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ABSTRACT

Cluster analysis plays an important role in data analysis and knowledge dis­
covery. It is used in a large range of fields, including market research, city­
planning, earthquake studies, and scientific research areas, such as bioinfor­
matics. As the complexity and amount of data increases, improvement to 
old techniques as well as development of novel algorithms is needed. While 
cluster analysis is a useful, unsupervised technique for analyzing data, there 
are no clustering algorithms that can be uniformly applied to all sets of data. 
Many of the algorithms need input parameters that require the user to have 
some pre-existing knowledge about the data, such as the number of clusters 
the data holds. This thesis addresses current problems in the area of cluster 
analysis, such as estimating the number of clusters, detecting outliers, and 
offering useful visualization of multi-dimensional data. Solutions to these 
problems as well as a user-friendly clustering platform that aids the user in 
obtaining useful clustering results are presented.
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1. INTRODUCTION

Cluster analysis is an unsupervised knowledge discovery technique for data anal­

ysis. As databases grow larger and increase in complexity, cluster analysis strives to 

find more efficient and effective techniques for analyzing the data. It is one of the 

primary data analysis techniques used to extract useful information from a set of data 

objects.

Cluster analysis looks for data objects with similarities in a set of data and puts 

those with similar characteristics into a group called a cluster. Data objects that are 

within the same cluster are similar to one another, while data objects in different 

clusters are dissimilar to one another. A high quality clustering result contains high 

intra-cluster connectivity and low inter-cluster connectivity, where intra-cluster con­

nectivity is defined as the average distance between data objects contained within a 

cluster, meaning a good result will have very compact clusters. Inter-cluster connec­

tivity is the average distance between the clusters themselves. This means with a low 

inter-cluster connectivity, the clusters are spread far apart from one another.

A number of clustering algorithms have been proposed and while there is some 

benefit to have a large range of options available for clustering, it may become con­

fusing to a user as to which algorithm will best suit their needs. It is important for a 

user to be able to select the most appropriate algorithm for their data set. Little work 
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has been done to define performance criteria for clustering algorithms that will aid a 

user in selecting the best suited algorithm. This thesis implements a general platform 

which integrates several commonly used cluster analysis algorithms with ease of use 

and extendibility, along with various validation techniques to analyze the results of 

the algorithms. The user does not need any special knowledge in order to use this 

platform and based on the analysis of the results, the user will be able to decide which 

algorithm provides the highest cluster quality and which input parameters should be 

used for their dataset.

The following sections contained within this chapter will describe several com­

monly used clustering algorithms, distance measurements, and validation techniques, 

followed by the significance and objective of this thesis. The next chapter will go into 

the methodology, describing which algorithms were integrated into the platform and 

why. Chapter 3 will detail the implementation of the platform and the final chapter 

contains the conclusion of this thesis with a discussion on future work.

1.1 Background

Clustering aims to classify data objects into a set of groups based on a measure of 

their similarities. By representing data objects with clusters you tend to lose some 

of the details of the data. Through this loss of information, simplification is gained 

in that the clustering result defines the patterns and structure that are found within 

the data. This information is useful and must be interpreted by users.

Cluster analysis is unsupervised, meaning it does not rely on a set of pre-described 

details on how to cluster the data, such as is the case with classification. This is what
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separates data clustering and data classification.

There are four basic steps in the path of cluster analysis [34]. First, given a dataset, 

some preprocessing and feature selection needs to be done in order to prepare the data 

for clustering. Next, whatever clustering algorithm will be used is executed and gen­

erates the clusters or structure of the data. Following that, cluster validation methods 

are used to determine the cluster quality of the results of the clustering algorithm. 

Finally, the results must be interpreted and some useful information garnered from 

them. During any step through this process, the previous step may be re-executed. 

For example, if the cluster quality given by the validation method is low, the cluster­

ing algorithm may be ran again with different input parameters to generate a new, 

more accurate result.

Fig. 1.1: Knowledge Discovery Flow Chart

One area where clustering is currently being used is marketing research. Market 

researches use cluster analysis to find relationships between different consumers. They 

generally gather their information through use of surveys and product test markets. 

This information can then be used in product placement, determining the target
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audience for a product, and in the development of new products.

Another area of current intense research being done in cluster analysis, is bioinfor­

matics. Researches in this area use clustering algorithms to analyze micro array data 

and attempt to find patterns in which genes are expressed with certain medical con­

ditions, such as patients with cancer. With this information researches can possibly 

define what combination of genes that are expressed can lead to an increased risk of 

certain cancers.

The most common method of evaluating the similarities within a set of data is 

through the use of a distance measurement, such as Euclidean distance. There are 

also methods used for the clustering strings, such as Cosine Similarity, which is the 

most commonly used method for document clustering, see [34]. Other fields where 

cluster analysis is commonly used in are pattern recognition, image analysis, city­

planning, and earthquake studies.

1.1.1 Clustering Algori thms

There are a myriad of different clustering algorithms that have been developed. 

Each algorithm has its own characteristics, advantages, and drawbacks. Not all algo­

rithms generate useful results for any set of data. Certain algorithms lend themselves 

to certain types of data. To determine whether running a particular algorithm on a 

dataset provides a good result, it is important to note that a good clustering algo­

rithm will provide a high quality result with high intra-cluster connectivity and low 

inter-cluster cluster connectivity. The following sections describe five major groups 

of clustering and specific examples of various algorithms within each group.
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Partition-Based Algorithms

Also called centroid clustering, partition-based clustering algorithms section off 

the data into groups and defines clusters with an elliptical shape. The most common 

algorithm in this area is k-means and its variations, such as fuzzy c-means.

K-Means provides a hard clustering, meaning each data point belongs to only one 

cluster. Fuzzy c-means on the other hand provides a soft clustering and takes a fuzzy 

value as a parameter. Based on this fuzzy parameter, the final results of the algorithm 

give each data point’s relative connectivity to each cluster. No one data point belongs 

exclusively to a single cluster, each point has a membership value associated with each 

cluster.

K-Means is perhaps the simplest algorithm and probably the most commonly used 

clustering algorithm, which simply assigns data points to the nearest cluster center. 

This algorithm has a linear convergence rate and is relatively easy to implement. 

The algorithm works in an iterative fashion, assigning each point to the nearest 

cluster center. It then calculates the center of the cluster based on the average 

distance between each data point contained within the cluster. Once the cluster 

centers are found the algorithms reiterates, assigning points again to the nearest 

cluster center. The stopping point for the algorithm is either until a predetermined 

number of iterations have passed or until no data point changes its cluster membership 

during an iteration.

In its simplicity, k-means carries with it some disadvantages. It is susceptible to 

noise in the data set as each data point must belong to a cluster, and an outlier can 

distort the shapes of clusters [34]. Probably the largest disadvantage of k-means is 
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that the user must provide the number clusters to look for within the data set. If the 

user has little or no knowledge of the data set to be clustered, this poses a problem that 

will greatly affect the results of the algorithm. One possible solution to this problem is 

to run the algorithm multiple times and analyze the results either manually, or using 

a cluster validation technique to gauge the optimal number of clusters within the data 

set. Another solution to this problem researchers have come up with is to combine 

k-means with a hierarchical algorithm. You first run the hierarchical algorithm and 

from that deduce the optimal number of clusters as input for the k-means algorithm 

P).

One modification to k-means has been in the speed of the convergence rate. During 

the first iteration, the number of cluster centroids defined by the user are placed 

randomly within the bounds of the dataset prior to the data points being assigned 

to them. An improvement to the placement of the centroids can provide a faster 

convergence rate for the algorithm, see [1].

K-Means does not handle high-dimensional data well [34] and as the number of 

attributes in the data increases, K-Means tends to give increasingly poor results. The 

main advantages of this algorithm are its simplicity and fast convergence rate.

Fuzzy C-Means follows the same basic technique as k-means. Each data point is 

a member of a single cluster in k-means, however, in fuzzy c-means each data point 

can be associated with multiple clusters, with a varying degree of membership.

Fuzzy C-Means has similar disadvantages as K-Means, in that, the user must 

provide the number of clusters to the algorithm and the initial placement of the 

cluster centroids must be decided. Likewise, it also has a fast convergence rate.
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Hierarchical Algorithms

Hierarchical clustering outputs a dendrogram, a tree-like structure, and allows 

a user to see how the data set will be clustered at multiple levels with a varying 

number of clusters. At the top level is one cluster with every datapoint within the set 

contained inside that cluster. At the lowest level, the leaves of the dendrogram, every 

datapoint is its own cluster, so the number of clusters at the lowest level is equal to 

the number of datapoints contained in the data set.

Hierarchical methods fall into two categories, divisive and agglomerative [34]. The 

divisive methods start with the entire data set as one cluster and iteratively breaks 

apart the clusters until each data point is an individual cluster. At each iteration, 

or level, the number of clusters is increased by one. Agglomerative works just the 

opposite, each data point starts as its own cluster and then the clusters are merged 

at each level until all the data points are contained within a single cluster. At each 

level for agglomerative, the number of clusters is decreased by one. In both methods, 

the number of levels in the dendrogram is equal to the number of datapoints in the 

dataset.

To decide which cluster should be split or merged, hierarchical algorithms em­

ploy several methods for measuring the intercluster distances. The simplest of these 

methods [12] is single-link, where the two closest datapoints within two clusters are 

compared. The clusters who are closest are then merged together for agglomerative 

algorithms. Another commonly employed linkage method is complete link, where un­

like in the single-link method, the two datapoints who are furthest from each other in 

two respective clusters are compared. Again, the clusters who are determined to be 
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closest by this method are merged for agglomerative algorithms. The method average 

link calculates the average distance between all pairwise points within two clusters. 

The centroid method calculates the location of the center of each cluster and com­

pares clusters by measuring the distances between clusters by comparing their centers. 

What calculations are used for these methods can be found in section 1.1.2 and for 

more information on each of these linkage methods as well as examples of a few more, 

see [12].

Hierarchical is a greedy algorithm, once it decides what will be split or merged the 

decision cannot be refined at a later time. It has a polynomial time complexity and 

does not handle high dimensional data sets well. A variation of this algorithm, named 

hierarchical k-means, utilizes the tree structure of hierarchical clustering to estimate 

a reasonable value for the number of clusters in k-means for a particular data set [3].

Density-Based Algorithms

Density-based clustering focuses on highly concentrated areas of data while being 

minimally affected by any outliers in the data set. It deals well with large spatial 

data sets, is affected very little by noise in the data set, but requires some parameters. 

Density-based algorithms can create arbitrarily shaped clusters around dense regions 

of the data while leaving low-density areas of the data unclustered to omit any outliers. 

This is unlike clustering algorithms in other areas which would make sure every piece 

of data was contained within a cluster. One of density-based algorithms’ advantages is 

that it can actually recognize these outliers and make sure they do not cause contorted 

clusters to appear. This is however, all based upon the input parameters that are
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chosen.

The first density-based clustering algorithm, Density-Based Spatial Clustering of 

Applications with Noise, or DBSCAN [11], deals well with high dimensional data, 

however, a subsequent algorithm in the density-based area, DENCLUE (DENsity- 

based CLUStEring) [17], has both an increased efficiency and deals well with high 

dimensional data. The one problem that arises with DENCLUE is its two input 

parameters. The quality of the resulting clustering is highly dependent on the choice 

of these two parameters [22]. The first parameter determines the influence a data 

point has in its neighborhood and the second parameter is a density-attractor which 

defines the individual clusters [22]. Reducing the number of density-attractors can 

improve the performance of the algorithm [22]. DBSCAN also requires two input 

parameters, one of which defines how many points must be near each other in order 

for a cluster to be formed, which helps to determine which points are outliers, and 

the other parameter which defines how close the data points must be to each other, 

in order to be considered a cluster.

Another density algorithm, BRIDGE [20], attempts to merge the k-means algo­

rithm and DBSCAN. In this algorithm, an iteration of k-means is run first, so the user 

must provide the number of clusters k. Through this use of k-means, the algorithm 

estimates the density threshold. So there is a tradeoff, while the computation speed 

of k-means is utilized and the advantage of DBSCAN to find arbitrary clusters and to 

be robust to noise, the user must still have some knowledge of the number of clusters 

in the dataset.
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Grid-Based Algorithms

Data mining applications place certain requirements on clustering algorithms that 

drive the area of grid-based clustering algorithms. These requirements include work­

ing well with datasets with a large number of attributes, easy interpretation of results, 

and not basing the clustering on a certain model or distribution [29]. Grid-based clus­

tering algorithms fill this gap and are useful for clustering large multi-dimensional data 

sets, and as in density-based clustering algorithms, they regard regions of greater den­

sity than the surrounding areas as clusters [12]. Grid-based clustering algorithms have 

a reduced computational complexity in comparsion with other clustering algorithms 

for very large datasets.

Grid-based clustering algorithms generally follow five steps [12], They first create 

a grid structure within the bounds of the dataset and separate equal spaced cells 

within the grid, whose size is predefined. The density of datapoints within each cell 

is then calculated and the cells are sorted by their evaluated densities. Cluster centers 

are identified and finally, neighboring cells are traversed.

One specific algorithm in this area is STING [33]. The dataset is divided into a grid 

of rectangles with a hierarchical structure. The top layer of this structure is a single 

cell and in each descending layer, each cell is divided into 4 more cells, called child 

cells. Each one of these cells is one quadrant of the parent cell. Whether a particular 

cell will be split or not is decided by the density of that cell. To make a query, 

the algorithm starts from the root cell and works it way down each descending layer 

to search for possible results. In this way, the algorithm has quick query searches, 

computationally. See [33] for more information about STING.
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Another grid-based algorithm, WaveCluser, clusters spatial data based on wavelet 

transforms [13]. It carries with it many advantages, such as, not being affected by 

noise, being able to detect arbitrarily shaped clusters and a fast computation speed. 

Its computation time is linear over the number of objects to be processed in the 

dataset [12]. For more information on WaveCluser, see [13].

Model-Based Algorithms

Model-based clustering algorithms cluster data based on probability models. In 

model-based clustering it is assumed that the datapoints are generated by a mixture 

of probability distributions in which each component represents a different cluster 

[12]. With model-based algorithms we are stuck with selecting the right model and 

probability framework where as with the previous algorithm types mentioned, we look 

for the best method and find the optimal number of clusters.

Expectation Maximization (EM) is an optimization method for estimating some 

unknown parameters given a dataset [8], EM alternates between estimating the un­

knowns and finding hidden variables. For a detailed example on EM, see [8].

1.1.2 Distance Measurements

Distance measures are what is used to decide the similarity between not only a 

pair of objects, but also an object and a cluster, or a pair of clusters, see section 1.1.1 

on how distance measurements are used in this way.

Distance measures have three basic criteria that need to be followed [31].

1. D(x,y) > 0
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2. D(x,y) = D(y,x)

3. As D(x, y) decreases, so must the value for the distance decrease in a correlating 

fashion.

Where, D is the distance measure, and x and y are two different datapoints within 

the dataset.

The following subsections describe various commonly used distance measures.

Euclidean

Euclidean distance, see equation 1.2, is a special case of Minkowski distance, 

see equation 1.1, for n = 2, and is the most commonly used distance measurement 

[34, 12]. The distance D between two points i and j is calculated as follows [34],

= (i.i)

(1«2) 
z=i /

For Euclidean distance, the square of the sum of the square roots of the corre­

sponding attributes added together for two points gives the distance between those 

two points. The variables i and j have number of attributes from l..d describing 

each of them. Each attribute for each point is paired, added together, and then the 

square root is taken. These values are then summed together and the square of this 

summation is taken to define the distance between the two points.

12



City-Block

City-block distance, also known as Manhattan distance, is a special case of Minkowski, 

see equation 1.1, where n — 1 [34]. City-Block distance is the distance between two 

points measured along orthogonal axes. Equation 1.3 describes this special case of 

Minkowski.

d
Dij = ] |xn xji| (f 3)

i-i
Where the distance D of two points i and j with a number of attributes d is 

calculated as the sum of the absolute values of the difference of the two points.

Cosine Similarity

The most commonly used measure for document clustering [34], cosine similarity, 

relies on the attribute vectors of the documents to be compared. The similarity result 

given by this distance measure is between the value of -1 and 1, where -1 represents 

complete dissimilarity and a value of 1 represents an exact match.

^■ = cosa=MM (L4)
Equation 1.4 defines cosine similarity, where Xi and Xj are two transactions rep­

resented by a d-dimensional bit vector [12]. is the similarity between these two 

objects.
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Pearson Correlation

The Pearson correlation is a distance measure derived from the correlation coef­

ficient and is used to evaluate the similarity between two variables. It is the most 

widely used distance measure for analyzing gene expression data, see [34].

Aj = (l-ry)/2, where =
_____ (jil xi) (jjl )___________

- ®i)2 Ef=i(®ji - ®?)2
(1-5)

Where, Xj and Xj axe two data objects with an number of attributes equal to d.

Mahalanobis Distance

Mahalanobis distance lends itself to evaluating the similarity between objects in 

an ellipsoidal manner. Objects that are around the center of mass of a cluster will 

tend to have higher similarity values.

Dij = (xi - Xj)TS \xi - Xj) (1.6)

According to [34], a disadvantage of Mahalanobis is that it may be computationally 

slow.

1.1.3 Cluster Validation

In order to figure out how good of a result a clustering algorithm comes up with, 

there needs to be some method to evaluate the result. Data clustering is unsupervised 

and it is reasonable to ask, especially for clustering algorithms which ask for the 

number of clusters as part of their input criteria, exactly how many clusters are in 

the data set. Several validation techniques have been developed that take the result 
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of a clustering algorithm, as well as the corresponding data set, and come up with 

an index value that describes the goodness of the clustering algorithm’s result. The 

index values generally range between 0 and 1, and depending on the algorithm, when 

the value approaches one these extremes, it indicates high cluster quality.

In general, with cluster validation techniques, the same clustering algorithm is run 

multiple times on the same set of data, but with a different set of values for the input 

criteria for the clustering algorithm in order to generate different sets of results. The 

validation technique would then be run on each set of results from the clustering 

algorithm, generating an index value for each. From these resulting index values it 

can be evaluated what input generated the best results on that particular data set.

It should be noted that there is currently no validation technique that can be used 

to evaluate the results of any given algorithm. Each technique specializes in a certain 

type of clustering algorithm, for instance, Hubert’s T Statistic, see section 2.2.1, will 

only give a reliable index value for partition-based clustering. Current validation 

techniques rely on compact clusters, however in new fields such as bioinformatics, 

validity checking is needed for sparse and arbitrarily shaped clusters [23]. There is a 

need to develop a cluster validation method that takes into account the intra-cluster 

quality, the inter-cluster separation and the geometry of the clusters using more than 

just a single point of reference, either multiple points or even a multi-dimensional 

curve [24]. Also, there are methods specifically for validating the results of fuzzy 

clustering algorithms [12, 35, 7].
I

There are three main areas of cluster validation techniques, external criteria, inter­

nal criteria, and relative criteria. Each of these are explained in detail in the following
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sections.

External Criteria

The validation methods in the area of external criteria measure the validity of 

clustering results by comparing the results with a pre-specified structure. There are 

two different approaches to external criteria [12].

1. Comparing the resulting clustering structure C to an independent partition of 

the data P, which was built to people’s intuition about the clustering structure 

of the data set.

2. Comparing the proximity matrix Q to the partition P.

Some common indices that use the first approach are the Rand statistic, Jaccard 

coefficient, and the Folkes and Mallows index [12]. For more information on these 

different indices, see [12].

For the second approach, Hubert’s F Statistic can be computed using the proximity 

matrix Q and the partition P [12]. For a detailed description on Hubert’s T Statistic 

see section 2.2.1 on page 32.

Internal Criteria

Instead of comparing the results of a clustering algorithm with a pre-specified 

structure, as in external criteria, the internal criteria uses the structure and values 

of the dataset itself. Internal criteria are generally used for hierarchical clustering 

algorithms and single clustering schemes [22]. Internal and external criteria are both 

statistical methods and have a significant computational cost. They also rely on 
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a clustering result matching with a prespecified scheme [21]. In the next section, 

relative criteria uses a much different method of validating results.

Relative Criteria

The procedure for validation techniques in this area is to take the set of parameters 

of a clustering algorithm and analyze the results from multiple runnings of the algo­

rithm given different parameters. The problem can be divided into two cases given 

whether the number of clusters is a parameter of the clustering algorithm or not [12].

1. If the number of clusters is not part of the parameters, to choose the optimal 

values for these parameters, the clustering algorithm is run with a large range of 

values for the input parameters until a range is identified in which the number 

of clusters stays constant. The parameter values that correspond to the middle 

of this range are then chosen as optimal parameters.

2. In the case that the number of clusters is not in the set of parameters of the 

clustering algorithm, the algorithm is run with minimum and maximum values 

for the number of clusters defined beforehand by the user. For each of the values 

of the number of clusters, the algorithm is run numerous times with a range of 

values for the rest of the parameters. The results are plotted with respect to the 

number of clusters and the best validity index is chosen [22].

For more information on relative criteria, see [12] and [22].
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1.2 Significance

Cluster analysis is a complex process. Not only does it require choosing the most 

appropriate algorithm for use with the dataset, but also the clustering result of the 

chosen algorithm is heavily influenced by the choice of input parameters and similarity 

metric. Many factors work together to tune the clustering results. Therefore, the 

validation of clustering results are significantly important and are used to analyze 

those clustering results, measure the goodnes of the results, and provide users a level 

of confidence in the results. However, based on the literature review, there is not 

a comprehensive survey on cluster validation published thus far. In this thesis, a 

comprehensive survey on cluster validity indices is conducted.

Cluster validation is a cohesive part along with clustering in the data analysis 

process, as shown in figure 1.1. It is desired to have a platform aid users in their 

choice of clustering algorithms and notify users of the quality of clustering results 

with cluster validation. Based on review, there exist a few platforms for cluster 

analysis [10, 14]. However, they are either limited in their scope or are far from user- 

friendly. One such platform, named Cluster 3.0 [10], allows a user to cluster micro 

array data for use with bioinformatics. Cluster 3.0 offers only a couple different 

choices of clustering algorithms, k-means and hierarchical, and the results generated 

by the platform take some time and expert knowledge in the field in order to decipher. 

Another such platform, RapidMiner [14], offers a variety of clustering. RapidMiner, 

however, requires extensive knowledge in order to be used. Users need to be trained in 

the program and require programming skills in order to use it. Furthermore, neither 

of them combine clustering algorithms with validation methods to verify the results.
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No platform exists that offers a simple, user-friendly environment for cluster analysis. 

In this thesis, a platform is developed to fill that gap with an implementation of 

commonly used clustering algorithms and validation methods.

Based on literature review, there is little work done on compiling together several 

different clustering and validation methods for evaluating the clustering matrix. Val­

idation techniques are an important tool for users in deciding which algorithm best 

suits their data. The techniques relieve work that would otherwise have to be done 

by the user in evaluating the results of each algorithm. The platform provides an 

analysis and summary of all the validation techniques and clustering algorithms run 

by the user on a dataset and from this information the user will be able to determine 

which algorithm will be most useful for their purposes with a minimal amount of 

knowledge on their own part, the bulk of the work having been done by the platform 

itself using these validation techniques.

This platform is extendable. New clustering algorithms and validation methods 

may easily be added and as long as the clustering algorithms adhere to the standard 

form, they may be used on any validation methods implemented in the platform. 

Along with extendability, the platform offers visualization of multi-dimensional data 

using principal component analysis and estimation of clusters through use of hierar­

chical clustering’s dendrogram.

Beyond just the platform itself, this thesis covers the critical problem in data 

clustering research, the estimation of the number of clusters. Through use of the ag- 

glomerative hierarchical clustering algorithm the number of clusters in a dataset may 

be derived. This gives the user more information about the dataset and this infor­
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mation may also be used to obtain more accurate results from clustering algorithms 

that require the number of clusters as an input parameter.

In summary, this thesis provides a comprehensive validation methods review that is 

not available in current publications, develops an extendable platform that integrates 

clustering and validation while the existing clustering platforms offer clustering meth­

ods only without results evaluation. In addition, this thesis proposes an approach to 

estimate the number of clusters by analyzing hierarchical clustering, in which the 

impact of various merge criteria on the data distributions is studied.

1.3 Objective

There are no perfect clustering techniques that will provide useful results for any 

particular set of data. The current clustering algorithms have shortcomings that need 

to be addressed. According to [34], a recent survey on clustering algorithms, some 

of the most important aspects of a novel clustering approach not shared amongst 

current approaches include being able to detect possible outliers, predict the number 

of clusters, and provide useful and simplified data visualization. The objective of 

this thesis is to solve these problems and create a general platform that offers several 

commonly used methods of clustering as well as validation techniques to evaluate the 

results generated by the clustering algorithms. Combining these techniques with clus­

ter validation allows users to find the best clustering algorithm and input parameters 

to use for their set of data.

Users will be able upload their dataset, run multiple clustering algorithms on their 

dataset with varying input parameters and different distance measures to choose from.
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The user may save the results of the algorithms and run several different validation 

methods on the results. The indices for the validation methods are given as well as 

an analysis option to review all results from all clustering algorithms and validation 

methods used on the dataset. The analysis also gives recommendations on which 

algorithm with which set of input parameters gave the best results according to the 

validation methods that were run.
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2. METHODOLOGY

This chapter encompasses the clustering algorithms and validation methods that 

were implemented into the clustering platform. Each algorithm that was implemented 

into the platform is explained in detail and each were chosen based on their areas in 

order to obtain a wide array of techniques for clustering and validation. Partition­

based, hierarchical, density-based, and model-based clustering algorithms were all 

chosen, as well as validation techniques for external, internal, and relative criteria.

2.1 Clustering Algorithms

The clustering algorithms chosen to be implemented in the platform came from the 

different areas described in the literature review in the first chapter of this thesis. I<- 

Means and fuzzy-c means are partition based algorithms very similar to each other in 

procedure. Both are simple and computationally fast algorithms that define centroid 

clusters. Agglomerative hierarchical is the common algorithm of hierarchical cluster­

ing. It is slow computationally, but provides a whole picture of the entire clustering. 

DBSCAN is a density-based clustering algorithm that is still computationally fast, 

but is not as affected by noise as the algorithms in the previous areas. Expectation 

Maximization is a model-based algorithm and is very different from the others in this 

platform, in that it is developed based off of probability models.
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Following are detailed descriptions of each of the above clustering algorithms im­

plemented into the platform.

2.1.1 K-Means

K-Means, already described in general during the literature review in section 1.1.1, 

was implemented into this platform due to how commonly it is used. It defines the 

idea of partition-based clustering. As the algorithm has already been described in 

general, this section will get into the specifics on how this algorithms works.

(Ci, C*2, ...,Cfc) — Initial cluster centers

while Datapoints change cluster membership do
dij = Distance between datapoint i and cluster center j

Assign datapoint i to the cluster j with the minimum distance

Recalculate cluster centers
end

Algorithm 1: K-Means Algorithm.

First, the algorithm begins with a predefined number of clusters k. This must be 

defined by the user. In some instances the number of iterations for the algorithm to 

run through can also be defined by the user. Next, k-means partitions the dataset into 

k sets. This is done by randomly assigning cluster centers equal to k throughout the 

bounds of the dataset. The algorithm then assigns the points closest to each cluster 

center to that cluster. This is done by using a predefined distance measurement, 

usually Euclidean distance [12]. Now that each point is assigned to a cluster the cluster 

center is recalculated to the new center of the cluster that has been created. The 

cluster centers move locations and a new iteration of the algorithm begins, checking 
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to see if any points should switch clusters now that the cluster centers have moved. 

This is repeated until either no point changes cluster membership or the predefined 

number of iterations has been met.

K-Means is a simple, fast algorithm to implement. The time complexity is O(n). 

The algorithm is subject to noise and outliers and does not work well with high­

dimensional data.

2.1.2 Fuzzy- C Means

Fuzzy-C Means (FCM) is one of the most popular fuzzy clustering algorithms [34]. 

FCM’s execution is similar to that of k-means, see section 2.1.1, however each point 

may belong to two or more clusters. As k-means, FCM requires a few input parame­

ters, C the number of clusters, m the fuzzifier, and e the minimum improvement.

The following is the procedure for FCM using Euclidean for the distance function 

[25].
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Initialize matrix UQ = [w^]

repeat
At /c-step: calculate the centers vectors Ck = [9] with Uk

Ci
, _ S£1 Uij * %i 

d \--A' m 
uij

(2-1)

Update Uk, Uk+l

uij ~
1 (2-2)

until ||Ufe+1 —U&|| <e

Algorithm 2: Fuzzy c-means algorithm.

Where m is required to be a real number greater than 1, U{j is the degree of 

membership of datapoint Xi in the cluster j, Xi is the ith attribute of d-dimensional 

datapoint and cj is the d-dimension of the center of the cluster, and k keeps track of 

the current iteration.

The results of the algorithm gives the membership values of each datapoint to each 

cluster. A datapoint will generally have a high membership value to one cluster and 

lower membership values to the rest of the clusters.

FCM suffers from similar problems as its counterpart, k-means [34]. The algo­

rithm is susceptible to noise and requires careful consideration of the input variables, 

particularly the number of clusters. The one strong benefit it has over k-means is the 

fuzziness, it is not hard clustering, like K-Means.
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2.1.3 Agglomerative Hierarchical

As stated in the literature review for hierarchical clustering algorithms in sec­

tion 1.1.1, the end result of the algorithm is a dendrogram. This dendrogram dis­

plays a complete clustering, as clusters are merged one point at a time at each level. 

The starting point for the algorithm is each object within the dataset considered to 

be its own cluster. The general agglomerative hierarchical clustering method can be 

summarized by the following procedure [34].

Start with N singleton clusters

Calculate the proximity matrix for the N clusters

repeat
Search the minimal distance

D(Ci, Cj) = D!C™’ C‘'> (2-3)

where D is the distance between two clusters

Combine cluster Ci and Cj to form a new cluster
until all objects are in the same cluster

Algorithm 3: Agglomerative hierarchical algorithm.

For the distance function, the most commonly used is the single linkage method 

[12]. On the first step of the agglomerative hierarchical algorithm, this method grabs 

the smallest distance value from the proximity matrix and those two clusters get 

combined. To update the proximity matrix to the next level, instead of recalculating 

the values, a new row and column are created in the matrix, representing the newly 

created cluster that contains two objects. The values in the row and column for this 
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new cluster are generated by looking at the rows and columns of the objects that are 

contained within the cluster. The smaller of the two values is placed within cluster’s 

row and column. The rows and columns for the two objects are then removed from 

the proximity matrix.

Once the algorithm has iterated through n times, where n is the number of objects 

in the dataset, the dendrogram has been completed and the algorithm has finished. 

The top of the dendrogram contains one cluster holding all the objects in the dataset. 

The results of the algorithm are usually displayed as the entire dendrogram and the 

distance between the merges at each level of the dendrogram.

Single linkage is not the only method used with hierarchical clustering. Complete, 

average, centroid, and median linkages are all used interpret the proximity of one 

cluster to another in agglomerative hierarchical. The main disadvantage of the nearest 

neighbor single linkage method is its inability to differentiate between two clusters 

that are in close proximity to one another. The furthest neighbor complete linkage 

method provides somewhat better results in that regard. The rest of the linkages offer 

better, but varying results when clusters are in a very close proximity to one another. 

Median linkage uses Euclidean distance as defined in equation 2.4, where the clusters 

i and j are defined recursively as half the distance between the centers of the two 

clusters that were merged to create them. Centroid linkage also uses the Euclidean 

distance function in equation 2.4, where Ci (and Cj) is defined as in equation 2.5, 

where n is the number of data points in the cluster. Average linkage calculates the 

average distance between all pairs of points in two clusters, as in equation 2.6. For 

further information about any of these linkages, see [12]. For results regarding the 
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performance of these linkages on several datasets, see chapter 3.

D(Ci,CJ) = ICi-Cjl2 (2-4)

1 nini nj

(2-5)

D& ft = 2 2 dist^Cik, Cji)71.71 j . ..'in3 fc=l (=1
(2-6)

While agglomerative hierarchical clustering gives nice results for the entire clus­

tering, the time complexity is O(N2), which makes the algorithm computationally 

expensive for large-scale datasets [34]. The algorithm is also subject to noise and 

outliers.

2.1.4 Density-Based Spatial Clustering of Applications With Noise

Density-Based Spatial Clustering of Applications with Noise, or DBSCAN, is a 

density-based algorithm briefly introduced in section 1.1.1. This section goes into 

further detail, supplying definitions, pseudo-code, and the procedure for the algo­

rithm.

DBSCAN requires two input parameters, Eps, and MinPts. Eps holds the radius 

of a particular neighborhood, while MinPts holds the minimum neighborhood size. 

These two parameters define [11]:

(2-7)
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That is, a point q in the dataset D is in the neighborhood of point p if the distance 

between p and q is within the range of the Eps parameter.

There are also a few other important definitions that go along with DBSCAN, the 

first being directly density-reachable. A point p is directly density-reachable from a 

point q with respect to Eps and MinPts if, p belongs to NepM aiK^ Q fulfills the core 

point condition [11]:

> MinPts (2-8)

Also, p is considered to be density-reachable from q with respect to Eps and MinPts 

if there is a chain of points pi, ...,pn, where pi = q. and pn = p such that pi+1 is directly 

density-reachable from pi. For the next definition density-connected, p is considered 

density-connected to q with respect to Eps and MinPts if there is a point o such that 

both p and q are density-reachable from o. Finally, a cluster C is formed when, for 

ah p and q, if p is in C and q is density-reachable from p, then q is also in C as well 

as for all p and q in C, p is density-connected to q [11].

There are also a couple more important insights to help understand the process of 

this algorithm. First, if p is a core point, and 0 is the set of points density-reachable 

from p, then 0 is a cluster. Second, if C is a cluster and p is a core point of C, then C 

equals the set of density-reachable points from p. The impheation of these two ideas 

is that finding the density reachable points of an arbitrary point generates a cluster 

and a cluster is uniquely determined by any of its core points [11].

Here is the process the algorithm goes through [11]:
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Arbitrarily select a point p

while Not all datapoints have been visited do
Retrieve all points density-reachable from p with respect to Eps and MinPts 

if p is a core point then a cluster is formed 

if p is a border point then
no points are density-reachable from p

DE SCAN visits the next point in the dataset
end

end
Algorithm 4: DBSCAN algorithm.

For each point, DBSCAN determines the Eps-environment and checks whether 

it contains more than MinPts data points. As a general guideline, the best values 

to choose for the Eps and MinPts are corresponding to the thinnest cluster in the 

dataset. Of course, this is difficult to do without any pre-knowledge of the dataset.

DBSCAN has a time complexity of O(n*logn). The algorithm is resistant to noise 

and can handle clusters of different shapes and sizes. However, it does not work well 

with datasets that have greatly varying densities or a large number of dimensions.

2.1.5 Expectation Maximization

Expectation maximization (EM) is an iterative method that takes in some un­

known parameters 0, given a dataset U. There are some missing variables J within 

the dataset that need to found and removed. The idea is to maximize the posterior 

probability of the parameters 0 given the data U, marginalizing over J [8].
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(2-9)G* = max log P(U, G) = max log 5? J, G) 
0 0 JtT*

EM iterates over estimating the unknowns G and the missing variables J [8]. 

The E-step can be interpreted as constructing a local lower-bound to the posterior 

distribution, whereas the M-step optimizes the bound, thereby improving the estimate 

for the missing variables [8].

The procedure for the algorithm is as follows:

Initialize the distribution parameters

while the estimations of the distribution parameters are not convergent do
Expectation (E): Computes an expectation of the likelihood by including the 

latent variables as if they were observed

Maximization (M): Re-estimates the parameters by maximizing the expected 

likelihood found on the E step
end

Algorithm 5: Expectation maximization algorithm.

An advantage of model-based clustering is that it provides an estimated probability 

that a data object belongs to a cluster [6]. So, in the case that an object has a high 

correlation to two different clusters, it will be made apparent by this algorithm. The 

disadvantage is that the algorithm assumes that the data follows a particular model 

such as a Gaussian [6].
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2.2 Validation Methods

The validation methods chosen to be in the platform were based upon their rele­

vancy to the clustering algorithms being implemented. Each of these validation meth­

ods work well for the clustering algorithms that were chosen. For deatiled information 

on other validity methods not discussed in this thesis, see [21, 15, 5, 16, 26, 27].

The following sections describe the various validation methods in detail.

2,2.1 Hubert’s T Statistic

Hubert’s T Statistic is a validation method that measures the compactness of 

clusters. A high value of T indicates that there exist compact clusters. Equation 2.10 

defines Hubert’s T Statistic where n is the number of data points in the dataset, and 

i=l j=i+l
Hubert’s T Statistic is a good validation method for evaluating the results of 

partition-based clustering. As stated earlier in section 1.1.1, partition-based algo­

rithms require the number of clusters as part of the input criteria. So, Hubert’s T 

Statistic can be used to evaluate the results of multiple runnings of a partition-based 

clustering algorithm with a different number of clusters for each running to suggest 

what the appropriate number of clusters should be for that particular dataset.
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2.2.2 Dunn’s Index

The Dunn’s Index reveals clusters with low intra-cluster distances and high inter­

cluster distances. Dunn’s Index may be computed using the following,

(2-H)

where U is the dataset, c is the number of clusters, D(Xi, Xj) is the distance between 

clusters Ci and Cj, and A(Xfc) is the diameter of the cluster C&. Large values for D 

indicate that good clusters have been found. Based on this, the number of clusters 

chosen for a particular algorithm that generates the largest value for D is the optimal 

number of clusters [12].

The Dunn’s Index comes with its disadvantages, however. The algorithm is both 

sensitive to noise and running it is very time-consuming.

2.2.3 Silhouette Index

Using equation 2.12, the Silhouette index [30] generates a Silhouette width for each 

cluster [4].

(2.12)

The value of a(i) is the average dissimilarity between the rth-object and all other 

objects contained within the same cluster, while b(i) is the minimum average dissimi­

larity between the «th-object and all objects in the next closest cluster. Equation 2.12 

returns a value for s between —1 and 1. If the value of s approaches 1, this indicates 

a good clustering and that the number of clusters found by the algorithm is accurate 
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for that particular data set. When the value of s is near to 0, this indicates that 

objects contained within one cluster are an equal distance away from another cluster 

and could be contained within either cluster. If the value of s approaches —1, this 

is an indication of a bad result, that the data objects have been misclassified and 

should be contained within a different cluster from the one they are currently in. 

Given several Silhouette indices for a particular algorithm run on the same dataset, 

but with different values for the input criteria, we can find which input values give 

the most accurate results. For more information on the Silhouette index, see [4, 28].

2.2.4 Davies-Bouldin Index

Similar to that of the Dunn’s Index, see 2.2.2, the Davies-Bouldin Index looks 

for clusters with high intra-connectivity and low inter-connectivity. Equation 2.13 

defines the Davies-Bouldin Index, where c is the number of clusters, A is the average 

distance of all data objects from the cluster to the cluster center, and D(Xi,Xj) is 

the distance between cluster centers.

A^ + ApQ)
D^Xj) }

Unlike in validation techniques such as Silhouette and Dunn’s Index, given equa­

tion 2.13, a small value for Davies-Bouldin means the clustering result was good. A 

small value indicates compact clusters and large distances between cluster centers.
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2.3 Principal Component Analysis

The goal of principal component analysis (PCA) is to reduce high-dimensional data 

into fewer dimensions, while still retaining as much important information about the 

data as possible [18]. New variables called principal components (PC) are created 

such that they contain most of the variation that was present in the original variables 

[12]-

The first step in PCA is to subtract the mean from each of the data dimensions. 

The result of this is a dataset whose mean is zero. The next step is to calculate the 

covariance matrix. The covariance matrix is defined as [32],

_ cov(£)imi, (2-14)

Cnxn is a matrix with n rows and n columns, and Dimx is the xth dimension. Next, 

calculate the eigenvalues and eigenvectors for the covariance matrix. The eigenvectors 

of the covariance matrix provide lines that characterize the data. The eigen vectors 

with the highest eigenvalues are the principal components of the dataset. Any eigen­

vectors thrown out at this point reduces the dimensionality of the data. This gives 

the feature vector, defined as [32],

Feotur eVector = (eipi,etp2> eipn). (2.15)

The smaller the eigenvalue, the less pertinent information is lost by throwing it 

out. To produce the final dataset D we have [32],

D = FeatureVector' x MeanData! (2.16) 
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D contains the final dataset with the datapoints in columns and the dimensions along 

rows. The Mean!) ata is the adjusted dataset by subtracting the mean from each 

data dimension as described earlier. This dataset D contains the reduced principal 

components with reduced dimensions based on how many eigenvectors were thrown 

out.

A few experiments have been done using PCA to reduce the number of attributes 

in the data before clustering. One of these experiments involved k-means, and it 

was found that reducing the data attributes significantly can provide an increase in 

the clustering accuracy [9]. Another study in bioinformatics found that reducing 

the dimensionality most often led to degradation of cluster quality and PCA should 

only be used before clustering when there is some prior knowledge about the dataset, 

especially its attributes [19].
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3. IMPLEMENTATION AND RESULTS

This thesis implements an extendable and user-friendly platform for cluster anal­

ysis. The language of choice for the front-end of the platform is Java due to its good 

support of graphical user interfaces and platform independence, while the clustering 

algorithms and validation methods themselves are implemented in Matlab. Mat lab 

was chosen for the back-end due to its high performance on heavy computation and 

visualization. NetBeans is used as the integrated development environment. One 

license for Matlab is currently installed and may be accessed through the Internet by 

the Java client. Several commonly used clustering algorithms as well as correspond­

ing validation methods have been implemented to provide an integrated approach to 

cluster analysis and performance evaluation.

This chapter discusses the structure and utilization of the platform. Following 

that, results obtained through the clustering platform will be discussed. The system 

structure section will provide class and sequence diagrams, and explain the topology 

of the system. The section following that, platform utilization, will provide snapshots 

of the platform and describe how the platform is used. The final section of this 

chapter, results, explains the information garnered through the use of the platform 

and the contributions made to cluster analysis.
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3.1 System Structure

This platform follows the Mo del-View-Controller (MVC) architecture. In MVC, 

the model corresponds to the data used in the application and the rules that are used 

to manipulate that data, the view represents the graphical user interface (GUI), and 

the controller manages communication between the user and the model.

The basic structure in this platform is as -follows. The Java client takes input 

parameters for the selected clustering algorithm and dataset from the user. All per­

tinent information is sent to a separate Java class. This Java class sends that data 

to Remote Matlab. Remote Matlab waits on the server for a request from the client. 

When a request is received, Remote Matlab runs the requested script. All heavy 

computation and visualization is done within Matlab and the results are saved on 

the server. When the Matlab has finished its computations, the Java client retrieves 

all important data and images from the server. These data and images are then 

displayed to the user.

All clustering information is accumulated as the user runs clustering algorithms 

on a dataset. This information is used by the validation methods. These validation 

methods follow the same path as the clustering algorithms, sending information to 

Remote Matlab and retrieving results and displaying them to the user.

A current session is ended when the user loads a new dataset into the Java client. 

All information about the previous dataset is removed, however files containing clus­

tering results will still exist on the user’s machine.

Remote Mat lab is an open source tool generated for interactions between Java and 

Matlab. It allows remote requests from Java to run Matlab scripts. The tool is single­
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threaded in that only one user can be using Matlab at one time for computations. 

Clients that try to connect to Remote Matlab while it is busy are put into a waiting 

queue. One client’s tasks are fully completed before a new client’s request is started. 

This tool is essential to this platform in that having these computations done in Java 

can take excessively longer than executing them in Matlab, a program that is perfect 

for this kind of work. The Java frontend’s main purpose is for a user-friendly interface 

and to replace needing to have Matlab running on the user’s machine.

The sequence diagram of the system is shown in figure 3.2 and the class diagram

is shown in figure 3.1.

Fig. 3.1: Class Diagram

The structure for the platform also allows for extendability to new clustering al­

gorithms. A user may easily plug in a new clustering algorithm that is written either 

in Java or in Matlab.

While the platform has the clustering algorithms and validation methods, it does 

not have any data preprocessing. The dataset must be ready to go when the user 

loads it in.
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Fig. 3.2: Sequence Diagram

3.2 Platform Utilization

Before doing anything, the first thing that needs to be done with the platform, 

which is shown in figure 3.3, is to load a fresh dataset with the application is launched. 

When the dataset is opened it is displayed within a window at the top of the main 

GUI. Once the dataset is loaded, the user must choose a clustering algorithm to work 

with. When a clustering algorithm has been selected from the tabs, the user decides 

on the input parameters and the similarity measure to be used. The algorithm is 

then executed by clicking the Run button and the dataset along with the similarity 

measure selection and parameters are sent to the Remote Matlab server where the 

computations are done. If the dataset contains more than two dimensions, for visual 

display purposes, PCA, see section 2.3, is used to get the two principal components 

which will be plotted. Once the execution has finished, the results are retrieved by 

the Java GUI and the visual results along with the text results are displayed. Next, 

the user may run more clustering algorithms on the dataset, or may run a validation 
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method. A validation method is chosen from the tabs below the clustering algorithms, 

and any parameters that are needed are input by the user. Again, Run is selected to 

execute the validation method selected. The results of all the clustering algorithms 

that were executed on the dataset during the current session, along with information 

about the dataset, are sent to the Remote Matlab server where the computations are 

done. When computation is completed, the results are retrieved by the Java GUI 

and a histogram comparing the indices generated by the validation method for each 

clustering algorithm is displayed along with text results describing the indices. The 

user may run a different validation method at this point or continue to run more 

clustering algorithms. An analysis GUI is provided to give a summary of all the 

results generated during the session in tabular form. A new session is started when 

a new dataset is loaded into the platform.

Fig. 3.3: The Main Interface Displaying Water Treatment Dataset

Figure 3.4 displays sample results of running the agglomerative hierarchical algo­
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rithm for the water treatment dataset, which has 38 attributes and 327 datapoints. 

The dataset comes from the daily measures of sensors in an urban waste water treat­

ment plant [2]. The similarity measure used was single-link with Squared Euclidean 

Distance. Figure 3.4(a) shows us which two objects were merged at each level and the 

distance between those two objects when they were merged. The next figure, 3.4(b), 

gives a visual representation of which clusters were combined and jump in distance at 

each merge level. This dendrogram is the standard output for hierarchical clustering, 

see section 2.1.3 for more details. The third figure, 3.4(c), is another dendrogram, 

but in this case the user is able to interact with it. The user may look at a particular 

level to see the clusters, which points are contained within those clusters, and the 

merge distance from when the clusters were combined as well as the level at which 

they were combined. The final figure for hierarchical, 3.4(d), displays the level on one 

axis and the distance between the two objects being merged at that level. Given the 

information from these hierarchical results, we can infer how many clusters are in the

(a) Text display. (b) Dendrogram. (c) Interactive dendroram. (d) Merge distance vs Level.

Fig. 3.4: Agglomerative Hierarchical Results for Water Treatment Data

Beyond just visual clustering results, validation methods may also be used to an-
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alyze the clustering results. These validation methods are important for determining 

cluster quality. In figure 3.5, the k-means clustering algorithm is executed multiple 

times on a two-dimensional dataset with a differing number of clusters k for each 

execution. This is an artificial dataset used as a benchmark for the clustering algo­

rithms and validation methods. The optimal number of clusters for this dataset is 3, 

and we can see that reflected in figure 3.5(d). In this display three values of T are 

given, one for each execution of k-means. The first index value on the Hubert’s T 

Statistic display corresponds to the first figure 3.5(a) and so on down the line. The 

F value for k = 3 is 0.794146, which is higher than the T value for the other two 

results, which means Hubert’s has confirmed that out of these results, k = 3 is the 

optimal number of clusters. Users may utilize this feature with their datasets to find 

the optimal number of clusters given several results with different parameters.

(a) K-Means, k=3. (b) K-Means, k=4. (c) K-Means, k=5. (d) Hubert’s r Statistic.

Fig. 3.5: K-Means With Different Numbers of Clusters Analyzed by Hubert’s T Statistic

3.3 Results

Several contributions are made through the use of this platform. Users are able 

to estimate the number of clusters, multi-dimensional data is able to be visualized 

through the use of PC A, and both clustering algorithms and validation methods are 
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integrated together, allowing users to check the clustering quality.

In figure 3.6, PCA is being to used to draw the clustering results for k-means in

two-dimensions. The dataset being used is the 38 attribute water treatment data.

PCA is used only for visualization purposes in the platform, it is not used to modify 

the dataset prior to clustering.

Fig. 3.6: Principal Component Analysis Displaying Clusters in Two-Dimensions for 38 Attribute Water 

Treatment Data

As has been stated, this platform integrates clustering algorithms and validation 

methods. Using these validation methods, the user may quickly see the cluster quality 

of each algorithm, helping the user to choose the appropriate algorithm for their 

dataset as well as the optimal input parameters and similarity measure.

If we take a look at the dendrograms in figure 3.4, we can visually see the jumps 

between merge distances toward the top levels of the tree structure. This is indicative 
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of how many clusters are in the dataset. Merge distances of similar sizes throughout 

the entire dendrogram would tell us that the data objects themselves have a high 

similarity to one another. When we see a jump towards the end, like in these dendro­

grams, this either shows us two clusters being merged together, or an outlier being 

merged into a cluster. Be it the former, we can count these clusters and all other clus­

ters at that level to get an estimate of the optimal number of clusters for the dataset. 

Through use of the interactive dendrogram and the text results, we can see whether 

it was just an outlier data object being merged, or two clusters. This information 

about the optimal number of clusters, though just an estimate, is useful as input for 

the k-means or fuzzy-c means algorithms. If a user has little or no knowledge about 

the number of clusters in their data, but would like to find results using the k-means 

method, then this hierarchical to k-means method may be invoked.

Fig. 3.7: Two Cigar-Shaped Clusters

This method does not work in all cases, however, and a different way of calculating 

cluster centers and thus altering their proximity to one another, must be considered. 

Given two cigar-shaped clusters whose data is in close proximity to one another, as 

in figure 3.7, the typical methods of deciding which clusters are closest to each other,
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such as single and complete linkage, no longer offer an accurate result in identifying 

the number of clusters in the dataset. Figure 3.8(a) displays the level vs. height 

diagram generated by using single linkage for the two cigar-shaped clusters. The 

level in this diagram refers to what iteration the algorithm is on and the height refers 

to the distance between the two clusters that are being merged. For the dataset in 

figure 3.7, a center of mass calculation is used. Using center of mass and calculating 

distance using the Euclidean distance measurement, we can see more clearly defined 

clusters in the level vs. height diagram. Figure 3.8(b) displays the level vs. height 

diagram for using center of mass on the two cigar-shaped clusters. The clusters are 

defined in these level vs. height diagrams by noting large jumps in distance between 

levels. The larger the distance of these jumps, the more clearly defined the clusters 

are.

(a) Single. Linkage

Fig. 3.8: Level vs. Height Charts for Cigar-Shaped Clusters

(b) Center of Mass

Comparing figures 3.8(b) and 3.8(a), the obvious jump in the center of mass dia­

gram can be seen, and therefore the separation between the two clusters more easily 

identified. The small jump at level 143 in figure 3.8(b) is where some of the outliers 

begin to start merging first into the top cluster and then into the bottom cluster. 
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Figure 3.3 displays the cluster of outlier points that are merged together with the 

bulk of the top cluster that is already formed. This is a good way to identify possible 

outliers.

Fig. 3.9: Outliers Being Merged for Center of Mass

Fig. 3.10: Higher Mass Cluster With Smaller Mass Cluster

Another case where center of mass works well can be seen in figure 3.10, where 

one cluster with a much larger concentration of data points is in close proximity to a 

smaller cluster with much fewer data points. The resulting level vs. height diagram 

for center of mass can be seen in figure 3.11(a) and the single linkage level vs. height 

diagram can be seen in figure 3.11(b). Center of mass gives a clearer result as to the 

number of clusters in the dataset than other existing proximity calculations offered
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by hierarchical clustering.

(a) Center of Mass

Fig. 3.11: Center of Mass and Single Linkage Comparison for Higher Mass Cluster With Smaller Mass

Cluster

Figure 3.12 offers the level vs. height diagrams for centroid, average, and median 

linkages for the dataset seen in figure 3.10. As can be seen, center of mass offers 

comparable results. While they all generally out perform single linkage in regards to 

clearly defining the clusters in a dataset, they each offer varying results for different 

datasets. There is not one method that outshines the rest in every case. It is impor­

tant to decipher which method will offer the best results. This can be determined 

by testing the dataset with agglomerative hierarchical using each of the methods and 

comparing the results.

(a) Centroid Linkage (b) Average Linkage (c) Median Linkage

Fig. 3.12: Level vs. Height Diagrams for Higher Mass Cluster With Smaller Mass Cluster
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(a) U-Shaped Plot (b) Center of Mass (c) Single Linkage

Fig. 3.13: Level vs. Height Diagrams for U-Shaped Plot

(a) Rings (b) Center of Mass (c) Single Linkage

Fig. 3.14: Level vs. Height Diagrams for Concentric Rings

Figures 3.13 and 3.14 are two more examples of center of mass. The former is a 

comparison of single linkage and center of mass on a U-shaped plot. Single linkage’s 

result is a line in this case, because the distance between datapoints is equal in this, 

example. Center of mass, however, displays many jumps throughout the level vs. 

height chart. This is due to the fact that the caculated center for each cluster moves 

as each new datapoint and cluster are merged into it. In figure 3.14 a somewhat 

different situation is happening. The dataset for this example contains two rings. 

The distance between datapoints within each ring in this example is not equal, unlike 

the U-shaped plot. The last several jumps in figure 3.14(c), starting at level 146, are 

where large clusters in the inner ring begin to merge with large clusters formed on the 

outer ring. This happens because the distance between the clusters within each ring 

has become greater than the distance between each ring. The center of mass level vs. 
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height chart in this case displays a jump at level 98. This is the exact moment where 

a cluster within the inner ring merges with a cluster on the outer ring. This happened 

much quicker for center of mass than single linkage, because the the centers of the 

clusters are recalculated with each merge. The centers for the clusters in each ring 

move toward the center of the plot with each merge. Eventually, a cluster from the 

outer ring and one from the inner ring were close enough to be merged together. Both 

of the former plots are indications of where center of mass does not perform well, but 

still provides us with at least some information. Significant jumps in merge distance 

are used to indicate possible outliers or clusters being merged together, but in these 

cases the merge distances are just a side effect of the cluster center calculation for 

center of mass.
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4. CONCLUSION

Cluster analysis is an important tool for data exploration. Whether the algorithm 

groups the data around centers, groups by high density regions, or creates a hierarchi­

cal structure, they all serve the purpose of extracting some meaningful information 

out of the data. The path through clustering data includes the initial preprocess­

ing of the dataset, the execution of the clustering algorithm on the dataset, using a 

validation method to determine cluster quality, and finally, interpreting the results. 

There is no universal clustering algorithm that can be applied to any dataset. Each 

algorithm applies to specific datasets and each validation method applies to certain 

groups of clustering algorithms.

An extendable general platform for clustering and validation has been imple­

mented. This platform allows users to choose from several different algorithms and 

similarity measures, as well as a number of validation methods. These validation 

methods aid the user in picking the appropriate clustering algorithm and input pa­

rameters, as well as determining overall cluster quality. The platform is also extend­

able, allowing a user to easily plug in their own clustering algorithm written either in 

Java or Matlab.

Solutions to certain problems in the field of cluster analysis, such as estimating 

the number of clusters, have also been presented. Utilizing center of mass, a method 
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for obtaining the center of a cluster for agglomerative hierarchical, a user can more 

accurately decipher the number of clusters in a dataset given the results of running 

the agglomerative hierarchical algorithm on the dataset. This information then allows 

the user to run additional clustering algorithms with more accurate input parameters 

or just makes the results of agglomerative hierarchical more useful in more situations.

4.1 Future Work

Currently, this platform assumes the data loaded into it has been pre-processed and 

does not perform any feature selection or extraction. An important improvement 

would be to include some way to deal with missing data and to omit any non-useful 

attributes. This could possibly take the form of using PCA to find the principle 

components and using that information, locate the pertinent attributes.
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