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Abstract

The form error evaluation of cylinders and cones is very important in pre-
cision coordinate metrology. The solution of the traditional least squares
technique is prone to over-estimation, as a result unnecessary rejections may
be caused. This paper proposes a reliable algorithm to calculate the mini-
mum zone form errors of cylinders and cones, called a hybrid particle swarm
optimization-differential evolution algorithm. The optimization is conducted
in two stages, so that the program can hold a fast convergence rate, while
effectively avoiding local minima. Experimental results demonstrate that
the proposed algorithm can obtain very accurate and stable results for the
calculation of cylindricity and conicity.

Keywords: Form error, Cylindricity, Conicity, Minimum zone, Differential
evolution
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1. Introduction

The evaluation of cylindricity and conicity is among the most impor-
tant problems in computational metrology because cylindrical and conical
shapes are ubiquitous in precision components. Most current commercial
software evaluates the form errors of cylinders and cones using the least
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squares method due to its ease of implementation and the unbiasedness of
its solution for uncorrelated normally distributed noise [1]. But it is likely to
overestimate the form tolerance and lead to unnecessary rejections, therefore
its solution is only an approximate one, rather than the optimum. Accord-
ing to ISO 1101 [2], a geometrical tolerance applied to a feature defines the
tolerance zone within which that feature shall be contained. This means the
cylindricity tolerance is a permissible deviation zone bounded by two coaxial
cylinders within which the measured data must lie in between. Similarly,
the conicity tolerance is a permissible deviation zone bounded by two coaxial
cones. They are minimax problems and not continuously differentiable, thus
very difficult to be solved.

A lot of linear programming techniques have been employed for the eval-
uation of straightness and flatness, e.g. simplex method [3], data exchange
algorithm [4] and support vector machine [5]. The calculations of roundness
and sphericity are quadratic programming problems. [3] and [6] approxi-
mately linearized the formulation and solved it using the simplex technique.
Computational geometry methods were also utilized to calculate flatness [7]
and sphericity [8, 9]. Venkaiah and Shunmugam calculated cylindricity by
identifying ‘extreme points’ to form a limacon-cylinder [10]. These meth-
ods are developed for a particular shape. So far no computational geometry
method has been found in literature for evaluating conicity. Recently Huang
and Lee solved the conicity problem using minimum potential energy algo-
rithms [11], which are very elaborate. Some researchers attempted to ap-
proximate the cylinder/cone iteratively and then solved a sequence of linear
programs [12, 13], but these methods need a very good initial guess and are
prone to sub-optimal solutions. Lai and Chen [14] converted a cylinder into a
plane and obtained appropriate control points. The cylindricity is calculated
by implementing a series of inverse transformations.

In recent years heuristic search optimizers have been employed to solve
the minimum zone problem. Lai et al. [15] and Liu et al. [16] used genetic
algorithms to evaluate the cylindricity and conicity errors, respectively, while
Wen and Song adopted an immune evolutionary algorithm for sphericity [17].
The particle swarm optimization technique was utilized by [18, 19]. The
advantages and shortcomings of these algorithms will be discussed in Section
3.

This paper presents a two-stage method called a hybrid particle swarm
optimization-differential evolution algorithm for the evaluation of cylindricity
and conicity errors. This method shows great superiorities on stability and
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accuracy, and makes a good balance between exploration and exploitation.

2. Formulation of cylindricity and conicity errors

2.1. Cylindricity error

Fig.1 illustrates the cross section of a cylinder with axis direction n(m,n, 1)
and a radius R. The projection of a measured point P onto the cylinder is
F . Assuming the axis passes the point Q(x0, y0, 0), then the axis function is
(x− x0)/m = (y − y0)/n = z. The distance from P to the cylinder is,

e = |FP | = |EP | − |EF | = |
−→
QP × n|

|n|
−R

In the equation | · | means the length of a vector in the Euclidean space.
Given a point set P = {Pk|k = 1, 2, . . . ,M}, the cylindricity error is,

d = max
k

ek −min
k

ek

= max
k

|
−−→
QPk × n|

|n|
−min

k

|
−−→
QPk × n|

|n|
(1)

n
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Figure 1: Calculation of cylindricity error
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2.2. Conicity error

Fig. 2 shows the cross section of a cone with vertex angle 2θ, axis direction
n(m,n,−1) and vertex A(x0, y0, z0). The projection point of a measured
point P onto the cone is D. The distance from P to the cone is,

e = |DP | = cos θ(|BP | − |BC|) = cos θ|BP | − sin θ|AB|

Given a point set P = {Pk|k = 1, 2, . . . ,M}, the conicity error is,

d = max
k

ek −min
k

ek

= max
k

(
cos θ

−−→
APk · n
|n|

− sin θ
|−−→APk × n|

|n|

)

−min
k

(
cos θ

−−→
APk · n
|n|

− sin θ
|
−−→
APk × n|

|n|

)
(2)
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Figure 2: Calculation of conicity error

3. A hybrid particle swarm optimization-differential evolution al-
gorithm

3.1. Particle swarm optimization

The particle swarm optimization (PSO) method is a swarm intelligence
method for global optimization first proposed by Kennedy and Eberhart [20].
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In PSO, each individual, named particle, of the population, called swarm, ad-
justs its trajectory toward its own previous best position, and toward the pre-
vious best position attained by any member of its topological neighbourhood.
As a stochastic search scheme, PSO has properties of simple computation and
rapid convergence capability. The individuals in evolutionary algorithms are
primarily competitive. On the contrary, PSO adopts a more cooperative way.
As a consequence it can find the optimal region of the solution very easily,
i.e. it has outstanding capability of exploitation. Its populations move as a
whole but do not evolve, thus no mutation or crossover is needed.

Suppose the search space is D-dimensional, and the positions of particles
Y = {yi|i = 1, · · · , N} are initialized using a uniform distribution. The
velocity (the position change per generation) of yi at the k-th generation is
given as,

vk
i = vk−1

i + c1r1 ⊗ (pi − yi) + c2r2 ⊗ (pg − yi), k > 1

where c1 and c2 are acceleration coefficients regulating the relative velocities
toward local best pi (exploration) and global best pg(exploitation), respec-
tively. r1 and r2 are D-dimensional random vectors uniformly distributed in
[0, 1] and ⊗ denotes element-wise multiplication.

To endure convergence and to improve the stability of the basic PSO,
Clerc proposed the use of a constriction factor to the velocity [21],

vk
i = χ[vk−1

i + c1r1 ⊗ (pi − yi) + c2r2 ⊗ (pg − yi)], k > 1 (3)

Following [21], the coefficients are set as c1 = c2 = 2.05 and χ = 0.7298.
Besides, a maximal allowable velocity vector Vmax is used to clamp ve-

locities of particles on each dimension,

vij =


−V max

j vij < −V max
j

vij −V max
j ≤ vij ≤ V max

j

V max
j vij ≥ V max

j

(4)

here j denotes the j-th dimension of the vector. Vmax is set according to the
range of the variable space,

Vmax = γ(yU − yL)

In the equation, yU and yL represent the upper bound and lower bound
of the space, respectively [22]. It is found that the optimal setting of γ
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is problem dependent. To improve the flexibility of the program, Vmax is
initially set using γ = 0.5 and then updated according to the actual situation
of the running program [22],

Vmax ⇐
{

βVmax if solution stagnates for 3 generations
Vmax otherwise

(5)

here β is set to be 0.95.
The basic PSO initializes particles using uniform pseudo-random numbers

within the variable space. The random number sequences do not achieve the
lowest possible discrepancy, thus the random points cannot evenly cover the
whole space, as illustrated in Fig. 3(a). The discrepancy is used to mea-
sure how uniformly distributed the point set is. Various low discrepancy se-
quences have been proposed. Among them, the Hammersley sequence shows
remarkable superiority on ease of implementation [23]. Thus it is adopted to
generate initial particles.

Each nonnegative integer i can be expanded by a prime base p,

i = a0 + a1p+ a2p
2 + · · ·+ arp

r

with 0 ≤ aj < p, j = 1, 2, · · · , r. A function Φp is defined for i as,

Φp(i) =
r∑

j=0

aj
pj+1

It can be proved that for any i ≥ 0 and p ≥ 2, the inequality 0 ≤ Φp(i) < 1
always holds true.

A series of prime numbers p1 < p2 < · · · < pD−1 determine a sequence of
functions {Φp1 ,Φp2 , · · · ,ΦpD−1

}. Then a D−dimensional Hammersley point
is defined as, (

i

N
,Φp1(i), · · · ,ΦpD−1

(i)

)
, i = 1, 2, · · · , N

With p increasing, the point distribution becomes more and more regular
[23]. To make the prime numbers as small as possible, we set pj = j +1, j =
1, · · · , D − 1.
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Figure 3: Uniform points generated by random numbers and Hammersley sequence

3.2. Differential evolution

Inspired by the natural evolution of biological species, Holland proposed
a popular algorithm called the genetic algorithm (GA) [24]. In 1995, Price
and Storn replaced the classical crossover and mutation operators in genetic
algorithms by a differential operator, which leads to an algorithm called
differential evolution (DE) [25]. Compared to GA, DE is more simple but
performs better on many numerical optimization problems [25]. Compared
to PSO, it can cover the variable space more sufficiently and has greater
probability to find the global optimum, i.e. it possesses superior capability
of exploration.

At each generation, a Donor vector vi is generated for each individual
of the population (called genome or chromosome) {yi|i = 1, · · · , N}. It is
the method of creating this Donor vector that demarcates between various
DE schemes. Two mutation schemes ‘DE/rand/1/bin’ and ‘DE/current to
best/2/bin’ are applied [26] here,

vi =

{
yr + F (ys − yt) rand[0, 1] < p

yi + F (pg − yi) + F (yr − ys) otherwise
(6)

where r, s and t are integers randomly selected from the range [1, N ] (exclud-
ing i). F ∈ [0, 2] is used to scale the differential vector.

These two strategies are used very commonly in literature and perform
well on problems with distinct characteristics. ‘DE/rand/1/bin’ demon-
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strates good diversity while ‘DE/current to best/2/bin’ shows good conver-
gence property. Here p ∈ [0, 1) is a user-set parameter.

After the mutation phase, a ‘binomial’ crossover operation is applied,

uij =

{
vij if randj[0, 1] ≤ CR or j = jrand
yij otherwise

(7)

where CR ∈ [0, 1) is a user-specified crossover constant and jrand is a ran-
domly chosen integer within the range [1, N ] to ensure that the trial vector
ui will differ from yi by at least one component. The subscript j refers to
the j-th dimension. rand[0, 1] is a random number uniformly generated in
the interval [0, 1].

Then a selection operation follows,

yk+1
i =

{
uk
i if f(uk

i ) < f(yk
i )

yk
i otherwise

(8)

with k and k+1 denoting the individuals at the k-th and (k+1)-th genera-
tions, respectively, and f representing the fitness (here it is the cylindricity
or conicity error).

The optimal configuration, i.e. the values of F , CR and p, is problem-
dependent. To obtain relatively good performance in different situations, a
self-adaptive DE is employed [27]. The parameters are trained through the
optimization process. The training procedure will not be presented here for
the sake of concision.

3.3. A two-stage optimization algorithm

The PSO program possesses an advantage of fast convergence, but it
has a tendency of premature convergence because of the possibility of over-
whelming, i.e. sub-optimal groups best influence early in the search. While
DE can maintain a greater diversity in the population and the individuals
can travel more amply within the variable space, thus the local minimum
problem can be overcome more effectively. However DE updates the individ-
uals somehow ‘blindly’ and finds the optimal region more slowly than PSO.
Therefore a two-stage approach is used: first search for the optimal region
using PSO and then refine the solution by DE. The criterion adopted for
switching between these two stages is the diversity, which is defined as [28]

diversity(Y) =
1

N · L

N∑
i=1

√√√√ D∑
j=1

(yij − ȳj)2 (9)
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where y =
∑N

i=1 yi/N is the centroid of population and L is the length of
the diagonal in the search space.

The pseudocode for the two-stage optimization program is shown in Al-
gorithm 1.

3.4. Implementation issues

It is obvious that Eq. (1) has only four independent variables {x0, y0,
m, n} whereas the nominal radius R can vary arbitrarily without altering
the cylindricity error. The reason is only the difference between maxk ek and
mink ek is used but their own values are not taken into account. In prac-
tice, the value α = maxk ek/mink ek will be supplied in different situations of
surface mating. In this paper we enforce the tolerances are symmetric, i.e.
α = −1. As a result the individuals in the program need only four dimen-
sions, rather than five. The radius is enforced R = 0 during optimization
and then adjusted as,

R ⇐ maxk ek +mink ek
2

For the same reason, the conicity program has only five independent
variables, rather than six. The vertex position of the nominal cone cannot be
determined through the optimization program. To eliminate the ambiguity in
the solution, the vertex is forced located on the X−Y plane, i.e. z0 = 0 during
optimization and then worked out after that. For symmetric tolerances,

x0 ⇐ x0 − m(maxk ek+mink ek)
2|n| sinθ

y0 ⇐ y0 − n(maxk ek+mink ek)
2|n| sinθ

z0 ⇐ −maxk ek+mink ek
2|n| sinθ

4. Experimental validation and discussion

To validate the proposed algorithm, four benchmark data sets are used.
They are two cylinders from [12] (dataset 2) and [15], and two cones from
[16] and [29]. Many researchers compared their own calculation results using
these data. The best fitting results found in literature are presented in Table
1.

The two cylinders are checked first. To reveal the reliability of this al-
gorithm, the variable space of the cylinder centre (x0, y0) was set a half of
the data range, and m and n were generated within [−1, 1]. The number of
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Input: X
// data points

Initialize population Y ∈ RN×D, velocities V ∈ RN×D and Vmax ∈ RD;
k = 0; // generation number for PSO

while k < kmax
1 do

k ++;
for i = 1 to N do

Evaluate f(yi);
Update pi and pg if possible;
Adapt vi with (3) and (4);
yi ⇐ yi + vi;

end
Update Vmax with (5);
if diversity(Y) < d0 then

Break;
end

end
Initialize F,CR and p;
k = 0 // generation number for DE

while k < kmax
2 do

k ++;
Train F,CR and p;
for i = 1 to N do

Mutation and crossover of yi with (6) and (7);
Selection of yi with (8);

end
if termination condition satisfied then

Break;
end

end
Output: pg

Algorithm 1: A Two-Stage PSO-DE Algorithm
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particles was N = 20. The fitness value associated with the global optimal
solution pg at every generation was stored. If the program stagnates for 30
iterations, i.e. f(pk

g) − f(pk+30
g ) < ϵ, the program will be terminated. Here

it is set ϵ = 10−6.
The program was run 400 times and the minimal, maximal and mean

values of the cylindricity errors are listed in Table 1. The standard deviation
σ of the 400 errors is applied to measure the uncertainty. It is directly related
with the stability of the program. The optimal solutions obtained via this
PSO-DE algorithm are listed in Table 2.

It can be seen that the program can find better results than the cited
papers. It behaves very stably for the second cylinder and the global optimal
solution can always be found. On the contrary, the uncertainty of the first
cylinder is a little greater. This is because there are only 20 data points
and the data range in the z direction is only a third of the cylinder radius,
which makes the evaluation program less stable. But the relative uncertainty
of the cylindricity is 0.0000092, which is sufficient for practical applications.
In fact, by altering the termination conditions and increasing the particle
population, the individuals can search more sufficiently within the variable
space and the solution can be made more stable, of course, with a cost of
more computation time.

It has to be mentioned that [19] gave form errors 0.174635 and 0.002788
for cylinders 1 and 2, respectively. They introduced a vertex angle in the
optimization program, which in turn added one extra degree of freedom in
the variable space. Consequently the form errors they gave were actually
conicity, rather than ‘cylindricity’. The result of cylinder 2 appears correct. It
is because the vertex angle is very small, which by chance has little influence
on the evaluation result.

Table 1: Form errors of PSO-DE
data published PSO-DE

min max mean σ
Cylinder1 0.18396 [12] 0.183957 0.183991 0.183958 1.69e-6
Cylinder2 0.002788 [15] 0.002788 0.002788 0.002788 2.800e-9
Cone1 0.0280 [19] 0.026911 0.027030 0.026918 1.59e-5
Cone2 0.0032 [11] 0.003154 0.003178 0.003156 4.03e-6

The conicity evaluation program applied the same settings, except the
half vertex angle 0 < θ < π/2. The minimal, maximal and mean values
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Table 2: Best solutions of PSO-DE to cylinders

data x0 y0 m n R
Cylinder1 0.010650 0.046918 -0.000619 -0.002915 59.989505
Cylinder2 0.003390 -0.008381 -0.013961 0.007043 12.001374

Table 3: Best solutions of PSO-DE to cones
data x0 y0 z0 m n θ
Cone1 22.249169 10.087816 -15.768426 9.874e-3 2.337e-3 0.240671
Cone2 8.806048 3.989779 -6.169093 1.497e-3 -5.96e-4 0.239001

as well as standard deviation of 400 results are given in Table 1 and the
optimal solutions are shown in Table 3. The superiority of this algorithm
is more remarkable for cones. Even the worst results are better than the
cited papers. This means those algorithms were trapped at local minima.
Another point worth noting is that the vertices of both two cones are above
the point sets, so that it is proper to set the direction vector of the axis to
be (m,n,−1). If vertices are below, the direction vectors should be (m,n, 1)
accordingly, or equivalently make the half vertex angle −π/2 < θ < 0. In
fact, to make the optimization program more flexible, the variation range of
the angle can be set as −π/2 < θ < π/2, which needs no prior information
on the orientation of the cone.

To reveal the behaviour of the algorithm more sufficiently, Two parame-
ters y0 and n of cylinder 2 were fixed at the optimal solution, and only the
other two parameters x0 and m were altered, as illustrated in Fig. 4(a) and
4(b). The gray background represents the values of the objective function
associated with different (x0,m). The error map is not smooth. Instead, it
contains many ‘grooves’, which imply local minima. Randomly generating 10
particles in the variable space, Fig. 4(a) and 4(b) illustrate the trajectories of
the 10 particles during PSO and DE optimization, respectively. The ‘stars’
in the graphs denote the global optimal solutions.

It can be seen that the PSO particles assemble toward the optimum very
quickly and the program shows good exploitation behaviour, thus a good
initial guess is not required. While at the DE phase, the individuals may
move along any direction. The optimal region can be searched amply and
local minima can be avoided to the greatest extent. As a result the program
can make a good balance between the convergence speed (exploitation) and
avoiding local minima (exploration).
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To demonstrate the reliability of the proposed PSO-DE algorithm clearly,
the variable range was set very large. In fact, the measured data can be
fitted first with linear least squares [30], so that an approximate solution is
obtained. Then the search space of the PSO-DE program can be greatly
reduced and the computational efficiency will be improved significantly.

5. Conclusions

This paper presents a reliable method to evaluate the minimum zone form
errors of cylinders and cones, which are consistent with the definitions in ISO
1101. A hybrid particle swarm optimization-differential evolution algorithm
is proposed, which conducts optimization in two phases. Taking its advan-
tage of fast convergence, particle swarm optimization is firstly implemented
from a very large variable space. Then differential evolution is employed
to search the optimal region amply, so that local minima can be effectively
avoided. To improve the flexibility of the optimization program, the control
parameters, e.g. the crossover rate, are trained using a self-adaptive ap-
proach. Experimental examples show that this algorithm can achieve higher
evaluation accuracy, and obtain better results than literature. It is versa-
tile and can be extended to the minimum zone evaluation of more complex
shapes, e.g. ellipsoid, paraboloid and freeform surfaces. Moreover the eval-
uation criteria can also be minimum circumscribed features or maximum
inscribed features, which are suited for different functionality requirements
[3, 31]. Therefore, this method could be used for online inspection in high
precision manufacturing or form error evaluation on coordinate measuring
machines.
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(a) PSO

(b) DE

Figure 4: Trajectories of individuals in PSO-DE
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