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Abstract

The strategies of playing a two-person game have been analyzed using Graph 
Theory. This paper focuses on the game of Snort, which is a combinatorial game on 
graphs. Opposability is an important concept in a combinatorial game and leads to a win 
for the second player. This paper also explores the characteristics of opposability through 
examples. More fully, we obtain some necessary conditions for a graph to be opposable. 
Since an opposable graph guarantees a second player win, we examine graphs that result 
in a first player win. Specifically, we show that certain types of trees are first player wins. 
Finally, the value of game is introduced as a yardstick which predicts the outcome of a 
game. Its relation to opposability is remarked.
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Chapter 1

Introduction

1.1 Snort and Combinatorial Games

Snort, named after its creator S. Norton, is a game based on the story of two 
farmers, who rent fields in a pasture for their herds. Mr. Black raises bulls and Mr. White 

raises cows. Mr. Black claims a field first and Mr. White claims second, and they take 

turns claiming the remaining fields. Because of the nature of bulls and cows, they cannot 

put the two herds in the same field or in fields next to each other. Thus if the field 

adjacent to a field claimed by Mr. Black is empty, that field will be reserved for only Mr. 

Black to rent. The same is true for the field adjacent to a field claimed by Mr. White. 

If a field is next to Mr. Black’s and Mr. White’s at the same time, then neither farmer 
can claim that field. The farmer who is the last one able to claim an open space wins 
the Snort game. Since a player can gain one field in each move, if Mr. Black wins, he has 
more fields than Mr. White. If Mr. White wins, then he has at least as many fields as 
Mr. Black. Again we should note that in Snort the winner is the player who has the last 

move, not the player with more fields claimed.

Snort is a typical combinatorial game that has been studied in mathematics for 

almost 80 years. Many researchers who study Combinatorial Game Theory use Winning 

Ways for Your Mathematical Plays [BCG82] and On Numbers and Games [Con76] as 

foundational references. They participated in Proceedings of Symposia in Applied Math

ematics and defined the combinatorial game in a formal and unified way in 1991. They 
also joined in a symposium held at the Mathematical Sciences Research Institute (MSRI) 
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in 1994, and Richard K. Guy, one of the authors of Winning Ways for Your Mathemat

ical Plays, contributes a paper titled “What is a Game?” and states the definition of a 

Combinatorial Game by giving eight basic conditions [Guy98]. We state the conditions 

of a combinatorial game as follows.

Definition 1.1. A game is called a combinatorial game if it satisfies the following 

properties:

1. It is a two-player game.

2. The two players play alternately.

3. Specific rules dictate how the two players can make their move from a current po

sition to the next position.

The winner is the player who has the last available legal move.

5. The players have a starting position and several positions (or patterns) to choose 

during a turn.

6. There is an ending condition to determine the win or loss for each player.

7. No chance device, such as dice, spinners, or cards is needed.

8. The players can see all the details of a position and the current state of the game 

on each turn. We call these details complete information.

We explain definitions of a combinatorial game more precisely using Snort as an 

example.

1. There are two players, Black and White.

2. Black is the first player and White is the second and they take turns. Both players 

can claim one empty field in each turn.

3. There are two basic rules in Snort. The first rule is that an empty field adjacent 

to a field that a player claims is reserved for that player. The second rule is that a 
property adjacent to Black’s and White’s fields at the same time is not available to 

either Black or White. The field is called piebald.
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4. The player who claims the last available field wins in Snort.

5. Each turn has a starting position that shows the condition before the move. Then 

there are some possible moves, regarded as strategies. After each such move a new 
position is obtained (Figure 1.1).

Position 1Black
Reserved 

for Block

Reae rvod 
for Black

Black
Reserved 
for Black

Position 2

2 Positions that Black can choose.Starting Position

Figure 1.1: Starting position and positions after Black’s first move

6. There is an ending condition to determine who wins or loses. In the above example, 
if Black chooses Position 2, then White continues the game to have the position 

given below (Figure 1.2).

Starting Position for White

Reserved 
for Black

Black
Reserved 
for Black

Position that White chooses

Reserved 
for Black

Black Piebald White

Figure 1.2: Starting position and position after White’s first move

After White claims his field, Black claims the field that is reserved for him and wins 

the game (Figure 1.3).
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Starting Position for Black

Reserved 
for Black

Black Piebald White

Ending Condition

Black Black Piebald White

Figure 1.3: Ending condition

7. On Snort we do not use any chance device to decide the players’ moves.

8. Two players can always see each state or position of the game and can consider 

their strategies.

As a general rule, both players must play the game so as to win, i.e., they do 

the best to win the game. In their book [ANW07], Albert, Nowakowski, and Wolfe call 
this rule as playing perfectly, and we define it below.

Definition 1.2. To play perfectly is to satisfy one of the following conditions:

1. A player makes a move that allows him to force a win.

2. A player performs a move that makes the opponent’s life as difficult as possible.

This concept leads to a basic theorem that is also stated in the book [ANW07] more 

officially.

Theorem 1.3. (Fundamental Theorem of Combinatorial Games) If a combinatorial 

game is played by two persons, then either the first player can force a win, or the second 

player can force a win, but not both. So therefore, there is no tie.

We can determine if a game that is familiar to us is a combinatorial game. 

Tic-Tac-Toe has all of the above properties in Definition 1.1 except for the condition 4. 

Once a player has placed his three marks in a straight line on the board, then he wins 

even though there are some empty places for the opponent. Also there is a tie situation, 

that is, neither player can win. Thus, Tic-Tac-Toe is not a combinatorial game. The 
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game Domineering can satisfy all the properties given in Definition 1.1. Two players, Mr. 
Verty and Mr. Horry, alternately play. They have dominos, which are formed to cover 

two squares on a checker-board. Mr. Verty places his dominos vertically and Mr. Horry 

places his dominos horizontally. The player who cannot find a place to put his domino in 
his turn loses the game. In each of their turns there is a starting position that is formed 

by several squares and also there are finitely many number of options to play. They can 

think about their next move since they have complete information. The card game Poker 

is not a combinatorial game since there is lack of perfect information and also Monopoly 

is not a combinatorial game because players, use dice to determine how many places to 

move at each of their turns.
We use a graph to illustrate a pasture in Snort, so that we can clearly view the 

game when we discuss how to play and some strategies. We also study Snort games on 

various types of graphs.
We shall define the basic terminologies of graphs in the next section.

1.2 Snort and the Basic Terminologies of Graphs

We give a formal definition of a graph and an interpretation of Snort as a game 

on graphs.

Definition 1.4. A graph G = (V,E) consists of a finite set V of vertices and a set E 

of edges, where each edge connects a pair of distinct vertices. For vertices a,b G V an 

edge e connecting a, b is denoted by e— (a, b). Basic terminology and definitions in graph 

theory can be found in [Tuc02], [WH72].

As we study Snort in this paper, we use a vertex to represent a field in a whole 
pasture and an edge connecting two vertices to show the relation that two fields are 

adjacent. Thus instead of considering a real Snort we can play Snort on graphs, as in 

Figure 1.4 below.
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Figure 1.4: A pasture converted to a graph

Although we can use an arbitrary graph to play Snort, we mainly examine simple basic 

graphs in Graph Theory. We demonstrate how to play Snort on graphs in more detail in 

Chapter 2 using basic graphs such as paths, cycles, and bipartite graphs.

1.3 Snort and Opposability

In their paper [SS] Stokes and Schlatter introduce opposable graphs through the 
game of Snort as one strategy for which the second player has a chance to win. A graph 

G = (V,E) is said to be opposable if there is an automorphism f on V such that f(v) 

is not equal to v, f(v) is not adjacent to v, and /(/(f)) = v for any vertex v in V. On 

an opposable graph the second player claims the vertex that is the mirror image of the 

vertex claimed by the first player. Stokes and Schlatter use a hexagon-shaped graph that 

has a cycle and an even number of vertices as a typical example of an opposable graph. 

We use the words cycle and even to describe two of the main conditions for opposability. 
We explain more precise definitions of these terms in Chapter 3 and suggest additional 
conditions and nature of opposability in the rest of this paper.

1.4 Snort and Nonopposable Graphs

After we play Snort using the opposable strategy, we focus on nonopposable 

graphs as a next step. Since an opposable graph is a second player win, there arises a 

question: If a graph is a second player win, then is it opposable? We do not know the 

answer, however, we shall give a partial solution by showing that particular nonopposable 

graphs are first player win. Since we shall show that any opposable graph contains a cycle, 

a tree is a nonopposable graph. We prove that, for an even integer n, a complete n-nary 
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tree is a first player win. The case where n is odd is not obvious. We can verify that a 

complete ternary tree is a first player win. The general odd case is unknown to us.

1.5 Snort and Values

Since any Snort game is either a first player win or a second player win, we want 
to determine who wins the given game. One of the ways to see this is to consider the 
value of a game. First we shall explain the value of a Domineering game. The values 
are defined inductively from simple regions (positions) to complicated ones. Some rules 
are introduced to calculate the values of positions. We shall consider Domineering and 
Snorts. Here, we should note that combinatorial games are classified into two categories 

according to their characteristics: partizan (or hot) and impartial (or cold). For instance, 

Domineering is called partizan since two players have different options to play, and Snort 

is called impartial since two players have the same options to play. After discussing 

Domineering we consider values of Snort games. We shall see that an opposable graph 

has a value 0, and that if the value is positive, then the graph is a first player win.
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Chapter 2

Snort

In this chapter, we describe how to play Snort on graphs in more detail. Exam

ples are given to play Snort on basic graphs such as paths, cycles, and bipartite graphs, 

where some strategies are suggested.

2.1 How to Play Snort

We play Snort on graphs and here investigate some of its properties. Let G be 
a graph represented by a set of vertices and edges. Then Snort on G is played by two 
players who take turns to claim a vertex to be theirs. Since the winner of Snort is the 

last person who can claim a vertex to be his, not the player who has more vertices, we 

delete the vertex that a player claims on his turn. We use the black color for the first 
player and the white color for the second player to reserve vertices. In this way we focus 

on those vertices that are either reserved or available to both players rather than those 

vertices that are already claimed by the players. We also assume that at the beginning 

all vertices are available to both players. We describe the rules and procedures of Snort 

again using the graphs as follows.

1. The players take turns to claim any available vertex.

2. At the beginning of the game, the first player may claim any vertex on the graph 

G.

3. Then, the vertex that the first player claims is removed, and the vertices that are
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adjacent to that vertex are reserved for the first player. Any vertex reserved for the 

first player is shown as a large black dot,

4. On the second player’s turn, he may claim any vertex on G that is not reserved for 

the first player. As above, the claimed vertex is removed from G and the vertices 
that are adjacent to the one claimed are reserved for the second player. Any vertex 

reserved for the second player is shown as a large white dot.

5. Any vertices that are claimed are omitted after each turn.

6. Any edge connecting two vertices that are reserved for the same player is omitted.

7. A piebald spot is a vertex that is adjacent to both a vertex claimed by the first 

player and a vertex claimed by the second player at the same time. A piebald spot 

is not available to either players and is denoted by 0.

8. The winner is the player who claims the last available vertex.

To clarify the above rules and procedures, we depict some examples in the next 
sections.

2.2 Paths

First we deal with paths. A path is a very simple graph and can be used to 

understand a simple game of Snort. The first part of the following example was used in 

Section 1.1. to introduce Snort.

Example 2.1. Let Pn be a path consisting of n vertices vi,V2, ■ •. ,vn and n — 1 edges 

(yi,-Wi+i) for i = 1,2,...,n — 1. Let us denote it as Pn — (vi, V2,..., vn).

(1) Consider F4 given in Figure 2.1.

v, vs v3 v4 

Figure 2.1: The graph of P4
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On the graph of P4, suppose the first player claims Then V2 is removed and vertices 

Vi and V3, adjacent to are then reserved for the first player (Figure 2.2).

Figure 2.2: The graph of P4 after first move

In the second player’s turn he claims V4, so that it is removed. This implies that U3 

becomes piebald (Figure 2.3).

• ®
V2 V3 v4

Figure 2.3: The graph of P4 after second move

In the third move the first player claims vi and wins this game.

Next consider the same graph P4, where the first player claims vj at the be

ginning. This makes v%, which is adjacent to vi, reserved for the first player (Figure 

2.4).

V) v, V3

Figure 2.4: The graph of P4 with another strategy

The second player then chooses the strategy to claim V3, so that v% becomes piebald and 

the vertex V4 is reserved for the second player (Figure 2.5). Thus, the second player wins.

® O
V, V2 Vj V4

Figure 2.5: The graph of P4 after second move
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Therefore, there are two strategies for the first player: one which leads him to 
win and the other which leads him to lose. Hence, the first player has to claim V2 in his 

first turn because of the rule of playing perfectly.

(2) Consider P7 given in Figure 2.6.

•--------- •---------- •-----------•---------- •-----------•-----------•
Vi V2 V3 V4 V; v6 p7

Figure 2.6: The graph of P7

On the graph of P7, suppose the first player claims V4. Vertices V3 and V5 are now reserved 

for the first player (Figure 2.7).•- •—• •—•--•
Vj V2 V3 v4 v5 v6 v7

Figure 2.7: The graph of P7 after first move

In the second player’s turn he claims U2. This implies that 14 is reserved for the second 
player and U3 becomes piebald (Figure 2.8).

O 8 •----- •------ •
v, v2 v3 v4 vs v6 v7

Figure 2.8: The graph of P7 after second move

In the third move the first player claims v7. This implies that v& is reserved for the first 

player (Figure 2.9).

o
V| v2 v3 v4 7

Figure 2.9: The graph of P7 after third move
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In the second player’s turn he can claim only vi, which is reserved for him (Figure 2.10).

8 • O
Vt V2 v3 v4 v5 vb V7

Figure 2.10: The graph of P7 after fourth move

The final stage of the graph shows that the first player wins in this game since there 

remain only vertices reserved for him.
In the above example of P7 we examine only one strategy for the first player. 

There are essentially four strategies for the first player. That is, the first move is to take 

one of vi, t>2, V3, and V4.
Here arises a question: For Snort on a path is there a strategy by which the 

first player always wins? That is, is a path a first player win? We shall define trees that 

contains paths and see the answer to this question in Chapter 4.

2.3 Cycles

In this section we deals with cycles. We shall see the difference between odd 
cycles and even cycles.

Example 2.2. Let Cn be a cycle consisting of n vertices vi,U2,.. - ,vn and n edges 

(fn-l,Vn), (vnjVl).

(1) We shall start with an even cycle. So consider Cq given in Figure 2.11.

Figure 2.11: The graph of Cq
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On the graph of Cq. suppose the first player claims «i. The two vertices and vq, 

adjacent to ui, are now reserved for the first player (Figure 2.12).

Figure 2.12: The graph of C& after first move

In the second player’s turn, he considers symmetry of the figure and claims that is 
symmetric to vi> This implies that vs and v$ are reserved for the second player (Figure 

2.13).

Figure 2.13: The graph of (f after second move

Next there are two equivalent choices for the first player and he claims v% to make vs 

piebald (Figure 2.14).

v3 <9 v4

Figure 2.14: The graph of Cq after third move 
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Then the second player necessarily claims v$ and v$ becomes piebald. Therefore, the 

second player wins. (Figure 2.15).

v.

V2 Vs

V3 ® v4

Figure 2.15: The graph of C& after fourth move

The above example Cq is an even cycle graph that Stoker and Schlatter claim 

as opposable [SS]. Now, we add one more vertex to obtain an odd cycle graph Cf to play 

Snort.

(2) Consider an odd cycle C7 given in Figure 2.16.

Figure 2.16: The graph of C7

On the graph of C7, the first player claims vj. Vertices V2 and 17 are then reserved for 

the first player (Figure 2.17).
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v.

v'-9
v3 o O

4 v>

Figure 2.17: The graph of C7 after first move

In the second player’s turn, he cannot find a suitable vertex corresponding to tq as was 

done in Cg and claims instead, so that the vertices V4 and v& are reserved for the second 

player (Figure 2.18).

O

V-O Vs

Figure 2.18: The graph of C7 after second move

Next the first player claims ^3, and V4 becomes piebald (Figure 2.19).

Vj

v’>
V5

Figure 2.19: The graph of C7 after third move

In Figure 2.19, we see that the second player has only vq to claim. After the second 

player claims v$, the vertex V7 becomes piebald and the vertex t’2 is available for the first 

player, so that the first player wins.
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2.4 Bipartite Graphs

The third example we consider in this chapter is a bipartite graph. Two types 

of bipartite graphs are studied: complete and incomplete. At first we shall start with 
complete bipartite graphs.

Example 2.3. Let Km,n be a complete bipartite graph consisting of two sets of vertices 

V = {«!,..., and W = {wi,..., wn} such that every edge joins a vertex in V with a 

vertex in W, and there is an edge between every v G V and w G W. For each vertex v 

let deg(v) denote the degree of v, i.e., the number of edges stemming from v. In Kmjl we 

have that deg(yi) — n and deg(wj) = m.

Within complete bipartite graphs, we consider three cases where m = 2 and 

n = 3, m = 3 and n = 3, and m — 2 and n = 4.

(1) Consider Fl2,3 given in Figure 2.20.

Figure 2.20: The graph of ^2,3

On the graph of 1<2,3> suppose the first player claims W2. The vertices vi and V2 become 
reserved for the first player (Figure 2.21).

Figure 2.21: The graph of AL, 3 after first move

In the second player’s turn, he claims W3, making, ui and V2 piebald. Thus the first player 

wins (Figure 2.22).
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V)

v,

1

2

3

w

Figure 2.22: The graph of Ab ,3 after second move

(2) Consider ^<3,3 given in Figure 2.23.

This complete bipartite graph has cycles and even number (six) of vertices. Recall that 
the cycle Cq has six vertices and is a second player win. We shall see if this is the case 
for K3>3.

Figure 2.23: The graph of

On the graph of ^"3,3, suppose the first player claims V2. Then three vertices wi, W2, and 

W3, adjacent to V2, become reserved for the first player (Figure 2.24).

Figure 2.24: The graph of after first move

The second player claims t>i, and the vertices wi, W2, and W3 become piebald (Figure 

2.25).
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Vj w !
*

v-- s'' ,-J® w 2
> * •*z I* *

V3 «^---.............................................W3

Figure 2.25: The graph of after second move

Figure 2.25 shows that the first player, who has the remaining option, wins. Hence, 

is not opposable.

(3) Consider #2,4 given in Figure 2.26.

This complete bipartite graph also has cycles and six vertices, and there are even number 

of vertices on both sides, which is different from

Figure 2.26: The graph of K24

On the graph of #2,4, suppose the.first player claims Vi, so that the four vertices wi, W2,

W3, and W4, adjacent to vj, become reserved for the first player (Figure 2.27).

Figure 2.27: The graph of #2,4 after first move
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In the second player’s turn, he claims V2 and the rest of the four vertices become piebald 

(Figure 2.28).

V,

0

0

Figure 2.28: The graph of K2,4 after second move

Figure 2.28 shows that the second player wins.

There is another strategy for the first player. Suppose that the first player claims 

wi on his first move, so that vertices vi and V2 are reserved for him. Then, the second 
player claims W2, which makes and vg piebald. After that, each player claims W3 or 

W4, and hence the second player wins. Thus, we can conclude that 7<2,4 is a second player 
win.

The general complete bipartite graphs Km,n are classified as opposable and non

opposable according to the parities of m and n in Chapter 3.
Now we move to incomplete bipartite graphes.

Example 2.4. Let G be a bipartite graph with two sets V and W of vertices, where 

every edge joins a vertex in V and a vertex in W. Here we assume that G is incomplete,

i.e.,  there exist two vertices u, v € V or u,v e W such that deg(u) < deg[y). Let us 

consider the following bipartite graph G.

Figure 2.29: An incomplete bipartite graph
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On the graph of G (Figure 2.29), suppose the first player claims i>i, and three vertices 

Wi, W3, and W4 that are adjacent to vi, become reserved for the first player (Figure 2.30).

Figure 2.30: The incomplete bipartite graph after first move

In the second player’s turn, he claims V3, so W2 becomes reserved for the second player 

and W4 becomes piebald (Figure 2.31).

Figure 2.31: The incomplete bipartite graph after second move

In the first player’s turn, he claims wi and the vertex V2 is reserved for the first player. 
Then we can see that the first player wins, since there are two vertices reserved for the 
first player and there is only one vertex reserved for the second player (Figure 2.32).

Vi
w |

W 2

W 3

W 4

Figure 2.32: The incomplete bipartite graph after third move
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Remark 2.5. At the end of this chapter we can suggest some basic strategies to win a 

Snort game.

1. Try to increase the number of vertices that are reserved for one’s own. That is, 

claim a vertex of a higher degree.

2. If a vertex is reserved for the opponent, try to make it piebald by claiming a vertex 

adjacent to it.

3. If the graph has a symmetry in some sense (that is related to an automorphism 

defined later), in each turn the second player can choose the symmetric vertex 

corresponding to the one chosen by the first player.

4. If the graph has some symmetry after the first player’s move, then the first player 

can take the same strategy as above.
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Chapter 3

Opposable Graphs

In this chapter, we introduce opposable graphs. When a graph is connected, we 

obtain some necessary conditions and sufficient conditions for opposability. Examples of 
two and three dimensional grid graphs are considered.

3.1 Definitions and Examples

In Chapter 2, we found that if a graph is symmetrical in a certain sense, the 

second player can make strategies to win, i.e., the graph represents a second player win. 
This type of graph is called opposable whose definition is given in Section 1.3. In this 
chapter we consider this notion in more detail by giving examples and obtaining structures 

of opposable graphs.
We begin with some basic definitions from graph theory.

Definition 3.1. Let G — (/£') & — (W,^) be two graphs. Then a mapping

f : G —> G' is called an isomorphism if f : V —> Vf is one-to-one and onto, and if 

a,b G V are adjacent in G, then f(ci),f(b) e Vf are adjacent in G', and vice versa. In 

this case, the graphs G and G( are said to be isomorphic and is denoted by G =■ Gf. When 

G = G(, then an isomorphism f : G —> G is called an automorphism.

Definition 3.2. A graph G — (V,E) is said to be opposable if there is an automorphism 

f : G —> G such that, for any v € V, f(y) is neither adjacent to nor equal to v, and 

/(/(”)) = v.
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Remark 3.3. A consequence of the above definition is that any opposable graph has 

an even number of vertices and hence any graph with an odd number of vertices is not 

opposable. Thus, an odd cycle and a bipartite graph Km,n with m, n of opposite parity 
are not opposable. We prove this fact as a proposition below.

Proposition 3.4. Graphs with an odd number of vertices are not opposable.

Proof. Let G be an opposable graph with (2n + 1) vertices where n is a positive integer. 

Let f be a required automorphism on G, so that G and f meet the conditions of Definition 

3.2. For any vj G G, we have f(yi) W1 and = Hence, we can make a pair

(-U1, /(vi)), and for any v<i (/ ^i) G V, we can make another pair (y2, /fa))- Continuing 

this process we can make n pairs

(.v1,f(v1)),...i(vn,f(yn)')

of vertices and there is one vertex v left. Since f is onto, there is some i (1 <i <n) such 

that f(y) = vt or /(v) = f(vf). If f(y) = Vi, then v = /(/(v)) = a contradiction. If 

/(v) = f(vi), then v = Vi since f is one-to-one, a contradiction. Thus, G is not opposable.
□

One basic example of an opposable graph is given.

Proposition 3.5. An even cycle C^n with n> 2 is opposable.

Proof. Let C2n be a cycle consisting of 2n vertices vi,V2, ..., r>2n with 2n edges (vi,^2), 

(V2,vs), ..., (v2n-i,V2n), (t>2n>Vl).

v2

Figure 3.1: The graph of C2n
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Define f : V —> V by

fw=!Vi+n’

Vi—m

if i = 1,2,... ,n
if i = n + 1, n 4- 2,..., 2n

Then, clearly f is one-to-one and onto. For 1 < i < n — 1, we have that vt and are 
adjacent and that f(vj) = V{+n and /(uj+i) = Vj+i+n are adjacent. For i = n, we have 

that vn and vn+i are adjacent and that /(vn) = v2n and /(i>n+i) = vi are adjacent. For 
n 4-1 < i < 2n — 1, we have that 74 and are adjacent and that f(v{) = v2-n and 

/(ui+i) = are adjacent. For i = 2n, we have that v2n and vi are adjacent and

that / fan) = vn and = vn+i are adjacent. Thus, f is an automorphism of G.

Moreover, we have that

/(/(&)) = f(yi+n) = V(i+n)-n = Vi, for 1 < I < n

= ffai-n) = V(£_n)+n = viz for n + 1 < i < 2n

Finally, /(u) is not adjacent to v and not equal to v. Therefore, f satisfies the conditions 
of opposability of G. □

It follows from the definition and examples above that any opposable graph is 

a second player win, which is shown in [SS].

Proposition 3.6 [SS]. j47iy opposable graph is a second player win. Hence, if a graph is 

a first player win, then it is not opposable.

Proof. Let G be opposable with an automorphism f satisfying the condition of Definition 

3.2. We can assume that G has 2n vertices vi, v2,...,v2n- Then, a strategy for the second 

player is as follows:

If the first player claims Vi, then claim f(vf).

This is possible for the first stage because Vi and ftyf) are not equal or adjacent by 

definition. After some moves, we have to show that if the first player picks Vj, then f(vj) 

is available for the second player. We consider some cases. If f(vj) is used by the first 
player, then Vj = f(f(vj)) must have been already used by the second player, which is 
a contradiction. If f(vj) is used by the second player, then Vj has been used by the first
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player, which is also a contradiction. Finally, if f(vj) is reserved for the first player, then 

there is a vertex that is played by the first player and is adjacent to But then,

the second player must have picked f(yk) that is adjacent to Vj since v;- and f(yj) are 
adjacent and they are mapped by f. This implies that the first player cannot pick Vj 

since it is reserved for the second player or it is piebald, which is a contradiction. So, if 
the first player picks Vj, then f(yj) is available for the second player.

Therefore, the second player always finishes the last move and wins. □

Recall that we showed two bipartite graphs #2,4 and K^3 in Section 2.4. 7<2,4 

has an even number of vertices in both sides and is an opposable graph. has an odd 

number of vertices in both sides and is not an opposable graph though it has an even 

number of vertices in total. We shall generalize this result in the following.

Proposition 3.7. Let m and n be even positive integers. Then a complete bipartite graph 

Km,n = (F, E) is opposable.

Figure 3.2: The complete bipartite graph K-m.n with even m, n

Proof. As in the figure above, let vi,^,.. ■, vm be the set of vertices on the left side and 
idi, W2,..., wn be the set of vertices on the right side. Define a mapping f : V V by
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/(fi) = f2

/(v2) = fl

/(f3) = f4

/(f4) = f3

/(M = w2
/(w2) =
/(w3) = w4

/(w4) = w3

— vm

f(vm) = fm_i

/(wn_i) = wn

f(wn) = Wn-1

Clearly, / is one-to-one and onto. If v and w are adjacent, then f = vi and w = Wj for 

some i (1 <i < m) and / (1 < j < n) (or f = Wj and w = Vi for some i and /), since the 
graph is a complete bipartite graph. Then, /(f) and /(w) are obviously adjacent by the 

definition of /. Thus, / is an automorphism. The condition /(/(f)) = v is clear from 
the definition. Moreover, /(f) / f, and /(f) is not adjacent to v from the definition. 

Therefore, Km>n is opposable. □

We know that any opposable graph has an even number of vertices. However, 

this is not sufficient for opposability as we see below that Km,n with odd m,n is not 

opposable.

Proposition 3.8. Let m and n be odd positive integers. Then a complete bipartite graph 

Km>n is not opposable.

Proof. As in the figure below, let fi,..., vm be the set of vertices on the left and w4,..., wn 

be the set of vertices on the right.

V

V,

Figure 3.3: The complete bipartite graph Km,n with odd m,n
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Assume that Km,n is opposable and let f : V —> V be an automorphism that 

satisfies the opposability conditions. Since f(vi) is not and not adjacent to t>i, /(vi) 

must be one of ,vm. Let /(vi) = Vilf ii 1. By the same reason, we have that

= Vi2 for some i2 1,2, i\. If we continue this process, then we have pairs
of vertices from t>i,... ,vm, and there will be one vertex left. Then, f(yif) cannot be 

defined since all other vertices on the left side are exhausted. This is a contradiction. 

Therefore, KmiH is not opposable. □

3.2 Properties

Now we investigate some more properties of opposable graphs. The first one is 

that opposability is isomorphism invariant.

Proposition 3.9. If two graphs are isomorphic and one is opposable, then the other is 

also opposable.

Proof. Suppose two graphs G4 = and G2 = (^>#2) are isomorphic and Gi is

opposable. Let g : G\ —> G2 be an isomorphism and /1 : Gi -> Gi be an automorphism 

that makes G4 opposable. We show that G% is opposable. Define f2 ■ V2 —> V2 by

/2W = ff[/i(p_1(v))], veG2.

We show that f2 is an automorphism of G2 that satisfies the opposability condition for

g2.
f2 is one-to-one since g~\ fi and g are one-to-one.
f2 is onto since g~l : G2 -> Gi is onto, /1 : Gi -> Gi is onto, and g : Gi —> G2 

is onto.

Let vi, V2 G G2 be adjacent. Then (7/2) G Gi are adjacent since g and

hence g~x are isomorphisms. Hence, G Gi are adjacent since /1

is an automorphism. Thus, p(/i(p_1(vi))),p(yi(g-1(v2)) € G2 are adjacent since g is an 

isomorphism, so that G G2 are adjacent. Therefore, fz is an automorphism.



28

For v 6 G2 it holds that

= gtpr1 W)

= V.

Moreover, AM 0 v for v G GV In fact, suppose that /2M = v. Then, we have 
that v = g(fi(g~1(v)))) and hence = fi(g~1(y)'), which is a contradiction since

fl (u) ± u f°r all UC.G1.

Finally, for v 6 GV fz(v) and v are not adjacent. For, if f2 (v) and v are adjacent, 
then s(/i(5_1(u))) and v are adjacent, which implies that /i(p—1(v)) and <7_1(v) are 

adjacent. This is a contradiction since fi(u) and u are not adjacent for any u e Gi.

Thus, f2 is the required automorphism to make G2 opposable. □

Proposition 3.10. If two graphs Gi and G2 are isomorphic, then the graph Gi UG2 is 

opposable.

Proof Let Gi = (Vi, Ei), i = 1,2 be isomorphic graphs, where Vi = {ui, 112,...,un} and 
V2 = {vi,V2, • ■ • ,un}. Suppose that a mapping f : Vf -> V is an isomorphism given by 

f(ui) = Vi for i = 1,2,... ,n. Then, define f : Vi U V2 —> Vi U V2 by

ZW = f(ui) = vh i = 1}2,... ,n,

f(vi) = Ui, i = 1,2,... ,n.

Clearly, f is one-to-one and onto. Note that if ui and Uj (i j) are adjacent, then 

f(ui) = Vi and f(uf) — Vj are adjacent, since Gi and G2 are isomorphic. Similarly, if 

Vi and Vj (i j) are adjacent, then f(vf) = Ui and f(vj) = Uj are adjacent. Thus, f 

is an automorphism. The condition f(f(uf) = u for any u E Vi U V2 is clear from the 
definition. Moreover, for any u G Vi U V2, f(u) u, and f(u) is not adjacent to u from 

the definition. Therefore, G = Gi U G2 is opposable. □

We list the necessary conditions for opposability as follows.
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Theorem 3.11. Let G = (V, E) be an opposable graph with an automorphism f :V —> V. 

Then the following statements are true.

(1) The number of vertices in V is even.

(2) The number of edges in E is even.

(3) For any v € V we have deg(y) = deg f(y). Hence, if we let

Vk = {v F. V : deg(y) = k} for k>l, then Vk is f-invariant.

(4) For any fc > 1 the number of vertices in is even or zero.

(5) For any k > 1, if vi^vf,. • ,vm e Vk and m > 2, then for any Vj

there is some Vj with i ± j such that v/ and Vj are not adjacent.

Proof. (1) follows from Proposition 3.4.

(2) Let e = (u,v) € E be an edge. Then, since G is opposable, /(e) = 

(/(u),/(f)) is an edge different from e. Hence we have a pair of edges {e,/(e)}. Sup
pose we have an odd number of edges, then one edge e*  is left out. Then, /(e*)  = e 

for some e(^ e*)  G E and {e, /(e*)}  is a pair, which implies that e = /(/(e*))  = e*,  a 

contradiction. Thus, G has an even number of edges.
(3) Let v G V and suppose deg(v) = k. Then, there are k distinct vertices 

vi,...,vk that are adjacent to v. This implies that /(fi),..., f(vk) 3X6 distinct and 
adjacent to f(y) since / is an automorphism. Hence, deg f(y) > k. Bya similar argument 

we have deg(y) = deg/(/(f)) > deg/(f). Thus, deg(y) = deg f(y).

(4) By (3), if v G Vk, then f(y) G Vk and hence {u, /(f)} is a pair in V&.

(5) Follows from (3) and that v and /(f) are not adjacent for all f G V. □

Let m and n be odd integers. We saw that Km>n is not opposable in Proposition 

3.8. This also follows from Theorem 3.11(2) since Km,n has mn edges and mn is odd. 

Note that Km,n satisfies the conditions (1), (3), and (5) (but not (4)) of Theorem 3.11.

Example 3.12. We show that the following graph G = (V\E) given in Figure 3.4 is 

opposable and satisfies conditions (1) - (5) of the above theorem.

Let / : V —> V be defined by

/(fl) = f&, ffa) = f6,

/(fe) = f2, f(y?) = f3>

/(v3)=f7, /(f4)=f8, /(f5)=fl,

/(fs) = f4, /(fg) = fio, /(fio) = f9-
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Figure 3.4: One example of an opposable graph

It is easily verified that f is an automorphism that satisfies the opposability condi
tions for the graph G. Moreover, (1) of Theorem 3.11 holds since there are 10 ver

tices. (2) also holds since there are 10 edges. As to (3), we see that Vi = {^9,^10}, 

V2 = {^1,^3,V4,1)5,V7, vg},, and V3 = {^2,^6} are /-invariant. Clearly, (4) holds since 
Vi, V2, and V3 have even numbers of vertices. Finally, (5) can be verified easily.

Example 3.13. We show that the following graph (Figure 3.5) is not opposable even 
though there is an automorphism that satisfies the conditions (1) - (5) of Theorem 3.11.

Let f : V —> V be defined by

f(v1)=Vg, f(v2)=V7, f(v3)=VQ, f(V4) = V5i f(V5)=V4i

f(v6) = v3, = V2, /(^s) = Vl, /(vg) = Vio, /(«io) v9.

Figure 3.5: One example of nonopposable graph

It is verified that / is an automorphism that satisfies the conditions (1) - (5) of Theorem

3.11. But f(yi) = vg with adjacent. Hence f does not satisfy the opposability 
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condition. If we make another automorphism f, then V2 —> V2 = {vi, V3, V4, V5, vq, vs} 

is onto and one-to-one. But we cannot have f such that ff(v) and v being not adjacent 

for any v G V2. This leads to a conclusion that G is not opposable. When we consider 

a difference between the graphs given in Examples 3.12 and 3.13, we can come up with 

Theorem 3.15 below where more necessary conditions for opposability are obtained.

Before we show other conditions for opposability, we define connected graphs.

Definition 3.14. A graph G = (V, E) is said to be connected if for any two distinct 

vertices u,v GV there exists a path from utov.

Theorem 3.15. Let G = (V, E) be a connected opposable graph with an automorphism 

f : V —> V. Then the following assertions hold.

(1) For any vertex u G V there exists a pair of two distinct paths Pi and P2 

of the same length from v to f(y). More fully, if Pi = (y,vi,V2, ■.. ,vn, f(v)), then 

?2 = (v, f(yn), f(vn-i), /(-ui), /(v)) and

± vn+i, y(«§+i) / if n is even, (3.1)

/(vn±i) 7^ 1>2±11 if n is odd. (3.2)

(2) For any v GV there is an even number of distinct paths from v to f(y).

(3) G contains a cycle.

Proof (1) Let v G V. Since G is connected there is a path Pi from v to f(y). Let 

Pi = (v,vi,V2,... ,vn, f(y)). Since v*  and are adjacent, so are f(vi) and f(vi+i) for 
1 <i<n. Hence, P2 = (v, f(yn), f(yn-if ■■■, /fai), f(y)) is a path from v to f(v) of the 

same length as Pi. We claim that Pi ?2- For, if -B. = P2, then we have that

if n is even, then f(y%) = and f(y%+i) = ,

<

if n is odd, then f(yn±i) = Vn±± .

Both of these conditions are against the opp os ability of G. Thus, we have shown that 

Pi 0 P2- Moreover, the statements (3.1) and (3.2) are true.

(2) and (3) follow from (1). □
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At this point we can state that the graph G in Example 3.13 is not oppos

able since if G is opposable with an automorphism /, then /(v2) = v7 since degtvz) = 

dep(f?) = 3. However, there are only two paths from f2 to v? of different lengths. Thus, 

by Theorem 3.15, G is not opposable.
We can give sufficient conditions for opposability of connected graphs as follows.

Theorem 3.16. Let G = (V, £7) be a connected graph with four or more vertices. If for 

any vertex u G V there exists a unique vertex v G V such that

(1) deg(u) = deg(v);

(2) There are two distinct paths from u to v of the same length greater than or 

equal to 2;

(3) If Pi = (u,ui,U2,... ,un,v) and P2 = (u, , vn,v) are such paths

from u to v, then it holds that

deg(ui) = deg(yn+i-i)i 1 < i < n,

ui± f vn.4-1 and 7^ f a if n is even,

Un+i Va±i if n is odd.2 2

(4) For ui,U2 E V let vi,V2 E V be the unique vertices corresponding to f i and 

U2, respectively. If Ui and u2 are adjacent, then v 1 and f 2 are also adjacent.

Then G is opposable.

Proof. For each u E V define f(u) to be the unique v E V mentioned in the theorem. 

Then, f : V V is well-defined.

Suppose that w.i w2 and f(u\} = /(U2) — V- Then for v there are two distinct 

vertices «i, iz2 satisfying the assumption of the theorem. This is a contradiction. Hence, 

f is one-to-one. Since V is finite and f is one-to-one, it follows that f is onto. Now the 

conditions (1) and (4) imply that f is an automorphism.

Let u eV. For the vertex v = f(u) the vertex u satisfies the assumption of the 

theorem. Hence, f(v) — /(/('u)) = u. It is clear from the conditions (2) and (3) that 

,f(u) 0 u and that f(u) and u are not adjacent.
Therefore, G is opposable. □



33

We depict some examples of an opposable graph that are extensions of three ba

sic graphs: the Square (C4), Hexagon and Octagon (Cs). We see that the conditions 

given in Theorems 3.11, 3.15 and 3.16 are satisfied by these examples.

[1] Square

(D (2)

Figure 3.6: Examples of opposable graphs based on the square

In the above figure, (1) indicates the basic square. The figures (2) through (7) 

are obtained by modifying the previous ones along with the conditions given in Theorems

3.11 and 3.15 as follows.

(1) to (2): Twisting (C4 = #2,2)-
(1) to (3): Adding 2 vertices and 2 edges outside.
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(3) to (4): Adding 2 vertices and 2 edges outside.
(3) to (5): Adding 2 vertices and 2 edges outside.

(1) to (6): Adding 2 vertices and 4 edges inside.

(6) to (7): Twisting ((6) = Ab-1)

[2] Hexagon

Figure 3.7: Examples of opposable graphs based on the hexagon

In the above figure, (1) indicates the basic hexagon. The figures (2) through (7) 

are obtained by modifying the previous ones along with the conditions given in Theorems

3.11 and 3.15 as follows.

(1) to (2): Adding 2 vertices and 2 edges outside.

(2) to (3): Adding 2 vertices and 2 edges outside.

(1) to (4): Adding 2 edges inside.
(2) to (5): Adding 2 vertices and 2 edges outside.
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(4) to (6): Adding 2 edges inside.
(6) to (7): Adding 2 edges inside.

[3] Octagon

Figure 3.8: Examples of opposable graphs based on the octagon

In the above figure, (1) indicates the basic octagon. The figures (2) through (10) 

are obtained by modifying the previous ones along with the conditions given in Theorems

3.11 and 3.15 as follows.
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(1) to (2)
(1) to (3)

(1) to (4)
(4) to (5)

(4) to (6)
(6) to (7)
(7) to (8)
(3) to (9)

Adding 2 vertices and 2 edges outside.

Adding 2 edges inside.

Adding 2 edges inside.

Adding 2 edges inside.

Adding 2 edges inside.
Adding 2 edges inside.
Adding 2 edges inside.
Adding 2 edges inside.

(8) to (10): Twisting ((8) = AL 3)

3.3 Examples in Two Dimensional Grid Graphs

Since we studied opposable graphs and their properties, we now apply these ideas 

to consider Snort on two-dimensional grid graphs and their extension to three-dimensional 

figures. We shall play on three types of two-dimensional grids: (odd) x (odd) number of 

vertices, (even) x (even) number of vertices, and (even) x (odd) number of vertices.

Example 3.17. For a pair of positive integers (m,n) let Gm?n be a grid in a coordinate 
plane with the set of vertices V = {vitj = : 1 < i < m,, 1 < j < n} and the set

of edges E = (vmj, vmj+i), Vi+i,n) : 1 < i < 1, 1 <
j < n — 1}, so that it has n rows and m columns.

(1) Consider the graph given in Figure 3.9.

v21J
<1-------------- 1

J

>--
---

---
-•

IP l

II---------------- 1 1---------------o

Figure 3.9: The graph of G33
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On <73,3, suppose the first player claims 1/2,2 following Remark 2.5(1), so that the four 

vertices 1/1,2, 1/2,1,1/2,3? and 1/3,2 become reserved for the first player (Figure 3.10).

Figure 3.10: Snort on C/3,3 after first move

The second player claims 111,3 and then the two vertices 1/1,2 and 1/2,3 become piebald 
(Figure 3.11).

Figure 3.11: Snort on G3t3 after second move

On the next turn there are two choices for the first player: 1/3,1 and 1/3,2- To claim 1/3,1 is 

the ordinary opposable strategy since the graph in Figure 3.10 is opposable. And then 

the first player wins. To claim 1/3,2 is a little better since the first player can increase the 

number of reserved vertices. If the first player claims 1/3,2 and then two vertices 1/3,3 and 
1/3,1 become reserved for the first player (Figure 3.12).
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<

V,..

Vi.2

Figure 3.12: Snort on after third move

Now we can see that the first player wins since there is only one vertex available for the 

second player while there are two vertices available for the first player after the second 

player’s move.

(2) Consider G4t4 given in Figure 3.13.

*-----------------------•-----------------------•---------------------•

V1.i 1’1., V),i V.,1

*

1’1

fc J

*4,

I

J < ► 1

r 1

> ■ —i

> “I

I 1

Figure 3.13: The graph of

The graph of G^t seems to satisfy the conditions (1) - (5) of Theorem 3.11. Check (1): 

The number of vertices is 16. Check (2): The number of edges is 24. Check (4): The 

number of degree 2 vertices is 4, the number of degree 3 vertices is 8, and the number 

of degree 4 vertices is 4. Now we shall construct an automorphism f that satisfies the 

opposability condition and hence conditions (3) and (5) of Theorem 3.11. Define f by 

=vs_it5-j for i,j = 1,2,3,4. For instance, /(vi)2) = ^’4,3- Then, we see that f is
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one-to-one, onto, and = v f(v) for ah v- Moreover, if v and w are adjacent,
then so are f(y) and f(w). Thus, G44 is opposable.

We shall show a few of the first steps of the game as follows. The first player 

may choose 1/2,3 since 1/2,3 has the largest degree 4. Then, four vertices 1/1,3,1/2,2,1/2,4 and 
1/3,3 that are adjacent to 1/2,3 are reserved for the first player (Figure 3.14).

Figure 3.14: Snort on £4,4 after first move

The second player claims /(t/2,3) = 1/3,2- He has two vertices 1/3,1 and 1/4,2 reserved for 

him, and two vertices 1/2,2 and 1/3,3 become piebald (Figure 3.15). Note that the degree 

of 1/3,2 is four (Figure 3.15).

Figure 3.15: Snort on 6/4,4 after second move

On the first player’s turn he can claim 1/4,4 and then the two vertices 1/3,4 and 1/4,3 become 

reserved for the first player (Figure 3.16).
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Figure 3.16: Snort on 6/4,4 after third move

On the second player’s turn, he claims = vi,i to make l’i/j and '6’2,1 reserved for
the second player (Figure 3.17).

V 2.2 V

"...0.......9 O”4-1
I

0—o—A
V I . I V 3.1 V 3 , t V 4, 1

Figure 3.17: Snort on 6/4,4 after fourth move

Now it is the first player’s turn. We can see the next step of the first player is to claim 

either 1^4 or -1,4,1, and then the second player follows to claim the remaining vertex of 

the two and wins.

We have examined two graphs Gm,n with odd m,n or even m,n, and now we 

consider the graph Gmjl in which m and n are of opposite parity.
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(3) Consider given in Figure 3.18. r

4k J
V 2, 3 V313

* 4

4

1 1

L J

p 1

V2>2

*

" J

V3.2

. *1

4

J I

X 4

1 ■-1

V 

V
F J
l.l v2

F J
v

F F
,j V

Figure 3.18: The graph of

The first player may claim i>2,2 and four vertices, vi,2, ffyi, V2,3> arid 113,2, become reserved 

for the first player (Figure 3.19).

Figure 3.19: Snort on G^ after first move

The second player claims which implies that «3)2 becomes piebald and 114,1 and 114,3 

become reserved for the second player (Figure 3.20).
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V, , 3

V1.2

Vj,3

-f----- Ov-
L
I
1

-i----- O
VS,I V4,J

Figure 3.20: Snort on (74,3 after second move

The first player claims so now the vertices reserved for the first player are vi,i, vi,3? 

and ^2,3 (Figure 3.21).

I
Vi.2 [v

1

I

•---- •------i------O
^1.1 v31i v3>| v4>)

Figure 3.21: Snort on G4.3 after third move

On the next turn the second player claims ^3,1, and ^2,1 becomes piebald (Figure 3.22).

V?>2 { v

®’2

o
V 4,1

Figure 3.22: Snort on £4,3 after fourth move 
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On the first player’s turn, he claims 1/3,3. Then, he still has three vertices reserved for 
him and decreases the number of vertices reserved for the second player to one by making 

1/4,3 piebald. Therefore, we can confirm that the first player wins.

Now we can summarize the above discussion into the following proposition.

Proposition 3.18. Snort on the graph Gm>n is a first player win if at least one of m, n 

is odd, and is a second player win otherwise.

Proof. Let Gm,n be a graph in a coordinate plane with the set of vertices V = {i/jj = 

(i,j) :i = l,2,... ,m, j = l,2,...,n}.

Case (1). m, n are both odd so that m = 2k — 1 and n = 21 — 1 for some positive integers 

k and £.

v
4k 4k . Jk *k 4 k «kJ

I

J 1

k 1

J 1

h d

1 1

k d

1 1

k d

f -I

I . -J

r~ '1 1

hP 1

h j

J 1

k d

1 J

k d

P 1

k d

P' ■

k J

p" 1 

k iP 1 P

k 4

J <

k d

P " 1 P 1

k j

F <

* d

P 

b1

b. -

P P ""1

1. d

1 1

k d

P 1

k d

F 1

k d

F 

k1V J9 1F JF 1F 1F 1F

Figure 3.23: The graph of Gm,n; m,n both odd

Note that the vertex vk,t is the center of this graph. The first player claims After 

the first player claims 1/^/, the graph G± = G\{vkl} becomes opposable, where an au

tomorphism f : V -> V is defined by f(vi,j) = Vm+i-i,n+l-j- Thus, G is a first player 

win.

Case (2). m, n are of opposite parity so that m = 2k and n = 2t — 1 for some positive 

integers k and £.



44
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Figure 3.24: The graph of Gm,n; m even, n odd

Let x= (Zc 4- be the center of the graph, that is not a vertex of the graph. The first 

player claims Vfcj. Note that the second player cannot claim v^e+i, which is reserved 

for the first player and is symmetric to Vkft about the point x. After the first player 

chooses that specific vertex, the graph Gi = G\{iJfc^, becomes opposable, where

an automorphism f : V —> V is defined by = rum+i-i!n-+-i-j- Thus, G is a first
player win.

Case (3). m, n are both even so that m = 2k and n = 21 for some positive integers k and 
L
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F----------"

k . i

»-----------’
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1------- 4
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F------- 1
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I------- 4

k j
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5/ 

0
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L J
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k J
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►
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k 4
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P 9
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k -d

► 1

k i

F 4
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Figure 3.25: The graph of Gm>n; m,n both even

This graph is opposable since x= (fc + 5,^ + |) is the center of the graph and an
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automorphism f :V —> V can be defined by Thus, G is a second
player win. □

3.4 Examples in Three Dimensional Grid Graphs

So far we have examined two-dimensional grid graphs. Now we can predict who 

wins on three-dimensional grid graphs based on the strategies played on two-dimensional 

grid graphs. Thus, for a triplet of positive integers m, n) let G^m^n be a three dimen
sional graph with a set of vertices V = 1 < i < ^, 1 < j < m, 1 < k < n}

and a set of edges E = : 1 < i — 1, 1 < J < m, 1 < k <

n} u : 1 < i < £, 1 < j < nz - 1, 1 < k < n}U {(vi,j,k^i,j,k+i) ■

1 < i < £, 1 <j <m, 1 < k < n — 1}. There are four patterns on three-dimensional grid 

graphs Ge,m,m as shown in the following.

Proposition 3.19. The graph G^m>n is a first player win if at least two of I, m, n are 

odd and is a second player win otherwise.

Proof Consider four cases.

Case (1). All of €, m, n are odd, so that I = 2p — 1,m = 2q — 1 and n — 2r — 1 for some 

positive integers p, q and r.

Figure 3.26: The 3-D graph of G^n', l,m,n all odd

Note that the vertex fp,g,r is the geometric center of this graph. The first player claims the 

vertex fp,q,r. After the first player claims vp^r, the graph Gy = G\{vp,q,r} becomes op

posable, where an automorphism f : V V is defined by f(yi,j,k) —
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Therefore, the first player plays as the second player in Gi and G is a first player win.

Case (2). £, m are odd and n is even, so that £ = 2p — 1, m = 2q — 1 and n = 2r for some 

positive integers p, q and r.

Figure 3.27: The 3-D graph of G^min, l,m odd, n even

Observe that x= (p, q. r+|) is the geometric center of the graph that is not a vertex of the 

graph. The first player claims vPtqtr- Note that the second player cannot claim vP}gtr+i, 

which is reserved for the first player and is symmetric to vPtq>r about the point x. After 
the first player chooses that specific vertex, the graph Gi = G\{vP}g,r,vPiqtr+i} becomes 
opposable, where an automorphism f : V -> V is given by

Thus, G is a first player win.

Case (3). £ is odd and m, n are even, so that £ = 2p — 1, m = 2q, and n = 2r for some 

positive integers p, q and r.

Figure 3.28: The 3-D graph of G^)Zntn; I odd, m, n even

Note that x — (p, q 4-1, r 4-is the geometric center of the graph that is not a vertex 

of the graph. Define / : V -> V by Then, it is easy to see

that f is an automorphism of G and makes G opposable; Thus, G is a second player win.
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Figure 3.29: The 3-D graph of l,m,n even

Case (4). All of £, m, n are even, so that I = 2p, m = 2q, and n = 2r for some positive 

integers p, q. r.

This graph is opposable since x = (p4-|,g + |,r + |)is the geometric center of the graph 

and an automorphism f : V —> V can be defined by ~ ^+i-i,m+l--j,n4-i-fc- Thus,
G is a second player win. □

Remark 3.20. From the above propositions and those in Section 3.3 we can summarize 

Snort on a two- or three- dimensional grid graph G as follows.

1. We look for the geometric center of G.

2. When the center is a vertex of the graph, then the first player should claim that 
vertex to win (Figure 3.26).

3. There are two cases when the center is not a vertex of the graph.

a. The first case is when any two nearest vertices to the center are adjacent (Figure
3.27). In this case, the first player colors one of these nearest vertices and wins.

b. The second case is when there are four or eight vertices that are nearest to 

the center (Figures 3.28 and 3.29). In this case, the graph G is opposable and the 

second player wins.

4. We can rephrase the item 3 as follows. If the set of closest vertices to the center 

and the edges among them is an opposable graph, then G is a second player win. 

Otherwise, G is a first player win.
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Chapter 4

Nonopposable Graphs: Trees

In this chapter, we pursue whether the first player always wins on a nonopposable 

graph. Since trees are nonopposable, we play on complete and incomplete trees and see 

if the first player can win. When n is an even integer, it is easy to see that a complete 

n-narv tree is a first player win. When n is an odd integer, we shall prove the case where 

n = 3. That is, any complete ternary tree is a first player win. Some examples are shown 
in detail to develop the ideas for the proof of this result.

4.1 Nonopposable Graphs

We see in Proposition 3.6 that any opposable graph is a second player win. Is 
the converse true? Hence, we state this as a conjecture.

Conjecture 4.1. A graph is opposable if and only if it is a second player win. In other 

words, a graph is nonopposable if and only if it is a first player win.

To examine this conjecture, we need to collect some examples of a nonopposable 

graphs. As we see below a typical nonopposable graph is a tree.

Definition 4.2. A tree is a connected graph that contains no cycles. We assume that 

any tree has a unique root that is at level 0. Any vertex adjacent to the root is at level 1, 

any vertex adjacent to a vertex at level 1 (other than the root) is at level 2, and so forth. 

Ifpis the largest level of the tree, then p is called the height of the tree.
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Theorem 4.3. A tree is a nonopposable graph.

Proof. This immediately follows from Theorem 3.15 (3) and Definition 4.2. □

A typical example of a tree is illustrated in the following.

Example 4.4. Let n, p be positive integers such that n > 2. Then, let Tn,p denote 
a complete n-nary tree of height p. That is, the root has degree n, any vertex of level 

*i 1 < i < P“ 1 has degree n + 1, and any vertex of level p has degree 1. There are ri1 

vertices at level i for i = 1,2,... ,p. The graph of 72J, the complete binary tree of height 

3, is shown below.

Figure 4.1: The complete binary tree 72,3

Before we play Snort on complete trees, we introduce a new strategy called 

“suicide.” In their paper [SS] Stokes and Schlatter describe suicide as a move that is 

efficient for tree graphs.

Definition 4.5. A suicide is a move in which a player claims a vertex which is reserved 

for himself.

We need the following lemmas to prove Proposition 4.8 in the next section.

Lemma 4.6. If two graphs Gi and G% are opposable, then their union G = Gi U G2 is 

also opposable.

Proof. Let Gi = (Vi,Ei) and fi be an automorphism of Gi that makes Gi opposable, 

i = 1,2. Then define a mapping f on G by f(y) = A(v) if v E Vi. Clearly, f is an 

automorphism of G that makes G opposable. □
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Lemma 4.7. Let Gf and G,r be identical graphs. Then, the union G = G( U G!l is 

opposable.

Proof. This follows from Proposition 3.10. Or let G! = (V7, E') and Gf/ = (V", E”) be 

two identical graphs, where two corresponding vertices in V' and V,r are denoted by v' 

and v,f, i.e., v' = v", v' E V' and v,f E Vrt. Define a mapping f on G by f(v') — and 
f(y”) = vr. Then, f is an automorphism of G = G! U G" and makes it opposable. □

4.2 Complete Trees

Let us fix a notation for a complete n-nary tree G = of height p, where 

n > 2 and p > 1. The vertices of are denoted as follows. In the level zero, t'o 

is the root; in the level 1 from left to right, Vj, 1 < i < n; in the level 2 from left to 
right, Vij, 1 < i,j < n, where, for a fixed i, vgj is connected to Vi (1 < j < n); in the 
level 3 from left to right, 1 < < n, where, for fixed i,j, Vij,k is connected to
vi,j (1 < k < n); and so on. A subgraph of G with a root V{ (1 <i < n) is denoted by Gi 

that is isomorphic to Tn,p_i. Similarly, a subgraph of G with a root Vij (1 <i,j < n) is 
denoted by Gij that is isomorphic to Tn)P_2> and so on. Note that Go, the subgraph of 

Tn,p with the root is exactly the graph TniP itself.

Proposition 4.8. For any even integer n > 2 a complete n-nary tree is a first player 

win.

Figure 4.2: A complete binary tree

Proof. Since n is even, we have n = 2m for some positive integer m. For example a 

complete binary tree of height 3, 72,3, is given in Figure 4.2 above. The first player takes
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the root vq at the first move. Then, vertices vi (1 < i < 2m) are reserved for the first 

player. There are 2m subgraphs G±, , G2m that are complete 2m-nary trees with

the roots vi, v2,...,V2m, respectively. Let us put G = GiUG2U---UG2m = T^pM'L’o}.
= Gi U • • • U Gm and G**  = Gms U • • * U <?2m. Then, G*  and G**  are identical graphs, 

and G is opposable by Lemma 4.7. Hence, Tn<p is a first player win since the first player 

plays as a second player in the game G. In the graph of T2,3, G*  = G± and G**  = G2 as 
shown in Figure 4.3. □

G 1 G 2

Figure 4.3: A complete binary tree after first move

For an odd integer n > 3 it is not obvious that Tn/p is a first player win. In the 

rest of this section, we consider complete ternary trees T^p for p = 1,2,3,4 and 5. At 
the end of this section we shall prove that is a first player win for any p > 1.

The following terminology may be helpful.

Definition 4.9. A vertex is said to be absolutely reserved for a player if it is reserved 

for him and cannot be made piebald by his opponent. In the rest of this paper we denote 

absolutely reserved vertices in boldface letters.

Example 4.10. Consider complete ternary trees Tjp for p = 1,2, and 3.

(1) If p = 1, then the first player wins by claiming the root at the first move.

(2) If p = 2, we introduce two strategies by which the first player can win, where 

the graph is shown in Figure 4.4 next page.

Strategy (1). Suppose the first player claims the root, so that vi,v2>^3 are 

reserved for the first player. The second player has 9 equal choices, i.e., vertices of level 2. 

Suppose he claims vij, making vi piebald. Then the first player claims v2 or V3 of level
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1, say 1/3, making three vertices 1'3,j for j = 1,2,3 absolutely reserved for him. Then the 

second player may claim 1/2,1 to make v% piebald. At this, stage, 1/1,2? 1/1,3,1/2,2? and 1/2,3 
are available for both players and 1/3,j, j = 1,2,3 are available only for the first player. 

Thus, it is clear that this game is a first player win by saving two absolutely reserved 

vertices at the end of this game. We summarize the procedure in Table 4.1. Recall that 

the absolutely reserved vertices are denoted in boldface letters.

Figure 4.4: A complete ternary tree ^3,2

Table 4.1: Strategy (1) applied to T32

Round First player Second player Reserved for first Reserved for second Piebald
1 1/0 i/i, 1/2,1/3
1 1/1,1 1/1

2 V3 1/3,1,1/3,2,1/3,3
2 1/2,1 1/2
3 1/2,3
3 1/1,2
4 1/2,2
4 1/1,3
5 1/3,1

Strategy (2). Suppose the first player claims ?’i for the first move to make t’o 

reserved and 1/1,1,1/1,2? and 1/1,3 absolutely reserved for him. Then the second player claims 

1/2 to make i/o piebald and 1/2,1,1/2,2? 1/2,3 absolutely reserved for him. Then, the first player 

claims 1/3 and it is obvious that this game is a first player win. In this case, the first player 

can save three vertices for him at the end of the game. A detailed procedure is given in 

Table 4.2 below.
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Table 4.2: Strategy (2) applied to 73,2

Round First player Second player Reserved for first Reserved for second Piebald
1 7?1 VO, «1,1, Vi,2, 7/2,3
1 7/2 V2,l, V2,2, V2.3 77q

2 V3 V3,l, ^3,2, 7/3,3

(3) If p = 3, we will try three possible strategies for the first player where he 

wins each case.

Figure 4.5: A complete ternary tree 73,3

Strategy (1). Figure.4.5 shows 73,3. Suppose the first player claims the root 77O 
on the first move, so that ui, V2, and V3 of level 1 are reserved for him. Then, the vertices 

of levels 2 and 3 are available for the second player. Evidently it is more efficient for 

the second player to pick a vertex of level 2 than to pick one of level 3. So the second 

player claims vij, making three vertices Vi i,fc, k = 1,2,3 absolutely reserved for him and 
Vi piebald. Next the first player claims 7/3 (a suicide move) and makes v^j, j = 1,2,3 
reserved for him. For his turn the second player claims ?/2,i to make V2 piebald and 

^2,1,k = 1,2,3 absolutely reserved for him. Now the rest of this process is apparent. 

After two players share the four vertices 171,2^1,3,^2,21 and ^2,3 evenly, the first player 

claims 7/3,3 (a suicide move), the second player claims 773,1,1 to make 7/3,1 piebald, and the 

first claims 773,2 (a suicide move) to make 773,2,k = 1,2,3 absolutely reserved for him. 

At this stage, both players have the same number of vertices absolutely reserved for each 

and there are two vertices 773,1,2 and 773,1,3 available for both. Since the second player 
starts the rest of the game, the first player wins. Note that all the vertices are exhausted 

and there are no vertices absolutely reserved for the first player.
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For a reference we list the moves of each player as follows.

Table 4.3: Strategy (1) applied to

Round First player Second player Reserved for first Reserved for second Piebald
1 vo *>1,*>2,  V$
1 *>1,1 *>1,1,1, *>1,1,2,  *>1,1,3 *>i
2 *>3 *>3,1 >*>3,2)  *>3,3
2 *>2,1 *>2,1,1, *>2,1,2,  *>2,1,3 *>2
3 *>2,2 *>2,2,1, *>2,2,2,  *>2,2,3
3 *>1,2 *>1,2,1, *>1,2,2,  *>1,2,3
4 *>2,3 *>2,3,1, *>2,3,2,  *>2,3,3
4 *>1,3 *>1,3,1, *>1,3,2,  *>1,3,3
5 *>3,3 *>3,3,1, *>3,3,2,  *>3,3,3
5 *>3,1,1 *>3,1
6 *>3,2 *>3,2,1, *>3,2,2,  *>3,2,3
6 *>3,1,2

Strategy (2). Suppose the first player claims vi, making Vo, *>i,i,  *> i,2 ai*d  *>1,3  
reserved for him. There are some choices for the second player. Reasonable choices are 
u2, V3 and v2j, V3J for j = 1,2,3. We list the moves of each player up to round 6 in Table 

4.4 when the second player claims u2.

Table 4.4: Strategy (2) applied to T3.3

Round First player Second player Reserved for first Reserved for second Piebald
1 *>1 *>0, *>1,1,  *>l,2j  *>1,3
1 V2 *>2,1, *>2,2,  *>2,3 *>o
2 *>3 *>3,1) *>3,2)  *>3,3
2 *>2,1 *>2,1,1, *>2,1,2,  *>2,1,3

3 *>i,i *>1,1,1, *>1,1,2,  *>1,1,3

3 *>2,2 *>2,2,1, *>2,2,2,  *>2,2,3

4 *>1,2 *>1,2,1, *>1,2,2,  *>1,2,3

4 *>2,3 *>2,3,1, *>2,3,2,  *>2,3,3

5 *>1,3 *>1,3,1, *>1,3,2,  *>1,3,3
5 *>3,1,1 *>3,1
6 *>3,3 *>3,3,1, *>3,3,2,  *>3,3,3
6 *>3,2,1 *>3,2
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At the last stage in Table 4.4, ^3,1,2,^3,1,3, ^3,2,2, and 1/3,2,3 are available for both play

ers and 1/1,1,;, ^1,33, ^3,3,;? i = 1,2,3 are available only for the first player and

1/2,1,j, V2,2,j, V2,3j> j = 1,2,3 are available only for the second player. Thus, it is clear 
that this game is a first player win with two vertices absolutely reserved for him at the 
end of this game.

If we note that the graph G = G2 U G3 is opposable, then the first player (as a 

second player in G) can employ the opposable method to win the game G. Obviously in 

the graph Gi the first player wins. Thus, the first player wins the entire game ^3,3. This 

opposable method will be used again in strategy (3) below.

Strategy (3). Suppose the first player claims U14, so that «i, vi,i,i, ^1.1,2, and 
^1,1,3 are reserved for him. Now we can make Go = ^3,3 be decomposed into three 

graphs: the set of three vertices i/i)i)2,'i/i,i,3 that are absolutely reserved for the
first player, Gi\Gi,i and Go\Gi. Those subgraphs are defined before Proposition 4.8. 
Let Hi = Gi\Gi,i and Hq = Gq\Gi. Now we need to be aware in which subgraphs the 
second player begins to play.

After the first player claims 1/1,1, if the second player claims v G H\ and plays 

the game in Hi, then the first player can win by playing as the second player on the 

opposable graph Tfi. The first player still has three vertices absolutely reserved.

Then, when the second player claims vq G Hq, we need to see the game on Ho 

carefully. We consider two examples to play the game Hq. One is a second player win 

and the other is a first player win. The first example is using an opposable strategy to 
win for the second player. After the second player claims vq, there will be six graphs of 

I3.1 in the graph #o\{^o, ^2, ^3} that is opposable. Hence, the second player wins the 
game Ho. Even though the first player loses the game Ho, if all the vertices on Ho are 

exhausted, the first player can win the whole game.
The second example is that the second player does not use the opposability of 

the graph. At this point we show the consecutive moves of each player after the second 

player claims uq as follows.
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Table 4.5: Strategy (3) applied to T3i3

Round First player Second player Reserved for first Reserved for second Piebald
1 1/0 1/2,1/3 1/1
2 1/2,1 1/2,1,1,112,1,2, «2,1,3 1/2

2 1/3 1/3,1,1/3,2,1/3,3
3 1/2,2 1/2,2,1,112,2,2,112,2,3

3 1/2,3 1/2,3,1, 1/2,3,2, 1/2,3,3
4 113,1,1. 1/3,1
4 1/3,3 1/3,3,1, 1/3,3,2, 113,3,3
5 1/3,2,1 1/3,2

Note that for the second player the only chance not to use the opposable strategy is to 

claim v3 after the first player claims 1/2,1- At this stage, t/3,1,2,1/3,1,3,1/3,2,2? and 173,2,3 are 

available for both players, V2,itifV2,2,it 1 = 1,2,3 are available only for the first player, 
and 1/2,3j, 1/3,3,j, j = 1,2,3 are available only for the second player. Thus, the game in 
the subgraph Hq is a first player win since the first player finishes the game. Therefore, 

the first player also wins the whole game in this example.
In the reverse order, if the second player claims vq on his first move, then he 

wins the game Ho using the opposable method, where all the vertices are exhausted. 

Then, the first player claims 1/1,1,1. Hence, the second player begins to play the game Hi 

by claiming any vertex there other than iq and the first player wins by the opposable 

method, exhausting all the vertices there. Therefore, the first player wins the whole game 
with two vertices absolutely reserved for him.

Prom the above examples we can summarize the following.

1. Up to p = 3 the first player can win by claiming the root vo on his first move.

2. In T3,2, there are two choices on the first move for the first player, i.e., 1/0 and vp 

In each case, at the end of the game there are a few vertices absolutely reserved for 

the first player.

3. In T3)3, there are three choices on the first move for the first player, i.e., vq, t/p and 

1/1,1. If the first move is 1/0, then all the vertices are used. However, if the first move 

is 1/1 or 1/1,1, then there are two vertices absolutely reserved for the first player at 

the end of the game. That is, he can save two vertices.
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Now we note some clues for the first player to win that we can consider from 

the above examples.

1. Tty to save vertices as absolutely reserved for one’s own.

2. Decompose the graph Gq into some subgraphs in each of which we can easily set 

up the strategy.

3. Play on opposable graphs as a second player if it is possible.

4. On each subgraph the first player should make all vertices exhausted before finally 

he returns to the vertices of absolutely reserved for him.

We extend these ideas to play the complete ternary trees TstP for p = 4 and 

p ~ 5 in the following.

Example 4.11. We consider the complete ternary tree T3.4.

(1) In the case where p = 4, at the beginning we will show that the first player 

cannot always win if he claims i’o at the first move. Suppose the first player employs the 

same strategy (1) as given in the case p = 3 in Example 4.10.

After the point when the second player claims 113,1,2 in Table 4.3, the first player 
claims 173,1,3, and he has three vertices 7/3,1,3,^, = 1,2,3 absolutely reserved and 12

vertices of level 3 reserved for him. The second player has six vertices V3,i,fc,£, k = 1,2, t = 

1,2,3 absolutely reserved and 12 vertices of level 3 reserved for him. Thus, it is clear that 

the second player wins this game.
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(2) Instead of claiming vo> suppose the first player claims fi at the first move, so 

that foi fi,,2, and ^1,3 are reserved for him. Then, the original graph is decomposed 

into two subgraphs: 23,4 = Gi U {T34\Gi}, where we ignore the edge (fo>fi) and Gi 
is the subgraph of Go isomorphic to T3i3 with root fi. Let H = T3f\Gi- If the second 

player starts by claiming a vertex v G Gi, then the first player can claim vertices as was 
done in the case of T3>3 to win the game on 73)3. If the second player starts by claiming 

v G H, then since v / fo and the graph H\{uo} is opposable the first player can win the 
game on H. Therefore, the first player wins the whole game.

Although we need to proceed to the case where the first player claims fi,i,i to 

have three vertices absolutely reserved for him, we would like to perform it on the graph 

73,5 with an introduction of a definition and a lemma.

Example 4.12. Now we consider the complete ternary tree 7 3,5.

The case p = 5 is a little bit more complicated. We know that the first player 
does not want to claim vq at his first turn because of the experience of 73,4. If the first 
player claims tq, then the graph Gi is isomorphic to T3)4. Since vq is reserved for the 
first player, the graph Go\Gi is opposable. Thus, if the second player begins to play on 

then he loses that game and starts to play the game on Gi. Then the second 
player wins the game Gi, as was shown in Example 4.11, and hence the whole game 

Go = 73,5. Therefore, we would like to make the first player claim vij on his first move. 

However, we shall show that the second player also wins T3is in this case. To see this, let

Jffo = Go\G1, ffi^GAGij, H2 = Gltl.

The following is a way to win for the second player. H2 consists of three graphs 

of T3,2 where the roots are reserved for the first player. If the second player claims any 
v G H2 and both players play on H2. Then the first player wins and all the vertices are 

exhausted. Then, the second player claims uii2 G Hi to make vi piebald. Then, on Hi 

the first player wins, all the vertices are exhausted, and the second player moves on to 

claim vo G Hq. Since Ho\{vo} is now opposable, the second player wins on Ho and hence 
wins the whole game Go- As a consequence, in order to win the game T3)s the first player 

has to claim 'Wi.i.i or Vi,1,1,1.
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Figure 4.7: A complete ternary tree

Let us consider the case where the first player claims Vi, 1,1,1 to start the game 

on 73,5 by following the clues that we previously suggested right before Example 4.11. 
We explain how to play in along the clues.

(1) Try to save vertices as absolutely reserved for one’s own: The first player’s 
initial step makes ^1,1,1 reserved and ^1,1,1,1,1 for i = 1,2,3 absolutely reserved for the 
first player.

(2) Decompose the graph Go into some subgraphs in each of which we can 
easily set up the strategy: Now Go is decomposed into Go\Gi, Gi\Gi,i, Gi,i\Gi,i,i> 

Gi,i,i\Gi,1,1,1 and three absolutely reserved vertices by ignoring the edges (vq, vi), (vi, «i,i), 

(fl, i,fi,1,1), and (fi,i,i,fi, 1,1,1). Let

H0 = G0\Glt Hi,i = GuXGia.i, ffi.i.i = Gi.uXGv.i.i-

(3) Play on opposable graphs as a second player if it is possible: The subgraph 

Ho consists of two graphs of combined to the root Vo, Hi consists of two graphs of 

73,3 combined to the root ni, Hi,i consists of two graphs of 73,2 combined to the root 

vi,i, and Hi, 1,1 consists of two graphs of 73,1 combined to the root v 1,1,1. If the second 

player claims the root of any subgraph, that subgraph becomes opposable, advantageous 

for the second player. Only Hi,i,i is opposable and advantageous for the first player.
(4) In each subgraph the first player should make all vertices exhausted before he 

returns to the vertices that are absolutely reserved: The winner is the person who claims 

the last available vertex in Snort. Therefore, if both players consume all the vertices, the 

first player can win since he has three absolutely reserved vertices.
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It follows from the strategy (3) in Example 4.10 (3) for the case p = 3 that the 
graphs Hq and Hi are of interest and should be examined more in order to prove our 

main theorem below. It would be convenient to have the following definition.

Definition 4.13. For p> 2 let Kp denote a tree of height p that consists of two graphs 

ofT3,p_i whose roots are connected to the root of Kp. Thus, we name the vertices of Kp 

as follows. In the level zero, the root uq; in the level 1 from left to right Ui, U2/ 7/l the level 

2 from left to right uij, U2,j for j = 1,2,3; in the level 3 from left to right u2,j,k 

forj,k = 1,2,3; and so on. Figure j.8 shows the graph K3.

Figure 4.8: A tree K3

As is easily seen, the graph Rp\{uo} is opposable, and hence Kp is a first player 

win if he claims the root and employs the opposable method. In this case all the vertices 
are used. However, this is the best possible result for the first player in the sense that he 

cannot leave any vertices absolutely reserved for him, which will be proved below.

Lemma 4.14. In the game of Kp for p > 3 the first player cannot win with leaving any 

vertices absolutely reserved for him. More fully,

(1) The graph Kp is a first player win if the first player claims the root at his 

first move and employs the ordinary opposable method. In this case, all the vertices are 

exhausted.

(2) In the graph Kp, if the first player claims the root at his first move and 

does not employ the ordinary opposable method, then all the vertices are exhausted or the 

second player wins the game.
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Proof. (1) The first player claims the root «o at his first move. Then, since the graph 

Kp\{*io}  is opposable, the first player (as the second player in the game A’p\{«o}) wins 
by the ordinary opposable method and all the vertices are exhausted. Here, one choice of 

the automorphism f : A’p\{uo} —> lfy\{**o}  that makes Kp\{uo} opposable is given by

/('uii,i2,...,ifc) = (4-1)

where = 1 if fy = 2 and = 2 if fy = 1. Note that there are more automorphisms 

that make Kp\{**o}  opposable. For instance, if fi is an automorphism making Kp\{**o)  

opposable, then it can satisfy

fl (**1,1)  = u2,2} fl (**1,2)  = **2,3)  fl (**1,3)  = **2,1  >

and it must satisfy that fi(*i)  is a vertex of level k > 1 for any vertex u of level k, and 

that fi(*t)  G Li for any u^L? and fi(*t)  G L2 for any ** G Li, where L{ is a subgraph of 
Kp with root u2 such that Li = T^p-i for i = 1,2.

(2) Let I(i) (or II (i)) denote the vertex that the first (or second) player claims 

on the ith round. Then,

Z(l)=*z 0, 11(1) =7*1,1,

so that Til becomes piebald. If the first player does not employ the ordinary opposable 
method, then

j(2) J = 1,2,3. (4.2)

In this case, the basic ideas are that, if possible, the second player employs the ordinary 
opposable method and that he makes vertices reserved for the first player piebald. Given 

the condition (4.2), we consider some cases below.

If 1(2) =7*1,2  or 771,3, then 11(2) = **2,1  to make U2 piebald. Then, in order for 
the first player to win this game, he must follow the ordinary opposable method to claim 

1(3) = 712,2 or 712,3) since otherwise the second player uses that method. Thus all the 

vertices are exhausted.

If 1(2) is a vertex of level k with 3 < k < p — 1, then 11(2) = /(I(2)), where f is 

an automorphism defined by (4.1). Note that 1(2) must not be a vertex of level p since 

it is better to claim a vertex of level p — 1 to make three vertices of level p absolutely 

reserved for the first player.
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If 7(2) = U2, then first we consider the graph Kj. The procedure looks as

follows.

7(1) =«o, 2Z(l) = ui,i 7(2) = U2, 77(2) = 771,2,

7(3) = 771,3, 71(3) = ^2,1,1, 7(4) = 772,3, 77(4) = 772,2,1-

Note that the vertices 772,1 and 772,2 are piebald. At this moment, six vertices of level 3 are 
absolutely reserved for the first player and also for the second player, and four vertices 
of level 3 are available for both players. Since the first player starts the rest of the game, 

the second player wins and all the vertices are exhausted. Now in Kp for p > 3, if we 
proceed as above up to 4th round, then the rest of the graph is opposable and the first 

player starts the game. Thus we conclude that the second player wins and all the vertices 
are exhausted. □

Remark 4.15. (1) One important consequence of the above lemma is that the first player 

can win the game Kp for p > 2, but he cannot leave any vertices absolutely reserved for 

him at the end of the game since all the vertices are used.

(2) The first player must take the root at his first move. This is simply because 

if he does so, then he wins. Both players must do their best to win the game. If the first 

player claims other than the root on his first move, 771,1 say. Then, the second player 
uses the opposable method, so that he claims 172,1- If they continue, then eventually the 
second player wins and this is against the idea of “perfect play” (cf. Definition 1.2 in 
Section 1.1).

Now we can state and prove our main theorem of this chapter.

Theorem 4.16. Any complete ternary tree is a first player win.

Proof. The cases where p = 1,2 are shown in Example 4.10.

Let p > 3. First we divide 7b,p into p subgraphs 1^2, ■ ■ •,Kp-r, Kp with 

(uo, vi), (ui, 7;i,i), etc and Gi,i,...,i = Ibj. The first player begins the game by claiming 

the vertex ^i,i,...,i of level p — 1, leaving the vertex vi,...,i of level p — 2 reserved for him 

and three vertices of level p absolutely reserved for him.

Suppose that the second player claims a vertex u E Ki-
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If u is the root of Ki, then by Lemma 4.14 the second player wins the game Ki 

and all the vertices of Ki are exhausted. And then the first player starts a new game on 

Aj (j y=- i) by claiming its root to win that game. If he cannot claim the root, then he 
claims any vertex of level 2, loses the game on Kj and starts a new game.

If u is not the root of Ki, then the first player claims f(u) G Ki, where f is 
an automorphism of A;\{the root} that makes it opposable. If this procedure continues, 

then regardless of the winner all the vertices of A; are exhausted by Lemma 4.14. If the 
second player loses the game, then he will start a new game on Kj (j / i).

Eventually, two players play on each Ki for i — 2,3,... ,p and all the vertices in 

these subgraphs are exhausted. Now there are three vertices absolutely reserved for the 

first player and hence he wins the whole game T^p. □

So far we have considered the complete ternary trees T^p and showed that they 

are first player wins. For an odd integer n > 3 it is conjectured that any n-nary tree Tn,p 

is a first player win. For instance, a method applied to T^p might work for T^p and this 

will be a future study.

4.3 Incomplete Trees

We have been playing only on a complete n-nary tree to investigate nonopposable 
graphs. We shall extend to inspect other types of trees that are not complete n-nary trees 

in this section. However, because there are infinitely many types of subtrees of complete 

n-nary trees, we briefly explain the wining strategies for the first player in simple such 

graphs.

Example 4.17. We consider a simple subtree of a complete ternary tree given in Figure 

4.9.
The first player has two choices: taking the root of graph or trying to save 

vertices as absolutely reserved. We will examine the strategy that the first player chooses 

the root first.
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Figure 4.9: Example (1) of a subtree of complete ternary tree

Strategy (1). Suppose the first player claims the root vq. This makes that Vi and 

are reserved for the first player (Figure 4.10). Recall that these vertices are marked 
by big black dots.

v2>1.......

Figure 4.10: Example (1), strategy (1) after first move

The second player claims so that 1*1,13,  i — 1,2,3 are absolutely reserved for the 

second player, and vj becomes piebald (Figure 4.11).

0

V2>1............. VS,3

ooo
v 1,1.1...

Figure 4.11: Example (1), strategy (1) after second move 
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The first player claims in his turn and i = 1,2,3 are absolutely reserved for the 
first player (Figure 4.12).

v' ®
” 1.1

ooo
v , , , V,

V,

V 2.1.............. 2,3

Figure 4.12: Example (1), strategy (1) after third move

We can see that the first player wins since there are the same number of absolutely 

reserved vertices for each player, but the second player starts the rest of the game.
Though we find a winning strategy for the first player of the game given in 

Figure 4.9, we consider another strategy to figure out general winning strategies.

Strategy (2). Suppose the first player claims to make i = 1,2,3

absolutely reserved and reserved for him (Figure 4.13).

•••

Figure 4.13: Example (1), strategy (2) after first move

The Second player claims so that f2,i> i = 1,2,3 are absolutely reserved and also f’o 

reserved for him (Figure 4.14).
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Figure 4.14: Example (1), strategy (2) after second move

The first player claims iq to make the vertex i/q piebald and he wins (Figure 4.15).

OOO

Figure 4.15: Example (1), strategy (2) after third move

Example 4.18. Next we consider the graph where four more vertices (1/1,2, 1/1,2,i, i =
1,2,3) are added to the graph in Figure 4.9 (Figure 4.16).

Figure 4.16: Example (2) of a subtree of complete ternary tree

Strategy (1). Suppose, on the above graph, the first player claims 1/1 j to save
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vertices as absolutely reserved for him. The three vertices 1/1,13, i = 1,2,3 are absolutely 
reserved for the first player and the vertex i/j is also reserved for him (Figure 4.17).

Figure 4.17: Example (2), strategy (1) after first move

Then the second player claims 1/2. The vertices 1/23, i = 1,2,3 adjacent to 1/2, are then 

absolutely reserved for the second player, and vq becomes reserved for the second player 

(Figure 4.18).

Figure 4.18: Example (2), strategy (1) after second move

OOO
V3.1.............. Vj.j

Now we can see that the first player wins since he claims 1/1,2 and he has six vertices 

1*1,13  and 1*1,23> i = 1,2,3 absolutely reserved for him with tq reserved for him, and three 
vertices axe available only for the second player with t’o reserved for him.

There is another move for the second player after the first player’s move of 

claiming 1/1,1. The second player claims 1/1,2 making 1/1 piebald and 1/1,23, 1 = U2,3 

absolutely reserved for him. Then the first player claims 1/2. Now it is obvious that the 

first player wins.
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Strategy (2). In the next strategy on Figure 4.16, suppose the first player claims 

t>2. The idea of this strategy is similar to that of strategy (1) and is to save vertices as 
absolutely reserved for the first player. Now the first player has three absolutely reserved 

vertices V2,i> i = 1, 2,3 and one more reserved vertex vo (Figure 4.19).

Figure 4.19: Example (2), strategy (2) after first move

In the second player’s turn, he claims ui and he has two reserved vertices vij and «i,2. 

The root vq now becomes piebald. (Figure 4.20).

®v«

V|

Figure 4.20: Example (2), strategy (2) after second move

The first player can claim any one of vertices from i/ij^ and 7/1,2,*,  i = 1,2,3. For instance, 

he claims vi,i,i to make 7/1,1 piebald but does not add any reserved vertex in his turn 

(Figure 4.21).
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®v“
v( v:

Figure 4.21: Example (2), strategy (2) after third move

The second player claims 1/1,2 and he add three vertices as absolutely reserved. (Figure 
4.22).

Figure 4.22: Example (2), strategy (2) after fourth move

v2

Now we realize that the first player is going to lose this game since there are two vertices 

available for two players and each player has equally three vertices absolutely reserved.

From the above example we learn that the first player needs to choose the vertex 

carefully to save vertices as absolutely reserved for his own. We use another idea. We 

choose a vertex (vi in this example) that reserves vertices for which if we claim them then 

we can reserve some vertices absolutely. We show this method in strategy (3) below.

Strategy (3). Suppose the first player claims vi to make vq and vij, j = 1,2 

reserved for him (Figure 4.23).
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v,

Figure 4.23: Example (2), strategy (3) after first move

The second player claims V2, which makes that V2j i = 1,2,3 are absolutory reserved for 

him and vq is piebald (Figure 4.24).

Figure 4.24: Example (2), strategy (3) after second move

Next, the first player claims fto have three absolutely reserved vertices for him (Figure 

4.25).

Figure 4.25: Example (2), strategy (3) after third move
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The second player claims one of 14,2,1, = 1,2,3, and makes «i,2 piebald (Figure 4.26).

Figure 4.26: Example (2), strategy (3) after fourth move

We then predict that the first player loses this game since there are two vertices available 

for both players, three vertices absolutely reserved for each player, and next turn is the 
first player.

Example 4.19. We play one more game to conclude the suggestions that help the first 

player to win (Figure 4.27). We will examine three strategies in this graph.

Figure 4.27: Example (3) of a subtree of complete ternary tree

Strategy (1). Suppose the first player claims i?i, which makes three vertices 14 j, 

j = 1,2 and t’o reserved for him. Especially, v-gj, j = 1,2 are going to make six vertices 

as absolutely reserved for him if claimed (Figure 4.28).
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Figure 4.28: Example (3), strategy (1) after first move

The second player claims v-2- It creates two absolutely reserved vertices and one vertex 
that leads to make two absolutely reserved vertices for him if it is claimed. Also vo is 
piebald now (Figure 4.29).

Figure 4.29: Example (3), strategy (1) after second move

The first player claims vij and has three absolutely reserved vertices (Figure 4.30).

Vi V,

Figure 4.30: Example (3), strategy (1) after third move
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The second player has two choices, one of f 1,2,1, i = 1,2,3 or V2,2 to claim. At this time, 

the second player claims f 1,2,1 and the vertex vi)2 became piebald (Figure 4.31).

$ V0

Vi

V,., O V

V2

2.2,2V vv 2,2,1 ...............

V3.3

Figure 4.31: Example (3), strategy (1) after fourth move

In the first player’s turn, he also claims f2,2,i to make u2)2 piebald (Figure 4.32).

Figure 4.32: Example (3), strategy (1) after fifth move

Now we can judge that the first player wins since there are three vertices available for 
both players, three only for the first, and two only for the second (Figure 4.32). Even 

though the second player claims f2,2 in his second turn, the result is same as when he 

claims vlj2,i.

Strategy (2). In this strategy, suppose the first player claims vij to maintain 

three absolutely reserved vertices fi,i,i, i = 1,2,3 and one reserved vertex ui (Figure 

4.33).
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Figure 4.33: Example (3), strategy (2) after first move

Now the second player has three vertices to claim: vg, ^1,2 and 1/2,2- If the second player 

claims 1)1,2, then the first player claims 1'2, and if the second player claims 1/2,2? then the 

first player claims 1’1,2 ■ In either case, it is easy to see that the first player wins. We show 
the case where the second player claims 1/2 in detail below.

Suppose that the second player claims v% to have two absolutely reserved vertices 

V2,i, and 1/2,3. He also has two more reserved vertices vq and i>2,2 (Figure 4.34).

Figure 4.34: Example (3), strategy (2) after second move

In the first player’s turn, he claims 1/1,2. Now he has six absolutely reserved vertices and 

one reserved vertex that connects with the vertex vq that is reserved for the second player 

(Figure 4.35).
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Figure 4.35: Example (3), strategy (2) after third move

In the second player’s turn, he claims 7/2,2 (Figure 3.36).

Figure 4.36: Example (3), strategy (2) after fourth move

Now the second player has four absolutely reserved vertices and the first player has six 
absolutely reserved vertices, so the first player wins.

Strategy (3). Here, suppose that the first player starts by claiming v% to make 
t/2,1 and 7/2,3 absolutely reserved and vq and 7/2,2 reserved for him (Figure 4.37).
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Figure 4.37: Example (3), strategy (3) after first move

Then, the second player claims vij, so that vertices 14,13 for i = 1,2,3 
reserved for him and 14 reserved for him (Figure 4.38).

are absolutely

Figure 4.38: Example (3), strategy (3) after second move

Now it is clear that the first player wins if he claims 14,2 (Figure 4.39).

V|.| V 1,2

00 owev . . . v ,
Figure 4.39: Example (3), strategy (3) after third move

At an end of this section, we restate and modify the clues that we previously
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suggested right before Example 4.11 for the first player to win.

1. Try to save vertices as absolutely reserved for one’s own.

2. Try to claim a vertex of highest degree.

3. Decompose the graph Go into some subgraphs in each of which we can easily set 

up the strategy.

4. Try to claim a vertex such that, if it is claimed, then it reserves vertices that make 

some absolutely reserved vertices if they are claimed.

5. Play on opposable graphs as a second player if it is possible.

6. On each subgraph the first player should make all vertices exhausted before finally 

he returns to the vertices of absolutely reserved for him.
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Chapter 5

Snort and Values

So far we have talked about Snort on simple graphs and the opposability of a 

game which gives the second player a strategy to win. However, if we play it on a larger or 
more complicated graph, is there any convenient way to predict who can win the game? 

J. H. Conway introduces the theory of number in a game in his early book [Con76]. He 

instructs us to decompose a game into sub-games and to find the value of each sub-game 

or region. This theory is based on four ideas. The first is that it is easy to think of an 

immediate strategy on a small region which does not affect the other regions. The second 
is that the worth of a strategy is determined by the condition after a player applies his 
strategy. The third is that we predict who wins the game by collecting those strategies 

as the game proceeds. The forth is that those strategies can be converted to numbers 

by certain rules. Note that numbers are easily handled. In this chapter, first we explain 

how to calculate the values of sub-games of the Domineering game. Then we move on to 

Snort games on simple graphs and evaluate the values of some games of Snort to see who 

wins.

5.1 Values in Simple Games

Since we used the terminology of “position” in item 5 of Definition 1.1 in Section 

1.1, we shall use positions instead of regions. The value of a game is calculated based on 

how much worth each position has for each player. Both players may have one or more 

strategies to play on the position. After a player chooses a movement, there arises a new 

position. We define the value of a position by judging from the new position. That is, 
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we count how much the movement contributed to the game for the player after choosing 
his strategy. To illustrate this idea we use the Domineering game that is also one of the 

combinatorial games. We first explain how to play the Domineering game below.

1. A chessboard and 1x2 dominos are used for Domineering.

2. Two players, Verty and Horry, play alternately. Verty places a domino vertically on 

two adjacent squares. Horry places a domino horizontally on two adjacent squares. 

Their dominos cannot be overlapped.

3. They place their dominos alternately until one of the players cannot put a domino 

in his turn.

4. The winner is the one who places the domino in the last move.

While a Domineering game is played, two players distinguish some small positions that 

do not connect each other. That is, in each small position two players can play the game, 

not affecting other regions. When a player defines the value of each position, he can make 

the list of values. So he calculates the sum of those values and he can predict the result 

of the game.
In the following figure we depict an example of Domineering, where we inten

tionally make a 5 x 5 chessboard decomposed into some positions to find their values. 
We can think that after some moves we come up with the following position consisting 

of eight positions.

nT
—

1 
11 

1 rH
Figure 5.1: Decomposition of chessboard

There are eight basic positions that are dragged from the above chessboard (Figure 5.2).
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□

Figure 5.2: Eight positions

We will illustrate how to determine the value of each position using the bracket 

notation. In each game position G, two players have zero or more strategies to claim on 

their turns. We display all possible choices of movement inside of the brackets. Verty has 

choices of Vi, i = 1,n, which are displayed on the left side of the brackets and Horry 

has choices of Hj, j = which are displayed on the right side of the brackets,

where they are separated by a vertical bar. Then a typical position is denoted by G = 

{Vi,..., | Hi,...,Hm}. For example, in Figure 5.3, there are three choices Vi, V% and
V3 for Verty and two choices and for Horry.

G = { Vt V2 V3 I h, Hi )

Figure 5.3: The choices of movement

When we describe a position, we show only the positions that are obtained after their 

movements. Here, squares where dominos are placed are removed from the positions each 

time. We also use 0 to indicate that there is no legal movement for the player. Hence,
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the above G is expressed as

□
G = { V, , V2 , V3 Hi , H2 }

Figure 5.4: The positions after the movement

Now we define the value of positions. This is done inductively. First we define 

the value of simple positions. Then using them we define the value for more complicated 

ones. For instance, the value of a position G = {Vi, V2, V3 | Hi, H2} is defined using the 

values of positions Vi’s and Hj’s. Another thing is that we replace Vi’s and Hj’s by their 

values, so that we are identifying the positions with the numbers. Basically we use the 

nonnegative numbers for the values of Verty’s positions Vj’s and the nonpositive numbers 

for Horry’s positions Hj’s. For example, we may have G = {0,1,21 — 1,0}, where 0,1,2 
are values of Vi, V^, V3, respectively, and —1,0 are those of Hj,H2, respectively. We shall 
figure out how to proceed more to obtain the value of G. In addition to numbers, there 
are values 0 and * for some positions, which will be explained later. Let us start to 

calculate the value of positions in the following.
The simplest position of a game is of value 0. This is an endgame where there 

are no legal moves for either player, so that the position for each player is denoted by 0 

as before and we indicate the value of the position 0 by the same symbol 0. We define 

this position to be of value 0 and call it the position 0 (Figure 5.5).

□ = { d I d} = 0
Figure 5.5: Position of value 0
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The next position is of value 1 where Verty has an advantage of one movement, but Horry 

has no legal movement (Figure 5.6). Here, we replaced the position after Verty’s move 

by the number 0. This whole position is called 1.

— ={010} = 1

Figure 5.6: Position of value 1

We extend the idea of this example as a rule: if there is a nonnegative number n for Verty 

and 0 for Horry, then the value of the position is n + 1, i.e.,

{n | 0} = n + 1.

Similarly, if Horry has an advantage of one movement and Verty has no legal 

movement, the position is of value —1 (Figure 5.7).

0 }= { 0 -1

Figure 5.7: Position of value — 1

This example can be generalized to a rule: if there is a nonpositive number n for Horry 

and 0 for Verty, then the value of the position is n — 1, i.e.,

{01 n} = n — 1.

In Figure 5.8 below, there are two choices for Verty, 0 and 1. In order to play 
better, Verty would choose the value 1. Also since there is no legal movement for Horry, 

the value of this position is {110} = 1 4-1 = 2.
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0 } = { 0 ,1 | 0 } = 2

Figure 5.8: Position of value 2

It follows from this example that if we have a position G = {ai,..., an ] bi,..., bm}, then 

Verty would choose the largest number among ai,... ,an to play best. That is, for Verty 

the value is the larger, the better.
In Figure 5.9, there are two choices for Horry, 0 and —1. In order to play better 

Horry would choose the value —1. Also since there is no legal movement for Verty, the 

value of this position is {0 | 0, —1} = (—1) -I- (—1) = —2.

01 nzn

= { 0 I 0 , -1 } = -2

Figure 5.9: Position of value —2

It follows from this example that if we have a position G = {ai,..., an | bi,..., bm}, then 
Horry would choose the smallest number among bi,...,bm to play best. Hence, we have 

that

G — {fli, • • -, an | &i,..., bm} = I bj},

where tZi = max{ai,..., and bj = min{bi,..., bm}.

If a position of a game becomes an endgame after the first player’s move, the 

value of the position is {0|0}. Recall that a position is said to be an endgame if it has 

no legal move for both players, and we say that the position has value 0 in this case. We 

give simple examples in Figures 5.10 and 5.11. In this situation, we use * to indicate the
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value of the position and call this position star. Note that in a star position the first 
player always wins.

Figure 5.10: Position of value *

{ 0 I 0 }

} = { 0 I 0 } = *

Figure 5.11: Position of value *

The value of Figure 5.12 is {11 — 1} because Verty and Horry both have one 
advantage after their own movements. We cannot reduce this value to a single number. 

Although this position is a first player win, the value of this position is not * since after 
each player’s move there still is a legal move for one of the players. Also we’ll use the 

value {11 — 1} to calculate the value of the whole game.

} = { 1 I -1 }

Figure 5.12: Position of value {11 — 1}

Next we need some experiments to understand the value of a position in Figure 

5.13 below.
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= { -1 , 0 | 1 } = {0(1}

Figure 5.13: Position for experiment

Before we proceed, we give two notions. First, the union of two positions Gi 

and G2 is defined to be their disjoint union, where we consider D G2 = 0, an empty 

set (Figure 5.14).

Second, we consider a position of “even-chance.” In Figure 5.14, we have a union 

of two positions with values 1 and —1, respectively. It is evident that this is a second 

player win. Hence, we regard that the advantage of the left position for Verty is as same 

as that of the right position for Horry.

1 -1

Figure 5.14: Example of even-chance

In general, if a union of game positions is a second player win, then Verty and Horry are 

considered to have the same advantage for winning and the union of these positions is 

called an even-chance game.

Now we go back to Figure 5.13.
Experiment (1). Estimating the value of the position in Figure 5.13.
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We estimate the value of this game as 1 since Verty can win in both ways that 
he plays first or second and we feel that Verty has a positive advantage.

Experiment (2). Making sure of Verty’s advantage.

When we set the game positions with Verty’s advantage (Figure 5.13) and 

Horry’s advantage (Figure 5.7) together in one game, the advantage of them should 

be equal (Figure 5.15). It should make them to have Even-Chance.

Figure 5.15: Equal advantage?

Here, we have defined a “union” of two positions, denoted as above, to be the disjoint 
union of two positions. When it is one player’s turn, he can make a single move in a 
summand of his choice. As usual, the last person to move wins. Similarly, we can define 

a union of three or more positions to be their disjoint union. Now we see that Horry 
always wins in the game of Figure 5.15 no matter who starts. This results means the 

position of Figure 5.13 does not have the value 1.

Experiment (3). Estimating the value of the position of Figure 5.13 to be 1/2.

In the next experiment, we estimate that its value is 1/2 and so we add one 

copy of the position in Figure 5.13 to Figure 5.15 (Figure 5.16).

uu

Figure 5.16: Is the position of value 1/2 ? (1)

When Verty is the first player, Horry wins (Figure 5.17).
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Figure 5.17: Is the position of value 1/2 ? (2)

(41

When Horry is the first player, Verty wins (Figure 5.18).

J k

1 f (4)

(1) tIC2)
(31u u

Figure 5.18: Is the position of value 1/2 ? (3)

Now we conclude that two positions in Figure 5.13 have the same advantage as the 

position in Figure 5.7. This result implies that the value of Figure 5.13 is 1/2.

To conclude this section we summarize the description of positions and basic 
rules and formulas for values of positions in the following.

1. A position is described by those after one move of each player. For example, let G 

be a position. Assume that there are three strategies for Verty and two for Horry. 

Then, after one move of Verty there are resulting positions Vi, V2 and L, and after 

one move of Horry there are resulting positions Hi and H2. Then we denote the 

position G as

G = {Vi,V2,V3|ff1,H2}. (5.1)

2. The value of a position is defined inductively from the simplest ones to more com

plicated ones.

3. Once the value of a position is determined, we replace the position by its value. For 

example, if is a value of Vi and bj is a value of Hj in (5.1), then we write

G = {ui,a2,«3 | bi,b2}.
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4. The value of a position measures the advantage of each player.

5. Basically, we use nonnegative numbers for the value of Verty and nonpositive num

bers for the value of Horry. For example, we have a value of a certain position such 

as {11 — 1}. In this position, Verty has an advantage of one movement after his 

move and so does Horry. Note that 0 is the value of a position for a player that 

after one move of the player there is no legal move for him.

6. The symbol 0 indicates the value of a position for a player if that player has no 

legal move in the position at the beginning.

7. The value 0 is given to a position that has no legal move for both players. That is,

{0|0J = 0.

8. The symbol * indicates the value of a position given by {010}. That is,

{010} = *.

9. If there are several numerical values for a player, we select the value with the largest 

absolute value. For example, we have

{l,2,3|0,—1} = {3| - 1}.

10. If there is a nonnegative number n for Verty and 0 for Horry, then the value of the 
position is n +1. Similarly, if there is a nonpositive number —n for Horry and 0 for 

Verty, the the value of the position is —n — 1. That is,

{n 10} = n + 1, {01 — n] = — n - 1.

11. A union of finite positions Gi,..., Gn is defined to be their disjoint union Gi U • • ■ U 

Gn.

12. If p and q are nonnegative integers, then we define

2p + 1 _ (p_ P + 11
29+1 (2? 2? J’

which can be justified in a same way as Figure 5.13.
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5.2 Rules of Values

We have learned how to calculate the value of many positions. In this section 

we will study how to obtain the total value of a whole game while we are describing some 

rules as definitions. We use the Domineering game of Figure 5.2 as an example.
In the previous section, we used the symbol *,  called star, for the value of a 

position in which after the first player claims a move, the game becomes an endgame and 
the first player wins. Fuzzy for the whole game means that there is always a winning 

strategy for the first player. Fuzzy is one of the categories that tells whoever has a strategy 

to win. Here we clearly categorize each game into four outcome classes depending on who 

has a strategy to win (see [Con76]).

1. A game is called positive if Verty always wins.

2. A game is called negative if Horry always wins.

3. A game is called zero if the second player always wins.

4. A game is called fuzzy if the first player always wins.

When we consider a sum of game positions G = Gi -I- Go + • • • 4- Gfc, each Gi 

is considered independently of others. Now we define a sum of two positions using the 
value of each position inside the brackets as follows.

Recall that we denoted a game position by G = {V,..., Vn | Uj,...,and 
then by G = {ai,..., an| &i,..., bm}, where ai is the value of Vi (1 < i < ri) and bj is the 

value of Hj (1 < j < m).

Definition 5.1. Let G = {ai,..., On| 6i,6m} be a game position. If there is another 

game position K = {aj,..., alp | b{,..., by], the sum of two game positions G + K is 

defined by

G 4- K = {ai 4- K,G 4- 1 < i < n, 1 < k < p

| bj + K, G 4- 1 < j < m, 1 < € < q}.
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Definition 5.2. it If x,y and z are numbers, and x>y, then

{a? | y] +.z = {z + z|y-f-z}.

After the sum is calculated, we read values as follows.

1. The left side value in the brackets is the value that Verty plays first.

2. The right side value in the brackets is the value that Horry plays first.

Example 5.3. Let us add two simple games whose values are {11 — 1} (Figure 5.12) and 

1/2 (Figure 5.13). Then we have

{11 -U + i = {i|l 4}-
The left side value in the brackets is positive, so if Verty starts, he can win. The right 

side value in the brackets is negative, so if Horry starts, he can win (Figure 5.19).

{11-1} + 1/2

i k i k

1
<l) 

f 1
(3) 
r

Verty is the first player, 
and then Verty wins.

(2)

Horry is the first player, 
and then Horry wins.

Figure 5.19: Example of {x | y} + z = {rc + z | y + z}

= {

+

Definition 5.4. Let G = {oi,..., an| 61,..., bm}. Then, the game —G is defined by

—G — {~&i> • • •, — bm | aj,..., On}-

This definition is easily understood if we see Figures 5.20 and 5.21 in Example 5.5.

Example 5.5. Let G be the position of Figure 5.20 and see that its value is |.
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= { -1 , 0 | 1 } - 1/2

Figure 5.20: Example of — G, part 1

Then —G = = { —110,1} (Figure 5.21).

= { -1 | 0 , 1 } = -1/2

Figure 5.21: Example of — G, part 2

Definition 5.6. If x is a number, then

*4- * = 0,

x 4- * = {x | #}.

Example 5.7. For the first part of Definition 5.6, we set a sum of two identical positions 
given in Figure-5.11. Verty as a first player places his domino on one of the positions and 
that position becomes an endgame. Then, Horry places as a second player his domino on 

the remaining position and Horry wins. Therefore, the second player always wins (Figure 

5.22).
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+

Figure 5.22: Example of * 4- * = 0

For the second part of Definition 5.6, we set a sum of two positions taken from Figure 
5.13 and Figure 5.11. The values of the two positions are | = {0| 1} and * = {0|0}. Verty 

has two options that are 0 4- * and {^} 4- 0 and Horry also has two options that are 14- * 
and {4-0. The best option for Verty is {|} 4-0 and the best option for Horry is {|}4-0. 

Therefore, | 4- * = {|||}.
Finally, we again depict the values of various positions that are obtained in the

previous section as follows (Figure 5.23).

+ + + + +

0 + 1 + (-1) + 2 + * + * +{11-1)4-1/2

Figure 5.23: Values of positions

We can proceed to calculate the value of the whole game as

0 4-1 4- (—1) 4-24-*4'*4- “4- {1| “ 0

= 1 4- (-1) 4- 2 4- 0 4- 5 4- {1| ~ 1}, since 0 4-1 = 1 and * 4- * = 0,
&

= {1| - 1} 4- 2|, since 1 4- (-1) 4- 2 4- 0 4-1 = 2^,

Now we predict that Verty can win on the game of Figure 5.1 no matter who starts, since 

the value of the whole game is positive.
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5.3 Values on Snort

We have a foundation of how to calculate the values of each position and also a 
whole game. In this section, we evaluate the position value of Snort games and display a 

brief list of them. Before we start, we recall some rules shown in Section 2.1.

1. After each player claims a vertex, the vertex is removed.

2. Any adjacent vertex to the vertex that the first player claimed is reserved for him 

and shown as a large black dot.

3. Any vertex adjacent to the vertex that the second player claimed is reserved for 

him and shown as a large white dot.

4. A piebald spot that is reserved for both players is shown as

5. Any edge connecting two vertices that are reserved for the same player is omitted.

We note some differences between Domineering and Snort. Verty and Horry have 

one restriction in a Domineering game. That is Verty places his dominos only vertically 

and Horry places his dominos only horizontally. So we have to consider the shape of 

regions or positions for Domineering game. In Snort game, there are vertices available 
to both players and they can claim any one of them. Also there axe vertices reserved for 

one of the players and the opponent cannot claim them.

We show some basic examples below (Figure 5.24).

• * •---------------•

• 1 •—•

0 -1 0—•

• • 0 e—o

•—3-—O {11 -1} •—o—•

{i
f 1

1 -1}
i n 1

•---- •—

A

—• {2 1 -2}

I 2 1 -1 ){1 1 0 } tx 1 1 J

{0 1 -1) •----•“ {2 1 * }

* •— {2 11 0 }

{1 1 -1} {111 0 }

Figure 5.24: Values of Snort games
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The value of a Snort game is also considered in a small position or graph. Now 
we instruct procedures to calculate the value of a graph.

1. List all options of movement on the graph of Snort game for the first player and 
display them on the left side of brackets.

2. List all options of movement on the graph of Snort game for the second player and 

display them on the right side of brackets.

3. When we display options, we show only the positions that are obtained after their 
movements.

4. Evaluate values for each option and display them as numbers inside of the brackets.

5. Select the best value for each player.

6. If it is possible, make them into one value.

Let us try to calculate the value of the graph on Figure 5.25.

®—•
•—o

® o * ,* “1
} = { }

•—O 1 *

= {11 -1}

Figure 5.25: Values of Snort game (1)

1. The first player has two options: One is claiming a reserved vertex and the other is 

claiming the right end vertex.

2. The second player also has two options: One is claiming a reserved vertex and the 

other is claiming the right end vertex.

3. The values for the first player are * and 1, and values for the second player are —1 

and *.
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4. The best value for the first player is 1 and the best value for the second player is 
-1.

5. The final value for the graph in Figure 5.25 is {11 — 1}.

We can evaluate the following two examples, Figure 5.26 and Figure 5.27, in a similar 
fashion as above.

•—o 
•—•—O = {

• 9

= {11-1}

® O *
} = {

•—O 1

Figure 5.26: Values of Snort game (2)

={110}

Figure 5.27: Values of Snort game (3)

In the rest of this section we will display a brief list of Snort games that is taken 

from [BCG82]. Since the values of positions are defined inductively, we use the following 

notations. If, in a certain position, we have a value {211} for Verty and a value {—11 — 2} 

for Horry, then we denote the position’s value by {211 || — 11 — 2} using a || to separate 

the values of both players as in the first example in Figure 5.28.
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• ------•---- •----- • { 2 I 1 II -1 I -2 }

• ----- •---- •---- • {31*}  •---- •-----•—O {21-2}

• ----- •---- •--------- • {310,-1110, 11-3}

11-1}

• ----- Q

• -----•
{31*} 2 1-2)

V/ 1 2 II -2 I -3 } { 5 I 0 II 0 I -5 }

1 -1 } {31*}

«—•

Figure 5.28: Value dictionary of Snort games
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5.4 More Examples

In this section, we try to understand more about the theory of values by pre

dicting a winner of some games, which we have examined in the previous chapters.

Example 5.8. We consider two strategies on complete ternary trees T^z from Section 
4.2. We have known the first player wins by either strategy. We re-examine this result 
by evaluating the value of the game each case (Figure 5.29).

Figure 5.29: A complete ternary tree 73,2

Strategy (1). The first player claims the root, so that vi, vz,*>3  are reserved for 

him. Now the whole game G = T3)2 is decomposed into three of where each root is 

reserved for the first player (Figure 5.30).

{310} {310} {310}

(a) (b) (c)

Figure 5.30: After decomposed into three T^j’s in strategy (1)

We have learned that the value of for which the root is reserved for the first player 

is {310} from Figure 5.28. Since the next turn is the second player’s, we pick the value 0 

from Figure 5.30 (a). Then, for the first player, the value 3 is picked from Figure 5.30 (b),
I

and finally the value 0 is picked from Figure 5.30 (c) for the second player. Therefore, 
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the total value is 0 + 3 + 0 = 3. The value is positive and this means that the first player 

wins on this game.

Strategy (2). The first player claims i/i to make vq reserved for him, and also 

vij,vit2 and 1/1,3 absolutely reserved for him (Figure 5.31). Although the whole game 
G = 23,2. is decomposed into two parts, it is still difficult to predict who is going to win. 
Then we would like to see the possible options after the second player claims some vertex.

Figure 5.31: After decomposed into two parts in strategy (2)

The second player claims 1/2 and makes 1/0 piebald. The vertices 1/2,1, ^2,2, and 1/2,3 became 
absolutely reserved for the second player (Figure 5.32).

v.

Figure 5.32: After decomposed into three parts in strategy (2)

1 1

The original 73,2 is decomposed and the next turn is the first player’s. The total value is 

3 + (—3) + 3 = 3 based on the information of values in Figure 5.24 and Figure 5.28. The 

value is positive', and therefore the first player wins this game.

Example 5.9. Next we examine C& from Section 2.3 given in Figure 5.33. We have 
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learned that the second player uses an opposable strategy to win in this graph of Snort 

game.

Figure 5.33: The graph of Co

The first player claims 14. Then the vertices v2 and became reserved vertices for the 

first player (Figure 3.34).

Figure 5.34: The graph of Co after the first player’s move

We evaluate the Figure 5.34. There are essentially three choices for the first player 

(claiming V4, V3, and v2), and two choices for the second player (claiming V4 and u3). We 

calculate the values based on the value lists in Figure 5.24 and Figure 5.28.
If the first player claims V4, then the value is 4.

If the first player claims v3, then the value is 1 4- {2|0} = {3|1}.

If the first player claims v2, then the value is {3|*}.

If the second player claims V4, then the value is * + * = 0.

If the second player claims v3, then the value is {11-1}.
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4
-{1+210 = 311

3 I *

* + * = 0

Figure 5.36: The graph of Cq after the second player claims V4

If a graph of Snort game has the conditions of an opposable graph, the value of

* + * = 0
1 I -1

-{4110, 11-1}

Figure 5.35: The evaluation of Figure 5.34

The best choice for the first player is 4, and for the second player is 0 since, if the second 
player chooses {11 — 1}, the first player wins by claiming fs- Then, we let the second 
player claim V4 to play with an opposable strategy, and we see the value of it (Figure 

5.36).
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the graph is 0, since the second player always wins with the opposable strategy. This is 

led by one of four outcome classes. Albert, et al, introduced this idea as a theorem in 

their book [ANW07].

Theorem 5.10. The value of the game is zero if and only if the game is a second player 

win.

Now we know the following implications for a graph G:

G is opposable => G is a second player win

<=> The value of G is 0.

We still do not know whether opposability of a graph is a necessary and sufficient condition 

for the graph to be a second player win. This is an open question and expected to be 

resolved near future.
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