ker/n_i. We verify exactness at 

0 —> Coker/n+2 Cn by showing /n+1 is injective. Let c Im/n+2 G Coker/n+2, 

where c e Cn+i. Now 0 = /„+1(c + Im/n+2) = /n+1(c) = /„+i(c), and c G Ker/n+i.
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Therefore, since Ker/n+i = Im/n+2, fn+i is injective. Finally, we have exactness at 

Coker/n+2 Cn Ker/n_i since Im fn+1 — Imfn+i = Kerfn. Thus, the sequence in

question is indeed short exact. The notion that a short exact sequence can be constructed 

from any long exact sequence plays a vital role in the proof of the Universal Coefficient 

Theorem, see Equation (4.3) of Chapter 4.

2.3 Free and Projective Modules

In this section we study two types of R-modules, namely, free and projective 

modules. We begin by examining each individually, then we show that over an arbitrary 

ring R they are not the same. Finally, we discover that free and projective modules 

coincide over a Principal Ideal Domain (PID).

Let A be an R-module, and let B = {x [ x € A} be a collection of elements of 

A. The set B is said to span A if for any a € A, a — ryxir2X2-----r^x^ where r*  € R,

and Xi e B. Now B is said to be linearly independent if for distinct xi,X2, ■ ■ • ,xn 6 B 

and Ti e R, rixi 4- r2X2 + •• • rnxn = 0 implies ri = Q for all i € {1,2,..., n}. A linearly 

independent subset of A which spans A is said to be a basis for A [Hun74].

Definition 2.3.1. [Hun74] Let F be a module over a ring R with identity. F is said to 

be a free R-module if it has a nonempty basis.

Since R-modules are abelian groups, one may be lead to believe that a submodule 

of a free module is free. However, in general, this is not the case when considering an 

arbitrary ring R, but it is the case when R is a principal ideal domain. Contrast the 

following result with Example 2.3.3.

Theorem 2.3.2. [Hun74] Over a Principal Ideal Domain (PID), every submodule of a 

free module is free.

We will take Theorem 2.3.2 as fact, but a proof may be found in [Hun74]. Notice 

that Z is a free Z-module since it has a basis {1}. Now since Z is a PID, any submodule, 

of free module is free, all submodules of Z are free. The next example shows that a 

submodule of a free module may not be free over an arbitrary ring R.

Example 2.3.3. Let R = and consider 22^ = {0,2,4}. Then is a submodule of 

Zg, but it is not free.
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Proof. First observe that 2Zg c Zg and 2Zg is an abelian group under addition. Let 

[a]6 G Zg and b G 2Zg. Now there is [®]g G Zg such that b — 2[rc]g. Notice that 

[a]g& = 2[a]6[a:]6 = 2 [arc] 6 G 2Zg. Therefore 2Zg is a submodule of the Zg- module Zg. Zg 

is not an integral domain, and therefore, not a PID. We claim 2Zg does not have a basis. 

Given any nonzero a G 2Zg one may choose [&] = [3]e € Zg such that a[b]g = [0]g even 

though a / 0. Thus 2Zg does not have a basis, and it is not free. □

Definition 2.3.4. [Hun74] A module P over a ring R is said to be projective provided 

that given any diagram of R-module homomorphisms (with bottom row exact)

P
I'

fl ’A—^B------*0

there exists an R-module homomorphism h : P —> A such that the diagram below com

mutes.

P

That is, g o h = f.

If an R-module F is free, then it is projective. However, in general, the converse 

is false. For example, Z3 is a projective Zg-module, yet Z3 is not a free Zg-module 

[Hun74].

In Theorem 2.3.6, we will establish a relationship between split exact sequences 

and projective modules. Before we introduce and prove Theorem 2.3.6 we refer to a useful 

fact about R-modules.

Lemma 2.3.5. [Hun74] Every R-module A is the homomorphic image of a free R-module 

F.

Theorem 2.3.6. [Hun74] Let R be a ring and let P be a given R-module. Every short 

exact sequence of the form 0—>0 is split exact if and only if P is 

projective.
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Proof. (=>) Assume 0—> A-^ B-^ P-> 0 is split exact. Given any diagram with bottom 

row exact

P

f

A—^J3------>0

we must find an jR-module homomorphism h : P -> A so that g o h = f. First note 

that every projective module is the homomorphic image of a free module by Theorem 

2.3.5. So there is a free module F and a surjective R-module homomorphism 7r such that 

7r(F) = P. Let K — Ker tt. Then 0—> K Ir p —>0is exact by Theorem 2.2.5. Now 

since F is free it is projective. So there exists an B-module homomorphism p : P —> F 

such that % op = lp by Theorem 2.2.4. Now consider the diagram below.

F

/P ■ 7T
m/ p

A-1^ B------> 0

Since F is projective there is an B-modulc homomorphism hi : F —> A with go hi — fir. 

Set h = hi o p \ P —> A. Then

p(/i) = g(hi op) = (go hi)(p) = (fiv)(p) = f(yop) = f olp = f.

Therefore, P is projective.

(<=) Now suppose P is projective. Then by hypothesis for any diagram with bottom row 

exact

P

0

there exists B-module homomorphism h : P —> B such that g o h — lp. By Theorem

2.2.4, the short exact sequence 0—>0is split exact. This completes the 

proof. □
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We complete this section by referencing a fact which shows that free and pro

jective modules coincide over a PID. This fact will be applied in Chapter 4.

Theorem 2.3.7. [Hun74] Let R be a PID. Then a unitary R-module P is projective if 

and only if it is free.

Refer to [Hun74] for a proof of Theorem 2.3.7. So far we have built a strong 

algebraic foundation, but the proof of the Universal Coefficient Theorem will require one 

more important piece of algebraic machinery.

2.4 Hom Groups and Duality

Definition 2.4.1. [Hun74] Let A and B be modules over a ring R. Then HomiJA. B) is 

the set of all R-module homomorphisms f : A —* B, which forms an abelian group under 

addition defined as follows: for f,g G HomiJA. B), (f 4-p)(a) = f(a)Fg(a) for all a G A.

Whenever R = Z the notation Hom(A, B) shall be used instead of Homz(A, B). 

In the next two examples and Theorem 2.4.4, we establish properties of the Hom group 

which will be used in ensuing chapters.

Example 2.4.2. Homft, Z) = Z.

Proof. Consider the map : Hom(Z, Z) —> Z by tp(p) = ^(1) for <p G Hom(Z, Z). Now ip 

is a homomorphism since given any <p2 € Hom(Z, Z),

+ ^2) = (pi + <^2) (1) = ¥>i(l) + ^2(1) = V’fy’i) + ^(^2).

To show V is injective let ip2 G Hom(Z,Z) and suppose V’tv’i) = Then,

^i(l) — ^2(1) implies <^i(n) = y>2(n) for all n G Z. Therefore, ip is injective. For m 6 Z 

choose <p G Hom(Z, Z) such that p(l) = m. Then, ip(<pj — y»(l) = m. Thus, ip is an 

isomorphism. □

Example 2.4.3. Hom(Zn,Z) = 0.

Proof. Let <p e Hom(Zn, Z). Suppose y?([l]) = m for some m G Z. We will show that 

m — 0. Now, [1] = [1+n] G Zn. Observe, <^([1]) = </?([l+n]) = <^([l])+n</?([l]) = m(l+n). 

So, m = (^(1) = m(l + n). Thus, m(l 4- n — 1) = mn = 0, which implies m — 0 since 

n / 0 and Z is an integral domain. Therefore, ip = 0. □
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The previous two examples will aid in calculations found in Chapter 3. The 

next result shows that Hom can be split over a direct sum. This fact will be employed in 

Chapters 3 and 5.

Theorem 2.4.4. Let A and B be ^-modules and G an abelian group, then

Hom(A © B, G) =. Hom(A, G) ® Hom(B, G).

Proof. Let : A A ® B, and is : B —> A ® B be inclusion homomorphisms defined 

by iA(a) = (a,0) and 15(6) = (0,6) for all a 6 A and b € B. Next consider the map 

: Hom(v4 ® B,G) —> Hom(A, G) ® Hom(B, (?) by o ois), Observe

being the composite of group homomorphisms, is a group homomorphism. For notational 

purposes, let P = Hom(A ® B, (7), and Q = Hom(A, (?) ® Hom(B, (?). To prove $ is an 

isomorphism we will find a homomorphism h : Q —> P such that hot/j = lp and i/ioh = 1q, 

Let : A® B —> A and 7tb : A® B —> B be the projection homomorphisms to A and 

B, respectively. Consider the map h : Q —> P defined by h(a, (3) = a o tta + o ttb. The 

map h, being made of the point-wise sum of homomorphisms, is a homomorphism. Let 

<p € P and (a,6) G A ® B. Then,

/i(^(^))(a,6) = h(<poiA,<poiB)(a,b')

= ^oiA[7rA(a)]®(poiB[7rB(b)]

= (p(a, 0) +yj(O, 6) 

= 0) 4-(0,6))

= b).

Thus, hoi/) = lp. Now, take any (a,/3) G Q. Then,

^(a,/?)) = (h(a,0)oiA,h(a,/3)oiB)

= (a,0)(a,ty + (a,/3)(0,b)

= (a, 0)(a, 6), where a G A, b. G B.

So, -0 o h = 1q. Therefore, is an isomorphism. □

Recall, Hom (A, B) is the collection of all Z-module homomorphisms from A to 

B, which forms an abelian group under addition. As we will see, the Hom group will 
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allow one to dualize a sequence of abelian groups. The reader should note that we may 

replace Z with any arbitrary ring R.

Definition 2.4.5. Let f : A —> B and p : B —* G be R-module homomorphisms. We 

define the dual of f, denoted f*,  to be f*(<p)  = p° f.

Definition 2.4.5 allows one to map between Hom groups. For example, if we 

take f : A —> B and any <p e Hom(B, G). By definition, to evaluate /*(</?),  one needs to 

find the composite of p and f. Using the commutative diagram below, one can see that 

the definition of f*  is quite natural.

G

So f*(p)  : A £ B X G. This composite gives us a way to transform ho- 

momorphisms B —> G to homomorphisms A —> G. Notice, for A A B by duality 
f*Hom(A, G) <— Hom(B, G). Thus, duality is order reversing. Finally, duality will be re

quired when calculating cohomology, so we conclude this section by considering a concrete 

example which illustrates how it works.

Example 2.4.6. Consider the map f : Z —> Ze defined by f(n) = [n]e for all n € Z, and 

take p € Hom(Z6, Z3) as ^([nje) = [n]3. We describe how one may construct a map from 

Hom(Z6,Z3) to Hom(Z,Z3) using duality.

Examine the following commutative diagram with ^([njg) = [n]3 for [n]e € Zg.

Z3

By definition, for all n G Z, /*(¥?)  (n) = 9?(/(n)) = = H3. So Z Zg, and

by duality, Hom(Z,Z3) Hom(Z6,Z3). This concludes the algebraic preliminaries. In 

the next chapter we introduce homology and cohomology.
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Chapter 3

Homology and Cohomology

Now that the algebraic preliminaries are complete we are ready to discuss ho

mology and cohomology. We begin by introducing a special sequence of abelian groups 

called a chain complex in Section 3.1. In Section 3.2, we define the homology of a chain 

complex. The next phase is to examine cohomology, and expose the differences between 

homology and cohomology through examples in Section 3.3. Finally, in Section 3.4, we 

introduce Ext, and prove a number of properties that will be of use subsequently in 

Chapter 5.

3.1 Chain Complexes

Before studying homology and cohomology one must be introduced to a special 

sequence of abelian groups. We note that such a sequence in Definition 3.1.1 need not be 

exact, and the most interesting cases are when this happens.

Definition 3.1.1. [Hat02] Let Cn be a sequence of abelian groups with maps (homo

morphisms) dn : Cn —> Cn_i satisfying dn--\dn = 0. A chain complex is the collection 

C =

An important consequence of dn_]dn — 0 is that Iiii<9n is a normal subgroup of 

Ker<9n_i. From this, one may define the nth homology group of a chain complex C. We 

will refer to elements of Ker<3 as cycles and elements of Im<3 as boundaries.
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3.2 Homology

Definition 3.2.1. [Hat02] Consider the following chain complex C, where Cn = 0 for

n < 0.
9n+2 j-, C?n+1' ' ' ~* Ln+1 —* Z“t dn — L „ dn—2—> Gn_l —» Cn_2 —>

The nth homology group of the chain complex C (with integer coefficients), denoted Hn(C), 

is defined as the quotient group

Kerdn
Imdn+1'

The map dn is called the differential on homology, and unless there is the pos

sibility of confusion, we drop the subscript for convenience and write dn = d because, 

in most cases, the context will be clear. One easily sees that if the chain complex C is 

exact, then Hn(C) is trivial for each n because exactness implies that Im<9n_|_i = Kerdn, 

and therefore, Hn(C) = {0}. The reader should bear in mind that one may choose any 

arbitrary coefficient group G to define homology. Then the nth homology group with 

coefficients in G is denoted Hn(C; Gf. however, we will not concern ourselves with this 

since its construction is not pertinent nor necessary to proving the Universal Coefficient 

Theorem. For the remainder of this paper, the term homology will be referring to the 

integer homology in Definition 3.2.1. The following example presents a sample chain 

complex to illustrate the process for computing homology groups.

Example 3.2.2. [Hat02] Compute the homology groups of the chain complex C

C : 0 —> Z Z i Z Z —> 0,

where f : Z —> Z by f(ri) = 2n for all n G Z and 0 denotes the zero homomorphism.

By definition, Hq(C) = | = Z. Now, Im f = 2Z, and Ker 0 — Z. So,

#i(C) = = Z2. Next, since f is injective, Ker f = 0. In addition, Im 0 = 0.

Thus, II2 (C) = = ^ = 0. Finally, at dimension 3, Im 0 = 0 and Ker 0 = Z. So,

H3(C) = 0 = | — Z. The homology groups of C have been placed in Equation (3.1).

Next, we focus our attention on cohomology.
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Z, for n — 0,3

Hn(C) z2, for n = 1 (3.1)

0, for n = 2.

3.3 Cohomology

In this section we define cohomology of a chain complex C = {(7n, d} with 

coefficients in a fixed abelian group G. Cohomology will require an intermediate step 

where we dualize C. Take any abelian group G. and for each n, replace Cn with the 

group (7*  = Hom((7n, G) in the chain complex. With G fixed, this process produces the 

sequence of abelian groups {(7*,  d}, where d : C*̂  —> C*  is the dual map to d. In the 

following lemma, we will see that the sequence is a chain complex, and we will

refer to this dualized chain complex as the co-chain complex corresponding to C with 

coefficients in G.

Lemina 3.3.1. LetC = {(7n, be a chain complex, thenC*  = {(7*,  d} is a chain complex 

as well, where C*  = Hom(Cn, G).

Proof. Let 0 be the zero map. We must show that dd = 0. Let <p e <7*_ x. By definition, 

dd(ip) = d(tpd) = <p(dd) = ¥>(0) = 0. Therefore, dd = 0. □

Since d2 = 0 it follows that Im d is a normal subgroup of Ker d. This relationship 

allows one to define the nth cohomology group, with coefficients in G, of a chain complex 

C.

Definition 3.3.2. [Hat02] Let C = {Cn, d} be a chain complex and let G be an abelian 

group. The nth cohomology group, with coefficients in G, of the chain complex C, denoted 

Hn(C-,G), is defined as the quotient group

Hn(C-G) ■.=
Ker d 
Im d '

Definition 3.3.2 says that in order to compute the cohomology groups for a given 

chain complex C = {<7„, c?n} one must first choose an abelian group G. then replace the 

Cn with (7*  = Hom(Cn,G), and then compute homology on the co-chain complex C*.  
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The map d : G*_ 1 —> C*  is called the differential on cohomology with coefficients in G. 

The next example demonstrates this process.

Example 3.3.3. Compute the cohomology groups, with coefficients in G = Z, of the 

chain complex C from Example 3.2.2.

To compute cohomology of C, we will replace Z with Hom(Z, Z) in C at each 

dimension. Next, we must compute the dual maps, namely f*  and 0*.  It is clear that 
0*  — 0 by the composite 0*  : Z X Z —> Z. Next /*  acts as the “times two” map from 

Hom(Z, Z) to Hom(Z, Z) since for any tp G Hom(Z, Z), f*(p(n)  = <pf(n) — tp(2ri) = 2tp(n) 

where n G Z. So we have the resulting co-chain complex

0<— Hom(Z,Z)X- Hom(Z,Z)X_ Hom(Z,Z)X- Hom(Z, Z) <—0.

By definition, 77°(C;Z) = o = Hon^g3) Hom(Z,Z) = Z. Now f*  is injective since 

for any (p G Ker f*,  0 = f*(^(7i))  = 2<p(n) for all n 6 Z, which implies ip = 0. Thus, 

Ker /*  = 0. So - = § = 0. Next,

ff2(C;Z) Ker 0 = Hom(Z,Z) ~ Z 
Im f* 2Hom(Z,Z) ~ 2Z

Finally, 773(C;Z) = Hom(Z,Z) Z. The cohomology groups of C

have been placed in Equation (3.2).

/Tn(C;Z)^

Z,

<0,

for n = 0,3

for 7i = 1 (3-2)

Z2, for n = 2

Contrasting the results from Equations (3.1) and (3.2), we see that B"n(C;Z) is 

not isomorphic to Hom(#n(C),Z) for n = 1,2 and so the intermediate step of dualizing 

a chain complex to form cohomology has a further reaching effect as its end result. 

We complete this section with a discussion regarding exact sequences. Example 3.3.4 

shows that the dual to a short exact sequence need not be exact. This result may seem 

insignificant now, but its importance shall be made more transparent in the next section 

and in ensuing chapters.

Example 3.3.4. Let f : Z —> Z by f(n) = 2n and g : Z —> Z2 by g(n) = [ti]2. Then 
0—4 Z 4 Z2 -> 0 is exact, but its dual with G = Z fails to be exact.
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Proof. By Theorem 2.2.2, 0 —* Z -4 Z and Z —> Z2 —> 0 are exact since f is injective and 

g is surjective. Finally, the sequence : 0 —> Z X Z Z2 —> 0 is exact at Z -4 Z Z2 

since Im/ = 2Z = Kerg. Let G — Z and dualize £01. The resulting co-chain complex is

SDt*  : 0 <— Hom(Z, Z) £ Hom(Z, Z) £ Hom(Z2, Z) <- 0.

We claim that exactness fails at 0 «— Hom(Z,Z) £ Hom(Z, Z), in other words, /*  is not 

surjective. Take any p G Hom(Z, Z) and n 6 Z. Then, for n G Z,

/*(^(n))  = ¥>(/(n)) = p(2n) = 2p(n).

Hence, as before, /*  acts as the “times two” map from Hom(Z, Z) to Hom(Z,Z). But, 

by Example 2.4.2, Hom(Z,Z) S Z, and /*  clearly does not map onto Hom(Z,Z). Thus, 

for example, id £ Im /*,  where id is the identity of Hom(Z, Z). □

Consider the exact sequence A -> B —> C —> 0. Then, the corresponding dual 

sequence A*  +- B*  C*  <- 0 is also exact [Hun74]. Now, from Example 3.3.4, if 

0 —* Ai —> Ao —> A —> 0 is exact, then 0 A*  <— Aq <— A*  0 need not be exact. 

From this, if we place a 0 to the left of A in A —> B —* C —» 0, then exactness is no 

longer preserved on the dual sequence. As a result, duality is said to be right exact since 

it preserves exactness on the right on the corresponding dual sequence. If we think of the 

subscript on A as a degree, then in the previous example we see exactness fail at degree 

one. In general, when working with an exact chain complex, the first place one may look 

for nontrivial homology will be at degree one on the corresponding co-chain complex. 

This location to look for nontrivial homology will be defined in the next section, but first 

we consider one more important fact about short exact sequences, which will used in the 

proof of the Universal Coefficient Theorem.

Theorem 3.3.5. Let R be a PID and G an R-module. If0->A^B-^P->0 where 

P is projective, then 0 «— Hbm(A, G) 1— Hom(B, G) f- Hom(P, G) <— 0 is exact.

Proof. By Theorem 2.3.6, since P is projective, 0 A -> B -> P 0 splits. That is, 

B = A ® P. Consider the commutative diagram below.

0 ——> A - B . p —> 0

4 4a 4

0 ——> A - > A©P - p —> 0
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Let G be an abelian group. Now dualize both short exact sequences (rows of the diagram). 

Denote Hom(A, G) as A*,  and similarly for B*  and P*.  In the following diagram, we do 

not assume the top row is exact although by Theorem 2.3.6 we know the bottom row is 

exact.

0 <— a* B* P*  <—— 0

idj*

0 <— A* 4*  ® P*  < P*  <----- 0

From Example 3.3.4 and the discussion thereafter, we know exactness may only fail at 

A*.  Let a G A*.  We seek (<p,ip) G A*  © P*  such that i*((p,^)(a)  = o(a). Notice that 

injects into the left component of (p,ip). So, ii(tp,ip)(a) = p(a). Thus, a = tp, with 

ip = 0. So given a G A*  there exists (a, 0) € A*  © P*  with i*(a,  0) = a. Set ft = /i*(a,  0). 

Then commutativity guarantees that f*(ft)  — ii(7i*) -1Q3) = ^i(x 0) = a. Therefore, /*  

is onto, and by Theorem 2.2.2, 0 <— A*  B*  A C*  <— 0 is exact. □

3.4 Ext Groups

Recall, in Example 3.3.4, we saw that the dual of an exact sequence need not 

be exact. As mentioned before, the first place one may look for nontrivial homology is 

at degree one on the corresponding co-chain complex. Now computing homology on the 

co-chain yields S Z2.

Definition. 3.4.1. [Hat02] Let H be a %-module. Consider the following long exact 

sequence, {Fi. fi}, of free abelian groups

■ • • A F2 A Fj A Fo A H -*  0.

Then, we define Extn(H, G) = Hn(F; G) for n > 0.

Using the notation from Definition 3.4.1, we say F = {Fi, fi} is a free resolution 

for H if Fi is free for all i > 0. Every Z-module possesses a free resolution of Z-modules of 

the form 0—> Fi —> Fo —> H —> 0 obtainable in the following manner: take the collection 

H — {ha : a G /}, set Fo = a free abelian group generated by ha for all

a G Z, define the map e : Fo —> H by e ni ha,] = nihai where e takes finite 
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summands of elements of H with no relation to each other, then imposes a relation under 

the addition in H. Finally, set F± = Ker e. After applying the aforementioned process, 

one may say 0—> Fi —► Fo —> B —> 0 is a free resolution for H since, by construction, Fq 

is free and Fi, a submodule of Fo , is free by Theorem 2.3.2 since Z is a PID.

This statement is very strong since, as we shall see in Theorem 3.4.7 and Corol

lary 3.4.9, any two free resolutions for H produce isomorphic Ext groups. The ability to 

construct such a free resolution, and obtain the same cohomology, is motivated by the 

following argument: given any free resolution of an abelian group H. one may use a free 

resolution of the form 0 —> Fi Fo —* // —* 0 to compute Ext.

Definition 3.4.2. [Hat02] Consider the following diagram containing rows that are chain 

complexes. Here, oti : Ci —>■ Di, although we omit the subscript for convenience.

fn+2 fn fn — 1
’ ‘ * Cn > Cn-1 > ■ • ■

1“ 1“ I’
... O„+l Dn Dn_l

The map a : Ci —> Di is said to be a chain map provided gn<x — afn for each n-

Lemma 3.4.3. Let C = {£„, fn} and D = {Dn,gn} be chain complexes with chain maps 

ct^ oj : Ci —> Di. Then m = oti — a\ is a chain map.

Proof. Begin by considering the following diagram C.

/n+1 y-, fn fn—1
* ‘ > Cn * Cn—1 * Cn-2 > '

Mn j, yh—1 j, Mn —2 j,

Sn+1 . . j-i 9n—l , p,• ' • > Dn * Dn—1 * Dn—2 ► ' ' ‘

The collection {fin ■ Cn —> Dn} will be a chain map provided gnp-n = gn-ifn for all n. 

Let xn €Cn. Then

gnp"n(%n) = #n(“n “nX^n)

= Pn“n(^n) ~

— “n—~ <^n—ifn(,^n)

(“n—1 an—l)fn(xn)

= Pn—1 fn (%n ) •

Therefore, the collection {/zn : Cn —> Dn} is a chain map. □



23

If a : Ci —> Di is a chain map, then it sends boundaries in Ci to boundaries in Di 

and cycles in Ci to cycles in Di. In that case, there exists a well-defined homomorphism 

a» : Hn(C) -+ Hn(V).

Lemma 3.4.4. [Hat02] A chain map between two chain complexes induces a homomor

phism on the homology groups of the complexes.

Proof. Let C= {Cn3 9} and 79 — {Dn, <9} be chain complexes with an : Cn Dn a chain 

map. Consider the following commutative diagram where a = an.

-^Cn~ 9 -Cn_i- 9 .----- On_2 ’
1

a

b b b
^Dn- ’ Pn—1 " A *-2- On-2’ 9

Since a is a chain map da = ad. We claim that a takes cycles to cycles and boundaries to 

boundaries. Let p G Ker d C Cn. Then, dap — adp = a(0) = 0. So ap 6 Ker d C Dn. 

Now take d(c) G Im d G Cn- where c 6 Qi-t-i- Then, ac?(c) = 3ct(c) 6 Im d G Dn. So, a 

induces a homomorphism a» : Hn(C) —> Hn(D)- □

Definition 3.4.5. [Hat02] Let C = and V — {Dn,5} be chain complexes with

chain maps an : Cn Dn <and a'n : Cn —* Dn. Consider the commutative diagram.

9

Pn

fl *
Dn_|_i -

A

SI /

Dn

■> Cn_i

Oin-l

d 
1 -----

9

d

Then an and a'n are said to be chain homotopic if there is a map Pn : Cn —> Dn+i such 

that an — a'n = dPn + Pn_i5 for each n.

Lemma 3.4.6. [Hat02] Let an and a'n be chain homotopic, then an and a'n induce the 

same homomorphism on homology.

Proof. In this proof we adopt the notation and refer to the commutative diagram from 

Definition 3.4.5. Since an and a'n are chain homotopic, there exists a chain homotopy



24

Pn : Gn —► Dn+\ such that an — a'n — dPn + Pn-id- If fi 6 Ker<9 C C*„,  then since 

dfi = 0, a:n(/5) - = dPn(fi) + Pn-id(fi) = dPn(fi) € Imc? C Dn. So we see that

ctnfjty — <44/4 + Im9 = ImJ 6 Hn(T>). Thus, On(/3)+ Imc? = aJ4/3) + Im<9 for fi 6 Ker3. 

Consequently, an(fi) and 44/4 determine the same homology class in Therefore,

an and afn induce the same homomorphism on homology. □

From Lemma 3.4.4, we know that given any chain map a between two chain 

complexes, say C and V, a induces a homomorphism between the homology groups of 

the complexes. Now, by Lemma 3.4.6, for any chain map a' between C and 7? which 

is chain homotopic to a, a and af will induce the same homomorphism on homology. 

We will use these results to help prove the next theorem which shows that one can 

extend a homomorphism between abelian groups to a chain map between respective free 

resolutions. Most importantly, all such extensions will be chain homotopic, and therefore, 

induce the same homomorphism on homology.

Theorem 3.4.7. [Hat02] Given any free resolutions F and Fr of abelian groups H and 

H!, then every homomorphism a : H —> H’ can be extended to a chain map from F to 

F'. Furthermore, any two such chain maps extending a are chain homotopic.

Proof. Consider the following diagram, with F} and F( free for all i.

■> f3 ■ f2 Fl

4 4 "‘1
- ■--- ► F{

0

0

We will begin the proof by constructing the chain map {a$} extending the map 

a : H —* H' from F = {Fi, fi} to F' = {F-, fl}. In constructing the chain maps ai, one 

must ensure the diagram £ commutes, that is, an_ifn = f^an for n > 0, where ct_i = a. 

We construct ai on the basis elements of the free groups Fi. Let {be a basis for Fo 

for some indexing set {7:76 I}. Observe, by Theorem 2.2.2, f( is surjective. Therefore, 

for any ct/b(/?o) e there exists (fify' e Fq such that X) ~ a/o(^o)- So, define

cio : Fo —> Fq by fi® i-> (0q)'. Since Fq is free, this map is well-defined. The map 

cki : Fi —> F{ will be constructed similarly to ag. Let {ftf} be a basis for Fx, where we 

consider {7 : 7 € /} to be a new indexing set. We seek to find (fi])' 6 Fx with the property 
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fi((/?i X) = aofi(0i)- The existence of such an element is guaranteed provided aofi(^) 

is a member of Im/{. By exactness, it suffices to show aofi(0i) € Ker/o = Im/{. Let 

0 € Fi, and let 0 be the zero map. Observe, /oC^o/i(/3)) = afofi(^) = a0(/3) = a(0) = 0. 

Set cq : Fi —> F{ by 0j (fli)'- The remaining may be constructed in the same 

manner as cq.

Next, take another chain map extending a, say with maps : Fi —> F[. Set 

pi = a-i — o^. Applying Lemma 3.4.3 we conclude that the p/s form a chain map 

extending p = a — a = 0 : H —> H'. We claim that the two chain maps are chain 

homotopic, that is, there exist maps Pi : Fi —> F/+1 such that pi = fl+1Pi + Pi-ifi- 

The Pi’s will be constructed similar to the afs. When i = 0 set P_i = 0 : 7/ —> Fq. 
So, for i = 0, we wish to establish po = f{Po- To achieve the relation, let Pq send 

a basis element 0$ € Fo to an element (0])' G F{ so that po(0q) = fi((f*iXX  Now, 

such a G F{ exists since Im/{ = Ker/g and /q^o(^o) = pfo(0o) = #(0) = 0. In 

other words, po(0o) G Imf{ implies there exists G F{ such that po(0q) = /{(G^iXX 

as desired. To define the remaining F/s we wish to send a basis element 07 G Fi to 

some PiV’) = Ji+i)' 6 fi+i with /i+i-PiW) = «(#) - -Pi-i/it/?,7)- That is, we need 

w(ft7) “ 6 Im/i+i = Ker//. Now,

XfwW-WiW)) = flpiiffl-fiPi-ifiWT)

= f’M+iPitfl) + Pi-ifiWY) ~ fiPi-ifiW) 

= fifl+iPitfi) + flPi-ifiW) ~ fiPi-xfiW) 

= fifi+iPiW)

= 0.

So, there exists P^) = e F-+1 such that fi+iWi+iY~) = FiiPi') ~ Pi-ifi(0i)-

For any basis element 07 G Fi set P{(07) = (Ah-iX- This completes the construction of 

the chain homotopy, and therefore the two extensions of a are chain homotopic. □

Remark 3.4.8. If an and a'n are chain homotopic, then so are a*  and

Proof. Consider the diagram.
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a a a-2*C n+1

Qn+1 ;

-Xd„+i-

«n+l
Pn

Cn

an
Pn-l

Cn-1

■ / \
Qn-1

a <1 f +•■ 
Dn~

<-i ;

SI / 

—>■ Dn-ia a

Since an and afn are chain homotopic, there is a chain homotopy Pn : Cn —* Dn+i such 

that an — a'n = dPn+Pn-id- Let G be any abelian group and dualize the diagram above.

d r»*  d r>*  . d
n+1 < L'n c n-1

.jt' f *

“n+l
P>’’’

<*n ;k)’
PZ-i....-

“n-l

d n*  ______d___ d n*  , __n+l n—1 '

Claim P*  : D* +1 —> (7*  defines a chain homotopy on the co-chain complex, that is, 

a*  - (a„)*  = P7*d  + dP*_ r for each n. Let tp 6 D* . For x 6 Dn

(pn ~ (°4)*)  (v7)^) = - Kf (P)(®)

= ip(otn)(x) - p(a'n)(x)

= <p(an(x) — aln{x))

= <p (dPn(x) + Pn-19(x})

= (<pd)Pn(x) + (<pPn_i)d(x)

= Pn(<fid)(x) + d^tpPn^x) 

= P*d(x)  + dP*̂(x).

Thus, P*  defines a homotopy, and a*  and (a^)*  are chain homotopic. □

The following corollary says that if we have two free resolutions F and Fr for 

abelian groups H and Hf with chain maps between them, then the cohomology groups are 

the same up to ismorphism. The significance is that if we take two free resolutions for a 

single group, say H, then the cohomology groups are the same using either free resolution. 

Thus, the cohomology groups are independent of the choice of the free resolution, and
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only depend on the coefficient group G and II. Consequently, Ext(H, G) does not depend 

on the free resolution F. Recall that every Z-module H has a free resolution of the form 

Q Fl —> Fq —> H —> Q. So, to compute G) with respect to any other free

resolution ■ ■ ■ —> F2 —* Fi —> Fq -> H —> 0, it suffices to calculate cohomology of the 

shorter sequence. Adopt the notation from Theorem 3.4.7 in the proof of Corollary 3.4.9.

Corollary 3.4.9. [Hat02] Given any two free resolutions F and F' of abelian groups 

H and H', with isomorphism a : H —> Hf, there are canonical isomorphisms such that 

^(F^G) = Hn(F';G) for all n. Therefore, considering a = id: II —> II, Ext(H,G) 

depends only on H and G, and not on the free resolution chosen to build Ext(H, G).

Proof Let G be an abelian group. By definition, if Fn Ffn then a*  : F£ —> F*  

because of the composition Fn p/ G. So, an dualize to q* : Ffr —> F*,  where 

F^*  = Hom(F^,G) and F*  = Hom(Fn,G), forming a chain map extending a*  between 

the co-chain complexes F*  and F'*.  Thus,, by Lemma 3.4.4, a*  induces a homomorphism 

between the cohomology groups of F and F'. Furthermore, if one takes another chain 

map extending a*,  say q£, then by Remark 3.4.8, a*  and a'*  are chain homotopic by 

the chain homotopy P*.  Moreover, a*  and a'*  will induce the same homomorphism on 

the homology of the co-chain complexes, that is, induce the same homomorphism on the 

cohomology groups of F and F1.

Consider the case when a : H —» H' is an isomorphism. Then, there is a map 

a : Hf —> H so that aa = Iff/ and era = Iff. Examine the following commutative 

diagram.

—> f2 - > Fi -- * Fo H —> 0
■4 “d 4 4

Eg -—> F] - - > 0
n 1 4 ’“I 4

—* f2 —> Fi -- > Fq —> H —> 0
By commutativity, we may extend aa — Iff by <7nan forming a chain map. Similarly, 

extend acr by anan. Let G be an abelian group and dualize, then fra)*  = (1//)*,  and 

(anan)*  extends (I//)*-  Similarly, since (aoj*  = we have that (anan)*  extends

(Iff/)*.  Next, observe (anan)*  = ofc*  and (crnan)*  = cr*a£.  So, a^o*  = 1F,. and 

er*  a*  = .1F*. Thus, a*  and cr*  are isomorphisms. From this, if a*  is an isomorphism then
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so are the induced homomorphisms a*  : Hn(F-, G) —> Hn(F'; G) for all n. So, if F and Ff 

are free resolutions for H, then we may take a = 1#, and the co-chain complexes are chain 

homotopic. Therefore, since Ext(ff, G) = B1(F; G), Ext (If, G)f = G)f'- □

The corollary below shows that for any free resolution F for a Z-module H, it 

suffices to compute Ext1 (If, G) = ’Ex.t(HiG) since Extn(If,G) = Hn(F,G) is trivial for 

all n > 1.

Corollary 3.4.10. Let H and G be %-modules. Then ExF(H, G) = 0 for n> 1.

Proof. Recall that since If is a Z-module it has a free resolution F of the form

0 —> Fi —> Fo —> If —> 0.

Also, by Corollary 3.4.9, we know that Extn(H. G) is independent of the free resolution 

used. Therefore, for any other free resolution F’ for H, Extn(ff, G)f — Extn(If, G)p' for 

each n. We can view F as

------- >0—>0—>0—>Fi—>Fq—»If—>0.

Take any abelian group G and dualize to obtain the co-chain complex

... e- 0 <- 0 <- 0 <- Fx Fq <- H*  <- 0.

Then it is clear for n > 1, that Extn(If, G) = ^er = — {0}- O
Im 0 {0}

For the remainder of this chapter we will explore some properties of Ext, which 

will prove to be useful in Chapter 5. In order to do so, we first study how one may obtain 

a free resolution for a direct sum of two abelian groups.

Lemma 3.4.11. Suppose Gi and G2 are abelian groups, and Hi < Gi,H2 < G2. Then

Gi G2 ^Gi^G2
Hi ® H2 Hi®H2

Proof. Let tp : © g*  -> be defined as + Ifi, g2 4- H2) = (pi, g2) + Hj © H2

We show p is (1) well-defined, (2) a homomorphism, (3) injective, and (4) surjective.
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1. Suppose that (gi + Hi,g2 + H2) ~ (gi 4- Hi,92 + #2)- Then gi = gi + hi and 

92 = 92 + h2 for some hi G Hi and h2 G #2- To prove 9? is well-defined we show 

97(pi + Hlt92 4- H2) = <p(9i + Hi,92 + H2). Now

<p(gi + Hi,g2 + H2) = (gi, 92) + Hi ® H2

= (pl + hi, 92 + h2) + .H] ® H2

~ (.9n92) + (hi, h2) + Hi® H2

= (pb 92) + Hi © H2

= <p(gi + Hi,g2 + H2).

Thus, 9? is well-defined.

2. For any (31 4- Hi, g2 + H2), (gi + Hi, g2 4- H2) € g}- © &,

ip ((51 4- Hi, 92 + H2) + (pi + Hi,g2 + H2))

~ <Xpi+pi + J7i,P2 + P2 + #2)

= (pi + Pi) 92 + 92) + Hi © H2

= (P1>P2)+^1 ® ^2 + (pl>p2)+ P1 ® ^2

= T’ttpi +Hi,g2 + H2)) + <p((pl + Hi,g2 + H2))

So 97 is a homomorphism.

3. Let (gi + Hi, P2 + H2), (pi + Hi, g2 + H2) G and suppose that we have

97 (pi + Hi,92 + H2) = 97(pi + Hi,g2 4- H2). Then, by the definition of <p,

(91,92) + Hi® H2 = (91,92) + Hi® H2.

Thus, (pi, P2) = (91,92) + (hi, h2) for some (hi, h2) G Hi ® H2. Component-wise, 

Pi = pi + hi and g2 — 92 + h2, where hi G Hi and h2 G H2- Then

(pl + Hi, P2 + H2) = (pi 4- hi + Hi, g2 4- h2 + H2) = (pi + Hi,g2 4- H2).

Therefore, tp is injective.

4. This map is clearly surjective since the arbitrary element (91,92) + Hi © H2 is the 

image of the element (pi + Hi, g2 + H2).
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So p is an isomorphism. This completes the proof. □

Theorem 3.4.12. Let F and Ff be free resolutions for abelian groups H and H', respec

tively. Then F ® F’ is a free resolution for H © H1.

Proof. Let F = {Fi, fi] and F' = {F-. /•} be free resolutions for H and JI', respectively. 

Set fa = fi® fi : Fi © F- F{_i © Ffix by fa(a, b) = fi(b)). Notice Fi © F/ is

free for all i, as the direct sum of free groups. So it suffices to show that the sequence 

F © Fl = {Fi © F-, / J is exact. Now Im /i+1 c Ker fi since, for (a, b) G Ff+i

= = (/i/i+iW, A!/<+iW) = (o,o).

To show the reverse inclusion, let (a, fl) G Ker fa. Then (0,0) = fa(a,fl) = (fi(a), fi(fl)), 

and we see a G Ker fi = Im fi+i and fl G Ker /• = Im //+1. So there are c G Fi+i and 

such that a = /»+i(c) and fl — fi+1(cf). Finally, Im fi+1 c Ker fi since

(«50) = (/i+i(c),/-+i(c')) =7i+1(c,cz) € Im/i+i-

Therefore, the sequence is exact, and F © F' is a free resolution for H © H!. □

Theorem 3.4.13. Let F and Ff be free resolutions for abelian groups H and IF, respec

tively. Let G be an abelian group. Then the following are true :

1. Ext(H, G) = 0 if H is free.

2. Ext(H © H’, G) Ext(H, G)®Ext(H', G).

3. Ext(%n,G) = G/nG

Proof.

1. We begin the proof by first noting, since H is free, it has a free resolution of the 

form 0 —» H H —> 0. Let G be an abelian group. Recall, Ext (If, G) does not 

depend on the free resolution by Corollary 3.4.9. If we dualize 0 —> H -i H —» 0 

with coefficient group G, we obtain the sequence 0 FF <— II*  <— 0. Then

Ext(ff,G) = 121 = {0}.

This completes the proof of (1).
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2. Since F = {Fj, fa} and F' = {F/, /■} are free resolutions for H and H*,  F © F' is a 

free resolution for H © H( by Theorem 3.4.12. So we have the following sequence

• • • A F2 © Fi Fi © F{ A Fo © F(i A H © Hf —* 0.

By Theorem 2.4.4, we know (A © B)*  = A*  © B*.  Let G be an abelian group, and 

dualize the sequence while applying Theorem 2.4.4 to obtain

• ■ • A F2* © (Fi)*  Fi*  © (F{)*  A Fq © (Fq)*  A F ® (H'y <— 0.

In the above sequence we claim /„ = /„ © (/„)*•  Let (an, bn) G Fn © F„. Then for 

V’etFn-iSF;,!)*.

/n(V’)(an, f’n) = 'lP(fn(o,n, bn)} = /n(&n)) = (fn © fn) C0)(an> bn)*

so, 7; = (/„©/;/= /*©(/;/.
Claim 1: Im/*  = Im /*  ©Im (/')*.

Let (a',/3') G Im /’. Then, for (a, b) G Fn © F£, there exists (ct,fi) G F*  © (F„)*  

such that /*(a,^)(a, b) = (a',fi')(a,b). Now

7n(ot,fi)(a,b) = (a,fi)7n(a,b)

= (a, fi)(fn(a), f^(b))

= (afn(a),/?&(!>))

= (/*a(a),  (/;)*j3(b))  G Im /*  ©Im (/i)’.

So (a',fi') G Im /*  © Im (/£)*,  and Im/*  C Im /*  © Im (fh)*.  For the reverse 

inclusion, let (ct,/?) G Im /*  © Im (fh)*.  Then, for (a, b) 6 Fn © F£, there are 

a € F*  and fi G (Fh)*  such that (a',/3')(a, b) = (XJa(a), (fn)*fi(b}).  So

(a\fif)(a,b) = (^(afifi^bf)

= (f^(a)M*fi(b})

= (a/n(a),j0/;(b))

=

= (a>fi)fn(a>b)

= /:(a,^)(a,b)G Im/;.
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Thus, Im/*  = Im /*  ©Im (/')*,

Claim 2: Ker/*  = Ker /*  © Ker (/')*.

Let (a, t>) G Fn © F^, and let (a, /?) G F*  © (F')*.  Then

(a^)eKerK 7„(a,/W>&) = (0,0)

(/* a(a)l(/A)W)) = (0J0) 

<=> (a,0) G Ker f*  © Ker (/')*.

Therefore, Ker/*  = Ker /*  © Ker (/„)*.

Now, by definition and claims (1) and (2),

Extn(R©H',G)
Ker /*  _ Ker /*  © Ker (/')*

Im Im ffi Im (_&_,)•
and

Ext"(77, G) e G) = ® g-gl

By Lemma 3.4.11,

Ker /• ffi Ker W Ker % Ker (/')» 
Im f^-i ® Im (/'_i)’ Im K-i Im (/U1)’

since Fn and F^ are abelian. This completes the proof of (2).

3. Consider the short exact sequence 0 —> Z Z Zn —► 0, where f(k) — nk 

and 7r(fc) = [&]n. Let G be an abelian group and dualize to obtain the sequence

0 <— Hom(Z, G) Hom(Z, G) X- Hom(Zn, G) «— 0.

By definition, Ext(Zn,G) = H1(Zn;G) = ~T-^ = Hom(Z, G) ciajm that
Im /* Im /*

Im /*  = nHom(Z, G). Given any if G Hom(Z, G) there exists a unique g G G 

such that y»(n) = ng. So we may express if = ifg, where ifg(n) = ng. Then 

f*Ws)( fc) = V’g (/(&)) = ~ mpgtk). Thus, given any if — ifg G Hom(Z, G),

f*(if g) = nifg. Therefore, Im /*  = nHom(Z, G). So

Ext(Zn,G) —
Hom(Z, G) 
nHom(Z, G) ’

To complete the proof it suffices to show —77—— ~=. Consider the map 
nHom(Z, G) nG F

p : Hom(Z, G) —> G/nG by p(ifg) — g + nG. Let ifg,ifh G Hom(Z, G), and
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suppose V’p = V’h- Then j)3 — implies n(g — K) = 0. Therefore, g — h G nG, 

which happens only if g 4- nG = h 4- nG. So p(ipg) = <p(i/>h)> and therefore, tp 

is well-defined. For any ipg,iph € Hom(Z, G) notice + iph = and that

ptyg + ^h) = <ptyg+h) = (g + h) + nG = (g + nG) + (Ji + nG) = p(t/>g)+p(M- So 

p is a homomorphism. Thus, by the first isomorphism theorem for groups,

Hom(Z,G)

Ker p

Finally, we show p is surjective and Ker tp = nHom(Z, G). If both statements are 

true then we have

Hom(Z, G) ~ G 
nHom(Z, G) nG’

and by transitivity, Ext(Zn, G) = —.

To show <p is surjective, let g + nG 6 G/nG. We seek ify G Hom(Z, G) so that 

) = 9 + nG. So find g' G G such that gf + nG = p + nG, which happens only if 

gf = g-Anh for some h G G. So given g+nG G G/nG choose G Hom(Z, G) where 

g1 = g -j- nh for some h G G, then p(i/>g>) = <p(ip(g+nh)) = (fl + nfr) + nG = g + nG. 

Therefore, p is surjective. Next notice if i/)a G Ker p then ptyg) = g + nG = nG,

and thus, g G nG. So g — nh for some he G. Then

j>g(k) — $nh(k) = n(hk) = ni/gfk) € nHom(Z, G).

Hence, Ker tp c nHom(Z, G). For the reverse inclusion, take nj)h G nHom(Z, G). 

Then ntphfk) = i/>h(nk) = n(hk) + nG = nG. So we have niph G Ker tp, and 

Hom(Z, G) C Ker p. Therefore Ker tp = nHom(Z, G). This completes the proof of 

(3).

□

We will apply the properties from Theorem 3.4.13 to help prove the following 

examples.

Example 3.4.14. Ext(Z, Z) = 0.

Proof. Observe that H = Z is a free Z-module. Therefore, by property (1) of Theorem

3.4.13, Ext(Z, Z) = 0. □
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Example 3.4.15. Ext(Zn,Z) = Zn.

Proof. By property (2) of Theorem 3.4.13, Ext(Zn,Z) = Z/nZ, but then Z/nZ = Zn. 

Therefore, Ext(Zn,Z) = Zn. □

Example 3.4.16. Ext(Zn, Zm) Za, where d = gcd(m} n).

Proof. By (3) of Theorem 3.4.13, Ext(Zn, Zm) = We show that Zm/?!Zm = Z^,

where d — gcd(m, n), via the map tp : Zm —> Z^ by = [a]d for all [a]m G Zm. This

completes the proof. □

Example 3.4.17. Let H be a finitely generated abelian group. We will prove that 

Ext(H, Z) = T’(H'), where T(H) — {h G H [ nh — 0 for some nonzero n G Z) is the 

torsion submodule of the Z-module H as defined in Example 2.1.6.

Proof. By the fundamental theorem for finitely generated abelian groups,

H ==Z©Z®,,*©Z©  Znj © Z^2 © • • • © Zn^ •

Identify H as its isomorphic direct sum, and observe that Ext (77, Z) = Ext(77z, Z) when

ever H = H' by Corollary 3.4.9. Notice for each copy of Z if h / 0 and nh = 0 then 

n = 0 since Z is an integral domain and has characteristic zero. Now observe for each 

i G {1,2,..., A:}, Zni has characteristic z/. Therefore, T(H) = Zni. Thus, it suffices 

to show Ext (77, Z) = ©jLiZm- Using (2) from Theorem 3.4.13 and the previous two 

examples, we have

Ext(B,Z) = Ext(Z © Z © • • ■ © Z © Zni © Zn2 © - • • © Znfc,Z)

— Ext(Z, Z) © • ■ • © Ext(Z, Z) © Ext(Zni, Z) © • • • © Ext(Z^fc, Z)

— {0} © {0} © * ■ • © {0} © Zni ffi Zn2 © • • • © Znfc

— Zni ® ^n2 ® ’ ’ * ® ^“n-k

= ©Zn.

1=1
T(H).

□
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In this chapter homology and cohomology were introduced, and we saw that 

there are differences between the two. In particular, we discovered that cohomology of 

a chain complex may not be trivial despite the fact that homology is. In doing so, we 

brought to the forefront a limitation of the Universal Coefficient Theorem, thus showing 

the theorem may not apply to any chain complex, rather, it applies to chain complexes 

which consist of only free abelian groups. This result lead us to the definition of the Ext 

group. We also have proved many properties of the Ext group, which will be used in 

Chapter 5. We now have the mathematical machinery in place to prove the Universal 

Coefficient Theorem.
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Chapter 4

The Universal Coefficient

Theorem for Cohomology

As we have seen, given a chain complex C = (Gn, 8}, one may compute the coho

mology groups of C by choosing an abelian group G, replacing Cn with G*  = Hom(Cn, G), 

and finally, computing the homology of the resulting co-chain complex {C*,  d}. Since it 

seems there is an algebraic relationship between Hn(C-,G) and Hn(C), one may wonder 

that if Hn(C') is known, then can Hn(C; G) be computed? The Universal Coefficient 

Theorem for Cohomology states that we can. The theorem allows one to express the co

homology of a chain complex, with arbitrary coefficients, in terms of its homology groups 

with integer (universal) coefficients.

Without the theorem one may guess that Hn(C\ G) = Hom(J7n(C), G). In cer

tain instances this is true (see Chapter 5 for details); however, the statement does not hold 

in general. For instance, recall the chain complex from Example 3.2.2. From Examples 

3.2.2 and 3.3.3, H2(C) = 0 and H2(C,Z) S Z. Now, Hom(B2(C),Z) Hom(0,Z) S {0} 

which is clearly not isomorphic to Z2 = #2(C;Z). We more thoroughly investigate these 

differences in Chapter 5.

We have not introduced the Universal Coefficient Theorem, but if we apply it 

to 5K in Example 3.3.4, we obtain that H1(SUt;Z) = {0}. But computing cohomology 

directly yields Z) S Z2. This difference arises from the fact that, in Tl, Z2 is

not a free abelian group. The Universal Coefficient Theorem only applies when the chain 

complex in consideration consists solely of free abelian groups. We now introduce the tool 
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which expresses cohomology in terms of homology, known as the Universal Coefficient 

Theorem.

Theorem 4.0.18 (The Universal Coefficient Theorem for Cohomology). [Hat02] 

Consider a chain complex C of free abelian groups

______ n n fin n dn-l

If C has homology groups Hn(C), then the cohomology groups Hn(C\ G) are determined 

by the split exact sequence

0 —> Ext(Hn^(C), G) —> Hn(C, G) —> Hom(Hn(C), G) —> 0.

Thus,

Hn(C-, G) ExttHn-fiC), G) © Hom(Hn(C), G).

The proof will be separated into two parts. In Section 4.1, we show there is a 

well-defined surjection h from Hn(C;G) to Hom(7?n(C), G). Secondly, in Section 4.2, we 

investigate Ext(J7n_i(C), G) by analyzing a series of diagrams, and complete the proof of 

the Universal Coefficient Theorem.

4.1 Part I : Construction of h

We will first construct a homomorphism h : _H”(C;G) —> Hom(/fn(C), G). 

Then, we will demonstrate that h is well-defined. Finally, it is crucial that h be surjective 

because if h is surjective, then, by Theorem 2.2.2, £Tn(C;G) —> Hom(Hn(C),G) —* 0 is 

exact, establishing part of Theorem 4.0.18. Before we begin, we must prove the following 

lemma, which states that if you have a map defined on a quotient group, then there is a 

way to extend it to a larger domain.

Lemma 4.1.1. Letp : G/N —» H, where N <1G,H are groups. Then there exists a map 

<p : G —* H so that if tf : G —> G/N is the canonical projection, then = p o 7r.

Proof This follows directly from composition of functions, in particular, the composite 

<p:G G/N %H. □
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Theorem 4.1.2. Adopt the notation from Theorem 4.0.18. Then the following are true:

1. There exists a well-defined homomorphism h : Hn(C; G) —> Hom(Hn(C), G);

2. h is surjective.

Proof. (1) We desire a homomorphism which takes us from IIn(C; G) to Hom(Bn(C), G). 

Let d — d*  : Hom(Cn,G) —> Hom(Cn+i, G). So we wish to construct a map from 

Kerd/Imd to Hom(Bn(C), G). Now, [a] G Hn(C-G) means a G Kerd C Hom(Cn,G). 

Next, let do = a]zn, where Zn = Ker3n. Thus, ao Zn ■-> G. Let Bn = lm<9n+i. We 

will show that a^(Bn) — 0. Let l3 G Bn. Then, 0 = Sn+i7 for some 7 G Cn+i. Observe, 

ao(0) = a(0) since cvo is a restricted to a smaller domain. So

Bn c Ker3n — Zn < > olq(J3) = Mj3)

= a(8n+i7)

= adn+l(7)

— da (7)

= 0.

So, [a] G Hn(C; G) means a must lie in Kerd. Moreover, do|.Bfl — 0. Since do(Bn) = 0, 

do induces a homomorphism ao from ZnjBn to G. From this, we will define our map 

h : Hn(C’,G) —► Hom(Bn(C), G) by ft [a] = do- Thus, ft is the two step process which 

first restricts a to Zn. then projects the result to be a map on a quotient.

To show h is well-defined, suppose there are [a], [/?] G Hn(C:G) such that 

[d] = [/?]. We must demonstrate ft([a]) = ft( [/?]). Observe [d] = [/?] implies a = 0 4- Imd. 

Now h is linear since it is the restriction of a linear map composed with a quotient map. 

So, showing ft is well-defined is equivalent to showing A(Imd) = 0, since if ft(Imd) = 0, 

then ft ([a]) = h([0 4- Imd]) = ft([/?]) 4- ft (Imd) = #([/?])■ If 7 € Xmd there must be some 

r 6 Hom(Gn_i, G) such that 7 = dr. Now, h(g)(a) — h(dT)(cf) = t(8(ct)) = t(0) = 0 for 

any cr G Zn. So, ft([a]) = ft([/?4- Imd]) = ft([/3]) 4-ft(Imd) = ft([/?]). Hence, ft well-defined.

(2) We show ft is surjective by finding a map : HomG) —> Hn(C; G) 

such that hois the identity map on Hom(Bn(C), G). Consider the following short exact 

sequence of free Z-modules C, where Zn —» Cn is the inclusion of Zn into Cn:

0 —> Zn —> Cn —* Bn-i —> 0.
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Since Z is a PID, and Bn_i is a submodule of the free module Cn_i, € is split 

exact. So, by Theorem 2.2.4, there must be a projection map p-. Cn —> Zn such that iop 

is the identity map on Zn, where i Zn Cn is the inclusion homomorphism. We will 

use the following short exact sequence to construct

0 —> Zn Cn —> Bn—l 0-

Let p G Hom(Bn(C), G). Then, by Lemma 4.1.1, there exists a map p ■. Zn G, where 

p — p o 7r. This gives us a map ft as an extension of p by p, defined by the composite 

ft : Cn A Zn G. We must show ft G Kerd, where d : C*  —> C* +1 is the differential 

on cohomology with coefficients in G. Once we establish this, we set '&[</?] — [0], the 

equivalence class represented by ft in Hn (C; G) = Ker d/Im d.

We now show dft = 0. Let 7 € Bn+i(C), and we will apply it to dft. Notice that 

Bn C Zn, so that p|fln = id\zn. So,

^(7) = ft(dg) = p(p(dj)) = p(dg).

Now p : Zn —> G was constructed to factor through the projection homomorphism tt, as 

in Lemma 4.1.1. So denoting 77(^7) = [£7], we have

^(^7) = = ^(0) = 0.

It is now clear that dft = 0.

We now prove assertion (2) by showing hoi! — Id. where Id is the identity map 

on Hom(Bn(C), G) for the following reason: If h o = Id, then the map h is surjective, 

since it is the second in the composition of maps which is equal to a surjective map. 

Consider any p G Hom(B7l(C), G). The map extends p from Cn to G, and after 

projection, is the element Tf/). The first step in evaluating h is to choose a representative, 

namely ft, and restrict it to be a map from Zn to G. But, since poi is the identity on Zn, 

extending p to ft, then restricting it gives you p back again. Thus, upon projection, which 

is the final step in evaluating h, we end up with p back again. Therefore, h o T = Id. 

This completes the construction of h. □

4.2 Part II : Ext(Hn_i(C), G)

By Theorem 2.2.5, since h is surjective, there exists the following short exact 

sequence. In fact, we have demonstrated it is split exact by Theorem 2.2.4 since we have
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constructed a splitting in Section 4.1:

0 —► Kerb Hn(C] G) Hom(P„(C), G) —> 0.

To analyze Kerb, consider 23 a commutative diagram of short exact sequences

0 -------- > Zn+1 -------- > Cn+l —~—* Pn -------- ► 0

1° I9 1°
0 -------- > Zn ------- > Cn -------- > Pn—1 ---------* 0.

We say the diagram above is a sequence of short exact sequences because it is a piece of 

the diagram from Figure 4.1. The maps from Zn+i —> Zn and Bn —> _Bn_i are restrictions 

of the boundary map d : Cn —> to Kerc? and Im5 C Ker <9 , and therefore, are 0. 

For example, consider d : —> Bn_i, and let p € Bn. There exists c G Cn+i such that

P = d(c). So for p G Bn, dp = dd(c) — 0.

1°
0 > ^n+2

o-- > zn+i
i°

0 -- ► z„

1°
0 Zn—i

i°

Is
Gn+2

I9
O*n+1

b
n-1

Is

^n+l
Io

- > 0
1°

Pn —> 0
1°

Pn—1 —> o
!°
n—2 0

Figure 4.1: A Sequence of Short Exact Sequences

Observe, both rows of 23 are split exact since the abelian groups Bn and Bn-1, 

being submodules of free modules, are free. Hence, dualizing will result in the following 

commutative diagram 23*,  containing rows which are exact (where d*  = d) by Theorem
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3.3.5:
R t <7*  <. d R*  t n^n+1 4 °n+l 4 4i-

(4-1)

0 <------ Z*n  —— C'n 4 d
- ^-1 —— 0.

Note, in fB*,  the maps from B^i to B*  and Z*  to Z* +1 are 0*  = 0 since 0*<p  = ip o 0 = 0 

for any ip in B*_ x and Z*.  Now 23*  is a sequence of short exact sequences, and we now 

view it as in Figure 4.2.

1“

0 <--------  Z‘n+l *
1°

0 <-------- Z’n -

T°
0 <-------- Z-_, .

0

0

0

Figure 4.2: A Dual Short Exact Sequence of Chain Complexes

Let C — {Zj,0} and C = {Bi, 0} be the chain complexes in Figure 4.1. Now 23 

gives rise to the following long exact sequence on cohomology [Wei94].

■ • • <- Hn(C-,G) £ Hn(C-,G) 4- Hn(C;G) 1- H^&G) £ G) <-------

The fact that a sequence of short exact sequences gives rise to a long exact sequence 

on cohomology is not immediately obvious, so we will give a brief discussion. Consider 

the sequence of short exact sequences 0-* aXb-^C-^0, where A = {An, d}, 

B = {Bn, 5}, and C = 5} are chain complexes. Let G be an abelian group and

dualize the sequence of short exact sequences, and represent the dual maps to f and 
g by f and g', respectively. Then 0 +— A*  7— B*  C*  <— 0 is the dual sequence 

which is short exact by Theorem 3.3.5. Now, by Lemma 3.4.4, we know /' and g' induce 
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homomorphisms f*  : Hn(B) —> Hn(A) and g*  : Hn(C) —> Hn(C) on homology. The 

“connecting homomorphism” 3 : Hn(A) Hn+1(C) [HS71], and we presently discuss 

its construction. Let a e Kerd. Then there is /3 e B*  such that f(J3) = a. Notice 

d/3 6 Kerf7 since f'(d/3) = df'(/3) = d(a) = 0. So, by exactness, d/3 G Imp7. Thus, there 

exists 7 G <?:+i such that g!(f) = d/3. So set 8(a) = 7. We leave the details of showing 

5 is well-defined and that the resulting sequence in Equation (4.2) below is, in fact, 

exact to [Wei94]. This concludes our discussion on how the connecting homomorphism 

is constructed, and now we apply its construction to our proof.

The map 5, as labeled below, is the connecting homomorphism and we follow 

[Wei94] below to describe this map, after some preliminary remarks. Since the maps 

d : B*  -+ &n+i and d : Z*  —> Z* +1 are the zero map, we have Hn(C\ G) = Z*  and 

Hn(C\ G) = B*  for each n. Therefore, we may rewrite the long exact sequence on the 

cohomology of ® as follows:

. (4.2)

The connecting homomorphism 6 takes us from Z*  to B*.  We refer to Equation (4.1) to 

compute an output of 5. Now 5 maps ao € Z*  into B*  in three steps.

1. Extend the domain of ao to Cn to get an element of C*,  and denote this extension 

by a.

2. Apply d to a to get a member of C* +1, that is, da : Cn+i —> G.

3. Finally, restrict da to Bn to obtain a member of B*.

Theorem 4.2.1. The connecting homomorphism 8, as labeled in Equation (4.2), is i*  

for all n, where i*  is the dual map to the inclusion homomorphism in : Bn —> Zn.

Proof. Let in : Bn —> Zn be the inclusions of boundaries into cycles. We will analyze the 

map 3, and wish to deduce that it is i*  : Z*  —* B*.  To compute an output of 8, one 

needs to refer to diagram in Equation (4.1) and the process just mentioned. Take 

any ao € Z*.  Since Bn C Zn the net effect of applying 8 to any ao 6 Z*  is to restrict 

ao to Bn. Now, i*  : Z*  -» B*.  Take any 7 G Z*,  then 7 : Zn —» G. By definition, 

2*  (7) = 7 o in ■ &n —> G. So, 2*  takes homomorphisms from Zn to G and restricts them 

to Bn, which is exactly how 8 affects elements of Z*.  Therefore, 8 — i^. □
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Referencing the discussion after Theorem 2.2.5, any long exact sequence may 

be broken into short exact sequences. So one may break up the long exact sequence in 

Equation (4.2) at B"(C; G) into the short exact sequences below, where we call 6 = 

for all n:

0 <- Ker i*  <- G) <- Coker i* n_1 <- 0, (4.3)

and Coker i*  =

Next we will show that Ker i*  = Hom(Kn(C), G) for each n. Consider the map

: Ker ?*  —> Hom(.ffn(C), G) by $(p) = p for p G Ker i*,  where p : —> G. Observe, 

if 7 G Ker i*  then for any z G Zn, = y(inz) = 7(2) = 0. So, elements of Ker i*

vanish on Bn since the range of in is Bn. Clearly, $ is a homomorphism since it restricts 

homomorphisms to quotient maps, which are homomorphisms. To prove the isomorphism 

we show £ has a two sided inverse. Let A = Ker i*  and B — Hom(Brt(C), G). We seek 

a map S' : B —* A so that o = lx and o = 1B. Let ir : Zn —> be the coset 

projection. Then p = p o ix is a map from Zn to G as in Lemma 4.1.1, and hence, an 

element of Z*.  Now for p G B, define : B —> A by ’I'(^) ~ p o tt. Let p G A and 

z 6 Zn. Then, $ o $(<^)(z) = ^(^(z) = (po 7r)(z) = p(z). So, 4/ o & = 1A. Take any 

p G B and [ct] G Zn/Bn. Then, $ o ^(^([a]) = #(^o7r)([a]) — (I)(97)([Q]) — v([aD- So, 

$ o $ = 1B. Therefore, $ is an isomorphism.

Using the result Ker i*  = Hom(Bn(C), G), one may rewrite the sequence of 

Equation (4.3) as:

0 <- Hom(Bn(C); G) <- Rn(C; G) <- Coker ?*_ x <- 0.

Finally, we consider Coker and claim Coker z*_ 1 is none other than

Ext(Hn_i(C), G). Consider the following short exact sequence:

0 -♦ Bn A Zn -> & -> 0.

Fin

This sequence is a free resolution for Hn(C) — since Zn and Bn, being submodules of 

the free Z-module Cn, are free. Let G be an abelian group, and dualize the sequence to 

obtain the co-chain complex:

0 <- B*  £ Z*  Hom(Hn(C), G) <- 0.

This co-chain complex is not necessarily exact since Hn(C) may not be free. By definition, 

Ext(Hn(C),G) = g2 = ^:=CokerC
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To summarize these results, we have just shown that Ext(Hn(C), G) — Coker 2*  

and Ker 2*  = Hom(ZZn(C), G). Finally, consider the commutative diagram:

Ker i* Hn(C;G) 4- Coker 2*_j

id id

0 <------  Hom(Hn(C); G) Hn(C;G) 4- Coker z*_ x

0 +

h

0

0

id

0 4--------  Hom(Hn(C),G) Hn(C-,G) 4--------  Ext(Hn_i(C), G) <--------- 0.

Let j : Zn <—> Cn be the inclusion homomorphism. Then j*  : G*  —> Z*  is the 

induced homomorphism in our original long exact sequence in Equation (4.2), and put 

into short exact sequences in Equation (4.3). We examine j*  : Hn(C-,G) —> Ker 2*  in 

the top left corner of the proceding diagram, and claim that h = <t>_1 oj*,  that is, the 

following diagram commutes.

Ker 2* — Bn(C;G)

Hom(Bn(C),G) Hn(C’,G)

Take any [a] G Hn(C;G). Then the representative ar : Cn —► G and da — 0. Next, 

for z G Gn, j*(a(z))  = a(j(z)). So, since j(z) G Zn, deduce that j*  restricts a to 

Zn. Let dfl G Bn. Then j*(a)(dp)  = a(jdfl) = a(50) = da(0) = 0(0) = 0. Thus, 

j*a(B n) = 0, and fa G Ker z*.  Now, since is an isomorphism, there is a unique 

<p G Hom(ZZn(C), G) with $(9?) = #*( “)> which implies <p = $“1j*(ct)  G HornffZ^C), G). 

Since h is surjective, there exists [0] G Hn(C\G) such that 7i([0]) = ip = 4?_1j*(a),  

but since id : Hn(C;G) —> Hn(C‘,G) is the identity map, [0] = [a]. Thus, the diagram 

commutes.

From Section 4.1, there is a surjective homomorphism h from Hn(C,G) to
Hom(£fn(C), G). Thus, J7”(C;G) A Hom(Bn(C),G) —> 0 is exact. Now, by Theorem 

2.2.6, the sequence 0 —> Ext(Hn_i (C),G) —> Zf7l(C;G) Hom(Hn(C), G) —> 0 is exact. 

Also, from the construction of h, we know the short exact sequence is split exact. There

fore, Hn(C;G) & Ext(Hn-i(C)}G) © Hom(J/n(C), G). This completes the proof of the 

Universal Coefficient Theorem.
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To summarize, the Universal Coefficient Theorem for Cohomology allows one to 

express cohomology with arbitrary coefficients in terms of homology with integer (uni

versal) coefficients. In the next chapter we apply this theorem to a number of topological 

spaces. Also, we investigate how the theorem can be rewritten for homology groups which 

are finitely generated.
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Chapter 5

Applications of the Universal 

Coefficient Theorem

This chapter is devoted to illustrating the usefulness of the Universal Coefficient 

Theorem. In Section 5.1 we prove a result of the theorem for finitely generated homology 

groups. We apply the theorem to calculate the cohomology groups of the Klein bottle, 

the real projective space RP5 (with a description of the process in general for RPfc when 

k is odd), and the torus T with integer coefficients in Section 5.2. Finally, in Section 5.3, 

we demonstrate how to change coefficients from integer homology to cohomology with 

coefficients other that Z.

5.1 Finitely Generated Homology Groups

The Universal Coefficient Theorem for Cohomology allows one to express the 

cohomology groups of a chain complex with arbitrary abelian coefficients in terms of ho

mology groups with integer coefficients. The following theorem explains how to compute 

Kn(C;Z) when Hn(C) are finitely generated.
Tn

Theorem 5.1.1. LetC be a chain complex where Hn(C) — ^^Z®Tn are finitely generated 
1

for all n} where Tn = T is the torsion submodule of the %-module Hn(C)- Then

Hn(C;Z)^Zr"©Tn_i,
Tn

where hrn —
1
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Proof. By the Universal Coefficient Theorem, Bn(C;Z) is determined by the following 

split exact sequence

0-» Ext(ffn-i(C),Z)->Bn(C;Z)-> Hom(Hn(C),Z) -> 0.

That is, Hn(C;T) = © HomfHnfC), Z). By Example 3.4.17, for each n,

Ext(Hn(C),Z) = Tn. To complete the proof we need to show Hom(H1I(C), Z) = Zrn. By 

Theorem 2.4.4 and Examples 2.4.2 and 2.4.3,

(
rn
© Z©Zni©Zn2®.--Znit)Z

i=l
rn k

S Q Hom(Z,Z)ffi (£)Hom(Z„.,Z)

1 7=1
rn k

- ©Z®©{0}

1

= ®z

1
= Zr".

This completes the proof. □

In retrospect, Theorem 5.1 says if Hn(C) are finitely generated, then Hn(C, Z) 

is the free part of Hn(C) plus the torsion submodule of So one could say that

to compute cohomology take the free part of homology at the same dimension and add 

torsion from homology one dimension lower. In the following examples we apply this 

process.

5.2 Examples

Example 5.2.1. Compute the cohomology groups for the Klein bottle K.

To suppress our calculations we refer to the homology groups for the Klein 

bottle K [Dur08]. A topological description of the Klein bottle (and our other topological 

examples) is not needed, rather, a description of its homology Hn(K), which we give here.
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For a further description of topological applications to this subject, see [Hat02, KSW89,

Wei94]. The homology groups for the Klein bottle can be found in Equation (5.1):

(5.1)

By Theorem 5.1, since Ho(K) = Z, is one copy of Z plus the torsion

submodule from homology one dimension lower which is {0} by definition. So we obtain 

“ Z. Next, since HRK) = Z © Z2 and T(H0(K)) {0}, ^(KjZ) = Z.

Finally, H2(K-,Z) is one copy of {0} = H2(K) plus the torsion of FYom this,

J72(R;Z) ~ {0} © Z2 = Z2. These results have been placed in Table 5.1. In Table 5.1, 

notice that torsion (Z2) of homology has been shifted up one dimension in cohomology 

and the free factors remain.

Table 5.1: Cohomology of the Klein Bottle K

n
0 z Z
1 z © Z2 z
2 0 z2
> 3 0 0

In the next example we compute the cohomology groups for real projective space 

KF5. Note that the same process in Exampe 5.2.2 may be applied to compute MPfc (for 

odd k) by considering the following cases: n = 0 and n = k, 0 < n < k for odd n, 

and when n > k. Referring to Table 5.2, its seems as though for even n, 0 < n < k, 

Hn(RPk; Z) “ Z2, and Bn(MPfc; Z) S {0} for n / k and odd.

Example 5.2.2. Compute the cohomology groups for HP*.

We will compute the cohomology groups of MP5, and note that the process for 

computing cohomology of MPfc will the same as computing cohomology of MP5. The
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homology groups for RP5 are [Hat02]:

for n = 0 and n = 5 odd
f

H„(RP5) “ < z2, for n odd, 0 < n < 5 (5-2)

o, otherwise.

Since the homology groups of RP5 are finitely generated we may apply Theorem 5.1. The 

same process described before will be applied here; however, we are more explicit in this 

example. We compute the cohomology for RP5 below.

H°(RP5;Z):

H°(RP5) S TfH.^RP5)) © Hom(Ho(KP5; Z), Z) ~ {0} © Hom(Z, Z) “ Z.

H^RP^Z):

H1(RP5;Z) = T(Ho(RP5))®Hom(Hi(RP5),Z) = {0}©Hom(Z2,Z) {0} ©{0} = (0).

H2(RP5;Z):

H2(RP5; Z) s T(H!(RP5)) © Hom(7Z2(RP5), Z) “ Z2 © Hom({0}, Z) “ Z2 © {0} * Z2.

H3(RP5;Z):

H3(RP5;Z) ^T(H2(RP5))©Hom(H3(RP5),Z) S {0} ©Hom(Z2,Z) S {0}©{0} s {0}.

H4(RP5;Z):

H4(RP5; Z) = T(H3(RP5)) © Hom(H4(RP5), Z) = Z2 © Hom({0}, Z) = Z2 © {0} Z2.

H5(RP5;Z):

H5(RPs;Z) S T(H4(RP5)) © Hom(H5(RP5),Z) = {0} © Hom(Z,Z) “ {0} © Z = Z.

The results have been placed in Table 5.2, and once again, observe that torsion of homol

ogy has been shifted up one dimension in cohomology.

The previous examples feature topological spaces which have torsion in their 

homology, and upon calculating cohomology, we see that the torsion of homology is shifted 

up by one dimension in cohomology. Clearly, from Examples 5.2.1 and 5.2.2, Hn(C,Z) is 

not isomorphic to Hom(Hn(C),Z) for all n. For example, refer to Table 5.2 for homology 
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and cohomology of HLP5 when n = 2. Now Hom(B2 (KF5) , Z) = Hom({0},Z) = {0}, 

but B2(KP5;Z) = Z2. Contrast these results with the following example.

Table 5.2: Cohomology of KF5

71 Hn(KF5) Hn(KF&;Z)
0 Z Z
1 Z2 0.
2 0 Z2
3 z2 0
4 0 z2
5 z z
>6 0 0

Example 5.2.3. Compute the cohomology groups of the Torus T.

We refer to Equation (5.3) for the homology groups of the Torus [Hat02].

(
Z © Z, for

Hn(T) = 4

= 1n

Z, for 71 = 0}2 (5-3)

(0,
We calculate the cohomology groups of T below by applying the Universal Coefficient 

Theorem.

for 71 >3

g°(7;Z):

77°(T; Z) = Hom(P0(T), Z) © T(K_i(T)) = Hom(Z, Z) © {0} * Hom(Z, Z) * Z.

Z):

gx(T; Z) S Hom(gi(T), Z) © T(HQ(T)) Hom(Z © Z, Z) © {0} “ Z © Z.

P2(7~;Z):

H2(T- Z) S Hom(P2(T), Z) © T(Ki(T)) S Hom(Z, Z) © {0} £*  Z © {0} Z.

Bn(T;Z),7i>3:

Pn(T;Z) Hom(Bn(T),Z) ©7(Bn_i(T)) Hom(0,Z) © {0} {0} © {0} “ {0}.
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These calculations have been placed in Table 5.3.

Table 5.3: Cohomology of the Torus T

n HnW Hn(T; Z)
0 z Z
1 ZffiZ z©z
2 z z
>3 0 0

Examining Table 5.3, we notice that Hn(T- Z) = Hom(Hn(T),Z) for all n. Ob

serve that Hn(T) is torsion free, that is, Tn = — 0 for all n. Now substituting

Tn = 0 for each n in the calculations above one sees that 7/n(T;Z) = Hom(Bn(T), Z). 

The results lead to the next corollary.

Corollary 5.2.4. LetC = {Cn,5} 6e a chain complex. If Hn(C) is finitely generated and 

Tn = T(Hn(C)) = 0 for all n, then 7In(C}Z) = Hom(Hn(C),%).

Proof. By the Universal Coefficient Theorem,

77n(C; Z) “ Ext(Bn_i(C), Z) © Hom(Bn(C), Z).

Now, by Example 3.4.17, Ext(Bn-i(C), Z) = Tn_i = T(Bn_i(C)). Since Tn = 0 for all n, 

it follows directly that Hn(C;Z) = Hom(Hn(C),Z). □

Recall, in Chapter 4, we showed that in general Hn(C-,G) £ Hom(Bn(C),G). 

Now Corollary 5.2.4 shows that Hn(C; G) = Hom(J7n(C), G) whenever Hn(C) is free and 

finitely generated, and the coefficient group is taken to be G — Z.

Example 5.2.5. Let X be a path connected space, where HRX) is finitely generated. 

Then ff^XjZ) is free.

First observe that since X is path connected Ho(X) = Z [Hat02]. By th^Uni

versal Coefficient Theorem, Z) S Hom(Bi(X),Z) © Ext(B0(X),Z). Now HQ(X)

is free, so by Theorem 3.4.13(1), Ext(Bo(X),Z) = 0. Thus, JPfAjZ) = Hom(Bi(X),Z). 

Now, Hi(X) = Zm © T(Hi(X)). From the proof of Theorem 5.1, Hom(J/i(Z<), Z) = Zm. 

Therefore, Zf1(X; Z) = Zm is free since it is a direct sum of free Z-modules.
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5.3 Changing Coefficients

In this section we demonstrate how to change cohomology coefficients for the 

Klein Bottle K and the Torus T. The ability to change coefficient groups is important 

because one coefficient group may illuminate more geometrical data for a topological 

space than another coefficient group.

Example 5.3.1. Compute the cohomology groups of the Klein Bottle with coefficients 

in Z2.

First note that Theorem 5.1.1 does not apply here since it requires cohomology 

with coefficients in Z. Nonetheless, by the Universal Coefficient Theorem where G = Z2, 

Jffn(K’;Z2) = Z2) ©Ext(Rn„i(K'),Z2). This relation will allow us to trans

late homology with coefficients in Z to cohomology with coefficients in Z2. Refer to 

Equation (5.1) for the homology of K with integer coefficients. We perform the desired 

calculations below.

H°(K;Z2):

Ho(A-;Z2) a Hom(^o(/0,Z2)®Ext(£r_i(A-)Z2)

= Hom(Z, Z2) © {0}

~ Z2 © {0}

= z2.

= Hom(Ri(R))Z2)©Ext(Bo(I<),^2)

= Hom(Z©Z2,Z2)©Ext(Z,Z2)

= Hom(Z, Z2) © Hom(Z2, Z2) © Ext(Z, Z2)

= Z2 © Z2 © {0} by Theorem 3.4.13

= Z2 © Z2.
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H2(K;Z2):

H2(K;Z2) = Hom(//2(K),Z2) ©Ext(Hi(K),Z2)

Hom(0,Z2) ® Ext(Z © Z2,Z2)

— {0} © Ext(Z, Z2) ® Ext(Z2, Z2)

— {0} ® {0} ® Ext(Z2, Z2) by Theorem 3.4.13 (1) since Z is free

= {0} © {0} © Z2 by Example 3.4.16

Z2

Finally, for n > 3,

Hn(K;%2) * Hom(Rn(K),Z2)©Ext(Rn_i(2<),Z2)

= Hom(0,Z2) ©Ext(0,Z2)

- {0} ® {0} by Theorem 3.4.13 (1)

= {0}.

We will contrast these results in Table 5.4 to Hn(K;Z). Observe that J7n(7<;Z2) has 

copies of Z2 for n = 0,1, and 2, whereas H’"(K;Z) has only one copy of Z2 at n = 2. 

In addition, in this case, Hn(K;Z2) = Hom(Bn(I<),Z2), even though Ext(JZn(K),Z2) is 

not always 0 (compare with the Torus in Example 5.2.3, where Ext(Hn(T),Z) = 0).

Table 5.4: The Klein Bottle K with Z2 Coefficients

n Hn(K) Rn(K;Z) Rn(K;Z2)
0 z Z z2
1 Z © Z2 z z2 © z2
2 0 z2 Z2
> 3 0 0 0

Example 5.3.2. Compute the cohomology groups for the Torus T with coefficients in 

Zm for m > 2.
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g°(T;Zm):

Jf0('T;Zm) = HomtffoCnZ^ffiExtCff-iCnZm))

= Hom(Z, Zm) © Ext(0, Zm)

“ Zm © {0} by Theorem 3.4.13 (1)

—

H'tTiZn) fil Hom(ifi(7”),Zm) ©Ext(H0(Z'),Zm)

— Hom(Z © Z, Z^;) © Ext(Z, Zm)

= Hom(Z, Zrn) © Hom(Z, Zm) ffi Ext(Z, Zm)

= Zm © Zm © {0} by Theorem 3.4.13 (1)

— Zm © Zm.

^2(T;Zm):

ff2(T;Zm) =

“ Hom(Z, Zm) ® Ext(Z ® Z, Zm)

— Zm © Ext(Z, Z/n) ffi Ext(Z, Z,7i)

= Zm ffi {0} ffi {0} by Theorem 3.4.13 (1)

— Zm.

g3(7-;Zm):

«3(T;Zm) = Hom(S3(T),Zm)®Ext(ff2(T),Zm)

= Hom(0, Zm) ffi Ext(Z, Zm)

— {0} ® {0} since is free

= {0}-

Finally, for n > 3,

Hn(T;Zm) = Hom(Bn(7),Zm)©Ext(irn_i(T),Zm)

= Hom(0, Zm) © Ext(0, %m)

* {0} ffi {0}

= {0}-



55

Although these calculations seem lengthy, we now have all cohomology groups of the 

Torus T with coefficients in Zm translated from integer homology. The data has been 

placed in Table 5.5.

Table 5.5: The Torus T with Zm Coefficients

n Hn(T;Z) ffn(T;Zm)
0 Z Zm
1 z©z Zm © Zm
2 z Zm
> 3 0 0

Viewing Table 5.5, one notices that the cohomology groups of T with Zm co

efficients are strikingly similar to the cohomology groups with integer coefficients. Also 

= Hom(Hn(T),Z), but unlike Example 5.3.1, Ext(Hn('7'),Z) = {0} for all n.
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Chapter 6

Conclusion

In this thesis we proved the Universal Coefficient Theorem for Cohomology. 

Along the way we examined collections of preliminary notions that were pertinent to 

not only proving and applying the theorem, but to also understanding its importance in 

homology. We studied how these preliminaries were related and lead up the the proof of 

the theorem.

In Chapter 2, we studied many properties associated with R-modules. Also we 

introduced duality and Hom groups, which allowed us to define cohomology of a chain 

complex. The Hom group and many of its properties are studied further in homological 

algebra.

In Chapter 3, we defined homology (with integer coefficients) and cohomology 

(with arbitrary abelian coefficients) of a given chain complex. We exhibited the necessity 

of the Universal Coefficient Theorem by elucidating that, in general, cohomology is not the 

dual to homology, although it is the case when the homology groups are finitely generated 

and torsion free, and we are calculating integer cohomology. In doing so, we introduced 

the Ext group, and showed that Ext(H, G) does not depend on the free resolution used 

to construct it, but depends only on H and the coefficient group G. We investigated 

many properties of the Ext group which aided us when applying the Universal Coefficient 

Theorem.

Chapter 4 featured the proof of the Universal Coefficient Theorem. The proof 

was separated into two parts. In Part I, we showed that there was a well-defined surjection 

from Hn(C-,G) to Hom(Zfn(C),G). In Part II, we investigated Ext(_ffn_i(C), G) through
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a diagram chasing procedure, and concluded the proof of the theorem.

In Chapter 5, we applied the Universal Coefficient Theorem to a number of 

topological spaces, and proved results for spaces with finitely generated homology groups. 

Finally, since the theorem holds for any arbitrary abelian group G, we showed how one 

may express cohomology with coefficients in in terms of integer homology.
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